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Insights for precision oncology from the 
integration of genomic and clinical data of 
13,880 tumors from the 100,000 Genomes 
Cancer Programme

The Cancer Programme of the 100,000 Genomes Project was an initiative 
to provide whole-genome sequencing (WGS) for patients with cancer, 
evaluating opportunities for precision cancer care within the UK National 
Healthcare System (NHS). Genomics England, alongside NHS England, 
analyzed WGS data from 13,880 solid tumors spanning 33 cancer types, 
integrating genomic data with real-world treatment and outcome data, 
within a secure Research Environment. Incidence of somatic mutations 
in genes recommended for standard-of-care testing varied across cancer 
types. For instance, in glioblastoma multiforme, small variants were 
present in 94% of cases and copy number aberrations in at least one gene 
in 58% of cases, while sarcoma demonstrated the highest occurrence 
of actionable structural variants (13%). Homologous recombination 
deficiency was identified in 40% of high-grade serous ovarian cancer 
cases with 30% linked to pathogenic germline variants, highlighting the 
value of combined somatic and germline analysis. The linkage of WGS and 
longitudinal life course clinical data allowed the assessment of treatment 
outcomes for patients stratified according to pangenomic markers. 
Our findings demonstrate the utility of linking genomic and real-world 
clinical data to enable survival analysis to identify cancer genes that affect 
prognosis and advance our understanding of how cancer genomics impacts 
patient outcomes.

Over the last decade, UK cancer incidence has increased by approxi-
mately 4% (ref. 1), driving the need for molecular cancer testing, 
including germline testing of cancer predisposition genes and phar-
macogenomic markers2. The 100,000 Genomes Project, a transfor-
mational UK Government initiative conducted within the National 
Health Service (NHS) in England, aimed to establish standardized 
high-throughput whole-genome sequencing (WGS) for patients with 
cancer and rare diseases via an automated, International Organization 

for Standardization-accredited bioinformatics pipeline (providing 
clinically accredited variant calling and variant prioritization)3. The 
role of WGS at scale for patients with cancer in the NHS was evalu-
ated within the Cancer Programme of the 100,000 Genomes Project  
(Fig. 1a). Participants gave written informed consent for their genomic 
data to be linked to anonymized longitudinal health records and shared 
with researchers in a secure Research Environment (www.genomic-
sengland.co.uk/research/research-environment) to drive forward our 
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80 hospital trusts) in England. The distribution of biological sex and 
age across tumor types is shown in Fig. 2c. Early onset (median age less 
than 50 years) was observed for low-grade glioma and testicular germ 
cell tumors in agreement with incidence statistics13.

Staging information was available in the NCRAS dataset for 
12,040 (86.7%) tumors. The breakdown of the different stages for the 
tumor types sequenced is shown in Fig. 3; 11.9% (1,645 of 13,880) of 
patients had stage 4 cancer (advanced metastatic disease) with samples 
obtained from metastatic sites including the liver, lymph nodes, lung 
and brain. Ovarian high-grade serous carcinoma and skin cutaneous 
melanoma exhibited higher prevalence of advanced (stages 3 and 4) 
disease, whereas invasive breast cancers had a higher prevalence of 
early-stage (stages 1 and 2) disease due to sampling biases in tissue 
ascertainment. Tumor samples mainly originated from surgical resec-
tions (94.5%, n = 13,120), including 93.6% treatment-naive cases and 
6.4% cases after neoadjuvant treatment. Only 5.5% (n = 760) came from 
metastatic or diagnostic biopsies, with 10.9% (n = 83) being after treat-
ment (Fig. 3). The tumor purity depicted in Fig. 3 highlights challenges 
in obtaining samples with adequate tumor content (more than 30%) in 
specific cancers, such as lung and pancreatic adenocarcinomas, which 
is consistent with previous publications14.

Clinical actionability through WGS
A single test such as WGS, comprising paired tumor-normal sequenc-
ing, can facilitate the concurrent detection of somatic small variants 
including single-nucleotide variants (SNVs) and insertions and dele-
tions (indels), copy number aberrations (CNAs) and structural variants 
(SVs), including gene fusions. In addition, germline findings, such as 
variants in cancer susceptibility genes and pharmacogenomic find-
ings (variants affecting the metabolism of therapeutic agents used to 
treat cancers), enabled a greater yield of clinically relevant findings. 
The Cancer Programme delivered standardized WGA results, gener-
ated in an automated bioinformatics pipeline, returned to NHS GMC 
Laboratories. Potentially actionable findings were reviewed initially 
by clinical scientists and subsequently at multidisciplinary Molecular 
Tumor Boards, referred to as Genomic Tumor Advisory Boards (GTABs). 
Examples of WGA results are shown in the Supplementary Informa-
tion; full details of the analysis and interpretation are described in 
the Methods, showing the utility of WGS to capture various genomic 
alterations of clinical relevance with a single test.

We analyzed aggregated data from 13,880 whole genomes in the 
context of the current National Genomic Test Directory for Cancer 
(NGTDC) v.6.0 updated on 3 April 2023 (ref. 7); several types of muta-
tions relating to targets specified in the NGTDC were detected, includ-
ing small variants, CNAs and fusions, along with germline variants 
associated with inherited cancer risk and pharmacogenomic findings 
(see the online Methods for details). The percentage of cases with one 
or more somatic mutations present in genes indicated in the NGTDC 
for the applicable cancer type was high, although variable (Fig. 4). 
For example, over 50% of tumors harbored one or more mutations 
found in genes indicated for testing in the NGTDC in glioblastoma 
multiforme, low-grade glioma, skin cutaneous melanoma, head and 
neck squamous cell carcinoma, colon and rectal adenocarcinoma, and 
lung adenocarcinoma (Fig. 4). Clinically relevant mutations were found 
in 20–49% of breast invasive carcinoma, ovarian high-grade serous 
carcinoma, uterine endometrial, sarcoma, mesothelioma, bladder 
urothelial carcinoma and lung squamous cell carcinoma cases, while 
in other cancer types such as pancreatic, prostate, esophageal and 
stomach adenocarcinomas, less than 20% of cases possessed muta-
tions in genes present in the NGTDC (Fig. 4). We note that the clinical 
actionability of these mutations will be dependent on the individual 
case and clinical circumstances, such as the stage of the tumor and 
associated comorbidities of the participant. This highlights the need 
for clinical interpretation and discussion where clinically appropriate 
within a GTAB.

knowledge across different cancers4. The data generated were then 
used to establish a national molecular data platform (National Genomic 
Research Library) with secure links to longitudinal real-world data in the 
Research Environment (Fig. 1b). The national clinical datasets include 
the National Cancer Registration and Analysis Service (NCRAS) dataset 
consisting of cancer registration data and the Systemic Anti-Cancer 
Therapy (SACT) dataset, as well as subsequent cancer episodes, includ-
ing Hospital Episode Statistics (HES) and mortality data from the Office 
for National Statistics (ONS)5 (Fig. 1b). This approach enables genomic 
research and discovery to be fed back into genomic healthcare (Fig. 1c).

