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Abstract 

Understanding the poor productivity performance of the UK economy since the financial crisis is 
complicated by the well-known challenges in estimating total factor productivity (TFP) using only revenue 
data. We develop a structural framework to infer quality-adjusted TFP from an estimated firm-level 
revenue function. We use microdata for two sectors previously identified as being significant contributors 
to the UK’s productivity growth slowdown – manufacturing and ICT – from 2008 to 2019. The revenue 
function is estimated using the Blundell-Bond System GMM estimator. We also use an alternative cost-
shares approach to identifying and measuring TFP. For both methods, we find an overall fall in TFP levels 
in manufacturing and a rise in ICT. We find a striking decline of between 13 and 18 percent in the level of 
within-firm manufacturing TFP, and of between 11 and 16 percent in ICT, although with reallocation effects 
differing between the two sectors. The finding of declining within-firm TFP is robust although the 
magnitude varies between methods. We discuss a possible explanation for this extended UK productivity 
puzzle based on the relative underperformance of UK firms in international markets.  
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1. Introduction 

 

By the end of 2019, nearly eleven years after the financial crisis, aggregate labour 

productivity in the UK was about a fifth lower than if the 1990-2007 trend had continued 

(ONS). The slowdown has been more pronounced in the UK than in other OECD 

economies. Several authors, e.g., Coyle and Mei (2023), Goldin, Koutroumpis, Lafond, and 

Winkler (2024) and Fernald and Inklaar (2022), have found that productivity growth 

slowdowns in certain sectors (parts of manufacturing, information and 

telecommunications (ICT), electricity, transportation, and finance) can largely account 

for the aggregate slowdown. Others highlight increasing heterogeneity among firms’ 

productivity performance, in the UK and other OECD countries, with the most productive 

pulling increasingly far ahead of the remainder (Andrews, Criscuolo, and Gal, 2019; Coyle, 

Lind, Nguyen, and Tong, 2022). The considerable heterogeneity across firms along 

dimensions such as size, use of digital technology, R&D performance, and export 

intensity, indicates that exploring the UK productivity puzzle in the post-2008 era 

requires combining firm-level evidence with sectoral insights.  

 This paper provides new measures of firm-level total factor productivity (TFP) for 

two sectors – manufacturing and ICT – that have been found to be disproportionate 

contributors to the UK’s productivity slowdown. To develop these new measures we use 

microdata from the UK’s Annual Business Survey (ABS) for the period 2008 to 2019. In 

addition to showing the sectoral evolution of a revenue-share-weighted index of firm-

level TFP, we also decompose it into the effects of the evolution of within-firm TFP and 

the effects of reallocation across firms in each sector.  

  Recovering production function parameters faces two main challenges in most 

empirical applications. First, the researcher typically has access to firm-level revenues 

rather than prices and quantities. The estimation of a revenue function rather than a 

production function leads to well-known biases in recovering production function 

parameters (Klette and Griliches, 1996; De Loecker, 2011; Bond et al., 2021). Second, 

even with data on prices and quantities, the researcher faces the problem of simultaneity 

bias in recovering input parameters in the presence of unobserved productivity shocks 

(Griliches and Mairesse, 1995; Olley and Pakes, 1996; Blundell and Bond, 1998, 2000; 

Levinsohn and Petrin, 2003; Ackerberg et al., 2015).  



3 

 In this paper, we first address these challenges by: (i) developing a structural 

model that, in principle, allows for the recovery of the objects of interest, including output 

elasticities and measures of TFP from the estimated revenue function; and (ii) using the 

Blundell-Bond System GMM estimator to estimate the parameters of the revenue 

function. For a given 2-digit industry, our baseline structural model imposes a non-

varying demand-side elasticity of substitution and output elasticities. We also allow for 

product quality to vary across firms in an industry. We show that our method recovers 

firm-level estimates of quality-adjusted TFP, which we label TFPQ*.  

One way to relax the assumption of non-varying output elasticities within an 

industry is to use the cost-shares approach to calculate time-varying firm-level output 

elasticities directly, if we are willing to assume constant-returns-to-scale (CRS). To 

implement the cost-shares method, we start by testing the CRS assumption in our 

baseline model, taking into account that we are estimating a revenue function rather than 

a production function. We find the CRS assumption to be consistent with the data for most 

2-digit industries within the manufacturing and ICT sectors. After inferring the output 

elasticities from the cost shares, we then re-estimate an appropriately restricted revenue 

function to obtain an estimate of the industry-specific elasticity of substitution and 

alternative measures of TFPQ*. 

We show the sectoral implications of our two measurement methods by deriving 

the implied indexes of revenue-weighted TFPQ* for manufacturing and ICT. We then 

decompose the sectoral index into the product of an index capturing the evolution of 

within-firm TFPQ* and one capturing broad reallocation effects across firms in each 

sector.  

We find evidence of a fall in the revenue-share-weighted average level of TFPQ* in 

manufacturing and a rise in ICT. However, our most striking finding is of large declines in 

the within-firm measure of TFPQ* in both sectors, which is robust across the baseline and 

cost-shares methods. The reallocation effect is positive and larger than the within effect 

in ICT; for manufacturing the size of the reallocation effect is sensitive to the approach 

used.   

These findings raise new puzzles regarding the UK’s recent productivity 

performance. In the literature to date the puzzle has been framed as the need to explain 
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the slowdown in the UK’s productivity growth since the financial crisis – a slowdown that 

has taken place despite the apparent rapid technological changes associated with 

digitalisation. Our findings show an even more puzzling fall in the level of within-firm 

productivity in manufacturing and ICT. The within-firm findings point to outright 

regression in some mix of the product quality and technical efficiency of UK firms. 

Although resolving these puzzles is beyond the scope of this paper, we suggest a possible 

explanation lies in adverse movements in the relative product quality and technical 

efficiency of UK firms in international competition.  

Section 2 provides a brief overview of the literature on the UK productivity 

slowdown. Section 3 sets out our framework for inferring TFPQ* and our estimation 

methodology. Section 4 describes the data. Section 5 presents the new TFPQ* measures 

for UK manufacturing and ICT. Section 6 explores a possible explanation for the puzzling 

findings on within-firm productivity. Section 7 concludes. 

 

2. UK Productivity Slowdown: Related Literature 

 

Slower TFP growth is a common issue for other OECD economies (Fernald and 

Inklaar 2022) but is particularly pronounced in the UK. Most of the literature on the UK’s 

stagnant productivity focuses on variables that affect productivity performance. One 

approach is to consider that in a perfectly competitive environment with wages reflecting 

marginal productivity, returns on capital and labour are indicative of their productivity 

at the aggregate level. Thus Pessoa and Van Reenen (2014) identify poor productivity as 

the outcome of weak growth in the effective capital-labour ratio. Accordingly, real wages 

have fallen dramatically, while the real cost of capital has increased, most likely due to 

the 2008 global financial crisis. Goodridge, Haskel, and Wallis (2013, 2018) apply growth 

accounting methods to national accounts data and find that the poor performance of TFP 

in the UK results from sluggish labour productivity. On this account, the observed TFP 

slowdown can be attributed to low labour productivity. The natural question then arises 

as to what drives low real wages. As Blundell, Crawford, and Jin (2014) did not find any 

change in the compositional quality of labour, they concluded that the decrease in 
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nominal wages may have been caused by a disproportionate (compared to previous 

recessions) increase in labour supply.   

Barnett et al. (2014) challenge this diagnosis. They point instead to a serious 

problem of capital misallocation across sectors. The problem of resource misallocation is 

also raised in Bloom and Van Reenen (2010), which is more likely a structural factor 

reflecting inter alia poor management practices that persist in the UK (Bryson and Forth, 

2016). Goodridge et al. (2013) emphasize the importance of intangible assets and 

demonstrate that real value-added growth is understated by 1.6% because intangible 

assets are omitted. Incorporating intangibles can account for about one-third of the gap 

between observed and prior trend productivity .  

Recent studies by Coyle and Mei (2023) examining the slowdown in UK labour 

productivity growth from 2008 to 2019 with sectoral data suggest that the primary cause 

of the post-2008 stagnation is a within-industry slowdown in certain sectors, including 

manufacturing and ICT. Focusing on the UK productivity puzzle between 2008 and 2012, 

Harris and Moffat (2017) find that the service sector’s poor performance accounted for 

the largest part of the UK TFP slowdown in 2008.    

 Our contribution here is that, unlike most of the previous literature, we measure 

quality-adjusted TFP at the firm level for the UK. Our approach is conceptually similar to 

Forlani, Martin, Mion, and Muûls (2022) and Jacob and Mion (2022). The former study 

separates firm-level price and quantity data to develop a novel framework that recovers 

heterogeneity in demand and quantity TFP across Belgian firms. They find that physical 

TFP and demand are negatively correlated. Jacob and Mion (2022) define a revenue 

measure of TFP as the product of physical TFP and price index.  Total revenue is defined 

as this product times an input index. Looking at the weak UK productivity performance 

since 2008, Jacob and Mion (2022) find demand and decreasing physical TFP as the key 

determinants that push down revenue TFP (and labour productivity).  

 

3. TFP Estimation Framework 

 

3.1 A structural approach to estimating TFP  
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Our starting point reflects the well-known challenges involved in recovering the relevant 

parameters using deflated firm revenue and input data. We adopt a structural approach 

to estimating the relevant parameters and a (quality-adjusted) measure of TFP that we 

label TFPQ*. Details of our structural model are provided in Appendix 1. Here, we 

summarise the main elements of the model and the final functional form of the firm 

revenue function that provides our baseline estimating equation.  

Consumers maximise a nested utility function with Cobb-Douglas preferences 

over indexes of industry aggregates and CES preferences over the quality-adjusted 

products within each index. The elasticity of substitution, 𝜂𝑗 , between quality-adjusted 

products within the index for industry 𝑗 is constant over time. On the production side, 

heterogeneous firms have a Cobb-Douglas production function with firm- and time-

varying Hicks-neutral technical efficiency, but common and constant output elasticities 

with respect to inputs of labour, capital and materials.  

As detailed in Appendix 1, utility and profit maximisation imply a firm-level 

revenue function. Written in logs, this revenue function takes the form: 

 

  

𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 =
1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡) +

(𝜂
𝑗

− 1) 𝛽𝑗
𝑙

𝜂𝑗
𝑙𝑖𝑗𝑡 +

(𝜂
𝑗

− 1) 𝛽𝑗
𝑘

𝜂𝑗
𝑘𝑖𝑗𝑡

+
(𝜂

𝑗
− 1) 𝛽𝑗

𝑚

𝜂𝑗
𝑚𝑖𝑗𝑡 +

(𝜂𝑗 − 1)

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡). 

 

 

(1) 

 

Firms are indexed by 𝑖, industries by 𝑗, and time by 𝑡.  𝑟𝑖𝑗𝑡 is the log of firm i’s revenue, 𝑟𝑗𝑡 

is the log of industry revenue for industry 𝑗, and 𝑝𝑗𝑡 is the log of the  (ideal) price index 

for industry 𝑗, which is affected by both price and quality changes. 𝑙𝑖𝑗𝑡, 𝑘𝑖𝑗𝑡, and 𝑚𝑖𝑗𝑡 are 

the logs of firm-level labour, capital and material inputs respectively; and 𝛽𝑗
𝑙, 𝛽𝑗

𝑘 and 𝛽𝑗
𝑚 

are the associated output elasticities of these inputs. The final term in (1) is a revenue-

based measure of a firm’s TFP that we label TFPR. Given an estimate of 𝜂𝑗 , we can recover 

an estimate of a firm’s TFPQ*, where the log of TFPQ* is the sum of a product quality 

component (𝜆𝑖𝑗𝑡) and a technical efficiency component (𝜔𝑖𝑗𝑡 ). Critically, an estimate of 
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𝜂𝑗  can be recovered from the estimated coefficient on deflated industry revenue in the 

firm-level revenue function (Klette and Griliches, 1996; Melitz, 2000; De Loecker, 2016).  

 In addition to our functional form assumptions, the key identifying assumptions 

are that the demand-side elasticity of substitution and the output elasticities are common 

across firms and constant over time in defined industry segments. Importantly, however, 

this does not necessarily imply that firm markups are similarly firm- and time-invariant 

within an industry. This will be true under monopolistic competition, where industry 

markups are equal to 𝜂𝑗 (𝜂𝑗 − 1)⁄ , and so will be invariant across firms in an industry and 

time for a given value of 𝜂𝑗 . However, common and constant markups are not implied 

under other market structures. For example, under differentiated-product Cournot or 

Bertrand competition, the optimal markup will depend on the firm’s revenue share 

within its industry for a given value of 𝜂𝑗  (Atkeson and Burstein, 2008). In our 

application, we do not make a specific assumption on the market structure and the 

revenue function follows only from the functional-form assumptions and utility and 

profit maximising behaviour.  

