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Abstract— Reconfigurable Multiplier Blocks (ReMB) offer 
significant complexity reductions in multiple constant 
multiplications in time-multiplexed digital filters.  In this paper 
the ReMB technique is employed in the implementation of a 
half-band 32-tap FIR filter on both Xilinx Virtex FPGA and 
UMC 0.18µm CMOS technologies.  Reference designs have 
also been built by deploying standard time-multiplexed 
architectures and off-the-shelf Xilinx Core Generator system 
for the FPGA design.  All designs are then compared for their 
area and delay figures.  It is shown that, the ReMB technique 
can significantly reduce the area for the multiplier circuitry 
and the coefficient store, as well as reducing the delay. 

I. INTRODUCTION 

Digital filters are by nature multiply-add intensive.  The 
methodology, techniques and procedures deployed in 
realizing the associated hardware that undertake these tasks 
have matured over the years and are predominantly bound on 
utilizing the standard multiplier and adder structures in either 
fully parallel or time-multiplexed resource-sharing 
architectures.   

However, there still remains a lot of redundancy in the 
arithmetic circuits and their associated computations as there 
is little sharing of the low-level intermediate calculations.  
The multiplier block approach has addressed this gap and has 
resulted in significant reduction in power, area and delay of 
the multiple constant multiplications in the fully-parallel 
structures [2]-[4].   

Time-multiplexed designs are more efficient in terms of 
the resources needed.  They time-share the available 
hardware, usually a multiply-accumulate block and a 
memory.  FIR filters, IIR filters, filter-banks, poly-phase 
filters, adaptive filters can all be implemented as time-
multiplexed structures.  Figure 1(a) and (b) display two time-
multiplexed filter architectures, namely Time Delay and 
Accumulate (TDA) and Tapped Delay Line (TDL) 
architectures.   
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Figure 1 (a) Time-multiplexed TDA (transposed-direct form) FIR filter 
implementation, (b) Time-multiplexed TDL (direct-form) FIR filter 

implementation 

In recent years, the application of the multiplier blocks to 
the time-multiplexed digital filter designs was also studied 
[1].  It was shown that, the redundancy can be reduced and 
the resulting specialized multiplier design can be much more 
efficient in terms of area and computational complexity 
compared to the general-purpose multiplier with its 
associated coefficient store.  This novel methodology was 
named Reconfigurable Multiplier Blocks (ReMB) [1].   

To apply the ReMB method to the time-multiplexing 
systems, the coefficient store and the general-purpose 
multiplier in Fig. 1(a) and (b) were replaced by a multiplier 
block, which generates all the coefficient products, and a 
multiplexer select the required one as depicted in Fig 2(a).  
Initially, this method seems to incur redundancy due to 
wasting all the generated products but the selected one.  
However, it is shown that, by pushing the multiplexer deep 
into the multiplier block design, the redundancy can be 
reduced and the resulting specialized multiplier design can 
be more efficient in terms of area and computational 
complexity compared to the general-purpose multiplier plus 
the coefficient store [1]. 

Fig 2(b) shows a multiplier block that generates 784, 156, 
600 and a multiplexer to select the desired coefficient 
product.  It uses five adders and a 3-to-1 multiplexer.  By 
pushing the multiplexing operation into the multiplier block, 
the same functionality can be implemented using three 
adders and three 2-to-1 multiplexers as given in Fig 2(c).   
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Figure 2 (a) Substitution of general-purpose multiplier plus the coefficient 
store of Fig. 1 with a multiplier block and a multiplexer, (b) a multiplier 

block with a multiplexer to choose one of the available outputs, (c) a 
reconfigurable multiplier block that produces the same outputs as (b). 

A multiplexer connected to an input of an adder (in this 
context, adder refers either to an adder, subtractor or an 
adder/subtractor) together form the basic structure of the 
reconfigurable multiplier blocks.  The size of the multiplexer 
and the functionality of the adder depend on the platform and 
the design criteria.   

In Fig 2 (b) and (c) each node (•) corresponds to and 
adder.  The edges represent the inputs to the adder.  The 
numbers given at each edge shows the multiple of the signal 
achieved by a left-shift.  If it is negative, then that particular 
signal is subtracted.  The italic numbers next to the nodes are 
the product(s) generated by those nodes.   

