

University of Westminster Eprints
http://eprints.wmin.ac.uk

Efficient implementation of digital filters using novel
reconfiguaration multiplier blocks (REMB).

Suleyman Demirsoy1
Andrew Dempster2
Izzet Kale1

1Cavendish School of Computer Science, University of Westminster

2School of Surveying and Spatial Information Systems, University of New
South Wales, Sydney, Australia

Copyright © [2005] IEEE. Reprinted from Conference record of the Thirty-Eighth
Asilomar Conference on Signals, Systems and Computers, 2004: November 7-10,
2004, Pacific Grove, California, pp. 461-464.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Efficient Implementation Of Digital Filters Using
Novel Reconfigurable Multiplier Blocks

Süleyman Sırrı Demirsoy, Izzet Kale
Applied DSP and VLSI Research Group

University of Westminster
London, United Kingdom

{demirss, kalei}@wmin.ac.uk

Andrew G. Dempster
School of Surveying and Spatial Information Systems

University of New South Wales
Sydney, Australia

a.dempster@unsw.edu.au

Abstract— Reconfigurable Multiplier Blocks (ReMB) offer
significant complexity reductions in multiple constant
multiplications in time-multiplexed digital filters. In this paper
the ReMB technique is employed in the implementation of a
half-band 32-tap FIR filter on both Xilinx Virtex FPGA and
UMC 0.18µm CMOS technologies. Reference designs have
also been built by deploying standard time-multiplexed
architectures and off-the-shelf Xilinx Core Generator system
for the FPGA design. All designs are then compared for their
area and delay figures. It is shown that, the ReMB technique
can significantly reduce the area for the multiplier circuitry
and the coefficient store, as well as reducing the delay.

I. INTRODUCTION

Digital filters are by nature multiply-add intensive. The
methodology, techniques and procedures deployed in
realizing the associated hardware that undertake these tasks
have matured over the years and are predominantly bound on
utilizing the standard multiplier and adder structures in either
fully parallel or time-multiplexed resource-sharing
architectures.

However, there still remains a lot of redundancy in the
arithmetic circuits and their associated computations as there
is little sharing of the low-level intermediate calculations.
The multiplier block approach has addressed this gap and has
resulted in significant reduction in power, area and delay of
the multiple constant multiplications in the fully-parallel
structures [2]-[4].

Time-multiplexed designs are more efficient in terms of
the resources needed. They time-share the available
hardware, usually a multiply-accumulate block and a
memory. FIR filters, IIR filters, filter-banks, poly-phase
filters, adaptive filters can all be implemented as time-
multiplexed structures. Figure 1(a) and (b) display two time-
multiplexed filter architectures, namely Time Delay and
Accumulate (TDA) and Tapped Delay Line (TDL)
architectures.

Coefficient
Store ci

y[n]

x[n]

Partial
Sum
Store

wi[n]

Coefficient
Store ci

y[n]

x[n]

Partial
Sum
Store

wi[n]

(a)

Coefficient
Store ci

y[n]

x[n]

wi[n]

Input
Memory

Coefficient
Store ci

y[n]

x[n]

wi[n]

Input
Memory

(b)

Figure 1 (a) Time-multiplexed TDA (transposed-direct form) FIR filter
implementation, (b) Time-multiplexed TDL (direct-form) FIR filter

implementation

In recent years, the application of the multiplier blocks to
the time-multiplexed digital filter designs was also studied
[1]. It was shown that, the redundancy can be reduced and
the resulting specialized multiplier design can be much more
efficient in terms of area and computational complexity
compared to the general-purpose multiplier with its
associated coefficient store. This novel methodology was
named Reconfigurable Multiplier Blocks (ReMB) [1].

To apply the ReMB method to the time-multiplexing
systems, the coefficient store and the general-purpose
multiplier in Fig. 1(a) and (b) were replaced by a multiplier
block, which generates all the coefficient products, and a
multiplexer select the required one as depicted in Fig 2(a).
Initially, this method seems to incur redundancy due to
wasting all the generated products but the selected one.
However, it is shown that, by pushing the multiplexer deep
into the multiplier block design, the redundancy can be
reduced and the resulting specialized multiplier design can
be more efficient in terms of area and computational
complexity compared to the general-purpose multiplier plus
the coefficient store [1].

Fig 2(b) shows a multiplier block that generates 784, 156,
600 and a multiplexer to select the desired coefficient
product. It uses five adders and a 3-to-1 multiplexer. By
pushing the multiplexing operation into the multiplier block,
the same functionality can be implemented using three
adders and three 2-to-1 multiplexers as given in Fig 2(c).

