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Abstract: In today’s complex, constantly evolving and innovation-supporting manufacturing 

systems, knowledge plays a vital role in sustainable manufacturing process planning and  

problem-solving, especially in the case of Computer-Aided Process Innovation (CAPI). To obtain 

formalized and promising process innovation knowledge under the open innovation paradigm, it 

is necessary to evaluate candidate knowledge and encourage improvement suggestions based on 

actual innovation situations. This paper proposes a process innovation-oriented knowledge 

evaluation approach using Multi-Criteria Decision-Making (MCDM) and fuzzy linguistic 

computing. Firstly, a comprehensive hierarchy evaluation index system for process innovation 

knowledge is designed. Secondly, by combining an analytic hierarchy process with fuzzy linguistic 

computing, a comprehensive criteria weighting determination method is applied to effectively 

aggregate the evaluation of criteria weights for each criterion and corresponding sub-criteria. 

Furthermore, fuzzy linguistic evaluations of performance ratings for each criterion and 

corresponding sub-criteria are calculated. Thus, a process innovation knowledge comprehensive 

value can be determined. Finally, an illustrative example of knowledge capture, evaluation and 

knowledge-inspired process problem solving for micro-turbine machining is presented to 

demonstrate the applicability of the proposed approach. It is expected that our model would lay 

the foundation for knowledge-driven CAPI in sustainable manufacturing. 

Keywords: manufacturing process innovation; computer-aided innovation; CAPI; knowledge 

management; open innovation; multi-criteria decision-making 

 

1. Introduction 

During the past decades, the structure of the world economy has undergone significant 

changes with demand for energy saving and environmental protection becoming increasingly 

urgent [1–3]. To cope with this situation, developing countries need to transform and upgrade their 
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manufacturing industries with process innovation to reduce energy consumption and achieve 

sustainable development; developed countries, accordingly, are trying to guide and accelerate the 

return of manufacturing industries for enhancing global competitive advantage by means of 

process innovation [4–7]. Manufacturing process innovation, which includes the creation of new 

technical principles, methods and production modes, is a basic guarantee for the ultimate 

realization of product innovation and a fundamental means to achieve sustainable development of 

the manufacturing industry [8,9]. In recent years, systematic innovation methodologies and 

technologies for manufacturing processes have gained greater attention in academic research and 

industry [10–12]. Nevertheless, process innovation typically relies on cross-industry collaboration 

and potentially complex interdisciplinary system engineering [9]; thus, in addition to sophisticated 

manufacturing environments, the delivery of innovation is more dependent on highly qualified 

knowledge and knowledge-based systematic innovation methods [13–17]. Consequently, 

formalized process innovation-oriented knowledge acquisition and its management are becoming 

increasingly important and challenging for knowledge intensive manufacturing industries, such as 

aviation, aerospace and automotive sector. 

The latest Web 2.0 technologies provide a technical means for open knowledge management, 

enabling large amounts of discrete knowledge to be shared in open environments [18,19], such as 

social wiki platforms. From the perspective of knowledge application in CAPI [9], a formalized 

knowledge-oriented systematic design process is a prerequisite and basis for innovation 

implementation. Therefore, it is necessary to establish an effective knowledge evaluation method in 

open innovation environments. Process innovation knowledge evaluation is needed to identify the 

validity and novelty of such knowledge and to further analyze and understand the potential 

practicability and profitability in current manufacturing processes by considering the knowledge 

characteristics and manufacturing capacity. To select process innovation-oriented candidate 

knowledge, a reasonable evaluation index system is required. A quantitative index and qualitative 

factors based on the evaluation criteria can be evaluated by multiple domain experts. Accordingly, 

process innovation knowledge evaluation should be regarded as a group Multi-Criteria 

Decision-Making (MCDM) problem [20,21], concerned with how to evaluate candidate knowledge 

and how to raise improvement suggestions. 

Due to the complexity and fuzziness of the above problems, it is difficult for decision makers to 

evaluate given objects using exact values, but they can express preferences using fuzzy linguistic 

values [22,23]. Experts devote themselves to judging knowledge comprehensive values by subjective 

perception or experiential cognition during the decision-making process. However, there exists a 

certain extent of fuzziness, uncertainty and heterogeneity [24,25]. In addition, there is a tendency 

towards information loss during integration processes and this can cause the evaluation results of 

knowledge performance levels to be inconsistent with the expectation of experts [26,27]. In this 

event, there is a need to identify reasonable ways of calculating the performance ratings of process 

innovation-oriented knowledge during the process of evaluation integration. 