The area of a 2-to-1 multiplexer is considerably smaller 
than a full-adder for CMOS VLSI implementation.  
Moreover, the unnecessary evaluations of the products are 
avoided.  Implementation of these circuits on Field 
Programmable Gate Arrays (FPGA) will benefit from the 
fixed resource FPGA environment.  As an example, one of 
the most common FPGA platforms, the Xilinx Virtex device 
family contains Configurable Logic Blocks (CLB) with 
Look-Up Tables (LUT) to implement the combinational 
logic with up to four inputs.  It also has dedicated circuitry 
around the LUT for fast addition and multiplication as shown 
in Fig 3(a).  By utilizing the dedicated circuitry, a full-adder 
can be implemented using one LUT as an XOR gate.  
However, it is also possible to fit the 2-to-1 multiplexer to 
the same LUT as in Fig 3(b), reducing the area requirement 
by more than 50% for the design given in Fig 2(c).   
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Figure 3 (a) A half-slice of the Virtex CLB (b) Configuration of an LUT 
for implementing a basic-structure 

In this paper, we apply ReMB technique to a 32-tap half-
band FIR filter to demonstrate its benefits on both FPGA and 
ASIC implementations.  Furthermore, we implement two 
reference designs of the same filter using standard time-
multiplexed filter architectures.  For the FPGA 
implementation, we also and compare our design with the 
readily available, off-the-shelf implementation with Xilinx 
Core Generator system.  For the ASIC implementation, the 
proposed and the reference designs are implemented in UMC 
0.18um CMOS technology.  Section 2 of the paper will give 
the design details of the reference filters and the ReMB 
filters for fixed-point implementation.  Section 3 will discuss 
the implementation issues specific for FPGA and ASIC.  The 
area and delay figures for all designs and comment on the 
savings achieved by ReMB technique are also reported.  
Section 4 will conclude the paper.   

II. DESIGN DETAILS

We designed the 32-tap half-band FIR filter in Matlab.  
Due to the nature of the half-band filter, the coefficients are 
symmetric and every other coefficient is zero except the 
middle coefficient.   

For the fixed-point implementation of this filter, we 
quantized the coefficients to 10-bits rounding the exact 
coefficients towards the nearest integer.  Assumed data 
word-length is 16 bits.  The main reason for the 10-bits 
coefficient word-length was the algorithm that generated the 
ReMB structure.   

Fig 4 displays the quantized coefficient set.  There are 
nine distinct numbers in this set: 256, 162, -50, 26, -15, 8, -4, 
2, -1.   

Fıgure 4 The quantized coefficients for the half-band FIR filter. 

A typical time-multiplexed TDL filter architecture, which 
is used as a reference design, is shown in Fig 5(a).  All the 
coefficients are stored in a coefficient memory and the 
incoming input samples are stored in an input memory.  A 
simple controller operates to process one filter-tap per-cycle.  
In Fig 5(b), only the distinct non-zero coefficients (their 
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absolute value) are stored in the memory.  The controller in 
this case gets a bit more intelligent to address the correct 
coefficient for each tap.  A multiplexer selects either the 
coefficient-product or its inverse or zero to be accumulated.  
The sizes of the controller block and the coefficient memory 
reflect the difference between the architectures of Fig 5(a) 
and (b).   

Fig 5(c) shows the proposed implementation of the filter 
using ReMB.  The coefficient store and the general-purpose 
multiplier in Fig 5(b) are replaced with a ReMB structure 
that performs multiplication for the distinct coefficients 
stored in the coefficient memory.  The complexity of the 
controller is kept same since it generates the same control 
signals as in Fig 5(b).   

The ReMB block used in the filter is shown in Fig 6.  It is 
generated by an algorithm described in [1].  It comprises 
seven basic structures of the smallest size (a 2-to-1 
multiplexer connected to one input of an adder).  The 
coefficients of the filter are generated at the output of the 
basic-structure at layer 3 by selecting particular inputs of the 
multiplexers.  Select signals are not shown on the diagram 
for simplicity.   
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Figure 6 The ReMB design  used in  the proposed filter implementation.  
Din is the input signal to the block.  

Table 1 shows the set of select values required to produce 
each coefficient of the filter.  In the table, basic structures are 
indexed from 0 to 6 starting from the top of layer 1 
downward and then layer 2 and layer 3.  The select value of 
‘0’ means that the top branch of the multiplexer is selected.  
An ‘X’ value means that particular basic structure is not 
involved in generating the coefficient.   

A separate decoder is designed to produce these select 
signals by using the output of the main controller that was 
used to address the coefficient memory.   

TABLE I SELECT VALUES REQUIRED FOR EACH COEFFICIENT

Select  signals for each basic-structure Coef 
0 1 2 3 4 5 6 

256 0 0 1 X 0 0 0 
162 1 1 0 X 0 0 0 
50 1 1 0 0 0 1 0 
26 1 0 0 1 0 1 0 
15 0 0 X X 0 X 1 
8 0 X X 0 1 X 1 
4 1 X X 1 1 X 1 
2 1 X X 0 1 X 1 
1 1 1 X X 0 X 1 

III. IMPLEMENTATION

The filters are implemented in VHDL using HDL 
DesignerTM and synthesized using Leonardo SpectrumTM.
The FPGA implementations are realized on a Virtex FPGA 
with model number XCV300BG432-4.  They are Placed and 
Routed (PAR) using Xilinx ISE 5.2 software.  Area and 
delay figures reported in this section for the FPGA designs 
are obtained after PAR.   