4610-7803-8622-1/04/$20.00 ©2004 IEEE

][nx 1c 2c 1−kc kc

][1 nw][2 nw][1 nwk−][nwk

select

wi[n]

Multiplier block][nx 1c 2c 1−kc kc

][1 nw][2 nw][1 nwk−][nwk

select

wi[n]

Multiplier block
(a)

2

1

3

8

1
9

4916
1

39

75

1
1

4

8

16

8

4

Select

156

600

784

(b)

4

2

32

1
8

32

2

256

16

156
784
600

9
33

6
36

(c)

Figure 2 (a) Substitution of general-purpose multiplier plus the coefficient
store of Fig. 1 with a multiplier block and a multiplexer, (b) a multiplier

block with a multiplexer to choose one of the available outputs, (c) a
reconfigurable multiplier block that produces the same outputs as (b).

A multiplexer connected to an input of an adder (in this
context, adder refers either to an adder, subtractor or an
adder/subtractor) together form the basic structure of the
reconfigurable multiplier blocks. The size of the multiplexer
and the functionality of the adder depend on the platform and
the design criteria.

In Fig 2 (b) and (c) each node (•) corresponds to and
adder. The edges represent the inputs to the adder. The
numbers given at each edge shows the multiple of the signal
achieved by a left-shift. If it is negative, then that particular
signal is subtracted. The italic numbers next to the nodes are
the product(s) generated by those nodes.

The area of a 2-to-1 multiplexer is considerably smaller
than a full-adder for CMOS VLSI implementation.
Moreover, the unnecessary evaluations of the products are
avoided. Implementation of these circuits on Field
Programmable Gate Arrays (FPGA) will benefit from the
fixed resource FPGA environment. As an example, one of
the most common FPGA platforms, the Xilinx Virtex device
family contains Configurable Logic Blocks (CLB) with
Look-Up Tables (LUT) to implement the combinational
logic with up to four inputs. It also has dedicated circuitry
around the LUT for fast addition and multiplication as shown
in Fig 3(a). By utilizing the dedicated circuitry, a full-adder
can be implemented using one LUT as an XOR gate.
However, it is also possible to fit the 2-to-1 multiplexer to
the same LUT as in Fig 3(b), reducing the area requirement
by more than 50% for the design given in Fig 2(c).

B
A
S0
S1

XORCY

cin

cout

sum

MUXCY

Combinational
logic

B
A
S0
S1

XORCY

cin

cout

sum

MUXCY

Combinational
logic

XORCY

cin

cout

sum

MUXCY

Combinational
logic

(a)
B0

B1

S

A

0

1

A+B0 for S=0

A+B1 for S=1

B0

B1

S

A

0

1

A+B0 for S=0

A+B1 for S=1 (b)

Figure 3 (a) A half-slice of the Virtex CLB (b) Configuration of an LUT
for implementing a basic-structure

In this paper, we apply ReMB technique to a 32-tap half-
band FIR filter to demonstrate its benefits on both FPGA and
ASIC implementations. Furthermore, we implement two
reference designs of the same filter using standard time-
multiplexed filter architectures. For the FPGA
implementation, we also and compare our design with the
readily available, off-the-shelf implementation with Xilinx
Core Generator system. For the ASIC implementation, the
proposed and the reference designs are implemented in UMC
0.18um CMOS technology. Section 2 of the paper will give
the design details of the reference filters and the ReMB
filters for fixed-point implementation. Section 3 will discuss
the implementation issues specific for FPGA and ASIC. The
area and delay figures for all designs and comment on the
savings achieved by ReMB technique are also reported.
Section 4 will conclude the paper.

II. DESIGN DETAILS

We designed the 32-tap half-band FIR filter in Matlab.
Due to the nature of the half-band filter, the coefficients are
symmetric and every other coefficient is zero except the
middle coefficient.

For the fixed-point implementation of this filter, we
quantized the coefficients to 10-bits rounding the exact
coefficients towards the nearest integer. Assumed data
word-length is 16 bits. The main reason for the 10-bits
coefficient word-length was the algorithm that generated the
ReMB structure.

Fig 4 displays the quantized coefficient set. There are
nine distinct numbers in this set: 256, 162, -50, 26, -15, 8, -4,
2, -1.

Fıgure 4 The quantized coefficients for the half-band FIR filter.