Therefore, the main objective of this research is to develop a comprehensive knowledge 

evaluation approach for supporting knowledge-driven CAPI. Firstly, an evaluation index system 

for process innovation knowledge is designed by domain experts: necessary data from the expert 

committee are gathered to determine criteria weightings and performance ratings of candidate 

knowledge. Then, by combining an Analytic Hierarchy Process (AHP) with fuzzy linguistic 

computing, a comprehensive criteria weighting determination method for the knowledge evaluation 

index system is explored. What follows is the fuzzy linguistic evaluation of the performance ratings 

for each criterion and the corresponding sub-criteria can be calculated. Furthermore, it is possible to 

compute the process innovation-oriented knowledge comprehensive value and propose 

improvement suggestions based on the evaluation results. 

The rest of this paper is organized as follows. In Section 2, background research and related 

work with definitions are introduced, while operations relating to 2-tuple fuzzy linguistic variable 

are explored. In Section 3, we introduce the comprehensive evaluation index system for process 

innovation knowledge, the model and procedure for process innovation-oriented knowledge 
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evaluation, and the determination of comprehensive fuzzy weights. Then, a real case study of 

process innovation knowledge capture and evaluation for micro-cutting is illustrated in Section 4 

and further studied, with a process problem solving example of a micro-turbine manufacturing issue 

being given. Finally, conclusions and future directions for research are discussed. 

2. Related Work and Preliminaries 

2.1. Knowledge-Driven Computer-Aided Process Innovation 

The concept of process innovation was first proposed by Schumpeter [8] from the perspective of 

economic development and, soon after, received attention in both academic research and industry, 

especially in the context of energy saving and environmental protection [28,29]. In recent years, 

some scholars have carried out useful explorations into specific types manufacturing process 

innovation by using the Theory of Inventive Problem Solving (Russian acronym: TRIZ) and 

knowledge engineering [11,30–32]. With the development of computer-aided innovation (CAI) 

technology and the requirements of manufacturing process problem-solving [33], the concept of 

computer-aided process innovation was advanced, with some specific application cases being used 

to illustrate the feasibility of structured/systematic process innovation design [9,12,34–36]. In fact, 

the traditional computer aided methods of manufacturing process (e.g., Computer-Aided Process 

Planning (CAPP) and Computer-Aided Manufacturing (CAM)) are mainly used for improving the 

efficiency and standardization of process planning [37,38], while CAPI is more focused on solving 

manufacturing process problems, improving process methodologies, fostering whole process 

innovation design cycles and even enhancing the overall manufacturing innovation capability of 

enterprises. 

As is commonly recognized, knowledge is an essential asset for organizations and plays a 

crucial role in innovation; innovation can be regarded as the knowledge-based creation, and the 

knowledge-based outcome [13,39,40]. Process innovation knowledge is used to support process 

innovation activities correctly implemented and to produce new process knowledge. Obviously, the 

knowledge acquisition and management of CAPI is crucial to innovative design, especially in the 

context of open innovation. Hüsig and Kohn [18] introduced the “Open CAI 2.0” concept based on 

analysis of open innovation strategy and Web 2.0 technologies. By combining the technical 

characteristics of social networks with wiki technology, Wang et al. [9] proposed a novel process 

innovation knowledge accumulation schema based on bilayer social wiki network for CAPI. 

In social wiki networks for CAPI, process innovation knowledge could be accumulated in a 

public knowledge space through participants’ social interactions and knowledge activities, however, 

this generated knowledge may not be able to meet actual requirements—it still needs to be 

evaluated and optimized through reasonable means to ensure the quality of knowledge and support 

for knowledge-inspired innovation design, as shown in Figure 1. Hence, it is necessary to establish 

an evaluation index system for process innovation knowledge and to provide evaluation results and 

suggestions for improvement based on the evaluation information from expert groups. In this study, 

we will focus on knowledge evaluation for CAPI in an open-innovation environment. 

 

Figure 1. Process innovation-oriented knowledge evaluation in an open innovation environment. 
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2.2. Definition and Computing of the Fuzzy Linguistic Method 

In group decision making for knowledge evaluation, decision makers usually apply fuzzy 

linguistic evaluation based on subjective experiences due to the complexity of process innovation 

and decision making. In fuzzy linguistic approach, two traditional computational models can be 

identified: (1) a linguistic computing model based on membership functions [41]; and (2) a symbolic 

linguistic computing model which produces loss of information due to approximation processes and 

hence produces a lack of precision in results [42]. To avoid information loss and to improve 

computational precision, Herrera and Martínez [26] proposed the 2-tuple fuzzy linguistic 

representation model. It not only inherits the existing advantage of fuzzy linguistic computing, but 

also overcomes the disadvantage of information loss experienced by other methods. 

The 2-tuple linguistic computational model provides accurate and understandable results 

because they are represented by means of a linguistic term and a numerical value. A 2-tuple 

linguistic variable can be denoted as ( , )i is  , where is  represents the central value of the ith 

linguistic term, and i  
denotes the distance to the central value of the ith linguistic term. A 2-tuple 

linguistic variable set typically comprises three, five, seven or more terms. Usually, a five-term set 

has more practical applications [22]. Basic definitions and concepts of fuzzy linguistic variables are 

briefly given as follows. 