A longer-term objective was to accelerate the delivery of molecular 
testing, including WGS, in NHS clinical cancer care6. Building on evolv-
ing knowledge from the 100,000 Genomes Project and the existing 
molecular testing provision within the NHS, the NHS Genomic Medicine 
Service (GMS) was launched in October 2018 to deliver genomic test-
ing, clinical care and interpretation for rare diseases and cancer across  
England, using a standardized National Genomic Test Directory7, 
including targeted large gene panels and WGS, to enable equitable 
access and comprehensive genomic testing. The National Genomic 
Test Directory aims to provide consistency of test methodologies, 
gene targets and eligibility criteria across clinical indications via a 
consolidated network of seven NHS England (NHSE) Regional Genomic 
Laboratory Hubs8. It specifies the genomic tests that are commissioned 
and thereby funded by the NHS in England as part of gold standard 
molecular profiling in different cancer clinical indications and provides 
opportunities for patients to participate in research9.

Large-scale sequencing studies such as the International Cancer 
Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) 
have extensively cataloged the spectra of somatic mutations across 
cancer types from a retrospective cohort of 2,658 primary tumor sam-
ples10. More recent initiatives, such as The Hartwig Medical Foundation 
reported clinically relevant findings for 4,784 metastatic adult solid 
tumor samples11 and supported recruitment to the Drug Rediscovery 
Protocol (DRUP) trial12. These initiatives represent, to date, the two 
largest WGS cohorts available for research. In this article, we present 
our analysis of WGS data from 13,880 solid tumors, focused on clini-
cally actionable genes and pangenomic markers, linked to real-world 
longitudinal, life course clinical, treatment and long-term survival 
data to highlight the learnings from the Cancer Programme and the 
implications for current clinical care.

Results
Cohort demographics
We sequenced 16,358 tumor-normal sample pairs from 15,241 patients 
diagnosed with cancer within the NHS who were recruited to the Can-
cer Programme of the 100,000 Genomes Project between 2015 and 
2019, with almost half of the patients being recruited in 2018 and the 
remainder in this Project being recruited through the Rare Disease arm. 
Our integrative whole-genome analysis (WGA) covered 33 tumor types 
(Fig. 2a) of 13,880 tumor samples, consisting of 13,311 fresh-frozen 
(95.9%) and 569 formalin-fixed paraffin-embedded tumor samples 
(4.1%). Matched normal (germline) samples included 13,493 (99.1%) 
blood-derived, 100 (0.7%) from normal tissue and 23 (0.2%) from saliva 
samples. Tumor samples were sequenced to 100× coverage and normal 
samples to 30× to ensure high sensitivity of variant calling (Methods) 
in clinical settings (compared with 60× and 38× in the TCGA cohort). 
Genomes from hematological tumors (n = 841), pediatric cancers 
(n = 333), carcinomas of unknown primary (n = 98) and tumors that were 
not linked to external datasets (n = 1,206) were excluded from this analy-
sis. The diagnosis submitted at sample collection was confirmed by 
linking genomics data with the NCRAS and HES datasets. Tumor types 
with more than 1,000 sequenced tumor genomes included breast inva-
sive carcinoma (n = 2925), colon adenocarcinoma (n = 1948), sarcoma 
(n = 1617) and kidney renal clear cell carcinoma (n = 1163). Figure 2b  
illustrates recruitment across 13 NHS GMCs (comprising over  
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We assessed the mutations listed in the NGTDC in other cancer 
types for which testing of that gene or mutation is not currently indi-
cated (Fig. 4 and in Extended Data Fig. 1a–d). These variants are denoted 
in blue in Fig. 4 and could indicate potentially actionable findings 
that may enable recruitment into clinical trials or prompt further 
review within a GTAB. For example, SNVs were identified in PIK3CA and 
KRAS across different cancer types and similarly pangenomic mark-
ers, such as homologous recombination deficiency (HRD) and tumor 
mutational burden (TMB), for which clinical trials may be available. 
As biomarker-driven trial evidence grows, NGTDC indications are 
expected to expand, incorporating new genes and biomarkers across 
several cancer types.

Landscape of somatic small variants
The most frequently mutated gene was TP53 (5,411 of 13,880, 39.0% of 
patients; Fig. 4 and online Methods). Within individual cancer types, 

the frequency of TP53 mutations was variable but highest in uterine 
corpus endometrial serous carcinoma, ovarian high-grade serous 
carcinoma, lung squamous cell carcinoma, rectum adenocarcinoma, 
esophageal adenocarcinoma and esophageal squamous cell carci-
noma (more than 70% of cases). Of the individuals with at least one 
TP53 mutation, 36.2% (1,959 of 5,411) harbored one or more variant 
predicted to be protein-truncating or splice-altering and 65.5% (3,544 
of 5,411) carried one or more missense variant (207 individuals car-
ried both variant types), with the five most common protein changes 
being R175H (5.3%), R273C (3.2%), R248Q (3.2%), R273H (3.2%) and 
R282W (2.7%) (Supplementary Table 1). PIK3CA was the second most 
frequently altered gene, with mutations found in 19.8% of patients 
(2,750 of 13,880), occurring most frequently in uterine corpus endo-
metrial carcinoma (53.5%), ovarian endometrioid adenocarcinoma 
(49.0%), breast invasive carcinoma (42.2%), uterine corpus endometrial 
serous carcinoma (38.1%) and colon adenocarcinoma (26.5%). The most 
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Fig. 1 | Overview of the 100,000 Genomes Cancer Programme. a, Journey of the 
patient’s genome. Patients provided written informed consent for paired tumor 
and normal (germline) WGS analysis. DNA was extracted from tumor and normal 
(blood) samples using standardized protocols and samples were submitted for 
WGS, which was performed on an Illumina sequencer. An automated pipeline 
was constructed for sequence quality control, alignment, variant calling and 

interpretation, with results returned to the 13 NHS Genomic Medicine Centers 
for review in regional GTABs. b, Linked genomic and real-world clinical datasets. 
In the 100,000 Genomes Project, participants are followed over their life course 
using electronic health records (all hospital episodes, cancer registration entries, 
systemic anticancer therapies and cause of death). c, Infinity loop representing 
the link between healthcare and research in genomics.
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Fig. 2 | Overview of the 100,000 Genomes Cancer Programme cohort 
demographics. a, Distribution of 12,948 cases represented by 33 tumor types 
(cases with more than one sample per tumor were only counted once).  
b, Thirteen NHS GMCs recruited patients diagnosed with cancer across England. 
The area of the pie chart is proportional to the number of patients recruited; 

