
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Conceptual Framework and Methodology for Analysing Previous

Molecular Docking Results

Temelkovski, D.

This is an electronic version of a PhD thesis awarded by the University of Westminster.

© Mr Damjan Temelkovski, 2019.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

University of Westminster

Faculty of Science and Technology

Department of Computer Science

Conceptual Framework and Methodology for

Analysing Previous Molecular Docking Results

Damjan Temelkovski

Submitted in partial ful�lment of the requirements of the University of Westminster for
the degree of Doctor of Philosophy

March 2019

Abstract

Modern drug discovery relies on in-silico computational simulations such as molecular

docking. Molecular docking models biochemical interactions to predict where and how

two molecules would bind. The results of large-scale molecular docking simulations can

provide valuable insight into the relationship between two molecules. This is useful to a

biomedical scientist before conducting in-vitro or in-vivo wet-lab experiments. Although

this �eld has seen great advancements, feedback from biomedical scientists shows that

there is a need for storage and further analysis of molecular docking results. To meet this

need, biomedical scientists need to have access to computing, data, and network resources,

and require speci�c knowledge or skills they might lack.

Therefore, a conceptual framework speci�cally tailored to enable biomedical scientists

to reuse molecular docking results, and a methodology which uses regular input from

scientists, has been proposed. The framework is composed of 5 types of elements and

13 interfaces. The methodology is light and relies on frequent communication between

biomedical sciences and computer science experts, speci�ed by particular roles. It shows

how developers can bene�t from using the framework which allows them to determine

whether a scenario �ts the framework, whether an already implemented element can be

reused, or whether a newly proposed tool can be used as an element.

Three scenarios that show the versatility of this new framework and the methodology

based on it, have been identi�ed and implemented. A methodical planning and design

approach was used and it was shown that the implementations are at least as usable as

existing solutions. To eliminate the need for access to expensive computing infrastructure,

state-of-the-art cloud computing techniques are used.

The implementations enable faster identi�cation of new molecules for use in docking, direct

querying of existing databases, and simpler learning of good molecular docking practice

without the need to manually run multiple tools. Thus, the framework and methodol-

ogy enable more user-friendly implementations, and less error-prone use of computational

methods in drug discovery. Their use could lead to more e�ective discovery of new drugs.

Acknowledgements

I would like to express my gratitude to Prof Tamas Kiss, my Director of Studies, for his

remarkable support and guidance. I would also like to thank my Second Supervisors, Dr

Pamela Greenwell and Prof Gabor Terstyanszky, for sharing their knowledge and advice in

biomedical sciences and computer science. I have been very lucky to have such a devoted

supervisory team that was always ready to discuss my research enthusiastically. It was a

privilege to learn from, and be guided by them.

I would like to thank the University of Westminster for providing me with a full scholarship,

equipment and conditions without which my research project would not be possible. I

would like to thank all the technical, facilities, and library sta�. In particular, I would like

to thank all the colleagues and friends from the computational research o�ces on the 7th

�oor and the biological o�ce on the 4th �oor. Thank you Hans, Gregoire, Noam, Hannu,

Juha, thank you Zoltan and all the kind people at SZTAKI.

I would not have come this far in my PhD journey without the love and support of my

family. Thank you Svetlana, Venko, Joana, and Luisa for always being by my side even if

at times we were far from each other. I would like to thank all my friends in Macedonia,

in London, and around the world. Thank you Goodenough College for being my home

away from home where many great friendships started.

Decleration of Originality

I declare that the present work was carried out in accordance with the Guidelines and

Regulations of the University of Westminster. The work is original except where indicated

by special reference in the text.

The submission as a whole or part is not substantially the same as any that I previously

made or am currently making, whether in published or unpublished form, for a degree,

diploma or similar quali�cation at any university or similar institution.

Until the outcome of the current application to the University of Westminster is known,

the work will not be submitted for any such quali�cation at another university or similar

institution. Any views expressed in this work are those of the author and in no way rep-

resent those of the University of Westminster.

Signed:

Date:

Glossary

Aromatic molecule An aromatic molecule contains a cyclic ring of atoms that provide

high stability, most commonly a benzene ring which is a hexagonal hydrocarbon

made of 6 carbon atoms (e.g. C6H6).

Da Dalton (Da), also known as the uni�ed atomic mass unit (amu), is a standard unit of

mass of small entities such as atoms and molecules. One Da equals one twelfth of

the mass of Carbon-12 (12C) or 1.660539 × 10-27 kg.

Evolutionary distance The evolutionary distance between two proteins is usually cal-

culated as the number of amino acid substitutions between two homologous (evolu-

tionarily related) proteins.

Hydrophobic/Hydrophilic Molecules or sets of atoms that repel the water molecule

are called hydrophobic. Molecules that bond with the water molecule are called

hydrophilic. A large protein can have a section that is hydrophobic and a section

that is hydrophilic.

NMR spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is used to cal-

culate the structure of a molecule and its conformation in solution. A conformation

is the spatial arrangement of atoms in a molecule.

Polar molecule A polar molecule has partial positive charges on one side and partial

negative charges on another side due to polar bonds - (H2O) is a typical example.

Tanimoto Coe�cient A measure of similarity between two binary variables, the Tan-

imoto coe�cient is equal to
∑

k

i=1(ai×bi)∑
k

i=1(a
2
i
)+

∑
k

i=1(b
2
i
)−

∑
k

i=1(ai×bi)
. It is commonly used to

compare two molecules that have been represented by their chemical �ngerprint,

which is a vector with values 0 or 1 that describes the molecular structure of small

molecules. When comparing two sets, this type of similarity measure is known as

the Jaccard Index and is equal to: A∩B
A∪B .

X-ray crystallography X-ray crystallography uses the di�raction of X-rays from a crys-

tallised molecule in order to determine the three-dimensional structure of the molecule.

The di�raction pattern obtained from the X-rays scattering o� the crystal is used

to calculate the density of electrons and deduce the structure.

Contents

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Contributions . 4

1.3 Publications . 7

2 Background 8

2.1 Introduction . 8

2.2 Description of Molecules . 8

2.3 Comparing Molecules . 11

2.3.1 Protein structural alignment . 11

2.3.2 Structural alignment of ligands . 14

2.4 Molecular Docking and Virtual Screening 15

2.4.1 Docking tools . 17

2.4.2 VS with AutoDock and AutoDock Vina 19

2.5 Distributed Computing Infrastructures . 21

2.6 Existing Virtual Screening Applications that Use Cloud Computing 23

2.7 Scienti�c Work�ows . 24

i

2.7.1 WS-PGRADE/gUSE . 25

2.8 Science Gateways and Work�ow Repositories 28

2.9 Frameworks Used in Bioinformatics . 30

2.10 Conclusion . 32

3 Extension of Desktop Applications with Cloud Computing Capabilities 33

3.1 Introduction . 33

3.2 Generic Concept to Add Cloud Computing Capabilities to Desktop Appli-

cations . 34

3.3 Reference Implementation: Extension of Raccoon2 35

3.3.1 Step 1: Con�guration of the CAS 37

3.3.2 Step 2: Modi�cation of the Raccoon2 GUI and back-end 38

3.4 Additional Implementation: Extension of Raccoon 39

3.5 Results . 40

3.6 Conclusion . 43

4 De�nition of Conceptual Framework for Systems that Use Molecular

Docking Results 44

4.1 Introduction . 44

4.2 Research Methodology . 45

4.3 Main Findings of Primary Research . 47

4.3.1 Need for a system to store and manage docking results 47

4.3.2 Novel scienti�c scenarios using docking results 53

4.3.3 High-Level description of conceptual framework for systems that use

previous docking results . 55

ii

4.3.4 Veri�cation of high-level view with novel scenarios 57

4.4 Conclusion . 64

5 Main Findings of Secondary Research 65

5.1 Introduction . 65

5.2 Veri�cation of high-level view with existing systems 65

5.2.1 Virtual screening pipelines . 66

5.2.2 Work�ow-based docking systems 70

5.2.3 Docking-equivalent systems . 74

5.3 Conclusion . 78

6 Low-Level Description of Element Types and Interfaces 79

6.1 Diagrammatic description of the framework 79

6.2 Textual description of element types and interfaces 81

6.3 Formal description of element types and interfaces 84

6.3.1 Element types . 85

6.3.2 Interfaces . 86

6.4 Conclusion . 88

7 Methodology for Developing Systems that Use Docking Results 90

7.1 Introduction . 90

7.2 Role-Deliverable-Milestone diagram . 91

7.2.1 High-level diagram . 92

7.2.2 Low-level diagram . 96

iii

7.3 Methodology techniques . 96

7.4 Using the methodology for the implementations 96

7.5 Conclusion . 97

8 Evaluation 98

8.1 Introduction . 98

8.2 Implementing Scenario 1 . 100

8.2.1 Abstract descriptions of Scenario 1 101

8.2.2 Code of Scenario 1 . 111

8.3 Implementing Scenario 2 . 116

8.3.1 Abstract descriptions of Scenario 2 117

8.3.2 Code of Scenario 2 . 123

8.4 Implementing Scenario 4 . 126

8.4.1 Abstract descriptions of Scenario 4 127

8.4.2 Code of Scenario 4 . 134

8.5 Conclusion . 138

9 Usability of Implementations 140

9.1 Introduction . 140

9.2 Planning the Usability Tests . 141

9.3 Preparation of usability tests . 146

9.4 Results of usability tests . 148

9.5 Conclusion . 151

iv

10 Conclusion 153

10.1 Summary of Thesis Achievements . 153

10.2 Future Work . 155

Appendices 156

A Analysis of interviews with interviewees A-D 157

B Formal Description of Framework for Systems that Use Docking Results162

C Formal Description of Scenario 1 172

D Formal Description of Scenario 2 178

E Formal Description of Scenario 4 184

F Amino Acids 191

Bibliography 191

v

List of Tables

2.1 Structural alignment tools with citations. 12

2.2 Basic comparison of work�ow engines. 25

3.1 Execution times when increasing instance type and number. 42

4.1 Summary of interviews with interviewees A-D. 48

vi

List of Figures

3.1 Generic concept for extending desktop applications to run on clouds. . . . 35

3.2 Architecture of the reference implementation using Raccoon2, WS-PGRADE/gUSE,

CloudBroker, and the UoW or CloudSigma clouds. 36

3.3 WS-PGRADE work�ow for the Raccoon2 extension. 37

3.4 WS-PGRADE work�ow for the 1st case of the Raccoon extension. 39

3.5 WS-PGRADE work�ow for the 2nd and 3rd case of the Raccoon extension. 40

3.6 Mean, standard error of the mean, and execution times (x-axis) of the 29

jobs on the three clouds (y-axis). 41

3.7 Scalability comparison of experimental and proportional cases: increasing

the con�guration of instances (left), increasing the number of instances (right). 43

4.1 Summary of the ful�lment of requirements from the interviews: green sig-

ni�es ful�lled, amber partially ful�lled, red not ful�lled at all, and white

lack of information. 53

4.2 Basic diagram of the framework. 56

4.3 Basic diagram of Scenario 1. 58

4.4 Basic diagram of Scenario 2. 59

4.5 Basic diagram of Scenario 3. 61

4.6 Basic diagram of Scenario 4. 62

vii

4.7 Basic diagram of Scenario 5. 64

5.1 Basic diagram of Zhang, Wong, and Lightstone (2014) 67

5.2 Basic diagram of Xie, et al. (2011) . 67

5.3 Basic diagram of Jiang, et al. (2008) . 68

5.4 Basic diagram of Glaab (2016) . 68

5.5 Basic diagram of D'Ursi, et al. (2009) . 69

5.6 Basic diagram of Kiss, et al. (2014) . 70

5.7 Basic diagram of Farkas, et al. (2015) . 71

5.8 Basic diagram of Kiss, et al. (2010) . 72

5.9 Basic diagram of Jaghoori, et al. (2015) 73

5.10 Basic diagram of Krüger, et al. (2014) . 74

5.11 Basic diagram of Roy, Srinivasan, and Skolnick. (2015) 75

5.12 Basic diagram of Wassenaar, et al. (2012) 76

5.13 Basic diagram of Chia, et al. (2010) . 76

5.14 Basic diagram of Kunszt, et al. (2015) . 77

6.1 The diagram of the framework. 80

6.2 Diagram of the MDE. 82

6.3 Diagram of the MDRR. 82

6.4 Diagram of the AT. 83

6.5 Diagram of the ADS. 83

6.6 Diagram of the DM. 84

6.7 Excerpt of the Z notation describing the MDE element type. 85

viii

7.1 Role-Deliverable-Milestone diagram (high level). 94

7.2 Role-Deliverable-Milestone diagram (low level) 95

8.1 Overview of techniques used in the three selected scenarios. 100

8.2 The diagram of the MDE: the cloud-enabled Raccoon2 (in red: segments

that need to be implemented, in black: existing segments). 102

8.3 Excerpt of the Z notation describing Raccoon2 as element of Scenario 1. . . 103

8.4 The diagram of the custom-made MongoDB-based MDRR. 104

8.5 The diagram of the AT DeepAlign. 106

8.6 The diagram of the AT to assess DeepAlign. 107

8.7 The diagram of the AT to assess docking results. 107

8.8 The diagram of the DM. 108

8.9 The detailed diagram of Scenario 1. 110

8.10 Communication between servers used in the implementation of Scenario 1. 112

8.11 Screenshot of the �nal result of Scenario 1. 116

8.12 The diagram of the ADS PubChem. 120

8.13 The diagram of the DM. 121

8.14 The detailed diagram of Scenario 2. 122

8.15 Communication between servers used in the implementation of Scenario 2. 124

8.16 Screenshot of the �nal result of Scenario 2. 126

8.17 The diagram of the AT LIGSIFT. 129

8.18 The diagram of the AT to assess LIGSIFT. 130

8.19 The diagram of the AT to compare con�guration �les. 131

ix

8.20 The diagram of the DM. 132

8.21 The detailed diagram of Scenario 4. 133

8.22 Communication between servers used in the implementation of Scenario 4. 135

8.23 Representation of the cuboid of an AutoDock Vina con�guration �le. . . . 137

8.24 Screenshot of the �nal result of Scenario 4. 138

9.1 Flow of events of Scenario 1 �without� the implementation (left) vs. �with�

the implementation (right). 141

9.2 Flow of events of Scenario 2 �without� the implementation (left) vs. �with�

the implementation (right). 143

9.3 Flow of events of Scenario 4 �without� the implementation (left) vs. �with�

the implementation (right). 145

x

List of Abbreviations

ADMETox Absorption, Distribution, Metabolism, and Excretion, Toxicity, page 68

ADS Additional Data Source, page 56

ADT AutoDock Tools, page 19

API Application Programming Interface, page 27

ASM Application Speci�c Module, page 27

AT Additional Tool, page 55

CADD Computer-Aided Drug Design, page 2

CDK Chemistry Development Kit, page 31

CML Chemical Markup Language, page 29

con�g Con�guration, page 19

DM Decision Maker, page 56

DUD Directory of Useful Decoys, page 15

EC2 Elastic Compute Cloud (Amazon), page 23

GOLD Genetic Optimisation for Ligand Docking, page 17

GUI Graphical User Interface, page 19

gUSE grid User Support Environment, page 25

HPC High Performance Computing, page 21

xi

HTS High Throughput Screening, page 2

IaaS Infrastructure-as-a-Service, page 22

KACR Kepler Analytical Component Repository, page 30

LBVS Ligand-Based Virtual Screening, page 2

LGA Lamarkian Genetic Algorithm, page 18

M & S Modelling & Simulation, page 28

MD Molecular Dynamics, page 17

MDE Molecular Docking Environment, page 55

MDRR Molecular Docking Results Repository, page 55

MM/GBSA Molecular Mechanics/Generalised Born Surface Area, page 66

MoSGrid Molecular Simulation Grid, page 29

MPI Message Passing Interface, page 23

MSML Molecular Simulation Markup Language, page 29

PaaS Platform-as-a-Service, page 22

PBS Portable Batch System, page 20, 21

PDB Protein Data Bank, page 10

PUG Power User Gateway (PubChem), page 119

QC Quantum Chemistry, page 29

QSAR Quantitative Structure-Activity Relationship, page 14

RMSD Root-Mean-Square Deviation, page 12

SaaS Software-as-a-Service, page 22

SBVS Structure-Based Virtual Screening, page 2

SGE Sun Grid Engine, page 20, 21

xii

SME Small and Medium sized Enterprise / Simulation in Manufacturing and

Engineering, page 28

SMILES Simpli�ed Molecular-Input Line-Entry System, page 10

SPP Semantic Provenance Processor, page 30

sTC scaled Tanimoto Coe�cient, page 15

SZDG SZTAKI Desktop Grid, page 42

TC Tanimoto Coe�cient, page 15

TV Trichomonas vaginalis, page 40

UML Uni�ed Modelling Language, page 79

UoW University of Westminster, page 1

VS Virtual Screening, page 2

WS-PGRADE originally Web Services - Parallel Grid Runtime and Developer Environ-

ment, page 26

xiii

Chapter 1

Introduction

1.1 Motivation and Objectives

Throughout history, serendipity has played a major role in the discovery of medicines and

medical drugs. Perhaps the most notable case in the 20th century is the revolutionary

discovery of penicillin [1] in 1927 by Sir Alexander Fleming. An alumnus of the Regent

Street Polytechnic, which eventually became the University of Westminster (UoW), Flem-

ing discovered the anti-bacterial properties of a type of mould. The mould had grown

serendipitously, as a contaminant on a Petri dish seeded with bacteria while he was away

on holiday [2].

Many drugs have been discovered using �classical pharmacology�. Here, the e�ects (func-

tional activity) of a substance on an organism or cell are determined, either by serendipity

or through screening, before the biological target for this interaction is identi�ed. One

example is the discovery of Tamsulosin, a drug used to treat benign prostatic hyperplasia.

Scientists at Yamanouchi Pharmaceutical �rstly discovered the e�ect of Tamsulosin on the

prostate, before conducting additional experiments to conclude that this is due to its high

a�nity for the alpha-1B adrenergic receptor [3].

In an alternative approach, known as �reverse pharmacology� or �rational drug design�,

scientists do the opposite. They start by identifying a biological target, hypothesising

that its modi�cation will result in a therapeutic e�ect. This hypothesis can be tested by

screening a large library of potential drug candidates and assessing the interaction with

the target. Finally, the successful candidate of the screening is tested in living organisms

to show the functional activity [3].

Nowadays, the process of screening drug candidates would consist of High Throughput

Screening (HTS), a method using automated laboratory equipment which can quickly

1

1.1. Motivation and Objectives 2

assay the interaction between drug candidates and biological targets. The development

of modern robotics has enabled HTS facilities to screen hundreds and even thousands of

drug candidates per day. However, the cost of the assays and the requirement to source

many, potentially expensive, drugs makes this technology available only to well-funded

laboratories.

On the other hand, developments in bioinformatics have given rise to the concept of

Virtual Screening (VS). VS aims at producing results analogous to HTS, but instead

of using automatic assays, it relies on using bioinformatics to calculate or estimate the

interaction between the drug candidate and the biological target. In comparison to HTS,

VS is an inexpensive method that enables scientists to screen millions of molecules and

identify a small amount of candidates to test in the �wet lab�. In general, in this kind

of interaction, the drug candidate is known as a �ligand�, while the biological target is a

�receptor�. VS and other similar bioinformatics techniques form part of a �eld known as

Computer-Aided Drug Design (CADD), and are often used in rational drug design.

There are two di�erent types of VS: Ligand-Based Virtual Screening (LBVS), and Structure-

Based Virtual Screening (SBVS). In order to conduct LBVS, scientists may have a descrip-

tion of a known ligand that binds to the receptor, and then search for a ligand similar to

it. Alternatively, scientists use the descriptions of many known ligands to create a �phar-

macophore model�, a hypothetical substance which contains elements from the known

ligands. Then, they would search through a large library of existing molecules for one

that is similar to the pharmacophore model.

Conversely, SBVS uses a predetermined description of the receptor's 3D structure and

a large library of ligands in order to calculate the most likely ligand that binds to the

receptor. In order to produce this calculation, SBVS uses a technique known as �molecular

docking�. Molecular docking is the term used for a software simulation that predicts the

interaction between two molecules, ligand and receptor, by calculating how likely it is for

them to bind, based on their 3D structures. Molecular docking and other structure-based

CADD techniques have been used to discover the drug Aliskiren (Rasilez) [4]. Other drugs

that have utilised CADD in the drug discovery process include: Dorzolamide (Trusopt),

Zanamivir (Relenza), Nel�navir (Viracept), and at least 6 others [5].

Even though molecular docking results are just an estimate that needs to be con�rmed by

additional analysis or laboratory experiments, the knowledge they provide can be key to

the discovery of new drugs. For instance, molecular docking is part of drug discovery e�orts

to treat the rare genetic disease N-Glycanase de�ciency, caused by a mutation of the gene

NGLY1. SBVS has been used to dock 13 FDA-approved drugs to a proposed biological

target, the ENGase inhibitor [6]. VS and HTS have provided nine ligands that bind to

the N-Glycanase protein, and may lead to potential therapeutic applications [7]. Matthew

1.1. Motivation and Objectives 3

Might, one of the many researchers in this area, and parent of the �rst documented

patient with N-Glycanase de�ciency [8], is a professor in Computer Science (and creator

of a very useful guide for PhD students [9]). This further emphasises the interconnectivity

between computational techniques, such as molecular docking and VS, and drug discovery.

Furthermore, there are many other disciplines where these techniques are important. For

instance, molecular docking was recently used to assess the impact of veterinary medicines

on non-target organisms and the environment [10].

Inspired by such research e�orts, this PhD thesis aims at improving the current landscape

by enabling biomedical scientists to use molecular docking and virtual screening simula-

tions for more interesting projects, while making the development of computer systems

based on these simulations easier for software developers. In the remainder of the the-

sis the term VS will be used to signify SBVS, particularly large-scale molecular docking

simulations.

Best practices can be improved by providing an environment to make it easier for biomed-

ical scientists to use molecular docking and VS scienti�c simulations, in order to broaden

their applicable use in further domains, and to extend their execution environment onto

a far wider scale of computing infrastructures, including cloud computing. Furthermore,

providing a docking result repository where scientists could share their results, would en-

able additional conclusions based on prior docking results, thereby improving the current

landscape of molecular docking.

Chapter 2 provides the required background for the research shown in this thesis. VS

simulations are computationally demanding and require complex computer infrastructure

to produce results in a reasonable time. High Performance Computing (HPC) clusters

have been traditionally used, but recently there is a growing use of cloud computing for

scienti�c simulations. A research gap exists in this area. Chapter 3 focuses on �lling

this gap by proposing a concept for extending popular desktop applications with cloud

computing capabilities. If biomedical scientists had seamless access to run large-scale

simulations directly from their favourite desktop application, using cloud computing, they

would no longer need access to HPC clusters.

The remainder of the thesis focuses on a second gap that has been identi�ed, namely, that

docking results are currently not shared and that enabling a shared repository would be a

useful tool to better foster collaboration and reuse. This is important for many disciplines,

including drug discovery. A repository would enable scientists to make additional conclu-

sions based on the simulation results they have obtained in the past, or results obtained by

other scientists. For instance, it would prevent repeating the same molecular docking sim-

ulation and it would facilitate learning. Extending existing tools to this e�ect in an ad-hoc

manner would be too di�cult. In order to aid software developers in creating computer

1.2. Contributions 4

systems based on storing or using previously stored molecular docking results, this thesis

suggests a more formalised framework and a speci�c software development methodology.

The need for storing and sharing molecular docking results has been already identi�ed.

A survey of a bioinformatics community has shown that nearly 3/4 of the community

would share their input and results �les in a repository after they have published their

research, while almost 90% would share the tools and work�ows they have used [11].

To further examine the need for a molecular docking result repository, a set of interviews

with biomedical scientists have been conducted as part of this thesis. Chapter 4 presents a

generic conceptual framework for software systems that analyse molecular docking results,

which has been de�ned based on the interviews and a literature review of existing systems

(Chapter 5). A speci�c software development methodology which includes the use of the

framework is proposed and explained in Chapter 7. The bene�ts of the framework and the

methodology are explored in Chapters 8 and 9 by producing prototype implementations

of three scenarios that analyse previous molecular docking results.

1.2 Contributions

This PhD thesis explores ways to improve how biomedical scientists use molecular docking

and virtual screening simulations. It proposes a way to make the development of computer

systems based on these simulations easier for software developers.

While supporting biomedical scientists in conducting bioinformatics simulations, the can-

didate realised that there is a gap in the tools currently used for VS. A popular desktop

application can help users run VS simulations on an HPC cluster, but biomedical scientists

that do not have access to clusters need a VS tool that uses cloud computing. The lack

of a vendor-independent way to extend desktop applications was an inspiration for the

development of the �rst contribution of this thesis: a generic concept for extending desk-

top applications with cloud computing capabilities. Using this concept, the VS desktop

application can be extended and the simulations can be conducted on clouds.

Although this improved the accessibility of VS simulations drastically, it was evident that

scientists did not store and share docking results. If publicly available, these docking

results can be used by other scientists through software systems that make conclusions

or decisions based on previous docking results. The need for such systems was explored

through interviews and a literature review was used to fortify the second contribution of

this thesis: a generic conceptual framework for systems that use docking results. The

third contribution, a software development methodology that proposes a way to use the

framework, was required to help software engineers in the creation of this type of software

1.2. Contributions 5

systems. In summary, the three contributions of this thesis are:

1. Generic concept for extending desktop applications with cloud computing capabilities.

Domain-speci�c desktop applications are still widely used. The generic concept proposed

in this thesis aims to enable existing and well-established desktop applications to ac-

cess heterogeneous cloud computing resources. One reason why desktop applications are

popular is the �exible user-friendly graphical interface that they provide. This concept

provides a way for desktop applications to access cloud computing resources seamlessly

without major reengineering. The end-users can use an extended version of the same

desktop application and the same familiar interface while leveraging the bene�ts of cloud

computing.

The novelty of this generic concept is the suggested use of platform- and tool-independent

set of services (named Cloud Access Services - CAS). The CAS should be called directly

from the back-end code of the desktop application in order to integrate the cloud com-

puting capabilities. Additionally, the CAS should provide access to a range of cloud

computing resources suitable for complex application scenarios. The CAS prevent the

problem of vendor lock-in, since changing one implementation of CAS for another will not

incur substantial costs. The concept proposed in this thesis is generic and applicable in

all domains. Using this concept, software developers can extend domain-speci�c desktop

applications without major e�ort, thus providing the bene�ts of cloud computing (such

as reducing operational costs, scalability, and elasticity) to the users. This is the biggest

impact of this contribution. Chapter 3 showcases how this concept can be used for the

particular domain of molecular docking and virtual screening simulations.

2. Generic conceptual framework for software systems that use molecular docking results.

Molecular docking simulations can predict if two molecules will bind to each other. The

molecular docking results can be useful to the scientist that created them, or to other

scientists. The framework proposed in this thesis facilitates the storage and sharing of

molecular docking results, by simplifying the development of software systems that use

previous molecular docking results.

This is a novel tool-independent conceptual framework which allows easy plugging in

of speci�c tools. A custom-made or an existing tool can be used in a scenario as an

element of the framework. The framework de�nes �ve element types and the interfaces

between them. Reusability is a major part of the framework - if a tool has been used as an

element in one scenario it can easily be used in another scenario. Furthermore, through the

powerful formal description of elements and interfaces, the framework allows a developer to

check whether an existing tool can be used. The prospective element should be described

1.2. Contributions 6

formally and then compared to formal abstract descriptions of an appropriate element type.

Similarly, developers can check whether the framework is suitable for implementing a new

scenario by describing the elements and interfaces formally, and comparing it to the generic

abstract description of the framework. Chapter 4 provides details about the framework

including two methods used in its construction: interviews with domain scientists and

review of the literature.

3. Methodology for developing software systems that use molecular docking results, based

on the framework.

The methodology for developing complex environments that reuse and analyse previous

molecular docking results complements the framework. It is a collaborative methodology

that provides a guide to a team that is about to implement a scenario using the framework.

The methodology clearly states the roles that members of the team can undertake and

the speci�c sub-projects for which they need to collaborate. It emphasises the need to

design and plan the development by describing the scenario according to the de�ned

element types and interfaces of the framework. The basis of the methodology is a Role-

Deliverable-Milestone diagram. A novel addition to this diagram clearly speci�es that the

development process is agile. The methodology provides three techniques that specify how

the abstract descriptions of the framework can be used. Chapter 7 provides more details

about the methodology.

Three scenarios, identi�ed through interviews with domain scientists, have been imple-

mented using the framework and following the methodology. They show the di�erent

capabilities the framework o�ers such as implementing a new scenario easily by reusing

an existing element, and the ability to use several elements of the same element type or

introduce a new element type. The implementations were tested to show that following

such a methodical approach produces usable systems that are not cumbersome.

1.3. Publications 7

1.3 Publications

As a result of the work shown in this thesis, the following publications have been created:

1. Conference paper - �Molecular docking with Raccoon2 on clouds: Extending desk-

top applications with cloud computing�, 9th International Workshop on Science Gateways

(IWSG 2017), 19-21 June 2017, Pozna«, Poland [12].

2. Conference paper - �A generic framework and methodology for implementing science

gateways for analysing molecular docking results�, 10th International Workshop on Science

Gateways (IWSG 2018), 13-15 June 2018, Edinburgh, UK [13].

3. Journal article - �Extending molecular docking desktop applications with cloud com-

puting support and analysis of results�, Future Generation Computer Systems, vol. 97,

Special issue on Science Gateways 2017, pp. 814-824, 2019.

4. Journal article - �Building science gateways for analysing molecular docking results

using a generic framework and methodology�, currently under review.

Publication 1 describes the generic concept for extending domain-speci�c desktop appli-

cations with cloud computing capabilities, and the extension of the VS tool Raccoon2

(shown in Chapter 3). Publication 2 introduces the conceptual framework, methodology

and the implementation of Scenario 1, which are described in more detail in Chapters 4, 7,

and 8. Publication 3 is a journal article and a continuation of Publication 1, which shows

how the extension of Raccoon2 can be included in complex implementations of scenarios

that use previous molecular docking results. Finally, Publication 4 focuses on the usability

tests which show the usability of the implementations, as detailed in Chapter 9.

Additionally, the candidate presented parts of the work as an oral presentation and poster

(�Extending a virtual screening tool to run simulations on clouds�, ISCB RSG UK 2nd

Bioinformatics Student Symposium, 7 October 2015, TGAC, Norwich), and short oral

presentation and abstract (�Extending a molecular docking tool to run simulations on

clouds�, 7th International Workshop on Science Gateways (IWSG 2015), 3-5 June 2015,

SZTAKI, Budapest, Hungary).

Chapter 2

Background

2.1 Introduction

Several existing research areas or currently used conventions are important for any system

that uses bioinformatics tools. This thesis explores tools that use the three-dimensional

structure of molecules as input. Often the results of a bioinformatics analysis are only as

good as the input �les. Therefore, it is helpful to provide more details about the types

of molecules and the way that their structure is described for computers to understand.

Furthermore, two important questions can be answered based on the structure of two

molecules: �How structurally similar are two molecules?�, and �Where and how would two

molecules bind?�. Two types of algorithms, structural alignment and molecular docking

respectively, can answer these questions. The focus of this thesis is on molecular docking

simulations. Running a large number of molecular docking simulations is a complex and

computationally demanding task. It requires the use of solutions such as scienti�c work-

�ows and distributed computing infrastructures (including clouds). Existing frameworks,

or indeed the framework presented in this thesis, can aid in creating a system that uses

molecular docking results. This thesis builds upon existing background knowledge in all

the mentioned areas, which will be overviewed in this chapter. The reader may continue

reading this chapter, or refer back to relevant sections while reading the remainder of the

thesis.

2.2 Description of Molecules

A substance can be divided and still retains its biochemical properties. This can be done

up to a certain point. The smallest group of atoms that retain these properties is called

8

2.2. Description of Molecules 9

a molecule. This thesis focuses on two types of molecules: large proteins, and small

molecules that can bind to a protein and have some e�ect. By convention, the former will

be referred to as receptors, and the latter as ligands.

Large proteins - receptors Proteins are some of the most important molecules in

living organisms. Proteins play diverse roles in organisms. For instance, some are struc-

tural, others have enzymatic properties, immunological functions, or act in cell signalling.

Proteins are polypeptides, a peptide being a molecule that contains several amino acids

connected by peptide bonds. Amino acids are organic compounds that contain an amine

group (−NH2) on one end, and a carboxyl group (−COOH) on the other end, with a set

of carbon atoms in the middle which are connected to a side chain (referred to as R).

There is a speci�c group of 22 amino acids which feature in proteins in all life forms on

Earth (21 in humans).

Being polypeptides, proteins can be described by the list of all amino acids that comprise

them. This is known as the protein amino-acid chain or sequence. If untangled, the protein

would fold back into a speci�c three-dimensional form. The three-dimensional form of a

protein shows several distinct elements, the most common being the Alpha (α) helix

and Beta (β) pleated sheet. The sequence of amino acids represents the protein's primary

structure. The protein's secondary structures are the α-helices or β-sheets. The secondary

structure is held together by Hydrogen bonds, giving stability. The �nal 3D structure of

a protein is called the tertiary structure. The tertiary structure is held together by four

di�erent bonds and interactions:

� Disulphide bonds: sulphur atoms on Cysteine amino acids form a double bond (S=S).

� Ionic bonds: two oppositely charged amino acids (+ve and -ve) that are close to

each other may form ionic bonds.

� Hydrogen bonds: H atoms on di�erent amino acids form bonds between them.

� Hydrophobic and hydrophilic interactions: some amino acids are hydrophobic while

others are hydrophilic. In a water based environment, a protein orientates itself with

hydrophobic parts towards its centre and hydrophilic parts towards its edges.

Two or more protein subunits may come together to form a complex, this is the protein's

quaternary structure (e.g. Haemoglobin has 4 subunits). Amino acids vary in size (e.g.

Glycine is 75 Da whereas Tryptophan is 204 Da), may have charge (positive or negative),

may be polar, hydrophobic or hydrophilic, or have ring structures (i.e. may be aromatic).

A list of the amino acids that are part of human proteins is provided in Appendix F.

In practice, the protein 3D structure can be described by the coordinates of the atoms

2.2. Description of Molecules 10

that compose it. The Protein Data Bank (PDB [14]) is a repository of �solved� pro-

tein structures (`protein structure' often refers to the 3D structure). Solved structures

are structures that have been determined using methods such as X-ray crystallography,

NMR spectroscopy, or estimated using homology modelling. Homology modelling refers

to modelling the structure of an unknown protein with respect to the known structure of

a homologous protein. The description of coordinates can be stored in a �le in the .pdb

format. An example of this �le would describe the protein sequence as (amino acids shown

using the three-letter abbreviations):

SEQRES 1 A 309 MET GLN ASN ALA GLY SER LEU VAL VAL LEU GLY SER ILE

SEQRES 2 A 309 ASN ALA ASP HIS ILE LEU ASN LEU GLN SER PHE PRO THR

SEQRES 3 A 309 PRO GLY GLU THR VAL THR GLY ASN HIS TYR GLN VAL ALA

SEQRES 4 A 309 PHE GLY GLY LYS GLY ALA ASN GLN ALA VAL ALA ALA GLY

SEQRES 5 A 309 ARG SER GLY ALA ASN ILE ALA PHE ILE ALA CYS THR GLY

SEQRES 6 A 309 ASP ASP SER ILE GLY GLU SER VAL ARG GLN GLN LEU ALA

The exact coordinates of the atoms would be described further down in the same �le (the

X, Y, and Z, coordinates show in the 7th, 8th, and 9th columns):

ATOM 1 N ALA A 4 15.854 16.067 56.619 1.00 38.52 N

ATOM 2 CA ALA A 4 15.925 14.565 56.631 1.00 38.20 C

ATOM 3 C ALA A 4 14.555 13.990 56.933 1.00 36.20 C

ATOM 4 O ALA A 4 13.600 14.731 57.141 1.00 36.93 O

ATOM 5 CB ALA A 4 16.926 14.067 57.668 1.00 38.48 C

ATOM 6 N GLY A 5 14.462 12.667 56.957 1.00 33.75 N

Small molecules - ligands A ligand is a small molecule which binds to another

molecule. Its chemical formula, which usually has a small number of atoms, can be used

to describe it. A two-dimensional drawing is commonly drawn alongside it, to represent

the types of bonds between all the atoms. Another popular notation to describe molecular

structure of ligands is the Simpli�ed Molecular-Input Line-Entry System (SMILES [15]).

SMILES uses ASCII symbols to represent the structure of the molecule. Theoretically,

a SMILES code is the string produced when traversing the chemical formula graph as a

depth-�rst tree (once the graph has been converted into a spanning tree). This means that

there are di�erent ways to create a SMILES code, for instance, based on where a cycle

(benzene ring) will be broken up. Several algorithms enable creating the same SMILES

code from the same molecular structure (known as the �canonical SMILES� code).

Analogously to the protein structure, the ligand structure can be described by the coor-

dinates of the atoms that compose it. Popular �le formats used to represent a ligand are

.mol2 or .pdb. An example of a .mol2 �le would describe the ligand structure as:

@<TRIPOS >MOLECULE

STI

48 51 1 1 3

PROTEIN

GASTEIGER

2.3. Comparing Molecules 11

@<TRIPOS >DICT

PROTEIN PROTEIN

@<TRIPOS >ATOM

1 C1 14.8490 2.8316 15.5182 C.ar 1 STI1 -0.0430

2 C6 13.7123 3.5860 15.2146 C.ar 1 STI1 -0.0497

3 C5 13.6809 4.9582 15.5016 C.ar 1 STI1 0.0186

4 C4 14.8459 5.5341 16.0277 C.ar 1 STI1 0.0367

5 N3 15.9447 4.7940 16.2830 N.ar 1 STI1 -0.2626

6 C2 15.9678 3.4649 16.0628 C.ar 1 STI1 0.0276

The .pdb �le would be:

ROOT

ATOM 1 C LIG 1 0.142 -0.047 0.243 0.00

ATOM 2 C LIG 1 1.012 0.992 -0.126 0.00

ATOM 3 C LIG 1 2.343 0.913 0.326 0.00

ATOM 4 C LIG 1 2.785 -0.157 1.111 0.00

ATOM 5 C LIG 1 1.899 -1.172 1.465 0.00

ATOM 6 C LIG 1 0.573 -1.115 1.039 0.00

ENDROOT

BRANCH 2 7

ATOM 7 C LIG 1 0.585 2.177 -0.974 0.00 0.00

ATOM 8 O LIG 1 -0.462 2.057 -1.689 0.00 0.00

ATOM 9 O LIG 1 1.325 3.210 -0.925 0.00 0.00

ENDBRANCH 2 7

There are several molecular databases which store ligand properties, such as ZINC [16]

or PubChem Compound [17]. Apart from the formula and canonical SMILES, they also

store other relevant information.

2.3 Comparing Molecules

Molecules can be compared based on their three-dimensional structures. When the molecules

are proteins, this process is referred to as �protein structural alignment�. When comparing

the structures of ligands, it is referred to as �ligand structural alignment� or sometimes

�ligand-based virtual screening�.

2.3.1 Protein structural alignment

There are a number of powerful protein sequence alignment tools (e.g. BLAST [18]).

Aligning sequences can highlight similar regions of 2 (or more) proteins which may show

functional, structural, or evolutionary relationships between the proteins. Homology has

evolutionary and biological implications (homologous proteins are proteins that have sim-

ilarity in sequence or structure due to descent from a common ancestor). Two homologous

2.3. Comparing Molecules 12

proteins can have a common function or structure, but sequence similarity does not imply

similar function or structure, as two non-homologous proteins may have similar sequences.

Furthermore, low sequence similarity does not rule out homology, or common function

and structure. The structure of the protein can be used to understand the protein better

including its function, mechanisms of action, and structure-function relations. Structural

alignment refers to aligning the three-dimensional structure of proteins. It can be a more

powerful method for aligning distantly related proteins than sequence alignment.

In structural alignment, the similarity of two three-dimensional objects is assessed. One

can imagine superimposing the molecules so that corresponding points are as close together

as possible. A common measure of structural similarity is the average distance between

these corresponding points. In practice, this is often the Root-Mean-Square Deviation

(RMSD) of the corresponding atoms, as shown in Equation 2.1.

RMSD =

√√√√ 1

N

N∑
i=1

δ2i (2.1)

Where δi is the distance between the i th pair of points, and N is the number of points,

once the corresponding points have been calculated [19, p. 236].

The remainder of this thesis does not focus on a single structural alignment tool, but

as part of the evaluation of the proposed tool-independent framework and methodology

(Chapter 8), one tool had to be used. This section explains the choice of DeepAlign.

Based on available publications, Hasegawa and Holm [20] estimate that the number of

new structural alignment methods has been doubling every 5 years. They provide a

review of structural alignment tools, which when extended by the structural alignment

tools outlined in [21, 22] makes a list of over 100 distinct structural alignment tools. A

subset of 24 stand-alone tools with their respective number of citations (as reported by

Google Scholar on 21 July 2016 and 7 April 2018) are shown in Table 2.1.

Table 2.1: Structural alignment tools with citations.

Tool Year Cited (2016) Cited (2018)

DALI [23] 1993 4066 4223

CE (jCE) [24] 1998 2031 2182

TM-Align [25] 2005 1015 1348

MUSTANG [26] 2006 450 558

MAMMOTH [27] 2002 460 509

MultiProt [28] 2004 336 408

FAST [29] 2005 178 196

Continued on next page

2.3. Comparing Molecules 13

Table 2.1 � continued from previous page

Tool Year Cited (2016) Cited (2018)

Matt [30] 2008 160 187

ProBiS [31] 2010 158 173

RCSB PDB - Comparison Tool [32] 2010 93 123

DeepAlign [33] 2013 44 72

SCALI [34] 2005 61 65

LOCK2(FoldMiner [35]) 2004 62 64

SA Tableau Search [36] 2010 39 42

CLICK [37] 2011 35 59

SPalign [38] 2012 30 48

TopMatch [39] 2012 32 39

ProSMoS [40] 2007 31 34

MICAN [41] 2013 29 33

CBA [42] 2006 21 29

Smolign [43] 2012 13 16

QP Tableau Search [44] 2009 12 13

SPalignNS [45] 2015 2 4

Fit3D [46] 2015 2 4

Based on the number of citations one can clearly identify a group of older but more cited

tools (e.g. DALI, CE, TM-Align, or MAMMOTH), and newer but less cited tools (e.g

CLICK, SPalignNS, or DeepAlign).

Barthel et al. [47] mention that authors of new tools often use only a small set of test

cases to claim bene�ts of their tool. Common evaluation tests for structural alignment

tools use �gold standard� manually curated reference alignments (e.g. HOMSTRAD [48],

CDD [49]), classi�cation databases (such as SCOP [50] or CATH [51] - the DALI server

no longer provides a database of pre-computed alignments [52, 53]), or a scoring function

based on the values such as RMSD [20].

Kim et al. [54] evaluated the accuracy of seven tools against the CDD and explain how some

programs do not produce high quality individual alignments when measured by geometric

match measures. Havrilla and Saçan [55], inspired by the work of Kolodny, Koehl, and

Levitt [56], analysed the original set of sequentially diverse protein pairs using another set

of structural alignment tools. Their results show that newer structural alignment tools

can outperform older ones. Therefore, the classi�cation as new/old can be helpful but

not su�cient to choose a structural alignment tool. In this case, a recommendation from

2.3. Comparing Molecules 14

peers was obtained.

The RaptorX structural alignment server [57], which uses DeepAlign [33], was recom-

mended by two biomedical scientists interviewed as part of the thesis. Created in 2013,

the number of citations of DeepAlign has nearly doubled between 2016 and 2018 (Ta-

ble 2.1). The scoring function in DeepAlign calculates a value called DeepScore which

represents the equivalence of two residues ai and bj from two input proteins (Equation

2.2).

DeepScore(i , j) = (max (0,BLOSUM (i , j)) + CLESUM (i , j))× d(i , j)× v(i , j) (2.2)

where BLOSUM and CLESUM measure the evolutionary distance of two proteins at the

sequence and local substructure levels, respectively. The value d(i , j) measures spatial

proximity of two aligned residues once superimposed, while v(i , j) measures hydrogen-

bonding similarity [58, p. 144].

An alternative approach would be to use multiple tools, which has been attempted in the

past. Barthel et al. [47] have combined several tools to give a consensus similarity pro�le

for a given dataset. To calculate this consensus similarity, it normalises the similarity

matrices from the various tools. Kolodny, Koehl, and Levitt [56] propose a �best-of-all�

method that uses the best results of six tools. They use four geometric measures to

evaluate the quality of each structural alignment.

However, this approach was not used in this thesis. Due to the popularity among peers,

which is partly because of the very good performance in the Critical Assessment of protein

Structure Prediction (CASP 1), the tool DeepAlign will instead be considered.

2.3.2 Structural alignment of ligands

Ligands can be compared based on their structure as well. This type of similarity often

falls under the category of LBVS. This is because the LBVS methods include molecular

similarity comparisons [59]. Some LBVS methods focus on creating �pharmacophores�

(models of a hypothetical ligand that binds well), then searching for ligands that are simi-

lar to the pharmacophore. This approach assumes that a ligand that binds to a biological

target can be described by a set of common features. These features may be, for exam-

ple: number of hydrogen-bond donors, hydrogen-bond acceptors, and positive or negative

charge [60]. Some LBVS methods focus on Quantitative Structure-Activity Relationships

(QSARs). The QSAR approaches assume that there is a direct relation between biological

activity and molecular structure. According to these approaches, molecules with similar

1predictioncenter.org

2.4. Molecular Docking and Virtual Screening 15

structure will possess similar biological activities for similar targets, and if the structure is

changed there will be a change in the biological activities. Usually, molecules are collected

in a trial set and molecular descriptors are calculated. Then, a model is created using a

training set. The QSAR model is tested, and based on the correlation to experimental

results, it is either recon�gured or accepted for designing novel ligands [61].

The framework and methodology proposed in this thesis do not depend on the choice of

tool to assess ligand similarity, but their evaluation (Chapter 8) requires the use of a single

tool. Therefore, this section will explain the choice of LIGSIFT as a tool for structure-

based comparison of ligands. Two online sources provide a list of LBVS tools. A total of

113 LBVS tools are listed in [62] (53 of which are stand-alone tools), and 35 software tools

for LBVS are provided in [63] (number of tools correct as of February 2017).

LIGSIFT [64] is an open-source tool for shape-based alignment of small molecules which

is known to perform very well. The following example shows it outperforms other tools.

When new tools are developed, they are compared to the existing solutions to show

performance bene�ts. However, in the performance analysis of the recently developed

mRAISE [65], the authors were not able to show superior performance over LIGSIFT in

a particular performance test. The reference dataset known as Directory of Useful Decoys

(DUD [66]) was used to assess whether a ligand for a certain target can be correctly iden-

ti�ed within a set of similar decoys. When comparing mRAISE to LIGSIFT, Align-It [67],

ROCS [68], SHAEP [69], and MolShaCS [70], the best performance is noted by LIGSIFT.