 Of course, common and constant output elasticities within narrowly defined 

industries are strong assumptions in this baseline model. We explore one way to relax 

this assumption by using the cost-shares approach to directly calculate firm- and time-

varying output elasticities instead of inferring these elasticities from the estimated 

revenue function.1 The equation of cost shares and output elasticities depends on the 

alternative identifying assumption of constant-returns-to-scale (CRS) in the production 

function (see Appendix 2). We first test for CRS, which we find to be a reasonable 

restriction for most 2-digit industries, before implementing this cost-shares approach. 

Treating CRS as a reasonable restriction, we then use the cost shares to calculate the 

output elasticities and re-estimate a restricted revenue function to obtain alternative 

estimates of 𝜂𝑗  for each industry. We then use this revenue function to provide a set of 

alternative measures of firm-level TFPQ*.  

 
1 We emphasise that we use here the cost-shares approach to infer measures of a “fundamentals”-based 
measure of TFP. Following Foster et al. (2008) and Hsieh and Klenow (2009), a large literature has used a 
revenue-based measure of TFP to infer a measure of “distortions” or allocative inefficiencies. Blackwood et 
al. (2021), Foster et al. (2016), and Haltiwanger (2016) discuss how the type of residual-based measures 
of (revenue) TFP we use in this paper are properly interpreted as measures of fundamentals rather than 
allocative distortions. They also caution that the interpretation of various measures of TFP depend on the 
“devilish details” of the definitions and assumptions underlying the measures. 
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3.2 Econometric Estimation  

 

Our empirical setting allows for adjustment costs in all inputs,2 serially correlated 

TFPR/TFPQ* shocks (following an AR(1) process), and unobserved heterogeneity in 

TFPQ* across firms. However, along with the adjustment costs, we allow input choices to 

respond to contemporaneous TFPQ* shocks, so consistent estimation of the revenue 

function faces the challenges of both unobserved heterogeneity and simultaneity that are 

common in the production function estimation literature (see, e.g., Griliches and Marisse, 

1995).  

Letting 𝜃𝑖𝑗𝑡 = [(𝜂𝑗 − 1) 𝜂𝑗⁄ ](𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡), we thus assume:  

 

 𝜃𝑖𝑗𝑡 = 𝜃𝑖𝑗 + 𝑣𝑖𝑗𝑡 , (2) 

 

where 

 

 𝑣𝑖𝑗𝑡 = 𝜌𝑗𝑣𝑖𝑗(𝑡−1) + 𝜉𝑖𝑗𝑡. (3) 

  

𝜉𝒊𝒋𝒕 is a zero mean random shock that is potentially correlated with input choices, and we 

assume 0 < |𝜌𝑗| < 1. Lagging (12) by one period, multiplying the resulting equation 

through by 𝜌𝑗 , and subtracting the result from (12), gives the quasi-differenced equation:  

 

 
2 See Bond and Söderbom (2005).  
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 𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 = 𝜌𝑗( 𝑟𝑖𝑗(𝑡−1) − 𝑝𝑗(𝑡−1))

+
1

𝜂𝑗
((𝑟𝑗𝑡 − 𝑝𝑗𝑡) − 𝜌𝑗(𝑟𝑗(𝑡−1) − 𝑝𝑗(𝑡−1)))

+
(𝜂𝑗 − 1)𝛽𝑗

𝑙

𝜂𝑗
(𝑙𝑖𝑗𝑡 − 𝜌𝑗𝑙𝑖𝑗(𝑡−1))

+
(𝜂𝑗 − 1)𝛽𝑗

𝑘

𝜂𝑗
(𝑘𝑖𝑗𝑡 − 𝜌𝑗𝑘𝑖𝑗(𝑡−1))

+
(𝜂𝑗 − 1)𝛽𝑗

𝑚

𝜂𝑗
(𝑚𝑖𝑗𝑡 − 𝜌𝑗𝑚𝑖𝑗(𝑡−1)) + (1 − 𝜌𝑗)𝜃𝑖𝑗 + 𝜉𝑖𝑗𝑡. 

 

(4) 

 

The presence of a firm fixed effect leads to a correlation between the lagged 

dependent variable and the error term 𝜉𝑖𝑗𝑡 (Nickell, 1981). Input variables in the revenue 

equation will also be correlated with the error term, where there are contemporaneous 

input responses to TFPQ* shocks. One option for consistently estimating (4) is to take first 

differences and instrument for potentially endogenous right-hand-side variables. 

Blundell and Bond (1998, 2000) identify relatively mild initial conditions that allow 

lagged levels of endogenous variables to be valid instruments for the endogenous first 

differences. However, Blundell and Bond (2000) find that lagged levels provide weak 

instruments in a production-function-estimation setting. Alternatively, they suggest 

estimating a System GMM that includes the estimating equation in first differences and 

that equation in levels. Moreover, they provide mild initial conditions under which lagged 

first differences are valid instruments for the endogenous variables in the levels equation. 

They show that the System GMM provides more efficient estimates than a single equation 

approach. Given the demonstrated good performance of this estimator in the context of 

production function estimation (Blundell and Bond, 1998, 2000), we use it to estimate 

the parameters of the revenue function.3 

 
3 In production function estimation, the control function approach provides the main alternative to 
dynamic panel estimation (Olley and Pakes, 1996; Blundell and Bond, 1998, 2000; Levinsohn and Petrin, 
2003; Ackerberg et al., 2015). De Loecker and Syverson (2021) provide an excellent overview of the two 
approaches in different settings. In addition to its good performance in previous production function 
estimation settings, the flexibility of a dynamic panel estimation in a revenue function estimation setting 
leads us to choose for our empirical analysis. A common challenge for all methods is in obtaining reasonable 
output elasticities for capital. As discussed further in the results section, we find the System GMM estimator 
produces reasonable output elasticities of capital in our setting.  
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3.3 Decomposition of observed trends in TFPQ* 

 

To show the implied evolution TFPQ* at the sectoral level we present an index of revenue-

share weighted TFPQ* for both manufacturing and ICT. Following De Loecker et al. 

(2020), we can decompose this sector-specific index into the product of an index of 

within-firm TFPQ*, an index of reallocation effects, and an index of entry and exit effects.4  

Letting 𝑥𝑐𝑡 represent the log of the sectoral revenue-share-weighted geometric 

mean of the corresponding firm-level variable, where 𝑐 ∈ (Manufacturing, ICT), we have:  

 

 𝑥𝑐𝑡 = ∑ 𝑥𝑖𝑗𝑡𝑠𝑖𝑐𝑡
𝑖∈𝑐

 (5) 

 

where 𝑠𝑖𝑐𝑡 is the share of the firm 𝑖 in the total revenue of the sector at time 𝑡 and 𝑥𝑖𝑗𝑡  is 

the log of measured firm-level TFPQ*. Using the De Loecker et al. (2020) decomposition, 

we can write the growth rate of the sector aggregate as: 

 

 𝛥𝑥𝑐𝑡 = ∑ 𝛥𝑥𝑖𝑗𝑡𝑠𝑖𝑐(𝑡−1)
𝑖∈𝑐

+ ∑ �̂�𝑖𝑗(𝑡−1)𝛥𝑠𝑖𝑐𝑡
𝑖∈𝑐

+ ∑ 𝛥𝑥𝑖𝑗𝑡𝛥𝑠𝑖𝑐𝑡
𝑖∈𝑐

+ ∑ �̂�𝑖𝑗𝑡𝑠𝑖𝑐𝑡
𝑖∈𝐸𝑛𝑡𝑟𝑦|𝑐

− ∑ �̂�𝑖𝑗(𝑡−1)𝑠𝑖𝑐(𝑡−1)
𝑖∈𝐸𝑥𝑖𝑡|𝑐

 
(6) 

 

where �̂�𝑖𝑗𝑡 = 𝑥𝑖𝑗𝑡 − 𝑥𝑐(𝑡−1) and �̂�𝑖𝑗(𝑡−1) = 𝑥𝑖𝑗(𝑡−1) − 𝑥𝑐(𝑡−1).5  

The first term on the right is the effect of within-firm productivity growth on the 

sector aggregate growth rate. The next two terms capture reallocation effects between 

firms in the sector, and the final two terms capture the effects of firm entry and exit, 

respectively. We term the sum of the second two terms the reallocation effect and the 

 
4 See Foster, Haltiwanger, and Krizan (2001) and Blackwood et al. (2021) for discussion of the domposition 
and comparisons with alternative approaches.  
5 Following Haltiwanger (1997) and De Loecker et al. (2020), we de-mean by the appropriate aggregate 
(revenue weighted) level in order to correctly identify the reallocation term. 
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final two terms the entry/exit effect. The final four terms taken together can be 

collectively thought of as a broad reallocation effect. Finally, setting the relevant level of 

the index equal to 1 in the first year of the sample, we use the relevant calculated 

weighted growth rates to infer the evolution of the level of the index over the remainder 

of the sample period. We show the evolution of the within-sector index and the broad 

reallocation index as well as the overall sector index. We present these separately for the 

manufacturing and ICT sectors. 

 

4. Data 

 

We construct a firm-level dataset that includes non-financial business firms in the UK in 

the Office for National Statistics (ONS) Annual Business Survey (ABS), covering the 

period 2008–2019. The ABS covers approximately two-thirds of UK non-financial 

businesses, including firms’ revenue, employment costs, capital expenditure and 

purchases of intermediates (materials).  

To build the dataset, we implement the lowest local unit6 in the data. We checked 

for duplication and removed 94 units from the sample. Building on Coyle and Mei (2023), 

we focus on the two sectors that made the biggest contribution to the post-2008 

productivity growth slowdown in a sectoral decomposition: manufacturing (nineteen 

SIC2 subsectors with 148,962 observations) and information and communication (six 

SIC2 subsectors with 112,503 observations). This gives us an unbalanced panel with 

261,465 observations from 2008-2019.  

For each firm, there are data on total revenue, total employment, capital stock, and 

purchases of inputs. As all monetary values are in nominal terms, we employ the 2-digit 

industry-level ONS producer output price deflator and input price indices 

(manufacturing PPI and non-manufacturing SPPI) to deflate the nominal values to 2015 

prices (in £ thousand).  

 
6 This follows a strand of literature, including Oulton (1998), Griffith (1999), Harris (2002), Harris and 
Robinson (2005), Harris and Moffat (2015), and Harris and Moffat (2017). 
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We construct firm-level capital stocks using the Perpetual Inventory Method 

(PIM). One approach to identifying the initial level of capital stock for each firm is to use 

an estimate for total capital stock in the initial year, and allocate it according to firm-level 

revenue shares. However, this approach is problematic in our application because our 

dependent variable is a measure of firm-level revenue (Haskel and Martin, 2002; Harris 

and Moffat, 2017). We instead initialise the capital stock using the assumption that 

observed firm investment (measured net of disposals) is growing at the same rate prior 

to the appearance of a firm on our sample as we observe it to grow during the period it is 

observed in the sample. The initial capital stock for firm 𝑖 in industry 𝑗, 𝐾𝑖𝑗0, is then a 

depreciation-rate adjusted sum of all prior investments, where 𝐼𝑖𝑗0 is the (net) 

investment level of firm 𝑖 in the first year, the firm appears in the sample. The initial 

capital stock is then given by the infinite series:   

 

 
𝐾𝑖𝑗,0 =

𝐼𝑖𝑗0

(1 + �̅�𝑖𝑗 + 𝛿𝑗)
+

𝐼𝑖𝑗0

(1 + �̅�𝑖𝑗 + 𝛿𝑗)
2 +

𝐼𝑖𝑗0

(1 + �̅�𝑖𝑗 + 𝛿𝑗)
3 + .  .  ., (7) 

 

where �̅�𝑖𝑗 is the firm-specific average growth rate of investment observed in the data, 𝛿𝑗  

is the industry-specific deprecation rate and �̅�𝑖𝑗 × 𝛿 is assumed to be a very small number 

and is ignored.7 Multiplying both sides of the equation by 1 (1 + �̅�𝑖𝑗 + 𝛿𝑗)⁄  and 

subtracting the resulting equation from (1), we obtain:  

 

 
𝐾𝑖𝑗0 =

𝐼0

�̅�𝑖𝑗 + 𝛿𝑗
. (8) 

 

To estimate the capital stock for subsequent periods, we use the difference equation 

(consistent with (1)): 

 

 
7 Although this approach assumes that the firm exists in perpetuity, the effects of historically distant 
investments have negligible effects on the estimate of the initial capital stocks due to the growth rate and 
depreciation assumptions.  
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 𝐾𝑖𝑗(𝑡+1) = 𝐾𝑖𝑗𝑡(1 − 𝛿𝑗) + 𝐼𝑖𝑗𝑡. (9) 

 

The industry-specific value of 𝛿𝑗  is obtained from EU-KLEMS.8 To obtain an estimate of 

�̅�𝑖𝑗 used in the calculation of the initial capital stock for a given firm we use the first and 

last investment levels observed in the sample, which we label 𝐼𝑖𝑗0 and 𝐼𝑖𝑗𝑑  respectively, 

where the number of periods between the first and last observation is 𝜏𝑖𝑗. The average 

growth rate is then calculated as:  

 

 
�̅�𝑖𝑗 =

𝑙𝑛𝐼𝑖𝑗𝑑 − 𝑙𝑛𝐼𝑖𝑗0

𝜏𝑖𝑗
. (10) 

 

5. Results 

 

5.1 Baseline results 

 

Table 1a shows the results from our structural model estimating the baseline revenue 

function for 2-digit manufacturing industries; Table 1b shows the corresponding results 

for 2-digit ICT industries. Column (1) records the coefficient on the deflated industry 

revenue variable, where the inverse of the coefficient provides an estimate of the 

demand-side elasticity of substitution in the industry. The unweighted average implied 

elasticity of substitution is 10.4 in manufacturing and 19.4 in ICT. Columns (2) to (4) 

record the estimates of the revenue elasticity with respect to each input. Columns (5) to 

(7) then record the implied output elasticities with respect to these inputs, where the 

output elasticities are inferred given the estimate of the elasticity of substitution derived 

from Column (1). The final column shows the implied estimate of the returns-to-scale. 