the total number of participants recruited per GMC is indicated in parentheses. 
Map source: Office for National Statistics licensed under the Open Government 
Licence v.3.0. c, Breakdown of biological sex and age at diagnosis according to 
disease. The age plot shows the interquartile range (IQR) and median values.
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commonly mutated codons in PIK3CA were E545 and H1047. Over 69.9% 
of all mutations in this gene were found in the five well-characterized 
hotspots2. While currently indicated for testing in breast invasive car-
cinoma only, PIK3CA mutations were present across multiple tumor 
types, suggesting that clinical trials with PIK3CA inhibitors could be 
considered in the future, if clinically appropriate. Other genes such as 
APC, KRAS, VHL and IDH1 were highly enriched for mutations in only 
one or two tumor types. Our pancancer analysis is concordant with 
other large-scale sequencing endeavors10 such as ICGC and TCGA, 
albeit with variations due to cancer type proportions, reflected by a 
higher proportion of colon and rectum adenocarcinoma, and sarcoma 
in our cohort (Fig. 2a). The sequencing of a large number of ovarian 
tumor samples (n = 498) allowed further subtype classification, with a 
high prevalence of TP53 variants being identified in high-grade serous 
carcinoma (89.8% of cases), PIK3CA variants in ovarian endometrioid 
adenocarcinoma (49.0%) and KRAS variants in low-grade ovarian serous 
carcinoma (33.3%).

Fusions and CNAs
A high prevalence of amplifications or losses was found in TP53, 
CDKN2A, MYC, CDKN2B and PTEN across all cancer types (Fig. 4). Glio-
blastoma multiforme, low-grade glioma, head and neck squamous 
cell carcinoma, mesothelioma and sarcoma (Fig. 4 and Extended Data  
Fig. 1b) demonstrated the highest number of clinically relevant CNAs. 
With increased targeted therapies, molecular tests for different muta-
tion types, including fusions, have become standard of care15. For 
instance, NTRK fusions (across all cancer types) but also other kinase 
fusions (for example, ALK, ROS and RET for lung cancers), are now 
included in the NGTDC. Although only a small percentage of patients 
test positive for specific fusion, the presence of a mutation can be criti-
cal for disease classification. A prime example is found in mesenchymal 
chondrosarcomas, where HEY1–NCOA2 fusions are exclusive to that 

subtype. Indeed, sarcomas had the highest prevalence of tumors (13%) 
with clinically relevant SV findings16 (Fig. 4 and Extended Data Fig. 1c).

Germline findings
Unlike targeted panel tests that are frequently performed on tumor-only 
samples, paired tumor and normal WGS allows somatic and germline 
variants to be detected together. The certainty of origin for a variant can 
have implications on patient management, such as family genetic test-
ing or eligibility for treatment. Patients with ovarian high-grade serous 
carcinoma had the highest prevalence of actionable germline findings 
for SNVs and indels, with 13% of patients harboring variants in the BRCA1 
and BRCA2 genes (Fig. 4 and Extended Data Fig. 1d; predicted truncating 
small variants or missense mutations with pathogenic classification in 
Clinvar are reported; for details, see the online Methods). Median age 
at tumor diagnosis is shown in Fig. 2c; as expected, there was a younger 
median age at tumor diagnosis in those patients with predisposing 
germline findings (Extended Data Table 1). Notably, patients with ger-
mline variants in mismatch repair (MMR) genes showed significantly 
earlier age at onset of colon adenocarcinomas, while patients with 
germline variants in homologous recombination repair genes showed 
significantly earlier onset in ovarian high-grade serous carcinomas and 
breast invasive carcinomas. This was also observed in kidney renal clear 
cell carcinoma with germline variants predominantly in the VHL gene. 
DPYD variants, linked to fluoropyrimidine toxicity, were present in 
5–10% of participants, guiding the recommendations for dose omission 
or adjustment in the treatment of breast invasive carcinomas, colon, 
rectum, pancreatic adenocarcinomas and head and neck squamous 
cell carcinomas as recommended in the NGTDC.

Pangenomic markers and mutational signatures
TMB has been cited as a potential biomarker17 and in this dataset we 
observed significant variation across and within cancer types. In line 
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with previous reports18, we found that skin cutaneous melanoma and 
lung adenocarcinoma had the highest average TMB (Fig. 5a). Colon 
adenocarcinoma and uterine corpus endometrial carcinoma showed 
variability in the presence or absence of microsatellite instability or 
hypermutation caused by POLE mutations (see alignment with cor-
responding mutational signatures).

When examining mutational signatures (COSMIC v.3) with 
well-described etiologies, we observed expected frequencies within 
certain cancer types19 (Fig. 5a and Extended Data Fig. 2). As expected, 
APOBEC signatures 2 and 13 were associated with breast invasive car-
cinoma, head and neck squamous cell carcinoma, bladder urothelial 
carcinoma and lung adenocarcinoma; smoking signatures 4 and 92 
with lung cancers (lung adenocarcinoma, lung neuroendocrine and 
lung squamous cell carcinoma); and ultraviolet signature (signatures 
7a–d) with skin cutaneous melanoma. DNA MMR signatures 6, 15, 20, 
21, 26 and 44 were enriched in microsatellite instability-high colon 
adenocarcinoma and uterine corpus endometrial carcinoma (Fig. 5a).

HRD status was defined by two genome-wide mutational 
scar-based pancancer classifiers, CHORD20 and HRDetect21. The 
two algorithms demonstrated 99.2% concordance in our sample 
cohort (Methods). Ovarian high-grade serous carcinoma showed 
the highest prevalence of HRD (40%). While PARP inhibitors are 
currently only indicated for use in ovarian tumors with HRD, HRD 
was also detected at low prevalence in other cancers that could 
potentially access PARP inhibitors via clinical trials or compassion-
ate access pathways.

Clinical utility of WGS
Overall, these findings demonstrate the ability of WGS data to fully 
characterize the clinical genomic landscape of a tumor. A single test 
can report somatic SNVs, gene fusions and CNAs, along with potentially 
pathogenic germline mutations, and pangenomic markers such as 
mutational signatures and TMB (Fig. 4). In the Supplementary Infor-
mation, we provide examples of WGA results as provided to NHS GMC 
Laboratories. For example, in a patient with ovarian high-grade serous 
carcinoma, a somatic TP53 SNV was identified, consistent with the 
diagnosis, along with a germline BRCA1 variant and somatic BRCA1 copy 
number (CN) loss driving HRD, which was subsequently supported by 
the HRD analysis. Similarly, in another case, in a patient with endome-
trial cancer, MMR deficiency signatures were identified in combina-
tion with high TMB, along with a PMS2 pathogenic germline variant, a 
somatic PMS2 start–loss mutation and a pharmacogenomic (germline) 
variant in the DPYD gene (associated with toxicity to fluoropyrimidines). 
These examples demonstrate specific instances where the identifica-
tion of different types of mutations and pangenomic markers were 
clinically relevant.