LIGSIFT measures shape and chemical similarity, and reports the p-value to assess sta-

tistical signi�cance of a match between a pair of molecules. LIGSIFT calculates a size-

independent score, a version of the widely used Tanimoto Coe�cient (TC), which the au-

thors call �scaled Tanimoto Coe�cient (sTC)�. The sTC is scaled based on a random back-

ground distribution (S0) of shape and chemical TCs, calculated for millions of molecules

of di�erent sizes (Equation 2.3). The algorithm behind LIGSIFT uses Gaussian molecular

shape overlay in the alignment process [64].

sTC =
TC + S0
1 + S0

(2.3)

2.4 Molecular Docking and Virtual Screening

The second type of simulation that uses the structure of molecules as input is molecular

docking. Molecular docking (often referred to as �docking�) can be used to estimate bio-

chemical interactions between two molecules. Particularly important in drug discovery,

docking can predict the conformation, pose, and binding a�nity of a ligand and receptor

2.4. Molecular Docking and Virtual Screening 16

if the 3D structure of both molecules is known. Docking consists of an algorithm to search

through the conformational space of the molecules, and a scoring function to estimate the

energy between the ligand and the receptor's binding site.

The creators of GOLD describe the docking problem, �the prediction of small molecule

binding modes to macromolecules of known three-dimensional structure�, to be of �paramount

importance in rational drug design� [71].

Docking has been de�ned as a computational procedure that attempts to predict non-

covalent binding of a macromolecule (receptor) and a small molecule (ligand) e�ciently,

starting with their unbound structures. Its goal is to predict the bound conformations

and the binding a�nity of the two molecules [72].

Starting from the structures of two unbound molecules, it attempts to predict the structure

of the corresponding complex. It predicts �the molecular interaction occurring between

drug-like molecules and a therapeutically relevant target� [73]. Docking focuses on �nding

the low-energy binding modes of a ligand, within the active site of a receptor with a known

structure [74]. It aims at the correct placement of a ligand into the binding pocket of a

receptor. The binding energy of the resulting complex is then estimated, considering the

interactions between ligand and binding site [75]. A ligand that interacts with a receptor

associated with a disease, can inhibit its function and act as a drug [76].

Given the atomic coordinates of two molecules, docking predicts their �correct� bound

association. Structures of the receptor and ligand in their bound form can be used in

a process known as �bound� docking, however, the more di�cult predictive �unbound�

docking uses the unbound structures to reconstruct a complex. The unbound structure

can be native (free in solution in its uncomplexed state), pseudo-native (when complexed

with a molecule di�erent from the one used in the docking) or modelled [77].

There are many di�erent docking algorithms, but they all feature these key ingredients:

representation of the system, conformational space search, and ranking of potential solu-

tions. Solving the docking problem involves two crucial components - an e�cient search

procedure, and a good scoring function. Based on the di�erent way to address �exibility

in the representation of the system, docking can be classi�ed as:

� Rigid body docking (simplistic model where both molecules are rigid).

� Semi-�exible docking (where one, usually the ligand is considered �exible).

� Flexible docking.

A conformation is the spatial arrangement of atoms in a molecule. The conformational

space search can be either a full solution space search, or a gradual guided progression

2.4. Molecular Docking and Virtual Screening 17

through solution space. The latter scans only part of the solution space in a random and/or

criteria-guided manner, for example using Monte Carlo simulations, simulated annealing,

Molecular Dynamics (MD), evolutionary algorithms such as genetic algorithms, or Tabu

search. While traversing through the conformational space, the docking algorithm needs to

rank the likelihood of particular conformations of the two molecules happening in nature.

To achieve this, a docking algorithm uses a scoring function. Examples of the properties

that can be considered by a scoring function include: geometric complementarity, intra-

and inter-molecular overlap, hydrogen bonds, amino acid and atom-atom contacts, van

der Waals interactions, and electrostatics [77].

A docking algorithm de�nes the aforementioned ingredients, and scientists use the algo-

rithm through a docking program or docking tool. Because docking uses the structure of

the receptor, large-scale docking of hundreds of thousands of ligands and one receptor is

called structure-based virtual screening (virtual, as opposed to high throughput screening,

the automated laboratory experiment). In the remainder of this thesis, VS is used to

describe SBVS unless otherwise stated.

2.4.1 Docking tools

The proposed concepts in this thesis are tool-independent, but their evaluation require

a particular tool. This section will introduce the selected tools. There are more than

50 docking tools that may be used [63]. Sousa et al., [78] have analysed the number of

citations of 22 di�erent molecular docking tools and concluded that AutoDock [79] is the

most cited docking tool. DOCK [80] is the second most cited tool when taking only tools

that are free for academic use into consideration. After a brief introduction of alternatives,

this section will describe AutoDock, its sister-tool AutoDock Vina, and the associated VS

tools Raccoon and Raccoon2.

DOCK DOCK was the �rst and pioneering docking tool [80]. It considered both ligand

and protein as rigid. DOCK is still very widely used; the latest series, DOCK 6 includes

an improved updated scoring function [81]. DOCK 3 [82] is another actively developed

branch, di�erent from the DOCK 6 series.

GOLD Genetic Optimisation for Ligand Docking (GOLD) is one of the early examples

of using genetic algorithms in the conformation search phase. It is a proprietary docking

tool maintained by the non-pro�t Cambridge Crystallographic Data Centre [71].

2.4. Molecular Docking and Virtual Screening 18

FlexX FlexX [83] is another proprietary docking tool provided by BioSolveIT. In FlexX,

the ligand is fragmented into components, then these fragments are docked in the receptor's

active site, before the rest of the ligand is incrementally built up.

AutoDock AutoDock (latest version being AutoDock 4.2) [79] is a docking tool that

predicts the �optimal bound conformations of ligands to proteins�. The AutoDock docking

consists of two methods, both of which use approximations [84]:

� Conformational search: The ligand is treated as having �exible torsional degrees of

freedom, while bond angles and bond lengths are constant. To perform the search,

AutoDock can use four stochastic methods: simulated annealing, genetic algorithms,

local search, and a hybrid global-local Lamarkian Genetic Algorithm (LGA).

� Scoring function: interaction energies around the protein are pre-calculated in a

�grid map� which is then used as a look-up table. This method treats the protein as

rigid, although speci�c side-chains can be explicitly annotated and treated outside

this grid. AutoDock uses a semi-empirical free energy force �eld to evaluate di�erent

conformations [85].

AutoDock is well suited for VS since the grid map needs to be calculated only once, at the

beginning [84]. This pre-calculation is done using a separate executable called AutoGrid.

Atoms in AutoDock are classi�ed based on atom types such as: non H-bonding Aliphatic

Carbon (C), non H-bonding Aromatic Carbon (A), donor 1 H-bond Hydrogen (HD), or

acceptor 1 H-bond Nitrogen (NA).

The full list of atom types and other parameters can be viewed in the AutoDock source

code [86]. AutoDock uses AutoGrid to calculate interaction energies for each atom type

that is part of the ligand and the protein, using a so called �probe� atom and calculating

the energy at regular points over a 3D space around the protein. AutoGrid creates a

�.map� �le for each atom type in the receptor, an �.xyz� �le which describes the spatial

extent of the grid box, and an �.�d� �le which describes the consistent set of atomic a�nity

grid maps that were calculated together. It also calculates an electrostatics map (.e.map),

and a desolvation map (.d.map). In order to do this, AutoGrid requires an input �le that

speci�es the 3D search space around the protein, the types of probe atoms to use, the

�lename of the protein, and the names of each output grid map. The input �le providing

this is called a grid parameter �le and has the extension �.gpf�. These grid maps are used

as a lookup table by the docking process to determine the total interaction energy for

a ligand and a protein. AutoDock also requires a docking parameter �le, �.dpf�, which

speci�es the names of the grid map �les and other important parameters such as which

conformational search method will be used.

2.4. Molecular Docking and Virtual Screening 19

AutoDock has been developed by the Scripps institute. It is provided in a bundle called

MGLTools [87] which also contains AutoDock Tools (ADT). ADT is a stand-alone desktop

application which provides a Graphical User Interface (GUI) for docking. The .gpf and

.dpf input �les can be created using ADT, or by running the independent scripts found

within MGLTools. Either approach may use a template .gpf �le which is used to set the

location and extent of the grid maps, or a template .dpf �le which has some docking

parameters set. More details about AutoDock are provided in [88,89], and on-line [90�92].

AutoDock Vina AutoDock Vina [72] is the newest generation of docking tool developed

by the Scripps institute. Partly due to the built-in support for multithreading, AutoDock

Vina has a shorter execution time. Chang et al. [93] have compared both tools and

concluded that the internal changes to the docking algorithm in AutoDock Vina made it

more accurate for bigger, more �exible ligands (ligands with more than 8 rotatable bonds).

Both AutoDock and AutoDock Vina use the same �le format to represent ligands and

receptors, .pdbqt. The improvements of AutoDock Vina are mainly in the conformational

search and the scoring function with several notable di�erences [93]:

� Conformational search - It uses the same hybrid global-local search, with a di�erent

local optimisation. AutoDock uses small random steps to seek for more favourable

conformations, while AutoDock Vina uses a gradient-based optimisation.

� Scoring function - AutoDock Vina has a new di�erently calibrated scoring function,

based on empirically weighed functions and using parameters such as: hydrophobic

(van der Waals) interaction, hydrogen bonding, and torsional penalties.

Possibly the most important di�erence from the user's point of view, is that AutoDock

Vina calculates the grid maps automatically without the need to store them in a separate

�le (i.e. there is no need for .gpf �les). Con�guration settings can be assigned to a

con�guration (con�g) �le, usually .conf or .txt. The docking results in AutoDock Vina are

clustered and ranked in a more transparent fashion [72,93].

2.4.2 VS with AutoDock and AutoDock Vina

AutoDock and its sister-tool, AutoDock Vina, are the most popular docking tools for the

cohort of interviewees of this thesis (Chapter 4). Both can be used in VS simulations.

Scientists can create their own scripts of code, or use other more sophisticated environ-

ments. The desktop application that can be used for small-scale docking, ADT, cannot

be used for VS. Another desktop application has been developed by the Scripps institute

2.4. Molecular Docking and Virtual Screening 20

speci�cally for VS simulations. There are two versions of this application, Raccoon and

Raccoon2. Both will be described in the following paragraphs.

Raccoon Raccoon provides a user friendly GUI for automatic pre-processing and prepa-

ration of a VS with AutoDock 4.2. It focuses on �a straightforward data organization im-

portant for virtual screening but [does] not provide molecular viewing functionality� [94].

Raccoon automates the creation of ligand �les in the AutoDock format, grid map (.gpf)

�les, and docking parameter �les (.dpf).

This desktop application can split multiple-molecule ligand �les and �lter them using

common criteria (such as Lipinski's rules [95], fragment-like �rule of 3� [96], and drug-

likeness [97]). The input �les are validated ensuring that they have a coherent format

and there are no non-standard atom types. Furthermore, Raccoon generates scripts for

submission to a Linux cluster with the PBS scheduler, and for post-processing of results.

Since Raccoon uses AutoDock 4.2, the grid map �les are created once for all atoms in all

ligands and proteins that take part of the VS, and they may be reused for each individual

molecular docking [84, 98]. The user manual [99] contains more details about Raccoon

and its user interface. The Maps tab is used to create the grid maps, generated by

AutoGrid. Raccoon provides three di�erent scenarios based on when AutoGrid is going

to be executed: �at each job� (for each ligand-protein pair), �now� (once for the protein,

all ligand-protein pairs will use it), �never� (the user needs to upload pre-calculated grid

maps). Raccoon only prepares the needed �les for a VS simulation. The scientist can run

the prepared script on the local machine, or on a Linux cluster once they have copied it

over. Raccoon does not provide a result analysis GUI, a separate tool called Fox has been

developed to provide a GUI for analysing results, which has been subsequently integrated

into Raccoon2.

Raccoon2 Raccoon2 [100] is a newer and improved version of Raccoon. It is included

in the latest version of MGLTools. The two main improvements in Raccoon2 are the

inclusion of analysis features (�ltering the results based on several criteria, and visualis-

ing the results within the Raccoon2 GUI), and an automatic server connection manager

which lets users connect and submit jobs to a cluster directly from the Raccoon2 GUI.

However, Raccoon2 does not let scientists conduct the VS on their own computers. Linux

clusters with the Portable Batch System (PBS) or Sun Grid Engine (SGE) schedulers are

supported. Perhaps most importantly, Raccoon2 uses AutoDock Vina. The ligand and

receptor �les have to be in the .pdbqt format, but it enables users to create the AutoDock

Vina con�guration �le through its GUI [101].

In some scienti�c scenarios several tools (e.g. structural alignment, or docking) need to

2.5. Distributed Computing Infrastructures 21

be executed in one pipeline. Molecular Dynamics (MD) is another type of computational

simulation which is sometimes used along with docking to check if the docked ligand-

protein complex is stable. MD simulations estimate the movement of the molecules by

using Newtonian motion equations to predict the movement of each atom. Due to the large

number of atoms, MD simulations have a long execution time to complete, so in practice

can simulate very short periods [102]. Chia et al. (2010) [103] report that depending on

the size of the simulation, MD using GROMACS [104] on a single computer may take days

or sometimes weeks to complete. They also show that MD simulations that use complex

grid computing infrastructure with 8 processors can simulate less than 3ns of motion per

day.

A single docking simulation does not require complex computational resources, but a VS

experiment is very computationally demanding, requiring the use of DCIs. One method

to execute several tools in a pipeline is to use scienti�c work�ows. DCIs and scienti�c

work�ows will be outlined in the following sections.

2.5 Distributed Computing Infrastructures

The underlying computer infrastructure that enables large-scale computationally-demanding

execution is known as distributed computing infrastructure or DCI. The main concepts

referred to in this thesis are clusters, supercomputers, grid and cloud computing.

High performance computing The computing power of multiple computers (called

nodes) can be combined in a High Performance Computing (HPC) cluster. Clusters pro-

vide a powerful environment, designed to use parallel computing, which is accessed through

a single system image [105]. E�orts to combine several computers started in the late 1960s

when terms such as Cluster Of Workstations or Network Of Workstations were used. Clus-

ters that do not require specialised components, but use commodity hardware have been

popular since the publication of the Beowulf cluster architecture in 1995 [106]. Nowadays,

most commercially used HPC clusters would be made up of purpose-built hardware. An

HPC cluster requires a job scheduler, some of the most common ones include the Slurm

Workload Manager [107], descendants of the PBS [108] such as PBS Professional [109], or

descendants of the SGE [110] such as Open Grid Scheduler [111].

Supercomputer is a term used for specialised HPC computers. Traditionally a supercom-

puter is a single machine with powerful processors capable of parallel processing. In the

early days of clusters, data communication between cluster nodes was noticeably slower

than communication within a single machine. Today's clusters use high-speed network

2.5. Distributed Computing Infrastructures 22

technologies for communication between nodes, and the term supercomputers could be

used for large HPC clusters. For instance, almost 90% of the TOP500 list, originally cre-

ated to list the world's fastest supercomputers, uses a cluster architecture. Fifteen years

ago, this number was just over 16% (not including �constellation� clusters where there are

more processors per node than there are nodes) [112].

Grid computing Both single-machine supercomputers and clusters are computers that

are based at a single location, known as non-distributed computers. Conversely, a com-

puter grid is by de�nition made of geographically-distributed nodes. The term �grid com-

puting� was coined in the mid 1990s to describe technologies that would enable the use of

computing power on demand. Inspired by the concept of utility computing which was �rst

described in the mid 1960s, researchers envisaged that standardising protocols used to re-

quest and serve computing power would create a computing grid analogous to the electric

power grid. Computer engineers created implementations of grid computing environments

(e.g. EGEE, TeraGrid, Open Science Grid), but no viable commercial grid computing

provider emerged. This enabled the advent of cloud computing in the late 2000s [113].

Cloud computing Cloud computing is a paradigm based on virtualisation, which �en-

ables ubiquitous convenient, on-demand network access to a shared pool of con�gurable

computing resources that can be rapidly provisioned and released with minimal manage-

ment e�ort or service provider interaction� [114]. It traces its origins to the concept of

utility computing, where computing was envisaged to become a public utility such as

the land-line telephone system, �rst discussed in the early 1960s. Cloud computing has

evolved out of grid computing, as a result of the shift of focus from the storage and com-

pute infrastructure to an economy-based infrastructure that delivers computing resources

and services [113]. Indeed, with cloud computing one can easily rent computing resources

and pay by the usage. Other characteristics include [115]: multi-tenancy and resource

pooling, on-demand usage (automated self-provision of computing resources), ubiquitous

access, and elasticity (transparent scaling of resources in line with run-time requirements).

There are three common cloud delivery models and four common cloud deployment models,

as outlined in [115]. A cloud delivery model is the speci�c combination of resources o�ered

by cloud providers, such as:

1. Infrastructure-as-a-Service (IaaS): �raw� resources and detailed con�guration.

2. Platform-as-a-Service (PaaS): a pre-con�gured �ready-to-use� environment.

3. Software-as-a-Service (SaaS): the use of a cloud-deployed software product.

A cloud deployment model is the speci�c type of cloud environment o�ered, such as:

2.6. Existing Virtual Screening Applications that Use Cloud Computing 23

1. Public clouds: publicly accessible, owned by a third-party.

2. Community clouds: accessible and perhaps owned by a particular community.

3. Private clouds: owned and accessible by a single organization.

4. Hybrid clouds: an environment composed of 2 or more deployment models.

The elasticity and scalability, both through horizontal scaling out or in (allocating or re-

leasing resources of the same type) and vertical scaling up or down (increasing or deceasing

the capacity of the currently used resource), are very bene�cial for VS. Cloud computing

can be used e�ciently for small as well as large VS simulations. The on-demand and

measured usage can make VS simulations more accessible for biomedical scientists around

the world, lowering the cost of using the required DCI. Furthermore, if VS is implemented

based on the SaaS delivery model, biomedical scientists will always have access to the lat-

est version of the simulation software. Scientists and students without access to expensive

DCIs, and without experience in con�guring them, will be able to run a VS easily.

2.6 Existing Virtual Screening Applications that Use

Cloud Computing

Cluster or grid computing resources have been common for VS experiments [75,116�119].

Applying cloud computing for such experiments is still relatively new with much lower

number of examples.

De Paris et al. [120] have developed wFReDoW (acronym for �web Flexible Receptor

Docking Work�ow�), a web-based environment for docking fully �exible receptors using

AutoDock 4.2 as the docking engine. They model the �exibility of the receptor using

snapshots of MD simulations (using the SANDER module of AMBER [121]). They use

ligand structures from ZINC and 3100 conformations of a receptor generated by MD

simulations. They have set up a virtual HPC environment on the commercial Amazon

Elastic Compute Cloud (EC2). It is a Message Passing Interface (MPI) environment

containing 5 high-CPU extra-large �c1.xlarge� Amazon EC2 instances, each equipped with

8 cores with 2.5 EC2 computer units, 7 GB of RAM, and 1,690 GB of local instance storage

(one EC2 computer unit corresponds to CPU capacity of 1.0 - 1.2 GHz 2007 Opteron or

2007 Xeon processor).

Ellingson and Baudry [122] have used AutoDock 4 in AutoDockCloud, an environment

based on Hadoop [123] on a private cloud. According to them, high-throughput virtual

docking on a cloud architecture has many potential advantages, such as: providing an

2.7. Scienti�c Work�ows 24

e�cient and well-validated VS technology to laboratories and classrooms that do not

have computational wealth or expertise to overcome challenges, and providing it as SaaS,

enabling researchers to always have access to the most updated versions without having

to reinstall software. AutoDockCloud uses Kandinsky, a private cloud at the Oak Ridge

National Laboratory, with 57 reserved 16-core nodes, enabling 570 simultaneous docking

runs. They have used 2637 ligands (67 active and 2570 decoys) from the DUD and the

human oestrogen receptor alpha agonist protein (pdb id: 1L2I). They have used ADT to

create .pdbqt, .gpf and .dpf �les. They conclude that AutoDockCloud does not a�ect the

biochemical results and has �nished the docking runs 450 times faster than a non-parallel

execution would. However, it only handles the docking stage and not the pre- or post-

docking. A big challenge of automating this is parsing di�erent input �les (.mol2, .pdb,

and .sdf). With regards to post-docking, they envisage extracting the best outputs in

reduce tasks in a future version.

Kiss et al. [124] have ported AutoDock and AutoDock Vina on the VENUS-C Windows

Azure-based cloud computing service. Their implementation includes an administration,

deployment, and end-user component. It enables scientists to submit, monitor and retrieve

results of a VS. They use a desktop application bundle that scientists need to install to

their own computer in order to remotely manage the experiments. They have conducted a

VS using a library of 10,000 ligands and a protein (generated from a short MD run on the

initial structure) on 20 �extra small� Azure instances (a single 1GHz CPU core with 768

MB RAM and 20 GB storage). During their tests, more than 40,000 docking simulations

have been done and more than 110,000 CPU hours have been used.

2.7 Scienti�c Work�ows

Scienti�c scenarios that require several tools to be executed in one pipeline often use

scienti�c work�ows. A typical VS simulation requires pre-docking, core docking, and

post-docking steps. A pre-docking step can be formatting input �les, the core docking can

include multiple steps and tools e.g. AutoDock 4.2 requires running AutoGrid followed by

AutoDock, and a post-docking step can be inspecting the predicted complex by the user.

It is worth noting that the desktop application Raccoon2 includes code for the mentioned

pre- and post-docking steps, while it has hard-coded commands that will submit docking

jobs to an HPC cluster. Instead of hard-coding such methods, using a scienti�c work�ow

provides an interoperable solution that works on various DCIs. A scienti�c work�ow

is a pipeline made up of the steps required for a computational experiment. It is a

network (or graph) of independent analysis items that can be, for example: database

access, calculation, data analysis, or data visualisation. Scienti�c work�ow management

2.7. Scienti�c Work�ows 25

Table 2.2: Basic comparison of work�ow engines.
Work�ow Engine Cloud Grid HPC GUI Docking Local Support
Kepler X X X X X ×
Next�ow X X X × X ×
Taverna X X X X X ×
WS-PGRADE X X X X X X

systems use work�ow engines and provide a convenient way to represent and develop

complex applications composed of multiple steps and executables. In some cases, science

gateways are developed, summarising multiple work�ows in one portal and enabling the

use of complex DCIs with little or no expertise required. Importantly, scienti�c work�ow

engines inherently parallelise the task, and include built-in plug-ins to various types of

DCIs thus eliminating the need for the work�ow developer to hard-code commands that

run on a DCI.

Work�ow engines that have been used for bioinformatics include Kepler [125], Next�ow

[126], Taverna [127], WS-PGRADE/gUSE [128] and many more. Table 2.2 shows that

all aforementioned work�ow engines support execution on clouds, grids, or HPC clusters.

This interoperability is crucial, since it provides the ability to utilise the same work�ow

on di�erent computing infrastructures. Next�ow is a work�ow engine that is popular in

bioinformatics, but does not include a graphical method for de�ning work�ows. Less tech-

savvy biomedical scientists would appreciate a GUI used for creating and understanding

work�ows. All four work�ow engines have been used in existing solutions for docking sim-

ulations. WS-PGRADE/gUSE has been the work�ow system of choice at the University of

Westminster for more than a decade. Researchers at the UoW, in close collaboration with

the SZTAKI institute in Hungary, represent the leading experts in WS-PGRADE work�ow

development, making WS-PGRADE stand out due to the local support available. There-

fore, WS-PGRADE was chosen as a work�ow engine used in the implementations provided

in this thesis. Please note that the concepts described in this thesis do not depend on the

choice of scienti�c work�ow system.

2.7.1 WS-PGRADE/gUSE

The grid User Support Environment (gUSE) is a back-end service stack for creating sci-

ence gateways that execute applications on various DCIs. Providing well-de�ned ser-

vices for realising the work�ow management back-end of the WS-PGRADE portal is one

of its main functionalities. The work�ow-centric generic and open-source DCI gateway

framework known as WS-PGRADE/gUSE is the combination of a WS-PGRADE por-

tal, WS-PGRADE work�ows and gUSE services. A science gateway developed using this

2.7. Scienti�c Work�ows 26

framework is often referred to as a WS-PGRADE/gUSE gateway. Originally supporting

the needs of application development for grid computing, today WS-PGRADE/gUSE also

supports developing applications for parallel execution on clouds. It includes a component

called DCI Bridge, which provides uniform support with a well-de�ned communication

interface to access many di�erent DCIs [129�131].

A P-GRADE portal (short for Parallel Grid Runtime and Application Development Envi-

ronment) was a general-purpose e-science portal for development of grid applications. It

was the front end of an environment for running work�ows on a DCI, while the back-end

consisted of a P-GRADE work�ow manager and a grid middleware. P-GRADE is the

name of a deprecated version. The new version which provides many advanced features is

known as WS-PGRADE. It originally stood for �Web Services - Parallel Grid Runtime and

Developer Environment�, but now the abbreviation WS-PGRADE is used as an orphan

initialism. The WS-PGRADE portal is the default user interface of gUSE. It is a web

portal based on Liferay [132]. It allows scientists to run pre-con�gured WS-PGRADE

work�ows on various DCIs from their web browsers. In a similar manner it enables work-

�ow developers to develop work�ows through the portal. Some provenance information

can be found in the WS-PGRADE portal, but this is only available for the user's own

work�ows. A scientist can see their previous runs with dates, and download work�ow

con�guration, input, and output �les. The scientist's own work�ows are reproducible by

downloading and then using the downloaded work�ow �les [128,131,133�135].

P-GRADE work�ows were data-�ow directed acyclic graphs where nodes represented ex-

ecution blocks which had input and output ports and could be executed in parallel. WS-

PGRADE work�ows are an extended version of P-GRADE work�ows, and have their own

XML-based work�ow language along with many new capabilities. P-GRADE work�ows

were �concrete� work�ows where the work�ow nodes were simply executed in parallel. Pa-

rameter sweep operations, where a set of inputs is provided and the node is executed as

many times as the number of inputs, were possible only by using special kinds of nodes

(generator and collector nodes). WS-PGRADE work�ows do not have these restrictions

and apart from concrete work�ows, WS-PGRADE also supports new concepts such as

abstract work�ows, work�ow instances, and templates [128,131].

Simulation applications that should be executed repeatedly with many di�erent input

sets are known as �parameter sweep� applications. A WS-PGRADE work�ow node can

have a parametric input port associated with a set of input �les. Nodes that have at

least one parametric input port are called �parametric� nodes. If the parametric node has

one parametric input port the node will be executed once for each input �le associated

with it. Parametric input ports, which are not connected to a generator node, expect to

receive an archive following a speci�c naming convention. The input �le must be called

2.7. Scienti�c Work�ows 27

�ParamInput.zip� and it must contain a set of input �les named exactly: �0�, �1�, �2�,

etc. Furthermore, the number of �les that are associated with the parametric input port

must be speci�ed beforehand in the port's con�guration. When a node has more than one

parametric input port, it may use a dot-product or a cross-product method to combine

the input �les. A dot-product executes the node using the �rst input �le of all parametric

input ports, then using the second input �le of all parametric input ports, then the third,

and so on. In contrast, the cross-product uses a Cartesian product combination of all the

input �les among the parametric input nodes [131,135].

The gUSE RemoteAPI There are three ways to run simulations on DCIs using the

WS-PGRADE/gUSE framework: an application-speci�c user interface can access the DCI

Bridge through an OGF BES job submission interface, a customised portal can use the

Application Speci�c Module (ASM) API, or an existing application with a GUI which

is not a portal or even without a GUI can access gUSE services directly through the

RemoteAPI. The RemoteAPI is an Application Programming Interface (API) that allows

remote submission and management of a WS-PGRADE work�ow. In other words, using a

WS-PGRADE work�ow from within a code segment which is not part the WS-PGRADE

portal or gUSE. [131]

The RemoteAPI can be used to adapt an existing user environment. The ASM API

mainly supports the development of portlets or other GUIs within a portal, while the

RemoteAPI is designed for direct access to gUSE services. The ASM API is a Java-based

API, while the RemoteAPI is used via HTTP regardless of the programming language.

During work�ow submission, the RemoteAPI does not require user registration to a WS-

PGRADE portal, but it does require a valid well-parametrised WS-PGRADE work�ow.

It creates a new temporary user and submits the work�ow on behalf of this user. Methods

for checking the status of the work�ow and downloading the outputs of the execution are

provided. Once downloaded, the output �les and all information about the temporary user

are deleted from the server [131]. Examples using the RemoteAPI include the agINFRA

EU project, where an agricultural research community has used existing tools to access

the services of WS-PGRADE/gUSE through the RemoteAPI [136]. Prerequisites for using

the RemoteAPI include: a gUSE server with enabled RemoteAPI, RemoteAPI credentials,

and a client that will send well-parametrised description of the WS-PGRADE work�ow.

More details about WS-PGRADE/gUSE and the RemoteAPI can be found in [137�139].

2.8. Science Gateways and Work�ow Repositories 28

2.8 Science Gateways and Work�ow Repositories

This section will provide several examples of systems that use various scienti�c work�ows,

known as science gateways. Science gateways provide a single point of access to multiple

work�ows in the same or related domains. Examples of a WS-PGRADE-based science

gateways in the domain of molecular simulations, but also in non-biological domains will

be mentioned. The notion of provenance in these systems will be touched upon as well as

examples of repositories that store work�ows. To ensure that the results of any computa-

tion are trustworthy and reproducible, it is important to keep track of all the steps taken

to produce those results. This type of information is known as provenance. According

to the general de�nition of provenance provided by the PROV standard, provenance is

information about entities, activities, and people involved in producing a �piece of data or

thing�, which can be used to form assessments about its quality, reliability or trustworthi-

ness [140]. The examples provided can be the starting point for the implementation of a

system that conducts docking simulations and stores the simulation results. However, the

repositories shown here store the work�ow description and not necessarily the results of

an execution of a particular work�ow.

CloudSME The Cloud Computing for Simulation in Manufacturing and Engineering

(CloudSME [129]) was a European FP7 project which investigated how cloud computing

can be used for Modelling & Simulation (M & S) in manufacturing and engineering. It

also promoted cloud resources and enabled wider use of simulation technologies in Small

and Medium sized Enterprises (SMEs) in the domain of manufacturing and engineering.

In order to do this, CloudSME provided M & S as a Service using their own CloudSME

Simulation Platform. The CloudSME Simulation Platform is based on a WS-PGRADE

portal, WS-PGRADE work�ows, and gUSE services (including the DCI Bridge) which are

integrated with the CloudBroker Platform.

The CloudBroker Platform [129] is a cloud computing middleware and an application store

developed by CloudBroker GmbH. It provides a web interface which can be used to deploy

and execute an application in a cloud, and monitor its behaviour. The CloudBroker Plat-

form is connected to various kinds of clouds, including commercial (e.g. CloudSigma, Ama-

zon Web Services) and open-source (e.g. OpenNebula, OpenStack). Within CloudSME

scientists can run simulations on a cloud directly from a WS-PGRADE portal. The

CloudBroker Platform provides its own API. For simulation software that requires simple

hosting on a cloud, using the CloudBroker APIs directly may be su�cient. However, it

has been noted that for simulations that require high performance computing, using a

WS-PGRADE/gUSE framework and its APIs is preferred [129].

2.8. Science Gateways and Work�ow Repositories 29

MoSGrid The Molecular Simulation Grid (MoSGrid) is a WS-PGRADE/gUSE-based

environment speci�cally designed for scientists from three domains of molecular simula-

tions: molecular dynamics (often abbreviated to MD), molecular docking, and Quantum

Chemistry (QC). It uses the Molecular Simulation Markup Language (MSML [143]), a

description language which describes the molecules and results from all three types of

simulations. MoSGrid enables a scientist to archive the results of their calculations in a

repository and share them with another user. Users can view or download the results of a

simulation (for MD simulations, even the intermediate results for an ongoing simulation).

MSML enables linking information from di�erent simulations, in the case of docking, for

instance, one may dock the same ligand library into two di�erent target proteins. The

MSML �les are indexed and searchable using Apache Lucene [144]. They contain infor-

mation about properties of a work�ow task (e.g. nodes, cores, or memory), input data

(the molecular structure), as well as the resulting output �les [143,145].

MSML is a derivative of the XML dialect used to describe chemical molecules and processes

called Chemical Markup Language (CML). Every MSML �le is a valid CML �le, using

only what is necessary for MD, docking, and QC simulations [143, 146]. MSML uses the

Computational Chemistry CML convention without any modi�cations, and three custom-

made CML dictionaries including a dictionary which de�nes all the steps of the docking

work�ow [147]. The open-source tools of CADDSuite have been used for pre-processing

and post-processing the molecular structures. CADDSuite, FlexX [148], or AutoDock [79]

can be used for the main docking step [143,146].

SHIWA repository The SHIWA Simulation Platform (SSP) [149] is an implementation

of a work�ow interoperability concept. An abstract work�ow, which de�nes the work�ow

formally without specifying a work�ow engine, is introduced and stored in SSP. The ab-

stract work�ow can then be executed using a number of work�ow engines. SSP contains a

work�ow repository, submission service, proxy server, and a portal (the portal is composed

of gUSE services as back-end and a WS-PGRADE portal as front-end).

Based on the description of work�ows, the work�ow repository, known as the SHIWA

Repository, manages work�ows and work�ow engines. It provides access to three types of

users: e-scientists who can browse or search the repository for a work�ow they can then

submit through the submission service; work�ow and work�ow engine developers, who can

describe, update, or delete work�ows and work�ow engines; and repository administrators,

who manage and maintain the repository [149].

Semantic Provenance Processor A command-line tool, the Semantic Provenance

Processor (SPP) [150] uses Taverna work�ows and stores their provenancce in the Janus

2.9. Frameworks Used in Bioinformatics 30

[151] format, allowing input/output �les and other annotations to be exported into the

myExperiment repository [152] with example data. SPP pre-dates the development of the

�taverna-PROV plug-in� [153] and its integration into the Taverna environment. It uses

an RDF triple store called 4store [154] and SPARQL [155] to query it.

Ouzo / ProQA The Ouzo [156] semantic web uses semantic annotations to combine

meta-data about Taverna work�ows, such as inputs and outputs used, with other types

of provenance data provided. It can be queried using the Provenance Query and An-

swer (ProQA). Within Ouzo, a data store called �Baclava� and a provenance store called

�KAVE� have been de�ned. Relationships between the di�erent types of data within a

work�ow, and additional information such as the creator of the work�ow can be analysed.

BioWEP BioWEP [157] is a portal that lets users run Taverna or BioWMS [158] work-

�ows. Work�ows have been prede�ned and created by administrators, but the user can

upload their own work�ow and, if approved, run it. BioWEP stores inputs and outputs in

a database, as well as intermediate �les. Users can search for work�ows based on the type

of input/output that have been used, but the user can only view their own work�ows.

myExperiment The myExperiment [152] repository is a repository of Taverna work-

�ows. It only includes the work�ow de�nitions and additional data such as the creator of

the work�ow. It does not include any data about work�ow executions.

Kepler repository The Kepler Analytical Component Repository (KACR [159]) is a

repository for work�ow de�nitions. It stores work�ow de�nitions and allows users to

download a �.kar� �le. This type of �le is an archive of XML documents describing the

work�ow, but it lacks any information about input/output �les.

2.9 Frameworks Used in Bioinformatics

Using a framework instead of creating everything from scratch can produce a more accu-

rate, less error-prone, easy to maintain complex software system. There are many de�-

nitions of a framework. A pre-made library containing classes and methods that should

be used within the code, can be considered a framework in software engineering. These

types of frameworks are sometimes referred to as APIs or application frameworks. They

may be considered a group of several tools developed by the same team. According to

2.9. Frameworks Used in Bioinformatics 31

this de�nition, there are many frameworks used in structural bioinformatics, such as the

open-source: BALL [160], Biopython [161], or CDK [162].

BALL BALL is an application framework developed since 1996 at the University of

Tübingen, written in C++, speci�cally designed for software prototyping and Rapid Ap-

plication Development in computational molecular biology and molecular modelling. It

contains methods used in docking, for instance: adding H atoms, or energy evaluation

(force �elds). It has been extended with the BALLView visualizer and integrated in the

Galaxy work�ow management system as Balaxy [160,163,164].

BioPython BioPython is a set of Python libraries (or APIs) for bioinformatics prob-

lems which has been started in 1999. Examples of the methods it provides include: read-

ing/writing sequence �le formats, 3D structures, and interacting with other tools. It is just

one element of the �Open Bioinformatics Foundation� which includes: BioPerl, BioRuby,

BioJava, and BioSQL [161,165].

CDK The Chemistry Development Kit (CDK) is a Java library for structural Chemo-

and Bioinformatics. Examples of the methods provided in CDK include methods for

common tasks such as 2D and 3D rendering of chemical structures, and input/output

routines. It has been integrated with the Taverna work�ow management system as CDK-

Taverna [162,166,167].

On the other hand, the de�nition of a framework used throughout this PhD thesis is more

conceptual and focuses on clearly describing all elements and interfaces that constitute a

large system. It is independent of the implementation or the programming language of

choice. It is generic because it is not tailored to a speci�c scenario, however it is meant

speci�cally for creating software systems that use molecular docking results.

The use of formal methods based on mathematics can improve the quality of software

by producing precise, unambiguous documentation of the software system, where the

information is structured at an appropriate abstraction level. The formal documentation

of a system can be used to support its design, development and maintenance [168]. This

is why formal methods have been chosen to describe the framework in this thesis. The

framework provides a formal description of all the element types and interfaces.

Z notation Z [169,170] (often called Z notation) is a state-based formal notation based

on the Zermelo-Fraenkel theory. It allows for the grouping of formal rules in so-called

�schemas� that contain logical and discrete-mathematics expressions describing part of a

2.10. Conclusion 32

system. A schema describes a state and can contain state variables. Operations upon the

state use mathematical conventions and can be de�ned on elements, for example on sets,

tuples, relations, or functions. Z can be used to model an abstract formal speci�cation of

the behaviour of a system [171], or to formally describe: work�ows and meta-work�ows

[172, 173], federated clouds [174], or even the behaviour of a cell [175]. One of the most

successful projects using Z, as shown in [168], is a software system known as the Customer

Information Control System. Its development has began in the 1970s, and by 1980 it had so

many extensions that a redesign was needed. As part of this redesign, the mathematical

Z notation was used. Woodcock and Davies [168] report that even programmers with

no previous experience in mathematics found Z easy to learn and to apply. One of the

key aspects they mention, the use of natural language in Z, will be used in the formal

description presented in this thesis. Namely, the mathematics can be related to objects

in the real world through judicious naming of variables or additional textual commentary.

Z notation is ideal for describing the framework because of its understandable syntax and

its versatility. Z or languages based on Z have been used to describe systems and their

properties in [176,177].

2.10 Conclusion

The existing research areas that are important for any system that uses bioinformatics

tools have been described in this chapter. Two types of bioinformatics tools, structural

alignment and molecular docking tools, have been introduced. In order to explore how

they help scientists �nd out how structurally similar two molecules are or where and

how two molecules bind, the description of molecular structures which they use as input,

as well as existing algorithms have been overviewed. Since running a large number of

these simulations is computationally demanding, solutions such as distributed computing

infrastructures and scienti�c work�ows have been developed. Unlike existing frameworks

that are used in bioinformatics, the framework proposed in this thesis is a higher-level

conceptual framework. It is tool-independent, however for its evaluation a particular tool

had to be chosen for the respective element. Some of the choices made were outlined in

this chapter.

Chapter 3

Extension of Desktop Applications with

Cloud Computing Capabilities

3.1 Introduction

Large-scale docking, known as VS, is often used in drug discovery. Although a single

docking simulation is relatively short, a VS experiment is computationally demanding, re-

quiring the use of complex DCIs. This is why user-friendly domain-speci�c web or desktop

applications that enable running simulations on powerful computing infrastructures have

been created. Cloud computing provides on-demand availability, pay-per-use pricing, and

great scalability which can improve the performance and e�ciency of scienti�c applica-

tions. Using cloud computing for biomedical projects has advantages and disadvantages,

as noted in [178]. Cloud computing could decrease the cost of running a VS simulation by

minimising direct costs such as hardware purchase costs, network services, or electricity.

This can make VS simulations more accessible, particularly for scientists without access

to computing clusters or other expensive DCIs.

Scienti�c work�ow systems provide a convenient way to represent and develop complex

applications composed of multiple steps and executables. In some cases, science gateways

are developed, providing a user-friendly way to run work�ows. There are several examples

of science gateways that use work�ows to run VS simulations [75, 116, 179]. However, all

of these solutions require life scientists to become familiar with new, typically web-based

user interfaces, and signi�cantly restrict the use of the docking software for the sake of

simplicity and ease of use. On the other hand, there are popular desktop applications

for VS simulations which o�er greater �exibility, such as Raccoon2 . Unfortunately, these

desktop applications are either restricted to local resources, or require expensive compute

clusters and signi�cant IT support to run them on DCIs. These tools typically cannot

33

3.2. Generic Concept to Add Cloud Computing Capabilities to Desktop Applications 34

utilise cloud computing resources. This is relevant for other domain-speci�c desktop ap-

plications, not only for VS simulations. For instance, in the wider �eld of bioinformatics

many popular desktop applications exist, including several recent examples [180�182].

This chapter investigates how domain-speci�c desktop applications can be extended to

run scienti�c simulations on various clouds. It proposes a generic approach to extend

domain-speci�c desktop applications to execute work�ows on clouds, while retaining the

same familiar GUI presented to end-users. A proof of concept is implemented using the

VS desktop application Raccoon2, WS-PGRADE work�ows, and gUSE services with the

CloudBroker platform. The presented analysis illustrates that this approach of extending

a domain-speci�c desktop application can run work�ows on di�erent types of clouds, and

indeed makes use of the scalability provided by cloud computing. It also facilitates the

execution of virtual screening simulations by biomedical scientists without requiring them

to abandon their favourite desktop environment and providing them resources without

major capital investment. The work presented in this chapter has been published as a

conference paper [12] and forms a part of a journal article currently under review.

3.2 Generic Concept to Add Cloud Computing Capa-

bilities to Desktop Applications

The aim of the generic concept is to enable existing desktop applications to access hetero-

geneous cloud computing resources. This should be achieved without major reengineering

of the desktop application and without further burdening the end-user. Ideally, end-users

should be able to design and execute the experiments in the exact same way they have

done earlier, now with the possibility to send the computations to cloud computing re-

sources. In order to achieve this, the desktop application should use a set of services

(Cloud Access Services - CAS). CAS should be available from an API in order to facilitate

its integration to the GUI of the desktop application. Additionally, CAS should provide

access to a wide range of cloud computing resources, and enable the design and execution

of complex application scenarios, such as parameter sweep work�ow applications, typically

used in scienti�c computing.

The integration requires two major steps from a developer, as illustrated in Figure 3.1.

During the �rst step, CAS is con�gured to run the application in the cloud. This step typ-

ically requires preparing work�ow applications describing the experiment, and con�guring

CAS to interface with the desired cloud resources. In the second step minor modi�cation

of the GUI of the desktop application is required, as well as integrating the submission of

the work�ow and retrieval of the results within the application's back-end.

3.3. Reference Implementation: Extension of Raccoon2 35

Figure 3.1: Generic concept for extending desktop applications to run on clouds.

Instead of implementing CAS, the core component of this conceptual architecture from

scratch, existing tools to support the creation of parameter sweep work�ows and interfacing

with cloud computing resources can be applied. This approach speeds up the development

and has the potential to result in a mature and highly reliable solution. The rest of this

chapter describes this approach using a set of existing services and components as the

selected CAS and their integration to a VS desktop application.

3.3 Reference Implementation: Extension of Raccoon2

A reference implementation of the proposed concept has been completed. When imple-

menting the generic concept of Figure 3.1, the domain-speci�c desktop application is Rac-

coon2; the CAS is composed of a gUSE server connected to the CloudBroker Platform,

a WS-PGRADE portal for work�ow development, and the CloudBroker web interface

for deployment; while the cloud infrastructures are the UoW OpenStack cloud, and the

CloudSigma cloud (Figure 3.2). Please refer to Chapter 2 for a detailed description of the

theoretical background and speci�c tools used in this implementation. The components of

the CAS used in this solution are existing tools, the main coding of this implementation

consists of extending the code of the desktop application Raccoon2.

As described above, the development is divided into two major steps: con�guration of the

CAS (1) and modi�cation of the desktop GUI (2). First, the CAS is prepared to execute

the VS experiment which includes creating the required WS-PGRADE work�ow. When

accessing gUSE through the RemoteAPI, a valid well-con�gured WS-PGRADE work�ow

needs to be attached. To simplify this step, a developer can create the work�ow using

a WS-PGRADE portal, test it with test input data, and then export it. The exported

3.3. Reference Implementation: Extension of Raccoon2 36

Figure 3.2: Architecture of the reference implementation using Raccoon2, WS-
PGRADE/gUSE, CloudBroker, and the UoW or CloudSigma clouds.

work�ow can be con�gured from the code of the domain-speci�c desktop application and

attached to a RemoteAPI call, rather than created from scratch. To conclude (1), the

executable �les that are needed to run the work�ow should be deployed to the cloud,

using the CloudBroker platform. In step (2) the source code of the domain-speci�c desktop

application is extended, in order to add an option to the GUI to execute the simulation

on a cloud and to make the appropriate RemoteAPI calls in the back-end. The next

paragraphs will elaborate on these steps.

Motivation for extending Raccoon2 The latest version of Raccoon2 [101] can be only

used to deploy AutoDock Vina and run VS simulations on a Linux PBS or SGE. After

obtaining feedback from life scientists it became evident that this is not ideal. The domain

scientists lack the required computational expertise and may need additional training to

use HPC clusters. The purchase and maintenance of a computing cluster is very costly

and at the time this project started, the UoW did not have a functioning cluster. There

was an attempt by a scientist to use a �virtual� PBS cluster set up on the UoW cloud,

however this was not successful. Many scientists around the world face similar issues, as

they do not have access to a cluster. This is a barrier to running VS simulations with

Raccoon2. Updating Raccoon2 with cloud computing capabilities is one solution to this

problem. Note that the same concept can be implemented with another tool instead of

Raccoon2.

3.3. Reference Implementation: Extension of Raccoon2 37

3.3.1 Step 1: Con�guration of the CAS

Creating a WS-PGRADE work�ow The execution steps of the domain-speci�c desk-

top application are recreated using a WS-PGRADE work�ow. In this particular case a

simple one-node work�ow with four input (ligand �les, receptor �le, Vina con�guration

�le, and an additional �le to overcome an output names issue) and one output (the zipped

results from the multiple docking runs) ports were created. In an optimised version, the

last input port would not be necessary. Please note that based on the domain-speci�c

desktop application, more complex work�ows may be required. For instance, Raccoon

(Figure 3.4) requires a multi-node workfow due to the multiple steps needed by AutoDock

4.2. However, Raccoon2 uses AutoDock Vina which is made up of one major steps, and all

the pre- and post-docking steps are completed outside of the work�ow. This work�ow was

created using a WS-PGRADE portal where it was tested, and then exported. Once sub-

mitted, the work�ow invokes CloudBroker's execution script which runs AutoDock Vina

for each ligand it receives as input. In order to run this work�ow on many cloud instances,

the extended code of Raccoon2 splits the set of ligands into as many zip archives as the

number of instances, and submits a separate work�ow to each instance.

Figure 3.3: WS-PGRADE work�ow for the Raccoon2 extension.

Con�guring CloudBroker The CloudBroker deployment process requires: an appli-

cation deployment script, and an application execution script with an optional application

bundle. An image of the operating system (OS) needs to be installed in the image repos-

itory of the target cloud. Then, the required dependencies need to be installed using a

deployment script. The deployment script is run only once and it is used to prepare the

OS image. A snapshot of the prepared image is then created and it is used for future jobs.

The execution script needs to validate and manage the inputs, execute the application and

return the outputs to a particular folder. Using the CloudBroker Platform web interface,

the deployment can be prepared, generated and then activated [183].