Definition 1. Let  0 1, ,..., gS s s s  be a linguistic term set, and  0,1   be a number value representing 

the aggregation result of linguistic symbolic. Then, the generalized translation function (  ) applied to 

translate   into a 2-tuple linguistic variable is defined as 



1 1
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2 2
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2 2

i

i
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g g
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, (1) 

where ( )round   is the usual round operation, is  has the closest attribute label to  , and   is the 

value of the symbolic translation. 

Definition 2. On the contrary, a reverse equation 1  is necessary to convert the 2-tuple linguistic variable 

into its equivalent value  0,1  , which can be computed by the following formula 

 1 ,i

i
s

g
      . (2) 

Definition 3. Let     1 1, ,..., ,n nS s s 
 
be a set of 2-tuple fuzzy linguistic variable, where their 

arithmetic mean S is calculated as 
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. (3) 

Definition 4. Let     1 1, ,..., ,n nS s s   be a 2-tuple fuzzy linguistic variable set, and  1,..., nW w w  

be the weight set of linguistic terms; their 2-tuple linguistic weighted average wS  is calculated as 
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Additionally, when     1 1, ,..., ,w n wnW w w   is the linguistic weight set of each is , this 

linguistic weighted average operator can be computed as 
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Definition 5. Let ( , )i is   and ( , )j js 
 
be two 2-tuple fuzzy linguistic variables, where the comparison of 

both linguistic variables can be shown as: 

(a) If i j , then ( , )i is 
 
is worse than ( , )j js  . 

(b) If i j  and i j  , then ( , )i is 
 
is equal to ( , )j js  . 

(c) If i j  and i j  , then ( , )i is 
 
is better than ( , )j js  . 

(d) If i j  and i j  , then ( , )i is 
 
is worse than ( , )j js  . 

3. The Proposed Approach 

3.1. Proposed Comprehensive Evaluation Index System for Process Innovation Knowledge 

Knowledge evaluation is an important part of process innovation knowledge acquisition, which 

requires not only an effective evaluation method, but also a practical index system as the basis for 

evaluation. The selection of a knowledge evaluation index depends on the specific application 

environment and innovation objects, thus reasonable control of the size and flexibility of the index 

system is necessary. In this research, through a review of literature and discussion with domain 

experts, we present a comprehensive hierarchy evaluation index system for process innovation 

knowledge, as illustrated in Figure 2. The evaluation index system is composed of three levels: the 

first level is the overall goal; the second level comprises evaluation criteria; and the third level 

denotes corresponding sub-criteria for each criterion. The goal layer represents the core value of 

knowledge in the innovative application scenario, named Process Innovation Knowledge 

Comprehensive Value (PIKCV). The PIKCV is then divided into four parts through analysis of the 

characteristics of manufacturing process innovation: knowledge validity, knowledge novelty, 

potential practicability and manufacturing profitability. 
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Figure 2. The proposed comprehensive evaluation index system for process innovation knowledge. 

3.2. Process Innovation-Oriented Knowledge Evaluation Model 

In an open knowledge acquisition context, candidate innovation knowledge generally includes 

new theories, new methods and/or practical examples. Due to the novelty of knowledge and the 

complexity of process problems, it is difficult to fully evaluate the value of candidate process 

innovation knowledge from multiple criteria using exact values. In this situation, fuzzy linguistic 

variables are considered more reasonable for domain experts to evaluate the performance of PIKCV. 

Consequently, based on analysis of the comprehensive evaluation index system, a suitable 

evaluation model, using fuzzy linguistic computing, is proposed to measure the level of process 

innovation-oriented knowledge, as represented in Figure 3. The specific procedures of this proposed 

evaluation model are summarized as follows. 

 

Figure 3. The procedure of manufacturing process innovation-oriented knowledge evaluation. 
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Step 1. Form a suitable committee of experts who are familiar with manufacturing process 

innovation design and the structure of the evaluation index system for the corresponding innovation 

knowledge. Let  1 2, ,..., ME E E E  be the established expert committee
 
and

 
 1 2, ,..., NK K K K  

be a set of candidate process innovation knowledge. Additionally, assume that there are n
 
criteria 

 1,2,...,iB i n , and each criterion includes several sub-criteria  1,2,..., ;  1,2,...,ijC i n j t   in the 

evaluation index system for process innovation knowledge. 

Step 2. Select appropriate granularity for the linguistic term set according to experience and the 

preference of decision makers, and gather necessary data containing criteria weights and the 

performance ratings from the expert committee. Transform these linguistic terms into 2-tuple 

linguistic variables; for example, ( , )w w

ijm ijms   can denote the 2-tuple fuzzy criteria weights of the jth 

sub-criteria regarding the ith criteria of the mth expert. 