Pangenomic markers and outcomes from real-world data
Through the link of the WGS data with longitudinal life course clinical 
data (SACT and ONS), we assessed treatment outcomes for patients 
stratified according to pangenomic markers (Fig. 5b and Supplemen-
tary Table 2). As shown in Fig. 5b, in patients treated with platinum 
therapies, HRD predicted better outcome (n = 189, P < 0.001, HR = 0.37, 
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Fig. 4 | Somatic and germline alterations across common tumor types. 
Prevalence of different types of mutations identified using WGS in genes 
indicated for testing in the NGTDC. The leftmost panel indicates the total 
percentage of cases harboring one or more genomic alterations of clinical 
relevance as listed in the NGTDC (where the number of cancers sequenced is 
ten or more). In the subsequent panels, somatic variants (from left to right) 
consisting of small variants (SNVs, indels), CNAs, SVs, HRD, MMR signatures and 
TMB along with germline variants related to inherited cancer risk (predisposing 

genes) and pharmacogenomic (PGx) findings (toxicity-associated DPYD 
variants) are shown. The top five genes with the most prevalent mutation 
rates for each mutation type are shown (see Extended Data Fig. 1 for the full 
analysis). The percentage of tumors harboring a specific type of mutation in the 
gene(s) indicated for testing according to tumor type in the NGTDC are shown 
in magenta. Mutation incidence (as a percentage) in other tumor types, not 
currently indicated in the NGTDC, is shown in blue. Color gradation reflects the 
percentage of affected cases.
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CI = 0.23–0.61), primarily in patients with invasive breast carcinomas 
(n = 44, 23.3%) and ovarian high-grade serous carcinomas (n = 126, 
66.7%). Immunotherapy outcomes in MMR-deficient cases (n = 14) were 
inconclusive because of small numbers. We then evaluated TMB as a 
prognostic marker22 and a significant difference in survival (P = 0.015, 
HR = 2.34, CI = 1.14–4.80) was observed for those patients with TMB in 
the lowest quartile (median of 3.8 nonsynonymous small variants per 
Mb) compared with the highest quartile (median of 20.98 nonsynony-
mous small variants per Mb) in those diagnosed with skin cutaneous 
melanoma (Fig. 5c and Supplementary Table 2). Interestingly, a signifi-
cant difference was not observed in lung adenocarcinoma (P = 0.72), 
where the lowest and highest quartile median TMB values were 2.2 
and 10.5 nonsynonymous small variants per Mb, respectively. This 
may indicate that the level of TMB is relevant in prognosis and sup-
ports the need for further refining of pangenomic biomarkers as both 
prognostic and predictive for immunotherapy response, as highlighted 
in previous studies23,24.

Co-occurrence of small variants and CNAs
The co-occurrence of SNVs, indels and CNAs is well documented25. With 
WGS, we were able to explore the co-occurrence of CNAs and somatic 
small variants impacting cancer genes in the NGTDC. We divided cases 
into those with and without small variants for each gene and then com-
pared the frequency of CNAs for each gene across these two groups 
(Fig. 6a and Supplementary Table 3). After multiple-testing correc-
tion, we found that 12 genes displayed a significant difference in the 
frequency of copy alterations. We confirmed previous findings, namely, 
that EGFR26 and KIT27, in specific cancer types, tended to be amplified 
when a putative activating SNV was present. The role of copy gains on 
certain oncogenes has long been debated and our analysis found that 
there was a significant co-occurrence of gains in the presence of small 
variants affecting BRAF, KRAS, NRAS, CTNNB1 and FGFR2. We also found 
that five tumor suppressor or dual-role genes had significantly higher 
frequencies of copy loss in the presence of somatic small variants, 
including established examples such as TP53 (ref. 28), RB1 (ref. 29), 
CDKN2A30 and APC25, further emphasizing the value of interpreting 
different types of variants concurrently.

Survival analysis using real-world data
We next assessed overall survival in all 33 cancer subtypes strati-
fied according to the presence or absence of mutations in 40 
NGTDC-indicated genes (protein-altering small variants (SNVs and 
indels) as well as homozygous deletions in tumor suppressor genes 
were included). Clinical data from secondary data sources such 
as HES and ONS provided survival data. Kaplan–Meier and Cox 
proportional-hazards analyses were performed on our pancancer 
cohort. After correcting for stage and multiple testing, 15 genes affected 
overall survival (Fig. 6b and Extended Data Fig. 3). The gene that affected 
patient outcome most severely was CDKN2A (P < 1 × 10−10, HR = 2.3, 
CI = 2.0–2.6), which corresponds to its association with high-grade 
disease and poor prognosis in some cancer subtypes, such as glioma31 
and soft-tissue sarcoma32. Our results agree with previously reported 
prognostic associations for specific tumor types, for example, poor 

prognosis for KRAS mutants in colorectal cancer33 and non-small cell 
lung cancer34 or TP53 mutations in non-small cell lung cancer35. Muta-
tions in PIK3CA were associated with favorable outcomes, in keeping 
with reports in the literature36.

Discussion
The 100,000 Genomes Project established the infrastructure and 
resources for linking genomic and longitudinal clinical life course 
data. Our findings from the Cancer Programme aided the selection of 
genomic targets in the NHS National Genomic Test Directory. Evaluation 
of WGS data provided support for the commissioning of clinical WGS 
for sarcoma, glioblastoma, ovarian high-grade serous carcinoma and 
triple-negative breast cancers, to detect different types of mutations, 
including pangenomic markers, with a single test to inform clinical care. 
The infrastructure generated from the 100,000 Genomes Project has 
been incorporated into the NHS GMS to enable standardized molecular 
characterization of tumors and to extend the clinical benefit of prospec-
tive molecular characterization to more patients with cancer. Consistent 
with previous studies37 we report a high prevalence of genetic variants 
used to stratify patients toward approved therapies and clinical trials 
across different cancer types. Our approach aligns with similar pro-
grams in other countries, such as St. Jude Children’s Research Hospital38 
in the USA, BC Cancer in Canada39, Zero Childhood Cancer Program 
in Australia40, France Médecine Génomique41 and Genomic Medicine 
Sweden42. These initiatives are either ongoing and have yet to publish 
on their cohort or represent a smaller cohort of childhood cancers.