Overall, the baseline revenue function appears to produce sensible estimates of the 

output elasticities, with the returns-to-scale close to 1 for most industries, and textiles 

 
8 We implement depreciation rates provided by the EU KLEMS database (from the additional variables 
column): http://www.euklems.net/. 

http://www.euklems.net/
http://www.euklems.net/
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showing the strongest evidence of increasing-returns-to-scale. The unweighted average 

of returns-to-scale parameters is 1.01 for manufacturing and 0.90 for ICT.  

Obtaining realistic estimates of output elasticities with respect to capital is often 

challenging in production function estimation. For manufacturing, the unweighted 

average of output elasticities with respect to capital is 0.17, which compares with 0.48 for 

labour and 0.31 for materials. The unweighted average output elasticity with respect to 

capital is lower in ICT (0.06), which compares with 0.59 for labour and 0.26 for materials. 

Overall, the relatively reasonable output elasticities for capital – especially for 

manufacturing – lead us to favour the direct structural estimation method rather than the 

cost-shares method in making our choice of baseline; these latter estimates are reported 

below.  

 Figures 1a and 1b show the evolution of the revenue-share weighted TFPQ* index 

at the sectoral level, where the index is set equal to 1 in 2008. The proportional change in 

the index relative to 2008 for each year can then be easily read from the figure.  The index 

shows contrasting evolutions for manufacturing and ICT, with a cumulative fall of 

approximately 12 percent for manufacturing and a rise of approximately 9 percent for 

ICT.  

As described in Section 3, we decompose the overall index into the within-firm 

effect and a broad reallocation effect. The most striking finding is the fall in the within-

firm measure of TFPQ* between 2008 and 2019 for both manufacturing (-13 percent) and 

ICT (-11 percent). The two sectors show opposing trends for the reallocation term, with 

an adverse reallocation effect further worsening the aggregate measure of TFPQ* for 

manufacturing, but a positive reallocation effect more than outweighing the adverse 

within-firm effect for ICT.  

 Figure 2 compares the distributions of estimated log TFPQ* for the firms in the 

sample in the first year (2008) and the last year (2019). There is evidence of a leftward 

shift in the distribution for manufacturing and a rightward shift for ICT.  

Figure 3 provides further evidence on the shift in the distribution by looking at 

different deciles of the TFPQ* distribution, where the deciles are identified in terms of 

cumulative market share. To construct the deciles, we first order the firms in a sector in 

terms of lowest to highest measured TFPQ* and record their market shares. For the first 
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decile, we then identify the firms in the ranking that have a cumulative market share of 

10%, which gives us the cut-off TFPQ* for the decile. We then calculate the revenue-share 

weighted TFPQ* for firms in the decile. This quantity is shown by the height of the first 

bar in Figure 3. We repeat this procedure for the other deciles, where each decile 

represents 10 percent of the total market share by construction. We record the results 

for the first (2008) and last year (2019) years of the sample. In the lower panel, we show 

the log difference in the decile measures between 2018 and 2019. By construction, 1 + 

cumulative log difference is equal to the value of the overall index for 2019 (see Appendix 

3). For manufacturing, the results show a fall in TFPQ* for each decile, with the largest 

falls observed for the bottom and 9th deciles. In contrast, overall the change TFPQ* is 

positive for each decile in ICT, reflecting a positive reallocation effect that outweighs the 

negative within-firm effect.   

To obtain more insight on the negative within-firm effects, Figure 4 examines a 

scatter plot of the growth in firm-level TFPQ* against the lagged firm-level revenue share 

in the index. Note from  Eq (6) that the within-firm aggregate measure is equal to the sum 

of the products of the firm-level TFPQ* growth rates and their lagged revenue shares, so 

the scatter plot is a useful way to examine the elements of this sum. Notably, a large 

fraction of firms experience negative year-on-year growth rates – driving down the 

within-firm index. Moreover, there is evidence for manufacturing that the growth rate 

falls with the firm’s share in aggregate revenue. The combination of these findings 

suggests what we think of as a “convergence to mediocrity” effect in manufacturing, with 

lower revenue-share firms experiencing some catch-up, but to a declining mean level of 

TFPQ*.9 For ICT, there is some evidence that higher revenue share firms experienced 

somewhat higher TFPQ* growth rates, although there is again clear evidence that many 

firms saw their TFPQ* decline over the sample.  

Therefore beyond the puzzle of a slowdown in productivity growth that has been 

the focus of the literature to date, our findings point to an even greater puzzle of declining 

levels of within-firm quality-adjusted TFP in UK manufacturing. We discuss a possible 

explanation for this puzzle in Section 6.  

 
9 However, as our data are at the plant level, care must be taken in inferring that larger revenue share 
enterprises have lower growth rates. A given enterprise might be comprised of multiple plants, each with 
relatively low revenue shares at the industry level. It is possible, then, that a given large enterprise 
comprising of multiple smaller plants exhibits high TFPQ* growth. 
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5.2. Testing and imposing constant-returns to scale (CRS) on the production function 

 

The alternative approach of using cost shares to estimate firm- and time-varying output 

elasticities requires us first to test the appropriateness and implications of imposing CRS 

on our baseline estimation. We denote the returns to scale by 𝛽�̅�, such that: 𝛽�̅� = 𝛽𝑗
𝑙 +

𝛽𝑗
𝑘 + 𝛽𝑗

𝑚, and hence 𝛽𝑗
𝑙 = 𝛽�̅� − 𝛽𝑗

𝑘 − 𝛽𝑗
𝑚. We have constant returns to scale (CRS) when 

𝛽�̅� = 1. We  can conveniently write the coefficient on the labour input variable as: 

 

 (𝜂𝑗 − 1)𝛽𝑗
𝑙

𝜂𝑗
=

𝜂𝑗 − 1

𝜂𝑗
[1 − (1 − 𝛽�̅�) − 𝛽𝑗

𝑘 − 𝛽𝑗
𝑚]            

                                           

= 1 −
1

𝜂𝑗
−

(𝜂𝑗 − 1)

𝜂𝑗
(1 − 𝛽�̅�) −

(𝜂𝑗 − 1)

𝜂𝑗
𝛽𝑗

𝑘 −
(𝜂𝑗 − 1)

𝜂𝑗
𝛽𝑗

𝑚 

(11) 

 

We can therefore distribute the labour term in the firm revenue function to yield a re- 

parameterized revenue function:  

 

 𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 − 𝑙𝑖𝑗𝑡

=
1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡 − 𝑙𝑖𝑗𝑡) −

(𝜂𝑗 − 1)

𝜂𝑗
(1 − 𝛽�̅�)𝑙𝑖𝑗𝑡

+
(𝜂𝑗 − 1)𝛽𝑗

𝑘

𝜂𝑗
(𝑘𝑖𝑗𝑡 − 𝑙𝑖𝑗𝑡) +

(𝜂𝑗 − 1)𝛽𝑗
𝑚

𝜂𝑗
(𝑚𝑖𝑗𝑡 − 𝑙𝑖𝑗𝑡)

+
𝜂𝑗 − 1

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡). 

(12) 

 

Given our assumption that the demand-side elasticity of substitution is strictly greater 

than 1 ( 𝜂𝑗 > 1), a test for CRS is that estimated coefficient on the labour variable is not 

significantly different from zero (i.e., we cannot reject the null that 1 − 𝛽�̅� = 0). This test 
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is performed as a standard t-test on the significance of coefficient on the labour variable 

in (12). The results are shown in Tables 2a and 2b. The assumption of CRS is not rejected 

by the data for most 2-digit industries.  

To impose CRS, we impose the restriction that 1 − 𝛽�̅� = 0 and estimate the 

restricted revenue function: 

 

 𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 − 𝑙𝑖𝑗𝑡

=
1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡 − 𝑙𝑖𝑗𝑡) +

(𝜂𝑗 − 1)𝛽𝑗
𝑘

𝜂𝑗
(𝑘𝑖𝑗𝑡 − 𝑙𝑖𝑗𝑡)

+
(𝜂𝑗 − 1)𝛽𝑗

𝑚

𝜂𝑗
(𝑚𝑖𝑗𝑡 − 𝑙𝑖𝑗𝑡) +

𝜂𝑗 − 1

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡). 

(13) 

 

The results are shown in Tables 3a and 3b and the decomposition of the implied TFPQ* 

index in Figure 5. In Tables 3a and 3b we also show the implied output elasticities, where 

the output elasticity of labour input is inferred as: 𝛽𝑗
𝑙 = 1 − 𝛽𝑗

𝑘 − 𝛽𝑗
𝑚. Overall, the implied 

time path for revenue-shared-weighted TFPQ* index and its components are similar to 

those found under the baseline method without the restriction of CRS, albeit the overall 

fall in TFPQ* is somewhat lower in manufacturing and there is no overall increase in ICT, 

as compared with our baseline results (see Figure 5). Both sectors continue to show 

significant decreases in the within-firm measures.  

 

5.3 Estimation of TFPQ* using the alternative cost-shares approach under CRS  

 

The finding that CRS represents a reasonable restriction for most 2-digit industries 

suggests using the cost-shares method as an alternative approach to estimating the 

output elasticities of the various inputs used in production. As noted in Section 3, an 

advantage of this approach over our baseline is that it allows for firm- and time-specific 

output elasticities, which compares to the non-varying elasticities within an industry that 

are imposed under the baseline method. Under the baseline method, these elasticities are 

inferred from the relevant estimated coefficient in the estimated revenue function and 
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the implied estimate of 𝜂𝑗  from the coefficient on the deflated industry variable. Under 

CRS, the firm- and time-specific output elasticity with respect to a given input can be 

inferred from the input’s share in total firm costs. Importantly, the equivalence of the 

output elasticities and the cost shares under CRS requires only the assumption of cost 

minimisation and is invariant to the assumptions on demand and market structure (see 

Appendix 2).  

In addition to data available in the ABS microdata file, calculating cost shares 

requires data on the user cost of capital. We label this user cost per pound of capital for a 

firm in industry 𝑗 as 𝑃𝑗𝑡
𝑘 . The ONS provides estimates of the total user cost of capital at 

various industry levels of industry disaggregation. To obtain the user cost per £ of capital 

at a particular level of disaggregation, we divide the total user costs by the ONS estimate 

of the total capital stock in the industry at the 2-digit level of disaggregation.10 Both labour 

and material costs are directly obtainable from the ABS data. The output elasticity of a 

given factor input 𝐹, for 𝐹 ∈ (𝐿, 𝐾, 𝑀), is then:  

 

 𝑃𝑗𝑡
𝑓

𝐹𝑖𝑗𝑡

∑ 𝑃𝑗𝑡
𝑓

𝐹𝑖𝑗𝑡𝐹∈(𝐿,𝐾,𝑀)

= 𝑠𝑖𝑗𝑡
𝑓

= 𝛽𝑖𝑗𝑡
𝑓

. (14) 

 

where 𝑃𝑗𝑡
𝑓

 is the price of input 𝐹 in industry 𝑗 at time 𝑡, 𝐹𝑖𝑗𝑡 is the quantity of input 𝐹 used 

by firm 𝑖  in industry 𝑗 at time 𝑡, 𝑠𝑖𝑗𝑡
𝑓

 is the share of the input in the firm’s total cost, and 

𝛽𝑖𝑗𝑡
𝑓

is the implied output elasticity of the input. We record the implied average cost 

share/output elasticities at the 2-digit level in Tables 4a and 4b (Columns (1) to (3)). 