Step 3. Aggregate the fuzzy linguistic evaluations of criteria weights generated by the expert 

committee for each criterion and corresponding sub-criteria. According to the arithmetic mean 

Formula (3), the aggregated criteria weighting values of M experts are calculated as follows: 
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where 
w

ijms  is the fuzzy importance of sub-criteria j  with respect to iB  of the m th expert, w

ims  

is the fuzzy importance of iB  of the m th expert, and  0,1E

mw 
 
is the expert weight of the m th 

expert in determination of criteria importance, 
1

1
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m
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w

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In particular, when the expert weights are equal to each other, the aggregated criteria weighting 

values can be obtained using Formula (3): 
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Step 4. Aggregate the fuzzy linguistic evaluations of performance rating for each sub-criterion 

with respect to each criterion. Assuming that expert weights are the same in performance evaluation 

of process innovation knowledge, we can obtain the aggregation of fuzzy linguistic evaluation 

values. 
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where 
ijms  is the fuzzy rating of sub-criteria j  with respect to iB  of the m  th expert. 

Step 5. Compute the fuzzy aggregated ratings of each criterion by applying Formula (4): 
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where 
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Step 6. Calculate the process innovation knowledge comprehensive value. The linguistic term 

os  can be used to represent the overall value level of process innovation knowledge in innovative 

design. 
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where 
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Step 7. Rank the candidate knowledge based on PIKCV results, and propose improvement 

suggestions, according to evaluation results in the corresponding criteria and sub-criteria. 

3.3. Determination of Fuzzy Comprehensive Weights 

The determination of weights is crucial to fuzzy comprehensive evaluation of process 

innovation knowledge; however, due to the complexity of creative problem-solving and the 

ambiguity of human thinking, it is difficult to give a clear standard weight. In general, experts are 

used to determine the weights using two methods: fuzzy linguistic representation and AHP. Here, 

to meet the diversity requirements of the expert group in weight determination, and to ensure the 

reliability of the weight coefficient, we compute the comprehensive weight of the knowledge 

evaluation system by combining AHP with fuzzy linguistic computing. 

3.3.1. Weight Coefficient of AHP 

The AHP method, developed by Saaty [43] in the 1970s, is widely used for dealing with MCDM 

problems in practical production engineering [7,20,25,44–46]. It decomposes complex decision 

problems into hierarchical structures, which can include goal layer, criterion layer and sub-criterion 

layer. Then, a series of pairwise comparisons is conducted among the elements at the same level, so 

as to construct the judgment matrix. The specific steps for determination of weight coefficient are as 

follows: 

1. A numerical rating for judgment matrix of pairwise comparison is suggested. Furthermore, a 

judgment matrix A  is constructed according to pairwise comparisons. 

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

, (15) 

where 
ija  is the relative importance comparison value of element iu  to element ju , and 

0,  1/ij ji ija a a  . 

2. Calculate the weighted weight set 
AW  according to the judgment matrix by using the 

following formula: 
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3. An index, called consistency index (CI), is then used to measure the amount of inconsistency 

within the pairwise comparison matrix A . 
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Accordingly, the Consistency Rate CR  is used to measure the degree of CI  by using the 

following formula: 

CICR
RI

 , (19) 

where RI  is the random consistency index, its value being dependent on the order of matrix (as 

listed in Table 1). 

When 0 1CR . , the judgment matrix and weights of elements are acceptable. Otherwise, the 

comparison matrix must be adjusted and decision makers should be asked to re-judge. 

Table 1. Random consistency index of judgment matrix. 

Order of Matrix 1 2 3 4 5 6 7 8 9 10 

RI  0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 

3.3.2. Weight Coefficient of Fuzzy Linguistic Computing 

The aggregated criteria weighting values for each criterion and corresponding sub-criteria can 

be obtained using Formulae (6)–(9). Then, the following formulae are used to normalize these 

aggregated weights: 

1

w

i
ni

w

i

i

w








, 

(20) 

where 
w

i  is the aggregated result of i th criterion in the criterion layer and n  is the number of 

criteria. 

1

i

w

ij
nij

w

ij

j

w








, 

(21) 

where w

ij  is the aggregated result of j th sub-criterion in the sub-criterion layer and n  is the 

number of sub-criteria for i th criterion. 
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3.3.3. Fuzzy Comprehensive Weights 

By considering the weight information from the expert group of AHP and fuzzy linguistic 

computing, we can obtain the fuzzy comprehensive weights. 

C E A E L

m m

A L

W w W w W
   

    
   
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where CW  is the fuzzy comprehensive weight set of knowledge evaluation; AW  is the weighted 

weight set of the AHP expert group; LW  is the aggregated weight set of fuzzy linguistic 

computing; and 
E

m

A

w
 

and 
E

m

L

w  are the sums of expert weights from expert groups of AHP and 

fuzzy linguistic computing, respectively;  

1E E

m m

A L

w w   . (23) 

4. An Illustrative Example 

To illustrate the applicability of the developed approach, a real case study of process innovation 

knowledge capture and evaluation for micro-cutting is presented. A contrastive analysis and 

discussion between the proposed method and traditional simple weight additive (SWA) method is 

performed. Thereafter, knowledge-inspired process problem solving for micro-turbine 

manufacturing is illustrated. 