Our study only included WGS data and while genomics may pro-
vide a valuable starting point for molecular stratification of cancer, it 
is likely that other modalities, such as cell-free DNA, RNA sequencing, 
methylation and gene expression profiling, proteomics, long-read 
sequencing and single-cell sequencing will mature toward clinical use. 
As such, we envisage the inclusion of multi-omics data alongside lon-
gitudinal life course data and the integration of multimodal molecular 
and clinical data, including digital pathology and radiology, to maxi-
mize the benefit of precision cancer care for patients43,44.

As genomic testing becomes more widespread, it is essential to 
combine these data with real-world clinical and treatment data. This 
integration is crucial to advancing our understanding of the long-term 
impact of clinical cancer genomics on patient outcomes. In this study, 
we demonstrated the value of linked real-world data in evaluating out-
comes and mirroring adverse molecular markers from clinical trials. 
The accumulation of genomic data alongside electronic health data 
included in cancer registries, such as staging, pathology and treat-
ment, and outcomes, enriches the dataset and may further refine the 
selection of biomarkers. The co-occurrence of variants in the same 
gene, or the coexistence of mutations in different genes, are likely to 
enhance the prognostic and predictive value of biomarker selection 
and may detect longer-term latent signals of benefit or harm and aid 
clinical and regulatory decision-making43. The therapeutic implications 
associated with the co-occurrence of CNAs and somatic small variants 
are unclear, and this level of genomic information may not readily be 
available from large cancer panel data45. We present a broad survival 
analysis at the gene level; as the dataset expands, it will be possible 

Fig. 5 | Predictive value of pangenomic markers derived from WGS data. 
a, Distribution of TMB and mutational signatures across six tumor types. 
(Samples that underwent PCR amplification during library preparation 
were excluded and the dataset for each tumor type was downsampled to 100 
samples.) The horizontal red bar indicates the median TMB for each cancer 
type. Etiology definitions based on COSMIC (v.3) single-base substitution 
signatures: APOBEC activity, signatures 2 and 13; aging, signature 1; HRD, 
signature 3; MMR deficiency, signatures 6, 15, 20, 21, 26 and 44; POLE mutations, 
signatures 10a, 10b and 14; smoking, signatures 4 and 92; ultraviolet exposure, 
signatures 7a–d. Only signatures with more than 20% contribution are shown. 
Homologous recombination status is indicated in the bars below the signature 

plots. b,c, Kaplan–Meier estimates of overall survival with P values calculated 
using a stratified log-rank test. The numbers of patients at risk at different time 
points are indicated below the survival curves. The points and error bars on the 
embedded forest plots indicate the hazard ratios (HRs) with 95% confidence 
intervals (CIs), correspondingly. HRs, CIs and P values were calculated from Cox 
proportional-hazards models corrected according to cancer stage. Patients 
were stratified according to HRD status in cancers treated with platinum 
chemotherapy (n = 1,737, left, b); according to MMR signatures in cancers treated 
with immunotherapies (n = 764, right, b); according to high and low TMB in skin 
cutaneous melanoma (n = 98, left, c); and according to lung adenocarcinoma 
(n = 162, right, c). Exact P values can be found in Supplementary Table 2.
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Fig. 6 | Prognostic value of small variants and CNAs from WGS data. a, Co-
occurrence of CNAs and small variants in clinically actionable genes. The bars 
represent the proportion of cases with CNA in the subset of cases with or without 
small variants (SNV or small indels) in clinically actionable genes. Oncogenes  
and tumor suppressor genes were tested for gain (red) or loss (blue) of at least 
one copy of the corresponding gene, respectively. b, Kaplan–Meier estimates  
of overall survival with P values calculated using a stratified log-rank test.  

The numbers of patients at risk at different time points are indicated below the 
survival curves. Points and error bars on the embedded forest plots indicate 
HRs with 95% CIs, correspondingly. HRs, CIs and P values were calculated from 
Cox proportional-hazards models corrected according to cancer stage. Patients 
were stratified according to the mutational status of genes indicated for testing 
in NGTDC across all cancer types (n = 11,337). Exact P values can be found in 
Supplementary Table 2.
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to examine these data further to establish prognostic and predictive 
implications for specific variants, as observed with KRAS variants46,47.

Yet, challenges remain in implementing clinical WGS in the NHS in 
England not least because of the overall cost compared to large gene 
panel testing. Providing a cutting-edge UK genomics service requires not 
only the sequencing and analytical infrastructure, but the consideration 
of operational requirements (such as improvements in tissue pathways 
and turnaround times to inform clinical decision-making) together  
with local pathway transformation and the development of knowledge 
and skills of the multiprofessional workforce supporting cancer care.

WGS results are discussed at multidisciplinary Molecular Tumor 
Boards or GTABs to evaluate somatic and germline variants, deter-
mine clinical actionability and provide clinical recommendations. 
GTABs have a vital role in ensuring that actionable results are com-
municated to treating teams and clinicians, while also exploring eli-
gibility for approved therapies and clinical trials48. A well-designed, 
well-structured GTAB has a key role in the clinical interpretation of 
cancer genomic testing, guiding clinicians in decision-making through 
recommendations, facilitating clinical trial enrollment and potentially 
enhancing outcomes49,50. This approach aligns with adaptive basket 
trials such as DETERMINE51, which has been established to evaluate 
licensed treatments in unlicensed indications similar to the DRUP trial12. 
The aim is to enable more equitable and comprehensive molecular test-
ing within the NHS and to optimize cancer care by identifying all clini-
cally relevant mutations for a specific cancer (as shown in Fig. 4) and 
their relationship to approved precision medicines, but also to ensure 
that patients are fully considered for clinical research and trials because 
of this genomic testing and to explore clinical trial options, including 
the use of repurposed well-known and well-characterized drugs.

The Research Environment, a platform built by Genomics England 
and NHSE, allows approved researchers secure access to genomic data 
and associated health data. It has allowed advances in fundamental 
research, such as the discovery of cancer driver genes52, mutational 
signatures53 or changes in clinical practice driven by availability of 
WGS testing54,55.

Our findings underscore the potential for these data to provide 
additional prognostic insights based on the absence or presence of 
specific mutations. As data accumulate within the Research Environ-
ment with linkage of genomic, clinical and outcome data, more refined 
analyses using real-world data can take place, aided by more compre-
hensive tumor profiling. This will enable further refinement of prog-
nostic and predictive molecular markers, not only with combinations 
of different genomic alterations, but beyond genomics, including 
emerging technologies to expand the reach of precision oncology to 
improve cancer outcomes.
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Methods
Sample collection
The sample collection and DNA extraction requirements are described 
in the Sample Handling Guidance (v.4.0) available at https://files.
genomicsengland.co.uk/forms/Sample-Handling-Guidance-v4.0.
pdf. A total of 10 μg germline DNA and at least 1.3 μg tumor DNA were 
required for Illumina TruSeq PCR-free library preparation to be per-
formed. PCR-based library preparation was used when insufficient 
DNA could be obtained for PCR-free sequencing, with a minimum 
requirement of 500 ng. Optimized formalin-fixed tumor tissue was 
allowed for WGS under exceptional circumstances, where tumor size 
limited availability of fresh tissue, or if no tumor was present in the 
fresh-frozen sample.