3.3. Reference Implementation: Extension of Raccoon2 38

3.3.2 Step 2: Modi�cation of the Raccoon2 GUI and back-end

In order to conduct VS simulations on a cloud, the WS-PGRADE work�ow should be

submitted using the gUSE RemoteAPI. A WS-PGRADE work�ow consists of an XML

�le (work�ow.xml) which describes the work�ow and the input �les. The XML �le contains

other valuable information, such as which kinds of cloud instances would be used. To �ll

in the cloud con�guration information correctly, the Raccoon2 source code was extended

with a section which enables users to select the number of cloud instances, their size, the

name of the cloud, and the region.

Before submitting the work�ow, the WS-PGRADE work�ow XML �le is updated to in-

clude the cloud con�guration data selected in the GUI by the scientist. The same extended

GUI is valid for any cloud provider supported by the work�ow management system, but if

another DCI is used instead of clouds this would need to be modi�ed. This modi�cation

of the GUI is minor as it requires a small amount of changes in the code while remain-

ing seamlessly integrated with the original GUI of the desktop application. Within the

original Raccoon2 GUI, the user can attach a set of ligands and a receptor - this remains

unchanged.

The updated work�ow.xml �le is then archived along with the rest of the input �les,

following the WS-PGRADE naming convention. Apart from the attached work�ow, the

RemoteAPI methods require authentication. Namely, a RemoteAPI password (set by the

gUSE server administrator), and CloudBroker user credentials (username and password)

are required. The scientist can enter this information using the extended GUI of Raccoon2.

Finally, Raccoon2 can submit the work�ow by calling a gUSE RemoteAPI method by

sending an HTTP request using the Python module �Requests�. The RemoteAPI method

returns a work�owID, which is used to check the work�ow's status. Monitoring the VS

simulation is done by polling for the status of the work�ows using the RemoteAPI (in

the current implementation, every 20 seconds). The status is displayed on the GUI and if

there were errors the work�ow can be resubmitted. Once a work�ow has �nished, a �nal

RemoteAPI call retrieves the output.

When all the work�ows complete successfully, their outputs are downloaded as ZIP archives

and only the relevant AutoDock Vina result �les are extracted into a result folder. This

result folder can be opened directly from the Raccoon2 GUI as part of the result analysis

and visualisation panels. These panels remain unchanged, and the �ltering and visual-

isation features can be used, exactly as in the original Raccoon2. The extension of the

original Raccoon2 was written in Python [184].

3.4. Additional Implementation: Extension of Raccoon 39

3.4 Additional Implementation: Extension of Raccoon

Independently from the extension of Raccoon2, the same generic concept was used to

extend Raccoon. It shows how the implementation can describe multiple work�ows and

execute the correct one based on the user's selection. The main di�erence between the

two VS desktop applications is that Raccoon uses the docking tool AutoDock 4.2, while

Raccoon2 uses AutoDock Vina.

In Raccoon, the user can specify when the AutoGrid component is executed (AutoGrid

generates interaction maps needed by AutoDock). This can be: �run AutoGrid on each

job�, �now (and cache the maps)�, or �never (maps are already calculated)�. In the original

Raccoon a di�erent script is executed based on which of these three options the user selects.

In the extended version using the generic concept, a di�erent work�ow is executed based

on this selection. In the �rst case the AutoGrid component requires the GPF and DPF

input �les to be prepared, which is the responsibility of the prepare-gpf and prepare-dpf

nodes (Figure 3.4). The output of AutoGrid is then forwarded to AutoDock, the �nal

output consisting of a .DLG �le for each ligand-protein pair.

Figure 3.4: WS-PGRADE work�ow for the 1st case of the Raccoon extension.

The second option to run AutoGrid �now (and cache the maps)� implies that the action of

the nodes prepare-gpf and autogrid would be executed on the same local computer where

Raccoon is run. The only nodes that need executing on a DCI would be the prepare-dpf

and the autodock node (Figure 3.5). The last option should be used when the scientist has

prepared the interaction maps beforehand and can upload them to Raccoon. The same

work�ow (Figure 3.5) is used with the di�erence that the input for the AutoDock node

would be originally uploaded by the scientists and not created by Raccoon.

The WS-PGRADE work�ows used the AutoDock, AutoGrid, prepare gpf.py, and pre-

pare dpf.py executables which have been deployed to the cloud using the CloudBroker

3.5. Results 40

Figure 3.5: WS-PGRADE work�ow for the 2nd and 3rd case of the Raccoon extension.

deployment process, as described in the user manual [183].

3.5 Results

This extension of Raccoon2 is comparable with similar VS approaches that use cloud com-

puting (more details about these are provided in Chapter 2) and it has some advantages.

Unlike wFReDoW, it does not focus on setting up a speci�c HPC environment, but rather

focuses on making cloud computing more accessible for scientists, allowing them to use

clouds directly from within a tool that they are used to. Private clouds like Kandinsky

(used for AutoDockCloud) aren't available for all scientists, whereas the approach used for

this extension of Raccoon2 shows that various types of clouds, including private clouds,

can be used. By not developing a new GUI, as it was done in the VENUS-C project, this

approach ensures that the learning curve is practically non-existent for a typical scientist

who is used to the Raccoon2 GUI. It does this by seamlessly incorporating the execution

of the simulations on clouds in the background. Finally, the result analysis capabilities of

Raccoon2 can be fully utilised, which was not the case in the aforementioned examples.

To show that the concept can be implemented to run real-life VS simulations on di�erent

clouds, biomedically relevant input data was obtained. The receptor was an enzyme

called ribokinase, which is part of the salvage pathway of nucleotides in the protozoan

parasite Trichomonas vaginalis (TV). The 3D structure of this receptor has been created

by homology modelling. TV causes trichomoniasis, a very common sexually transmitted

infection. A set of 130,216 ligands have been obtained from the ZINC database of drug-

like small molecules. It is a diverse subset of ligands that may bind and antagonise the

receptor. The ZINC database provides a subset of compounds whose members are at least

10% di�erent from any other member. The di�erence is pre-calculated using �chemical

�ngerprinting�. Such a subset of known small molecules with a molecular weight smaller

than 190 represents the 130,216 ligands and is provided by ZINC [185,186]. The extended

3.5. Results 41

Raccoon2 was tested using these input �les, conducting three runs, e�ectively 130,216

docking simulations in each run.

The UoW OpenStack cloud (based in London, UK) was used to prove that the approach

works, and two runs on the commercial CloudSigma cloud (Zürich, Switzerland) were

conducted to show the use of di�erent clouds. There are several types of 64-bit (x86 64)

instances that can be used in the UoW cloud: small (1-core 2GB RAM), medium (2-core

4GB RAM), large (4-core 8GB RAM), and extra-large (8-core 16GB RAM). Because this

experiment was allocated a maximum capacity of 29 instances and 29 processor cores,

29 UoW small instances were used. The mean execution time was 26h 35min 52s. To

compare the results of both clouds, 29 instances most similar in type to the UoW small

instances were used. The CloudSigma cloud had 32-bit or 64-bit CloudSigma small (1-core

1GB RAM) instances, note that they have only 1GB RAM. Two experiments were run

using these instance types. The mean execution time was 19h 55min 59s for the 64-bit

and 17h 21min 23s for the 32-bit instances as shown in Figure 3.6.

Figure 3.6: Mean, standard error of the mean, and execution times (x-axis) of the 29 jobs
on the three clouds (y-axis).

The AutoDock Vina software has been developed for 32-bit machines and as noted on

their o�cial website, it is compatible with 64-bit machines [187]. However, it seems that

the overhead produced is signi�cant and in general, the recommendation should be to

use 32-bit cloud instances for this kind of VS experiments since the average execution

time decreased by 12.92%. Furthermore, although the CloudSigma instances had half the

memory, due to various performance optimisations in the CloudSigma cloud, they �nished

the docking signi�cantly faster (on average the 32-bit CloudSigma run was 34.74% faster

than the 64-bit UoW run).

At the moment, the UoW cloud can be used by scientists at UoW free of charge. In

3.5. Results 42

Table 3.1: Execution times when increasing instance type and number.
Cloud Instances Mean Execution Time Cloud Instances Mean Execution Time
7 UoW small 123h 12min 01s 7 UoW small 123h 12min 01s
7 UoW medium 75h 35min 16s 14 UoW small 61h 31min 01s
7 UoW large 51h 47min 29s 28 UoW small 31h 29min 14s

general using commercial clouds would incur some costs. As of April 2018, CloudSigma

cloud computing prices are $0.0195 per hour for 1-core CPU, $0.007 per GB RAM, $0.1329

per GB SSD storage, and $0.04 per GB of outbound data transfer [188]. Therefore, running

our VS on 29 small instances would cost $15.83.

Exploring the potential of using other DCIs As WS-PGRADE/gUSE is connected

to other DCIs such as desktop grids, clusters or service grids via the DCI Bridge, the

same generic solution and the same work�ow mapped to these di�erent resources could

be applied to further extend the applicable resources of the experiments. In order to

examine alternative DCIs, the experiments were executed on the SZTAKI Desktop Grid

(SZDG), a BOINC-based desktop grid [189]. Desktop grids use spare CPU cycles from

desktop computers to create a powerful DCI. To show how desktop grids would perform,

a WS-PGRADE portal 1 was used to run AutoDock Vina on the SZDG using the same

input as above. They were run 5 times, with average execution time: 30h 16min 9s.

Scalability tests In order to show the scalability of this solution, several experiments

using the same input �les were designed. Firstly, the VS was run using the cloud-enabled

Raccoon2, selecting 7 small instances on the UoW cloud. The average time per instance

was 123h 12min 1s. Then, the instance type was increased to medium while keeping the

number of instances to 7. The average time per instance was 75h 35min 16s. Finally, 7

large instances were used, resulting in average time per instance of 51h 47min 29s (Table

3.1). These results demonstrate reasonable scalability of Raccoon2 when increasing the

number of cores inside the instances. The left panel of Figure 3.7 demonstrates the scaling-

up when compared to an ideal proportional scaling-up (where doubling the cores should

result in half the time).

In a second set of experiments the instance type was kept the same (UoW small) while

increasing the number of instances. Namely, 14 small instances were used with the average

time per instance of 61h 31min 1s, followed by 28 small instances resulting with average

time per instance of 31h 29min 14s. The right panel of Figure 3.7 shows that these results

very closely resemble the ideal proportional scaling-up. It shows that although AutoDock

Vina has multithreading capabilities, it is faster to run 28 small instances than 7 large.

1https://autodock-portal.sztaki.hu/liferay-portal-6.1.0

3.6. Conclusion 43

Figure 3.7: Scalability comparison of experimental and proportional cases: increasing the
con�guration of instances (left), increasing the number of instances (right).

Therefore, to maximise e�ciency, it should be recommended to use more, but less powerful,

rather than less, but more powerful instances.

3.6 Conclusion

This chapter presented a generic concept to extend domain-speci�c desktop applications,

enabling the execution of simulations on di�erent clouds. A reference implementation of

the generic concept has been developed using a desktop application for VS simulations.

Several experiments were run to test and evaluate the concept on two di�erent cloud

infrastructures and measure the scalability of the solution. Better performance was noticed

when using many smaller rather than a few larger instances, and 32-bit rather than 64-bit

instances. Although the shown implementation is based on the VS tool Raccoon2, WS-

PGRADE/gUSE and CloudBroker, the concept of extending desktop applications to run

on clouds is generic.

With this extension, Raccoon2 users can use the same familiar GUI to run their VS

experiments on clouds. They no longer require access to a Linux PBS or SGE cluster,

which brings down the cost of running large VS simulations, making them more accessible.

As shown in the tests, the solution works for di�erent kinds of clouds. At the moment,

due to the nature of the gUSE RemoteAPI, result �les can only be downloaded to the

user's desktop. If instead of downloading the docking results to their own computers,

scientists could share the results through a docking result repository, this would enable

further analysis, reuse, and collaboration. This is explored in the remainder of the thesis.

Chapter 4

De�nition of Conceptual Framework for

Systems that Use Molecular Docking

Results

4.1 Introduction

In software engineering the term �framework� is often used for a library of pre-made classes

and method that can be used when developing software. Chapter 2 showed several exam-

ples of open-source libraries that are used in bioinfromatics. However, there is a lack of

an abstract conceptual framework that will be independent of the programming language,

toolset, or paradigm used. In particular, software systems that use previous docking results

can bene�t from such a framework. Often software engineers will start the development of

a tool from scratch without being aware that they can reuse an existing tool. An abstract

description of the element type can be compared to a library of abstract descriptions of

existing tools to �nd a candidate existing tool. Furthermore, a bioinformatician may be

uncertain whether an existing tool can be used for a particular scenario. An abstract de-

scription of the existing tool in question can be compared to a generic abstract description

provided by the framework to show whether the existing tool is suitable for that scenario.

This chapter will summarise the research methodology and the �ndings that were used to

construct a conceptual framework for software systems that use previous docking results.

A set of interviews, divided into two parts, formed the primary research activity. The �rst

part included semi-structured interviews with 4 scientists. The resulting requirements

were compared to currently available systems for validation. The second part included in-

terviewing one experienced scientist in order to obtain a list of scenarios that would use a

repository that stores and manages docking results. Based on these scenarios, a high-level

44

4.2. Research Methodology 45

diagram of the framework was created. A thorough literature review was conducted in

order to determine whether existing systems that store docking results (or equivalent simu-

lations) could have been described using the high-level diagram of the framework (Chapter

5). Once this has been determined, a low-level diagram of the framework was created, as

well as a textual description of element types and interfaces (Chapter 6). Finally, a for-

mal description of the framework was used to provide generic abstract descriptions of the

element types and interfaces (Chapter 6 and Appendix B). Thus, the complete framework

is composed of:

1. High-level description using a basic diagram.

2. Low-level, detailed diagram (diagrammatic description).

3. Textual description of element types and interfaces.

4. Formal description of element types and interfaces.

An abstract system can be described using these di�erent views. When determining

whether a novel system can be implemented using the framework, or whether an existing

tool can �t the framework, the same views can be utilised.

4.2 Research Methodology

This part of the thesis includes a study whose purpose is to de�ne a conceptual framework

that can be used when developing software systems that use previous docking results.

This should not be limited to the users own previous docking results, but it should include

docking results of other users. The framework should not be speci�c to a single scenario,

but generic and useful for a multitude of scenarios. It should describe conceptual elements

in a tool-independent way, and enable reusability of elements that are the same between

scenarios. If a scenario is suitable for using the framework, a team should be able to follow

a speci�c software development methodology to assist with the use of the framework.

This study contains four segments. The �rst segment aimed at producing qualitative evi-

dence based on which a high-level framework can be de�ned. In this part, primary research

was conducted through semi-structured and unstructured face-to-face interviews with sci-

entists who have used docking simulations. Through semi-structured interviews with four

scientists, the need for a framework was examined. The interviews aimed at testing the hy-

pothesis: �Scientists that use molecular docking require a system that stores and manages

molecular docking results.� This was done by analysing the need for a software system that

stores and manages previous docking results. The analysis of the semi-structured inter-

views produced a list of requirements which was compared to currently available systems to

4.2. Research Methodology 46

provide reassurance of their validity. On the other hand, through unstructured interviews

with another scientist who is an expert in docking, example scenarios that would utilise

the framework were examined. These interviews aimed at answering the question: �Which

docking scenarios would require a repository that stores docking results?� This resulted

in a list of 5 such novel scenarios which require analysis of docking results and cannot

be achieved with the current systems. The conceptual similarities of these scenarios were

used to design a high-level generic framework.

The second segment aimed at determining whether the framework would have been useful

for describing existing systems. The argument being that if the framework can be used

for the 5 novel scenarios, and if it could have been used for a large number of existing

examples, then it can be used for any system that uses previous docking results. The

applicability of the high-level framework description to existing systems in literature was

assessed. Secondary research was conducted through a literature review of 14 existing

systems, assessing the extent to which the high-level framework can be used to describe

them. The fact that the 5 scenarios identi�ed as a result of the �rst part as well as the 14

examples from literature can be described using the high-level framework, shows that the

framework can be used in general and is not tailored for a speci�c scenario.

In the third segment, the framework was extended with low-level diagrammatic, textual,

and formal descriptions. The aim of the third segment was to enable a more formal as-

sessment of the applicability of the framework to a new scenario about to be implemented.

Given a new scenario, a formal description will allow future developers to prove whether

the framework can be used or not. This can be done by describing the new scenario

formally and comparing it to the formal description of the framework. An existing tool

can be described formally and compared to the generic description of an element type

to determine whether it can be used. Furthermore, the formal description of an element

type can be compared to existing tools to determine whether there is a need for creating

a custom-made tool. The third segment included a de�nition of a software development

methodology. The methodology, described in detail in Chapter 7 shows the type of team

that is required to implement a scenario and the actions that should be undertaken when

developing a system that uses the framework.

Finally, the fourth segment included an experimental evaluation of the framework and

methodology. A total of 19 systems were described using the high-level view of the frame-

work, 14 of those were identi�ed in the literature, while 5 in the interview process. Of the

5 scenarios identi�ed in the interview process, 3 were implemented using the methodol-

ogy and the low-level views of the framework (Chapter 8). These scenarios were selected

because they show that the framework allows easier implementation through reuse of ele-

ments and easy integration of new elements.

4.3. Main Findings of Primary Research 47

4.3 Main Findings of Primary Research

The interviewees for the �rst segment of this study were �ve scientists from di�erent

backgrounds, with various degrees of experience with docking simulations. The �rst set

of four scientists represented early-career researchers, while the �fth scientist was a very

experienced academic and expert in the area of docking. All scientists were completely or

partially based in London where all the interviews took place. Using a small population

in interview-based requirements analysis is not uncommon in the area of docking. For

instance, the AMC Docking Gateway based the requirements gathering solely on one

interviewee, an expert in the �eld [116]. However, it is worth noting that the aim was

not to interview a representative sample of the global population of scientists that use

docking. The aim was to collect enough data to be able to design a useful framework and

methodology for developing software systems that require a docking result repository.

4.3.1 Need for a system to store and manage docking results

The �rst segment of this study included analysis of the interviews. Participants were

asked to consider voice recording (3 out of 5 agreed; notes were taken for the remaining 2

participants). The transcribed voice recordings and notes were analysed using NVivo v11

[190]. A summary of the analysis of the notes and the transcribed recordings is provided

in Appendix A. The participants of the semi-structured interviews are pseudonymously

referred to as scientists A, B, C, and D. The participant of the unstructured interviews is

referred to as scientist E.

Table 4.1 summarises the data analysis process of the semi-structured interviews with the

�rst four scientists. The semi-structured interview questions asked the participants to

comment on their experience with: running docking, using data storage and management

techniques and/or existing systems. All interviewees ranked functionalities of a system

that would store docking results and their provenance. Scientists A, C, and D used a

scale from 1 to 10 (note that numbers in parenthesis are implicit interpretations of the

interviewees' statements), while Scientist B preferred to described the functionalities with

words only. This resulted in a list of requirements for a software system that stores

and manages docking results. A (non-exhaustive) list of currently available systems was

matched to the list of requirements obtained from the interviews in order to validate them.

The conclusion of the semi-structured interviews is that scientists have not used a system

speci�cally designed to store and manage docking results. However, there is a clear need for

such a system, as all interviewees found several useful functionalities. The functionalities

that were found to be useful can be summarised as requirements.

4
.3
.
M
a
in

F
in
d
in
g
s
o
f
P
rim

a
ry

R
esea

rch
48

Table 4.1: Summary of interviews with interviewees A-D.

Scientist Docking Experience Storing and Managing Data Using Provenance

A 100,000s docking simula-

tions using AutoDock Vina,

one docking takes 30 sec-

onds to 30 minutes each.

Used their own computer

or a GPU cluster. 40

MD simulations using AM-

BER [121] to post-process

the docking results taking

into account the �exibility

of the receptor [191].

Obtained ligands from public databases

e.g. PubChem [17] and ZINC [16], and

created homology models of the recep-

tors, sometimes followed by short MD.

Always re�nes and �xes the input �le.

Stores all input �les on own comput-

ers - has encountered problems as the

amount of �les gets overwhelming and

one cannot locate past �les easily. One

should store the originally downloaded

�le, as well as the re�ned input �le.

Stores the con�guration and interme-

diate �les in the same location. Result

�les, particularly for MD, are very big

which is problematic.

Hasn't used provenance management systems.

Providing a publication along with the docking

results would be very important to view what

the particular simulation was used for and why.

Ranked other functionalities of such a system as

(scale 1-10, 10 being most useful):

� Automatically redoing docking: 7.

� Automatically redoing docking on the cloud:

good and important to have (7).

� Comparing results from past simulations: 8-9.

� Contacting the people that performed the sim-

ulations: 3-4.

� Downloading the input, intermediate and result

�les: 9, 8-9, 9-10 respectively.

� Obtaining more details about the software tool

used: 7-8.

� Viewing very old simulations: 2.

Continued on next page

4
.3
.
M
a
in

F
in
d
in
g
s
o
f
P
rim

a
ry

R
esea

rch
49

Table 4.1 � continued from previous page

Scientist Docking Experience Storing and Managing Data Using Provenance

B More than 2 years ago, on a

high performance cluster at

their institution: MD using

Gromacs [104], CHARMM

[192] and NAMD [102] and

docking using AutoDock

and docking software de-

veloped at their institution.

Docking and MD simula-

tions should always be done

in conjunction. Typical

MD would run between 2-

24 hours, while docking 4-

12 hours, depending on the

con�guration.

Created models of the input structures,

received models from colleagues, or got

them from the on-line database: PDB

[14]. Tools to re�ne the models or

to �x some issues included Swiss PDB

Viewer [193], or their own scripts. Al-

ways stores the original �raw� �les, the

re�ned version in a separate folder, a

log �le indicating the time and date of

each step from start to completion. In-

cluding parameter or con�guration �les

(however these are not as important

and not backed up). Several copies of

the input �les stored on their own com-

puter, and a cloud storage system. All

other �les stored on the cluster.

No academically-friendly provenance management

system that �ts to their job types. Additionally,

simulation results of others are trusted, but if they

have not translated into good results on a paper,

then one may question them and need to redo the

simulation. Therefore, storing information regard-

ing a paper is important. Adding notes regarding

this would be very useful. A useful addition would

be to store well-de�ned log �les which would con-

tain enough information to see which step was used

with which �les. Commented on importance of

functionalities of an ideal system:

� Automatically redoing simulations to verify the

results: absolutely important.

� Storing �les (by order of importance): input,

output, intermediate.

� Storing information about people that per-

formed the simulations (name, date and time):

absolutely important.

� Contacting the creators: only in case of collab-

orations.

Continued on next page

4
.3
.
M
a
in

F
in
d
in
g
s
o
f
P
rim

a
ry

R
esea

rch
50

Table 4.1 � continued from previous page

Scientist Docking Experience Storing and Managing Data Using Provenance

C About 200 molecular dock-

ing simulations in the past

year, using AutoDock 4.2 on

their own computer. De-

pending on the size of the

ligand, it would take from

20 minutes to one hour per

docking - they have been

running dozens of simula-

tions at one time, leav-

ing the computer to run

overnight.

One �fth of the input receptors had

solved crystal structures and came

from the PDB, while the majority

were homology models created by using

SWISS-MODEL [194]. The SMILES

codes of the ligands from ChemSpi-

der [195] were used to create their 3D

structure. Apart from visually check-

ing them, no major changes were done

to the input �les, only the PDB ID and

the re�ned version of the input �le was

stored - not the original. Storing the

intermediate grid maps was important

so one can go back and redo the simula-

tion with a di�erent ligand or other mi-

nor changes. The result �les were also

stored, �ltered and analysed to produce

additional �les with some conclusions.

Has not used a provenance management system,

concerned about intellectual property - would not

use if others could publish a paper based on their

results. Docking results should be published only

once the author publishes a paper. If the docking

was done on the system, it should not claim own-

ership and prevent the scientist from publishing

a paper using them. Ranked other functionalities

(scale 1-10, 10 being most useful):

� Automatically redoing docking to verify the re-

sults: 7 - more useful if done on the website,

without downloading or installing anything.

� Comparing past simulations: 7.

� Contacting the creators of results: 6.

� Downloading the input, intermediate and result

�les: input (9) more important than results (7).

� Docking tool details: very useful (8-9).

Additionally, searching for all ligands docked to a

particular protein, or vice versa, and their docking

results. Searching a ligand-receptor pair should

return a list of species, and if di�erent tools have

been used, all the result formats.

Continued on next page

4
.3
.
M
a
in

F
in
d
in
g
s
o
f
P
rim

a
ry

R
esea

rch
51

Table 4.1 � continued from previous page

Scientist Docking Experience Storing and Managing Data Using Provenance

D Used molecular docking ex-

tensively in a recent project

involving around 1100 lig-

and and 4 targets, running

them once with AutoDock

Vina and once with DOCK

v6 [81], for a total of about

9000 simulations. Each in-

dividual simulation took 5-

10 minutes to complete.

Computed their own 3D models of the

structures for the ligand �les, starting

from a drawing of the chemical formula

drawn in ChemDraw [196] or MarvinS-

ketch [197], then using Avogadro [198],

energy minimisation and structure op-

timisation. The PDB was also used

to get structures for the targets, they

were processed before the docking, dif-

ferently for AutoDock Vina and for

DOCK. ZINC was used for structures

of the ligands. The original and the

altered input �les, as well as the in-

termediate �les were stored on their

own computer and a remote storage in

their a�liated institution. Output �les

were �ltered, using the built-in �lter-

ing function of Chimera [199]. The re-

sults were also manually checked for in-

consistencies using Chimera and View-

Dock [200].

Have not used, nor searched for an available prove-

nance management system. Feels that administra-

tors of such systems should pre-verify the results.

Ranked functionalities of such a system as (scale

1-10, 10 being most useful):

� Automatically redoing docking on one's own

computer: useful, but rather di�cult as there

are many tools that need to be installed and

con�gured (6).

� Docking on cloud: if everything is prepared as a

virtual machine, it would be much easier to redo

them (7).

� Comparing past simulations: 9.

� Contacting the people that performed the sim-

ulations: 10.

4.3. Main Findings of Primary Research 52

List of requirements and validation As a result of the four semi-structured inter-

views, the following list of requirements was compiled. It is based on what scientists would

use the docking results storage and management system for, and what they would store.

1. Search all docking results based on a receptor, a ligand, or both.

2. Re-do simulation on the cloud.

3. Re-do simulation on a local computer.

4. Explore details about the creator, date and time of the simulation.

5. Compare your simulation results with past simulations (your own or someone else's)

using the same or di�erent software.

6. Store and download intermediate �les (ones between steps), log �les (execution sum-

maries), result �les, and structure of molecules (input �les).

7. Store a link to a peer-reviewed paper published based on the docking results.

More details about the reasoning behind compiling this list is shown in Appendix A. As

shown in Figure 4.1, this list was used to analyse several existing software systems and

assess to what extent these requirements are ful�lled (based on literature evidence and

personal experience). The aim of this activity was to see how reasonable the requirements

are and if scientists can use an existing system for any of them. More information on the

chosen currently available systems can be found in Section 2.8.

As a result of this analysis, it can be deduced that the capabilities of the MoSGrid system

ful�l most of the requirements laid out by the scientists. In the case where it doesn't (link-

ing a peer-reviewed paper to each docking), extending MoSGrid seems possible. MoSGrid

allows scientists to redo simulations on the German grid (D-Grid), but it could be con-

nected to clouds similarly to the CloudSME portal, since it uses WS-PGRADE/gUSE. In

its current implementation, MoSGrid allows scientists to download their own work�ows

after which they can be rerun on one's own computer if a WS-PGRADE system is con-

nected, or the individual jobs can be rerun manually. Adding provenance information

to MSML has already been identi�ed by the MoSGrid authors as a potential improve-

ment [143, p. 1755].

The four semi-structured interviews showed that there is a need for a system that stores

and manages docking results. In general, the scientists were not acquainted with the term

�provenance�, but it would be bene�cial if this system managed the provenance of docking

results as well. The scientists point out 10 requirements (if the 6th requirement for storage

from the list above is split). Most requirements are ful�lled to some degree by currently

available systems. For instance, MoSGrid completely ful�ls 7, partially ful�ls 2, and does

4.3. Main Findings of Primary Research 53

Figure 4.1: Summary of the ful�lment of requirements from the interviews: green signi�es
ful�lled, amber partially ful�lled, red not ful�lled at all, and white lack of information.

not ful�l 1 requirement. This shows that the requirements are reasonable and have been

echoed by scientists internationally.

4.3.2 Novel scienti�c scenarios using docking results

Once it became clear that there is a need for systems that store and manage docking results,

an obvious step was to create one. However, instead of creating a software system from

scratch, the possibility of de�ning a generic framework was explored. If there are several

scenarios that require a docking results repository, and they cannot be ful�lled with the

currently available systems, a framework can be derived from the conceptual similarities

between these scenarios. This framework can then be used to implement these and any

similar scenarios. In the second segment of this study, interviews with a �fth interviewee

4.3. Main Findings of Primary Research 54

(Scientist E) were conducted, aiming at providing a list of novel scenarios which require

a repository that stores and manages docking results. These scenarios represent software

systems that assist in making a decision based on analysing previous docking results which

have been stored in a repository. Comments made by Scientists A, C, and D in the semi-

structured interviews are useful for 3 of the 5 scenarios that were identi�ed. The �ve

scenarios, which will be used to de�ne the framework, are listed below.

1. Suggest a ligand-protein pair that should be used in the next molecular docking, based

on protein similarity and previous results.

Once a docking simulation has been conducted, scientists analyse the results. If the results

for the particular protein-ligand pair are not interesting, the scientist would search for a

similar protein and attempt a new set of docking simulations. The similarity between

protein structures can be used to �nd a similar protein (as noted by Scientist E).

2. Filter results suitable for laboratory experiments, based on ligand properties.

When scientists conduct large-scale docking simulations, the results need to be �ltered

during the analysis. Usually, a scientist searches for an interesting protein-ligand pair to

examine in a wet-lab experiment. The interesting protein-ligand pair may include a ligand

which seems useful, but in fact is not usable in the laboratory. This may be because it is

not purchasable due to its toxicity, or various other properties (noted by Scientist E and

mentioned by Scientist A).

3. Find o�-target drugs, based on deducing if the binding is on an active site.

O�-target drugs are drugs that were designed to bind to a receptor, but additionally bind

to another receptor of the same or a di�erent organism and produce often unplanned

e�ects. The steps necessary to �nd o�-target drugs are: explore if the drug binds to the

active site of one or potentially a large range of proteins that are not the primary target,

search for similar drugs that may have the same e�ect, and conduct wet-lab experiments.

A subset of all the human proteins with a solved structure would be needed if humans are

of interest (as noted by Scientist E and mentioned by Scientist C). From the computing

point of view, the �rst step is the most relevant. It requires a method to estimate if a

docking between a ligand and protein is on an active site. Analysing past docking results

can be used to provide this.

4. Enable veri�cation of the docking methodology and learning from previous docking.

Storing molecular docking results and their provenance, even if the results are negative or

�null results� is important, in these two cases (as noted by Scientist E):

(a) Another scientist may run the same molecular docking simulation and expect to get

useful results. If they don't, they may suspect that they are conducting the docking

wrongly. Comparing their input and output �les with ones from another scientist

4.3. Main Findings of Primary Research 55

will enable them to verify their docking methodology and realise that it is expected

to get results that are not useful.

(b) Scientists with little or no experience in running docking simulations can learn quicker

if they view previous docking input and output �les, regardless of the usefulness of

the �nal results.

5. Compare results from di�erent molecular docking tools. Comparing the docking results

of the same input �les, but using a di�erent docking tool is important. This will enable

scientists to determine if there is a signi�cant di�erence in the results when using di�erent

tools, which may be relevant for further wet-lab experiments (as noted by Scientist E and

mentioned by Scientists C and D).

4.3.3 High-Level description of conceptual framework for systems

that use previous docking results

All �ve scenarios begin with the scientist using an environment to conduct molecular

docking or VS simulations. A repository speci�cally designed to store and manage docking

results is needed by all scenarios too. Depending on the scenario, the stored previous

docking results are then processed by one or more elements. Some scenarios include the

same type of processing, for instance, Scenario 1 and 2 need a tool to assess whether a

docking result is good or not. Scenarios 2 and 3 require reading data from an element that

is external to the system. All scenarios include an element that groups and summarises

the data to make conclusion or decision. Based on this analysis, similar elements can be

grouped or generalised into �ve element types.

� Molecular Docking Environment (MDE): The MDE includes the software tool used to

run the docking itself, and may include additional components to connect to a DCI. It

could be as simple as running a command on one's local computer, or more complex such

as running a scienti�c work�ow on a DCI.

� Molecular Docking Results Repository (MDRR): The docking results from the MDE

should be passed to a repository for storage and management. A user could have access

not only to one's own, but also to previous results created by other users. This results

repository could store information about the �nal decision made by the entire system.

� Additional Tool (AT): This is a generic element type that describes a tool which takes

one or more docking results from the MDRR as input and produces a calculation. The AT

can refer back to other docking results stored in the MDRR, communicate with another

AT, or refer to data stored externally.

4.3. Main Findings of Primary Research 56

� Additional Data Source (ADS): This element type describes a tool such as a database

that contains relevant data for the �nal decision. This could be an external database that

does not store docking results, but other types of data.

� Decision Maker (DM): All the information processed from the various ATs are passed

to an element of the type DM. A DM groups and analyses the calculations done by the

ATs, and then makes a decision based on these calculations. It may use previous docking

results stored within the MDRR in the decision making process.

Figure 4.2: Basic diagram of the framework.

Based on the description of these element types which was derived from the scenarios, a

high-level diagram of the framework can be proposed (Figure 4.2). The numbers signify

the order and �ow of events through elements of di�erent element types.

1. A scientist uses an MDE to conduct the docking and upload the result to the MDRR.

2. The MDRR sends the results to one or more ATs.

3. An AT may communicate with one or more other ATs.

4. An AT may look up data stored in an ADS.

5. An AT may require additional previous docking results as input for its calculation.

6. An AT would provide its calculation results to the DM.

7. The MDRR may use data from an ADS directly.

4.3. Main Findings of Primary Research 57

8. Previous results from the MDRR may be used by the DM.

9. The DM may use data from an ADS directly.

10. Once the analysis is complete and the decision made, it can be passed to the MDRR.

11. The decision is passed to the MDE to visualise it.

Based on this �ow of events, 11 interfaces between pairs of elements can be described.

When the communication between the user and the MDE is taken in consideration, this

framework contains a total of 13 interfaces. A more detailed explanation about the inter-

faces follows in Section 6.

4.3.4 Veri�cation of high-level view with novel scenarios

The high-level view of the framework contains a high-level or basic diagram. E�ectively,

the hypothesis is that this framework, starting with the basic diagram, is suitable for all

systems that require analysis of previous docking results. To show that this diagram can

be used for the 5 scenarios identi�ed as part of the primary research, each of the scenarios

is described using the basic diagram of the framework. This shows that each speci�c

scenario can be derived from the generic framework. For each scenario a title, scienti�c

goal, description, �ow of events, and a diagram is shown.

Scenario 1 Suggest a ligand-protein pair that should be used in the next molecular

docking, based on protein similarity and previous results.

Scienti�c Goal: Identify the next docking of interest, based on a ligand already docked

with a similar receptor.

Description: In this scenario a software system would analyse previous docking results

and look for similar proteins to the one currently used. Based on the past docking results

of these similar proteins, the system will suggest a new protein-ligand pair that would be

an interesting candidate for docking. A protein similarity tool should search for similar

proteins within the repository of results of previous docking simulations. This scenario can

suggest docking the current protein with a ligand which has been docked successfully to the

similar protein. In order to do this, an analysis of the past docking is required together with

a method to de�ne a docking result as �successful�. Any existing tool capable of running

VS simulations can be an MDE. For instance using the extended version of Raccoon2

developed as part of this thesis has several bene�ts as described in Section 3. A tool that

can store and manage docking results can be an MDRR. A protein structural alignment

tool needs to be an AT in Scenario 1. The tool DeepAlign could be a good choice, as

4.3. Main Findings of Primary Research 58

explained in Section 2.3.1. Another AT should assess whether the structural alignment

score is su�cient to declare two proteins as similar. A simple solution would be to create

a custom-made tool to compare the value of DeepAlign with a threshold input from the

user. A third AT is needed to assess how good a docking is. Similarly, a custom-made

tool can do this based on a user input threshold. Finally, a DM needs to summarise the

results of the ATs. The DM needs to be a tool speci�c to the scenario. So in Scenario 1,

and in general, a speci�c custom-made DM is required.

Figure 4.3: Basic diagram of Scenario 1.

Flow of events

1. Raccoon2 executes the molecular docking and the results are uploaded to the MDRR.

2. The MDRR sends the receptor pairs to the DeepAlign AT.

3. The results of DeepAlign are assessed by the custom-made AT.

4. It sends the results to the MDRR.

5. It also sends the results to the DM.

6. All past docking results of similar receptors are sent to be assessed.

7. The �good� docking results are sent to the DM.

8. The DM combines the results from the ATs, and suggests which protein-ligand pair

to dock as a next step - the suggestion is returned and stored in the MDRR.

9. Finally, the suggestion is presented to the user.

4.3. Main Findings of Primary Research 59

Scenario 2 Filter suitable results for laboratory experiments, based on ligand properties.

Scienti�c Goal: Improve estimation of ligands' viability before conducting wet-lab ex-

periments.

Description: VS simulations contain docking results that can be interpreted as a list

of ligands sorted by how likely they are to bind to a protein. A database with relevant

information about every ligand will be bene�cial for further �ltering the results to get

ligands that are more viable for the wet-lab experiment. One option is to select the

�good� docking results, and consult an external database of molecular properties. This

database would store molecular properties and information about ligands that cannot be

easily calculated from the ligands structure. As in Scenario 1, any existing tool capable of

running VS simulations, e.g. the extended version of Raccoon2, can be anMDE, any tool

that can store and manage docking results, can be an MDRR. Any tool that can assess

how good a docking is can be an AT. For instance a custom-made tool like the one in

Scenario 1 can be created. Any external database which stores molecular properties, such

as the Components database of PubChem [17], can be an ADS. Finally, a custom-made

DM to summarise the results of the particular AT and ADS can be created.

Figure 4.4: Basic diagram of Scenario 2.

Flow of events

1. Raccoon2 is used to execute the docking and then upload the results to the MDRR.

2. The results are �ltered into �good� by a custom-made AT.

4.3. Main Findings of Primary Research 60

3. The �good� results are passed to the DM.

4. The DM also consults an ADS (PubChem) to obtain speci�c ligand properties.

5. Results are grouped and analysed before the DM sends the decision to the MDRR.

6. Finally, the �ltered results are displayed in the Raccoon2 GUI.

Scenario 3 Find o�-target drugs, based on deducing if the binding is on an active site.

Scienti�c Goal: Use molecular docking to �nd o�-target drugs.

Description: An example of an o�-target drug is a heart drug for humans which has

been docked to the active site of a protein of a protozoan (a single-celled organism). By

binding to the active site of this protein the drug inhibits the protein, meaning it stops it

from performing its function. Looking for other drugs that have a similar accidental (so

called o�-target) e�ect on human proteins is very interesting from a biomedical point of

view. In order to do this, a software system will need to use a tool to analyse a binding site

between a ligand and a protein and determine if the binding site is the protein's active site,

therefore deducing if the ligand would be an inhibitor. The active site can be identi�ed

based on previous results, in a �crowd-sourcing� manner, assessing where previous ligands

have docked to a particular protein. As in Scenario 1 and 2, any existing tool capable of

running VS simulations, e.g. the extended version of Raccoon2, can be anMDE, and any

tool that can store and manage docking results, can be an MDRR. An AT to identify

active sites based on previous results is needed. To the best of the candidate's knowledge,

such a tool does not exist, so a custom-made AT would be required. Any database that

contains the structures of proteins with bound ligands, such as the wwPDB [14], can be

used as an ADS. Finally, a custom-made DM to summarise the results of the speci�c AT

and ADS can be created.

Flow of events

1. The docking results are uploaded to the MDRR.

2. A list of protein-ligand pairs is passed to the proposed active site identi�cation tool.

3. This tool searches the MDRR, looking for other ligands that have been docked to

this protein on that binding site. If a certain number of ligand have been bound

to a binding site, this tool can conclude that it is an active site. This is a �crowd-

sourcing� way to see if a binding site is an active site. It then passes this information

to the DM.

4. The DM also receives relevant information from the wwPDB to assist in deciding if

a binding site is an active site.

4.3. Main Findings of Primary Research 61

Figure 4.5: Basic diagram of Scenario 3.

5. The DM makes a decision based on all the information and sends it to the MDRR.

6. Finally, the information should be visualised in the Raccoon2 GUI.

Scenario 4 Verify your docking methodology and learn how to conduct docking.

Scienti�c Goal: Verify that the docking methodology is correct, and/or learn how to

conduct docking correctly from previous docking experiments.

Description: Scientists may get unexpected docking results and may not be able to

determine whether this is because of a mistake in their docking procedure. Consulting a

repository of previous docking results can help determine this. Scientists should be able to

upload all their input and output �les and search the repository for previous results with

the similar input �les. This scenario also enables scientists who are not very experienced to

learn how to conduct docking correctly by observing previous docking experiments. In this

latter case, the same approach would be used, where scientists upload their input �les and

search through the repository of previous results. As in Scenario 1, 2 and 3, any existing

tool capable of running VS simulations, e.g. the extended version of Raccoon2, can be

an MDE, and any tool that can store and manage docking results, can be an MDRR.

Scenario 4 requires �ve ATs. As in Scenario 1, a protein structural alignment tool, such as

DeepAlign, is needed. Another AT should assess whether the structural alignment score

is su�cient to declare two proteins as similar. This could be a custom-made tool that uses

a threshold input by the user. The third AT should be a tool that is capable of comparing

ligands. Any tool that �ts this description can be used, for instance Section 2.3.2 shows

4.3. Main Findings of Primary Research 62

that LIGSIFT is a good tool to �nd structural similarity between ligands. A fourth AT

needs to assess the ligand similarity results, this could be a custom-made tool that uses

a threshold input by the user. The �fth AT should be a tool that compares docking

con�guration �les. This tool would be speci�c to the docking algorithm, and in the lack

of an existing solution, a custom-made tool could use a user-provided threshold to assess

whether the con�guration of two docking experiments is similar. Finally, a custom-made

DM to summarise the results of the ATs can be created.

Figure 4.6: Basic diagram of Scenario 4.

Flow of events

1. Raccoon2 is used to run a VS and upload docking input and output to the MDRR.

2. Similarly to Scenario 1, the MDRR sends the receptor pairs to the DeepAlign AT.

3. The results of DeepAlign are assessed by the custom-made AT.

4. This AT sends the results to the MDRR.

5. It also sends the results to the DM.

6. The MDRR sends ligand pairs to the LIGSIFT AT.

7. The results of LIGSIFT are assessed by the custom-made AT.

8. This AT sends the results to the MDRR.

9. It also sends the results to the DM.

10. The MDRR sends con�g �les used by similar receptors and ligands, to a custom-

made con�g �le comparison tool.

4.3. Main Findings of Primary Research 63

11. The con�g �le comparison AT sends the results to the DM.

12. The DM makes a decision based on all the information and sends it to the MDRR.

13. The decision is reported back to the Raccoon2 GUI.

Scenario 5 Compare docking results of di�erent docking tools.

Scienti�c Goal: Compare results of a docking between the same ligand and receptor,

but with a di�erent tool.

Description: Scientists often need to compare results from di�erent docking tools. If

there is a signi�cant di�erence in the results of two docking tools then one of the tools

may not be accurate for that example. Comparing results of di�erent tools will help

scientist decide which tool to use. As in all previous scenarios, any existing tool capable

of running VS simulations, e.g. the extended version of Raccoon2, can be an MDE.

However, Raccoon2 provides docking with AutoDock Vina only, so this scenario would

require at least one more MDE in order to obtain a repository with docking results of

more than one docking tool. For instance, the web application DOCK Blaster [202] which

uses the docking tool DOCK can be used as the second MDE. The choice of these tools

is irrelevant for the framework. As in the previous scenarios, any tool that can store and

manage docking results, can be an MDRR. The AT in Scenario 5 could be any tool that

understands the output format of multiple docking tools (in this example AutoDock Vina

and DOCK). This tool would provide a result of the comparison of two di�erent output

formats. Depending on the docking tools in question, a custom-made AT may need to be

developed. Finally, just as in the previous scenarios, a custom-made DM is needed.

Flow of events

1. Raccoon2 and DOCK Blaster are used to run a VS and upload results to the MDRR.

2. The MDRR selects past results with the same input �les, but with a di�erent docking

tool and sends them to the custom-made docking-result comparison AT.

3. The results from this comparison are passed to the DM.

4. After summarising the comparison results, the DM sends the decision to the MDRR.

5. The decision is reported to the GUI of Raccoon2 (if the same user runs the scenario

there would be no need to send it to DOCK Blaster).

4.4. Conclusion 64

Figure 4.7: Basic diagram of Scenario 5.

4.4 Conclusion

This chapter outlined the research methodology and the main �ndings of the primary

research. The primary research included interviews with �ve biomedical scientists which

were used as a basis for gathering requirements for a system that would store docking

results and associated metadata. Five novel scenarios emerged as a result of the interviews

and were described in this chapter. The similarities among these scenarios were used to

de�ne the high-level description of a conceptual framework which consists of �ve elements

(MDE, MDRR, AT, ADS, and DM) and the interfaces between them. The remaining

segments of the research methodology will be covered in the following two chapters.

Chapter 5

Main Findings of Secondary Research

5.1 Introduction

The �rst segment of the study, as described in the previous chapter, showed that the

framework can be used for the 5 novel scenarios. The second segment aims at determining

whether the framework would have been useful for describing existing systems. If it could

have been used for a large number of existing examples, then one can assume that the

framework can be used in general, for any system (that is, any system that uses previous

docking results). This chapter shows a literature review of 14 existing systems and a

re�ection of how the basic diagram of the framework could have been used to describe

them. Existing environments for VS can be divided into VS pipelines (6 examples shown

here), and work�ow-based docking systems (4 examples). An additional group of existing

systems that do not use VS or docking, referred to as docking-equivalent systems, can also

be described with the basic diagram of the framework (4 examples).

5.2 Veri�cation of high-level view with existing systems

VS pipelines are systems that contain a set of scripts or tools to be used in a particular

order. These pipelines can be set up in order to explore the interaction of a particu-

lar molecule and are usually not used through science gateways. VS pipelines consist

of: methods to prepare the input �les for docking, a docking algorithm, a procedure to

store the docking results, and methods to further process the docking results. Work�ow-

based docking systems use scienti�c work�ow management systems to de�ne work�ows

which: prepare the docking input �les, conduct the docking using a docking algorithm,

and analyse the docking results or provide further calculations. They include storage of

65

5.2. Veri�cation of high-level view with existing systems 66

the docking results either through the work�ow management system, or by providing a

custom-made storage layer. The work�ow-based docking systems are usually accessed via

science gateways. The element types de�ned in the basic diagram of the framework are

speci�c for systems that use docking. Docking-equivalent systems use a di�erent type of

bioinformatics tools and may or may not use work�ows. This section will show that they

provide elements that can be viewed as equivalent to the framework's element types.

5.2.1 Virtual screening pipelines

A total of 6 VS pipelines are presented in this section. A short title, description, elements

that belong to the framework's element types, and a diagram are shown for each example.

Title: Docking and MM/GBSA rescoring pipeline.