Overall, the implied output elasticities of capital diverge a lot from those implied by 

estimation of the baseline revenue function, both with and without the imposition of CRS. 

In general, the implied capital shares/output elasticities are clustered around 0.02-0.03 

for manufacturing (with an average of 0.023), which is significantly lower than our priors 

and generally lower than inferred from the baseline estimated revenue function. In 

contrast, the estimated capital shares are significantly higher in ICT, with an average of 

 
10 The ONS capital services estimates can be accessed here: 
https://www.ons.gov.uk/economy/economicoutputandproductivity/output/datasets/capitalservicesesti
mates. We apply the user costs data from lines 15 and 19 on the content page. 

https://www.ons.gov.uk/economy/economicoutputandproductivity/output/datasets/capitalservicesestimates
https://www.ons.gov.uk/economy/economicoutputandproductivity/output/datasets/capitalservicesestimates
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0.380 – which is much higher than average of 0.06 that we found under our baseline 

method.  

 To produce estimates of TFPQ* under the alternative cost-shares approach, the 

next step is to re-estimate the revenue function with the output elasticities given by the 

cost shares. The estimating equation then becomes:  

 

 
𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 =

1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡) +

𝜂𝑗 − 1

𝜂𝑗
(𝛽𝑖𝑗𝑡

𝑙 𝑙𝑖𝑗𝑡) +
𝜂𝑗 − 1

𝜂𝑗
(𝛽𝑖𝑗𝑡

𝑘 𝑘𝑖𝑗𝑡)

+
𝜂𝑗 − 1

𝜂𝑗
(𝛽𝑖𝑗𝑡

𝑚 𝑚𝑖𝑗𝑡) +
𝜂𝑗 − 1

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡), 

(15) 

 

where the terms in brackets –i.e., the products of the output elasticities and the log of  the 

input variables – are the new explanatory variables and the final term is the residual of 

the revenue function. An obvious problem with directly estimating this equation is that 

𝜂𝑗  is over-identified, with potentially four separate estimates if no restrictions are 

imposed. However, we can impose the restriction implied by the theory that the values of 

𝜂𝑗  inferred from the four explanatory variables are all equal by subtracting 𝑟𝑗𝑡 − 𝑝𝑗𝑡 from 

both sides of (15). After some cancellation and rearrangement, we obtain the required 

restricted revenue function:  

 

 
𝑟𝑖𝑗𝑡 − 𝑟𝑗𝑡 =

𝜂
𝑗

− 1

𝜂
𝑗

(𝛽𝑖𝑗𝑡
𝑙 𝑙𝑖𝑗𝑡 + 𝛽𝑖𝑗𝑡

𝑘 𝑘𝑖𝑗𝑡 + 𝛽𝑖𝑗𝑡
𝑚 𝑚𝑖𝑗𝑡 − (𝑟𝑗𝑡 − 𝑝𝑗𝑡))

+
𝜂

𝑗
− 1

𝜂
𝑗

(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡) 

(16) 

 

As before, following estimation of (16), our estimates of the firm- and time-specific TFPQ* 

values are then obtained from the residuals and the inferred industry-specific value of 𝜂𝑗 .  

 Tables 4a and 4b also record the estimated values of (𝜂𝑗 − 1) 𝜂𝑗⁄  and the 

consequent implied values of 𝜂𝑗  for each 2-digit industry in manufacturing and ICT. There 

is a wide range in the estimated demand-side elasticities of substitution across industries. 
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For manufacturing, these estimates range from a low of 3.1 in Paper Products (SIC17) to 

a higher of 40.9 in Other Transport Equipment (SIC30). For ICT, the range of estimates is 

lower, with a low of 3.7 in Publishing and Broadcasting (SIC60) to a high of 10.2 in 

Publishing Activities (SIC58).  

Figure 7 shows the decomposition of the revenue-weighted index of TFPQ* for the 

two sectors. These alternative estimates also show declines in the within-firm index over 

the the sample of 18 percent in manufacturing and 16 percent in ICT – which are even 

higher than we find under our baseline method.  

However, a more notable difference between these alternative estimates and our 

baseline estimates is seen for the reallocation effect, which is now positive over the 

sample period for manufacturing. As before, the reallocation effect is positive for ICT. This 

suggests that the estimation of the distribution of TFPQ* is quite sensitive to the method 

used. A comparison of Figures 2 and 7 for the start and end years of our sample confirms 

this. Figure 8 repeats our decile analysis, which again shows evidence of falling dispersion 

across all deciles for manufacturing, but a more mixed picture across the deciles in ICT.  

Repeating the scatter-plot analysis of the relationship between the firm-level 

growth rate of estimated TFPQ* lagged sectoral revenue shares (Figure 9), we again find 

evidence that a large majority of firms in both sectors experienced negative year-on-year 

growth rates, with the largest revenue-share firms in manufacturing appearing, as with 

the baseline method, to experience that largest deteriorations in their measured TFPQ*. 

Finally, given the differences in the implied TFPQ* distributions across the two 

methods, we attempt to gain more insight into these differences using Figure 10 showing 

a scatter plot of the two measures of log TFPQ* across the entire sample, where each 

measure is first normalised by the revenue-share weighted mean TFPQ* in the sample. 

The correlation coefficient between the measures is 0.94 for manufacturing and 0.96 for 

ICT, which suggests the measures produce reasonably similar although not identical 

results, but with some notable outliers (especially for manufacturing). Overall, the figure 

reveals the differences between the methods are more pronounced for manufacturing 

than ICT. The sensitivity of the implied distributions to the precise assumptions made in 

the calculation of a measure indicates that we need to be cautious in drawing strong 

conclusions from any specific measure. Nevertheless, the finding of a significant fall in the 
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within-firm measure of the level of TFPQ* in both manufacturing and ICT appears to be 

robust across methods. We next turn to a possible explanation for this striking – but 

puzzling – finding.    

 

6. What explains the puzzling fall in measured within-firm TFPQ*? 

 

The title of our paper refers to new measures and new puzzles. As the phrase is typically 

used, the “productivity puzzle” refers to the disappointing productivity growth 

performance of advanced economies.  These economies have also seen deterioration in 

other aggregate variables, such as the average markup, the labour share and business 

dynamism – effects that have previously been associated with increasing firm 

heterogeneity (Elsby et al., 2013; Karabarbounis and Neiman, 2014; De Loecker and 

Eeckhout, 2018; Autor et al., 2020; De Loecker et al., 2020, Decker et al, 2020; and Diez et 

al., 2022). As noted in the introduction, the “productivity puzzle” has been particularly 

pronounced for the UK since the financial crisis (for recent discussions see De Loecker et 

al., 2022; Van Reenen and Yang, 2023; and Goodridge and Haskel, 2023). 

We have provided new measures of firm-level TFPQ* that show, on average, a 

decline in the level of within-firm TFP for UK manufacturing. Although the slower growth 

rate of TFP in the UK since the financial crisis has been well-documented, such 

pronounced falls in its level are even more puzzling. On its face, this suggests outright 

falls in the quality of products produced by UK firms or cost-increasing technological 

regress, both of which seem implausible.  

A possible explanation for this new puzzle stems from the closed economy nature 

of the model we use to derive the revenue function that we apply to the UK micro data. 

Consider instead a global economy version of the model in the spirit of Krugman (1980), 

where the relevant manufacturing index includes all firms operating in the global market, 

and we abstract from transportation costs. We continue to assume that heterogeneous 

firms compete with differentiated products with an elasticity of substitution in demand 

equal to 𝜂𝑗 . However, we assume that the quality-adjusted price index used in the 

estimation is (as in our application) specific to UK firms. Moreover, assume that the 
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relationship between the true global price index, 𝑃𝑗𝑡
∗ , and the applied domestic price 

index, 𝑃𝑗𝑡 , is given by:  

 

 𝑃𝑗𝑡
∗ = 𝐵𝑗𝑡𝑃𝑗𝑡  (17) 

 

where 𝐵𝑗𝑡 can be interpreted as the bias in using the domestic price index in place of the 

true global price index. All else equal, relative improvements in the quality of foreign 

products in the index will lower the value of 𝐵𝑗𝑡 (i.e., the true global price index is lower 

for the given value of the domestic price index).   

A second potential source of bias in our country-specific estimated equation 

enters through the use of domestic industry revenue rather than global industry revenue 

in our estimated revenue function. Letting 𝑅𝑗𝑡
∗  represent global industry revenue, 𝑅𝑗𝑡  

represent domestic industry revenue, and 𝑆𝑗𝑡 the share of domestic industry revenue in 

global industry revenue, we have: 

 

 
𝑅𝑗𝑡

∗ =
𝑅𝑗𝑡

𝑆𝑗𝑡
 

(18) 

 

If the correct deflated revenue function includes the global price index and global 

industry revenue, the revenue function we use for the estimation can be seen to take the 

form: 

 

 
𝑅𝑖𝑗𝑡

𝐵𝑗𝑡𝑃𝑗𝑡
= (𝛬𝑖𝑗𝑡𝛺𝑖𝑗𝑡)

𝜂𝑗−1

𝜂𝑗 (
𝑅𝑗𝑡

𝑆𝑗𝑡𝐵𝑗𝑡𝑃𝑗𝑡
)

1
𝜂𝑗

𝐿
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑙

𝐾
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑘

𝑀
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑚

. (19) 

 

Writing in logs and rearranging, we can then write the revenue function as:  
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𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 =

1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡) +

(𝜂𝑗 − 1)𝛽𝑗
𝑙

𝜂𝑗
𝑙𝑖𝑗𝑡 +

(𝜂𝑗 − 1)𝛽𝑗
𝑘

𝜂𝑗
𝑘𝑖𝑗𝑡

+
(𝜂𝑗 − 1)𝛽𝑗

𝑚

𝜂𝑗
𝑚𝑖𝑡 + [

(𝜂𝑗 − 1)

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡+ 𝑏𝑗𝑡) −

1

𝜂𝑗
𝑠𝑗𝑡]. 

(20) 

 

where 𝑏𝑗𝑡 = 𝑙𝑛𝐵𝑗𝑡  and 𝑠𝑗𝑡 = 𝑙𝑛𝑆𝑗𝑡. The term in square brackets is the residual of the 

closed-economy revenue function that is used to infer log TFPQ*. Given the relatively high 

elasticity of substitution the aggregated domestic revenue share effect should be small.  

However, a downward trend in 𝑏𝑗𝑡 , due to some combination of the deteriorating relative 

quality of UK products and the deteriorating relative technical efficiency of UK firms 

competing on international markets, could show up as a significantly declining trend in 

the log of measured TFPQ*. Both effects would lead to a decline in the true global price 

index relative to the domestic price index, reducing the demand for UK products and 

consequently firm revenues. A full investigation of this explanation for the puzzle of 

declining within-firm TFPQ* would require a consideration of non-UK firms in addition to 

domestic firms, which is beyond the scope of the present paper. However, we believe that 

consideration of such relative quality/technical efficiency effects in the context of 

international competition provides the most promising avenue for explaining the 

puzzling falls in measured within-firm TFPQ* in manufacturing that we document in this 

paper.  

 

7. Conclusion  

 

This paper has developed a framework that allows estimation of quality-adjusted TFP 

(TFPQ*) from firm-level revenue and input expenditure data,  given an estimate of the 

demand-side elasticity of substitution. We derive an estimate of this elasticity from the 

coefficient on a deflated industry revenue variable in the revenue function. We address 

endogeneity in the firm-level revenue function by using the Blundell-Bond System GMM 

to obtain consistent estimates of the relevant elasticities. This estimate estimated 

revenue function can then be used to derive measures of TFPQ*, even though separate 

data on firm-level prices and quantities are unavailable. By making an additional 
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assumption of constant returns to scale, we produce estimates at firm-level of the output 

elasticities, and use this cost-shares method to provide alternative measures of TFPQ*. 

This second approach confirms the robustness of our findings. 

These findings are striking. For manufacturing, we find that annual firm-level 

TFPQ* fell for a majority of firms, including a 13 to 18 percent decline in the within-firm 

measure of TFPQ* at the industry level between 2008 and 2019; for ICT, we find a decline 

of between 11 and 16 percent. These falls in within-firm TFPQ* are the main finding in 

the paper, particularly given the robustness of the results across the two alternative 

methods of measuring TFPQ*. These findings extend the UK productivity puzzle.  