Analytical bioinformatics pipeline
For full details of the bioinformatics pipeline, see the Cancer Genome 
Analysis Technical Information Document at https://files.genomicseng-
land.co.uk/forms/Cancer-Analysis-Technical-Information-Document-
v1-11-main.pdf.

Quality of sequencing data. All samples were sequenced on the HiSeq 
platform to an average coverage of 100× for tumor and 30× for normal. 
The following checks were implemented to ensure sample quality: 
normal samples had more than 85 Gb and tumor samples had more 
than 210 Gb of high-quality sequencing data (base quality greater than 
30, duplicated reads removed); normal samples had more than 95% of 
the autosomal genome covered at 15× or more after removing reads 
with mapping quality lower than 10; normal samples had cross-patient 
contamination lower than 3% as assessed using VerifyBamID; tumor 
samples had cross-patient contamination lower than 2.5% and normal 
tumor sample pair originating from the same patient as assessed using 
ConPair; the quality of the sequencing data was monitored using prin-
cipal component analysis based on the following metrics: percentage 
of reads mapped to the reference genome, proportion of chimeric DNA 
fragments, median fragment size, unevenness of local genome cover-
age and percentage of reads missing from AT-rich or GC-rich genomic 
regions (AT and GC drop).

Mapping and variant calling. The Illumina North Star pipeline 
(v.2.6.53.23) was used for the primary WGS analysis. Read alignment 
against the human reference genome GRCh38 + decoy + Epstein–Barr 
virus was performed with ISAAC (v.iSAAC-03.16.02.19). We acknowl-
edge deficiencies in the ISAAC alignment software for precise variant 
allele frequency estimates56 and for tumor evolution analysis and note 
that all genomes from the 100,000 Genomes Project were recently 
realigned with the Illumina Dragen platform (data available in the 
Research Environment). Germline small variant calling was performed 
using Starling (v.2.4.7) and somatic small variant calling was performed 
using Strelka (v.2.4.7). In addition to default Strelka filters, the following 
additional filters were applied to reduce the false positive rate in the 
set of somatic variants used as an input into the calculation of TMB and 
mutational signatures: (1) variants with a population germline allele 
frequency above 1% in the Genomics England or gnomAD datasets; (2) 
recurrent somatic variants with a frequency above 5% in the Genomics 
England dataset; (3) variants overlapping simple repeats as defined 
by Tandem Repeats Finder; (4) small indels in regions with high levels 
of sequencing noise where at least 10% of the base calls in a window 
extending 50 bases to either side of the indel call were filtered out by 
Strelka because of poor quality; (5) SNVs resulting from systematic 
mapping and calling artifacts with a Fisher’s exact test Phred score 
lower than 50. The flagging of systematic mapping and calling was 
performed by testing whether the ratio of tumor allele depths at each 
somatic SNV site were significantly different to the ratio of allele depths 
at this site in a panel of normals. The panel of normals consisted of 
a cohort of 7,000 non-tumor genomes from the Genomics England 

dataset; at each genomic site only individuals not carrying the relevant 
alternate allele were included in the count of allele depths. Variants 
flagged with any of the above internal filters were not removed from 
the WGA results of clinically actionable variants but were labeled in the 
output shared with clinical scientists.

CNAs were identified with Canvas v.1.3.1. Manta (v.0.28.0) was 
used to call SVs and long indels (more than 50 bp), combining paired 
and split-read evidence for SV discovery and scoring.

Estimates of the accuracy of somatic variant calling in the 100,000 
Genomes Project pipeline were produced as a requirement for accredi-
tation under International Organization for Standardization no. 15189. 
We have provided ‘Bioinformatics Pipeline Validation. Cancer Report, 
September 2018’ as Supplementary Information and have summarized 
the findings in Supplementary Table 4. Extensive validation and func-
tional improvements of the pipeline for the NHS GMS will be presented 
in a separate publication.

Annotation and reporting actionability. SNVs and small indels were 
left-aligned, trimmed, and multi-allelic variants decomposed, before 
annotation with Cellbase, using the Ensembl (v.90/GRCh38), COSMIC 
(v.v86/GRCh38) and ClinVar (October 2018 release) databases. Annota-
tion of consequence types was carried out by a high-performance vari-
ant annotator within Cellbase; only variants annotated with a curated 
set of consequence types (stop gained or lost, start lost, frameshift 
variant, inframe insertion or deletion, missense variant, splice accep-
tor or donor variant, splice region variant) in canonical transcripts 
were reported.

Interpretation of CNAs took into account gene mode of action as 
defined in the COSMIC Cancer Gene Census (that is, oncogene or tumor 
suppressor gene). Where a gene had an ambiguous or unknown role in 
cancer, it was included in both oncogene and tumor suppressor catego-
ries. Gains in oncogenes were reported if CN was at least twice higher 
than the overall ploidy as defined by Canvas. The following scenarios 
were reported as losses in tumor suppressor genes: (1) homozygous 
deletions called by Canvas (CN = 0); (2) loss of heterozygosity (LOH) 
called by Canvas (CN = 1) or copy-neutral LOH, in combination with 
a nonsynonymous somatic small variant; and (3) Manta SVs with the 
potential to disrupt the gene coding region in combination with a 
nonsynonymous somatic small variant. Only samples with tumor 
purity greater than 30% were included in the CNA actionability analysis. 
For the co-occurrence of somatic small variants and CNAs analysis in  
Fig. 6a, gain of at least one copy for oncogenes or loss of at least one 
copy for tumor suppressor genes was counted as a CNA event.

Manta calls (break end, deletion, duplication or inversion) were 
further assessed for the potential to generate productive fusions using 
an in-house approach based on transcript orientation and consistency 
of reading frame across the SV breakpoint. SVs that were identified as 
out of frame or untranscribed were discarded. Potential inframe fusions 
and ambiguous events with a breakpoint in the coding exon or in the 
5-′UTR of downstream partners were reported.

Germline variants listed in ClinVar as pathogenic or prob-
ably pathogenic with a rating of at least two stars and predicted 
protein-truncating variants in genes for which the mechanism of patho-
genicity was loss of function (stop gained or lost, start lost, frameshift 
variant, splice acceptor or donor variant) were reported for a subset of 
cancer predisposition genes indicated for germline testing in NGTD.