4.1. Process Innovation Knowledge Capturing and Evaluating 

Process innovation knowledge, which exists in the entire life cycle of CAPI, is used to support 

process innovation activities and, if correctly implemented, produces new process knowledge. 

According to Wang et al. [9] and Geng et al. [12], process innovation knowledge can be divided into 

several types, including problem description template (PDT), process contradiction matrix (PCM), 

manufacturing scientific effect (MSE), innovative scheme instance (ISI), manufacturing capability 

description (MCD), etc. Through knowledge contributors’ social wiki activities in the context of open 

innovation, multiple types of process innovation knowledge for micro-cutting technology have been 

initially accumulated. Among this knowledge, there are six solving principles of PCM that need to 

be evaluated for a specific innovation scenario:  1 2 3 4 5 6, , , , ,K K K K K K . In the following section, we 

take principle knowledge as an example to illustrate the concrete process of innovation knowledge 

evaluation and selection. 

4.1.1. Gathering of Evaluation Data 

To gather necessary data, the researchers conducted in-depth interviews with an expert 

committee, the members of which include a process designer, innovation expert and technical 

manager and who were introduced to the linguistic variables and their semantics. The committee 

consisted of three experts:  1 2 3, ,E E E . The Linguistic variables of the importance and rating are 

displayed in Table 2. 

In determining the weights of the evaluation system, two experts ( 1 2,E E ) used fuzzy linguistic 

variables and one expert ( 3E ) used AHP. Linguistic evaluation and weighting values from 1 2,E E  

are listed in Table 3, and the judgment matrices of criteria and sub-criteria from 3E  are shown as 

follows. 
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Table 2. Linguistic variable and its semantics for the importance and rating. 

Linguistic Label 
Linguistic Term 

Triangular Fuzzy Number 
Importance Rating 

s0 Very unimportant (VU) Very poor (VP) (0, 0, 0.25) 

s1 Unimportant (U) Poor (P) (0, 0.25, 0.5) 

s2 Fair (F) Fair (F) (0.25, 0.5, 0.75) 

s3 Important (I) Good (G) (0.5, 0.75, 1.0) 

s4 Very important (VI) Very good (VG) (0.75, 1.0,1.0) 

The performance ratings of sub-criteria for candidate knowledge are given in Table 4. 

4.1.2. Determination of Criteria Weights 

In determining the criteria weights for this study, we assume that the vector of expert weight is 

[0.3, 0.3, 0.4] according to the experts’ professional knowledge and innovation background. Thus, by 

using Formulae (6)–(9), the aggregated criteria weights of each criterion and corresponding 

sub-criteria are obtained, as shown in the rightmost column of Table 3. For example, the weights of 

“Reliability” and “Knowledge validity” are calculated as 

1 1

11 4 4 4

1 1

1 4 3 3
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W s s s
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 
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 





, (25) 

After normalizing the aggregated weighting value in Table 3, we obtain fuzzy linguistic 

weights for criterion layer and sub-criterion layer. 

 

   

   

1 2

3 4

0.269,0.269,0.269,0.193

0.296,0.244,0.230,0.230 ,  0.292,0.208,0.208,0.292 ,

0.250,0.286,0.214,0.250 ,  0.389,0.333,0.278

L

L L

L L

W

W W

W W



 

 

 (26) 
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Based on the judgment matrix from Expert 3E  and Formulae (14)–(16), we can obtain the AHP 

weight of criterion layer  0.535,0.130,0.275,0.060AW  , 4 148max .  , 0 049CI . , 0 89RI . , 

and 0 055 0 1CR . .  . Thus, this judgment matrix passes the consistency test. Similarly, the AHP 

weights of sub-criterion layer are obtained. 

   

   

1 2

3 4

0.540,0.123,0.274,0.063 ,  0.612,0.086,0.086,0.216 ,

0.146,0.637,0.153,0.064 ,  0.614,0.268,0.118
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When the above steps are completed, the fuzzy comprehensive weight of the criterion layer can 

be calculated according to Formula (19), namely  0.375,0.213,0.271,0.141CW  . Similarly, we can 

obtain the fuzzy comprehensive weights of sub-criterion layer. 

   

   

1 2

3 4

0.393,0.196,0.248,0.163 ,  0.420,0.160,0.160,0.260 ,

0.208,0.426,0.190,0.176 ,  0.479,0.307,0.214

C C

C C

W W

W W

 

 
 (28) 

Table 3. Linguistic evaluation and weighting value of importance of each criterion and 

corresponding sub-criteria. 