The reason for the within-firm declines is beyond the scope of the present analysis 

and represents an important area for future research. We conjecture that this trend 

reflects relative product-quality and technical efficiency effects in international 

competition, rather than outright quality/technological regression, but testing this 

potential cause of within-firm declines in productivity in such key sectors of the UK 

economy requires extension to an open economy framework.   
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Appendix 1. Derivation of the revenue function 

 

1. Consumer preferences  

 

Consumers are assumed to engage in two-stage budgeting whereby they first allocate 

expenditure shares to specified expenditure aggregates and then decide on their choices 

of the goods within those aggregates. More specifically, consumers are assumed to have 

a CRS Cobb-Douglas utility function over CES indexes, 𝑍𝑗𝑡  of the goods produced by 𝐽 

industries:   

 

 

𝑈𝑡 = ∏ 𝑍
𝑗𝑡

𝛼𝑗

𝐽

𝑗=1

,        where 𝛼𝐽 = 1 − ∑ 𝛼𝑗 .

𝐽−1

𝑗=1

 (A1.1) 

    

As the nested utility function is homothetic, we can sum (A1.1) over consumers to get the 

aggregate output index, 𝑌𝑡, and can define the aggregate price index:  

 

 

∑ 𝑃𝑗𝑡𝑍𝑗𝑡 =

𝐽

𝑗=1

𝑃𝑡𝑌𝑡, (A1.2) 

 

where the price of a unit of the 𝑍𝑗𝑡  index is 𝑃𝑗𝑡 . Maximising their utility, the representative 

consumer allocates their nominal income over the two aggregates, to yield the 

expenditure shares: 

 

 𝑃𝑗𝑡𝑍𝑗𝑡 =  𝛼𝑗𝑃𝑡𝑌𝑡  (A1.3) 

 

where 𝑃𝑡𝑌𝑡  is nominal income.  
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Aggregate industry 𝑗 consumption/output is a (homothetic) CES function of the 

quality-adjusted goods produced by the 𝑁 firms in the industry: 

 

 

𝑍𝑗𝑡 = [∑(𝛬𝑖𝑗𝑡𝑄𝑖𝑗𝑡)

𝜂𝑗−1

𝜂𝑗

𝑁

𝑖=1

]

𝜂𝑗−1

𝜂𝑗

, (A1.4) 

                                                     

where 𝛬𝑖𝑗𝑡 is a measure of the quality of the good produced by firm 𝑖 in industry 𝑗 at time 

𝑡, 𝑄𝑖𝑗𝑡 is the volume output produced by firm 𝑖 in industry 𝑗 at time 𝑡 and 𝜂𝑗 is the elasticity 

of substitution between the 𝑁 goods in the index for industry 𝑗. We thus incorporate both 

a representative consumer with a preference for variety and vertical differentiation 

based on quality between products that enter into the industry output index. We denote 

quality-adjusted output as 𝑄𝑖𝑗𝑡
∗ = Λ𝑖𝑗𝑡𝑄𝑖𝑗𝑡.11 We assume that 𝜂𝑗 > 1 and that each firm 

produces a single product variety.  

 

2. Firm production functions 

 

We next derive the demand curve facing an individual firm 𝑖 in industry 𝑗 at time 

𝑡 producing a good with the quality level Λ𝑖𝑗𝑡. Given the allocation of income to 

manufacturing goods, we can use standard results in the literature to derive the demand 

function facing a firm with quality level 𝛬𝑖𝑗𝑡 as: 

 

 
𝑄𝑖𝑗𝑡 = 𝛬

𝑖𝑗𝑡

𝜂𝑗−1
(

𝑃𝑖𝑗𝑡

𝑃𝑗𝑡
)

−𝜂𝑗

𝑍𝑗𝑡 = 𝛬
𝑖𝑗𝑡

𝜂𝑗−1
(

𝑃𝑖𝑗𝑡

𝑃𝑗𝑡
)

−𝜂𝑗 𝛼𝑗𝑃𝑡𝑌𝑡

𝑃𝑗𝑡
, (A1.5) 

 

where the price index for the industry, 𝑃𝑗𝑡 , is given by: 

 
11 Quality change thus enters the utility function in a “better is more” form (for a related analysis in the 
context of combining different vintages of capital in a capital aggregate, see Fisher (1965) and Hulten, 
(1992)).   
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𝑃𝑗𝑡 = [∑ (
𝑃𝑖𝑗𝑡

𝛬𝑖𝑗𝑡
)

𝜂𝑗−1𝑁

𝑖=1
]

1
𝜂𝑗−1

 

(A1.6) 

 

From (A1.6), we can see that quality improvements are reflected in a lower 

industry price index. Moreover, the effect of a change in quality on the cost of achieving a 

particular level of 𝑍𝑗𝑡  is equivalent to a price change of equal proportion but opposite in 

sign.  

Turning to the production function for a firm 𝑖 in industry 𝑗 at time 𝑡, we assume 

each firm has the Cobb-Douglas production function: 

 

 
𝑄𝑖𝑗𝑡 = 𝛺𝑖𝑗𝑡𝐿

𝑖𝑗𝑡

𝛽𝑗
𝑙

𝐾
𝑖𝑗𝑡

𝛽𝑗
𝑘

𝑀
𝑖𝑗𝑡

𝛽𝑗
𝑚

, (A1.7) 

 

where 𝛺𝑖𝑗𝑡  is a (firm-specific) measure of Hicks-neutral technical change, 𝐿𝑖𝑗𝑡 is labour, 

𝐾𝑖𝑗𝑡 is fixed capital and 𝑀𝑖𝑗𝑡  is materials. The industry-specific output elasticities for 

labour, capital and materials are given by 𝛽𝑗
𝑙, 𝛽𝑗

𝑘 and 𝛽𝑗
𝑚 respectively.  

 

3. Firm revenue functions 

 

To derive the firm revenue function, we first write the demand function (A1.5) in inverse 

form as: 

 

 
𝑃𝑖𝑗𝑡

𝑃𝑗𝑡
= 𝛬

𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗 𝑄𝑖𝑗𝑡

−
1

𝜂𝑗 (
𝛼 𝑃𝑡𝑌𝑡

𝑃𝑗𝑡
)

1
𝜂𝑗

, (A1.8) 

 

where the quality indicator, 𝛬𝑖𝑗𝑡, is a shift factor for the inverse demand function.  
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Using (A1.2), (A1.7) and (A1.8), total deflated firm revenue is: 

 

 
𝑅𝑖𝑗𝑡

𝑃𝑗𝑡
=

𝑃𝑖𝑗𝑡𝑄𝑖𝑗𝑡

𝑃𝑗𝑡
= (𝛬𝑖𝑗𝑡𝛺𝑖𝑗𝑡)

𝜂𝑗−1

𝜂𝑗 (
𝑅𝑗𝑡

𝑃𝑗𝑡
)

1
𝜂

𝐿
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑙

𝐾
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑘

𝑀
𝑖𝑗𝑡

𝜂𝑗−1

𝜂𝑗
𝛽𝑗

𝑚

 (A1.9) 

 

 

where industry revenue is 𝑅𝑗𝑡=𝑃𝑗𝑡𝑍𝑗𝑡 = 𝛼𝑗  𝑃𝑡𝑌𝑡. 

From (A1.9), total revenue varies with the increased use of factors of production 

for two reasons. First, an increase in the use of a factor of production (say labour) leads 

to an increase in physical output; and second, the firm must lower its price to sell this 

increased level of output given that it faces a downward sloping demand curve. The 

coefficient on each input is the revenue elasticity of the input, ((𝜂
𝑗

− 1) /𝜂𝑗) 𝛽𝑗
𝑓

 for 𝑓 ∈

(𝑙, 𝑘, 𝑚), where the revenue elasticity will be lower than the output elasticity given our 

assumption that 𝜂𝑗 > 1.   

We next define our measure of revenue-based total factor productivity (TFPR).12 

We denote TFPR for firm 𝑖 in period 𝑡 as 𝛹𝑖𝑗𝑡. Analogously with the representation of 

technical progress in a production function, we identify 𝛹𝑖𝑗𝑡 based on a general 

multiplicative form of the revenue function: 

 

 𝑅𝑖𝑗𝑡 = Θ𝑖𝑗𝑡𝐺(𝑅𝑗𝑡 𝑃𝑗𝑡⁄ , 𝐿𝑖𝑗𝑡 , 𝐾𝑖𝑗𝑡, 𝑀𝑖𝑗𝑡). (A1.10) 

 

Given the specific form of the revenue function (A1.9), we can thus identify TFPR as:  

 

 
12 There are several definitions of TFPR in the literature. In the context of a model without quality change, 
Hsieh and Klenow (2009) define TFPR as TFP multiplied by price and show that under certain conditions 
TFPR does not vary with TFP. Blackwood et al. (2021) employ the intuitive approach of identifying TFPR 
as the residual from an estimated revenue function and label this TFPrr (where rr denotes regression 
residual) and where the relevant elasticities used to identify TFPrr are revenue elasticities and not output 
elasticities. We adopt the regression residual approach for measurement of TFPR in this paper.  
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Θ𝑖𝑗𝑡 = (𝛬𝑖𝑗𝑡𝛺𝑖𝑗𝑡)

𝜂𝑗−1

𝜂𝑗 . (A1.11) 

 

Taking natural logs of (A1.9) and rearranging we obtain: 

 

 
𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡 =

1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡) +

(𝜂𝑗 − 1)𝛽𝑗
𝑙

𝜂𝑗
𝑙𝑖𝑗𝑡 +

(𝜂𝑗 − 1)𝛽𝑗
𝑘

𝜂𝑗
𝑘𝑖𝑗𝑡

+
(𝜂𝑗 − 1)𝛽𝑗

𝑚

𝜂𝑗
𝑚𝑖𝑗𝑡 +

(𝜂𝑗 − 1)

𝜂𝑗
(𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡) 

 

(A1.12) 

 

where lower case letters represent the natural log of a variable. A convenient feature of 

(A1.12) is that identification of 𝜂𝑗 is possible from the estimated coefficient on the 

deflated-industry-revenue variable in the estimated firm revenue function (Klette and 

Griliches, 1996). Using this estimate of the elasticity of substitution, the output 

elasticities, 𝛽𝑗
𝑙, 𝛽𝑗

𝑘 and 𝛽𝑗
𝑚, can then be obtained from the estimated coefficients on 𝑙𝑖𝑗𝑡, 

𝑘𝑖𝑗𝑡 and 𝑚𝑖𝑗𝑡 respectively.  

The natural log of TFPR is identified as: 

 

 𝜃𝑖𝑗𝑡 = 𝑟𝑖𝑗𝑡 − 𝑝𝑗𝑡

− (
1

𝜂𝑗
(𝑟𝑗𝑡 − 𝑝𝑗𝑡) +

(𝜂𝑗 − 1)𝛽𝑗
𝑙

𝜂𝑗
𝑙𝑖𝑗𝑡 +

(𝜂𝑗 − 1)𝛽𝑗
𝑘

𝜂𝑗
𝑘𝑖𝑗𝑡

+
(𝜂𝑗 − 1)𝛽𝑗

𝑚

𝜂𝑗
𝑚𝑖𝑗𝑡) 

(A1.13) 

 

Finally, the natural log of TFPQ* (which includes both product quality and technical 

efficiency components) is:  

 

 𝜆𝑖𝑗𝑡 + 𝜔𝑖𝑗𝑡 =
𝜂𝑗

𝜂𝑗 − 1
𝜃𝑖𝑗𝑡 . (A1.14) 
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Given an estimate of 𝜂𝑗 , it is therefore possible to identify both TFPR and TFPQ* from 

revenue and input data given our structural assumptions. It is also possible to obtain 

estimates of the relevant output elasticities for the different inputs from the estimates of 

the revenue elasticities of those estimates and an estimate of the elasticity of substitution. 

From (A1.13) and (A1.14), note that the estimated value of TFPR will be close to the 

estimated value of TFPQ* when the estimated elasticity of substitution, 𝜂𝑗 , is high. As we 

typically find a high estimate of 𝜂𝑗  in our empirical application, we report only the results 

for TFPQ* in our main analysis. 
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Appendix 2. Equivalence of output elasticities and cost shares under CRS 

 

In this Appendix, we show how output elasticities can be inferred from cost shares under 

CRS. Importantly, this depends only on cost minimisation, and so is independent of the 

specifications of demand and market structure.  