Description: Zhang, Wong, and Lightstone (2014) [203] present a drug discovery pipeline

composed of docking and Molecular Mechanics / Generalised Born Surface Area (MM/G-

BSA [204]) rescoring. Their system includes a pre-docking preparation step, docking with

a tool called VinaLC [205] on an HPC cluster, followed by rescoring of the top 20 poses for

each ligand-receptor complex. They describe the speci�c parameters and programs used

in the steps that prepare the receptor and the ligand for docking, and the parameters for

the docking itself. These two sets of steps form an MDE. The user can upload receptor

and ligand �les, the �les are prepared, and docking is conducted. The top 20 poses of each

docked ligand are stored after a particular post-docking step adds non-polar hydrogen

atoms to them. These ligands are stored in one PDB �le together with the correspond-

ing receptor. This storage represents a type of MDRR with relatively limited capabilities

based on storing �les on a �le system. The energies between the ligand and receptor are

rescored using the MM/GBSA method and the top 20 docking poses are reranked. The

rescoring tool is one AT and the reranking represents another AT (Figure 5.1).

MDE: Set of tools to prepare the receptor and ligand, and run docking with VinaLC.

MDRR: Post-processing and storing of top 20 poses of each docked ligand.

ATs: Rescoring and reranking.

Title: Docking, MD and MM/GBSA pipeline to analyse Nel�navir.

Description: Xie, et al. (2011) [206] have developed a pipeline to �nd the o�-target

activity of Nel�navir using docking, MD and MM/GBSA calculations. This pipeline begins

with a pre-docking step using the binding site comparison tool called SMAP [207]. The

5.2. Veri�cation of high-level view with existing systems 67

Figure 5.1: Basic diagram of Zhang, Wong, and Lightstone (2014)

results of it are used in the next step where the putative targets are docked to Nel�navir

using two docking tools: Sur�ex [208] and eHiTs [209]. These two steps form an MDE.

A set of top ranked receptors undergo detailed docking and some of them are further

analysed using MD simulations and MM/GBSA energy calculations. This step represents

an AT. The results of the MD simulations are further processed when RMSD is calculated

between superimposed structures, this additional step is another AT. They do not store

the docking results or any other output (Figure 5.2).

Figure 5.2: Basic diagram of Xie, et al. (2011)

MDE: Pre-processing using SMAP and docking using Sur�ex or eHiTs.

ATs: MD simulations and MM/GBSA energy calculations, and RMSD analysis.

Title: DOVIS 2.0.

Description: Jiang, et al. (2008) [118] present DOVIS 2.0, a system that uses AutoDock

4 to run large-scale VS on Linux clusters. They use Perl scripts to control the �ow of

events, compute energy grids, and link external scoring programs to DOVIS 2.0. A run

5.2. Veri�cation of high-level view with existing systems 68

includes two sequential steps. Firstly, a directory with the needed parameter �les (either

generated by default or copied from an existing project) is created. Then, the energy

grids required for AutoDock are computed before starting the parallel docking process on

a cluster with a PBS or LSF scheduler. This represents an MDE element. The docked

ligand-receptor complexes are scored and top-ranking results saved as �nal output. The

storage system, a type of MDRR, seems to be rudimentary. Users can provide a wrapper

script of a third-party scoring algorithm in order to rescore the docked ligands. After

rescoring, a separate clustering algorithm is used to cluster the docked ligand poses based

on this additional score. These two steps are two ATs (Figure 5.3).

Figure 5.3: Basic diagram of Jiang, et al. (2008)

MDE: Pre-processing and docking using AutoDock 4.

MDRR: Rudimentary (not enough information).

ATs: 3rd party rescoring, and hierarchical clustering.

Title: Generic framework for VS.

Figure 5.4: Basic diagram of Glaab (2016)

Description: Glaab (2016) [210] presents a review of current open-source programs that

can be used in a VS pipeline. Based on it, he produces a generic framework for VS which

includes the following elements: data collection, pre-processing, screening, and selectivity

and Absorption, Distribution, Metabolism, and Excretion, Toxicity (ADMETox) �ltering.

The data collection element can be composed of external data sources used to acquire the

input �les for the VS simulation, such as wwPDB, or ZINC. The pre-processing step can

5.2. Veri�cation of high-level view with existing systems 69

include quality control, structure pre-processing, or compound library pre-�ltering. The

third element, screening, can be viewed as receptor-based (e.g. docking with AutoDock

Vina) or ligand-based (e.g. similarity search with Open Babel [211]). The pre-processing

and screening steps together represent an MDE. An MDRR is not described in Glaab's

framework. Instead, the fourth and last element in his framework, selectivity and ADME-

Tox �ltering, represent a broad group of ATs. It can contain reverse screening, ADMETox

prediction, or an expert system for ADMETox �ltering. Glaab only describes these ele-

ments and provides a Docker container with installed tools and a rudimentary script to

run AutoDock Vina with example ligands and receptors (Figure 5.4).

MDE: Pre-processing and screening.

ATs: Selectivity and ADMETox �ltering.

Title: VS pipeline to analyse the Neuraminidase of In�uenza A and B virus N1.

Figure 5.5: Basic diagram of D'Ursi, et al. (2009)

Description: D'Ursi, et al. (2009) [212] describe a VS simulation (with AutoDock as

docking tool) using 3D structures of the in�uenza A and B virus N1 neuraminidase and

ligand dataset from the DUD dataset [66]. They provide a semi-automated pipeline for

VS and result processing which integrates the docking tools with analysis tools using

Perl scripts. The pipeline begins with preparation of input �les. It converts �les into

appropriate formats and automatically prepares the needed docking parameter �les. Then,

the pipeline runs the docking experiments on a PBS Linux cluster. These steps represent

an MDE. When the docking is completed, the pipeline parses the results to �nd the

best ligands. The backbone of their VS pipeline is a MySQL database where input and

output from simulations and analysis tools are stored. The docking energy, docking cluster

population, and atomic coordinates of the docking results are stored in the database, which

is a type of an MDRR. In addition to this processing step, a tool is used to �lter the ligands

5.2. Veri�cation of high-level view with existing systems 70

with docking energy above a �xed threshold. The threshold-based �ltering step represents

an AT. A second tool is used to prepare the coordinates of the ligand-protein complex and

analyse the interaction with LIGPLOT [213] which represents a second AT. The LIGPLOT

output �les are stored in the database and are accessible. Finally, a target-speci�c �lter is

applied in order to select compounds with speci�c patterns. This is a third AT. A small

set of ligands are returned to the user as �nal results (Figure 5.5).

MDE: Preparation and docking with AutoDock.

MDRR: MySQL database.

ATs: Energy threshold-based �ltering, LIGPLOT, and target-speci�c �ltering.

Title: Docking using cloud computing on Microsoft Azure.

Description: Kiss, et al. (2014) [124] have developed a Windows-Azure-based cloud

computing solution for running docking simulations (more details in Chapter 2). Their

solution includes two scenarios with AutoDock 4 and a third with AutoDock Vina. They

have developed a small self-contained .NET bundle to be installed on the user's computer,

which connects to the Windows Azure Cloud where the docking is executed in parallel.

This small desktop application enables users to upload the input �les, con�gure the cloud

instances and visualise the docking results. It represents the MDE. The results of the

docking are stored on the cloud and can be downloaded to the user's computer using the

small desktop application through a rudimentary version of an MDRR (Figure 5.6).

Figure 5.6: Basic diagram of Kiss, et al. (2014)

MDE: A .NET desktop application bundle.

MDRR: Cloud and local storage of docking results.

5.2.2 Work�ow-based docking systems

Work�ow-based docking systems prepare the docking input �les, conduct the docking using

a docking algorithm, and analyse the docking results with the help of scienti�c work�ows.

5.2. Veri�cation of high-level view with existing systems 71

The same format is used to describe 4 existing work�ow-based docking systems.

Title: AutoDock Gateway based on WS-PGRADE/gUSE.

Description: Farkas, et al. (2015) [214] present an AutoDock gateway for docking in

cloud systems. They use the WS-PGRADE/gUSE technology and create two work�ows

for AutoDock 4 and a third work�ow for AutoDock Vina. Through a WS-PGRADE portal,

users can provide input �les required for the AutoGrid and AutoDock steps of the �rst

work�ow which runs AutoGrid. The second work�ow assumes AutoGrid has been run by

the users on their computer and requires them to upload the remaining input �les only.

The third work�ow requires uploading the AutoDock Vina input �les. The work�ows can

be run on a cloud using WS-PGRADE/gUSE and the CloudBroker platform. These steps

represent an MDE. The results of the docking are stored on the gUSE server in the typical

manner that WS-PGRADE/gUSE stores work�ow results. Since only the creator can view

their own work�ow results and they cannot be used for an additional calculation directly,

this represents a relatively simple type of an MDRR (Figure 5.7).

Figure 5.7: Basic diagram of Farkas, et al. (2015)

MDE: WS-PGRADE portal with 3 work�ows.

MDRR: The classic WS-PGRADE/gUSE �le storage.

Title: ProSim Gateway.

Description: Kiss, et al. (2010) [179] implemented the ProSim gateway, a gateway

for docking and MD simulations based on WS-PGRADE/gUSE. The gateway includes

a complex work�ow consisting of four phases. Phase 1 includes receptor preparation

steps such as solvation and charge neutralisation, energy and charge minimisation, and

validation using the Molprobity [215] and GROMACS [104]. Analogous steps are used in

Phase 2 to prepare the ligand. Phase 3 includes de�nition of grid space docking parameters

and related steps required for docking using AutoDock. This phase produces ranked

conformations by the lowest binding free energy. The user can visualise the results or they

can be used by additional tools in Phase 4. The �rst three phases represent an MDE.

5.2. Veri�cation of high-level view with existing systems 72

Figure 5.8: Basic diagram of Kiss, et al. (2010)

The visualisation is done using a separate portlet and the KiNG visualisation tool [216]

which can be viewed as a separate AT. The fourth and �nal phase re�nes the ligand-

receptor complex using MD simulations which represents an AT. The traditional WS-

PGRADE/gUSE storage system which stores the work�ows, input and output results is

utilised in ProSim. This represents a basic MDRR element (Figure 5.8).

MDE: Preparation of receptor and ligand, docking with AutoDock.

MDRR: The classic WS-PGRADE/gUSE �le storage.

ATs: Visualisation with KiNG and additional MD with GROMACS.

Title: AMC Docking Gateway.

Description: Jaghoori, et al. (2015) [116] describe the Docking Gateway at AMC, Uni-

versity of Amsterdam. The Docking Gateway uses AutoDock Vina as the docking engine

and includes a front-end where the user can upload the input items: receptor, ligands and

AutoDock Vina con�guration �le. The status of submitted jobs can be monitored from

the front-end, as well as a visualisation of the docking results of completed jobs. This

represents a type of MDE. Basic provenance information is stored about the processing

actions including information about the users, their data and the applications (di�erent

implementations of AutoDock Vina based on three infrastructures: gUSE, DIRAC [217],

or Hadoop [123]). The management and maintenance of this information is done by a

component called Processing Manager. This can be viewed as an MDRR. The input �les

attached by the user are split and parallelised, the docking tool is run, and then they are

merged. Apart from monitoring and visualisation, no additional tools interact with the

docking results (Figure 5.9).

MDE: Uploading input �les for AutoDock Vina.

5.2. Veri�cation of high-level view with existing systems 73

Figure 5.9: Basic diagram of Jaghoori, et al. (2015)

MDRR: Management of provenance and user data.

Title: MoSGrid Portal.

Description: Krüger, et al. (2014) [146] have developed MoSGrid, a portal-based sci-

ence gateway that uses WS-PGRADE/gUSE technology to run molecular simulations from

three domains, including docking, on a computing grid (more details about MoSGrid are

provided in Chapter 2). The docking section of MoSGrid enables users to employ the

CADDSuite [147], AutoDock, and FlexX [83] docking tools to run docking experiments

through a WS-PGRADE portal. This forms an MDE. MoSGrid contains elaborate data

storage components which store raw, preliminary, and result data in the distributed �le

system XtreemFS [218]. These components utilise the custom-made MSML [143] descrip-

tion language for transfers, conversions and analysis of data �les. MoSGrid includes a

simulation repository based on gUSE and the UNICORE [219] Metadata Service (which

is based on Apache Lucene). Within the simulation repository, the work�ow �les are con-

verted to MSML and extended with docking results and other metadata which is then

used for indexing in order to enable searching. The structures of the data �les are stored

in a repository where they are converted from the original PDB format to MSML. These

components represent a robust MDRR. The work�ows can be monitored as in all WS-

PGRADE/gUSE systems. On top of that, MoSGrid provides a visualisation tool (Chem-

Doodle [220] for 3D structures and Dygraphs for 2D plots). This represents an AT. The

docking work�ow includes four steps: target preparation, ligand preparation, docking, and

rescoring. The rescoring step represents an additional calculation of the docking results,

so it can be viewed a separate AT (Figure 5.10).

MDE: Preparing target and ligand, docking with CADDSuite, AutoDock, or FlexX.

MDRR: MSML format stored in XtreemFS, as well as JSON for indexing with Lucene.

ATs: ChemDoodle or Dygraphs visualisation, and rescoring the docking.

5.2. Veri�cation of high-level view with existing systems 74

Figure 5.10: Basic diagram of Krüger, et al. (2014)

5.2.3 Docking-equivalent systems

Docking-equivalent systems do not use a docking per se, but rather an equivalent type

of bioinformatics tool. Their elements can be classi�ed into groups equivalent to the

framework's element types. A total of 4 systems are described.

Title: PoLi.

Description: Roy, Srinivasan, and Skolnick (2015) [221] describe the pipeline PoLi. PoLi

includes several pre- and post-LBVS calculations. At the start of the pipeline the user

uploads the 3D structure of the receptor. If the structure is unknown the user may upload

the sequence and the TASSER-VMT [222] tool will be used to model the 3D structure. In

the next step, two di�erent approaches are used to detect the ligand binding site: structural

alignment of the target receptor and other proteins in the PDB using TM-align [25], and

detecting pockets on the target protein using ConCavity [223]. The predicted pockets are

then compared to known ligand binding sites using the tool APoc [224]. The results are

template ligands which are then pruned before running LBVS simulations. Two methods

are used in the LBVS step, the �rst is the shape-based ligand similarity tool LIGSIFT,

and the second is a �ngerprint-based calculation using Open Babel [211]. This step does

not use docking simulations, but it is conceptually analogous, so it can be de�ned as

an MDE-equivalent. The de�nition of AT assumes that some tool is used to process

the docking results in addition to any pre-docking tools. Therefore, in this analogous

example, all the pre-LBVS steps would be categorised together with the LBVS step into

one MDE-equivalent element. An additional step to analyse the LBVS results is used in

PoLi, whereby a fusion technique to combine the results of the two LBVS methods has

been de�ned. This represents an example of an AT (Figure 5.11).

MDE: Preparations for LIGSIFT and OpenBabel LBVS.

5.2. Veri�cation of high-level view with existing systems 75

Figure 5.11: Basic diagram of Roy, Srinivasan, and Skolnick. (2015)

ATs: A technique for fusion of results, and ranking.

Title: WeNMR Portals.

Description: Wassenaar, et al. (2012) [225] describe WeNMR a large portal-based system

which contains a separate portal for 19 di�erent domains and uses grid computing for the

execution of programs. One of the domains is protein-protein docking using HADDOCK

[226], which can be viewed as analogous to protein-ligand docking. HADDOCK consists

of an initial rigid-body docking followed by a �exible re�nement and scoring process. The

users have 4 types of interfaces to choose from, based on their expertise with HADDOCK.

This represents an element equivalent to the MDE. The progress of the docking can be

followed on the portal's website. Once completed, the results of the docking are stored for a

limited time in a �le-system-based storage facility and can be viewed online or downloaded.

This is an MDRR-equivalent element. WeNMR includes two portals for MD simulations

using AMBER [121] or GROMACS. The AMBER portal requires the user to go through 4

pre-MD steps before starting the simulation: protein optimisation, setting NMR restraints,

setting MD parameters, naming and submitting the calculation. The GROMACS process

starts with force-�eld-speci�c protein topology, then includes solvation and equilibration.

WeNMR includes an interface where users can upload pre-equilibrated proteins before

the GROMACS MD simulation is run. Therefore, the AMBER and GROMACS portals

can be described to have an MDE-equivalent element (Figure 5.12). When a job �nishes

several post-processing steps extract statistics from the result �les for viewing online, then

clean and store the job �les for download.

MDE: Steps to prepare and run HADDOCK, AMBER, or GROMACS.

MDRR: File-system-based shared storage.

Title: GridMACS.

Description: Chia et al. (2010) [103] present GridMACS a grid-computing-based portal

5.2. Veri�cation of high-level view with existing systems 76

Figure 5.12: Basic diagram of Wassenaar, et al. (2012)

for running GROMACS MD simulations. Users can upload the required input �les and

the GROMACS executable �le and submit a job to the grid. This is an equivalent element

to the MDE. When the job is completed, its output is sent to a component called File

Manager. This element includes a �le system where the results of the MD simulations are

stored. Users can interact with the �les, for instance they can download, upload, rename,

or delete �les. This is equivalent to an MDRR (Figure 5.13).

MDE: Uploading �les for MD simulations with GROMACS.

MDRR: File-system-based storage.

Figure 5.13: Basic diagram of Chia, et al. (2010)

Title: iPortal (the new version of the Swiss Grid Proteomics Portal).

Description: Kunszt, et al. (2015) [227] have developed iPortal which uses proteomics

data analysis methods. Three WS-PGRADE work�ows called �search�, �quanti�cation�,

and �SWATH� are included. The work�ows can be parametrised before submission. The

quanti�cation work�ow makes use of results of the search work�ow and additional infor-

mation from historical reference data. In this respect, the search work�ow can be viewed

as the main work�ow and as such equivalent to an MDE element. An openBIS-based [228]

5.2. Veri�cation of high-level view with existing systems 77

component manages all the data which is stored in a directory structure and registered

in an openBIS database. The �les can be accessed over the web interface or retrieved

using the openBIS API. Metadata, links between the data and metadata, or tracking data

provenance is provided by the openBIS element. This is equivalent to the MDRR element.

The results of the search work�ow are stored before they (along with other information)

are used by the quanti�cation work�ow. Thus, the quanti�cation work�ow can be viewed

as an AT. The search work�ow requires access to reference data, usually a subset of the

external and publicly available database UniProt [229]. The data are loaded into the

openBIS storage system via an element called BioDB. BioDB regularly downloads data

from UniProt providing versioning information and the required data enrichments. This

element is equivalent to the ADS. An analogous element called PersonalDB allows users

to upload their custom data source, which, if used, represents another ADS (Figure 5.14).

MDE: The preparation and conducting of the �search� work�ow would be equivalent.

MDRR: Meta-data, provenance and results stored in an openBIS-based system.

AT: The �quanti�cation� work�ow.

ADSs: BioDB and PersonalDB.

Figure 5.14: Basic diagram of Kunszt, et al. (2015)

This section provided a literature review of 14 existing systems divided into VS pipelines,

work�ow-based docking systems, and docking-equivalent systems. For instance, D'Ursi et

al. (2009) [212] have created a VS pipeline. After preparing the input �les and conducting

the docking using AutoDock, they store the results in a MySQL database, and provide

methods for target-speci�c �ltering, �ltering based on an energy threshold, and creating

schematic diagrams of the ligand-receptor complex. In a work�ow-based docking system,

Kiss et al. (2010) [179] prepare input �les, conduct docking, store docking results as

part of the work�ows, and further analyse the docking results by running MD simulations

5.3. Conclusion 78

or visualising them. An example of a docking-equivalent system includes Kunszt, et al.

(2015) [227] which use di�erent proteomics data analysis methods, store the results in a

�le system, and retrieve data from an external data source (UniProt [229]).

5.3 Conclusion

All of the 14 existing systems outlined in this chapter can be described using the high-

level diagram of the framework. Including the 5 novel scenarios obtained from the primary

research, this shows that a total of 19 systems can or could have been developed using the

framework. Furthermore, this literature review shows that even when it is not obvious,

such as with docking-equivalent systems, the idea of the framework could have been used.

This is enough evidence to posit that any novel system that uses stored previous docking

results can be described using the framework. To prove this, three of the 5 novel scenarios

will be described with the more detailed views of the framework which will be introduced

in Chapter 6. Chapter 8 will describe how these three scenarios have been implemented

and tested.

Chapter 6

Low-Level Description of Element

Types and Interfaces

The low-level diagram addresses the lack of an abstract conceptual framework in more

detail. The framework, designed for software systems that use previous docking results, is

independent of the programming language, toolset, or paradigm used. Using the detailed

diagram of the framework can prevent the development of a tool from scratch if an existing

tool can be reused. A tool can be described abstractly (drawn as a component of the

diagram) and compared to other abstract descriptions of existing tools. Furthermore, if

a description of another existing tool does not exist and a software engineer needs to

determine whether the tool will �t the framework, it can be compared to an abstract

description of an element type. This chapter shows the low-level view of the framework

in the form of the diagrammatic, textual and formal descriptions of element types and

interfaces.

6.1 Diagrammatic description of the framework

One should be able to represent any potential speci�c scenario that would use the frame-

work, with this type of low-level detailed diagram. This diagram is a generic model of a

system that uses a docking result repository, showing all element types and all possible

interfaces between them. It is based on the Uni�ed Modelling Language (UML [230])

Component diagram. The element types are drawn as components and the interfaces be-

tween them are the typical �provided� and �required� interface connections. It also features

arrows showing the direction of the �ow of data in the particular interface. The element

types MDE, MDRR, AT, ADS, and DM were described in detail in Section 4.3.3.

79

6.1. Diagrammatic description of the framework 80

Figure 6.1: The diagram of the framework.

The framework has 13 interfaces between these element types (Figure 6.1):

1. user → MDE, provided by the MDE (since the user is not a true component):

allows the user to upload the docking input or additional user input values needed

by another element.

2. MDE → user, provided by the MDE: displays the result of the docking and other

results from the MDRR to the user.

3. MDE → MDRR, provided by the MDE: allows the MDE to send docking results

and other additional data that may be required.

4. MDRR → MDE, provided by the MDRR: allows the MDRR to send results of the

analysis to the MDE.

5. MDRR → AT, provided by the MDRR: enables sending the appropriate input data

to the AT.

6. AT → MDRR, provided by the AT: allows the AT to send results of the execution

to the MDRR, in order to store them and keep track of the progress.

7. AT → AT, provided by the AT: allows one AT to send its results, or other required

data, to another AT.

6.2. Textual description of element types and interfaces 81

8. ADS → AT, provided by the ADS: enables querying the ADS for data, by the AT.

9. ADS → MDRR, provided by the ADS: querying the ADS for data, by the MDRR.

10. AT → DM, provided by the AT: allows an AT to send the results to the DM.

11. ADS → DM, provided by the ADS: enables querying the ADS for data, by the DM.

12. MDRR→ DM, provided by the MDRR: allows the MDRR to send data to the DM.

13. DM→ MDRR, provided by the DM: enables the DM to send results to the MDRR.

6.2 Textual description of element types and interfaces

MDE A tool that takes descriptions of molecules as input, runs molecular docking, and

outputs the results. It can be a bundle of tools, which pre-process the description �les, run

the calculation, and process the results. It could contain a set of shell scripts, a work�ow,

or a set of work�ows. The computing infrastructure it uses is completely independent of

the MDE (Figure 6.2).

MDE interfaces

1. The MDE requires users to send �les describing the ligands, receptors and the con-

�guration �le. The user sends the input �les to the MDE. For example, Raccoon2

is an MDE for VS simulations, and it has a GUI that lets users upload a receptor,

ligands and a con�g �le. The user may send other data that is needed by another

element (the user is not a software component, so this interface cannot be provided

by the user).

2. The MDE provides an interface which displays the results back to the user.

3. The MDE provides an interface in order to deposit the results into an MDRR. All

needed information should be sent including input and output (result) �les.

4. The MDE needs to receive any analysis data or decision made directly from the

MDRR. This requires an interface at the MDRR to send this data over.

MDRR A storage system where the molecular docking results are stored. It should

also store meta-data so that the simulation from the MDE is reproducible. This can be a

database with certain textual data as well as pointers to the path of �les stored in a �le

system, or it could be a document-based NoSQL database where all the �les are stored

inside the database, or something similar (Figure 6.3).

6.2. Textual description of element types and interfaces 82

Figure 6.2: Diagram of the MDE.

Figure 6.3: Diagram of the MDRR.

MDRR interfaces

3. The MDRR requires an interface to read the docking results and other data uploaded.

4. It provides an interface to send the result of the analysis to the MDE.

5. It provides an interface to send stored docking results data, in the needed format,

to an AT.

6. It requires an interface to receive the AT results and keep a record of them.

9. The MDRR requires an interface in order to receive data from an ADS.

12. It provides an interface for sending stored docking results data in the needed format,

to the DM.

13. Finally, it requires an interface to receive the AT results and keep a record of them.

AT The element type AT can be a tool that takes previous docking results from the

MDRR as input, and runs another computation relevant to the particular scenario. It

could take input data from a user sent through the MDE � MDRR, or from an ADS.

It does not conduct docking simulations, but uses previous docking results or the input

�les for previous docking simulations. For instance, two receptors used in two docking

experiments can be compared with a structural alignment tool. The AT can pass the

results onto another AT, a DM, and it may send them to the MDRR (Figure 6.4).

AT interfaces

5. An AT (you can have multiple ATs) requires an interface that enables the MDRR

to send stored docking results data so it can use them as input.

6.2. Textual description of element types and interfaces 83

Figure 6.4: Diagram of the AT.

Figure 6.5: Diagram of the ADS.

6. An AT provides an interface that enables it to send its results to the MDRR to keep

track of them.

7. An AT may provide an interface to send its results to another AT.

8. An AT may require an interface in order to obtain data from an ADS.

10. An AT provides an interface in order to send its results to the DM.

ADS The element type ADS represents a tool, such as a database, that stores relevant

data. An ADS does not store the docking results, but other type of data that is additionally

required in order to analyse previous docking results. It stores data that needs to be

accessed by an AT, DM, or the MDRR. For instance, molecular properties about ligands

can be read from an existing database. A scenario could read data from an external

database, or include a copy of the database as part of the system (Figure 6.5).

ADS interfaces

8. An AT may need to use data stored in an ADS. The ADS should provide access to

the data it stores, so that the AT can access it from its code.

9. It needs to provide access to its data for the MDRR as well.

11. Similarly, it needs to provide access to its data for the DM.

DM A tool (or bundle of tools) which make a decision based on results from an MDE

and/or an AT. It gets the results directly from an AT, and can get more information from

the MDRR. It may need to obtain additional information from the user (Figure 6.6).

6.3. Formal description of element types and interfaces 84

DM interfaces

10. The DM requires an interface to receive results from one or more ATs.

11. The DM may require an interface de�ned at the ADS in order to obtain data from

an ADS.

12. The DM requires an interface to receive previous docking results and other data

from the MDRR.

13. The DM provides an interface to send the decision made to the MDRR.

Figure 6.6: Diagram of the DM.

This concludes the low-level description of the framework with a detailed diagram and

textual description of the element types and interfaces.

6.3 Formal description of element types and interfaces

To provide more objective means to compare an asbtract view of an existing tool with an

element type, this section provides a formal description using Z notation (the rationale

for using Z was outlined in Chapter 2). Using formal methods in the �eld of molecular

docking is limited to research e�orts such as [231], which does not utilise the popular Z

notation. The formal description of element types and their interfaces has been written

in CZT Eclipse [232], which automatically checks that the code conforms to the Z syntax.

The full formal description of the framework is provided in Appendix B. It begins with a

freetype and set de�nitions, assuming that there is a set CHAR which represents allowed

characters. Regardless of the format that the input and output �les use, they can be viewed

as containing strings of characters. Multiple �les are modelled using the set operator (P).
A mapping of the tuple ligand-receptor-con�g-date to a docking result is modelled as a

previous docking result, PREVIOUS RESULT (page 162).

6.3. Formal description of element types and interfaces 85

6.3.1 Element types

MDE An MDE enables the execution of a docking simulation. A docking process re-

quires a ligand and a receptor as input, and produces a docking result as output. De-

pending on the docking tool or use case, it may or may not require a con�guration �le

(or con�guration parameters). This is modelled by dockingWithoutCon�g, dockingWith-

Con�g, Docking, and MolecularDockingEnvironment in Appendix B, pages 162 - 163. An

excerpt of the formal description showing the segment related to the MDE is shown in

Figure 6.7.

Figure 6.7: Excerpt of the Z notation describing the MDE element type.

6.3. Formal description of element types and interfaces 86

MDRR The MDRR should store data about the relation between a ligand-receptor-

con�g-date tuple, and a docking result. It may include the decision made by a DM.

The model is a minimal MDRR, acknowledging that some scenarios may require storing

additional data such as author or version of docking tool used. They could be de�ned in a

similar way to ligand or receptor, and included in the de�nition of repository. This would

be re�ected in all the interfaces to and from the MDRR. However, to compare a formal

description of an existing tool to this abstract description of an MDRR, only the minimal

data stored is required, as modelled in MolecularDockingResultRepository, Appendix B,

page 164.

AT The AT is perhaps the most generic element type. The only restriction on the

calculation it provides is that it is not another docking simulation. Di�erent sub-types of

ATs can be de�ned based on the type of input. Thus, an AT can use previous docking

results (from an MDRR), data source information (from an ADS), additional tool result

(from another AT), or a combination of them (which may also include user input). This

is modelled by the axiomatic de�nitions in Appendix B, pages 165 - 168. The fact that

an AT is de�ned by one of these types is shown in the schema AdditionalTool.

ADS The ADS is also modelled in a very generic manner. It is a database that stores

data which is relevant for the system. This is modelled as a relation between a generic

data source input and a resulting data source information. The very simple Additional-

DataSource in Appendix B, page 169 shows this.

DM The purpose of the DM is to summarise the results it has received from ATs, the

MDRR, or the user. The way that sub-types of DMs have been identi�ed is similar to the

identi�cation of sub-types of ATs. Based on the combinations of inputs, there are several

sub-types of DMs as shown in Appendix B, pages 169 - 171. The fact that a DM is de�ned

by one of these types is shown in the schema DecisionMaker.

6.3.2 Interfaces

Interface 1: User, MDE This interface is modelled by specifying the user-provided

text �les as input variables (using the su�x �? �), Appendix B, page 163.

Interface 2: MDE, User This interface is modelled by a schema showing that the

docking results can be viewed by the user, as long as they exist and they are output

variables (su�x �! �), Appendix B, page 163.

6.3. Formal description of element types and interfaces 87

Interface 3: MDE, MDRR An MDE can insert one or more docking results, as

modelled by two schemas in Appendix B, page 164. The ∆ operator signi�es that there

will be a change, which is detailed by the override operator (⊕). A new item will be

inserted, unless the ligand-receptor-con�g-date tuple is the same as an existing one, in

which case the MDRR will be updated.

Interface 4: MDRR, MDE Interfaces 4, 5, and 12 represent the selection of data

from the MDRR into the MDE, AT, or DM respectively. The repository is modelled as

a relation, so the appropriate domain (C) and range restriction (B) operators are used.

The former is used to select a tuple based on the left-hand side of the relation (when the

ligand, receptor, con�g, or date is known), and the latter based on the right-hand side

(when the docking result is known). A total of 32 di�erent combinations of selection types

are outlined in the schema SelectMolecularDockingResults, Appendix B, page 165. The

same schema models interfaces 4, 5, and 12.

Interface 5: MDRR, AT Please see description of Interface 4. Interface 5 is further

described in AdditionalTool by the input variables previousDockingResults and userInput

(which would be passed via the MDRR).

Interface 6: AT, MDRR This interface can be modelled similarly to the way that

Interface 3 models the MDE inserting docking results into the MDRR. In order to do this,

the formal description of the MDRR would need to include results from an AT.

Interface 7: AT, AT Additional tool results of another AT are de�ned as an input vari-

able in the AdditionalTool schema showing that an AT can receive results of another AT.

This action is described in more details in ReadAnotherAdditionalToolResults (Appendix

B, pages 168 - 169).

Interface 8: ADS, AT An AT can use data from the ADS by selecting it accordingly.

This action is modelled by the schema SelectAdditionalDataInfo which shows that data

from the ADS can be selected (Appendix B, page 169). The right-hand side of the repos-

itory (data source info) is selected based on the value of the left-hand side (data source

input). The domain restriction (C) is used to select the items stored in the ADS. The

range function, ran() is used to obtain the right-hand side values for the selected items.

6.4. Conclusion 88

Interface 9: ADS, MDRR This interface can be modelled similarly to the way that

Interface 3 models the MDE inserting docking results into the MDRR. In order to do

this, the formal description of the MDRR would need to explicitly include results from an

ADS. The schema SelectAdditionalDataInfo shows that data from the ADS can be selected

(Appendix B, page 169).

Interface 10: AT, DM The fact that the additionalToolResult is de�ned as an input

variable in DecisionMaker (Appendix B, 171) is su�cient to model an interface between

an AT and DM. If a sub-type of DM requires results from an AT as input, they can be

received.

Interface 11: ADS, DM Please see Interface 8. The same schema is used to model

the interface that the DM uses to select data from the ADS.

Interface 12: MDRR, DM Please see description of Interface 4. Interface 12 is further

described by the fact that the userInput variable in DecisionMaker is an input variable

(which would be passed through the MDRR).

Interface 13: DM, MDRR A new decision from the DM can be inserted into the

MDRR, or an existing one can be updated. This is modelled with the help of the override

operator (⊕) in InsertUpdateDecisionRepository, Appendix B, page 164.

6.4 Conclusion

This chapter proposed an abstract conceptual framework which is independent of the

programming language, toolset, or paradigm used by a software system. The framework

can be used to describe systems that use previous molecular docking results. It provides

three main functionalities. Firstly, a scenario can be described using the basic diagram of

the framework in order to determine whether it could be implemented using the framework.

Secondly, the use of the framework will create a library of abstract descriptions of existing

tools. When seeking an existing tool to use in a system, the abstract description of the

element type can be compared to the library to �nd a candidate existing tool. Thirdly, it

includes abstract descriptions of generic element types. An existing tool can be described

in the same format and compared to the appropriate element type, to �nd out if it can

be used in an implementation of a system. The three uses of the framework are further

described as the techniques of the methodology in Chapter 7.

6.4. Conclusion 89

The research methodology that led to the construction of the framework was outlined in

Chapter 4. This included two types of interviews (primary research), and a literature

review of existing systems that store docking results (secondary research - Chapter 5).

It resulted in a high-level view of the framework which can be used in 5 novel scenarios

and could have been used in 14 existing systems from the literature. Furthermore, a

low-level view composed of a diagrammatic, textual, and formal description of the generic

element types and interfaces of the framework was presented in this chapter. Chapter 7

proposes a speci�c software development methodology for using the framework. Chapter

8 evaluates the bene�ts of the framework and methodology, by using them to develop

prototype implementations of three scenarios.

Chapter 7

Methodology for Developing Systems

that Use Docking Results

7.1 Introduction

The de�nition of the term �methodology� which is used in this chapter is: �A series of

related methods or techniques� (as explained in [233]). Such a methodology can be used

for establishing practices, team rules and conventions. It should be useful when introduc-

ing new people to the process, substituting people, or delineating responsibilities. With

this de�nition in mind, a description of a methodology for developing software systems

that use docking results can be created. The aim of the methodology is to complement

the framework (Chapters 4, 5 and 6) by showing how one can use the framework. The

methodology should clearly state the required roles of the people involved, and the speci�c

sub-projects for which they need to collaborate.

Creating the diagrammatic, textual and formal descriptions of elements and interfaces for

a given scenario will add non-negligible amount of documentation to a methodology. If the

methodology is bulky, complex, and heavy, then using the framework may be too di�cult

to manage. One way to tackle this issue is to create an agile methodology, which will be

light-weight even once the abstract descriptions of the elements and interfaces have been

included.

In software engineering, agile methodologies assume that customers are actively involved.

In the case of software systems that use previous docking results, the life scientists who

are the end-users, should be actively involved. Agile methodologies focus on delivering

working software on short intervals. The methodology described in this chapter includes

several design and planning steps prior to coding, in order to ensure reusability of domain-

90

7.2. Role-Deliverable-Milestone diagram 91

speci�c elements, and an easier development of multiple scenarios.

Several authors have been writing about agile methodologies since the inception of the term

in the early 2000s, when some of most in�uential authors created the Agile Manifesto [234].

This thesis focuses on the work of Alistair Cockburn, a co-creator of the Agile Manifesto.

His work was chosen because it is based on a large number of interviews that he conducted

with software project teams. This has resulted in, among others, the Crystal family of

methodologies [235], and the main source for creating the methodology in this chapter

[233].

In [233], he notes that the physical size of the methodology should be kept small by:

providing examples of work products, removing the technique guides (instead of describing

the techniques in detail, simply naming the recommended techniques along with any key

literature), and organising the text by role. The so-called Role-Deliverable-Milestone

pictorial view [233] can be used to organise the methodology by role. A version of this

pictorial view is used to describe the methodology in the remainder of this chapter.

7.2 Role-Deliverable-Milestone diagram

The Role-Deliverable-Milestone pictorial view of a methodology has been proposed as a

method of minimising methodology bulk, while providing su�cient information for each

role. The central parts of the methodology presented here are the high-level (Figure 7.1)

and low-level (Figure 7.2) Role-Deliverable-Milestone diagrams.

Roles The roles describe the di�erent types of people that should be involved in the

development team. In the methodology proposed in this thesis, they are: Life Scientist,

Bioinformatician, Software Developer, Modeller, and IT Infrastructure Administrator.

Deliverables The deliverables are work products that need to be constructed at various

points in the development process. In this methodology they are: Diagrammatic Descrip-

tion, Textual Description, Formal Description, and Final System Code. The code for

the �nal software system should be divided into the �ve element types of the framework:

MDE, MDRR, ATs, ADSs, and DM.

Milestones Milestones mark an important event. A scenario that uses the framework

would have the following milestones:

7.2. Role-Deliverable-Milestone diagram 92

M1 Diagram start.

M2 Diagram ready for review.

M3 Diagram ready.

M4 Textual description start.

M5 Textual description ready for review.

M6 Textual description ready.

M7 Formal description start.

M8 Formal description ready for review.

M9 Formal description ready.

M10 Software start development.

M10.1 MDE start development.

M10.2 MDRR start development.

M10.3 ATs start development.

M10.4 ADS start development.

M10.5 DM start development.

M11 Software developed.

M11.1 MDE developed.

M11.2 MDRR developed.

M11.3 ATs developed.

M11.4 ADS developed.

M11.5 DM developed.

M12 Software installed/deployed.

M12.1 MDE installed/deployed.

M12.2 MDRR installed/deployed.

M12.3 ATs installed/deployed.

M12.4 ADS installed/deployed.

M12.5 DM installed/deployed.

M13 Software tested and ready.

M13.1 MDE tested and ready.

M13.2 MDRR tested and ready.

M13.3 ATs tested and ready.

M13.4 ADS tested and ready.

M13.5 DM tested and ready.

7.2.1 High-level diagram

The high-level diagram (Figure 7.1) shows which roles should collaborate to create a

particular product. Milestones M1, M2, and M3 should be reached when creating the

deliverable: Diagram (diagrammatic description of the scenario, as speci�ed in the frame-

work). In the �rst iteration, a basic high-level diagram of the scenario will be created.

M1 and M2 should be done jointly by the Life Scientist and Modeller. This can be read

from the full line next to Diagram, between M1 and M2, which is shown in the �rst box

displaying the tasks of the person with role Life Scientist, and the third box showing tasks

for the Modeller. The white circle signi�es that the deliverable Diagram should be started

by these roles.

When milestone M2 is reached, the diagram is ready for review. At this point, the Bioin-

formatician and Modeller can use the abstract basic diagram of the scenario to assess

whether the scenario can be implemented using the framework. The diagram of the sce-

nario can be compared to the abstract basic diagram of the framework (Figure 4.2). This

is the �rst added value of using the framework and this methodology. Concluding that

7.2. Role-Deliverable-Milestone diagram 93

the scenario �ts the framework will �nish the �rst phase of the Diagram deliverable. In

a second phase a detailed diagram of the scenario (derived from the detailed diagram of

the framework in Figure 6.1) can be created. The creation of this diagram �nishes the

Diagram deliverable, indicated by the full black circle. However, the diagrams can be re-

vised at key points in the development, as shown by the dotted lines, a component which

has been added in order to clarify Cockburn's pictorial view. The Diagram deliverable is

not completed yet, and can be altered when creating the Textual Description and Formal

Description of elements and interfaces. Here, a textual list of interfaces, and a formal

description should be created for each element. There are two main uses of these abstract

descriptions.

If the development team searches for an existing tool that could be used, the abstract

description of the element can be compared to a library of already implemented elements

in other scenarios. This can identify a tool that can be reused in order to avoid creating

an element from scratch.

If the team has an existing tool in mind, the team can check whether it can be used in the

scenario. Once a diagrammatic, textual, and formal description of a proposed existing tool

and its interfaces have been created, they can be compared to the abstract descriptions of

the appropriate element type of the framework. This can show whether the existing tool

can be used as an element in the implementation of a scenario.

In the high level Role-Deliverable-Milestone diagram, the coding section has an asterisk

(*) because there is a more detailed description available. The repetition of M11 and M13

indicate the iterative coding process, during which, the diagrammatic, textual, or formal

descriptions of the scenario may be revised (as shown by the dotted lines).

7
.2
.
R
o
le-D

eliv
era

b
le-M

ilesto
n
e
d
ia
g
ra
m

94

Figure 7.1: Role-Deliverable-Milestone diagram (high level).

7
.2
.
R
o
le-D

eliv
era

b
le-M

ilesto
n
e
d
ia
g
ra
m

95Figure 7.2: Role-Deliverable-Milestone diagram (low level)

7.3. Methodology techniques 96

7.2.2 Low-level diagram

The low-level Role-Deliverable-Milestone diagram (Figure 7.2) describes the development

of the �nal system code. For instance, even thought the development of the MDE should

be the �rst element to be developed, during the development of all the following elements,

the MDE can be altered at speci�c times as the dotted lines show. A similar approach is

used for developing elements that belong to the other element types. During the revision

of elements, any missing interfaces can be implemented.

This approach assumes the elements belonging to di�erent element types can be imple-

mented individually and then combined into a working system.

7.3 Methodology techniques

Using the framework assumes additional design and planning activities, which are the main

focus of the high-level Role-Deliverable-Milestone pictorial view. They include creating

abstract descriptions of the entire scenario (using the basic diagram of the framework), as

well as a detailed diagrammatic, textual, and formal description of the elements and their

interfaces. In summary, following the methodology which uses the framework provides

these three techniques:

1. The basic diagram of the entire scenario can be used to determine whether the scenario

�ts the framework.

2. The abstract description of an element can be used to determine whether there is a

similar already implemented element that can be reused.

3. The abstract description of a prospective tool can be used to determine whether it can

be used as an element in a scenario.

7.4 Using the methodology for the implementations

The di�erent roles speci�ed in the methodology represent an ideal situation. In the im-

plementations of the three scenarios, the candidate took the roles of Bioinformatician,

Modeller, and Software Developer; the role of Life Scientist was taken by Hans Heindl

and Pamela Greenwell (PhD Candidate and Principal Lecturer in Biomedical Sciences at

UoW, respectively); and the role of IT Infrastructure Administrator was taken by Juha

Hemminki and Hannu Visti, cloud administrators at UoW.

7.5. Conclusion 97

The abstract descriptions (milestones M1 - M9) were created after several meetings of the

team. The abstract descriptions of elements draw inspiration from one another and can be

derived from the abstract descriptions of the appropriate element type. All three scenarios

use the cloud-enabled version of a docking tool (Chapter 3) as MDE. Its implementation

(milestones M10.1 - M12.1) included input from all above-mentioned roles.

In an internal presentation, the Life Scientists provided feedback and suggestions for im-

provement in the way the tool reported on ongoing computation (equivalent to milestones

M12.1 - M13.1). After a second iteration of coding (M10.1 - M12.1) the Life Scientists

were involved in another feedback session and suggested the inclusion of default input

�les to improve usability (M12.1 - M13.1). This was implemented in a third iteration

representing milestones M10.1 - M12.1. The three scenarios used a variation of the same

custom-made MDRR, as it will be elaborated in the next chapter. The de�nition of the

database structure included multiple inputs from Life Scientists, representing milestones

M12.2 - M13.2. A similar approach was used to create the speci�c ATs and the DM.

7.5 Conclusion

This chapter has introduced a light-weight agile methodology which contains the dia-

grammatic, textual, and formal description of elements and interfaces, as speci�ed in the

framework. In line with the guidelines for creating small and light methodologies, shown

in [233], three examples of describing a scenario using the recommended abstract descrip-

tions of elements and interfaces will be provided in this thesis as examples of work prod-

ucts. This methodology does not have a detailed description of the concepts used, such

as the Z notation. In order to write the methodology by role, so that each team member

undertaking a role will know what tasks are required from them, a version of the Role-

Deliverable-Milestone pictorial view was used. As shown by the low-level and high-level

Role-Deliverable-Milestone pictorial views, this methodology includes active involvement

of the end-users - the life scientists.

The methodology speci�es three techniques which will be justi�ed in Chapter 8 by imple-

menting three scenarios using the framework and methodology. It will focus on showing

how the three techniques mentioned above can be used in real-life scenarios.

Chapter 8

Evaluation

8.1 Introduction

The proposed framework (Chapters 4, 5 and 6) and methodology (Chapter 7) will be

evaluated in this chapter. In order to show the usefulness of the framework, three of the

�ve scenarios obtained from the interviews are implemented.

Following the methodology means using the three techniques described in Section 7.3.

For each of the three scenarios, the problem was split into the de�ned elements (MDE,

MDRR, AT, ADS, and DM), and interfaces between them. The abstract descriptions

of each required element were created. Often the formal description was derived after

analysing the diagrammatic description of the element.

The abstract description of the entire scenario can be compared to the abstract description

of the framework to determine whether it �ts the framework. By browsing through a

library of abstract descriptions of already implemented elements, same or similar elements

from other scenarios can be examined. If an already implemented element �ts the new

scenario, it can be reused. As the implementations that follow will show, practically the

same code of an implemented element can be used in a di�erent scenario. Finally, if one

is not certain whether an existing tool can be used in the implementation, its abstract

description can be compared to abstract descriptions of element types. This can show if

the tool can be used.

The coding of each scenario was guided by the abstract descriptions. An overview of

the coding of each scenario will be provided in this chapter. Using the framework and

methodology should make the implementation of the scenarios more reliable, less error-

prone, and easier to use. The proper use of the abstract descriptions and the methodology

techniques (Section 7.3) would make it more reliable and less error-prone. In order to

98

8.1. Introduction 99

show that the implementations are easy to use and usable by biomedical scientists, this

chapter includes several usability tests of the implementations.

Three of the scenarios de�ned through the interviews will be implemented in this chapter.

There were several reasons for choosing these particular scenarios. Implementing each of

the �ve scenarios would prove several speci�c aspects from the framework's point of view.

The implementation of Scenario 1 proves that the framework and methodology can be

used to obtain a useful prototype. It also shows that existing tools can be used as MDE

and AT, while custom-made elements of the types MDRR, AT, and DM can be created

too. Implementing each of the other scenarios provides additional proofs when compared

to Scenario 1, namely:

� Implementing Scenario 2 proves that:

1. A new element type not used in Scenario 1 (ADS, e.g. PubChem) can be used.

2. Elements from Scenario 1 (AT:AssessDocking, MDE:Raccoon2 and the MDRR)

can be reused.