Within the context of the 100,000 Genomes Project Cancer Pro-
gramme, all variants returned to GMCs were reviewed within GTABs 
to classify further if variants were pathogenic or probably pathogenic 
(germline) or oncogenic or probably oncogenic (somatic) and to pro-
vide clinical recommendations where appropriate.

Signatures and TMB. For each tumor sample, frequencies across all 
SNV trinucleotide contexts were calculated using VCF files that were 
filtered for potential false positive variants (see the variant calling 
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section) and the contribution of each of the COSMIC (v.3) single-base 
substitution signatures to the overall mutational burden observed in 
the tumor was derived using decomposition by the SigProfiler suite 
of tools57. Etiology definitions were based on the following signature 
combinations: APOBEC activity, signatures 2 and 13; aging, signature 
1; MMR deficiency, signatures 6, 15, 20, 21, 26 and 44; POLE mutations, 
signatures 10a, 10b and 14; smoking, signatures 4 and 92; ultraviolet 
exposure, signatures 7a–d. Signature 14 (reported with the etiology 
‘concurrent polymerase epsilon mutation and defective DNA MMR’) 
was not included in the MMR deficiency group to avoid double counting 
in the MMR and POLE groups. Including SBS14 in the MMR group would 
change MMR status for 9 of 13,880 tumors and would only increase 
the number of MMR+ tumors in our cohort by 0.81%. For a given etiol-
ogy, if the final combined signatures summed to less than 20%, the 
signature was assigned to ‘other’. Tumors were classified with MMR 
deficiency if the total contribution of MMR signatures was more than 
20%. HRDetect21 is a logistic regression classifier that computes a prob-
ability score of HRD based on microhomology deletions, SNV and SV 
mutational signatures, and LOH score. HRD status using HRDetect 
was retrieved from a previous publication53. The CHORD algorithm is 
a random forest-based classifier that incorporates counts of different 
variant types as input (SNVs, microhomology deletions and SVs) and 
does not require an intermediate mutational signature extraction 
step)20. HRDetect and CHORD were trained on the ICGC and Hartwig 
Medical Foundation cohorts, respectively. The two algorithms returned 
concordant results for 99.2% of samples in our cohort (10,764 of 10,854) 
and CHORD results were used for the figures. TMB was calculated as 
the total number of nonsynonymous high-confidence somatic small 
variants per megabase of coding sequence (see the variant calling  
section for the filtering method used).

Description of clinical data resources
A minimal set of patient and sample data was collected from GMCs 
at the time of DNA sample submission through OpenClinica v.3.4, 
for example, tumor type, year of birth, tissue source, self-reported 
gender. For the purposes of the analysis, self-reported gender was 
cross-validated with biological sex inferred using the ratio of mean 
sequencing coverage of sex chromosomes and mean sequencing 
coverage of autosomes. Assigned biological sex was used in the bio-
informatics pipeline as an input for variant calling. Secondary clinical 
information was gathered from NHSE and Public Health England (PHE)/
NCRAS. From NHSE, HES data were used to obtain details of all commis-
sioned activity during admissions; mortality information was obtained 
from the ONS registry data for cancer registrations and deaths inside 
and outside of hospitals. From PHE/NCRAS, the av_tumor table was 
used to obtain tumor date of diagnosis, together with histology and 
morphology codes. The SACT table provided information on the date 
and types of treatment. All datasets were accessed via the National 
Genomics Research Library using LabKey.

Linking genomic data with secondary data sources
Hematological tumors, pediatric tumors and carcinomas of unknown 
primary origin were considered to be outside the scope of the study 
and were removed before tumor selection. Secondary data from the 
PHE/NCRAS tumor catalog (av_tumor), and NHS Digital HES data were 
used to corroborate the clinical data submitted by the GMCs.

The av_tumor dataset was linked to genomic data on the basis of 
the participant identifier. Tumors labeled as either benign or in situ 
were removed from the selection process, leaving only malignant, 
unknown or NA (the latter being the case for Genomics England par-
ticipants not present in the av_tumor dataset). Where av_tumor data 
were available for a participant, they were used to confirm the tumor 
type submitted by the GMC. For cases where the av_tumor data did 
not match the GMC submission, or data were not present, HES Admit-
ted Patient Care data were used to select the closest relevant hospital 

appointment involving a primary diagnosis of cancer (based on Inter-
national Statistical Classification of Diseases and Related Health Prob-
lems, 10th Revision (ICD-10) code) to the clinical sample time submitted 
by the GMC. If the ICD-10 code for that appointment was considered 
a match to the tumor type submitted by the GMC, the HES data were 
deemed as corroborating the GMC submission.

Where HES data did not corroborate the tumor type submitted 
by the GMC, three additional approaches were used: (1) for primary 
tumors, a curated set of HES operation codes was used to match the 
tumor type submitted by the GMC and the HES data if the operation 
date exactly matched the sampling date of the tumor submitted to 
Genomics England; (2) for non-primary tumors that were identified as 
colorectal by the av_tumor data, and as either hepato-pancreatobiliary, 
endometrial carcinoma or lung in the GMC submission, more flex-
ible HES ICD-10 matching was allowed provided the date difference 
between the HES appointment date and tumor sampling date submit-
ted by the GMC was fewer than 7 days; (3) for a small number of remain-
ing samples, ICD-10 and morphology data submitted by the GMC were 
used to corroborate tumor type.

Tumor stage was obtained from the NCRAS dataset. Where stage_
best was present in av_tumor and the date in the diagnosis database 
column was fewer than 365 days from the clinical sample time submit-
ted by the GMC, stage_best was used (simplified to stages 1, 2, 3 and 4) 
(11,618 of 13,880, 83.7%). Tumors submitted as metastatic were assigned 
stage 4 by default. FIGO (Fédération Internationale de Gynécologie et 
d’Obstétrique) stage was used for ovarian- and endometrium-related 
clinical indications and Dukes’ staging was used for colon and rectum 
adenocarcinomas (both obtained from the av_tumor table). In total, 
stage information was obtained for 12,040 of 13,880 (86.7%) tumors.

Survival analysis
All survival analyses were performed in R using the survminer and 
survival libraries. Specifically, the survfit and ggsurvplot functions 
were used to create the Kaplan–Meier plots, and coxph for the Cox 
proportional-hazards models. The ggforest function was used to create 
the forest plots. Date of death was obtained from the ONS data. Where 
a death was not recorded for an individual, treatment and operation 
event dates were obtained from the HES dataset and used to deter-
mine the last date an individual was seen to enable right-censoring of  
the data.