Criteria Sub-Criteria 
Importance 

Aggregated Weighting Value 
E1 E2 

Knowledge validity (B1) 

 I VI (s3, 0.125) 

Reliability (C11) VI VI (s4, 0) 

Accuracy (C12) I VI (s3, 0.125) 

Integrity (C13) I I (s3, 0) 

Normalization (C14) F VI (s3, 0) 

Knowledge novelty (B2) 

 I VI (s3, 0.125) 

Technological innovation (C21) I VI (s3, 0.125) 

Interdisciplinary application (C22) F I (s3, −0.125) 

Knowledge redundancy (C23) I F (s3, −0.125) 

Knowledge compatibility (C24) I VI (s3, 0.125) 

Potential practicability (B3) 

 VI I (s3, 0.125) 

Technological advancement (C31) I VI (s3, 0.125) 

Process feasibility (C32) VI VI (s4, 0) 

Process complexity (C33) I I (s3, 0) 

Environmental protection (C34) I VI (s3, 0.125) 

Manufacturing profitability (B4) 

 F I (s3, −0.125) 

Manufacturing quality (C41) VI I (s3, 0.125) 

Production costs (C42) I I (s3, 0) 

Production efficiency (C43) I F (s3, −0.125) 

Table 4. Performance ratings of sub-criteria for candidate knowledge. 

Candidate 

Knowledge 

Performance Ratings of Sub-Criteria 

C11 C12 C13 C14 C21 C22 C23 C24 C31 C32 C33 C34 C41 C42 C43 

K1 

K1-D1 G F G F VG G F G F G G VG G F G 

K1-D2 VG G G G G VG F F G VG G VG VG G G 

K1-D3 VG G G G G VG G G G VG G G G G VG 

K2 

K2-D1 F F G F G P P F VG G G G G G F 

K2-D2 P F F F G F P P G F G F F G F 

K2-D3 F G P F P P P P G F G G G F G 

K3 

K3-D1 VG G VG G G VG VG VG G VG G VG VG VG G 

K3-D2 VG G G VG F VG VG G VG G G VG VG G VG 

K3-D3 G G VG VG G F G G G VG VG VG VG G VG 
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K4 

K4-D1 F G G F G G F VG F VP F G G F G 

K4-D2 G G F P G G F G F P F G VG F F 

K4-D3 F F VG G F F G G F P P VG G F G 

K5 

K5-D1 VG VG VG G G G F G VG G G VG VG VG VG 

K5-D2 G VG VG VG G VG G G VG G G G VG G VG 

K5-D3 VG G G VG VG VG G G G VG G G G VG VG 

K6 

K6-D1 G G G F G G VG G VG F G F F G G 

K6-D2 G VG F G F G G F G G F G G F G 

K6-D3 G G VG G VG G G G G G F F G F G 

4.1.3. Calculation of the PIKCV 

In performance evaluation, we assume expert weights are equal and use Formula (10) to 

compute the aggregation of fuzzy linguistic evaluation values of sub-criteria. For example, the 

evaluation value of “Reliability” for K1 is calculated as 

 1 1 1

11 3 4 4 4

1
( ,0), ( ,0), ( ,0) (0.917) , 0.083

3
S s s s s   
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 
 , (29) 

Similarly, the fuzzy aggregated ratings of each criterion of K1 can be calculated, as shown in 

Table 5. For example, the aggregated rating value of “Knowledge validity” for K1 is obtained by 

using Formula (11): 
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Based on the above steps, we can compute the PIKCV of six candidates’ knowledge by using 

Formula (12), as shown in Table 6. For example, the PIKCV of K1 is calculated as 


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   30.793 ,0.043s 

 (31) 

Table 5. The aggregated results of fuzzy comprehensive evaluation for K1. 

Criteria and Sub-Criteria 
Rating (K1) Fuzzy 

Evaluation (K1) 

Weighted 

Rating (K1) 
PIKCV (K1) 

D1 D2 D3 

Knowledge validity (B1)     

(s3, 0.036) 

(𝑠3, 0.043) 

Reliability (C11) G VG VG (s4, −0.083) 

Accuracy (C12) F G G (s3, −0.083) 

Integrity (C13) G G G (s3, 0) 

Normalization (C14) F G G (s3, −0.083) 

Knowledge novelty (B2)     

(s3, 0.013) 
Technological innovation (C21) VG G G (s3, 0.083) 

Interdisciplinary application (C22) G VG VG (s4, −0.083) 

Knowledge redundancy (C23) F F G (s2, 0.083) 
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Knowledge compatibility (C24) G F G (s3, −0.083) 

Potential practicability (B3)     

(s3, 0.083) 

Technological advancement (C31) F G G (s3, −0.083) 

Process feasibility (C32) G VG VG (s4, −0.083) 

Process complexity (C33) G G G (s3, 0) 

Environmental protection (C34) VG VG G (s4, −0.083) 

Manufacturing profitability (B4)     

(s3, 0.032) 
Manufacturing quality (C41) G VG G (s3, 0.083) 

Production costs (C42) F G G (s3, −0.083) 

Production efficiency (C43) G G VG (s3, 0.083) 

Table 6. The overall evaluation results and ranking of candidate knowledge. 