We first specify the Lagrangian for the cost-minimisation problem:  

 

 ℒ𝑖𝑗𝑡 = 𝑃𝑗𝑡
𝑙 𝐿𝑖𝑗𝑡 + 𝑃𝑗𝑡

𝑘𝐾𝑖𝑗𝑡 + 𝑃𝑗𝑡
𝑚𝑀𝑖𝑗𝑡 + 𝜒𝑖𝑗𝑡 (�̅�𝑖𝑗𝑡 − 𝐹(𝐿𝑖𝑗𝑡, 𝐾𝑖𝑗𝑡, 𝑀𝑖𝑗𝑡)), (A2.1) 

 

where 𝑃𝑗𝑡
𝑙 , 𝑃𝑗𝑡

𝑘  and 𝑃𝑗𝑡
𝑚 are the prices of labour, capital and materials and 𝜒𝑖𝑗𝑡 is the 

Lagrangian multiplier, which is also equal to marginal cost. Importantly, under CRS 

marginal cost is equal to average cost.  

The first-order condition with respect to an input 𝐹𝑖𝑗𝑡, where 𝐹𝑖𝑗𝑡 ∈

(𝐿𝑖𝑗𝑡, 𝐾𝑖𝑗𝑡, 𝑀𝑖𝑗𝑡), is given by: 

 

 𝜕ℒ𝑖𝑗𝑡

𝜕𝐹𝑖𝑗𝑡
= 𝑃𝑗𝑡

𝑓
− 𝜒𝑖𝑗𝑡 

𝜕𝑄𝑖𝑗𝑡

𝜕𝐹𝑖𝑗𝑡
= 0 

⇒  
𝜕𝑄𝑖𝑗𝑡

𝜕𝐹𝑖𝑗𝑡
=

𝑃𝑗𝑡
𝑓

𝜒𝑖𝑗𝑡 
. 

(A2.2) 

 

Now noting that 𝜒𝑖𝑗𝑡 = 𝑀𝐶𝑖𝑗𝑡 = 𝑇𝐶𝑖𝑗𝑡 𝑄𝑖𝑗𝑡⁄  under CRS, we can rewrite the previous 

equation as: 

 

 𝜕𝑄𝑖𝑗𝑡

𝜕𝐹𝑖𝑗𝑡
=

𝑃𝑗𝑡
𝑓

𝑇𝐶𝑖𝑗𝑡

𝑄𝑖𝑗𝑡

. 
(A2.3) 

 

Finally, multiplying both sides by 𝐹𝑖𝑗𝑡 𝑄𝑖𝑗𝑡⁄ , we obtain:  
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 𝜕𝑄𝑖𝑗𝑡

𝜕𝐹𝑖𝑗𝑡

𝐹𝑖𝑗𝑡

𝑄𝑖𝑗𝑡
=

𝑃𝑗𝑡
𝑓

𝑇𝐶𝑖𝑗𝑡

𝑄𝑖𝑗𝑡

𝐹𝑖𝑗𝑡

𝑄𝑖𝑗𝑡
 

⟹     𝛽𝑖𝑗𝑡
𝑓

=
𝑃𝑗𝑡

𝑓
𝐹𝑖𝑗𝑡

𝑇𝐶𝑖𝑗𝑡
= 𝑠𝑖𝑗𝑡

𝑓
 

(A2.4) 

 

where 𝛽𝑖𝑗𝑡
𝑓

 is the output elasticity of input 𝐹 and 𝑠𝑖𝑗𝑡
𝑓

 is input 𝐹’s share in total cost. Thus, 

under CRS, cost minimisation is sufficient for the inference of output elasticities from the 

relevant input’s share in total cost.  
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Appendix 3. Decomposing the Overall Change in TFPQ* by Decile 

 

We start with the definition of the log of the revenue-share weighted geometric mean of 

TFPQ* used in equation (5): 

 

 

𝑥𝑐𝑡 = ∑ 𝑠𝑖𝑐𝑡𝑥𝑖𝑐𝑡,

𝑁𝑐𝑡

𝑖=1

 A3.1 

 

where there are 𝑁𝑐𝑡 firms in sector 𝑐 at time 𝑡. The change in 𝑥𝑐𝑡 between period 1 and 

period 𝑇 (our measure of the sector-level growth rate between those periods) is then:  

 

 

∆𝑥𝑐𝑇 = ∑ 𝑠𝑖𝑐𝑇𝑥𝑖𝑗𝑇 − ∑ 𝑠𝑖𝑐1𝑥𝑖𝑐1

𝑁𝑗1

𝑖=1

𝑁𝑗𝑇

𝑖=1

. A3.2 

 

For each period, we can rank the firms from lowest to highest TFPQ*. Let firm 𝑖’s rank in 

a given period, 𝑡, be given by 𝑟𝑖𝑐𝑡 where 𝑡 ∈ (1, 𝑇). We denote the log TFPQ* of a firm at 

rank 𝑟𝑖𝑐𝑡 in sector 𝑐 at time 𝑡 as 𝑥𝑟𝑖𝑐𝑡
; and a firm’s share of total sector revenue at rank 𝑟𝑖𝑐𝑡 

as 𝑠𝑟𝑖𝑐𝑡
. 

Reordering the sums in terms of ranks, we can thus rewrite the equation above as:  

 

 

∆𝑥𝑐𝑇 = ∑ 𝑠𝑟𝑖𝑐𝑇
𝑥𝑟𝑖𝑐𝑇

− ∑ 𝑠𝑟𝑖𝑐1
𝑥𝑟𝑖𝑐1

𝑁𝑐1

𝑟𝑖1=1

𝑁𝑐𝑇

𝑟𝑖𝑇=1

 A3.3 

 

For each period we now identify the deciles such that the firms in a decile constitute 10 

percent of total sector revenue. The cut-off rank for a given decile, 𝑑, at time 𝑡 is 𝑟𝑑𝑐𝑡
∗ , 

where 𝑑 = 1, . . . 10. We can thus sort the ranked firms in any given time period so that:  
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∆𝑥𝑐𝑇 = ∑ ( ∑ 𝑠𝑟𝑖𝑐𝑇
𝑥𝑟𝑖𝑐𝑇

 −

𝑟𝑑𝑐𝑇
∗

𝑟𝑖𝑐𝑇=𝑟(𝑑−1)𝑐𝑇
∗ +1

∑ 𝑠𝑟𝑖𝑐1
𝑥𝑟𝑖𝑐1

𝑟𝑑𝑐1
∗

𝑟𝑖𝑐1=𝑟(𝑑−1)𝑐1
∗ +1

)

10

𝑑=1

 A3.4 

 

where we note that 𝑟(𝑑−1)𝑐𝑡
∗ = 0 when 𝑑 = 1. Effectively, we are just sorting the firms into 

deciles, but for a given time period each firm is included somewhere, so the overall 

revenue-weighted geometric mean for a given time period must remain unchanged. Thus 

the change in the revenue-share weighted geometric mean can be written as the sum of 

the respective changes over the 10 deciles, where each decile accounts for 10 percent of 

the total sector revenue by construction.  

 

  



35 
 

References 

Ackerberg, D.A., Caves, K. and Frazer, G., 2015. Identification properties of recent 
production function estimators. Econometrica, 83(6), pp.2411-2451. 

Andrews, D., Criscuolo, C. and Gal, P.N., 2019. The best versus the rest: divergence across 
firms during the global productivity slowdown (No. dp1645). Centre for Economic 
Performance, LSE. 

Atkeson, A. and Burstein, A., 2008. Pricing-to-market, trade costs, and international 
relative prices. American Economic Review, 98(5), pp.1998-2031. 

Autor, D., Dorn, D., Katz, L.F., Patterson, C. and Van Reenen, J., 2020. The fall of the labor 
share and the rise of superstar firms. The Quarterly Journal of Economics, 135(2), pp.645-
709. 

Barnett, A., Broadbent, B., Chiu, A., Franklin, J. and Miller, H., 2014. Impaired capital 
reallocation and productivity. National Institute Economic Review, 228, pp.R35-R48. 

Bertrand, O. and Zitouna, H., 2008. Domestic versus cross-border acquisitions: which 
impact on the target firms’ performance?. Applied economics, 40(17), pp.2221-2238. 

Blackwood, G.J., Foster, L.S., Grim, C.A., Haltiwanger, J. and Wolf, Z., 2021. Macro and micro 
dynamics of productivity: From devilish details to insights. American Economic Journal: 
Macroeconomics, 13(3), pp.142-172. 

Bloom, N. and Van Reenen, J., 2010. Why do management practices differ across firms and 
countries?. Journal of economic perspectives, 24(1), pp.203-224. 

Blundell, R. and Bond, S., 1998. Initial conditions and moment restrictions in dynamic 
panel data models. Journal of econometrics, 87(1), pp.115-143. 

Blundell, R. and Bond, S., 2000. GMM estimation with persistent panel data: an application 
to production functions. Econometric reviews, 19(3), pp.321-340. 

Blundell, R., Crawford, C. and Jin, W., 2014. What can wages and employment tell us about 
the UK's productivity puzzle?. The Economic Journal, 124(576), pp.377-407. 

Bond, S. and Söderbom, M., 2005. Adjustment costs and the identification of Cobb Douglas 
production functions (No. 05/04). IFS Working Papers. 

Bond, S., Hashemi, A., Kaplan, G. and Zoch, P., 2021. Some unpleasant markup arithmetic: 
Production function elasticities and their estimation from production data. Journal of 
Monetary Economics, 121, pp.1-14. 

Bryson, A. and Forth, J. ORCID: 0000-0001-7963-2817 (2016). The UK'sproductivity 
puzzle. In: Askenazy, P., Bellmann, L., Bryson, A. and Moreno Galbis, E. (Eds.), Productivity 
Puzzles Across Europe. (pp. 129-173). Oxford, UK: Oxford University Press. ISBN 
9780198786160 

Coyle, D., Lind, K., Nguyen, D. and Tong, M., 2022. Are digital-using UK firms more 
productive?. Economic Statistics Centre of Excellence Discussion Paper, (2022-06). 

Coyle, D. and Mei, J.C., 2023. Diagnosing the UK productivity slowdown: which sectors 
matter and why?. Economica, 90(359), pp.813-850. 



36 
 

De Loecker, J., 2011. Product differentiation, multiproduct firms, and estimating the 
impact of trade liberalization on productivity. Econometrica, 79(5), pp.1407-1451. 

De Loecker, J. and Warzynski, F., 2012. Markups and firm-level export status. American 
economic review, 102(6), pp.2437-71. 

De Loecker, J. and Goldberg, P.K., 2014. Firm performance in a global market. Annu. Rev. 
Econ., 6(1), pp.201-227. 

De Loecker, J., Goldberg, P.K., Khandelwal, A.K. and Pavcnik, N., 2016. Prices, markups, 
and trade reform. Econometrica, 84(2), pp.445-510. 

De Loecker, J. and Eeckhout, J., 2018. Global market power (No. w24768). National 
Bureau of Economic Research. 

De Loecker, J., Eeckhout, J. and Unger, G., 2020. The rise of market power and the 
macroeconomic implications. The Quarterly Journal of Economics, 135(2), pp.561-644. 

De Loecker, J., 2021. Comment on (Un) pleasant... by Bond et al (2021). Journal of 
Monetary Economics, 121, pp.15-18. 

De Loecker, J. and Syverson, C., 2021. An industrial organization perspective on 
productivity. In Handbook of industrial organization (Vol. 4, No. 1, pp. 141-223). Elsevier. 

De Loecker, J., Obermeir, T. and Van Reenan, J., 2022. Firms and inequalities-Jan De 
Loecker Tim Obermeier John Van Reenen. 

Decker, R.A., Haltiwanger, J., Jarmin, R.S. and Miranda, J., 2020. Changing business 
dynamism and productivity: Shocks versus responsiveness. American Economic Review, 
110(12), pp.3952-3990. 

Diez, F., Diez, M.F.J., Malacrino, M.D. and Shibata, M.I., 2022. The Divergent Dynamics of 
Labor Market Power in Europe. International Monetary Fund. 

Elsby, M.W., Hobijn, B. and Şahin, A., 2013. The decline of the US labor share. Brookings 
papers on economic activity, 2013(2), pp.1-63. 

Fisher, F.M., 1965. Embodied technical change and the existence of an aggregate capital 
stock. The Review of Economic Studies, 32(4), pp.263-288. 

Forlani, E., Martin, R., Mion, G. and Muûls, M., 2022. Unraveling firms: Demand, 
productivity and markups heterogeneity. 

Fernald, J. and Inklaar, R., 2022. The UK Productivity “Puzzle” in an International 
Comparative Perspective. Federal Reserve Bank of San Francisco. 

Foster, L., Haltiwanger, J.C. and Krizan, C.J., 2001. Aggregate productivity growth: Lessons 
from microeconomic evidence. In New developments in productivity analysis (pp. 303-
372). University of Chicago Press. 