� Implementing Scenario 3 proves that:

1. An element not used in Scenario 1 (AT:EstimateActiveSite) can be used.

2. A new element type not used in Scenario 1 (ADS, e.g. wwPDB) can be used.

3. Elements from Scenario 1 (MDE:Raccoon2 and the MDRR) can be reused.

� Implementing Scenario 4 proves that:

1. Elements not used in Scenario 1 (AT:LIGSIFT, AT:AssessLIGSIFT and

AT:CompareCon�g) can be used.

2. Elements from Scenario 1 (AT:DeepAlign, AT:AssessDeepAlign, MDE:

Raccoon2, and the MDRR) can be reused.

� Implementing Scenario 5 proves that:

1. An element not used in Scenario 1 (AT:CompareDockingResults) can be used.

2. Elements from Scenario 1 (MDE:Raccoon2 and the MDRR) can be reused.

The three scenarios that will prove most aspects were chosen: Scenario 1, Scenario 2, and

Scenario 4. Implementing Scenarios 3 and 5 would not add anything that will not be

proven by implementing these three chosen scenarios.

These three scenarios will illustrate the use of the three methodology techniques (Section

7.3) as shown in Figure 8.1. Since there are no elements that have been already imple-

mented using the framework, the implementation of Scenario 1 can only utilise Technique

3. On the other hand, when implementing Scenario 2, Technique 2 enables the reuse of

8.2. Implementing Scenario 1 100

Figure 8.1: Overview of techniques used in the three selected scenarios.

the already implemented MDE and MDRR. The most interesting use of the framework

can be observed when implementing the AT for assessing docking results which is required

in Scenario 2. At this point, there are three already implemented ATs that are candidates

for reuse. The AT: AssessDocking, which is AT3 in Scenario 1, can be reused since it

has the same core computation and the same types of interfaces as the required AT in

Scenario 2 (the dashed arrows in Figure 8.1 show the candidates which were considered

but not chosen, and the full arrow shows the chosen AT). An analogous method can be

used when implementing Scenario 4. The details of these procedures will be described in

the remainder of this chapter.

8.2 Implementing Scenario 1

The title of Scenario 1 is: Suggest a ligand-protein pair that should be used in the next

molecular docking, based on protein similarity and previous results. Scenario 1 starts

with the user running a docking or VS simulation. Previous docking results should then

be analysed to �nd receptors that are similar to the currently used receptor. Once a

similar receptor has been found, the previous docking results of that receptor should be

analysed to �lter out ligands which have been successfully docked to it. This ligand (or

multiple ligands) can be suggested as a candidate for the next docking with the currently

used receptor. A basic diagram of Scenario 1 was shown in Figure 4.3. It proposes the

use of six elements of these four element types:

� MDE: The extension of Raccoon2 presented in this thesis.

� MDRR: A custom-made MongoDB-based repository.

� 3 × AT: the structural alignment tool DeepAlign (AT1), a custom-made assessor of

DeepAlign (AT2), and a custom-made assessor of docking results (AT3).

� DM: a custom-made DM.

8.2. Implementing Scenario 1 101

This diagram was derived from the basic diagram of the framework, thus it is reasonable

to assume that Scenario 1 �ts the framework. However, to provide a more precise analysis,

an attempt to derive a detailed diagram for each element and its interfaces can be made.

Prior to starting the coding step, a textual and formal description of each element and its

interfaces can be used to con�rm that the proposed elements can be used.

8.2.1 Abstract descriptions of Scenario 1

MDE: The extended version of Raccoon2 Any existing docking tool can be used

as an MDE, as long as it �ts the description of the element type MDE of the framework.

The extended version of Raccoon2, as described in Chapter 3, is one option. In order to

to determine whether Raccoon2 can be the MDE, a diagrammatic, textual, and formal

description of the interfaces of Raccoon2 as an MDE can be created.

If a diagram of Raccoon2 can be derived from the detailed diagram of the element type

MDE (Figure 6.2), if the list of interfaces of Raccoon2 can be derived from the list of

interfaces of an MDE, and if the formal description of Raccoon2 and its interfaces can be

derived from the formal description of an MDE and its interfaces (Appendix B), then one

can conclude that Raccoon2 can be used as an MDE.

Figure 8.2 shows the detailed diagram of the extended version of Raccoon2 with gUSE.

This diagram shows that replacing the generic labels in Figure 6.2 with Raccoon2-speci�c

ones is possible. The required user input for docking consists of one or more ligands,

receptors and appropriate con�guration �les. The result of the docking can be provided

to the user, and forwarded to an element representing an MDRR. For Scenario 1, two

additional user input values are required: AutoDock Vina a�nity threshold and Deep-

Score threshold. These can be entered into Raccoon2 and forwarded to the MDRR. The

suggested candidate ligand for next docking, provided as a result by the MDRR, can be

presented to the user. A list of interfaces, derived from the list of MDE interfaces, can

also be created.

Raccoon2 interfaces

1a-c. Raccoon2 provides a user interface to obtain ligand, receptor, and con�g �les.

1d-e. Raccoon2 should provide a user interface to obtain the AutoDock Vina and Deep-

Score thresholds.

2. Raccoon2 provides a user interface to view docking results which should be extended

to include the suggested ligand for next docking.

8.2. Implementing Scenario 1 102

Figure 8.2: The diagram of the MDE: the cloud-enabled Raccoon2 (in red: segments that
need to be implemented, in black: existing segments).

3a-c. Raccoon2 needs to provide an interface to the docking results, as well as AutoDock

Vina and DeepScore thresholds which should be sent to the MDRR.

4. Raccoon2 requires an interface to receive the suggested ligand for next docking from

the MDRR.

Formal description of Raccoon2 The formal description of Raccoon2, shown in Ap-

pendix C, was derived from the formal description of the element type MDE (Figure 6.7).

The schema Docking AutoDockVina uses dockingWithCon�g, and has been included in the

schema MolecularDockingEnvironment Raccoon2 (pages 172 - 173). This is equivalent to

the Docking and MolecularDockingEnvironment schemas from the framework (page 163).

In the generic formal description the element type MDE uses the schema Docking to

show that a docking can be conducted either without a con�guration �le (using dock-

ingWithoutCon�g) or with a con�guration �le (using dockingWithCon�g). When de-

scribing the speci�c element Raccoon2 (Figure 8.3), only the de�nition for dockingWith-

Con�g was used, because docking with Raccoon2 uses AutoDock Vina which requires

a con�guration �le. The schema Docking AutoDockVina is derived from Docking by

leaving out the option to use dockingWithoutCon�g and changing the schema's name.

The schemas MolecularDockingEnvironment Raccoon2 and ViewMolecularDockingEnvi-

8.2. Implementing Scenario 1 103

Figure 8.3: Excerpt of the Z notation describing Raccoon2 as element of Scenario 1.

ronmentResults Raccoon2 are the same as the respective generic schemas in all but name.

MDRR: a custom-made MongoDB repository An existing repository can be used

as an MDRR, as long as it �ts the description of the MDRR element type of the framework.

To the best of the candidate's knowledge, no such repository exists. Furthermore, since

this is the �rst scenario implemented using the framework, there is no library of abstract

descriptions of existing tools to use for comparison. Creating a custom-made repository

that would be used as an MDRR is one solution. The abstract descriptions of the proposed

custom-made tool is shown, while Sub-section 8.2.2.2 shows the bene�ts of using MongoDB

as a database.

Figure 8.4 shows the detailed diagram of the proposed custom-made tool by replacing the

generic labels of Figure 6.2 with speci�c ones. The MongoDB-based MDRR would require

docking results. It would also require the AutoDock Vina and DeepScore threshold values,

8.2. Implementing Scenario 1 104

which should be forwarded to an element that uses them. Any other data stored in the

repository should also be provided for the next elements. The MongoDB-based MDRR

requires the input of the ATs in order to keep track of the process, and the DM in order

to store the suggested ligand for next docking. This suggestion should be provided to the

MDE and subsequently viewed by the user. A comprehensive list of interfaces, derived

from the list of MDRR interfaces, can also be created.

Figure 8.4: The diagram of the custom-made MongoDB-based MDRR.

Interfaces of the custom-made MongoDB-based MDRR

3a-c. The MDRR should require docking results, AutoDock Vina threshold and DeepScore

threshold.

4. The MDRR needs to provide the suggested ligand for next docking to the MDE.

5a-b. The MDRR needs to provide the DeepScore threshold to the DeepAlign AT, and

the AutoDock Vina threshold to the docking assessment AT.

5c. The MDRR needs to provide a list of all receptors stored in the repository, and the

currently used receptor, to the DeepAlign AT.

5d. The MDRR needs to provide a list of previous docking results that have used recep-

tors similar to the current receptor, to the docking assessment AT.

6a-b. The MDRR should require the results from the DeepAlign AT and the docking

assessment AT to keep track of the process.

13. The MDRR needs to receive the suggested ligand for next docking from the DM.

8.2. Implementing Scenario 1 105

Formal description of the custom-made MongoDB-based MDRR The formal

description of the proposed custom-made MongoDB-based MDRR (Appendix C, pages 173

- 175), is virtually the same as the description of the element type MDRR. The schema

MolecularDockingResultsRepository MongoDB is a replica of MolecularDockingResults-

Repository from the framework's description, albeit with an altered name. It shows that

the repository should store data about the ligand, receptor, con�guration �le, date and

docking result. The fact that the suggestion of ligand for next docking is also stored in

the MDRR is modelled using the decisionRepository. The data can be inserted into or

selected from these model repositories.

AT1: DeepAlign Any existing structural alignment tool can be used as an AT in Sce-

nario 1, as long as it �ts the description of the element type AT. Chapter 2 provided an

overview of several existing tools, and proposed using the tool DeepAlign. An abstract

description of DeepAlign can be created to determine whether it can be the AT. A dia-

grammatic, textual, and formal description of the interfaces of DeepAlign as an AT will

be created. Similarly to the way it was concluded that Raccoon2 can be the MDE, if the

diagram, list of interfaces, and formal description of DeepAlign can be derived from the

abstract descriptions of the element type AT (Figure 6.4, and Appendix B), then one can

conclude that DeepAlign can be used as an AT.

Figure 8.5 shows the detailed diagram of DeepAlign. It shows that replacing the generic

labels in Figure 6.4 with DeepAlign-speci�c ones is possible. A user-provided threshold

of the value of DeepScore is required, along with a list of all previous receptors and the

currently used receptors which will be compared. The threshold and the results of the

pairwise comparison should be sent to another AT which will assess whether the structural

similarity score is su�cient to call two receptors similar. A more comprehensive list of

interfaces, derived from the list of AT interfaces, can also be created.

Interfaces of DeepAlign

5a. The DeepAlign AT should require the DeepScore threshold.

5c. The DeepAlign AT should require a list of receptors, and a target receptor to calcu-

late the structural alignment.

7a. The DeepAlign AT should provide the DeepScore threshold to an assessment AT.

7b. The DeepAlign AT should provide the structural alignment results along with any

meta-data for assessment.

8.2. Implementing Scenario 1 106

Figure 8.5: The diagram of the AT DeepAlign.

Formal description of DeepAlign The generic formal description of an AT included

all possible classes of ATs based on the input they receive. The schema DeepAlign (Ap-

pendix C, page 176) is derived from the schema AdditionalTool of the framework's formal

description (Appendix B, page 168). The schema AdditionalTool showed that the result

of the AT can come from any combination of AT classes based on the input. The schema

DeepAlign speci�es that this needs to be DeepAlignCore, a tool that uses previous results,

equivalent to additionalTool PR of the framework. Instead of generic previous results, it

speci�cally de�nes the input as a pair of receptors. In DeepAlignCore, it is shown that

a current receptor and a previous receptor need to exist, in order for a DeepAlign result

based on these two receptors to exist.

AT2: Assess DeepAlign results In an analogous manner to the above elements,

it has been decided to use a custom-made tool to assess the results of DeepAlign and

�lter receptors that are �similar� to the currently used receptor. Since there is no library

of already implemented elements, it is reasonable to propose creating a custom-made

tool that will do the assessment based on a user-provided threshold of the DeepScore

value. Abstract descriptions of this custom-made tool can be derived from the abstract

descriptions of the element type AT. The detailed diagram is shown in Figure 8.6. The

list of interfaces is as follows.

Interfaces of the custom-made threshold-based DeepAlign assessment AT

7a-b. This AT should require the DeepScore threshold and DeepAlign result (along with

any meta-data) as input.

8.2. Implementing Scenario 1 107

Figure 8.6: The diagram of the AT to as-
sess DeepAlign.

Figure 8.7: The diagram of the AT to as-
sess docking results.

6b. This AT should provide the results of the assessment (whether the DeepAlign result

is su�cient to label the two receptors as similar) to the MDRR for storage.

10a. This AT should provide the results of the assessment to the DM for summarising.

Formal description of the custom-made threshold-based DeepAlign assessment

AT The schema AssessDeepAlign (Appendix C, page 176) is derived from the schema

AdditionalTool of the framework's formal description (Appendix B, page 168), and good-

DeepAlignResult is equivalent to additionalTool UI ATR which uses a user-provided input

and results of another AT. In goodDeepAlignResult it is explained that the user-provided

input needs to be a threshold which will be compared to the DeepScore value of the

DeepAlign result. The schema AssessDeepAlign shows that a receptor r will be part of

the receptors assessed as similar only if the result of goodDeepAlignResult is positive.

AT3: Assess docking results An analogous method was used to propose a custom-

made tool to assess the docking results and �lter �good� docking results. This is use-

ful because the scenario requires a similar receptor which has been �successfully� docked

with a ligand. In Scenario 1, there is no library of already implemented elements, so a

custom-made tool could conduct the assessment based on a user-provided threshold of the

AutoDock Vina a�nity value. Figure 8.7 shows the detailed diagram which, along with

the other abstract descriptions of this custom-made tool, can be derived from the abstract

descriptions of the element type AT. The list of interfaces is as follows.

Interfaces of the custom-made threshold-based docking result assessment AT

5b, 5d. This AT should require the AutoDock Vina threshold and a list of docking results.

6b. This AT should provide the results of the assessment (whether the docking result is

good) to the MDRR for storage.

10b. This AT should provide the results of the assessment to the DM for summarising.

8.2. Implementing Scenario 1 108

Formal description of the custom-made threshold-based docking result assess-

ment AT The schema AssessPreviousDocking (Appendix C, page 177) is derived from

the schema AdditionalTool of the framework's formal description (Appendix B, page 168),

and goodDocking is equivalent to additionalTool UI PR which uses a user-provided input

and previous results. In goodDocking, it is shown that the user-provided input needs to be

a threshold which will be compared to the docking score of the previous docking result.

The schema AssessPreviousDocking shows that a previous docking result will be part of

the docking results assessed as similar only if the result of goodDocking is positive.

DM: custom-made element The DM combines the result of AT2 (if receptors are

similar) and AT3 (if the docking is good). It should create a list of receptors sorted by

alignment score �rst (most similar to the current receptor), then by the AutoDock Vina

score (part of best docking results). Based on this sorted list of receptors, the MDRR

can select ligands that have been docked with them and suggest these ligands for a next

docking. The DM is an element type that is very speci�c to every scenario, so it will likely

be a custom-made tool. Nevertheless, abstract descriptions of this custom-made tool can

be derived from the abstract descriptions of the DM element type. The detailed diagram

is shown in Figure 8.8. The list of interfaces is as follows.

Interfaces of the custom-made DM

10a-b. The DM should require the result from AT2 and AT3.

13. The decision, in this case the sorted list of most similar receptors that were part of

the best docking results, should be provided to the MDRR.

Figure 8.8: The diagram of the DM.

Formal description of the custom-made DM The formal description of the custom-

made DM is derived from the formal description of the DM element type of the framework.

The schema DecisionMaker Custom (Appendix C, page 177) is equivalent to the schema

DecisionMaker of the generic element type DM (Appendix B, page 171). It speci�cally

uses the makeADecisionAdditionalTool which requires the results of two ATs as input. In

8.2. Implementing Scenario 1 109

this case the �rst result is a list of �ltered receptors and the second is a list of �ltered

previous docking results.

Detailed diagram of entire Scenario 1 Based on the analysis shown above, a com-

plete detailed diagram of Scenario 1 can be created (Figure 8.9). It con�rms that Scenario

1 �ts the framework because it is equivalent to the detailed diagram of the entire frame-

work (Figure 6.1). The items drawn in red are ones that need to be implemented, while

the ones in black are existing items that can be used. There are a total of 21 interfaces

between these elements (numbered according to the numbering-scheme of the framework).

8
.2
.
Im

p
lem

en
tin

g
S
cen

a
rio

1
110

Figure 8.9: The detailed diagram of Scenario 1.

8.2. Implementing Scenario 1 111

8.2.2 Code of Scenario 1

Once the diagrammatic, textual, and formal description of the elements and interfaces

of Scenario 1 have been created, the coding step can begin. There were several software

engineering decisions made for this implementation. The framework and methodology are

independent of these decisions. For instance, all the elements in this implementation can

be accessed using a simple RESTful API through HTTP. To implement this API, the

minimalist web framework �Bottle� [236] was used. Bottle is a Python framework that

enables an easy setup of a server. Python was chosen as the programming language merely

to provide continuity, because the Raccoon2 software has been developed in Python. Bottle

is very simple to use and convenient for prototyping solutions, hence it was chosen to build

this prototype implementation. To decrease communication delays between elements,

elements are grouped in 3 servers. This implementation of Scenario 1 �rst �lters out

similar receptors, then it searches for good docking result of those receptors.

Figure 8.10 provides more details about the �ow and communication between the elements

and the servers. In order to insert the results of the current docking or VS simulation, the

MDRR on Server 1 expects the results of Raccoon2 as POST parameters. It processes the

results (using the Parser) and inserts information from them into the MongoDB database,

which includes the collections results, receptors, ligands, and analysis. The functions for

inserting data in the database are grouped in the Inserter, while the functions for selecting

data are in the Selector.

Once done with inserting, the MDRR returns a response to the MDE (Raccoon2). Another

HTTP request is sent to obtain a suggestion of ligands for the next docking. The MDRR

selects �all receptors� from the database and sends them to the AT:DeepAlign on Server

2, along with the current (�target�) receptor, and a �threshold� value of DeepScore which

is input by the user within Raccoon2.

The AT:DeepAlign on Server 2 executes DeepAlign for each pair of receptors. It then

calls the AT:AssessDeepAlign, located on the same server, in order to �lter out �similar�

receptors. This AT assesses the DeepAlign results by comparing the value of DeepScore

to the user input threshold. If the DeepAlign result is greater than the threshold, the two

receptors are called �similar�. A list of these �similar� receptors is returned to Server 1

and it is then used by the DM. Once the �similar� receptors have been received, Server

1 inserts several documents to the �analysis� collection to keep track of all events. Then,

only previous docking results where the receptor is one of the similar receptors are selected,

and sent to the AT:AssessDocking on Server 3, along with a second threshold value of the

AutoDock Vina �a�nity�.

8
.2
.
Im

p
lem

en
tin

g
S
cen

a
rio

1
112

Figure 8.10: Communication between servers used in the implementation of Scenario 1.

8.2. Implementing Scenario 1 113

The AT:AssessDocking on Server 3 searches through the docking results for a result that

has at least one docking model where the AutoDock Vina a�nity is less than the threshold,

and calls this a �good� docking result (an AutoDock Vina docking result usually contains

10 models). When the assessment is completed, Server 1 receives a response and inserts a

document in the �analysis� collection. It then initialises the DM on the same server and

sends it the �similar receptors� and the �good results�.

The DM on Server 1 combines these two lists, and sorts the list of results �rstly based on

the DeepScore value of its receptor, and then on the a�nity value of the docking results.

An ordered list of suggestions is formed with the �rst element being a ligand which has

the best docking result with a receptor that is the most similar to the currently used one.

More details, along with the entire source code, is provided on GitHub [237]. The remain-

der of this section will focus on how the abstract descriptions of elements and interfaces

are re�ected in the code.

8.2.2.1 Implementation of the MDE

The extended version of Raccoon2 (Chapter 3) can be used as an MDE in Scenario 1. As

shown by the detailed diagram (Figure 8.2), Raccoon2 needs to be further extended to

ask the user for two additional values: the DeepScore, and the AutoDock Vina threshold.

8.2.2.2 Implementation of the MDRR

The MDRR for Scenario 1 can be a custom-made MongoDB-based [201] repository. There

were several reasons for choosing MongoDB as the underlying database engine:

1. The schema-less design is ideal for polymorphic data.

(a) Structures of ligands and receptors can be stored in a collection regardless of

the �le format (be it .mol2, .pdb, or something else).

(b) Docking results can be stored in a single collection regardless of the docking

tool and �le format of the result �les.

(c) One collection can be used for keeping track of all activities (provenance infor-

mation) regardless of the type of activity, AT or decision made.

2. MongoDB scales very well for large amounts of data, provided it is well designed

and features such as sharding and indexing are utilised.

3. It is well-suited for prototyping because it is easier to change what is stored during

development.

8.2. Implementing Scenario 1 114

Polymorphic data is data that changes structure. Because di�erent scenarios could require

a di�erent DM, AT, or MDE (therefore di�erent docking tool), and di�erent format of

docking results, this type of software systems are ideal for MongoDB. Furthermore, if

an element is swapped for another element that has a di�erent format of results, the

same collection (a MongoDB �collection� is somewhat equivalent to an SQL table) can be

used. Python is a good choice because there is a MongoDB driver (PyMongo [238]), and

two well-maintained Python libraries for calculating molecular properties: openbabel and

pybel [239].

The structure of the database has been derived from the formal description and the de-

tailed diagram of Scenario 1. After analysing the schema MolecularDockingResultsRepos-

itory MongoDB (Appendix C, page 173), it becomes clear that the MongoDB database

should contain data about ligands, receptors, docking results, the date, and the decision

(in this case the suggested ligands for the next docking). Furthermore, the schema Select-

MolecularDockingResults shows that the database should provide di�erent ways to select

data. The number and type of collections in the MongoDB database have been mainly

derived from these two Z schemas. Due to the inherent di�erence in the type of data

stored, separate collections for ligands, receptors, and docking results have been created.

The date when the docking was conducted can be uploaded along with the docking results.

Therefore, the date is a property in the collection called results. A fourth collection, called

analysis, has been created to store the decision.

The diagram of the entire Scenario 1 shows that the MDRR requires 4 interfaces, thus 4

types of input: the docking results, the decision from the DM, the results of AT:AssessDeep-

Align, and the results of AT:AssessDocking. This diagram made it evident that the analy-

sis collection should also store the results of the ATs. Because the results of the ATs, and

the result of the DM (the decision) are often going to be di�erent based on the scenario,

it is impractical to create a new collection for each type of AT or DM. Having a single

collection means that if one AT element is changed for another, there will not be a need to

change the structure of the database. If another structural alignment tool is used instead

of DeepAlign, the format of the result would be di�erent, but it could still be stored in

the collection called analysis. Finally, this means that the same database structure can be

used for another scenario which would have di�erent ATs.

Details of the MongoDB collections used are not provided here, but can be obtained

from the source code [237]. The results collection contains the date, and all relevant

information from an AutoDock Vina docking result �le. If another docking tool is used

instead of AutoDock Vina, the format of the docking results would change, but the same

results collection can remain in use.

8.2. Implementing Scenario 1 115

8.2.2.3 Implementation of the ATs

AT:DeepAlign and AT:AssessDeepAlign To improve the e�ciency of this imple-

mentation, these two ATs have been implemented on the same server, as separate modules.

The detailed diagram of Scenario 1 shows that the results of the AT:DeepAlign should

be sent to the AT:AssessDeepAlign. The formal description of Scenario 1 con�rms this

by showing that the Z schema AssessDeepAlign requires the method goodDeepAlignResult

which uses DEEP ALIGN RESULT as input. These two abstract descriptions of the ATs

have been used to write the scripts that represent the ATs.

Since they reside on the same server, the same Bottle �controller� (controller.py) is used to

launch a new thread representing the AT:DeepAlign for each receptor pair. DeepAlign is

run and the results are sent to an object of another class representing AT:AssessDeepAlign.

The value of DeepScore is extracted and compared to the user-provided threshold.

AT:AssessDocking The methodology speci�ed that before implementing a custom-

made tool, one can search a library of abstract descriptions of previously implemented

elements for an element that can be reused. This is the �rst time that an AT where the

core computation is meant to assess docking results, so the already implemented elements

AT:DeepAlign and AT:AssessDeepAlign cannot be reused. After comparing the abstract

description of the required AT and the generic element type AT, it was concluded that

the required AT can be derived from the generic element type according to Technique 3 in

Section 7.3. There are some similarities between the required AT and AT:AssessDeepAlign

since the method goodDocking of the formal description of AT:AssessDockingResults, and

goodDeepAlignResult of AT:AssessDeepAlign resemble each other. They both require a

user-provided threshold which they use to �lter out results from a previous tool. In the

case of the required AT, the previous tool is a docking tool, and when the threshold is the

AutoDock Vina a�nity, the more negative the value is the �better� the docking. Therefore,

a clear di�erence is that this AT should �lter out docking results with docking score that

is �≤� the threshold.

Because of these similarities, the code of the custom-made AT:AssessDocking, which is

implemented on a separate server, resembles segments of the code of AT:AssessDeepAlign

with some important changes. The speci�c di�erences can be seen in the source code [237].

8.2.2.4 Implementation of the DM

The formal description of the DM (Appendix C, page 177) shows that the DM should

require results from ATs in the form of a list of receptors and a list of docking re-

8.3. Implementing Scenario 2 116

sults. The structure of the method dm.decider.SimpleDecide has been derived from

this segment of the formal description. It expects the assessed similar receptors

and assessed results as input and combines them in a single list where each list item

contains data about the similar receptor and its docking results. This list is then sorted

�rstly by the DeepScore value, then by the AutoDock Vina a�nity. Note that this is the

case, even though the commands seem to be in the opposite order because of the way the

Python function operator.itemgetter() works with the parameter reverse = True.

The result of the DM is returned to the MDE, and presented to the user. On the left-

hand side there is a tree-like dictionary shown, where each element can be expanded. The

right-hand side will be populated upon clicking an item (Figure 8.11).

Figure 8.11: Screenshot of the �nal result of Scenario 1.

8.3 Implementing Scenario 2

The title of Scenario 2 is �Filter suitable results for laboratory experiments, based on

ligand properties�. Scenario 2 starts with the user running a VS between one receptor and

a large number of ligands. Then, ligands of �good� docking results are �ltered based on a

property that is available in an external additional data source. The �nal result is a sublist

of ligands that are more likely to produce useful laboratory results. A basic diagram of

Scenario 2 was shown in Figure 4.4. It proposes �ve elements of these �ve element types:

� MDE: The extension of Raccoon2 presented in this thesis.

8.3. Implementing Scenario 2 117

� MDRR: A custom-made MongoDB-based repository.

� AT: AssessDocking, a custom-made tool that �lters' �good� docking results based

on a threshold.

� ADS: PubChem, the existing external database of ligand properties.

� DM: a custom-made DM.

Because this diagram was derived from the basic diagram of the framework, it is reasonable

to assume that Scenario 2 �ts the framework. To provide a more precise analysis, the

detailed diagram for each element and its interfaces will be described in this section. A

list of the interfaces, and a formal description will be used to con�rm that the proposed

elements can be used as element types prior to starting the coding step. This section will

focus on segments that are di�erent from the description of Scenario 1, and comment on

the added value of implementing Scenario 2 using the methodology.

8.3.1 Abstract descriptions of Scenario 2

MDE: The extended version of Raccoon2 The MDE in Scenario 2 can be the same

as the one in Scenario 1 (Section 8.2.1). Practically the entire element can be reused with

the di�erence that instead of a DeepAlign threshold as in Scenario 1, now the user inputs

a PubChem property name and threshold. Figure 8.14 shows that a detailed diagram

of the Raccoon2 extension for Scenario 2 can be derived from the generic diagram of an

MDE. More importantly, it shows how the methodology allows the reuse of previously

implemented elements. When drawing the detailed diagram, it becomes evident that

most of the interfaces are exactly the same, and the core computation (the docking) is the

same as in the detailed diagram of Raccoon2 used for Scenario 1. The conclusion is that

the abstract description of Raccoon2 is similar enough for it to be used as an MDE in

Scenario 2 as well. The fact that the element can be reused is determined now, before any

coding begins. It is determined by searching a library of abstract descriptions of already

implemented elements (Technique 2 in Section 7.3). At the moment, this library contains

only one MDE, but the same method of drawing the detailed diagram and comparing the

interfaces and the core computation, can be used to search a large library.

Raccoon2 interfaces Since the Raccoon2 element can be reused, the list of interfaces

is nearly the same. The only di�erence being the need for a PubChem threshold instead

of a DeepScore threshold.

8.3. Implementing Scenario 2 118

Formal description of Raccoon2 The formal description of the Raccoon2 element

of Scenario 2 (Appendix D page 179) can be derived in the usual way from the formal

description of the element type MDE. The result is the same formal description as in

Scenario 1 (Figure 8.3).

MDRR: a custom-made MongoDB repository Similarly, Scenario 2 can reuse the

same MDRR as in Scenario 1 (Section 8.2.1). The same technique for searching a library

of already implemented elements can be used to determine whether an element can be

reused. The detailed diagram of this MDRR (which can be seen in Figure 8.14), is nearly

identical to the detailed diagram of the MDRR in Scenario 1 which is the only MDRR

present in the library of implemented elements.

Interfaces of the custom-made MongoDB-based MDRR The interfaces of this

MDRR are nearly the same as the MDRR in Scenario 1. The only di�erence is in interfaces

5a-d which are providing the AutoDock Vina a�nity and the PubChem property threshold,

the list of current docking results, and a list of ligands of �good� docking results.

Formal description of the custom-made MongoDB-based MDRR When deriv-

ing the formal description of this MDRR (Appendix D, page 179), the focus is on the

interfaces for inserting and selecting docking results. This results in the same formal

description as the one for the MDRR of Scenario 1.

AT1: Assess docking results The same technique for searching a library of already

implemented elements can be used when implementing this AT (Technique 2 in Section

7.3). When drawing the detailed diagram for this AT, it can be compared to a library of

three already implemented elements (as implemented in Scenario 1).

When compared to the AT:DeepAlign, there is a clear di�erence in the interfaces. AT:DeepAlign

needs to send the results and a user-provided threshold to another AT for assessment.

Whereas, the needed AT assesses docking results and sends them to an MDRR for stor-

age, and a DM for summarising. When compared to the AT:AssessDeepAlign, there are

more similarities in the interfaces. The di�erence is that AT:AssessDeepAlign requires

input from another AT, whereas the needed AT requires input from an MDRR. There is

a big di�erence in the core computation, the AT:AssessDeepAlign �lters structural align-

ment results, and the needed AT should �lter docking results. Finally, when comparing

the needed AT with the AT:AssessDocking, it is clear that the interfaces are the same (re-

quire input from MDRR, provide results to MDRR and DM), and the core computation

is the same (assess docking results).

8.3. Implementing Scenario 2 119

Therefore, it can be concluded that the AT:AssessDocking can be reused. The same name

for the AT can be used and the detailed diagram is nearly the same. The only di�erence

is in the naming of the interfaces 5a and 5c.

This comparison was done manually, examining and comparing the abstract descriptions

of the required element to the already implemented elements by hand. Ideally, this com-

parison would be automated and it would use a database of already implemented abstract

descriptions (Section 10.2).

Formal description of the custom-made threshold-based docking result assess-

ment AT The formal description of this AT (Appendix D, page 182) has the same

method goodDocking and Z schema AssessPreviousDocking as in Scenario 1.

ADS: PubChem Implementing Scenario 2 will show how a new element type can be

used, since in Scenario 1, there was no ADS (as previously stated in Section 8.1). Since

there is no library of previously implemented elements of the type ADS, this scenario can

use the third technique of the methodology (Section 7.3) and create an abstract description

of an existing tool, then compare it to the generic abstract description of the element type

to determine whether it can be used.

PubChem is a repository that contains data about chemical substances. It is split into

three databases: Substance, Compound, and BioAssay [17, 240]. As of March 2018, the

Compounds database contains more than 94 million items. PubChem can be accessed

programmatically through the Power User Gateway (PUG) interface [241]. In Scenario

2, PubChem is proposed as the core computation component of an ADS. The detailed

diagram of an ADS of the framework shows that an ADS needs to provide the data through

an interface for an MDRR and a DM. When creating the detailed diagram of PubChem,

the existence of such an interface was checked. Indeed, PubChem's PUG-REST API is

an interface provided by PubChem which can be used to read the data it stores. If the

PUG-REST API can be used to obtain the value of a ligand property for a list of ligands,

as required by the interfaces 5b and 5d, then PubChem can be used as an ADS. If in the

coding of Scenario 2, an HTTP request is sent to the PUG-REST API for each ligand in

the list, this will be possible.

Therefore, since the PubChem element, as drawn in the detailed diagram (Figure 8.12), can

provide and require the needed interfaces as an ADS, and the core computation segment

(the Compounds database) contains data about ligand properties, the PubChem element

can be the ADS for Scenario 2. However, the value returned by PubChem would need to

be additionally compared with the threshold.

8.3. Implementing Scenario 2 120

Figure 8.12: The diagram of the ADS PubChem.

PubChem Interfaces

5b, 5d. PubChem requires the user provided PubChem property, and a list of ligands.

6a. PubChem provides the ligand property value, to the MDRR to keep track.

10b. PubChem provides the ligand property value, to the DM for summarising.

Formal description of PubChem This scenario is the �rst example of a formal de-

scription of an ADS element. One of the aims of implementing of Scenario 2 is to show

how a new element type, which hasn't been used before, can be introduced (as mentioned

in Section 8.1). The abstract description of an ADS in the framework is generic and does

not provide details about the type of data a particular ADS element would store. The spe-

ci�c formal description of PubChem (Appendix D, page 182) includes the checkPubChem

method. This method speci�es that it requires a ligand and a property as input. After

checking the data stored in PubChem, it provides a positive or negative response based

on whether the property of the ligand is within a given threshold. The schema PubChem,

which is derived from the generic schema SelectAdditionalDataInfo, shows how the �ltered

results based on the ligand property can be obtained.

DM: custom-made element The DM combines the result of AT1 (if the docking is

good) and the ADS (if the ligand property is within the threshold). The DM is an element

which is speci�c to each scenario. This can be seen after comparing the detailed diagram

of this DM to the DM from Scenario 1. The interfaces seem equivalent, however the main

di�erence is the core computation. Because each scenario would provide a di�erent decision

as a �nal result, the core computation of each DM would be di�erent. In Scenario 2, the

DM provides a list of ligands �ltered based on a property from an external additional

data source. Whereas, in Scenario 1, the DM suggested a ligand for the next docking.

Therefore, the DM from Scenario 1 cannot be reused.

8.3. Implementing Scenario 2 121

Interfaces of the custom-made DM

10a-b. The DM should require the results from the AT1 and the ADS.

13 The decision, in this case the list of �ltered ligands according to the speci�ed prop-

erty, should be provided to the MDRR.

Figure 8.13: The diagram of the DM.

Formal description of the custom-made DM The formal description of this custom-

made DM is derived from the element type DM of the framework. The Z schema Decision-

Maker Custom (Appendix D, page 183), which is derived from the schema DecisionMaker

of the framework, speci�cally uses makeADecisionPreviousResults. It requires two previ-

ous results as input. In this case the �rst result is a list of assessed previous docking

results, and the second is a list of �ltered results based on ligand properties.

Detailed diagram of entire Scenario 2 Similarly to Scenario 1, a complete detailed

diagram of Scenario 2 can be created (Figure 8.14). It con�rms that Scenario 2 �ts the

framework because it is equivalent to the detailed diagram of the entire framework (Figure

6.1). There are a total of 19 interfaces between the elements (numbered according to the

numbering-scheme of the framework).

8
.3
.
Im

p
lem

en
tin

g
S
cen

a
rio

2
122

Figure 8.14: The detailed diagram of Scenario 2.

8.3. Implementing Scenario 2 123

8.3.2 Code of Scenario 2

Similarly to Scenario 1, all the components in the implementation are accessible via a

RESTful API developed using the Bottle web framework. Figure 8.15 provides more

details about the �ow and communication between the elements and the servers. The

MDRR on Server 1 expects docking results from Raccoon2. It can store the results in the

MongoDB database or continue with the scenario. The structure of the MongoDB is the

same as in Sub-section 8.2.2.2.

The MDRR sends the results to the AT:AssessDocking on Server 2, along with the �thresh-

old� value of AutoDock Vina a�nity which is input by the user within Raccoon2. In the

same manner as in Scenario 1, the AT:AssessDocking on Server 2 �lters �good� docking

results where the AutoDock Vina a�nity is less than the threshold. When the docking as-

sessment is completed, Server 1 receives a response and inserts a document in the analysis

collection in order to keep track of the assessment of the results.

Following this, the MDRR selects the canonical SMILES codes of ligands that have been

part of a �good� docking. If the docking results were inserted in the MongoDB database,

the �canonical SMILES� value can be selected from the database. However, Scenario 2

can be completed without storing the results in the database. In this case, the MDRR

needs to calculate the canonical SMILES code based on the structure of the ligand (the

.pdbqt �le).

For each ligand, a request is sent to PubChem through the PUG-Rest API. The result

from PubChem is the value of the property which has been provided by the user. This

is then compared to the user-input threshold to �lter the ligands. The DM on Server 1

in this scenario is minimal. A summary of the ligands that are part of a �good� docking

and have the speci�ed PubChem property within the threshold is sent to the MDE and

displayed to the user. The analysis collection is updated with details about the decision as

well as the previous steps. More details can be found in the source code on GitHub [237].

The remainder of this section will focus on how the coding step has used the abstract

descriptions of elements and interfaces.

8
.3
.
Im

p
lem

en
tin

g
S
cen

a
rio

2
124

Figure 8.15: Communication between servers used in the implementation of Scenario 2.

8.3. Implementing Scenario 2 125

8.3.2.1 Implementation of the MDE

The extended version of Raccoon2 (Chapter 3) should also ask the user for the values of

an AutoDock Vina a�nity threshold, a PubChem property name and threshold of the

value of this property. It is also important to know whether the �ltered results should be

less than or equal to (≤) or greater than (>) value. The need for these input �elds can

be derived from the detailed diagram (Figure 8.14).

8.3.2.2 Implementation of the MDRR

In Scenario 2, the current docking results are �ltered based on a property of the ligands.

The MDRR can store the docking results in the database, or continue without storing

them. Otherwise, the MDRR and the MongoDB database are the same as in Scenario 1.

The speci�cs of the database structure has been derived from the formal description as

explained in Sub-section 8.2.2.2.

8.3.2.3 Implementation of AT:AssessDocking

One of the aims of implementing Scenario 2 (Section 8.1), was to show how an element

can be reused. The source code shows that, once the docking results have been formatted

correctly, the MDRR calls AT:AssessDocking in the same way as Scenario 1. The code of

the AT was not altered at all.

8.3.2.4 Implementation of the ADS PubChem

Another aim of implementing this scenario, was to show how an element of a new element

type, such as ADS, can be used. PubChem is an external element that has already

been implemented by the National Center for Biotechnology Information. The code of

Scenario 2 shows that within the MDRR, there should be a segment for obtaining and

processing data from the ADS. The MDRR can use the PUG-Rest API provided by

PubChem to obtain information regarding the ligand property. Due to the usage policy

of PUG-Rest [242], a request is sent every 200 milliseconds. The fact that the MDRR

uses an interface provided by the ADS is shown by the link MDRR � ADS in the detailed

diagram (Figure 8.14).

8.4. Implementing Scenario 4 126

8.3.2.5 Implementation of the DM

The DM in this scenario is minimal since the decision is merely the �ltered ligands which

have been part of a �good� docking result. This is shown in the formal description

(Appendix D, page 182) where it is stated that previous result �ltered ligands = pre-

vious result assessed docking. Similarly to Scenario 1, the result of the DM is returned

to the MDE, and presented to the user (Figure 8.16).

Figure 8.16: Screenshot of the �nal result of Scenario 2.

8.4 Implementing Scenario 4

The title of Scenario 4 is �Verify docking methodology and learn how to conduct docking

by observing previous results with similar docking input�. Scenario 4 starts with the

user running a single docking simulation. Once completed, a similar receptor, ligand and

con�guration �le to the ones used is returned. A basic diagram of Scenario 4 is shown in

Figure 4.6. It proposes the use of eight elements of these four element types:

8.4. Implementing Scenario 4 127

� MDE: The extension of Raccoon2 presented in this thesis.

� MDRR: A custom-made MongoDB-based repository.

� 5 × AT: the ligand similarity tool LIGSIFT, structural alignment tool DeepAlign,

custom-made assessor of LIGSIFT, custom-made assessor of DeepAlign, and custom-

made tool to compare con�g �les.

� DM: a custom-made DM.

This diagram was derived from the basic diagram of the framework, so one can assume that

Scenario 4 �ts the framework. To provide a more precise analysis, the detailed diagram for

each element and its interfaces is described in this section. A list of interfaces and a formal

description can con�rm that the proposed elements can be used as element types, prior

to starting the coding step. This method is equivalent to the method used to describe

Scenario 1 and Scenario 2. This section will focus on segments that are di�erent and

comment on the added value of implementing Scenario 4 using the methodology.

8.4.1 Abstract descriptions of Scenario 4

MDE: The extended version of Raccoon2 The MDE in Scenario 4 can be the same

as the one in Scenario 1 (Section 8.2.1). Just like it was done in Scenario 2, the entire

element can be reused with slightly di�erent interfaces for the user-provided thresholds.

Figure 8.21 shows that a detailed diagram of the Raccoon2 extension for Scenario 4 can be

derived from the generic diagram of an MDE. When drawing this diagram, it is clear that

the same element can be reused since most of the interfaces, and the core computation

(the docking) are the same as in the detailed diagram of Raccoon2 used for Scenario 1.

Raccoon2 interfaces The same DeepScore threshold as in Scenario 1 should be pro-

vided as input, along with a threshold for the LIGSIFT score and the con�g comparison.

Formal description of Raccoon2 The formal description of the element Raccoon2

of Scenario 4 (Appendix E, page 185) can be derived from the formal description of the

element type MDE. The result is the same as in Scenario 1 (Figure 8.3).

MDRR: a custom-made MongoDB Repository The same technique for searching

a library of already implemented elements can be used to determine that Scenario 4 can

reuse the same MDRR as in Scenario 1 (Section 8.2.1).

8.4. Implementing Scenario 4 128

Interfaces of the custom-made MongoDB-based MDRR The interfaces of this

MDRR are nearly the same as the interfaces of the MDRR in Scenario 1. Interfaces 5a-f

and 6a-c are di�erent in this scenario, as shown in Figure 8.21.

Formal description of the custom-made MongoDB-based MDRR2 When de-

riving the formal description of this MDRR (Appendix E, page 185), the same result as

the MDRR of Scenario 1 is produced.

AT1: DeepAlign When using the technique for searching a library of already imple-

mented elements (Technique 2 in Section 7.3), it can be seen that an already implemented

AT that can be reused exists. At this point, there is a library with three implemented

elements (AT:DeepAlign, AT:AssessDeepAlign, and AT:AssessDocking). Drawing the de-

tailed diagram of the required AT shows that the interfaces and the core computation

are the same as in the AT:DeepAlign and di�er from the other two ATs. Therefore, the

AT:DeepAlign (Section 8.2.1) will be reused. The same name for the AT can be used and

the detailed diagram is nearly the same. The only di�erence is the naming of interface 5d

(Figure 8.21).

Formal description of DeepAlign When deriving the formal description of this AT,

the same methods as in Scenario 1 are created: DeepAlignCore and DeepAlign (Appendix

E, page 188).

AT2: Assess DeepAlign results The same technique for searching a library of already

implemented elements can be used to conclude that the AT:AssessDeepAlign from Scenario

1 (Section 8.2.1) can be reused. The same name for the AT can be used and the detailed

diagram is nearly the same. The only di�erence is the naming of interface 6c (Figure 8.21).

Formal description of the custom-made threshold-based DeepAlign assessment

AT When deriving the formal description of this AT, the same methods as in Scenario

1 are created: goodDeepAlignResult and AssessDeepAlign (Appendix E, page 188).

AT3: LIGSIFT The technique for searching a library of already implemented elements

can be used for this AT as well. However, this search does not result in an element that can

be reused. When drawing the detailed diagram for this AT, there are similarities between

the interfaces of it and the AT:DeepAlign. However, the core computation is very di�erent.

8.4. Implementing Scenario 4 129

LIGSIFT calculates structural similarity of ligands, whereas DeepAlign calculates similar-

ity of receptors. The remaining two ATs (AT:AssessDeepAlign and AT:AssessDocking)

have more evident di�erences, as even the interfaces di�er substantially. Therefore, the

conclusion is that a custom-made AT should be created. The abstract description of this

AT can be compared to the generic description of the element type AT to determine

whether it �ts the scenario. Figure 8.17 shows the detailed diagram which is similar to

the detailed diagram of the element type AT.

Interfaces of LIGSIFT

5b. The LIGSIFT AT should require a LIGSIFT threshold.

5e. The LIGSIFT AT should require a list of ligands, and the target ligand from an

MDRR.

7c-d. The LIGSIFT AT should provide the LIGSIFT threshold and the LIGSIFT result

to an AT for assessment.

Figure 8.17: The diagram of the AT LIGSIFT.

Formal description of LIGSIFT One of the aims of implementing Scenario 4 is to

show how a new element, which hasn't been used before, can be introduced (as mentioned

in Section 8.1). This description is similar to the description of the AT:DeepAlign used

in Scenario 1. This shows that if two ATs have similar interfaces and belong to the same

class based on the type of input they receive, their formal descriptions can be created in

an analogous manner. The abstract description of an AT in the framework included all

possible classes of ATs based on the input they receive. The schema LIGSIFT (Appendix

8.4. Implementing Scenario 4 130

E page 189) is derived from the schema AdditionalTool of the formal description of the el-

ement type AT (Appendix B, page 168). It speci�es that the needed class of AT should be

LIGSIFTCore, a tool that uses previous results, equivalent to additionalTool PR. Specif-

ically, this tool de�nes the input as a pair of ligands.

AT4: Assess LIGSIFT results The same technique for searching a library of already

implemented elements can be used to determine that there is no element that can be reused.

There are similarities between the interfaces of this AT and the AT:AssessDeepAlign, but

the core computation is di�erent. Similarly to the previous AT, the detailed diagram of

a custom-made AT to assess LIGSIFT results can be compared to the diagram of the

element type AT. Figure 8.18 con�rms that the custom-made AT can be used since its

diagram can be derived from the diagram of the element type AT.

Interfaces of the custom-made threshold-based LIGSIFT assessment AT

7c-d. This AT should require the LIGSIFT score threshold and the LIGSIFT result.

6a. This AT should provide the results of the assessment, whether the ligands are similar,

to the MDRR for storage.

10b. This AT should provide the results of the assessment to the DM.

Figure 8.18: The diagram of the AT to assess LIGSIFT.

Formal description of the custom-made threshold-based LIGSIFT assessment

AT The formal description of this AT is analogous to the formal description of the

AT:AssessDeepAlign. The schema AssessLIGSIFT (Appendix E, page 189) is derived

from the schema Additional Tool. The schema goodLIGSIFTResult expects the results

of another AT and a user-provided input, which is equivalent to additionalTool UI ATR

of the element type AT. The user-provided input needs to be a threshold used for com-

parison with the LIGSIFT score, as speci�ed in goodLIGSIFTResult. The schema As-

8.4. Implementing Scenario 4 131

sessLIGSIFTResult shows that a ligand will be considered similar to the target ligand

only if the result of goodLIGSIFTResult is positive.