 K1 K2 K3 K4 K5 K6 

PIKCV (𝑠3, 0.043) (𝑠2, 0.048) (𝑠3, 0.120) (𝑠2, 0.086) (𝑠3, 0.122) (𝑠3, −0.035) 

Ranking 3 6 2 5 1 4 

4.2. Comparison and Analysis of Knowledge Evaluation Results 

It may be seen in Table 6 that the PIKCV of alternative K1, (s3, 0.043), represents slightly higher 

than “Good”, and the alternative K1 is worse than K3, since K3 is closer to the linguistic term 4s . The 

overall ranking of the six principle knowledge candidates is 5 3 1 6 4 2K K K K K K . K5 is the 

best knowledge candidate with K3 following thereafter. These aggregated results are consistent with 

experts’ opinion. On the other hand, the overall evaluation result of K1 is 0.39, which was calculated 

using the SWA method with the same data, as shown in Table 7. This translates into the degree of 

membership, which is 0.56 and 0.44. In other words, the overall evaluation result of K1 is worse than 

“Fair” when applying the SWA method. It is obvious that the evaluation results obtained by the 

SWA method are not consistent with the opinions of the expert committee. Hence, to some extent, it 

demonstrates that the proposed method in this study can effectively aggregate fuzzy linguistic 

evaluation data among criteria and sub-criteria, and obtain reasonable overall evaluation results, 

while avoiding information loss. 

Table 7. Evaluation results of K1 using SWA method. 

Criteria and Sub-Criteria 
Sub-Criteria 

Evaluation 

Sub-Criteria 

Weight 

Weighted Results 

in Criteria 

Weights 

of Criteria 

Overall 

Evaluation 

Knowledge validity (B1)   

0.52 0.81 

0.39 

Reliability (C11) 0.81 0.81 

Accuracy (C12) 0.64 0.69 

Integrity (C13) 0.71 0.76 

Normalization (C14) 0.64 0.69 

Knowledge novelty (B2)   

0.49 0.76 

Technological innovation (C21) 0.76 0.81 

Interdisciplinary application (C22) 0.81 0.64 

Knowledge redundancy (C23) 0.57 0.64 

Knowledge compatibility (C24) 0.64 0.69 

Potential practicability (B3)   

0.56 0.76 

Technological advancement (C31) 0.64 0.76 

Process feasibility (C32) 0.81 0.81 

Process complexity (C33) 0.71 0.76 

Environmental protection (C34) 0.81 0.69 

Manufacturing profitability (B4)   

0.53 0.64 
Manufacturing quality (C41) 0.76 0.81 

Production costs (C42) 0.64 0.76 

Production efficiency (C43) 0.76 0.64 
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From the perspective of 2-tuple linguistic expression, K5 and K3 have the same central value 3s  

and their transitive values are close, so it may be determined that both offer superior knowledge 

innovation. Thus, they are expected to effectively support process innovation design in the context 

of particular application scenarios, yet other candidate knowledge should be improved based on the 

evaluation results of criteria and the corresponding sub-criteria. To achieve this potential 

application, the knowledge of these candidates could be further fused and refined on an open 

knowledge management platform. 

4.3. Knowledge-Inspired Manufacturing Process Problem-Solving 

Based on the above knowledge evaluation approach, a total of 265 knowledge items have been 

evaluated and improved for manufacturing process innovation of aerospace structures. In this 

section, the specific procedure for micro-turbine process problem-solving using process innovation 

knowledge will be briefly described. 

The micro-turbine in this case is a core component of a micro turbojet engine and it has the 

following characteristics: (1) a complex curved structure and poor rigidity; (2) a thin blade prone to 

machining deformation; and (3) no through hole in the center of the turbine. Thus, it is difficult to 

manufacture using current manufacturing resources, as the core shaft positioning and clamping 

method, which is commonly used in general turbine machining, cannot be applied in this instance. 

Hence, it is necessary to solve the process problem of turbine manufacturing through innovation 

knowledge. 

The process of innovative problem solving can be sub-divided into: process problem 

identification and formal description, process contradiction extraction and resolution, innovation 

scheme design, iterative solution and scheme optimization. The innovation process mainly involves 

several kinds of formal knowledge, as illustrated in Figure 4. Specifically, the main procedures for 

the micro-turbine process problem-solving are as follows: 

 

Figure 4. A micro-turbine process problem-solving by using process innovation knowledge. 
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(1) Process problem identification and formal description. With the help of PHS and PDT, the 

problem can be formally expressed as the specific information of “expectation and avoidance”. 

(2) Process contradiction extraction and resolution. According to the problem description, the 

innovation system can conveniently extract conflicting parameters, i.e., strengthening 

parameter and weakening parameter. Then, the innovative solving principles will be presented 

based on PCM, namely solving principles 1, 6, 7 and 9. These principles help to inspire the 

designer’s creative thinking. Through a detailed analysis, two principle solutions (as shown in 

Figure 4) are considered effective in the problem-solving. By associating with MSE, an initial 

solution for thin-walled blade machining is obtained: Utilizing its cylindrical surface for 

clamping, but not handling the ball surface during this step. 