Foster, L., Haltiwanger, J. and Syverson, C., 2008. Reallocation, firm turnover, and 
efficiency: Selection on productivity or profitability?. American Economic Review, 98(1), 
pp.394-425. 

Foster, L., Grim, C., Haltiwanger, J. and Wolf, Z., 2016. Firm-level dispersion in 
productivity: is the devil in the details?. American Economic Review, 106(5), pp.95-98. 



37 
 

Foster, L.S., Haltiwanger, J.C. and Tuttle, C., 2022. Rising Markups or Changing 
Technology? (No. w30491). National Bureau of Economic Research. 

Goldin, I., Koutroumpis, P., Lafond, F. and Winkler, J., 2024. Why is productivity slowing 
down?. Journal of Economic Literature, 62(1), pp.196-268. 

Goodridge, P., Haskel, J. and Wallis, G., 2013. Can intangible investment explain the UK 
productivity puzzle?. National Institute Economic Review, 224(1), pp.R48-R58. 

Goodridge, P., Haskel, J. and Wallis, G., 2018. Accounting for the UK productivity puzzle: a 
decomposition and predictions. Economica, 85(339), pp.581-605. 

Goodridge, P. and Haskel, J., 2023. Accounting for the slowdown in UK innovation and 
productivity. Economica, 90(359), pp.780-812. 

Griffith, R., 1999. Using the ARD establishment level data to look at foreign ownership and 
productivity in the United Kingdom. The Economic Journal, 109(456), pp.416-442. 

Griliches, Z. and Mairesse, J., 1995. Production functions: the search for identification. 
NBER Working Paper. 

Haltiwanger, J., 1997. Measuring and analyzing aggregate fluctuations: the importance of 
building from microeconomic evidence. Federal Reserve Bank of St. Louis Review, (May), 
pp.55-78. 

Haltiwanger, J., 2006. Firm Dynamics, Productivity, and Job Growth. Employment and 
Shared Growth, p.91. 

Haltiwanger, J., 2016. Firm dynamics and productivity: tfpq, tfpr, and demand-side 
factors. Economía, 17(1), pp.3-26. 

Harris, R., 2002. Foreign ownership and productivity in the United Kingdom—some 
issues when using the ARD establishment level data. Scottish Journal of Political 
Economy, 49(3), pp.318-335. 

Harris, R. and Robinson, C., 2005. Impact of Regional Selective Assistance on sources of 
productivity growth: Plant‐level evidence from UK manufacturing, 1990–98. Regional 
Studies, 39(6), pp.751-765. 

Harris, R. and Moffat, J., 2015. Total factor productivity growth in local enterprise 
partnership regions in Britain, 1997–2008. Regional Studies, 49(6), pp.1019-1041. 

Harris, R. and Moffat, J., 2017. The UK productivity puzzle, 2008–2012: evidence using 
plant-level estimates of total factor productivity. Oxford Economic Papers, 69(3), pp.529-
549. 

Haskel, J. and Martin, R., 2002. The UK manufacturing productivity spread. Ceriba 
Working Paper. 

Hulten, C.R., 1992. Growth accounting when technical change is embodied in capital. 

Hsieh, C.T. and Klenow, P.J., 2009. Misallocation and manufacturing TFP in China and 
India. The Quarterly journal of economics, 124(4), pp.1403-1448. 

Karabarbounis, L. and Neiman, B., 2014. The global decline of the labor share. The 
Quarterly journal of economics, 129(1), pp.61-103. 



38 
 

Klette, T.J., 1999. Market power, scale economies and productivity: estimates from a panel 
of establishment data. The Journal of Industrial Economics, 47(4), pp.451-476. 

Klette, T.J. and Griliches, Z., 1996. The inconsistency of common scale estimators when 
output prices are unobserved and endogenous. Journal of applied econometrics, 11(4), 
pp.343-361. 

Jacob, N. and Mion, G., 2022. The UK's great demand and supply recession. Oxford Bulletin 
of Economics and Statistics (forthcoming). 

Levinsohn, J. and Petrin, A., 2003. Estimating production functions using inputs to control 
for unobservables. The review of economic studies, 70(2), pp.317-341. 

Melitz, M.J., 2000. International trade and industry productivity dynamics with 
heterogeneous producers. University of Michigan. 

Melitz, M. and Ottaviano, G.I., 2001. Estimating firm-level productivity in differentiated 
product industries. Mimeo, Harvard University. 

Nickell, S., 1981. Biases in dynamic models with fixed effects. Econometrica: Journal of 
the econometric society, pp.1417-1426. 

Olley, S. and Pakes, A., 1992. The dynamics of productivity in the telecommunications 
equipment industry. 

Oulton, N., 1998. Investment, capital and foreign ownership in UK manufacturing (Vol. 
141). London: National Institute of Economic and Social Research. 

Pessoa, J.P. and Van Reenen, J., 2014. The UK productivity and jobs puzzle: does the 
answer lie in wage flexibility?. The Economic Journal, 124(576), pp.433-452. 

Van Reenen, J. and Yang, X., 2023. Cracking the Productivity Code: An international 
comparison of UK productivity. London School of Economics and Political Science. 

Syverson, C., 2019. Macroeconomics and market power: Context, implications, and open 
questions. Journal of Economic Perspectives, 33(3), pp.23-43.



39 
 

All Tables and Graphs 

Table 1a. Estimation of Baseline Revenue Function for 2-Digit Manufacturing Industries 
 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑙 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑚 𝛽𝑗
𝑙 𝛽𝑗

𝑘 𝛽𝑗
𝑚 �̅�𝑗  

 (1) (2) (3) (4) (5) (6) (7) (8) 
SIC10 0.10*** 0.18*** 0.21*** 0.45*** 0.20 0.23 0.51 0.94 
(Food Products) (0.01) (0.05) (0.04) (0.05)     
SIC11 0.04** 0.39*** 0.29*** 0.31*** 0.41 0.30 0.33 1.04 
(Beverages) (0.02) (0.10) (0.08) (0.04)     
SIC13 0.07 0.47* 0.52* 0.24 0.52 0.57 0.26 1.35 
(Textiles) (0.04) (0.24) (0.21) (0.15)     
SIC16 0.08 0.45*** 0.13 0.24 0.50 0.14 0.26 0.90 
(Wood Products) (0.09) (0.13) (0.12) (0.36)     
SIC17 0.09 0.65*** 0.25* 0.04 0.72 0.28 0.05 1.05 
(Paper Products) (0.07) (0.18) (0.14) (0.12)     
SIC18 0.07*** 0.66*** 0.07 0.13* 0.71 0.08 0.14 0.93 
(Printing & Reproduction) (0.02) (0.08) (0.04) (0.08)     
SIC20 0.11*** 0.07** 0.29*** 0.41*** 0.08 0.32 0.46 0.86 
(Chemicals) (0.01) (0.03) (0.05) (0.09)     
SIC22 0.03*** 0.31*** 0.05 0.73*** 0.32 0.05 0.76 1.13 
(Rubber & Plastic) (0.007) (0.11) (0.03) (0.09)     
SIC23 0.06 0.50*** 0.01*** 0.52*** 0.53 0.02 0.56 1.11 
(Non-Metallic Mineral) (0.05) (0.03) (0.008) (0.03)     
SIC24 0.07** 0.29* 0.29*** 0.35*** 0.31 0.31 0.38 1.00 
(Basic Metals) (0.03) (0.15) (0.12) (0.14)     
SIC25 0.08*** 0.56*** 0.03 0.35*** 0.61 0.04 0.38 1.03 
(Fabricated Metal) (0.01) (0.09) (0.02) (0.07)     
SIC26 0.11*** 0.46*** 0.16*** 0.19*** 0.52 0.18 0.12 0.82 
(Comp., Elec. & Optical) (0.03) (0.12) (0.03) (0.08)     
SIC27 0.09*** 0.44*** 0.10 0.34*** 0.49 0.11 0.37 0.97 
(Electrical Equipment) (0.02) (0.13) (0.07) (0.08)     
SIC28 0.09*** 0.53*** 0.10*** 0.30*** 0.59 0.11 0.33 1.03 
(Machinery and Eqp. n.e.c.) (0.01) (0.06) (0.03) (0.05)     
SIC29 0.02** 0.41*** 0.06** 0.53*** 0.42 0.06 0.54 1.02 
(Motor Vehicles) (0.01) (0.06) (0.03) (0.07)     
SIC30 0.04*** 0.58*** 0.04 0.42*** 0.61 0.05 0.43 1.09 
(Other Transport Eqp.) (0.001) (0.07) (0.03) (0.06)     
SIC31 0.03 0.45*** 0.09 0.41 0.46 0.09 0.42 0.97 
(Furniture) (0.08) (0.16) (0.08) (0.13)     
SIC32 0.03 0.67 0.13 0.20 0.70 0.13 0.21 1.04 
(Other Manufacturing) (0.01) (0.06) (0.03) (0.05)     
SIC33 0.06*** 0.27*** 0.09*** 0.55*** 0.29 0.09 0.60 0.98 
(Repair and Installation) (0.01) (0.04) (0.01) (0.04)     

Notes: �̅�𝑗 = 𝛽𝑗
𝑙 + 𝛽𝑗

𝑘 + 𝛽𝑗
𝑚. Robust standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively. 

 
Table 1b. Estimation of Baseline Revenue Function of 2-Digit ICT Industries 

 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑙 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑚 𝛽𝑗

𝑙 𝛽𝑗
𝑘 𝛽𝑗

𝑚 �̅�𝑗  

 (1) (2) (3) (4) (5) (6) (7) (8) 
SIC58 0.07*** 0.55*** 0.01* 0.31*** 0.59 0.01 0.34 0.94 
(Publishing Activities) (0.01) (0.06) (0.006) (0.05)     
SIC59 0.01 0.71*** 0.02** 0.04 0.73 0.03 0.05 0.81 
(Motion Pictures) (0.01) (0.07) (0.006) (0.04)     
SIC60 0.01 0.57*** 0.17*** 0.08 0.58 0.18 0.08 0.84 
(Programming & Broadcasting) (0.10) (0.16) (0.03) (0.34)     
SIC61 0.07*** 0.56*** 0.03*** 0.34*** 0.61 0.03 0.37 1.01 
(Telecommunications) (0.003) (0.02) (0.01) (0.02)     
SIC62 0.08*** 0.38*** 0.05*** 0.43*** 0.42 0.06 0.46 0.94 
(Computer Programming) (0.004) (0.04) (0.009) (0.04)     
SIC63 0.07*** 0.55*** 0.04*** 0.23*** 0.60 0.04 0.24 0.88 
(Information Service) (0.006) (0.03) (0.005) (0.02)     

Notes: �̅�𝑗 = 𝛽𝑗
𝑙 + 𝛽𝑗

𝑘 + 𝛽𝑗
𝑚. Robust standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively. 
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Figure 1. Baseline Decomposition of TFPQ* Index (2008 = 1) 

Notes: The TFPQ* index shows the evolution of a revenue-share weighted index of TFPQ* between 2008 
and 2019, where the value of the index is set equal to 1 in 2008. The revenue shares are calculated at the 
sectoral level. The decomposition of the index is based on equation (6) in the text. We have combined the 
reallocation and entry/exit terms into a single broad reallocation index.  
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Figure 2. Comparison of log TFPQ* Distributions in 2008 and 2019 (Baseline Method) 
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Figure 3. Measured TFPQ* Across Deciles – Baseline 

Notes: Deciles based on the cumulative market share (see text and Appendix 3 for details). The figure shows 
the revenue-share weighted average TFPQ* for the firms in the decile. In the lower panels, 1 + Cumulative 
Log Difference matches the overall change in the index of TFPQ* between 2008 and 2019 shown in Figure 
1.   
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Figure 4. Understanding the Decline in Within-Firm TFPQ*: Scatterplot of TFPQ* Growth 

and Lagged Revenue (Baseline Method) 
Notes: Outliers including TFPQ* growth rate below -0.006 and lag revenue share above 0.008 are trimmed 
(ICT only) for presentation purposes. 
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Table 2a. Testing for CRS in 2-Digit Manufacturing Industries 
 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)(1 − �̅�) ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑚 