AT5: Custom-made tool to compare con�guration �les The same method as in

the previous two ATs can help determine that there is no element that can be reused.

The detailed diagram of the proposed custom-made tool for comparison of docking con-

�guration �les has similar interfaces as the AT:AssessDeepAlign and AT:AssessDocking,

however it has a very di�erent core computation. This diagram, shown in Figure 8.19, can

be derived from the diagram of the element type AT, thus con�rming that this element

will �t the scenario.

Interfaces of the custom-made threshold-based con�guration comparison AT

5c-f. This AT should require a con�guration comparison threshold, and con�g �les of past

docking results along with a target con�g �le.

6b. This AT should provide the results of the assessment (whether two con�guration

�les are su�ciently similar) to the MDRR for storage.

10c. This AT should provide the results of the assessment to the DM for summarising.

Figure 8.19: The diagram of the AT to compare con�guration �les.

Formal description of the custom-made tool to compare con�guration �les The

formal description of this AT (Appendix E, page 190) resembles that of the AT:Assess-

Docking because they are the same class of AT based on the input. The method sim-

ilarCon�g, which is equivalent to the additionalTool UI PR of the framework's formal

description, expects user-provided input and previous results as input. Speci�cally, it re-

quires a threshold value and two con�guration �les. The schema ComparePreviousCon�g,

which is derived from the schema AdditionalTool, shows that a positive result of similar-

Con�g is required to consider the two con�g �les �similar�.

8.4. Implementing Scenario 4 132

DM: custom-made element The DM combines the assessment from AT2 (if the recep-

tors are similar), AT4 (if the ligands are similar), and AT5 (if the con�g �les are similar).

It should create a sorted list of similar previous docking results. It should be sorted �rstly

by similarity of receptor, then ligand, then con�g �le. The fact that the detailed diagram

of this custom-made tool (Figure 8.20) can be derived from the diagram of a DM element

type of the framework, shows such a custom-made DM can be used in this scenario.

Interfaces of the custom-made DM

10a-c. This DM should require the results from AT2, AT4, and AT5.

13. The decision (in this case the sorted list of previous results with similar docking

input) should be provided to the MDRR.

Figure 8.20: The diagram of the DM.

Formal description of the custom-made DM The schema DecisionMaker Custom

(Appendix E, page 190) is derived from the schema DecisionMaker of the generic element

type DM (Appendix B, page 171). It uses makeADecisionAdditionalTool which requires

the results of three ATs as input. In this scenario, the �rst result is a list of �ltered

receptors, the second a list of �ltered ligands, and the third a list of �ltered con�g �les.

Detailed diagram of entire Scenario 4 The detailed diagram of the entire scenario

can be created based on the analysis shown above (Figure 8.21). It con�rms that Scenario

4 �ts the framework since it can be derived from the detailed diagram of the framework.

There are a total of 29 interfaces between these elements (numbered according to the

numbering-scheme of the framework).

8
.4
.
Im

p
lem

en
tin

g
S
cen

a
rio

4
133Figure 8.21: The detailed diagram of Scenario 4.

8.4. Implementing Scenario 4 134

8.4.2 Code of Scenario 4

Similarly to Scenario 1 and 2, all the components in the implementation are accessible via

a RESTful API developed using the Bottle web framework. Figure 8.22 provides more

details about the �ow and communication between the elements and the servers. In order

to insert the results of the current VS simulation, the MDRR on Server 1 expects a zip �le

from Raccoon2. It inserts the results in the MongoDB database (which retains the same

design as shown in Sub-section 8.2.2.2).

The goal of this scenario is to enable the user to verify the docking method or learn how

to conduct docking simulations. To achieve this, the MDRR selects �all receptors� from

the database and sends them to the AT:DeepAlign on Server 2, along with the �target

receptor� (the receptor used in the original simulation), and a user-provided �threshold�

value of DeepScore. The AT:DeepAlign on Server 2 executes DeepAlign for each receptor

pair. It then calls the AT:AssessDeepAlign, located on the same server, to select �similar�

receptors based on the DeepScore threshold. If the DeepAlign result is greater than the

threshold, the two receptors are called �similar�. A list of �similar� receptors is returned

to Server 1 and used by the DM.

For each similar receptor, the MDRR selects only the ligands and con�guration �les of

past docking results with that receptor. Then the MDRR completes two steps.

In the �rst step, it sends the ligands to be compared to the �target ligand� (the ligand

used in the current docking; If the user has conduced a VS, only the �rst ligand is chosen

as target ligand). The comparison is done by the AT:LIGSIFT and AT:AssessLIGSIFT.

These ATs work in an analogous way to the receptor structural alignment tools mentioned

above. Based on a user-provided threshold value, they determine if two ligands are similar.

In the second step, the MDRR sends all con�g �les associated with each ligand in a previous

docking for comparison with the �target con�g�. The comparison is done in the custom-

made AT:CompareCon�g. This AT compares the two con�guration �les geometrically and

returns a list of similar con�g �les based on a user-provided threshold. The three lists of

similar receptors, ligands, and con�g �les are processed by the DM. It returns one list with

all the needed information ready to be visualised and presented to the user. The source

code on GitHub [237] provides more information. The remainder of this section focuses

on how the coding step has used the abstract descriptions of elements and interfaces.

8
.4
.
Im

p
lem

en
tin

g
S
cen

a
rio

4
135

Figure 8.22: Communication between servers used in the implementation of Scenario 4.

8.4. Implementing Scenario 4 136

8.4.2.1 Implementation of the MDE

Similarly to Scenario 2, the version of Raccoon2 (Chapter 3) can be reused with a slight

modi�cation. The user should be able to enter the required threshold values for: Deep-

Score, the LIGSIFT score, and the con�guration comparison score. These required user

inputs are shown in the detailed diagram (Figure 8.21).

8.4.2.2 Implementation of the MDRR

The custom-made MDRR can also be reused. The code needs to be updated to handle

the �ow required for Scenario 4 and process the three threshold values and the docking

results received from Raccoon2 as it is speci�ed in Figure 8.21.

8.4.2.3 Implementation of the ATs

AT:DeepAlign and AT:AssessDeepAlign The implementation of Scenario 2 showed

how an element can be reused. The same technique for reusing elements is applied in

Scenario 4. The MDRR needs to correctly format the input for the AT:DeepAlign, but

the code of the ATs themselves has not been changed.

AT:LIGSIFT and AT:AssessLIGSIFT The implementation of these two ATs is anal-

ogous to the AT:DeepAlign and AT:AssessDeepAlign. This can be seen in the detailed

diagram and the formal description. The interfaces of AT:LIGSIFT and AT:DeepAlign

are similar, only the core computation is di�erent. There is an analogy between the way

that similar receptors are �ltered and the way that similar ligands are �ltered. Therefore,

in this implementation, a new thread is launched for each ligand pair in order to run the

LIGSIFT executable and send the results to be assessed.

The value of �ShapeSim� calculated by LIGSIFT has been chosen as a representative

LIGSIFT score which is compared to the user-provide threshold in the AT:AssessLIGSIFT.

ShapeSim is the shape-based scaled TC, known as sTC (more details are provided in

Section 2.3.2). If the ShapeSim value is greater than the threshold, the two ligands are

considered �similar�.

AT:CompareCon�g Even though the description of this AT resembles that of AT:

AssessDocking and AT:AssessDeepAlign, they cannot be reused because their core com-

putations are not comparing docking con�guration �les. Some of the concepts used in

8.4. Implementing Scenario 4 137

the code of these tools can be seen in the code of the custom-made AT:CompareCon�g.

After processing the received input, this AT compares the currently used con�guration

�le with each of the con�guration �les provided. This thesis has mainly used AutoDock

Vina as an example docking tool, thus this AT was developed with an AutoDock Vina

con�guration �le in mind. An AutoDock Vina con�guration �le contains several param-

eters including the coordinates of a cuboid where the docking calculations will be fo-

cused. Usually, this cuboid is positioned around the potential binding site of the receptor.

Figure 8.23: Representation of the cuboid of

an AutoDock Vina con�guration �le.

The cuboid is described with two 3-

dimensional points: the centre of the

cuboid, and the �size� of the cuboid rep-

resented by the coordinates of one of the

vertices, relative to the centre. The �size�

is equivalent to one half of the size of the

sides if the centre were at (0, 0, 0) as shown

in Figure 8.23. Because it aims to describe

the size, the values will always be positive,

so it is the particular vertex where x > 0,

y > 0, and z > 0. In order to calculate a

similarity value, distances between the two

3-dimensional points are calculated (Equa-

tions 8.1 and 8.2).

DistanceC =
√

(Cx − TargetCx)2 + (Cy − TargetCy)2 + (Cz − TargetCz)2 (8.1)

and

DistanceS =
√

(Sx − TargetSx)2 + (Sy − TargetSy)2 + (Sz − TargetSz)2 (8.2)

where Cx , Cy , Cz are the coordinates of the centre of a cuboid from a candidate con�gu-

ration �le; TargetCx , TargetCy , TargetCz are the analogous coordinates from the �le origi-

nally used by the user; Sx , Sy , Sz are the coordinates of the mentioned vertex representing

the size of the cuboid; and TargetSx , TargetSy , TargetSz are the analogous coordinates

from the �le originally used by the user.

The mean of the two distances (DistanceC+DistanceS
2

) is taken as the comparison value. If

this comparison value is less than the user-provided threshold, then the two cuboids, and

ultimately, the con�guration �les are deemed �similar�. The conclusion of the comparison

is strictly geometrical, and may not always be biologically relevant. Furthermore, the user

would have to be acquainted with the method to be able to provide a correct threshold.

8.5. Conclusion 138

8.4.2.4 Implementation of the DM

The DM of Scenario 4 receives the assessed similar receptors, ligands, and con�g �les (seen

in the detailed diagram, Figure 8.20). It groups them in a list where the list item is a

ligand�receptor�con�g triplet. After it adds meta-data (e.g. the similarity scores), the

DM sorts this list. The list is sorted �rstly based on the receptor similarity, then based on

the ligand similarity value. Finally, the list is returned to the MDE and visualised. Figure

8.24 is a screenshot showing the �nal result which is displayed to the user in the GUI of

Raccoon2.

Figure 8.24: Screenshot of the �nal result of Scenario 4.

8.5 Conclusion

This chapter evaluated the framework and methodology by providing a detailed descrip-

tion of how three scenarios can be implemented. The scenarios were �rstly described using

the abstract (diagrammatic, textual, and formal) description, then a prototype implemen-

tation was produced and outlined. The goal of the implementations was to show how the

8.5. Conclusion 139

framework and methodology can be used by the software development team to produce

a viable software system. All three implementations showed how developers can use the

three techniques of the methodology (Section 7.3) to develop software using a structured

and methodical approach. The approach includes a technique to determine whether a

new scenario would �t the framework. It also includes a technique to search a library of

abstract descriptions for an already implemented element that can be reused. Finally, it

includes a technique to determine whether a newly proposed custom-made tool can be used

in the implementation. This shows that using the framework and methodology provides

an approach that is bene�cial for software developers. The following chapter examines

the usability of the implementations from the point of view of the users - the biomedical

scientists.

Chapter 9

Usability of Implementations

9.1 Introduction

The bene�ts of implementing the scenarios using a methodical approach, such as the ab-

stract descriptions speci�ed in the framework, were outlined above. In particular, following

the methodology allows the development team to determine: whether a scenario �ts the

framework, whether already implemented elements can be reused, or whether a proposed

new element �ts the appropriate element type (Section 7.3). These can be seen as bene�ts

for the software developers.

However, it is possible that following such a methodical approach produces more cumber-

some and less usable systems. This section will show that this is not the case for the three

scenarios implemented following the methodology and framework. Completing a scenario

using currently available tools directly (without the implementation) will be compared to

completing the scenario �with� the implementation. The fact that using the implementa-

tion is at least as usable as the alternative shows that the framework and methodology

produce usable systems.

The candidate conducted all the usability tests, with guidance from the two life scientists

(mentioned in Section 7.4) who con�rmed that the �nal result of the three scenarios were

useful from a biomedical point of view. The implementations of the three scenarios im-

plemented using the framework were demonstrated to the life scientists during an internal

mini-workshop. The life scientists were shown how the implementations worked, and they

were guided through the process of obtaining the �nal results. Finally, the results were

analysed and discussed.

140

9.2. Planning the Usability Tests 141

9.2 Planning the Usability Tests

Planning usability tests of Scenario 1 In this scenario the user completes a docking

or VS. Then, in search of a suggestion of what to dock to the target receptor in the future,

the user looks for similar receptors. If some ligands have been docked to these similar

receptors, and the docking is considered to be �good�, then these ligands are a good

suggestion for the next docking with the target receptor. The steps needed to complete

this scenario with and without the implementation are depicted in the �owcharts in Figure

9.1.

Figure 9.1: Flow of events of Scenario 1 �without� the implementation (left) vs. �with�
the implementation (right).

When conducting the tests, the tool AutoDock Vina was considered. Some details may be

di�erent if a di�erent docking tool is used. Each usability test may require an �Assumption�

that something is done as a pre-requisite before starting the user-test, and several main

�Process� steps. The following list contains the steps needed to complete this scenario

�without the implementation�.

Assumption: Scientist has stored previous docking results.

Process:

1. Run VS with Raccoon2. The results can be viewed in Raccoon2, but at this point the

user requires a suggestion for the next docking.

9.2. Planning the Usability Tests 142

2. Locate the target receptor in the �le system. Locate all the receptors that are part of

the stored previous docking results.

3. Open the RaptorX website in the browser and manually upload the target receptor and

another receptor that has been used in the past. Do this for each receptor used in the

past. RaptorX allows uploading batches of receptors (the limit is 25) which may be used

instead of uploading them one by one.

4. Once the RaptorX Structural Alignment website returns a result for all the receptors,

a list of the similar receptors to the target receptor can be created.

5. Locate the past docking results that you have stored for each of the similar receptors.

Raccoon2 can be used to �lter these results. The docking results can be uploaded in the

�Analysis� tab and then �ltered based on the AutoDock Vina a�nity. The docking results

should be sorted by the receptor similarity value or the �les could be renamed to include

this value. A script may be written to do this in case of a large number of receptors.

Then, the results should be uploaded separately for each receptor.

6. Identify the past docking result of the most similar receptor with the �best� a�nity.

The ligand used in this docking is the suggested ligand to dock to the target receptor next.

The usability test �with� the implementation can be written in the same format. This

usability test claims certain bene�ts for the user (�Claim�).

Assumption: The MDRR has enough relevant docking results for this scenario to produce

meaningful results.

Process:

1. Prepare VS with Raccoon2. Before running it, additional information can be added in

order to obtain a suggestion for the next docking.

2. Within the Raccoon2 GUI, in the �Job manager� tab, the implementation has provided

a direct way to conduct Scenario 1. The AutoDock Vina a�nity and DeepScore thresholds

can be entered in the provided text �elds. Clicking �Submit� will run the VS and look for

a suggestion of the next docking.

3. Once both of these actions are completed, the VS results and more importantly, a list

of suggestions for the next docking, can be viewed in Raccoon2. The list is sorted by

the most similar receptor �rst, and then if there are several ligands per receptor they are

sorted by the AutoDock Vina a�nity of the respective docking result.

Claim: The user will require less expertise and less time to conduct this scenario because

most manual steps are automatic.

9.2. Planning the Usability Tests 143

Planning usability tests of Scenario 2 In this scenario the user completes a VS

simulation (docking a large number of ligands and one receptor). Then, the docking results

need to be �ltered based on properties of the ligands, speci�cally, molecular properties that

are stored in external data sources such as PubChem. These �ltered results would assist

the scientist in making a conclusion and increase the likelihood of showing that the two

molecules bind in the wet lab. The steps needed to complete this scenario with and without

the implementation are shown in Figure 9.2.

Figure 9.2: Flow of events of Scenario 2 �without� the implementation (left) vs. �with�
the implementation (right).

The following list contains the steps needed to complete this scenario �without the imple-

mentation� in the same format.

Assumption: None

Process:

1. Run VS with Raccoon2. The results can be viewed in Raccoon2.

2. A set of �good� docking results based on the Vina a�nity can be obtained within the

�Analysis� tab of Raccoon2.

3. Each of these results contains a ligand. The PubChem Compounds database can be

queried for each of these ligands through the browser. If the ZINC ID or another identi�er

for each ligand is known, then it can be entered in a text �eld.

4. Optionally, if it is not known, an identi�er can be calculated. This can be done using

9.2. Planning the Usability Tests 144

the openbabel tool from the command-line interface, for instance, to calculate the canon-

ical SMILES value from the structure of the ligand. The command for one molecule is

�obabel -ipdbqt name of ligand.pdbqt -osmi�, and a batch calculation can be done

with �obabel *.pdbqt -osmi -m�. These commands assume the structure �le format of

the ligands is .pdbqt.

5. The PubChem page can be viewed for each ligand and the particular property can be

manually identi�ed. Whether its value satis�es a criteria can be observed. If it does, that

ligand becomes a member of a list of �ltered ligands.

6. For each ligand in this list, identify the docking result that uses it. That docking result

will be part of a list of �ltered results.

The following list contains the steps needed to complete this scenario �with the implemen-

tation� in the usual format.

Assumption: None

Process:

1. Prepare the VS simulation with Raccoon2. Before running it, additional information

can be added in order to obtain a �ltered list of the results based on ligand properties.

2. Within the Raccoon2 GUI, in the �Job manager� tab, the implementation has provided

a direct way to conduct Scenario 2 and enter several inputs. The AutoDock Vina a�nity

threshold can be entered in a text �eld. The name of the PubChem property, its threshold

value, and whether the threshold represents the minimum or maximum value for the

�ltered ligands.

3. Once these actions are completed, the VS results can be viewed in Raccoon2 and

more importantly, a �ltered list of the results that have a ligand whose chosen PubChem

property �ts the criteria can be observed within Raccoon2.

Claim: The user will require less expertise and less time to conduct this scenario because

most manual steps are automatic.

Planning usability tests of Scenario 4 In this scenario the user completes a single

docking simulation (in case of a VS, the �rst receptor, ligand, and con�g will be consid-

ered). Then, the user observes other docking results with similar input �les in order to

9.2. Planning the Usability Tests 145

either verify that the way that the docking has been conducted is correct, or in the case

of a novice user, to learn how to conduct docking correctly. The steps needed to complete

this scenario �with� and �without� the implementation are shown in Figure 9.3.

Figure 9.3: Flow of events of Scenario 4 �without� the implementation (left) vs. �with�
the implementation (right).

The following list contains the steps needed to complete this scenario �without the imple-

mentation� in the format that includes prior assumptions and main process steps.

Assumption: There are default docking input and output �les provided as part of the

docking tool, or input and output �les of properly conducted docking can be acquired

from other users.

Process:

1. Run a docking simulation with Raccoon2. The results can be viewed in Raccoon2.

2. Locate the default input �les provided with the docking tool.

3. A potential mistake in the way the docking has been conducted can be identi�ed, if

there is a big di�erence. Or, if the user is a novice, these �les can be studied in order to

learn how to conduct docking.

4. Another user can be asked for input and output �les of their docking.

5. These �les can be used to identify a potential mistake in the way the docking has been

conducted, or if the user is a novice, they can be studied in order to learn how to conduct

9.3. Preparation of usability tests 146

docking.

The following list contains the steps needed to complete this scenario �with the implemen-

tation� in the familiar format.

Assumption: The MDRR has enough relevant docking results for this scenario to produce

meaningful results.

Process:

1. Prepare a docking simulation with Raccoon2. Before viewing the results, additional

information can be provided in order to obtain a list of previous docking results that have

similar input �les to the docking simulation.

2. Within the Raccoon2 GUI, in the �Job manager� tab, the implementation has provided

a direct way to conduct Scenario 4. Threshold values can be entered for the receptor

similarity tool DeepAlign, ligand similarity tool LIGSIFT, and the custom-made tool for

comparing con�guration �les. Then, clicking on �Submit� will both run the docking and

look for past docking results with similar input �les.

3. Once completed, the docking results can be viewed in Raccoon2. More importantly,

a list of past docking results with similar input �les with more details about the results

themselves, or each of the input �les (receptor, ligand, con�g) can be analysed.

Claim: The user will require less expertise and less time to conduct this scenario because

most manual steps are automatic. Additionally, the implementation removes the need to

rely on default �les provided with the docking tool, or receiving �les from colleagues.

9.3 Preparation of usability tests

As emphasised by the plans for the tests, particularly the assumptions for the tests of

Scenarios 1 and 4, there is a need for an MDRR which contains relevant previous docking

results. In order to achieve this, a total of 166,320 docking simulations were conducted

and their results stored in the database. The extended version of Raccoon2 was used to

produce these docking results, and they were stored directly into the MDRR by utilising

the interface created for the implementation of the scenarios. The UoW academic cloud

was used as the DCI to run the docking simulations.

The same receptor used in the proof-of-concept test of the extension of Raccoon2 in Chap-

ter 3 was used as a target receptor. It represents the ribokinase of Trichimonas vaginalis

9.3. Preparation of usability tests 147

(TV). When choosing which receptors to dock in order to �ll the MDRR, a number of a

priori similar receptors to the TV ribokinase were chosen. After searching the wwPDB, a

total of 23 solved protein structures of ribokinase were found. These came from 7 di�erent

species1. Some species had more than one version of this protein. Only one was chosen for

each species2, thus selecting 7 a priori similar receptors. These are structures of the same

type of protein, so they are likely to have the same ancestor and they are homologous. To

check if there is structural alignment, DeepAlign was run between the TV ribokinase and

each of the 7 ribokinases. The results showed a high DeepScore value (min: 975.47 for

3I3Y, max: 1491.79 for 5BYD).

The next step requires a number of random receptors which may or may not be similar to

the TV ribokinase. In order to obtain these, the RCSB �Molecule of the Month� series [243]

was used. When selecting molecules, the �rst molecule mentioned in the article for a

particular month was manually chosen. This molecule was downloaded and converted to

.pdbqt. If the conversion failed, the molecule was discarded, and the molecule mentioned

next was selected. Following this, a test AutoDock Vina docking was run. If the test

docking returned errors, this molecule was discarded, and the molecule mentioned next

was selected. If the docking started correctly, that molecule was chosen as one of the

randomly selected receptors. A total of 63 receptors were chosen this way. Thus, the set

of receptors had 70 members, 7 of them (10%) a priori similar to the TV ribokinase, and

63 (90%) other random receptors.

Furthermore, a large number of ligands were needed. A set of molecules that have been

approved as drugs in some jurisdiction in the world was identi�ed from ZINC [244]. A

total of 2376 such molecules were downloaded and saved as individual .mol2 �les.

Finally, each receptor requires its own con�guration �le. The con�guration �les were

created within the GUI of Raccoon2. Care was taken for the cuboid to cover a part of the

receptor. Further analysis to see where the receptor has an active site, or a biologically

relevant part, were not conducted. This procedure was followed for each of the receptor,

thus creating 70 con�guration �les.

These input �les were used to �ll the MDRR with a large number of docking results. The

�nal number of docking results in the MDRR was 166,320 (70× 2376). A total of 80 runs

of Raccoon2 were conducted, one for each receptor (10 had to be repeated due to faults or

issues with the infrastructure). Most of the runs used 3 or 6 instances in the UoW cloud.

The UoW cloud executed a total of 393 jobs for this exercise, with an average execution

time of 2h 23min 23s.
1 Escherichia coli, Homo sapiens, Klebsiella pneumoniae, Mycobacterium tuberculosis, Staphylococcus

aureus, Thermotoga maritima, and Vibrio cholerae.
2PDB IDs: 1RKA, 5BYD, 3I3Y, 3GO6, 3RY7, 1VM7, and 4X8F respectively.

9.4. Results of usability tests 148

9.4 Results of usability tests

In order to comment on the claimed bene�ts of the implementations, three scenarios �with�

and �without� the implementation were conducted, resulting in 6 tests. The focus of these

tests is the additional analysis provided as a result of the three scenarios, and not the

results of the docking simulations themselves. In all of the tests, the original docking (or

VS simulation) used the TV ribokinase as a receptor, an adequate con�guration �le, and

a group of 10 ligands. These 10 ligands were the �rst 10 of the 130,216 ligands used in

the proof-of-concept of the extended Raccoon2 (Chapter 3). In the following paragraphs

the test results will be described. The numbering of events corresponds to the �Process�

steps of the usability test plans.

Results of usability tests of Scenario 1

Results of usability tests �without� the implementation:

1. The VS (10 ligands and 1 receptor) with Raccoon2 on the cloud �nished in 10 minutes.

2. The target receptor can be easily located on the �le system, since this location was

used to upload the target receptor to Raccoon2 when preparing the VS. The locations of

the past results can be a lot more di�cult to �nd. In this case, the group of results used

to �ll the MDRR was selected. These were easy to locate as they have been stored in a

relatively well-designed folder structure.

3. The user interface of the RaptorX Structural Alignment website was found to be intu-

itive. The user can upload two receptors and proceed with pair-wise structural alignment.

The DeepAlign results are visible on the page after about 1 minute. The results contain

several similarity measures, but the DeepScore value is not visible. This is unusual since

DeepScore is the main score calculated by DeepAlign.

4. The more receptors are found to be similar, the more cumbersome it is to create a list

of similar receptors.

5. Results of 1 similar receptor were used, so there was no concern about the order of

results being based on the similarity value of the receptors. Renaming results to contain

a DeepAlign similarity value would require writing a small script that would select the

correct similarity value for each receptor and rename the name of the result �le that has

used this receptor. If the docking result names contain the name of the receptor at the

start, this script will be simpler. The remaining part of this step refers to �ltering results

with Raccoon2. The �Analysis� tab of Raccoon2 is very intuitive and it took nearly 8

minutes to �lter a set of 2376 results for 1 receptor. If this is done for the results of each

receptor it will get very cumbersome.

9.4. Results of usability tests 149

6. If the results are �ltered per receptor, and ordered according to the receptor similarity,

then the results of the most similar receptor can be easily identi�ed. If there are more than

one docking results for the most similar receptor, Raccoon2 can be used. The results can

be uploaded to Raccoon2 and they will be sorted based on the AutoDock Vina a�nity.

Results of usability tests �with� the implementation:

1. The VS in Raccoon2 is prepared the standard way.

2. The implementation provides two text �elds to enter the AutoDock Vina a�nity and

DeepScore thresholds. The user would require some knowledge of the meaning of these

values. The implementation provides the default values of �-6.8� for the AutoDock Vina

a�nity, and �777.0� for DeepScore.

3. After less than 30 minutes, the user can view the results of Scenario 1 within the �Job

manager� tab. Note that the usability test was ran on an 8GB RAM, 4× 2.50GHz CPU

computer. The performance would be better if the implementation was deployed on a

more optimal infrastructure. The tab that shows the results of this scenario includes a

�TreeView� which can be expanded, and a second pane which is �lled with additional

information upon clicking the ID of a ligand, receptor, or result (Figure 8.11).

Results of usability tests of Scenario 2

Results of usability tests �without� the implementation:

1. The VS (10 ligands and 1 receptor) with Raccoon2 on the cloud �nished in 10 minutes.

2. The �Analysis� tab in Raccoon2 provides a simple way to �lter docking results based

on the AutoDock Vina a�nity. The user can specify a range, e.g. [-5.5, -6.5].

3. In this test, the ZINC ID of the molecule was part of the ligand's name. For a small

amount of ligands it was easy to copy and paste the ZINC ID into a text �eld on the

PubChem website (speci�cally the web interface of the �Compounds� database).

4. Because the ZINC ID is known, this step was not necessary.

5. The chosen property is �Complexity�, which cannot be easily pre-calculated. The name

of this property can be used to search the browser page describing the molecule. For a

large set of ligands it would be too cumbersome and time-consuming to do this manually.

6. By default the docking result in Raccoon2 is named �receptor-name ligand-name out.pdbqt�

which makes identifying which ligand was used easy. However, for a large number of lig-

ands, doing this manually without an additional script can be very error-prone. Particu-

larly when the ligand names are ZINC IDs which are series of numbers.

9.4. Results of usability tests 150

Results of usability tests �with� the implementation:

1. The preparation of the VS in Raccoon2 is the same as without the implementation.

2. The implementation provides simple text �elds to enter the AutoDock Vina a�nity and

the PubChem property input including a value from a drop-down list containing �≤� and
�>�. The values �AutoDock Vina threshold = -6.2� and �Complexity > 200� were

used in this usability test.

3. After 10 minutes, the user can view the results of Scenario 2 within the �Job manager�

tab. The tab that shows the results of this scenario includes a TreeView which can be

expanded, and a second pane which is �lled with additional information upon clicking the

ID of a ligand, receptor, or result (Figure 8.16).

Results of usability tests of Scenario 4

Results of usability tests �without� the implementation:

1. The VS (10 ligands and 1 receptor) with Raccoon2 on the cloud �nished in 10 minutes.

2. Default docking input �les are provided with AutoDock Vina [245] along with a video

that, once followed, will produce output �les.

3. Following this video and examining the docking �les is a good way to verify one's dock-

ing method as well as learn how to conduct docking. However, the particular video seems

outdated. It requires users to include the parameter �all=all.pdbqt� in the con�guration

�le, although this will cause an error with the latest version of AutoDock Vina. Perhaps

as a result of this, the output �les obtained while following the video in this usability test

di�er slightly from the output �les shown in the video.

4. This test did not use docking �les obtained from other users.

5. This test did not use docking �les obtained from other users.

Results of usability tests �with� the implementation:

1. The preparation of the VS in Raccoon2 is the same as without the implementation.

2. The implementation provides three text �elds to enter the thresholds for DeepScore,

LIGSIFT, and the custom-made CompareCon�g tools. The user would have to have some

knowledge of the meaning of the DeepScore, LIGSIFT's ShapeSim, and value used in the

the con�g comparison tool. The default values of the implementations (�777.0�, �0.6�, and

�9.99� respectively) were used.

3. After 2 hours and 18 minutes, the user can view the results of Scenario 4 within the

�Job manager� tab. The tab that shows the results of this scenario includes a TreeView

9.5. Conclusion 151

which can be expanded, and a second pane which is �lled with additional information

upon clicking the ID of a ligand, receptor, or result (Figure 8.24).

9.5 Conclusion

The �ow of required process steps for each usability test (Figures 9.1, 9.2, and 9.3) can

be used to compare completing a scenario �with� and �without� the implementation. One

observation is that the usability tests �with� the implementation contain the same number

or less manual steps than the usability tests �without� the implementation. This is because

most of the steps are automated. In particular, there is no need to locate �les on the �le

system, or manually read through web pages.

The decrease of manual steps is a major bene�t in terms of usability. Another bene�t is

the decrease of complexity of the manual steps. This can be observed in each usability

test �with� the implementation. Generally, the user needs to prepare the docking or VS in

Raccoon2, enter the required user-provided inputs, and wait for the result of the scenario.

When completing the scenario �without� the implementation, the user would still need

to prepare the docking or VS, and then do several steps including some that may be

considered complex for a biomedical scientist, such as writing and running a script.

Furthermore, the �owcharts of the scenarios �without� the implementation sometimes

feature simple, but repetitive manual steps. For instance, uploading the structures of

receptors and reading the results of the structural alignment multiple times. Although

not very complex, these repetitive manual steps are very error-prone and time-consuming.

Using the implementations does not have these problems because such steps have been

automated.

Finally, completing the scenarios �with� or �without� the implementation requires a certain

level of expertise. For instance, in order to interpret the results of the RaptorX website, the

user should be aware of the meaning of the measures that are part of these results. Since

the implementations require a user-provided threshold, the need for expertise or knowledge

about the threshold value remains. However, a novice user could use the default threshold

and still obtain meaningful results.

In summary, this section showed that running the scenarios �with� the implementations

provides a degree of usability which is comparable to running the scenarios with currently

available tools. In some cases an improvement in usability can be noticed. Therefore, the

users of the implementations, the biomedical scientists, will also bene�t from implementing

this type of scenarios using the framework and methodology. This will produce usable

9.5. Conclusion 152

systems whose �nal results will be useful from a biomedical point of view. Unfortunately,

it was not possible to have all �ve interviewees that participated in the primary research

(Section 4.3) test the implementations.

Chapter 10

Conclusion

10.1 Summary of Thesis Achievements

Drugs have been discovered using �classical pharmacology� where the e�ects of a substance

on an organism are determined �rst, and then the biological target is identi�ed. Alter-

natively, in �reverse pharmacology�, the biological target can be identi�ed �rst, before

discovering a suitable substance. The latter may include molecular docking simulations,

which computationally estimate how and where two molecules would interact. This thesis

shows how the development of computer systems that use docking results can be made

easier for software developers while remaining useful for the biomedical scientists.

Firstly, a research gap was identi�ed in the use of cloud computing for domain-speci�c

desktop applications, such as large-scale docking applications. A generic concept for ex-

tending desktop applications with cloud computing capabilities was proposed, and tested

for the large-scale docking tool Raccoon2 (Contribution 1, Chapter 3). Using this concept,

popular desktop applications can be extended seamlessly and without major reengineer-

ing. The same desktop application, and the same familiar GUI can be used to leverage

cloud computing resources. The biggest impact of the �rst contribution is that the generic

concept can be used by software engineers to extend domain-speci�c desktop applications

without major e�ort. As a result of this contribution, the tool Raccoon2 was extended,

thus enabling Raccoon2 users to run docking simulations on various clouds. This increases

the availability of the tool, particularly for users that do not have access to complex and

expensive HPC clusters.

Secondly, the thesis explored the need to store molecular docking results, and the ra-

tionale behind it. Another research gap was identi�ed: the lack of an openly available

repository of docking results. With a repository, additional conclusions can be made,

153

10.1. Summary of Thesis Achievements 154

based on the docking results that a scientist has created in the past, or based on previous

results of other scientists. It would be useful for preventing the repetition of the same

simulation, suggesting input �les for a next docking simulation, or enabling novice users

to learn how to conduct docking correctly by observing previous results. The proposed

tool-independent conceptual framework (Contribution 2, Chapters 4, 5 and 6) is based on

abstract descriptions of elements and interfaces. The abstract (diagrammatic, textual, and

formal) description of a custom-made or existing tool can be used to determine whether it

can be easily plugged into a scenario or whether an element implemented in one scenario

can be reused in another scenario. Based on interviews with domain scientists, a set of

scenarios that require a docking results repository were identi�ed. The scenarios were used

to de�ne �ve generic element types of the framework, and the interfaces between them.

The generic element types and interfaces of the framework have been veri�ed through a

literature review of existing systems.

Thirdly, this thesis showed how the framework can be used in a speci�cally de�ned method-

ology for developing software systems that use previous docking results (Contribution 3,

Chapter 7). The methodology assumes regular communication among an interdisciplinary

team and a planning and design part which includes the creation of a diagrammatic, tex-

tual, and formal description of the scenario. To avoid becoming overly cumbersome, it

is based on the concept of agile methodologies. The main impact of the methodology is

that it lists the three techniques (Section 7.3) where abstract descriptions, as speci�ed by

the framework, can be used to to determine: whether a new scenario �ts the framework,

whether an already implemented element can be reused in a new scenario, and whether

a tool can be used as an element type. The methodical manner to develop this type of

software systems will enable software developers to create less error-prone systems that

re�ect the aim of a scenario correctly.

Finally, to show how the framework and methodology can be used, Chapter 8 included

reference implementations of three scenarios that have been identi�ed through interviews

with domain scientists. These scenarios emphasise di�erent aspects of the framework, such

as the ability to reuse already implemented elements or to use newly de�ned ones. The

implementations provided examples of how the techniques of the methodology can bene�t

software developers. Chapter 9 shows that the use of the framework and methodology

produces implementations that are usable by biomedical scientists and not overly com-

plicated. This is shown through usability tests that illustrate how completing a scenario

�with� the implementation has at least the same level of usability as completing a scenario

using only currently available tools. In fact, the implementations require less manual steps

and include more automatised processes. Generally, the required steps are less complex

and require the same or lower level of expertise.

10.2. Future Work 155

10.2 Future Work

One of the most important next steps would be to automate the comparison of abstract

descriptions when deciding whether an already implemented element can be reused. In

order to achieve this there are three types of comparisons of the three types of abstract

descriptions: diagrammatic, textual, and formal. Before implementing automatic compar-

ison tools, a database of abstract descriptions would need to be implemented. It would

include optimised database or a novel data structure for storing the text (list of inter-

faces), diagrams (each diagram would need to be encoded in a format such as XML), and

Z notation.

Once the database is created it can be �lled with the abstract descriptions of all already

implemented elements, including the ones part of the prototype implementations provided

in this thesis. Then a method, or possibly three separate methods, for comparing the

abstract descriptions would need to be created. The main concept should be to compare

the types of interfaces and the core computation of the required element. An objective

measure of what is similar enough to enable reuse would need to be devised for both the

types of interfaces and for the core computation. The textual description can be mainly

used for comparison of the interfaces. The formal description can provide more detail

about the core computation. The diagrammatic description provides an overall picture of

where the required element is in the scenario.

A powerful tool provided by Z notation and similar formal methods, which has not been

explored in this thesis, is the mathematical proof - proof of correctness of the design and

proof that the implementation behaves according the speci�cation. Using Z, one can prove

that the implementation of a system is consistent with the speci�cation through the use

of concepts such as re�nement, where one speci�cation is a low-level re�nement of a more

abstract speci�cation. The main reason that a mathematical proof was not explored in this

thesis is the fact that the formal description of the framework is abstract by de�nition. As

future work, it is worth exploring if the formal description of the framework should be more

detailed. It may be possible to remove non-determinism or uncertainty from some points

of the framework's formal description. Most re�nement procedures deal with a formal

description on a much lower level than the formal description of the framework [168].

The formal description of each implemented scenario is more speci�c. However, it is

mainly concerned with describing the speci�c elements for that scenario and the interfaces

between them. As part of this thesis, it was shown that each description of an element

is derived from the appropriate generic element type of the framework. A mathematical

proof, which could involve a re�nement of the formal description, would provide further

guarantees that the element will be implemented as the speci�cation has intended.

10.2. Future Work 156

Furthermore, the implementations themselves can be improved in future research exercises.

The aim of this thesis was not to create the ideal implementation for any scenario, but

rather to provide a reference prototype implementation that shows the usefulness of the

framework and methodology. There are several areas where the implementations can be

improved. Namely, some of the key ones are:

� De�ning the most advantageous data structure for storing the molecular information

about ligands and receptors. In Chapter 2, the use of MSML [143], a part of the

MoSGrid [145] system, was mentioned. The implementations presented in this thesis

used a simpler JSON-based method as part of the MongoDB database. Each line of

the respective .pdbqt �le represents an element in a JSON array that describes the

structure of the ligand or receptor. This was a pragmatic choice for the reference

implementations. A future e�ort to compare and assess existing (e.g. MSML), or

create an alternative new data structure with speci�c bene�ts, could be considered.

� Creating a user-independent manner to assess docking, receptor structural align-

ment, or ligand similarity tool. The current implementations use a method based on

a user-provided threshold which is compared to a result value produced by the tool.

This is not an uncommon method in VS pipelines [212]. However, this method can

be improved. If annotations by a human expert are added to set of results, this can

form the beginning of a training set for a method based on machine learning. For

instance, a supervised learning method can be used to determine if a docking result

is �good� or not. Similarly, annotating the results of the structural alignment or

ligand similarity tools can be the �rst step towards using machine learning to assess

what should be considered a pair of �similar� receptors or ligands.

Appendix A

Analysis of interviews with interviewees

A-D

What scientists would use the system for?

1. Search all docking runs based on a protein, a ligand, or both

(i) C said that for the scientist that is doing research on a certain protein, it would

be useful to search for that protein (and species) and see everything that has

already been docked to it.

(ii) It would be useful to search for all the proteins that a certain ligand has been

docked to.

(iii) C added that it would be very useful to be able to search for all docking results

of a certain protein-ligand pair and see if a particular combination has been

docked before.

(iv) Also, if a certain protein of the exact same species hasn't been docked, it would

be very useful to see results for the similar protein from another species.

2. Redo simulation on the cloud

(i) C thought it would be more useful to redo the simulation on the cloud compared

to on your local PC, but wasn not completely convinced.

(ii) A thought it is important to have this functionality. However, as a reason they

stated �collaboration� which is not very related. Also, A said that the docking

processes are stochastic. This is very important as every docking result is

unique. It is entirely possible that something di�erent comes out because it is

more or less a statistical method.

157

158

(iii) D thought that if all the tools needed were pre-installed on a VM it would be

more useful but they reckons it will be di�cult.

3. Redo simulation on PC

(i) This sounded useful to C, because one may want to download the information

about a certain docking, then check that it really works, and perhaps use it for

something else.

(ii) A thought it would be quite informative and quite important.

(iii) B thought this is absolutely important, mainly because usually, you get good

results and they translate to a published paper. But, if you expect some results

to translate to a paper, and they don't - you want to know why. This is when

you would like to rerun (redo) the simulation to check what the problem is.

(iv) D thinks automatically redoing the simulations on one's own PC would be

useful but very di�cult as there are many tools that need con�guration and

installing them is not simple

4. Just download input output and intermediate �les

(i) According to C, viewing and downloading input �les is more important than

result �les.

(ii) A rated them in this order: download intermediate �les 7-8, download input

�les 9, and download the results 9-10. If you see some results, then see a paper

where they have been published, it would be very nice to see the trajectory

which led to the results.

(iii) In order of importance, B would order them in this way: input, output and

then intermediate.

5. Contact scientist who did the simulation

(i) C gave 6/10 for contacting the people who performed the simulation.

(ii) A thought it may be useful sometimes but gave it only 3-4.

(iii) B said that if there seems to be an error in someone else's simulation results,

contacting the owner will be useful if it is an ongoing collaboration. However if

it is an old project and a died out collaboration, then it is not worth bothering.

(iv) B also added that it would be useful to have an annotation functionality where

you can add a note and say that you have checked these results and got some-

thing di�erent, so that later people will see this.

(v) Also, B believes that it would be very useful, in fact improve research prac-

tice, if it can be visible that you have done some simulations and improved

159

something and then get contacted by the original researcher. This would result

in a collaboration. Rather than contacting someone who has done something

directly, if you can show o� your work on the same topic you could get their

attention.

(vi) D gave 10/10 to contacting people and organisations that performed the simu-

lations.

6. Compare your results with the same simulation with a di�erent tool

(i) C thinks that it would be very useful to include results from di�erent docking

tools because then you could compare results that someone else has got with

some tool di�erent than your favourite one and see if the results are similar.

However, this would be very di�cult as di�erent tools use di�erent input �les

and produce di�erent result �les, so there would need to be a way to view and

analyse all these di�erent types of �les.

(ii) A agreed that it is important to look at some information about the software

tool that has been used and rated it 7-8.

7. Compare results of past simulations

(i) C rated comparing past simulations (either yours or someone else's) with 7.

(ii) A thought it would be useful and rated it with 8-9.

(iii) D gave 9/10 to comparing results of past simulations.

What scientists think that this system should store?

1. Intermediate �les

(i) When discussing what to store in a database, A proposes to store the con�gu-

ration �les for MD runs and docking runs among others.

(ii) A said that it is important to store the intermediate �les if for instance your

simulation gets interrupted (e.g. by electricity failure) and you want to restart

it. You would use the intermediate �les to know where to continue from.

(iii) B referred to all the �les that are created between tools, or between steps

of the entire simulation process. Since there are usually many steps that go

between the original input and the �nal output �les, there are many �les that

get created. Sometimes these intermediate �les can be disposable (e.g. if the

only di�erence is changing the format). B stores all intermediate �les in a non-

backup server, meaning they may not be retrievable. But everything that is in

the �working directory� should be stored including all the scripts that have been

160

used. The intermediate �les aren't always useful for analysis, the �nal output

�les are the most useful ones containing the information you usually need. Still,

the intermediate �les are useful for teaching new students or if you revisit the

same project at a later stage. Asked if it is possible to reproduce the results

without the intermediate �les, B explained how it is possible but it would take

much longer and having the entire working directory with all the �les will help

students estimate how long will each step take and which is a more important

step.

2. Log �les

(i) B would like to store logs of the intermediate steps, if not all the �les themselves,

having logs of the runs will be very useful.

(ii) B believes that it will be very useful to have a system for keeping logs - a system

of log �les that make it easier to know what is the log of the entire run, what

is the log of an individual step.

3. Peer-reviewed paper

(i) Just like protein sequences and 3D crystal structures are published on PDB and

Uniprot, associated with a paper that is then pending review, it would be a

good idea to include a link to a published paper along with the docking results.

(ii) A believes that storing a peer-reviewed paper together with the results would

be useful.

(a) a. Only once published

(iii) C thinks people would share the record on their simulations only after they

have published, otherwise they will fear the results would be used by someone

else (get stolen).

4. Result �les

(i) A thinks the results should be stored at the university and every result should

be stored. Actually after a slight correction - a single result from every trial

should be stored.

(ii) Referring to MD result �les, A notes that these result �les are huge, often

gigabytes and there is a problem to store them and transfer them through the

Internet.

(iii) B mentions that storing input, intermediate and result �les would be useful.

5. Structure of Molecules (Input �les)

(i) A thinks that the structure of the molecules itself needs to be stored. Apart

from the structure and the resulting energy values the rest can be omitted.

161

(ii) Storing the input �les, the receptor structure in particular should be stored in

a database according to A, as there is a problem of �nding the correct location

and the correct folder which has been used to start previous simulation runs.

(iii) A thinks that the original �les, that were downloaded for instance from the

PDB, should be stored and not just the link because the �les may change on

the PDB

(iv) B explained a �4 copy rule� apparently used in photography, where the original

�le is left untouched and then altered in discrete stages until the �nal 4th stage

produces the �nal image (in this case the �nal result �le). In other words, in

B's practise the original input �les are stored along with the parameter and

con�guration �les. Basic test simulations are run using these to make sure they

are OK and to optimise them if necessary. Once con�rmed that they work

properly, a new copy is made in a new folder with a date reference. All �les

from all steps are stored.

(v) B noted that it is absolutely important to have the original source saved, in-

cluding the ID.

6. Who and when ran the simulation

(i) B would want a system that stores the name of the person that ran the sim-

ulation and the date and time, as it would help verify if the simulations have

actually been run.

Appendix B

Formal Description of Framework for

Systems that Use Docking Results

This appendix contains the formal description of element types and interfaces of the frame-

work in Z notation. The choice of variable names should act as an additional explanation

of the speci�cation.

[CHAR,DATE ,ADDITIONAL TOOL RESULT ,DATA SOURCE INPUT ,DECISION]

LIGAND == seqCHAR

RECEPTOR == seqCHAR

CONFIG == seqCHAR

RESULT == seqCHAR

USER INPUT == seqCHAR

DATA SOURCE INFO == seqCHAR

LIGANDS == PLIGAND
RECEPTORS == PRECEPTOR
RESULTS == PRESULT
PREVIOUS RESULT == (LIGAND × RECEPTOR × CONFIG ×DATE) 7→ RESULT

dockingWithoutCon�g : (LIGAND × RECEPTOR) 7� RESULT

∀ l : LIGAND ; r : RECEPTOR | l 6= ∅ ∧ r 6= ∅ • ∃ res : RESULT •
dockingWithoutCon�g(l , r) = res

162

163

dockingWithCon�g : (LIGAND × RECEPTOR × CONFIG) 7� RESULT

∀ l : LIGAND ; r : RECEPTOR | l 6= ∅ ∧ r 6= ∅ • ∃ c : CONFIG ; res : RESULT |
c 6= ∅ • dockingWithCon�g(l , r , c) = res

Docking

ligand? : LIGAND

receptor? : RECEPTOR

con�g? : CONFIG

result ! : RESULT

con�g? = ∅ ∧ result ! = dockingWithoutCon�g(ligand?, receptor?) ∨
con�g? 6= ∅ ∧ result ! = dockingWithCon�g(ligand?, receptor?, con�g?)