Furthermore another reference design using off-the-shelf 
Xilinx CoregenTM software is also implemented from the 
parametrizable MAC FIR core (version. 3.0) [5].   

The ASIC implementations are targeted for the UMC 
0.18um CMOS technology.  They are not placed and routed 
and all the results reported here are obtained after synthesis.   
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There is no quantization in the data-path of the any of the 
designs.  The input data are 16-bits and the output data are 
30-bits wide with full-precision.   

Table II displays the area and delay figures for all 
implementations.  The units of area for the FPGA 
implementations are LUT count for combinational logic and 
D Flip-Flop (FF) count for the sequential logic.  For the 
ASIC implementations, the area is reported in terms of gate 
count.   

No pipelining is applied to the filters given in Fig 5.  
Critical path delays are reported for the full combinational 
logic in the multiply-and-accumulate circuits.  However, the 
filter generated by CoregenTM is pipelined as the latency of 
the filter is more than the number of filter taps.   

Table II also shows that, the coefficient memory and the 
input memory are not included to the area figures for the 
filters given in Fig 5.  The area figure for the Coregen filter, 
on the other hand, includes the memory for coefficients but 
not the input data.   

The effect of the increased controller complexity in 
Fig 5(b) can be observed in the area figures for both FPGA 
and ASIC implementations.  However, the multiplexer in the 
multiply-and-accumulate path in Fig 5(b) only contributes to 
the area for the ASIC implementations.  For the Virtex 
implementation, the components inside the dashed-line in 
Fig 5(b) and (c) can be fitted into one LUT, which in turn 
means the multiplexer comes free.   

The area savings achieved by the ReMB technique for 
the FPGA and the ASIC implementations of this particular 
example is around 20%.  The ReMB block given in Fig 6 is 
not optimal in the sense of the number of basic-structures 
[1].  A better ReMB design, which would share more 
intermediate partial-products, would increase the area 
savings.   

The decrease in the critical path delay for the FPGA 
implementations is due to the reduced logic depth of the 
multiplier since the extra multiplexer stages between adders 
do not contribute to the delay.  However, for the ASIC 
implementations, the critical path delay increased a little due 

to multiplexers.  The reduced logic-depth of the adder 
network in the multiplier avoided a large increase in the 
delay.  Reduced logic-depth also contributes to lower-power 
since less glitches are produced.   

If the pipelining was considered, the delays associated 
with all implementations would be similar.  Even then, the 
area of the ReMB filter would be smallest because of the 
addition of the same amount of latches or flip-flops to all of 
the filters.  

IV. CONCLUSIONS

We have implemented a half-band 32-tap FIR filter using 
the ReMB technique and compared it with the reference 
designs for FPGA and ASIC implementations.   

ReMB technique reduced area for both FPGA and ASIC 
implementations around 20 %. 

The critical-path delay in the FPGA implementations is 
reduced due to efficient basic structure mapping and less 
logic depth in multiplier. However, the multiplexers resulted 
in a slight increase in the delay of ASIC implementation.  

Pipelining the filter structure would reduce the delay of 
all circuits to be comparable with Coregen design.  The 
ReMB filter would still be the smallest area if the pipelining 
was considered.  
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TABLE II AREA AND DELAY FIGURES FROM THE FILTER IMPLEMENTATIONS

FPGA Implementations (Virtex XCV300BG432-4) ASIC Implementations (UMC 0.18um CMOS) 

Filters Coregen Fig 5(a) Fig 5(b) Fig 5(c) Fig 5(a) Fig 5(b) Fig 5(c) 
Area 

(comb. Logic) 
299 LUT 223 LUT 231 LUT 190 LUT 1637 gates 1725 gates 1394 gates 

Area  
(D Flip-Fops) 

323 FF 61 FF 61 FF 55 FF 380 gates 380 gates 339 gates 

Delay 11.88 ns * 27.3 ns 26.7 ns 23.6 ns 6.52 ns 6.39 ns 7.17 ns 
Notes Latency 40 cycles 

for 31 taps. There 
is pipelining in 
the circuit at 
several stages.  

Area 
excludes the 
coefficient 
and input 
memory. 

Area excludes 
the coefficient 
and input 
memory. 

No coefficient 
memory is 
required. Area 
excludes input 
memory. 

Area excludes 
the coefficient 
and input 
memory. 

Area excludes 
the coefficient 
and input 
memory. 

No coefficient 
RAM is 
required. Area 
excludes input 
memory. 
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