A typical time-multiplexed TDL filter architecture, which
is used as a reference design, is shown in Fig 5(a). All the
coefficients are stored in a coefficient memory and the
incoming input samples are stored in an input memory. A
simple controller operates to process one filter-tap per-cycle.
In Fig 5(b), only the distinct non-zero coefficients (their

0 5 10 15 20 25 30
-50

0

50

100

150

200

250

C
oe

ff
ic

ie
nt

 V
al

ue

256

162 162

-50 -50

0 0

0

0

-1 -1

2 2

-4 -4
-15

8

26 26

-15

8

N, number of taps

462

absolute value) are stored in the memory. The controller in
this case gets a bit more intelligent to address the correct
coefficient for each tap. A multiplexer selects either the
coefficient-product or its inverse or zero to be accumulated.
The sizes of the controller block and the coefficient memory
reflect the difference between the architectures of Fig 5(a)
and (b).

Fig 5(c) shows the proposed implementation of the filter
using ReMB. The coefficient store and the general-purpose
multiplier in Fig 5(b) are replaced with a ReMB structure
that performs multiplication for the distinct coefficients
stored in the coefficient memory. The complexity of the
controller is kept same since it generates the same control
signals as in Fig 5(b).

The ReMB block used in the filter is shown in Fig 6. It is
generated by an algorithm described in [1]. It comprises
seven basic structures of the smallest size (a 2-to-1
multiplexer connected to one input of an adder). The
coefficients of the filter are generated at the output of the
basic-structure at layer 3 by selecting particular inputs of the
multiplexers. Select signals are not shown on the diagram
for simplicity.

Layer 1 Layer 2 Layer 3

-1

-16

1 256
162
50
26
15
8
4
2
1

1

-16

-1
15
10
3
1

8
1

-1
6
1

2

4

-1
9
7

2
-2

-1

16
10
9

5
3
2

1

4

0

1
5

8
1

-2
9
6

Din
Din

Din

Layer 1 Layer 2 Layer 3

-1

-16

1 256
162
50
26
15
8
4
2
1

1

-16

-1
15
10
3
1

8
1

-1
6
1

2

4

-1
9
7

2
-2

-1

16
10
9

5
3
2

1

4

0

1
5

8
1

-2
9
6

Din
Din

Din

Figure 6 The ReMB design used in the proposed filter implementation.
Din is the input signal to the block.

Table 1 shows the set of select values required to produce
each coefficient of the filter. In the table, basic structures are
indexed from 0 to 6 starting from the top of layer 1
downward and then layer 2 and layer 3. The select value of
‘0’ means that the top branch of the multiplexer is selected.
An ‘X’ value means that particular basic structure is not
involved in generating the coefficient.

A separate decoder is designed to produce these select
signals by using the output of the main controller that was
used to address the coefficient memory.

TABLE I SELECT VALUES REQUIRED FOR EACH COEFFICIENT

Select signals for each basic-structure Coef
0 1 2 3 4 5 6

256 0 0 1 X 0 0 0
162 1 1 0 X 0 0 0
50 1 1 0 0 0 1 0
26 1 0 0 1 0 1 0
15 0 0 X X 0 X 1
8 0 X X 0 1 X 1
4 1 X X 1 1 X 1
2 1 X X 0 1 X 1
1 1 1 X X 0 X 1

III. IMPLEMENTATION

The filters are implemented in VHDL using HDL
DesignerTM and synthesized using Leonardo SpectrumTM.
The FPGA implementations are realized on a Virtex FPGA
with model number XCV300BG432-4. They are Placed and
Routed (PAR) using Xilinx ISE 5.2 software. Area and
delay figures reported in this section for the FPGA designs
are obtained after PAR.

Furthermore another reference design using off-the-shelf
Xilinx CoregenTM software is also implemented from the
parametrizable MAC FIR core (version. 3.0) [5].

The ASIC implementations are targeted for the UMC
0.18um CMOS technology. They are not placed and routed
and all the results reported here are obtained after synthesis.

(a)

x[n]

Input
Memory

DFF

Coef.
Memory

DFF

DFF

y[n]

Control

(b)

Input
Memory

x[n]

DFF

Coef.
Memory

DFF

DFF

y[n]

Control

‘0’

(c)

Input
Memory

x[n]

DFF

DFF

y[n]

Control

‘0’

ReMB

Fıgure 5 (a), (b) Time-multiplexed TDL strucutres implemented as reference filters (c) The proposed filter implementation using ReMB technique

463

There is no quantization in the data-path of the any of the
designs. The input data are 16-bits and the output data are
30-bits wide with full-precision.

Table II displays the area and delay figures for all
implementations. The units of area for the FPGA
implementations are LUT count for combinational logic and
D Flip-Flop (FF) count for the sequential logic. For the
ASIC implementations, the area is reported in terms of gate
count.