MolecularDockingEnvironment

ligands? : LIGANDS

receptors? : RECEPTORS

con�g? : CONFIG

results! : RESULTS

date! : DATE

∃ ligand? : ligands?; receptor? : receptors?; result ! : results! • Docking

ViewMolecularDockingResults

ΞMolecularDockingEnvironment

results! 6= ∅

MolecularDockingResultsRepository

repository : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

decisionRepository : {PREVIOUS RESULT}↔DECISION

repository 6= ∅

164

InsertUpdateMolecularDockingResultsRepository1

∆MolecularDockingResultsRepository

l? : LIGAND

r? : RECEPTOR

c? : CONFIG

res? : RESULT

d? : DATE

repository ′ = repository ⊕ {(l?, r?, c?, d?) 7→ res?}

InsertUpdateMolecularDockingResultsRepositoryMany

∆MolecularDockingResultsRepository

dockingResults? : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

l : LIGAND

r : RECEPTOR

c : CONFIG

d : DATE

{(l , r , c, d)} = dom(dockingResults?)

∀ res : dockingResults? L {(l , r , c, d)} M • repository ′ = repository ⊕ {(l , r , c, d) 7→ res}

InsertUpdateDecisionRepository

∆MolecularDockingResultsRepository

previousDockingResults? : {PREVIOUS RESULT}
decision? : DECISION

decisionRepository ′ = decisionRepository ⊕ {previousDockingResults? 7→ decision?}

165

SelectMolecularDockingResults

ΞMolecularDockingResultsRepository

whereL? : LIGAND

whereR? : RECEPTOR

whereC ? : CONFIG

whereD? : DATE

whereRes? : RESULT

selectResults! : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

lig : LIGAND

rec : RECEPTOR

con : CONFIG

dat : DATE

selectResults! = {(whereL?,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?,whereR?, con,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?, con, dat)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?, rec, con,whereD?)}C repository ∨
selectResults! = {(whereL?, rec, con, dat)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(lig ,whereR?, con,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?, con, dat)}C repository ∨
selectResults! = {(lig , rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig , rec,whereC ?, dat)}C repository ∨
selectResults! = {(lig , rec, con,whereD?)}C repository ∨
selectResults! = {(lig , rec, con, dat)}C repository ∨
selectResults! = repository B {whereRes?}

additionalTool PR : {PREVIOUS RESULT}↔
ADDITIONAL TOOL RESULT

∃ pr : {PREVIOUS RESULT} •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool PR(pr) = atr

166

additionalTool DSI : {DATA SOURCE INFO}↔
ADDITIONAL TOOL RESULT

∃ dsi : {DATA SOURCE INFO} •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool DSI (dsi) = atr

additionalTool ATR : {ADDITIONAL TOOL RESULT}↔
ADDITIONAL TOOL RESULT

∃ another atr : {ADDITIONAL TOOL RESULT} •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool ATR(another atr) = atr

additionalTool DSI PR : ({DATA SOURCE INFO} × {PREVIOUS RESULT})↔
ADDITIONAL TOOL RESULT

∃ dsi : {DATA SOURCE INFO}; pr : {PREVIOUS RESULT} | dsi 6= ∅ •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool DSI PR(dsi , pr) = atr

additionalTool UI PR : (USER INPUT × {PREVIOUS RESULT})↔
ADDITIONAL TOOL RESULT

∃ ui : USER INPUT ; pr : {PREVIOUS RESULT} | ui 6= ∅ •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool UI PR(ui , pr) = atr

additionalTool PR ATR : ({PREVIOUS RESULT}×
{ADDITIONAL TOOL RESULT})↔ ADDITIONAL TOOL RESULT

∃ pr : {PREVIOUS RESULT}; another atr : {ADDITIONAL TOOL RESULT} |
pr 6∈∅ ∧ another atr 6∈∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool PR ATR(pr , another atr) = atr

additionalTool UI DSI : (USER INPUT × {DATA SOURCE INFO})↔
ADDITIONAL TOOL RESULT

∃ ui : USER INPUT ; dsi : {DATA SOURCE INFO} | ui 6= ∅ ∧ dsi 6= ∅ •
∃ atr : ADDITIONAL TOOL RESULT • additionalTool UI DSI (ui , dsi) = atr

167

additionalTool UI ATR : (USER INPUT × {ADDITIONAL TOOL RESULT})↔
ADDITIONAL TOOL RESULT

∃ ui : USER INPUT ; another atr : {ADDITIONAL TOOL RESULT} | ui 6= ∅ ∧
another atr 6= ∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool UI ATR(ui , another atr) = atr

additionalTool DSI ATR : ({DATA SOURCE INFO}×
{ADDITIONAL TOOL RESULT})↔ ADDITIONAL TOOL RESULT

∃ dsi : {DATA SOURCE INFO}; another atr : {ADDITIONAL TOOL RESULT} |
dsi 6= ∅ ∧ another atr 6∈∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool DSI ATR(dsi , another atr) = atr

additionalTool UI DSI PR : (USER INPUT × {DATA SOURCE INFO}×
{PREVIOUS RESULT})↔ ADDITIONAL TOOL RESULT

∃ ui : USER INPUT ; dsi : {DATA SOURCE INFO}; pr : {PREVIOUS RESULT} |
ui 6= ∅ ∧ dsi 6= ∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool UI DSI PR(ui , dsi , pr) = atr

additionalTool PR UI ATR : ({PREVIOUS RESULT} × USER INPUT×
{ADDITIONAL TOOL RESULT})↔ ADDITIONAL TOOL RESULT

∃ pr : {PREVIOUS RESULT}; ui : USER INPUT ;

another atr : {ADDITIONAL TOOL RESULT} | pr 6∈∅ ∧ ui 6= ∅ ∧
another atr 6∈∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool PR UI ATR(pr , ui , another atr) = atr

additionalTool PR DSI ATR : ({PREVIOUS RESULT} × {DATA SOURCE INFO}
× {ADDITIONAL TOOL RESULT})↔ ADDITIONAL TOOL RESULT

∃ pr : {PREVIOUS RESULT}; dsi : {DATA SOURCE INFO};
another atr : {ADDITIONAL TOOL RESULT} | pr 6∈∅ ∧ dsi 6= ∅ ∧
another atr 6∈∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool PR DSI ATR(pr , dsi , another atr) = atr

168

additionalTool UI DSI ATR : (USER INPUT × {DATA SOURCE INFO}×
{ADDITIONAL TOOL RESULT})↔ ADDITIONAL TOOL RESULT

∃ ui : USER INPUT ; dsi : {DATA SOURCE INFO};
another atr : {ADDITIONAL TOOL RESULT} | ui 6∈∅ ∧ dsi 6= ∅ ∧
another atr 6∈∅ • ∃ atr : ADDITIONAL TOOL RESULT •
additionalTool UI DSI ATR(ui , dsi , another atr) = atr

AdditionalTool

userInput? : USER INPUT

dataSourceInfo? : {DATA SOURCE INFO}
previousDockingResults? : {PREVIOUS RESULT}
otherAdditionalToolsResults? : {ADDITIONAL TOOL RESULT}
additionalToolResult ! : ADDITIONAL TOOL RESULT

additionalToolResult ! = additionalTool PR(previousDockingResults?) ∨
additionalToolResult ! = additionalTool DSI (dataSourceInfo?) ∨
additionalToolResult ! = additionalTool ATR(otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool DSI PR(dataSourceInfo?,

previousDockingResults?) ∨
additionalToolResult ! = additionalTool UI PR(userInput?,

previousDockingResults?) ∨
additionalToolResult ! = additionalTool PR ATR(previousDockingResults?,

otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool UI DSI (userInput?, dataSourceInfo?) ∨
additionalToolResult ! = additionalTool UI ATR(userInput?,

otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool DSI ATR(dataSourceInfo?,

otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool UI DSI PR(userInput?, dataSourceInfo?,

previousDockingResults?) ∨
additionalToolResult ! = additionalTool PR UI ATR(previousDockingResults?,

userInput?, otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool PR DSI ATR(previousDockingResults?,

dataSourceInfo?, otherAdditionalToolsResults?) ∨
additionalToolResult ! = additionalTool UI DSI ATR(userInput?, dataSourceInfo?,

otherAdditionalToolsResults?)

169

ReadAnotherAdditionalToolResults

∆AdditionalTool

oneOrMoreAdditionalToolsResults? : {ADDITIONAL TOOL RESULT}

otherAdditionalToolsResults?′ =

otherAdditionalToolsResults? ∪ oneOrMoreAdditionalToolsResults?

AdditionalDataSource

repository : DATA SOURCE INPUT ↔DATA SOURCE INFO

repository 6= ∅

SelectAdditionalDataInfo

ΞAdditionalDataSource

dataSourceInput? : DATA SOURCE INPUT

dataSourceInfo! : {DATA SOURCE INFO}
selectedData : DATA SOURCE INPUT ↔DATA SOURCE INFO

selectedData = {(dataSourceInput?)}C repository

dataSourceInfo! = ran(selectedData)

makeADecisionPreviousResults : {PREVIOUS RESULT}↔DECISION

∃ pr : {PREVIOUS RESULT} • ∃ d : DECISION •
makeADecisionPreviousResults(pr) = d

makeADecisionUserInputPreviousResults : (USER INPUT×
{PREVIOUS RESULT})↔DECISION

∃ ui : USER INPUT ; pr : {PREVIOUS RESULT} | ui 6= ∅ • ∃ d : DECISION •
makeADecisionUserInputPreviousResults(ui , pr) = d

170

makeADecisionUserInputAdditionalToolPreviousResults : (USER INPUT×
{ADDITIONAL TOOL RESULT} × {PREVIOUS RESULT})↔DECISION

∃ ui : USER INPUT ; atr : {ADDITIONAL TOOL RESULT};
pr : {PREVIOUS RESULT} | ui 6= ∅ • ∃ d : DECISION •
makeADecisionUserInputAdditionalToolPreviousResults(ui , atr , pr) = d

makeADecisionAdditionalToolPreviousResults : (ADDITIONAL TOOL RESULT×
{PREVIOUS RESULT})↔DECISION

∃ atr : ADDITIONAL TOOL RESULT ; pr : {PREVIOUS RESULT} •
∃ d : DECISION • makeADecisionAdditionalToolPreviousResults(atr , pr) = d

makeADecisionUserInputAdditionalTool :

(USER INPUT × {ADDITIONAL TOOL RESULT})↔DECISION

∃ ui : USER INPUT ; atr : {ADDITIONAL TOOL RESULT} • ∃ d : DECISION •
makeADecisionUserInputAdditionalTool(ui , atr) = d

makeADecisionAdditionalTool : ({ADDITIONAL TOOL RESULT})↔DECISION

∃ atr : {ADDITIONAL TOOL RESULT} • ∃ d : DECISION •
makeADecisionAdditionalTool(atr) = d

171

DecisionMaker

userInput? : USER INPUT

additionalToolResult? : {ADDITIONAL TOOL RESULT}
previousDockingResults? : {PREVIOUS RESULT}
decision! : DECISION

decision! = makeADecisionUserInputAdditionalToolPreviousResults(userInput?,

additionalToolResult?, previousDockingResults?)

∨
additionalToolResult? ∈ ∅ ∧ decision! =

makeADecisionUserInputPreviousResults(userInput?, previousDockingResults?)

∨
previousDockingResults? ∈ ∅ ∧ decision! =

makeADecisionUserInputAdditionalTool(userInput?, additionalToolResult?)

∨
userInput? = ∅ ∧ (

decision! = makeADecisionAdditionalToolPreviousResults(

additionalToolResult?, previousDockingResults?)

∨
additionalToolResult? ∈ ∅ ∧ decision! =

makeADecisionPreviousResults(previousDockingResults?)

∨
previousDockingResults? ∈ ∅ ∧ decision! =

makeADecisionAdditionalTool(additionalToolResult?))

Framework

mde : MolecularDockingEnvironment

mdrr : MolecularDockingResultsRepository

ats : {AdditionalTool}
adss : {AdditionalDataSource}
dm : DecisionMaker

mde 6∈∅ ∧ mdrr 6∈∅ ∧ dm 6∈∅
∀ ads : adss • ∃ at : ats • SelectAdditionalDataInfo 6= ∅

Appendix C

Formal Description of Scenario 1

sectionFramework parents standard toolkit

[CHAR,DATE ,DECISION]

LIGAND == seqCHAR

RECEPTOR == seqCHAR

CONFIG == seqCHAR

RESULT == seqCHAR

LIGANDS == PLIGAND
RECEPTORS == PRECEPTOR
RESULTS == PRESULT
DEEP ALIGN RESULT == seqCHAR

YES NO ::= yes | no
USER INPUT == seqCHAR

PREVIOUS RESULT == (LIGAND × RECEPTOR × CONFIG ×DATE) 7→ RESULT

PREVIOUS RESULTS == {PREVIOUS RESULT}

dockingWithCon�g : (LIGAND × RECEPTOR × CONFIG) 7� RESULT

∀ l : LIGAND ; r : RECEPTOR | l 6= ∅ ∧ r 6= ∅ • ∃ c : CONFIG ; res : RESULT |
c 6= ∅ • dockingWithCon�g(l , r , c) = res

172

173

Docking AutoDockVina

ligand? : LIGAND

receptor? : RECEPTOR

con�g? : CONFIG

result ! : RESULT

con�g? 6= ∅ ∧ result ! = dockingWithCon�g(ligand?, receptor?, con�g?)

MolecularDockingEnvironment Raccoon2

ligands? : LIGANDS

receptors? : RECEPTORS

con�g? : CONFIG

results! : RESULTS

date! : DATE

∃ ligand? : ligands?; receptor? : receptors?; result ! : results! • Docking AutoDockVina

ViewMolecularDockingResults Raccoon2

ΞMolecularDockingEnvironment Raccoon2

results! 6= ∅

MolecularDockingResultsRepository MongoDB

repository : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

decisionRepository : {PREVIOUS RESULT}↔DECISION

repository 6= ∅

174

InsertUpdateMolecularDockingResultsRepository1

∆MolecularDockingResultsRepository MongoDB

l? : LIGAND

r? : RECEPTOR

c? : CONFIG

res? : RESULT

d? : DATE

repository ′ = repository ⊕ {(l?, r?, c?, d?) 7→ res?}

InsertUpdateMolecularDockingResultsRepositoryMany

∆MolecularDockingResultsRepository MongoDB

dockingResults? : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

l : LIGAND

r : RECEPTOR

c : CONFIG

d : DATE

{(l , r , c, d)} = dom(dockingResults?)

∀ res : dockingResults? L {(l , r , c, d)} M • repository ′ = repository ⊕ {(l , r , c, d) 7→ res}

InsertUpdateDecisionRepository

∆MolecularDockingResultsRepository MongoDB

previousDockingResults? : {PREVIOUS RESULT}
decision? : DECISION

decisionRepository ′ = decisionRepository ⊕ {previousDockingResults? 7→ decision?}

175

SelectMolecularDockingResults

ΞMolecularDockingResultsRepository MongoDB

whereL? : LIGAND

whereR? : RECEPTOR

whereC ? : CONFIG

whereD? : DATE

whereRes? : RESULT

selectResults! : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

lig : LIGAND

rec : RECEPTOR

con : CONFIG

dat : DATE

selectResults! = {(whereL?,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?,whereR?, con,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?, con, dat)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?, rec, con,whereD?)}C repository ∨
selectResults! = {(whereL?, rec, con, dat)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(lig ,whereR?, con,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?, con, dat)}C repository ∨
selectResults! = {(lig , rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig , rec,whereC ?, dat)}C repository ∨
selectResults! = {(lig , rec, con,whereD?)}C repository ∨
selectResults! = {(lig , rec, con, dat)}C repository ∨
selectResults! = repository B {whereRes?}

DeepAlignCore : (RECEPTOR × RECEPTOR)↔DEEP ALIGN RESULT

∃ current receptor : RECEPTOR; previous receptor : RECEPTOR •
∃ dar : DEEP ALIGN RESULT •
DeepAlignCore(current receptor , previous receptor) = dar

176

DeepAlign

SelectMolecularDockingResults

previous receptor? : RECEPTOR

current receptor? : RECEPTOR

DeepAlignResult ! : DEEP ALIGN RESULT

whereR? = previous receptor?

DeepAlignResult ! = DeepAlignCore(current receptor?, previous receptor?)

goodDeepAlignResult : (DEEP ALIGN RESULT × USER INPUT)↔ YES NO

∀ dar : DEEP ALIGN RESULT ; ui : USER INPUT • ∃ threshold : Z; DeepScore : Z •
DeepScore ≥ threshold ∧ goodDeepAlignResult(dar , ui) = yes ∨
DeepScore < threshold ∧ goodDeepAlignResult(dar , ui) = no

AssessDeepAlign

DeepAlignResult? : DEEP ALIGN RESULT

userInput? : USER INPUT

r : RECEPTOR

assessed receptors! : RECEPTORS

r ∈ assessed receptors! ∧ goodDeepAlignResult(DeepAlignResult?, userInput?) = yes ∨
r 6∈ assessed receptors! ∧ goodDeepAlignResult(DeepAlignResult?, userInput?) = no

goodDocking : (RESULT × USER INPUT)↔ YES NO

∀ r : RESULT ; ui : USER INPUT • ∃ threshold : Z; docking score : Z •
docking score ≤ threshold ∧ goodDocking(r , ui) = yes ∨
docking score > threshold ∧ goodDocking(r , ui) = no

177

AssessPreviousDocking

SelectMolecularDockingResults

previous results? : PREVIOUS RESULTS

userInput? : USER INPUT

assessedPreviousResults! : PREVIOUS RESULTS

∃ previous result : previous results?; result : RESULT •
{result} = ran(previous result) ∧
(previous result ∈ assessedPreviousResults! ∧ goodDocking(result , userInput?) = yes ∨
previous result 6∈ assessedPreviousResults! ∧ goodDocking(result , userInput?) = no)

makeADecisionAdditionalTool : (RECEPTORS × PREVIOUS RESULTS)

↔DECISION

∃ previous results : PREVIOUS RESULTS ; receptors : RECEPTORS ;

lig : LIGAND ; d : DECISION ; con : CONFIG ; dat : DATE •
∀ previous result : previous results; receptor : receptors •
{(lig , receptor , con, dat)} = dom(previous result)

∧
makeADecisionAdditionalTool(receptors, previous results) = d

DecisionMaker Custom

assessed previous results? : PREVIOUS RESULTS

assessed receptors? : RECEPTORS

decision! : DECISION

decision! =

makeADecisionAdditionalTool(assessed receptors?, assessed previous results?)

Appendix D

Formal Description of Scenario 2

sectionFramework parents standard toolkit

[CHAR,DATE ,DECISION]

LIGAND == seqCHAR

RECEPTOR == seqCHAR

CONFIG == seqCHAR

RESULT == seqCHAR

LIGANDS == PLIGAND
RECEPTORS == PRECEPTOR
RESULTS == PRESULT
DEEP ALIGN RESULT == seqCHAR

LIGSIFT RESULT == seqCHAR

YES NO ::= yes | no
USER INPUT == seqCHAR

PREVIOUS RESULT == (LIGAND × RECEPTOR × CONFIG ×DATE) 7→ RESULT

PREVIOUS RESULTS == {PREVIOUS RESULT}

dockingWithCon�g : (LIGAND × RECEPTOR × CONFIG) 7� RESULT

∀ l : LIGAND ; r : RECEPTOR | l 6= ∅ ∧ r 6= ∅ • ∃ c : CONFIG ; res : RESULT |
c 6= ∅ • dockingWithCon�g(l , r , c) = res

178

179

Docking AutoDockVina

ligand? : LIGAND

receptor? : RECEPTOR

con�g? : CONFIG

result ! : RESULT

con�g? 6= ∅ ∧ result ! = dockingWithCon�g(ligand?, receptor?, con�g?)

MolecularDockingEnvironment Raccoon2

ligands? : LIGANDS

receptors? : RECEPTORS

con�g? : CONFIG

results! : RESULTS

date! : DATE

∃ ligand? : ligands?; receptor? : receptors?; result ! : results! • Docking AutoDockVina

ViewMolecularDockingResults

ΞMolecularDockingEnvironment

results! 6= ∅

MolecularDockingResultsRepository

repository : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

decisionRepository : {PREVIOUS RESULT}↔DECISION

repository 6= ∅

180

InsertUpdateMolecularDockingResultsRepository1

∆MolecularDockingResultsRepository

l? : LIGAND

r? : RECEPTOR

c? : CONFIG

res? : RESULT

d? : DATE

repository ′ = repository ⊕ {(l?, r?, c?, d?) 7→ res?}

InsertUpdateMolecularDockingResultsRepositoryMany

∆MolecularDockingResultsRepository

dockingResults? : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

l : LIGAND

r : RECEPTOR

c : CONFIG

d : DATE

{(l , r , c, a, d)} = dom(dockingResults?)

∀ res : dockingResults? L {(l , r , c, a, d)} M • repository ′ = repository ⊕ {(l , r , c, a, d) 7→ res}

InsertUpdateDecisionRepository

∆MolecularDockingResultsRepository

previousDockingResults? : {PREVIOUS RESULT}
decision? : DECISION

decisionRepository ′ = decisionRepository ⊕ {previousDockingResults? 7→ decision?}

181

SelectMolecularDockingResults

ΞMolecularDockingResultsRepository

whereL? : LIGAND

whereR? : RECEPTOR

whereC ? : CONFIG

whereD? : DATE

whereRes? : RESULT

selectResults! : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

lig : LIGAND

rec : RECEPTOR

con : CONFIG

dat : DATE

selectResults! = {(whereL?,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?,whereR?, con,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?, con, dat)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?, rec, con,whereD?)}C repository ∨
selectResults! = {(whereL?, rec, con, dat)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(lig ,whereR?, con,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?, con, dat)}C repository ∨
selectResults! = {(lig , rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig , rec,whereC ?, dat)}C repository ∨
selectResults! = {(lig , rec, con,whereD?)}C repository ∨
selectResults! = {(lig , rec, con, dat)}C repository ∨
selectResults! = repository B {whereRes?}

goodDocking : (RESULT × USER INPUT)↔ YES NO

∀ r : RESULT ; ui : USER INPUT • ∃ threshold : Z; docking score : Z •
docking score ≤ threshold ∧ goodDocking(r , ui) = yes

∨
docking score > threshold ∧ goodDocking(r , ui) = no

182

AssessPreviousDocking

SelectMolecularDockingResults

previous results? : PREVIOUS RESULTS

userInput? : USER INPUT

assessedPreviousResults! : PREVIOUS RESULTS

∃ previous result : previous results?; result : RESULT •
{result} = ran(previous result) ∧
(previous result ∈ assessedPreviousResults! ∧ goodDocking(result , userInput?) = yes

∨
previous result 6∈ assessedPreviousResults! ∧ goodDocking(result , userInput?) = no)

checkPubChem : (LIGAND × USER INPUT)↔ YES NO

∀ l : LIGAND ; ui : USER INPUT • ∃ ligand property : ui •
checkPubChem(l , ui) = yes

∨
checkPubChem(l , ui) = no

PubChem

SelectMolecularDockingResults

previous results? : PREVIOUS RESULTS

ui? : USER INPUT

�ltered results! : PREVIOUS RESULTS

rec : RECEPTOR

con : CONFIG

dat : DATE

previous result : PREVIOUS RESULT

∀ lig : LIGAND • whereL? = lig ; previous result ∈ previous results?;

{(lig , rec, con, dat)} = dom(previous result);

selectResults! ∈ �ltered results! ∧ checkPubChem(lig , ui?) = yes

∨
selectResults! 6∈ �ltered results! ∧ checkPubChem(lig , ui?) = no

183

makeADecisionPreviousResults : (PREVIOUS RESULTS × PREVIOUS RESULTS)

↔DECISION

∃ previous results �ltered ligands : PREVIOUS RESULTS ;

previous results assessed docking : PREVIOUS RESULTS ;

d : DECISION ; •
∀ previous result �ltered ligands : previous results �ltered ligands;

previous result assessed docking : previous results assessed docking •
previous result �ltered ligands = previous result assessed docking ∧
makeADecisionPreviousResults(

previous results �ltered ligands, previous results assessed docking) = d

DecisionMaker Custom

assessed previous results? : PREVIOUS RESULTS

�ltered previous results? : PREVIOUS RESULTS

decision! : DECISION

decision! =

makeADecisionPreviousResults(assessed previous results?,�ltered previous results?)

Appendix E

Formal Description of Scenario 4

sectionFramework parents standard toolkit

[CHAR,DATE ,DECISION]

LIGAND == seqCHAR

RECEPTOR == seqCHAR

CONFIG == seqCHAR

RESULT == seqCHAR

LIGANDS == PLIGAND
RECEPTORS == PRECEPTOR
RESULTS == PRESULT
DEEP ALIGN RESULT == seqCHAR

LIGSIFT RESULT == seqCHAR

YES NO ::= yes | no
USER INPUT == seqCHAR

PREVIOUS RESULT == (LIGAND × RECEPTOR × CONFIG ×DATE) 7→ RESULT

PREVIOUS RESULTS == {PREVIOUS RESULT}

dockingWithCon�g : (LIGAND × RECEPTOR × CONFIG) 7� RESULT

∀ l : LIGAND ; r : RECEPTOR | l 6= ∅ ∧ r 6= ∅ • ∃ c : CONFIG ; res : RESULT |
c 6= ∅ • dockingWithCon�g(l , r , c) = res

184

185

Docking AutoDockVina

ligand? : LIGAND

receptor? : RECEPTOR

con�g? : CONFIG

result ! : RESULT

con�g? 6= ∅ ∧ result ! = dockingWithCon�g(ligand?, receptor?, con�g?)

MolecularDockingEnvironment Raccoon2

ligands? : LIGANDS

receptors? : RECEPTORS

con�g? : CONFIG

results! : RESULTS

date! : DATE

∃ ligand? : ligands?; receptor? : receptors?; result ! : results! • Docking AutoDockVina

ViewMolecularDockingResults

ΞMolecularDockingEnvironment

results! 6= ∅

MolecularDockingResultsRepository

repository : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

decisionRepository : {PREVIOUS RESULT}↔DECISION

repository 6= ∅

186

InsertUpdateMolecularDockingResultsRepository1

∆MolecularDockingResultsRepository

l? : LIGAND

r? : RECEPTOR

c? : CONFIG

res? : RESULT

d? : DATE

repository ′ = repository ⊕ {(l?, r?, c?, d?) 7→ res?}

InsertUpdateMolecularDockingResultsRepositoryMany

∆MolecularDockingResultsRepository

dockingResults? : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

l : LIGAND

r : RECEPTOR

c : CONFIG

d : DATE

{(l , r , c, a, d)} = dom(dockingResults?)

∀ res : dockingResults? L {(l , r , c, d)} M • repository ′ = repository ⊕ {(l , r , c, d) 7→ res}

InsertUpdateDecisionRepository

∆MolecularDockingResultsRepository

previousDockingResults? : {PREVIOUS RESULT}
decision? : DECISION

decisionRepository ′ = decisionRepository ⊕ {previousDockingResults? 7→ decision?}

187

SelectMolecularDockingResults

ΞMolecularDockingResultsRepository

whereL? : LIGAND

whereR? : RECEPTOR

whereC ? : CONFIG

whereD? : DATE

whereRes? : RESULT

selectResults! : (LIGAND × RECEPTOR × CONFIG ×DATE)↔ RESULT

lig : LIGAND

rec : RECEPTOR

con : CONFIG

dat : DATE

selectResults! = {(whereL?,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?,whereR?, con,whereD?)}C repository ∨
selectResults! = {(whereL?,whereR?, con, dat)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(whereL?, rec,whereC ?, dat)}C repository ∨
selectResults! = {(whereL?, rec, con,whereD?)}C repository ∨
selectResults! = {(whereL?, rec, con, dat)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?,whereC ?, dat)}C repository ∨
selectResults! = {(lig ,whereR?, con,whereD?)}C repository ∨
selectResults! = {(lig ,whereR?, con, dat)}C repository ∨
selectResults! = {(lig , rec,whereC ?,whereD?)}C repository ∨
selectResults! = {(lig , rec,whereC ?, dat)}C repository ∨
selectResults! = {(lig , rec, con,whereD?)}C repository ∨
selectResults! = {(lig , rec, con, dat)}C repository ∨
selectResults! = repository B {whereRes?}

DeepAlignCore : (RECEPTOR × RECEPTOR)↔DEEP ALIGN RESULT

∃ current receptor : RECEPTOR; previous receptor : RECEPTOR •
∃ dar : DEEP ALIGN RESULT •
DeepAlignCore(current receptor , previous receptor) = dar

188

DeepAlign

SelectMolecularDockingResults

previous receptor? : RECEPTOR

current receptor? : RECEPTOR

DeepAlignResult ! : DEEP ALIGN RESULT

whereR? = previous receptor?

DeepAlignResult ! = DeepAlignCore(current receptor?, previous receptor?)

goodDeepAlignResult : (DEEP ALIGN RESULT × USER INPUT)↔ YES NO

∀ dar : DEEP ALIGN RESULT ; ui : USER INPUT • ∃ threshold : Z; DeepScore : Z •
DeepScore ≥ threshold ∧ goodDeepAlignResult(dar , ui) = yes

∨
DeepScore < threshold ∧ goodDeepAlignResult(dar , ui) = no

AssessDeepAlign

DeepAlignResult? : DEEP ALIGN RESULT

userInput? : USER INPUT

r : RECEPTOR

assessed receptors! : RECEPTORS

r ∈ assessed receptors! ∧ goodDeepAlignResult(DeepAlignResult?, userInput?) = yes

∨
r 6∈ assessed receptors! ∧ goodDeepAlignResult(DeepAlignResult?, userInput?) = no

LIGSIFTCore : (LIGAND × LIGAND)↔ LIGSIFT RESULT

∃ current ligand : LIGAND ; previous ligand : LIGAND •
∃ lr : LIGSIFT RESULT •
LIGSIFTCore(current ligand , previous ligand) = lr

189

LIGSIFT

SelectMolecularDockingResults

previous ligand? : LIGAND

current ligand? : LIGAND

LIGSIFTResult ! : LIGSIFT RESULT

whereL? = previous ligand?

LIGSIFTResult ! = LIGSIFTCore(current ligand?, previous ligand?)

goodLIGSIFTResult : (LIGSIFT RESULT × USER INPUT)↔ YES NO

∀ lr : LIGSIFT RESULT ; ui : USER INPUT • ∃ threshold : Z; LIGSIFTScore : Z •
LIGSIFTScore ≥ threshold ∧ goodLIGSIFTResult(lr , ui) = yes

∨
LIGSIFTScore < threshold ∧ goodLIGSIFTResult(lr , ui) = no

AssessLIGSIFT

LIGSIFTResult? : LIGSIFT RESULT

userInput? : USER INPUT

l : LIGAND

assessed ligands! : LIGANDS

l ∈ assessed ligands! ∧ goodLIGSIFTResult(LIGSIFTResult?, userInput?) = yes

∨
l 6∈ assessed ligands! ∧ goodLIGSIFTResult(LIGSIFTResult?, userInput?) = no

similarCon�g : (CONFIG × CONFIG × USER INPUT)↔ YES NO

∀ c1 : CONFIG ; c2 : CONFIG ; ui : USER INPUT • ∃ threshold : Z;

con�g similarity score : Z •
con�g similarity score > threshold ∧ similarCon�g(c1, c2, ui) = yes

∨
con�g similarity score ≤ threshold ∧ similarCon�g(c1, c2, ui) = no

190

ComparePreviousCon�g

SelectMolecularDockingResults

previous con�gs? : CONFIGS

current con�g? : CONFIG

userInput? : USER INPUT

assessed con�gs! : CONFIGS

∀ c : previous con�gs? •
c = whereC ? ∧ (

c ∈ assessed con�gs! ∧ similarCon�g(current con�g?, c, userInput?) = yes

∨ c 6∈ assessed con�gs! ∧ similarCon�g(current con�g?, c, userInput?) = no)

makeADecisionAdditionalTools : (LIGANDS × RECEPTORS × CONFIGS)

↔DECISION

∃ previous results : PREVIOUS RESULTS ; receptors : RECEPTORS ;

ligands : LIGANDS ; con�gs : CONFIGS ;

dat : DATE ; d : DECISION •
∀ receptor : receptors; ligand : ligands; con�g : con�gs;

previous result : previous results •
{(ligand , receptor , con�g , dat)} = dom(previous result)

∧
makeADecisionAdditionalTools(ligands, receptors, con�gs) = d

DecisionMaker Custom

assessed receptors? : RECEPTORS

assessed ligands? : LIGANDS

assessed con�gs? : CONFIGS

decision! : DECISION

decision! = makeADecisionAdditionalTools(

assessed ligands?, assessed receptors?, assessed con�gs?

)

Appendix F

Amino Acids

The amino acids that feature in human proteins are often divided into these categories

(the names can be abbreviated to a 3- or 1-letter version):

� Amino acids with charged side chains: side chains can make salt bridges (H-H) and

gain an electrical charge:

� Positively charged: Arginine-Arg-R, Histidine-His-H, Lysine-Lys-K.

� Negatively charged: Aspartic acid-Asp-D, Glutamic acid-Glu-E.

� Amino acids with polar uncharged side chains (can participate in hydrogen bonds

as proton donors or acceptors): Glutamine-Gln-Q, Asparagine-Asn-N, Serine-Ser-S,

Threonine-Thr-T, Tyrosine-Tyr-Y, Tryptophan-Trp-W.

� Hydrophobic (normally buried inside the protein core): Alanine-Ala-A, Isoleucine-

Ile-I, Leucine-Leu-L, Methionine-Met-M, Phenylalanine-Phe-F, Valine-Val-V.

� Special cases: Selenocysteine-Sec-U, Cysteine-Cys-C (sometimes categorised as po-

lar), Glycine-Gly-G, Proline-Pro-P (sometimes categorised as hydrophobic).

191

Bibliography

[1] A. Fleming, �On the antibacterial action of cultures of a penicillium, with special ref-

erence to their use in the isolation of B. in�uenzae,� British Journal of Experimental

Pathology, vol. 10, no. 3, p. 226, 1929.

[2] J. W. Bennett and K.-T. Chung, �Alexander Fleming and the discovery of penicillin,�

in Advances in Applied Microbiology, vol. 49, pp. 163 � 184, Academic Press, 2001.

[3] T. Takenaka, �Classical vs reverse pharmacology in drug discovery,� BJU Interna-

tional, vol. 88, no. s2, pp. 7�10, 2001.

[4] N. C. Cohen, �Medicine pipeline: Structure-based drug design and the discovery of

Aliskiren (Tekturna®): Perseverance and creativity to overcome a R & D pipeline

challenge,� Chemical Biology & Drug Design, vol. 70, no. 6, pp. 557�565, 2007.

[5] E. Raviña, The evolution of drug discovery: From traditional medicines to modern

drugs, ch. 6. Structure-Based Drug Discovery, pp. 405�441. John Wiley & Sons,

2011.

[6] Y. Bi, M. Might, H. Vankayalapati, and B. Kuberan, �Repurposing of Pro-

ton Pump Inhibitors as �rst identi�ed small molecule inhibitors of endo-β-N-

acetylglucosaminidase (ENGase) for the treatment of NGLY1 de�ciency, a rare ge-

netic disease,� Bioorganic & Medicinal Chemistry Letters, vol. 27, no. 13, pp. 2962�

2966, 2017.

[7] B. Srinivasan, H. Zhou, S. Mitra, and J. Skolnick, �Novel small molecule binders of

human N-glycanase 1, a key player in the endoplasmic reticulum associated degrada-

tion pathway,� Bioorganic & Medicinal Chemistry, vol. 24, no. 19, pp. 4750�4758,

2016.

[8] M. Might, �Hunting down my son's killer.� Available at: http://matt.might.net/

articles/my-sons-killer/ [Accessed 6 Apr 2018].

[9] M. Might, �The illustrated guide to a Ph.D.� Available at: http://matt.might.

net/articles/phd-school-in-pictures/ [Accessed 6 Apr 2018].

192

http://matt.might.net/articles/my-sons-killer/
http://matt.might.net/articles/my-sons-killer/
http://matt.might.net/articles/phd-school-in-pictures/
http://matt.might.net/articles/phd-school-in-pictures/

BIBLIOGRAPHY 193

[10] F. Bowker, Molecular docking and geographical information systems as tools to as-

sess the potential impact of veterinary medicines on non-target organisms and the

environment. PhD thesis, University of Westminster, 2015.

[11] S. Gesing, S. Herres-Pawlis, G. Birkenheuer, A. Brinkmann, R. Grunzke, P. Kacsuk,

O. Kohlbacher, M. Kozlovszky, J. Krüger, R. Müller-Pfe�erkorn, et al., �A science

gateway getting ready for serving the international molecular simulation commu-

nity,� in Proc. of the EGI Community Forum, 2012.

[12] D. Temelkovski, T. Kiss, and G. Terstyanszky, �Molecular docking with Raccoon2

on clouds: Extending desktop applications with cloud computing,� in International

Workshop of Science Gateways (IWSG) 2017, p. 7, Jun 2017.

[13] D. Temelkovski, T. Kiss, and G. Terstyanszky, �A generic framework and methodol-

ogy for implementing science gateways for analysing molecular docking results,� in

International Workshop of Science Gateways (IWSG) 2018, p. 7, Jun 2018.

[14] H. Berman, K. Henrick, and H. Nakamura, �Announcing the worldwide protein data

bank,� Nature Structural and Molecular Biology, vol. 10, no. 12, p. 980, 2003.

[15] D. Weininger, �SMILES, a chemical language and information system,� Journal of

Chemical Information and Computer Sciences, vol. 28, no. 1, pp. 31�36, 1988.

[16] J. J. Irwin and B. K. Shoichet, �ZINC � a free database of commercially available

compounds for virtual screening,� Journal of Chemical Information and Modeling,

vol. 45, no. 1, pp. 177�182, 2005.

[17] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He,

S. He, B. A. Shoemaker, et al., �PubChem Substance and Compound databases,�

Nucleic Acids Research, vol. 44, no. D1, pp. D1202�D1213, 2015.

[18] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, �Basic local

alignment search tool,� Journal of Molecular Biology, vol. 215, no. 3, pp. 403�410,

1990.

[19] A. Lesk, Introduction to bioinformatics. Oxford university press, 2014.

[20] H. Hasegawa and L. Holm, �Advances and pitfalls of protein structural alignment,�

Current Opinion in Structural Biology, vol. 19, no. 3, pp. 341�348, 2009.

[21] E. C. Meng, �Online structure alignment resources,� Apr 2005. Available at:

http://www.rbvi.ucsf.edu/home/meng/grpmt/structalign.html [Accessed 30

Mar 2018].

http://www.rbvi.ucsf.edu/home/meng/grpmt/structalign.html

BIBLIOGRAPHY 194

[22] E. Martz, W. Decatur, and M. Wiederstein, �Structural alignment tools,� Oct

2016. Available at: http://proteopedia.org/wiki/index.php/Structural_

alignment_tools [Accessed 30 Mar 2018].

[23] L. Holm and C. Sander, �Protein structure comparison by alignment of distance

matrices,� Journal of Molecular Biology, vol. 233, no. 1, pp. 123�138, 1993.

[24] I. N. Shindyalov and P. E. Bourne, �Protein structure alignment by incremental

combinatorial extension (CE) of the optimal path,� Protein Engineering, vol. 11,

no. 9, pp. 739�747, 1998.

[25] Y. Zhang and J. Skolnick, �TM-align: A protein structure alignment algorithm based

on the TM-score,� Nucleic Acids Research, vol. 33, no. 7, pp. 2302�2309, 2005.

[26] A. S. Konagurthu, J. C. Whisstock, P. J. Stuckey, and A. M. Lesk, �MUSTANG: A

multiple structural alignment algorithm,� Proteins: Structure, Function, and Bioin-

formatics, vol. 64, no. 3, pp. 559�574, 2006.

[27] A. R. Ortiz, C. E. Strauss, and O. Olmea, �MAMMOTH (matching molecular mod-

els obtained from theory): An automated method for model comparison,� Protein

Science, vol. 11, no. 11, pp. 2606�2621, 2002.

[28] M. Shatsky, R. Nussinov, and H. J. Wolfson, �A method for simultaneous alignment

of multiple protein structures,� Proteins: Structure, Function, and Bioinformatics,

vol. 56, no. 1, pp. 143�156, 2004.

[29] J. Zhu and Z. Weng, �FAST: A novel protein structure alignment algorithm,� Pro-

teins: Structure, Function, and Bioinformatics, vol. 58, no. 3, pp. 618�627, 2005.

[30] M. Menke, B. Berger, and L. Cowen, �Matt: Local �exibility aids protein multiple

structure alignment,� PLoS Computational Biology, vol. 4, no. 1, p. e10, 2008.

[31] J. Konc and D. Janeºi£, �ProBiS algorithm for detection of structurally similar pro-

tein binding sites by local structural alignment,� Bioinformatics, vol. 26, no. 9,

pp. 1160�1168, 2010.

[32] A. Prli¢, S. Bliven, P. W. Rose, W. F. Bluhm, C. Bizon, A. Godzik, and P. E.

Bourne, �Pre-calculated protein structure alignments at the RCSB PDB website,�

Bioinformatics, vol. 26, no. 23, pp. 2983�2985, 2010.

[33] S. Wang, J. Ma, J. Peng, and J. Xu, �Protein structure alignment beyond spatial

proximity,� Scienti�c Reports, vol. 3, p. 1448, 2013.

http://proteopedia.org/wiki/index.php/Structural_alignment_tools
http://proteopedia.org/wiki/index.php/Structural_alignment_tools

BIBLIOGRAPHY 195

[34] X. Yuan and C. Bystro�, �Non-sequential structure-based alignments reveal

topology-independent core packing arrangements in proteins,� Bioinformatics,

vol. 21, no. 7, pp. 1010�1019, 2004.

[35] J. Shapiro and D. Brutlag, �FoldMiner: Structural motif discovery using an improved

superposition algorithm,� Protein Science, vol. 13, no. 1, pp. 278�294, 2004.

[36] A. D. Stivala, P. J. Stuckey, and A. I. Wirth, �Fast and accurate protein substructure

searching with simulated annealing and GPUs,� BMC Bioinformatics, vol. 11, no. 1,

p. 446, 2010.

[37] M. Nguyen, K. P. Tan, and M. S. Madhusudhan, �CLICK � topology-independent

comparison of biomolecular 3D structures,� Nucleic Acids Research, vol. 39,

no. suppl 2, pp. W24�W28, 2011.

[38] Y. Yang, J. Zhan, H. Zhao, and Y. Zhou, �A new size-independent score for pairwise

protein structure alignment and its application to structure classi�cation and nucleic-

acid binding prediction,� Proteins: Structure, Function, and Bioinformatics, vol. 80,

no. 8, pp. 2080�2088, 2012.

[39] M. J. Sippl and M. Wiederstein, �Detection of spatial correlations in protein struc-

tures and molecular complexes,� Structure, vol. 20, no. 4, pp. 718�728, 2012.

[40] S. Shi, Y. Zhong, I. Majumdar, S. Sri Krishna, and N. V. Grishin, �Searching for

three-dimensional secondary structural patterns in proteins with ProSMoS,� Bioin-

formatics, vol. 23, no. 11, pp. 1331�1338, 2007.

[41] S. Minami, K. Sawada, and G. Chikenji, �MICAN: A protein structure alignment

algorithm that can handle multiple-chains, inverse alignments, c α only models, al-

ternative alignments, and non-sequential alignments,� BMC Bioinformatics, vol. 14,

no. 1, p. 24, 2013.

[42] J. Ebert and D. Brutlag, �Development and validation of a consistency based multiple

structure alignment algorithm,� Bioinformatics, vol. 22, no. 9, pp. 1080�1087, 2006.

[43] H. Sun, A. Sacan, H. Ferhatosmanoglu, and Y. Wang, �Smolign: A spatial motifs-

based protein multiple structural alignment method,� IEEE/ACM Transactions on

Computational Biology and Bioinformatics, vol. 9, no. 1, pp. 249�261, 2012.

[44] A. Stivala, A. Wirth, and P. J. Stuckey, �Tableau-based protein substructure search

using quadratic programming,� BMC bioinformatics, vol. 10, no. 1, p. 153, 2009.

[45] P. Brown, W. Pullan, Y. Yang, and Y. Zhou, �Fast and accurate non-sequential pro-

tein structure alignment using a new asymmetric linear sum assignment heuristic,�

Bioinformatics, vol. 32, no. 3, pp. 370�377, 2015.

BIBLIOGRAPHY 196

[46] F. Kaiser, A. Eisold, S. Bittrich, and D. Labudde, �Fit3D: A web application for

highly accurate screening of spatial residue patterns in protein structure data,�

Bioinformatics, vol. 32, no. 5, pp. 792�794, 2015.

[47] D. Barthel, J. D. Hirst, J. Bªa»ewicz, E. K. Burke, and N. Krasnogor, �ProCKSI:

A decision support system for protein (structure) comparison, knowledge, similarity

and information,� BMC Bioinformatics, vol. 8, no. 1, p. 416, 2007.

[48] K. Mizuguchi, C. M. Deane, T. L. Blundell, and J. P. Overington, �HOMSTRAD: A

database of protein structure alignments for homologous families,� Protein Science,

vol. 7, no. 11, pp. 2469�2471, 1998.

[49] A. Marchler-Bauer, S. Lu, J. B. Anderson, F. Chitsaz, M. K. Derbyshire,

C. DeWeese-Scott, J. H. Fong, L. Y. Geer, R. C. Geer, N. R. Gonzales, et al.,

�CDD: A conserved domain database for the functional annotation of proteins,�

Nucleic Acids Research, vol. 39, no. suppl 1, pp. D225�D229, 2010.

[50] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, �SCOP: A structural

classi�cation of proteins database for the investigation of sequences and structures,�

Journal of Molecular Biology, vol. 247, no. 4, pp. 536�540, 1995.

[51] F. M. G. Pearl, C. Bennett, J. E. Bray, A. P. Harrison, N. Martin, A. Shepherd,

I. Sillitoe, J. Thornton, and C. A. Orengo, �The CATH database: An extended pro-

tein family resource for structural and functional genomics,� Nucleic Acids Research,

vol. 31, no. 1, pp. 452�455, 2003.

[52] L. Holm and P. Rosenström, �Dali server: Conservation mapping in 3D,� Nucleic

Acids Research, vol. 38, no. suppl 2, pp. W545�W549, 2010.

[53] L. Holm and L. M. Laakso, �Dali server update,� Nucleic Acids Research, vol. 44,

no. W1, pp. W351�W355, 2016.

[54] C. Kim and B. Lee, �Accuracy of structure-based sequence alignment of automatic

methods,� BMC Bioinformatics, vol. 8, no. 1, p. 355, 2007.

[55] J. Havrilla and A. Saçan, �Meta-analysis of protein structural alignment,� in Bioin-

formatics and Biomedicine Workshops (BIBMW), 2012 IEEE International Confer-

ence on, pp. 72�76, IEEE, 2012.

[56] R. Kolodny, P. Koehl, and M. Levitt, �Comprehensive evaluation of protein structure

alignment methods: Scoring by geometric measures,� Journal of Molecular Biology,

vol. 346, no. 4, pp. 1173�1188, 2005.