Ethics
The research described in this manuscript complies with all relevant 
ethical regulations. Approval for the project was obtained from the East 
of England-Cambridge South Research Ethics Committee (Research 
Ethics Committee reference 14/EE/1112, Integrated Research Applica-
tion System ID: 166046)58,59. Participants were selected on the basis of 
having been identified by healthcare professionals and researchers 
within the NHS as having a cancer diagnosis. Participants were recruited 
across 13 NHS GMCs and written informed consent was obtained from 
participants.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within 
the Research Environment, a secure cloud workspace. Details on how 
to access data for this publication can be found at https://re-docs.
genomicsengland.co.uk/pan_cancer_pub/. Additional processed 
aggregated data used to generate figures can be found in Sup-
plementary Tables 5–20. To access the genomic and clinical data 
within this Research Environment, researchers must first apply to 
become a member of either the Genomics England Research Network  
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(previously known as the Genomics England Clinical Interpreta-
tion Partnership, GECIP) (www.genomicsengland.co.uk/research/
academic) or a Discovery Forum industry partner (www.genomic-
sengland.co.uk/research/research-environment). The process for 
joining the Genomics England Research Network is described at 
www.genomicsengland.co.uk/research/academic/join-gecip and 
consists of the following steps: (1) If it is not already participating,  
your institution will need to sign a participation agreement 
available at https://files.genomicsengland.co.uk/documents/
Genomics-England-GeCIP-Participation-Agreement-v2.0.pdf and 
email the signed version to gecip-help@genomicsengland.co.uk; 
(2) once you have confirmed your institution is registered and have 
found a domain of interest, you can apply through the online form at 
www.genomicsengland.co.uk/research/academic/join-gecip. Once 
your Research Portal account is created you will be able to log in and 
track your application; (3) your application will be reviewed within 
ten working days; (4) your institution will validate your affiliation; 
and (5) you will complete our online Information Governance training 
and will be granted access to the Research Environment within 2 h of 
passing the online training. Data that have been made available to reg-
istered users include: alignments in BAM or CRAM format; annotated 
variant calls in VCF format; signature assignment; tumor mutational 
burden; sequencing quality metrics; summary of findings shared 
with the Genomic Lab Hubs; and secondary clinical data as described 
in this paper. Further details of the types of data available (for exam-
ple, mortality, hospital episode statistics and treatment data) can be 
found at https://re-docs.genomicsengland.co.uk/data_overview/. Ger-
mline variants can be explored using the Interactive Variant Analysis 
Browser (https://re-docs.genomicsengland.co.uk/iva_variant/). The 
cohort of patients with cancer and longitudinal clinical information 
on treatment and mortality can be explored with Participant Explorer  
(https://re-docs.genomicsengland.co.uk/pxa/).

Code availability
Details of the location of the code and data used to generate the figures 
can be found at https://re-docs.genomicsengland.co.uk/pan_cancer_
pub/. The code is also available on GitLab (https://gitlab.com/genomic-
sengland/genomics_england_publications/100k_cancer_programme/) 
and has been uploaded to https://doi.org/10.5281/zenodo.8311292. 
Registered users will be able to copy and paste the code into RStudio 
in the Research Environment to recreate the figures. No bespoke math-
ematical algorithms were used in the analysis.
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Extended Data Fig. 1B (CNA)
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Extended Data Fig. 1C (SV)

(continued)

http://www.nature.com/naturemedicine


Nature Medicine

Analysis https://doi.org/10.1038/s41591-023-02682-0

Extended Data Fig. 1 | Prevalence (as percentage) of different types of 
mutations identified by WGS in genes indicated for testing in the National 
Genomic Test Directory for Cancer (NGTDC). (A) Somatic small variants 
(single nucleotide variants (SNVs), insertions and deletions). (B) Copy-number 
aberrations (CNAs); onc = oncogene, tsg = tumour suppressor gene.  
(C) Structural variants (SVs). (D) Germline small variants related to inherited 

cancer risk (predisposing genes). The percentage of tumours harbouring a 
specific type of mutation in gene(s) indicated for testing by tumour type in the 
NGTDC are shown in magenta. The incidence of mutations (as a percentage) in 
other tumour types, not currently indicated in the NGTDC, are shown in blue. 
Colour gradation reflects the percentage of affected cases.
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Extended Data Fig. 2 | Distribution of tumor mutation burden (TMB) and mutational signatures across tumor types. Assignment of signatures to known 
etiologies matches Fig. 3.
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Extended Data Fig. 3 | Kaplan-Meier estimates of overall survival with 
p-values calculated using a stratified log-rank test. Numbers of patients at 
risk at different time points are indicated below the survival curves. Points and 
error bars on the embedded forest plots indicate hazard ratios (HR) with 95% 

confidence intervals (CI), correspondingly. HR, CI and p-values are calculated 
from cox proportional hazards models corrected by cancer stage. Patients are 
stratified by mutational status of genes indicated for testing in NGTDC across all 
cancer types (n = 11337). Exact p-values can be found in Supplementary Table S2.
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Extended Data Table 1 | Median age and interquartile range (IQR) at diagnosis in the absence and presence of pertinent 
germline findings

Statistical significance of pertinent germline finding for early tumor onset was calculated by Wilcoxon rank-sum test with Benjamini–Hochberg multiple testing. ***P < 0.0001, *P < 0.05.  
Tumor types without germline variant testing indicated in the NGTDC were excluded.

http://www.nature.com/naturemedicine







	Insights for precision oncology from the integration of genomic and clinical data of 13,880 tumors from the 100,000 Genomes ...
	Results
	Cohort demographics
	Clinical actionability through WGS
	Landscape of somatic small variants
	Fusions and CNAs
	Germline findings
	Pangenomic markers and mutational signatures
	Clinical utility of WGS
	Pangenomic markers and outcomes from real-world data
	Co-occurrence of small variants and CNAs
	Survival analysis using real-world data

	Discussion
	Online content
	Fig. 1 Overview of the 100,000 Genomes Cancer Programme.
	Fig. 2 Overview of the 100,000 Genomes Cancer Programme cohort demographics.
	Fig. 3 Overview of the sample characteristics for the 100,000 Genomes Cancer Programme cohort.
	Fig. 4 Somatic and germline alterations across common tumor types.
	Fig. 5 Predictive value of pangenomic markers derived from WGS data.
	Fig. 6 Prognostic value of small variants and CNAs from WGS data.
	Extended Data Fig. 1 Prevalence (as percentage) of different types of mutations identified by WGS in genes indicated for testing in the National Genomic Test Directory for Cancer (NGTDC).
	Extended Data Fig. 2 Distribution of tumor mutation burden (TMB) and mutational signatures across tumor types.
	Extended Data Fig. 3 Kaplan-Meier estimates of overall survival with p-values calculated using a stratified log-rank test.
	Extended Data Table 1 Median age and interquartile range (IQR) at diagnosis in the absence and presence of pertinent germline findings.