(3) Innovation scheme design. With the support of ISI and MCD, we can design the detailed 

scheme in the existing manufacturing environment. After two iterations of conflict resolution, 

we get the scheme for spherical convex processing: By means of the threaded connection (its 

own structure/function) to realize positioning and clamping, and to ensure the dimensional 

precision of blades. 

In this case, the innovative solutions of micro-turbine machining have been gradually revealed 

through multiple types of knowledge application and design thinking inspiration. We can see that 

quality evaluation and rational application of innovation knowledge are of great importance in 

innovation realization and the proposed method in this research is applicable for open 

manufacturing process innovation. 

5. Conclusions and Implications 

5.1. Conclusions 

As competition in global markets intensifies, process innovation has been recognized as a key 

factor for enhancing sustainable competitive advantage in manufacturing organizations. However, 

in the implementation of knowledge-driven CAPI, an important challenge that must be faced is how 

to evaluate and select appropriate process innovation knowledge from an open knowledge 

acquisition environment. In this paper, we have presented a manufacturing process 

innovation-oriented knowledge evaluation approach using MCDM and fuzzy linguistic computing. 

Some of the key contributions of this study are listed below: 

 By considering process innovation knowledge characteristics and innovative applications, a 

comprehensive hierarchy evaluation index system is designed to measure the PIKCV, which 

can express the core value of knowledge in potential manufacturing innovation scenarios. 

 A manufacturing process innovation-oriented knowledge evaluation model, based on AHP and 

2-tuple fuzzy linguistic computing, is applied to effectively aggregate the evaluation value into 

the expert committee’s comprehensive evaluation information in criteria weights and 

performance ratings. This model can meet the needs of rapid evaluation and selection of 

massive and multiple types of candidate knowledge in open innovation environments. 

 A comparative analysis shows that the proposed method could obtain reliable evaluation 

results and avoid information loss during the processes of evaluation integration. Furthermore, 

an integrated procedure of knowledge capture, evaluation and process problem-solving for 

micro-turbine machining reflects the practicability of reliable and formalized knowledge in 

manufacturing process innovation design. 

5.2. Limitations and Future Research 

With regard to application instances, this paper has confirmed that the combination of MCDM 

and fuzzy linguistic computing can reasonably aggregate evaluation information from the expert 

committee for process innovation knowledge. From the perspective of continuous application of 

computer-aided innovation, a large amount of knowledge and data could be accumulated on the 

CAPI platform. It is necessary, therefore, for further studies to be conducted to consider objective 
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evaluation and dynamic updating, based on knowledge application on the innovation system. In 

addition, reconciling mechanisms of experts’ conflict evaluations should be further studied in 

practice. 

The evaluation results in criteria and sub-criteria can provide a reference for knowledge 

improvement and this may contribute to effective knowledge evolution. The results highlighted in 

this paper can be broadly applied to open knowledge management practices of manufacturing 

enterprises. Future research will expand and deepen these results more comprehensively, including 

just-in-time knowledge recommendation for innovation design life cycle, integrated management of 

product design knowledge and process knowledge, optimal selection of innovation knowledge in 

cloud manufacturing environment, etc. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

CAPI Computer-Aided Process Innovation 

MCDM Multi-Criteria Decision-Making 

AHP Analytic Hierarchy Process 

CAPP Computer-Aided Process Planning 

CAM Computer-Aided Manufacturing 

PIKCV Process Innovation Knowledge Comprehensive Value 

SWA  Simple Weight Additive 

PDT Problem Description Template 

PCM  Process Contradiction Matrix 

MSE Manufacturing Scientific Effect 

ISI Innovative Scheme Instance 

MCD Manufacturing Capability Description 

Nomenclature 

( , )i is   is a 2-tuple linguistic variable 

 0 1, ,..., gS s s s  is a predefined linguistic term set 

is  is the linguistic label from S  

i  is the distance to the central value of the ith linguistic term 

  is a number value representing the aggregation result 
1  represents a reverse equation of the generalized translation function 

S  represents a arithmetic mean of 2-tuple fuzzy linguistic variable set 

 1 2, ,..., ME E E E  is the established expert committee 

 1 2, ,..., NK K K K  is a set of candidate process innovation knowledge 

( , )w w

ijm ijms   
represents the 2-tuple fuzzy criteria weights of the jth sub-criteria regarding the ith 

criteria of the mth expert 

A  is a judgment matrix 

max  is the largest eigenvalue of A  

CR  is the consistency rate 
CW  is the fuzzy comprehensive weight set of knowledge evaluation 
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AW  is the weighted weight set of the AHP expert group 
LW  is the aggregated weight set of fuzzy linguistic computing 
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