BIBLIOGRAPHY 197

[57] M. Källberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, and J. Xu, �Template-

based protein structure modeling using the RaptorX web server,� Nature Protocols,

vol. 7, no. 8, p. 1511, 2012.

[58] J. Ma and S. Wang, �Algorithms, applications, and challenges of protein struc-

ture alignment,� in Advances in Protein Chemistry and Structural Biology, vol. 94,

pp. 121�175, Elsevier, 2014.

[59] H. Eckert and J. Bajorath, �Molecular similarity analysis in virtual screening: Foun-

dations, limitations and novel approaches,� Drug Discovery Today, vol. 12, no. 5-6,

pp. 225�233, 2007.

[60] T. Langer, �Pharmacophores in drug research,� Molecular Informatics, vol. 29,

pp. 470�475, Jul 2010.

[61] E. X. Esposito, A. J. Hop�nger, and J. D. Madura, �Methods for applying the quan-

titative structure�activity relationship paradigm,� in Chemoinformatics: Concepts,

Methods, and Tools for Drug Discovery (J. Bajorath, ed.), pp. 131�213, Totowa, NJ:

Humana Press, 2004.

[62] B. Villoutreix, �vls3d.com: Ligand-based virtual screening,� Feb 2018. Avail-

able at: http://www.vls3d.com/links/chemoinformatics/virtual-screening/

ligand-based-virtual-screening [Accessed 30 Mar 2018].

[63] Z. Vincent and D. Antoine, �Click2Drug: Directory of in silico drug design tools,�

Sep 2017. Available at: http://www.click2drug.org/index.html#Screening [Ac-

cessed 30 Mar 2018].

[64] A. Roy and J. Skolnick, �LIGSIFT: An open-source tool for ligand structural align-

ment and virtual screening,� Bioinformatics, vol. 31, no. 4, pp. 539�544, 2014.

[65] M. M. von Behren, S. Bietz, E. Nittinger, and M. Rarey, �mRAISE: An alternative

algorithmic approach to ligand-based virtual screening,� Journal of Computer-Aided

Molecular Design, vol. 30, no. 8, pp. 583�594, 2016.

[66] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, �Directory of useful

decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking,�

Journal of Medicinal Chemistry, vol. 55, no. 14, pp. 6582�6594, 2012.

[67] J. Taminau, G. Thijs, and H. De Winter, �Pharao: Pharmacophore alignment and

optimization,� Journal of Molecular Graphics and Modelling, vol. 27, no. 2, pp. 161�

169, 2008.

http://www.vls3d.com/links/chemoinformatics/virtual-screening/ligand-based-virtual-screening
http://www.vls3d.com/links/chemoinformatics/virtual-screening/ligand-based-virtual-screening
http://www.click2drug.org/index.html#Screening

BIBLIOGRAPHY 198

[68] J. A. Grant, M. Gallardo, and B. T. Pickup, �A fast method of molecular shape

comparison: A simple application of a Gaussian description of molecular shape,�

Journal of Computational Chemistry, vol. 17, no. 14, pp. 1653�1666, 1996.

[69] M. J. Vainio, J. S. Puranen, and M. S. Johnson, �ShaEP: Molecular overlay based

on shape and electrostatic potential,� 2009.

[70] L. A. Vaz de Lima and A. S. Nascimento, �MolShaCS: A free and open source tool

for ligand similarity identi�cation based on Gaussian descriptors,� European Journal

of Medicinal Chemistry, vol. 59, pp. 296�303, 2013.

[71] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, �Development and

validation of a genetic algorithm for �exible docking,� Journal of Molecular Biology,

vol. 267, no. 3, pp. 727�748, 1997.

[72] O. Trott and A. J. Olson, �AutoDock Vina: Improving the speed and accuracy of

docking with a new scoring function, e�cient optimization, and multithreading,�

Journal of Computational Chemistry, pp. 455�461, 2009.

[73] A. Grosdidier, EADock: Design of a new molecular docking algorithm and some of

its applications. PhD thesis, University of Lausanne, 2009.

[74] T. J. Ewing, S. Makino, A. G. Skillman, and I. D. Kuntz, �DOCK 4.0: Search

strategies for automated molecular docking of �exible molecule databases,� Journal

of Computer-Aided Molecular Design, vol. 15, pp. 411�428, May 2001.

[75] J. Krüger, R. Grunzke, S. Herres-Pawlis, A. Ho�mann, L. de la Garza,

O. Kohlbacher, W. E. Nagel, and S. Gesing, �Performance studies on distributed

virtual screening,� BioMed Research Rnternational, vol. 2014, 2014.

[76] UCSF DOCK, �The o�cial UCSF DOCK web-site: Overview of DOCK.� Available

at http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm [Accessed: 2

Apr 2018].

[77] I. Halperin, B. Ma, H. Wolfson, and R. Nussinov, �Principles of docking: An overview

of search algorithms and a guide to scoring functions,� Proteins: Structure, Function,

and Genetics, vol. 47, pp. 409�443, Jun 2002.

[78] S. F. Sousa, P. A. Fernandes, and M. J. Ramos, �Protein-ligand docking: Current

status and future challenges,� Proteins: Structure, Function, and Bioinformatics,

vol. 65, pp. 15�26, Jul 2006. 00513.

[79] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Good-

sell, and A. J. Olson, �AutoDock4 and AutoDockTools4: Automated docking with

http://dock.compbio.ucsf.edu/Overview_of_DOCK/index.htm

BIBLIOGRAPHY 199

selective receptor �exibility,� Journal of Computational Chemistry, vol. 30, no. 16,

pp. 2785�2791, 2009.

[80] I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin, �A geomet-

ric approach to macromolecule-ligand interactions,� Journal of Molecular Biology,

vol. 161, no. 2, pp. 269�288, 1982.

[81] W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang,

D. A. Case, I. D. Kuntz, and R. C. Rizzo, �DOCK 6: Impact of new features and

current docking performance,� Journal of Computational Chemistry, vol. 36, no. 15,

pp. 1132�1156, 2015.

[82] R. G. Coleman, M. Carchia, T. Sterling, J. J. Irwin, and B. K. Shoichet, �Ligand

pose and orientational sampling in molecular docking,� PLoS ONE, vol. 8, pp. 1�19,

Oct 2013.

[83] B. Kramer, M. Rarey, and T. Lengauer, �Evaluation of the FlexX incremental con-

struction algorithm for protein�ligand docking,� Proteins: Structure, Function, and

Bioinformatics, vol. 37, no. 2, pp. 228�241, 1999.

[84] S. Cosconati, S. Forli, A. L. Perryman, R. Harris, D. S. Goodsell, and A. J. Olson,

�Virtual screening with AutoDock: Theory and practice,� Expert Opinion on Drug

Discovery, vol. 5, no. 6, pp. 597�607, 2010.

[85] G. M. Morris, D. S. Goodsell, M. E. Pique, W. Lindstrom, R. Huey, S. Forli, W. E.

Hart, S. Halliday, R. Belew, and A. J. Olson, �AutoDock Version 4.2: Updated for

version 4.2.5,� User Guide, Molecular Graphics Laboratory, the Scripps Research

Institute, Nov 2012. Available at: http://autodock.scripps.edu/faqs-help/

manual/autodock-4-2-user-guide/AutoDock4.2_UserGuide.pdf [Accessed 29

Mar 2018].

[86] G. M. Morris, �AD4 parameters.dat � AutoDock,� Mar 2008. Available at: http://

autodock.scripps.edu/resources/parameters/AD4_parameters.dat/view [Ac-

cessed 29 Mar 2018].

[87] S. Dallakyan, �MGLTools Website - Welcome - MGLTools,� Apr 2010. Available at:

http://mgltools.scripps.edu/ [Accessed 29 Mar 2018].

[88] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew,

A. J. Olson, et al., �Automated docking using a Lamarckian genetic algorithm and

an empirical binding free energy function,� Journal of Computational Chemistry,

vol. 19, no. 14, pp. 1639�1662, 1998.

http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2_UserGuide.pdf
http://autodock.scripps.edu/resources/parameters/AD4_parameters.dat/view
http://autodock.scripps.edu/resources/parameters/AD4_parameters.dat/view
http://mgltools.scripps.edu/

BIBLIOGRAPHY 200

[89] R. Huey, G. M. Morris, A. J. Olson, and D. S. Goodsell, �A semiempirical free en-

ergy force �eld with charge-based desolvation,� Journal of Computational Chemistry,

vol. 28, no. 6, pp. 1145�1152, 2007.

[90] S. Moeller and G. M. Morris, �Ubuntu Manpage: autogrid - preparing protein and

ligand for AutoDock analysis,� Jul 2007. Available at: http://manpages.ubuntu.

com/manpages/xenial/en/man1/autogrid4.1.html [Accessed 29 Mar 2018].

[91] R. Huey, �How to prepare a grid parameter �le for AutoGrid 4 - AutoDock,�

May 2010. Available at: http://autodock.scripps.edu/faqs-help/how-to/

how-to-prepare-a-grid-parameter-files-for-autogrid4 [Accessed 29 Mar

2018].

[92] G. M. Morris, �Where do I set the AutoDock 4 force �eld parameters? -

AutoDock,� Aug 2007. Available at: http://autodock.scripps.edu/faqs-help/

faq/where-do-i-set-the-autodock-4-force-field-parameters [Accessed 29

Mar 2018].

[93] M. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett, �Virtual screening for HIV

protease inhibitors: A comparison of AutoDock 4 and Vina,� PLoS ONE, vol. 5,

no. 8, p. e11955, 2010.

[94] D. Seeliger and B. L. de Groot, �Ligand docking and binding site analysis with

PyMOL and Autodock/Vina,� Journal of Computer-Aided Molecular Design, vol. 24,

no. 5, pp. 417�422, 2010.

[95] C. A. Lipinski, �Lead- and drug-like compounds: The rule-of-�ve revolution,� Drug

Discovery Today: Technologies, vol. 1, no. 4, pp. 337�341, 2004.

[96] M. Congreve, R. Carr, C. Murray, and H. Jhoti, �A "rule of three" for fragment-based

lead discovery?,� Drug Discovery Today, vol. 8, no. 19, pp. 876�877, 2003.

[97] D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kop-

ple, �Molecular properties that in�uence the oral bioavailability of drug candidates,�

Journal of Medicinal Chemistry, vol. 45, no. 12, pp. 2615�2623, 2002.

[98] J. Biesiada, A. Porollo, and J. Meller, �On setting up and assessing docking simula-

tions for virtual screening,� in Rational Drug Design, pp. 1�16, Springer, 2012.

[99] S. Forli, �Raccoon - AutoDock VS Preparation Tool,� Tech. Rep. User Manual, The

Scripps Research Institute, Nov 2009. Available at http://mgldev.scripps.edu/

raccoon/Raccoon_v1.0_user_manual.pdf [Accessed: 30 Mar 2018].

http://manpages.ubuntu.com/manpages/xenial/en/man1/autogrid4.1.html
http://manpages.ubuntu.com/manpages/xenial/en/man1/autogrid4.1.html
http://autodock.scripps.edu/faqs-help/how-to/how-to-prepare-a-grid-parameter-files-for-autogrid4
http://autodock.scripps.edu/faqs-help/how-to/how-to-prepare-a-grid-parameter-files-for-autogrid4
http://autodock.scripps.edu/faqs-help/faq/where-do-i-set-the-autodock-4-force-field-parameters
http://autodock.scripps.edu/faqs-help/faq/where-do-i-set-the-autodock-4-force-field-parameters
http://mgldev.scripps.edu/raccoon/Raccoon_v1.0_user_manual.pdf
http://mgldev.scripps.edu/raccoon/Raccoon_v1.0_user_manual.pdf

BIBLIOGRAPHY 201

[100] S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell, and A. J. Olson, �Com-

putational protein-ligand docking and virtual drug screening with the AutoDock

suite,� Nature Protocols, vol. 11, no. 5, p. 905, 2016.

[101] S. Forli, �AutoDock | Raccoon2 - AutoDock,� May 2016. Available at: http://

autodock.scripps.edu/resources/raccoon2 [Accessed 30 Mar 2018].

[102] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,

R. D. Skeel, L. Kale, and K. Schulten, �Scalable molecular dynamics with NAMD,�

Journal of Computational Chemistry, vol. 26, no. 16, pp. 1781�1802, 2005.

[103] E. Chia, M. S. Shamsir, Z. A. Hussein, and S. Z. M. Hashim, �GridMACS portal:

A grid web portal for molecular dynamics simulation using GROMACS,� in Math-

ematical/Analytical Modelling and Computer Simulation (AMS), 2010 Fourth Asia

International Conference on, pp. 507�512, IEEE, 2010.

[104] H. J. Berendsen, D. van der Spoel, and R. van Drunen, �GROMACS: A message-

passing parallel molecular dynamics implementation,� Computer Physics Commu-

nications, vol. 91, no. 1-3, pp. 43�56, 1995.

[105] E. Ford, Building a Linux HPC Cluster with xCAT. IBM Press, 2002.

[106] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V.

Packer, �BEOWULF: A parallel workstation for scienti�c computation,� in Proceed-

ings, International Conference on Parallel Processing, vol. 95, pp. 11�14, 1995.

[107] M. A. Jette, A. B. Yoo, and M. Grondona, �SLURM: Simple linux utility for re-

source management,� in In Lecture Notes in Computer Science: Proceedings of Job

Scheduling Strategies for Parallel Processing (JSSPP) 2003, pp. 44�60, Springer-

Verlag, 2002.

[108] R. L. Henderson, �Job scheduling under the portable batch system,� in Workshop

on Job Scheduling Strategies for Parallel Processing, pp. 279�294, Springer, 1995.

[109] Altair, �PBS Professional overview.� Available at: https://www.pbsworks.

com/PBSProduct.aspx?n=PBS-Professional&c=Overview-and-Capabilities

[Accessed 10 Aug 2018].

[110] W. Gentzsch, �Sun grid engine: Towards creating a compute power grid,� in Cluster

Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Sym-

posium on, pp. 35�36, IEEE, 2001.

[111] �Grid engine � open grid scheduler.� Available at: http://gridscheduler.

sourceforge.net/ [Accessed 10 Aug 2018].

http://autodock.scripps.edu/resources/raccoon2
http://autodock.scripps.edu/resources/raccoon2
https://www.pbsworks.com/PBSProduct.aspx?n=PBS-Professional&c=Overview-and-Capabilities
https://www.pbsworks.com/PBSProduct.aspx?n=PBS-Professional&c=Overview-and-Capabilities
http://gridscheduler.sourceforge.net/
http://gridscheduler.sourceforge.net/

BIBLIOGRAPHY 202

[112] �TOP500 � The list: Develpoment over time.� Available at: https://www.top500.

org/statistics/overtime/ [Accessed 10 Aug 2018].

[113] I. Foster, Y. Zhao, I. Raicu, and S. Lu, �Cloud computing and grid computing

360-degree compared,� in Grid Computing Environments Workshop, 2008. GCE'08,

pp. 1�10, IEEE, 2008.

[114] P. Mell, T. Grance, et al., �The NIST de�nition of cloud computing,� tech. rep.,

Computer Security Division, Information Technology Laboratory, National Institute

of Standards and Technology Gaithersburg, 2011.

[115] T. Erl, R. Puttini, and Z. Mahmood, Cloud computing: Concepts, technology & ar-

chitecture. Pearson Education, 2013.

[116] M. M. Jaghoori, A. J. Altena, B. Bleijlevens, S. Ramezani, J. L. Font, and S. D.

Olabarriaga, �A multi-infrastructure gateway for virtual drug screening,� Concur-

rency and Computation: Practice and Experience, vol. 27, no. 16, pp. 4478�4490,

2015.

[117] N. D. Prakhov, A. L. Chernorudskiy, and M. R. Gainullin, �VSDocker: A tool

for parallel high-throughput virtual screening using AutoDock on Windows-based

computer clusters,� Bioinformatics, vol. 26, no. 10, pp. 1374�1375, 2010.

[118] X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J. Reifman, �DOVIS 2.0: An e�cient

and easy to use parallel virtual screening tool based on AutoDock 4.0,� Chemistry

Central Journal, vol. 2, no. 1, p. 18, 2008.

[119] I. Sánchez-Linares, H. Pérez-Sánchez, J. M. Cecilia, and J. M. García, �High-

throughput parallel blind virtual screening using BINDSURF,� BMC Bioinformat-

ics, vol. 13, no. 14, p. S13, 2012.

[120] R. De Paris, F. A. Frantz, O. Norberto de Souza, and D. D. Ruiz, �wFReDoW:

A cloud-based web environment to handle molecular docking simulations of a fully

�exible receptor model,� BioMed Research International, vol. 2013, 2013.

[121] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III,

S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman, �AMBER, a package of com-

puter programs for applying molecular mechanics, normal mode analysis, molecular

dynamics and free energy calculations to simulate the structural and energetic prop-

erties of molecules,� Computer Physics Communications, vol. 91, no. 1-3, pp. 1�41,

1995.

https://www.top500.org/statistics/overtime/
https://www.top500.org/statistics/overtime/

BIBLIOGRAPHY 203

[122] S. R. Ellingson and J. Baudry, �High-throughput virtual molecular docking with

AutoDockCloud,� Concurrency and Computation: Practice and Experience, vol. 26,

no. 4, pp. 907�916, 2014.

[123] T. White, Hadoop: The de�nitive guide. " O'Reilly Media, Inc.", 2012.

[124] T. Kiss, P. Borsody, G. Terstyanszky, S. Winter, P. Greenwell, S. McEldowney,

and H. Heindl, �Large-scale virtual screening experiments on Windows Azure-based

cloud resources,� Concurrency and Computation: Practice and Experience, vol. 26,

no. 10, pp. 1760�1770, 2014.

[125] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,

J. Tao, and Y. Zhao, �Scienti�c work�ow management and the Kepler system,�

Concurrency and Computation: Practice and Experience, vol. 18, no. 10, pp. 1039�

1065, 2006.

[126] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo, and

C. Notredame, �Next�ow enables reproducible computational work�ows,� Nature

biotechnology, vol. 35, no. 4, p. 316, 2017.

[127] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,

S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., �The Taverna work�ow

suite: Designing and executing work�ows of web services on the desktop, web or in

the cloud,� Nucleic Acids Research, vol. 41, no. W1, pp. W557�W561, 2013.

[128] P. Kacsuk, K. Karoczkai, G. Hermann, G. Sipos, and J. Kovacs, �WS-PGRADE:

Supporting parameter sweep applications in work�ows,� in Work�ows in Support

of Large-Scale Science, 2008. WORKS 2008. Third Workshop on, pp. 1�10, IEEE,

2008.

[129] S. J. Taylor, T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini, �Cloud computing

for simulation in manufacturing and engineering: Introducing the CloudSME simu-

lation platform,� in Proceedings of the 2014 Annual Simulation Symposium, p. 12,

Society for Computer Simulation International, 2014.

[130] M. Kozlovszky, K. Karóczkai, I. Márton, P. Kacsuk, and T. Gottdank, �DCI bridge:

Executing WS-PGRADE work�ows in distributed computing infrastructures,� in

Science Gateways for Distributed Computing Infrastructures, pp. 51�67, Springer,

2014.

[131] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K. Karoczkai, and

I. Marton, �WS-PGRADE/gUSE generic DCI gateway framework for a large variety

of user communities,� Journal of Grid Computing, vol. 10, no. 4, pp. 601�630, 2012.

BIBLIOGRAPHY 204

[132] R. Sezov, Liferay in action: The o�cial guide to Liferay portal development. Man-

ning, 2011.

[133] Z. Farkas and P. Kacsuk, �P-GRADE portal: A generic work�ow system to support

user communities,� Future Generation Computer Systems, vol. 27, no. 5, pp. 454�

465, 2011.

[134] A. Balasko, Z. Farkas, and P. Kacsuk, �Building science gateways by utilizing the

generic WS-PGRADE/gUSE work�ow system,� Computer Science, vol. 14, no. 2,

p. 307, 2013.

[135] P. Kacsuk, �P-GRADE portal family for grid infrastructures,� Concurrency and

Computation: Practice and Experience, vol. 23, no. 3, pp. 235�245, 2011.

[136] T. Kiss, P. Kacsuk, R. Lovas, Á. Balaskó, A. Spinuso, M. Atkinson, D. D'Agostino,

E. Danovaro, and M. Schi�ers, �WS-PGRADE/gUSE in European projects,� in

Science Gateways for Distributed Computing Infrastructures, pp. 235�254, Springer,

2014.

[137] T. Gottdank, �Introduction to the WS-PGRADE/gUSE science gateway frame-

work,� in Science Gateways for Distributed Computing Infrastructures (P. Kacsuk,

ed.), pp. 19�32, Springer, 2014.

[138] MTA SZTAKI LPDS, �Remote API con�guration and speci�cation,� tech. rep.,

MTA SZTAKI LPDS, 2015. Available at https://sourceforge.net/projects/

guse/files/3.7.4/Documentation/RemoteAPI_Configuration.pdf [Accessed: 1

Apr 2018].

[139] MTA SZTAKI LPDS, �Remote API tutorial: How to call WS-PGRADE work-

�ows from remote clients through the http protocol?,� tech. rep., MTA SZTAKI

LPDS. Available at https://www.sci-bus.eu/documents/94981/471552/Remote+

API+tutorial [Accessed: 1 Apr 2018].

[140] K. Belhajjame, R. B'Far, J. Cheney, S. Coppens, S. Cresswell, Y. Gil, P. Groth,

G. Klyne, T. Lebo, J. McCusker, et al., �PROV-DM: The PROV data model,� tech.

rep., World Wide Web Consortium, 2013.

[141] L. Moreau and P. Groth, Provenance: An Introduction to PROV (Synthesis Lectures

on the Semantic Web: Theory and Technology). Morgan & Claypool Publishers,

2013.

[142] W3C, �RDF 1.1 Concepts and Abstract Syntax,� W3C standard, Feb 2014. Available

at https://www.w3.org/TR/rdf11-concepts/ [Accessed: 1 Apr 2018].

https://sourceforge.net/projects/guse/files/3.7.4/Documentation/RemoteAPI_Configuration.pdf
https://sourceforge.net/projects/guse/files/3.7.4/Documentation/RemoteAPI_Configuration.pdf
https://www.sci-bus.eu/documents/94981/471552/Remote+API+tutorial
https://www.sci-bus.eu/documents/94981/471552/Remote+API+tutorial
https://www.w3.org/TR/rdf11-concepts/

BIBLIOGRAPHY 205

[143] R. Grunzke, S. Breuers, S. Gesing, S. Herres-Pawlis, M. Kruse, D. Blunk, L. Garza,

L. Packschies, P. Schäfer, C. Schärfe, et al., �Standards-based metadata management

for molecular simulations,� Concurrency and Computation: Practice and Experience,

vol. 26, no. 10, pp. 1744�1759, 2014.

[144] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action: Covers Apache

Lucene 3.0. Manning Publications Co., 2010.

[145] S. Gesing, R. Grunzke, J. Krüger, G. Birkenheuer, M. Wewior, P. Schäfer,

B. Schuller, J. Schuster, S. Herres-Pawlis, S. Breuers, et al., �A single sign-on infras-

tructure for science gateways on a use case for structural bioinformatics,� Journal

of Grid Computing, vol. 10, no. 4, pp. 769�790, 2012.

[146] J. Krüger, R. Grunzke, S. Gesing, S. Breuers, A. Brinkmann, L. de la Garza,

O. Kohlbacher, M. Kruse, W. E. Nagel, L. Packschies, et al., �The MoSGrid sci-

ence gateway�a complete solution for molecular simulations,� Journal of Chemical

Theory and Computation, vol. 10, no. 6, pp. 2232�2245, 2014.

[147] O. Kohlbacher, �CADDSuite � a work�ow-enabled suite of open-source tools for

drug discovery,� Journal of Cheminformatics, vol. 4, pp. 1�1, 2012.

[148] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, �A fast �exible docking method

using an incremental construction algorithm,� Journal of Molecular Biology, vol. 261,

no. 3, pp. 470�489, 1996.

[149] G. Terstyanszky, T. Kukla, T. Kiss, P. Kacsuk, Á. Balaskó, and Z. Farkas, �En-

abling scienti�c work�ow sharing through coarse-grained interoperability,� Future

Generation Computer Systems, vol. 37, pp. 46�59, 2014.

[150] E. Spanoudakis, �Creating semantic applications using Taverna work�ows,� Master's

thesis, University of Manchester, 2011.

[151] P. Missier, S. S. Sahoo, J. Zhao, C. Goble, and A. Sheth, �Janus: From work�ows

to semantic provenance and linked open data,� in International Provenance and

Annotation Workshop, pp. 129�141, Springer, 2010.

[152] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides, D. Newman,

M. Borkum, S. Bechhofer, M. Roos, P. Li, et al., �myExperiment: A repository and

social network for the sharing of bioinformatics work�ows,� Nucleic Acids Research,

vol. 38, no. suppl 2, pp. W677�W682, 2010.

[153] S. Soiland-Reyes, �Apache Taverna Provenance (taverna-prov),� May 2016. Available

at: https://github.com/apache/incubator-taverna-engine [Accessed 30 Mar

2018].

https://github.com/apache/incubator-taverna-engine

BIBLIOGRAPHY 206

[154] S. Harris, N. Lamb, and N. Shadbolt, �4store: The design and implementation of

a clustered RDF store,� in 5th International Workshop on Scalable Semantic Web

Knowledge Base Systems (SSWS2009), pp. 94�109, 2009.

[155] S. Harris, A. Seaborne, and E. Prud'hommeaux, �SPARQL 1.1 Query Language,�

w3c Reccommendation, World Wide Web Consortium, Mar 2013. Available at

https://www.w3.org/TR/sparql11-query/ [Accessed: 30 Mar 2018].

[156] J. Zhao, C. Goble, R. Stevens, and D. Turi, �Mining Taverna's semantic web of

provenance,� Concurrency and Computation: Practice and Experience, vol. 20, no. 5,

pp. 463�472, 2008.

[157] P. Romano, E. Bartocci, G. Bertolini, F. De Paoli, D. Marra, G. Mauri, E. Merelli,

and L. Milanesi, �Biowep: A work�ow enactment portal for bioinformatics applica-

tions,� BMC Bioinformatics, vol. 8, no. 1, p. S19, 2007.

[158] E. Bartocci, F. Corradini, E. Merelli, and L. Scortichini, �BioWMS: A web-based

work�ow management system for bioinformatics,� BMC Bioinformatics, vol. 8, no. 1,

p. S2, 2007.

[159] �Kepler Analytical Repository.� Available at: http://library.kepler-project.

org/kepler/ [Accessed 30 Mar 2018].

[160] A. Hildebrandt, A. K. Dehof, A. Rurainski, A. Bertsch, M. Schumann, N. C. Tou-

ssaint, A. Moll, D. Stöckel, S. Nickels, S. C. Mueller, et al., �BALL � biochemical

algorithms library 1.3,� BMC Bioinformatics, vol. 11, no. 1, p. 531, 2010.

[161] B. Chapman and J. Chang, �Biopython: Python tools for computational biology,�

ACM Sigbio Newsletter, vol. 20, no. 2, pp. 15�19, 2000.

[162] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willigha-

gen, �The Chemistry Development Kit (CDK): An open-source Java library for

chemo-and bioinformatics,� Journal of Chemical Information and Computer Sci-

ences, vol. 43, no. 2, pp. 493�500, 2003.

[163] A. K. Hildebrandt, D. Stöckel, N. M. Fischer, L. de la Garza, J. Krüger, S. Nickels,

M. Röttig, C. Schärfe, M. Schumann, P. Thiel, et al., �Ballaxy: Web services for

structural bioinformatics,� Bioinformatics, vol. 31, no. 1, pp. 121�122, 2014.

[164] O. Kohlbacher and H.-P. Lenhof, �BALL � rapid software prototyping in computa-

tional molecular biology,� Bioinformatics, vol. 16, no. 9, pp. 815�824, 2000.

[165] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Fried-

berg, T. Hamelryck, F. Kau�, B. Wilczynski, et al., �Biopython: Freely available

https://www.w3.org/TR/sparql11-query/
http://library.kepler-project.org/kepler/
http://library.kepler-project.org/kepler/

BIBLIOGRAPHY 207

python tools for computational molecular biology and bioinformatics,� Bioinformat-

ics, vol. 25, no. 11, pp. 1422�1423, 2009.

[166] C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E. L. Willighagen, �Re-

cent developments of the chemistry development kit (CDK)-an open-source java li-

brary for chemo-and bioinformatics,� Current Pharmaceutical Design, vol. 12, no. 17,

pp. 2111�2120, 2006.

[167] T. Kuhn, E. L. Willighagen, A. Zielesny, and C. Steinbeck, �CDK-Taverna: An open

work�ow environment for cheminformatics,� BMC Bioinformatics, vol. 11, no. 1,

p. 159, 2010.

[168] J. Woodcock and J. Davies, Using Z: Speci�cation, Re�nement, and Proof. Prentice

Hall International, 1996.

[169] J. M. Spivey, �The Z notation: A reference manual,� tech. rep., Oxford: Oriel

College, 1998. Available at: https://www.cse.buffalo.edu/LRG/CSE705/Papers/

Z-Ref-Manual.pdf [Accessed 3 Apr 2018].

[170] �Information technology � Z formal speci�cation notation � syntax, type system and

semantics,� Standard, International Organization for Standardization / International

Electrotechnical Commission, Geneva, CH, Aug. 2002.

[171] R. Owen, S. McKeever, J. Davies, and A. Gar�nkel, �Toward provably correct models

of ventricular cell function,� in Computers in Cardiology, 2006, pp. 657�660, IEEE,

2006.

[172] J. Arshad, G. Terstyanszky, T. Kiss, and N. Weingarten, �A de�nition and analysis

of the role of meta-work�ows in work�ow interoperability,� in Science Gateways

(IWSG), 2015 7th International Workshop on, pp. 8�15, IEEE, 2015.

[173] J. Arshad, G. Terstyanszky, T. Kiss, N. Weingarten, and G. Ta�oni, �A formal

approach to support interoperability in scienti�c meta-work�ows,� Journal of Grid

Computing, vol. 14, no. 4, pp. 655�671, 2016.

[174] L. Freitas and P. Watson, �Formalizing work�ows partitioning over federated clouds:

Multi-level security and costs,� International Journal of Computer Mathematics,

vol. 91, no. 5, pp. 881�906, 2014.

[175] M. d'Inverno and J. Prophet, �Multidisciplinary investigation into adult stem cell be-

havior,� in Transactions on Computational Systems Biology III, pp. 49�64, Springer,

2005.

https://www.cse.buffalo.edu/LRG/CSE705/Papers/Z-Ref-Manual.pdf
https://www.cse.buffalo.edu/LRG/CSE705/Papers/Z-Ref-Manual.pdf

BIBLIOGRAPHY 208

[176] J. Woodcock, S. Stepney, D. Cooper, J. Clark, and J. Jacob, �The certi�cation of the

Mondex electronic purse to ITSEC level E6,� Formal Aspects of Computing, vol. 20,

no. 1, pp. 5�19, 2008.

[177] J. McDermott and L. Freitas, �A formal security policy for xenon,� in Proceedings

of the 6th ACM workshop on Formal methods in security engineering, pp. 43�52,

ACM, 2008.

[178] V. Navale and P. E. Bourne, �Cloud computing applications for biomedical science:

A perspective,� PLoS Computational Biology, vol. 14, no. 6, p. e1006144, 2018.

[179] T. Kiss, P. Greenwell, H. Heindl, G. Terstyanszky, and N. Weingarten, �Parameter

sweep work�ows for modelling carbohydrate recognition,� Journal of Grid Comput-

ing, vol. 8, no. 4, pp. 587�601, 2010.

[180] A. Conesa, S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles,

�Blast2GO: A universal tool for annotation, visualization and analysis in functional

genomics research,� Bioinformatics, vol. 21, no. 18, pp. 3674�3676, 2005.

[181] M. Kutmon, M. P. van Iersel, A. Bohler, T. Kelder, N. Nunes, A. R. Pico, and C. T.

Evelo, �PathVisio 3: An extendable pathway analysis toolbox,� PLoS Computational

Biology, vol. 11, no. 2, p. e1004085, 2015.

[182] D. Schapiro, H. W. Jackson, S. Raghuraman, J. R. Fischer, V. R. Zanotelli,

D. Schulz, C. Giesen, R. Catena, Z. Varga, and B. Bodenmiller, �histoCAT: Analy-

sis of cell phenotypes and interactions in multiplex image cytometry data,� Nature

Methods, vol. 14, no. 9, p. 873, 2017.

[183] H. Visti, �Application deployment in CloudBroker: Best practices.� Internal report,

Nov 2014.

[184] D. Temelkovski, �Extension of Raccoon2 source-code on GitHub,� May 2017. Avail-

able at https://github.com/damjanmk/Raccoon2 [Accessed: 1 Apr 2018].

[185] ZINC12, �Subset of 130,216 molecules with molecular weight smaller than 190.�

Available at http://zinc.docking.org/db/bysubset/7/7_t90.smi [Accessed: 2

Apr 2018].

[186] H. Heindl, �Selection of small molecule ligands for in silico docking experiments.�

Internal report, Nov 2015.

[187] Scripps Research Institute, �AutoDock Vina manual � FAQ.� Available at http:

//vina.scripps.edu/manual.html#faq [Accessed: 2 Apr 2018].

https://github.com/damjanmk/Raccoon2
http://zinc.docking.org/db/bysubset/7/7_t90.smi
http://vina.scripps.edu/manual.html#faq
http://vina.scripps.edu/manual.html#faq

BIBLIOGRAPHY 209

[188] CloudSigma, �CloudSigma � Pricing.� Available at https://www.cloudsigma.com/

pricing/ [Accessed: 2 Apr 2018].

[189] P. Kacsuk, J. Kovacs, Z. Farkas, A. C. Marosi, G. Gombas, and Z. Balaton, �SZTAKI

desktop grid (SZDG): A �exible and scalable desktop grid system,� Journal of Grid

Computing, vol. 7, no. 4, p. 439, 2009.

[190] QSR International Pty Ltd, �NVivo qualitative data analysis software (Ver-

sion 10),� 2012. Available at: http://www.qsrinternational.com/nvivo/

support-overview/downloads [Accessed 17 Jul 2018].

[191] A. Bortolato, M. Fanton, J. S. Mason, and S. Moro, �Molecular docking methodolo-

gies,� in Biomolecular Simulations, pp. 339�360, Springer, 2013.

[192] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and

M. Karplus, �CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations,� Journal of Computational Chemistry, vol. 4, no. 2, pp. 187�

217, 1983.

[193] N. Guex and M. C. Peitsch, �SWISS-MODEL and the Swiss-Pdb Viewer: An

environment for comparative protein modeling,� Electrophoresis, vol. 18, no. 15,

pp. 2714�2723, 1997.

[194] T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, �SWISS-MODEL: An auto-

mated protein homology-modeling server,� Nucleic Acids Research, vol. 31, no. 13,

pp. 3381�3385, 2003.

[195] H. E. Pence and A. Williams, �ChemSpider: An online chemical information re-

source,� 2010.

[196] K. R. Cousins, �Computer review of ChemDraw Ultra 12.0,� 2011. Available: https:

//pubs.acs.org/doi/abs/10.1021/ja204075s [Accessed 30 Mar 2018].

[197] P. Csizmadia, �MarvinSketch and MarvinView: Molecule applets for the World Wide

Web,� in Proceedings of ECSOC-3, the third international electronic conference on

synthetic organic chemistry, pp. 367�369, 1999.

[198] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R.

Hutchison, �Avogadro: An advanced semantic chemical editor, visualization, and

analysis platform,� Journal of Cheminformatics, vol. 4, no. 1, p. 17, 2012.

[199] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C.

Meng, and T. E. Ferrin, �UCSF Chimera � a visualization system for exploratory re-

search and analysis,� Journal of Computational Chemistry, vol. 25, no. 13, pp. 1605�

1612, 2004.

https://www.cloudsigma.com/pricing/
https://www.cloudsigma.com/pricing/
http://www.qsrinternational.com/nvivo/support-overview/downloads
http://www.qsrinternational.com/nvivo/support-overview/downloads
https://pubs.acs.org/doi/abs/10.1021/ja204075s
https://pubs.acs.org/doi/abs/10.1021/ja204075s

BIBLIOGRAPHY 210

[200] C. D. Lau, M. J. Levesque, S. Chien, S. Date, and J. H. Haga, �ViewDock TDW:

High-throughput visualization of virtual screening results,� Bioinformatics, vol. 26,

no. 15, pp. 1915�1917, 2010.

[201] K. Chodorow, MongoDB: The De�nitive Guide. "O'Reilly Media, Inc.", 2013.

[202] J. J. Irwin, B. K. Shoichet, M. M. Mysinger, N. Huang, F. Colizzi, P. Wassam,

and Y. Cao, �Automated docking screens: A feasibility study,� Journal of Medicinal

Chemistry, vol. 52, no. 18, pp. 5712�5720, 2009.

[203] X. Zhang, S. E. Wong, and F. C. Lightstone, �Toward fully automated high perfor-

mance computing drug discovery: A massively parallel virtual screening pipeline for

docking and molecular mechanics/generalized Born surface area rescoring to improve

enrichment,� 2014.

[204] S. Genheden and U. Ryde, �The MM/PBSA and MM/GBSA methods to estimate

ligand-binding a�nities,� Expert Opinion on Drug Discovery, vol. 10, no. 5, pp. 449�

461, 2015.

[205] X. Zhang, S. E. Wong, and F. C. Lightstone, �Message passing interface and multi-

threading hybrid for parallel molecular docking of large databases on petascale high

performance computing machines,� Journal of Computational Chemistry, vol. 34,

no. 11, pp. 915�927, 2013.

[206] L. Xie, T. Evangelidis, L. Xie, and P. E. Bourne, �Drug discovery using chemical

systems biology: Weak inhibition of multiple kinases may contribute to the anti-

cancer e�ect of nel�navir,� PLoS Computational Biology, vol. 7, no. 4, p. e1002037,

2011.

[207] J. Ren, L. Xie, W. W. Li, and P. E. Bourne, �SMAP-WS: A parallel web service for

structural proteome-wide ligand-binding site comparison,� Nucleic Acids Research,

vol. 38, no. suppl 2, pp. W441�W444, 2010.

[208] A. N. Jain, �Sur�ex: Fully automatic �exible molecular docking using a molecu-

lar similarity-based search engine,� Journal of Medicinal Chemistry, vol. 46, no. 4,

pp. 499�511, 2003.

[209] Z. Zsoldos, D. Reid, A. Simon, S. B. Sadjad, and A. P. Johnson, �eHiTS: A new

fast, exhaustive �exible ligand docking system,� Journal of Molecular Graphics and

Modelling, vol. 26, no. 1, pp. 198�212, 2007.

[210] E. Glaab, �Building a virtual ligand screening pipeline using free software: A survey,�

Brie�ngs in Bioinformatics, vol. 17, no. 2, pp. 352�366, 2015.

BIBLIOGRAPHY 211

[211] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R.

Hutchison, �Open Babel: An open chemical toolbox,� Journal of Cheminformatics,

vol. 3, no. 1, p. 33, 2011.

[212] P. D'Ursi, F. Chiappori, I. Merelli, P. Cozzi, E. Rovida, and L. Milanesi, �Virtual

screening pipeline and ligand modelling for H5N1 neuraminidase,� Biochemical and

Biophysical Research Communications, vol. 383, no. 4, pp. 445�449, 2009.

[213] A. C. Wallace, R. A. Laskowski, and J. M. Thornton, �LIGPLOT: A program to

generate schematic diagrams of protein-ligand interactions,� Protein Engineering,

Design and Selection, vol. 8, no. 2, pp. 127�134, 1995.

[214] Z. Farkas, P. Kacsuk, T. Kiss, P. Borsody, Á. Hajnal, Á. Balaskó, and K. Karóczkai,

�Autodock gateway for molecular docking simulations in cloud systems,� Cloud Com-

puting with E-science Applications, p. 300, 2015.

[215] V. B. Chen, W. B. Arendall, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J.

Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, �MolProbity: All-

atom structure validation for macromolecular crystallography,� Acta Crystallograph-

ica Section D: Biological Crystallography, vol. 66, no. 1, pp. 12�21, 2010.

[216] V. B. Chen, I. W. Davis, and D. C. Richardson, �KiNG (Kinemage, Next Genera-

tion): A versatile interactive molecular and scienti�c visualization program,� Protein

Science, vol. 18, no. 11, pp. 2403�2409, 2009.

[217] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees, �DIRAC: A scalable lightweight

architecture for high throughput computing,� in Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing, pp. 19�25, IEEE Computer Society,

2004.

[218] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Marti,

and E. Cesario, �The XtreemFS architecture�a case for object-based �le systems

in grids,� Concurrency and Computation: Practice and Experience, vol. 20, no. 17,

pp. 2049�2060, 2008.

[219] D. W. Erwin and D. F. Snelling, �UNICORE: A grid computing environment,� in

European Conference on Parallel Processing, pp. 825�834, Springer, 2001.

[220] M. C. Burger, �ChemDoodle web components: HTML5 toolkit for chemical graphics,

interfaces, and informatics,� Journal of Cheminformatics, vol. 7, no. 1, p. 35, 2015.

[221] A. Roy, B. Srinivasan, and J. Skolnick, �PoLi: A virtual screening pipeline based

on template pocket and ligand similarity,� Journal of Chemical Information and

Modeling, vol. 55, no. 8, pp. 1757�1770, 2015.

BIBLIOGRAPHY 212

[222] H. Zhou and J. Skolnick, �Template-based protein structure modeling using

TASSERVMT,� Proteins: Structure, Function, and Bioinformatics, vol. 80, no. 2,

pp. 352�361, 2012.

[223] J. A. Capra, R. A. Laskowski, J. M. Thornton, M. Singh, and T. A. Funkhouser,

�Predicting protein ligand binding sites by combining evolutionary sequence conser-

vation and 3D structure,� PLoS Computational Biology, vol. 5, no. 12, p. e1000585,

2009.

[224] M. Gao and J. Skolnick, �APoc: Large-scale identi�cation of similar protein pockets,�

Bioinformatics, vol. 29, no. 5, pp. 597�604, 2013.

[225] T. A. Wassenaar, M. Van Dijk, N. Loureiro-Ferreira, G. Van Der Schot, S. J.

De Vries, C. Schmitz, J. Van Der Zwan, R. Boelens, A. Giachetti, L. Ferella, et al.,

�WeNMR: Structural biology on the grid,� Journal of Grid Computing, vol. 10, no. 4,

pp. 743�767, 2012.

[226] C. Dominguez, R. Boelens, and A. M. Bonvin, �HADDOCK: A protein- protein

docking approach based on biochemical or biophysical information,� Journal of the

American Chemical Society, vol. 125, no. 7, pp. 1731�1737, 2003.

[227] P. Kunszt, L. Blum, B. Hullár, E. Schmid, A. Srebniak, W. Wolski, B. Rinn, F.-J.

Elmer, C. Ramakrishnan, A. Quandt, et al., �iPortal: The swiss grid proteomics

portal: Requirements and new features based on experience and usability consid-

erations,� Concurrency and Computation: Practice and Experience, vol. 27, no. 2,

pp. 433�445, 2015.

[228] A. Bauch, I. Adamczyk, P. Buczek, F.-J. Elmer, K. Enimanev, P. Glyzewski,

M. Kohler, T. Pylak, A. Quandt, C. Ramakrishnan, et al., �openBIS: A �exible

framework for managing and analyzing complex data in biology research,� BMC

Bioinformatics, vol. 12, no. 1, p. 468, 2011.

[229] The UniProt Consortium, �UniProt: The universal protein knowledge base,� Nucleic

Acids Research, vol. 45, no. D1, pp. D158�D169, 2017.

[230] M. Fowler, UML distilled: A brief guide to the standard object modeling language.

Addison-Wesley Professional, 2004.

[231] D. Prandi, �A formal approach to molecular docking,� in International Conference

on Computational Methods in Systems Biology, pp. 78�92, Springer, 2006.

[232] Community Z Tools Project, �CZT for Eclpise.� Available at: http://czt.

sourceforge.net/eclipse/ [Accessed 14 Aug 2018].

http://czt.sourceforge.net/eclipse/
http://czt.sourceforge.net/eclipse/

BIBLIOGRAPHY 213

[233] A. Cockburn, Agile software development: The cooperative game. Pearson Educa-

tion, 2 ed., 2006.

[234] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Je�ries, et al., �Manifesto for agile software

development,� 2001.

[235] A. Cockburn, Crystal clear: A human-powered methodology for small teams. Pearson

Education, 2004.

[236] M. Hellkamp, �Bottle: Python Web Framework � Bottle 0.13-dev documentation,�

Apr 2018. Available at https://bottlepy.org/docs/dev/ [Accessed: 1 Apr 2018].

[237] D. Temelkovski, �Implementation of 3 scenarios, source-code on GitHub.� Available

at https://github.com/damjanmk/mdrr-scenarios [Accessed: 2 Sep 2018].

[238] Mike Dirolf (mdirolf), Je� Jenkins (je�jenkins), Jim Jones, et al., �PyMongo

3.6.1 documentation � PyMongo 3.6.1 documentation.� Available at https://api.

mongodb.com/python/current/ [Accessed: 2 Apr 2018].

[239] N. M. O'Boyle, C. Morley, and G. R. Hutchison, �Pybel: A Python wrapper for the

OpenBabel cheminformatics toolkit,� Chemistry Central Journal, vol. 2, no. 1, p. 5,

2008.

[240] Y. Wang, S. H. Bryant, T. Cheng, J. Wang, A. Gindulyte, B. A. Shoemaker, P. A.

Thiessen, S. He, and J. Zhang, �PubChem BioAssay: 2017 update,� Nucleic Acids

Research, vol. 45, no. D1, pp. D955�D963, 2016.

[241] S. Kim, P. A. Thiessen, E. E. Bolton, and S. H. Bryant, �PUG-SOAP and PUG-

REST: Web services for programmatic access to chemical information in PubChem,�

Nucleic Acids Research, vol. 43, no. W1, pp. W605�W611, 2015.

[242] PubChem, �PubChem docs � programmatic access � request volume limitations.�

Available at http://pubchemdocs.ncbi.nlm.nih.gov/programmatic-access$_

RequestVolumeLimitations [Accessed: 2 Apr 2018].

[243] D. S. Goodsell, S. Dutta, C. Zardecki, M. Voigt, H. M. Berman, and S. K. Burley,

�The RCSB PDB "molecule of the month": Inspiring a molecular view of biology,�

PLoS Biology, vol. 13, no. 5, p. e1002140, 2015.

[244] ZINC15, �Subset of molecules approved in major jurisdictions.� Available at http:

//zinc15.docking.org/substances/subsets/world/ [Accessed: 2 Apr 2018].

[245] O. Trott, �Vina video tutorial,� Feb 2014. Available at http://vina.scripps.edu/

tutorial.html [Accessed: 2 Apr 2018].

https://bottlepy.org/docs/dev/
https://github.com/damjanmk/mdrr-scenarios
https://api.mongodb.com/python/current/
https://api.mongodb.com/python/current/
http://pubchemdocs.ncbi.nlm.nih.gov/programmatic-access$_RequestVolumeLimitations
http://pubchemdocs.ncbi.nlm.nih.gov/programmatic-access$_RequestVolumeLimitations
http://zinc15.docking.org/substances/subsets/world/
http://zinc15.docking.org/substances/subsets/world/
http://vina.scripps.edu/tutorial.html
http://vina.scripps.edu/tutorial.html