No pipelining is applied to the filters given in Fig 5.
Critical path delays are reported for the full combinational
logic in the multiply-and-accumulate circuits. However, the
filter generated by CoregenTM is pipelined as the latency of
the filter is more than the number of filter taps.

Table II also shows that, the coefficient memory and the
input memory are not included to the area figures for the
filters given in Fig 5. The area figure for the Coregen filter,
on the other hand, includes the memory for coefficients but
not the input data.

The effect of the increased controller complexity in
Fig 5(b) can be observed in the area figures for both FPGA
and ASIC implementations. However, the multiplexer in the
multiply-and-accumulate path in Fig 5(b) only contributes to
the area for the ASIC implementations. For the Virtex
implementation, the components inside the dashed-line in
Fig 5(b) and (c) can be fitted into one LUT, which in turn
means the multiplexer comes free.

The area savings achieved by the ReMB technique for
the FPGA and the ASIC implementations of this particular
example is around 20%. The ReMB block given in Fig 6 is
not optimal in the sense of the number of basic-structures
[1]. A better ReMB design, which would share more
intermediate partial-products, would increase the area
savings.

The decrease in the critical path delay for the FPGA
implementations is due to the reduced logic depth of the
multiplier since the extra multiplexer stages between adders
do not contribute to the delay. However, for the ASIC
implementations, the critical path delay increased a little due

to multiplexers. The reduced logic-depth of the adder
network in the multiplier avoided a large increase in the
delay. Reduced logic-depth also contributes to lower-power
since less glitches are produced.

If the pipelining was considered, the delays associated
with all implementations would be similar. Even then, the
area of the ReMB filter would be smallest because of the
addition of the same amount of latches or flip-flops to all of
the filters.

IV. CONCLUSIONS

We have implemented a half-band 32-tap FIR filter using
the ReMB technique and compared it with the reference
designs for FPGA and ASIC implementations.

ReMB technique reduced area for both FPGA and ASIC
implementations around 20 %.

The critical-path delay in the FPGA implementations is
reduced due to efficient basic structure mapping and less
logic depth in multiplier. However, the multiplexers resulted
in a slight increase in the delay of ASIC implementation.

Pipelining the filter structure would reduce the delay of
all circuits to be comparable with Coregen design. The
ReMB filter would still be the smallest area if the pipelining
was considered.

REFERENCES

[1] Demirsoy S. S., “Complexity reduction in digital filters and filter
banks”, Ph.D. Thesis, University of Westminster, October 2003

[2] Dempster A.G. and Macleod M.D., “Use of minimum-adder
multiplier-blocks in FIR digital filters”, IEEE Trans. CAS-II, vol. 42,
no. 9, pp. 569-577, November 1995.

[3] Bull D.R. and D.H Horrocks, “Primitive operator digital filters”, IEE
Proceedings-G, vol. 138, no. 3, pp. 401-412, June 1991.

[4] Potkonjak M., M.B. Srivastava and A. P. Chandrakasan, “Multiple
constant multiplications: Efficient and versatile framework and
algorithms for exploring common subexpression elimination”, IEEE
Trans. on CAD of ICS, vol. 15, no. 2, pp. 151-165, February 1996.

[5] Xilinx Inc, “MAC FIR 3.0”, Product Specification, March 2003

TABLE II AREA AND DELAY FIGURES FROM THE FILTER IMPLEMENTATIONS

FPGA Implementations (Virtex XCV300BG432-4) ASIC Implementations (UMC 0.18um CMOS)

Filters Coregen Fig 5(a) Fig 5(b) Fig 5(c) Fig 5(a) Fig 5(b) Fig 5(c)
Area

(comb. Logic)
299 LUT 223 LUT 231 LUT 190 LUT 1637 gates 1725 gates 1394 gates

Area
(D Flip-Fops)

323 FF 61 FF 61 FF 55 FF 380 gates 380 gates 339 gates

Delay 11.88 ns * 27.3 ns 26.7 ns 23.6 ns 6.52 ns 6.39 ns 7.17 ns
Notes Latency 40 cycles

for 31 taps. There
is pipelining in
the circuit at
several stages.

Area
excludes the
coefficient
and input
memory.

Area excludes
the coefficient
and input
memory.

No coefficient
memory is
required. Area
excludes input
memory.

Area excludes
the coefficient
and input
memory.

Area excludes
the coefficient
and input
memory.

No coefficient
RAM is
required. Area
excludes input
memory.

464

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