 (1) (2) (3) (4) 
SIC10 0.12*** 0.02 0.22*** 0.46*** 
(Food Products) (0.02) (0.02) (0.05) (0.05) 
SIC11 0.05** 0.05 0.38*** 0.37*** 
(Beverages) (0.02) (0.03) (0.08) (0.05) 
SIC13 0.05** 0.20** 0.45*** 0.19 
(Textiles) (0.02) (0.10) (0.12) (0.14) 
SIC16 0.16*** -0.02 0.12*** 0.23*** 
(Wood Products) (0.02) (0.04) (0.03) (0.07) 
SIC17 0.09*** 0.09*** 0.28*** 0.05 
(Paper Products) (0.02) (0.02) (0.03) (0.03) 
SIC18 0.08*** 0.03 0.09** 0.16** 
(Printing & Reproduction) (0.01) (0.02) (0.04) (0.06) 
SIC20 0.15*** -0.02 0.29*** 0.48*** 
(Chemicals) (0.02) (0.02) (0.05) (0.08) 
SIC22 0.03*** 0.07*** 0.003 0.72*** 
(Rubber & Plastic) (0.008) (0.02) (0.03) (0.09) 
SIC23 0.07*** 0.07*** 0.01** 0.52*** 
(Non-Metallic Mineral) (0.0006) (0.004) (0.005) (0.13) 
SIC24 0.05 0.003 0.26*** 0.40*** 
(Basic Metals) (0.04) (0.03) (0.09) (0.11) 
SIC25 0.10*** 0.04 0.04*** 0.35*** 
(Fabricated Metal) (0.01) (0.03) (0.01) (0.08) 
SIC26 0.16*** -0.03 0.19*** 0.15** 
(Comp., Elec. & Optical) (0.06) (0.06) (0.05) (0.08) 
SIC27 0.13*** -0.01 0.11*** 0.37*** 
(Electrical Equipment) (0.02) (0.02) (0.09) (0.08) 
SIC28 0.11*** 0.05 0.10*** 0.28*** 
(Machinery and Eqp. n.e.c.) (0.01) (0.03) (0.03) (0.05) 
SIC29 0.04*** 0.05 0.06** 0.56*** 
(Motor Vehicles) (0.01) (0.03) (0.03) (0.07) 
SIC30 0.04*** 0.12*** 0.07** 0.44*** 
(Other Transport Eqp.) (0.01) (0.02) (0.03) (0.05) 
SIC31 0.05*** 0.02 0.10*** 0.43*** 
(Furniture) (0.01) (0.02) (0.04) (0.07) 
SIC32 0.05*** 0.06** 0.13*** 0.18*** 
(Other Manufacturing) (0.01) (0.03) (0.03) (0.04) 
SIC33 0.08*** 0.03 0.11*** 0.58*** 
(Repair and Installation) (0.008) (0.02) (0.02) (0.04) 

Notes: �̅�𝑗 = 𝛽𝑗
𝑙 + 𝛽𝑗

𝑘 + 𝛽𝑗
𝑚 is the measure of returns to scale. Given 𝜂𝑗 > 1, a test for CRS – i.e., 1 − �̅� = 0 – can be conducted by testing 

for the statistical significance of the log labour variable in the regression (see Column (2)). Robust standard errors are in parentheses. 
***, **, * denote statistical significance at the 1%, 5% and 10% levels respectively. 

 

 

Table 2b. Testing for CRS in 2-Digit ICT Industries 
 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)(1 − �̅�) ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑚 

 (1) (3) (3) (4) 
SIC58 0.10*** 0.02 0.02*** 0.30*** 
(Publishing Activities) (0.01) (0.02) (0.006) (0.05) 
SIC59 0.05*** -0.05 0.04*** 0.19*** 
(Motion Pictures) (0.01) (0.03) (0.006) (0.05) 
SIC60 0.10*** -0.06 0.17*** 0.06 
(Programming & Broadcasting) (0.03) (0.04) (0.03) (0.04) 
SIC61 0.07*** 0.008 0.05*** 0.32*** 
(Telecommunications) (0.005) (0.007) (0.005) (0.02) 
SIC62 0.11*** -0.01 0.05*** 0.43*** 
(Computer Programming) (0.01) (0.01) (0.01) (0.04) 
SIC63 0.09*** 0.02** 0.06*** 0.28*** 
(Information Service) (0.007) (0.01) (0.007) (0.02) 

Note:s �̅�𝑗 = 𝛽𝑗
𝑙 + 𝛽𝑗

𝑘 + 𝛽𝑗
𝑚 is the measure of returns to scale. Given 𝜂𝑗 > 1, a test for CRS – i.e., 1 − �̅� = 0 – can be conducted by testing for 

the statistical significance of the log labour variable in the regression (see Column (2)). Robust standard errors are in parentheses. ***, 
**, * denote statistical significance at the 1%, 5% and 10% levels respectively.  
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Table 3a. Estimation of Revenue Function for 2-Digit Manufacturing Industries with CRS 
 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑚 𝛽𝑗

𝑙 𝛽𝑗
𝑘 𝛽𝑗

𝑚 

 (1) (2) (3) (4) (5) (6) 
SIC10 0.13*** 0.20*** 0.48*** 0.22 0.23 0.55 
(Food Products) (0.02) (0.05) (0.05)    
SIC11 0.08*** 0.34*** 0.37*** 0.23 0.37 0.40 
(Beverages) (0.02) (0.08) (0.04)    
SIC13 0.10*** 0.30 0.22* 0.42 0.34 0.24 
(Textiles) (0.02) (0.18) (0.13)    
SIC16 0.15*** 0.13*** 0.23*** 0.57 0.15 0.28 
(Wood Products) (0.03) (0.04) (0.06)    
SIC17 0.13*** 0.25*** 0.07** 0.63 0.29 0.08 
(Paper Products) (0.02) (0.04) (0.03)    
SIC18 0.09*** 0.07 0.17*** 0.73 0.08 0.19 
(Printing & Reproduction) (0.01) (0.04) (0.06)    
SIC20 0.14*** 0.32*** 0.48*** 0.07 0.37 0.56 
(Chemicals) (0.02) (0.05) (0.08)    
SIC22 0.05*** 0.08** 0.75*** 0.12 0.09 0.79 
(Rubber & Plastic) (0.01) (0.03) (0.08)    
SIC23 0.07*** 0.02 0.54*** 0.40 0.02 0.58 
(Non-Metallic Mineral) (0.006) (0.07) (0.03)    
SIC24 0.05 0.26** 0.40*** 0.30 0.27 0.43 
(Basic Metals) (0.03) (0.11) (0.12)    
SIC25 0.11*** 0.02 0.35*** 0.58 0.02 0.40 
(Fabricated Metal) (0.01) (0.02) (0.08)    
SIC26 0.14*** 0.22*** 0.15*** 0.58 0.25 0.17 
(Comp., Elec. & Optical) (0.03) (0.07) (0.09)    
SIC27 0.12*** 0.13 0.38*** 0.44 0.14 0.42 
(Electrical Equipment) (0.01) (0.10) (0.08)    
SIC28 0.14*** 0.09*** 0.28*** 0.58 0.10 0.32 
(Machinery and Eqp. n.e.c.) (0.01) (0.03) (0.05)    
SIC29 0.06*** 0.03 0.59*** 0.34 0.03 0.63 
(Motor Vehicles) (0.01) (0.03) (0.08)    
SIC30 0.07*** 0.05 0.45*** 0.46 0.05 0.49 
(Other Transport Eqp.) (0.01) (0.03) (0.05)    
SIC31 0.05*** 0.09** 0.45*** 0.44 0.09 0.47 
(Furniture) (0.01) (0.04) (0.07)    
SIC32 0.06*** 0.07 0.18*** 0.73 0.08 0.19 
(Other Manufacturing) (0.01) (0.04) (0.05)    
SIC33 0.09*** 0.10*** 0.58*** 0.27 0.10 0.63 
(Repair and Installation) (0.01) (0.02) (0.04)    

Notes: 𝛽𝑗
𝑙 = 1 − 𝛽𝑗

𝑘 − 𝛽𝑗
𝑚 under CRS. Robust standard errors are in parentheses. ***, **, * denote statistical 

significance at the 1%, 5% and 10% levels respectively. 

 

Table 3b. Estimation of Revenue Function for 2-Digit ICT Industries with CRS 
 1/𝜂𝑗 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗

𝑘 ((𝜂𝑗 − 1)/𝜂𝑗)𝛽𝑗
𝑚 𝛽𝑗

𝑙 𝛽𝑗
𝑘 𝛽𝑗

𝑚 

 (1) (2) (3) (4) (5) (6) 
SIC58 0.10*** 0.01 0.29*** 0.65 0.02 0.33 
(Publishing Activities) (0.01) (0.01) (0.05)    
SIC59 0.03*** 0.05*** 0.18*** 0.76 0.05 0.19 
(Motion Pictures) (0.005) (0.007) (0.06)    
SIC60 0.07*** 0.21*** 0.03 0.74 0.23 0.03 
(Programming & Broadcasting) (0.01) (0.05) (0.05)    
SIC61 0.07*** 0.04*** 0.32*** 0.60 0.05 0.35 
(Telecommunications) (0.005) (0.005) (0.02)    
SIC62 0.10*** 0.06*** 0.45*** 0.43 0.07 0.50 
(Computer Programming) (0.004) (0.01) (0.03)    
SIC63 0.09*** 0.05*** 0.27*** 0.64 0.06 0.30 
(Information Service) (0.006) (0.008) (0.02)    

Notes: 𝛽𝑗
𝑙 = 1 − 𝛽𝑗

𝑘 − 𝛽𝑗
𝑚 under CRS. Robust standard errors are in parentheses. ***, **, * denote statistical significance at 

the 1%, 5% and 10% levels respectively 
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Figure 5. Decomposition of TFPQ* Index (2008 = 1) imposing CRS 

Note: The TFPQ* index shows the evolution of a revenue-share weighted index of TFPQ* between 2008 and 
2019, where the value of the index is set equal to 1 in 2008. The revenue shares are calculated at the sectoral 
level. The decomposition of the index is based on equation (6) in the text. We have combined the 
reallocation and entry/exit terms into a single broad reallocation index.  
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Table 4a. Implied Cost Shares/Output Elasticities and Implied Elasticity of Substitution under 
the Cost-Shares Method – 2-Digit Manufacturing Industries 

 Cost shares/Output Elasticities    
 𝛽𝑗

𝑙 𝛽𝑗
𝑘 𝛽𝑗

𝑚  (𝜂𝑗 − 1)/𝜂𝑗 Implied 𝜂𝑗  

 (1) (2) (3)  (4) (5) 
SIC10 0.25*** 0.025*** 0.72***  0.81*** 5.2 
(Food Products) (0.01) (0.003) (0.01)  (0.02)  
SIC11 0.18*** 0.034*** 0.78***  0.85*** 6.7 
(Beverages) (0.02) (0.003) (0.02)  (0.05)  
SIC13 0.30*** 0.016*** 0.68***  0.87*** 7.5 
(Textiles) (0.03) (0.003) (0.03)  (0.04)  
SIC16 0.27*** 0.016*** 0.72***  0.87*** 8.2 
(Wood Products) (0.01) (0.004) (0.01)  (0.04)  
SIC17 0.23*** 0.03*** 0.74***  0.67*** 3.1 
(Paper Products) (0.01) (0.002) (0.01)  (0.07)  
SIC18 0.36*** 0.016*** 0.62***  0.73*** 3.7 
(Printing & Reproduction) (0.02) (0.003) (0.03)  (0.05)  
SIC20 0.21*** 0.022*** 0.77***  0.76*** 4.2 
(Chemicals) (0.02) (0.003) (0.02)  (0.05)  
SIC22 0.26*** 0.022*** 0.71***  0.77*** 4.4 
(Rubber & Plastic) (0.02) (0.003) (0.02)  (0.04)  
SIC23 0.19*** 0.021*** 0.78***  0.96*** 29.7 
(Non-Metallic Mineral) (0.02) (0.008) (0.03)  (0.01)  
SIC24 0.24*** 0.015*** 0.74***  0.87*** 8.1 
(Basic Metals) (0.02) (0.005) (0.02)  (0.05)  
SIC25 0.35*** 0.03*** 0.63***  0.91*** 11.2 
(Fabricated Metal) (0.01) (0.005) (0.02)  (0.02)  
SIC26 0.33*** 0.021*** 0.65***  0.81*** 5.3 
(Comp., Elec. & Optical) (0.02) (0.003) (0.02)  (0.07)  
SIC27 0.29*** 0.03*** 0.68***  0.81*** 5.4 
(Electrical Equipment) (0.02) (0.001) (0.02)  (0.05)  
SIC28 0.31*** 0.02*** 0.67***  0.86*** 7.5 
(Machinery and Eqp. n.e.c.) (0.02) (0.003) (0.02)  (0.02)  
SIC29 0.23*** 0.02*** 0.74***  0.91*** 11.8 
(Motor Vehicles) (0.01) (0.002) (0.01)  (0.04)  
SIC30 0.29*** 0.031*** 0.67***  0.97*** 40.9 
(Other Transport Eqp.) (0.01) (0.004) (0.01)  (0.02)  
SIC31 0.31*** 0.018*** 0.67***  0.93*** 14.4 
(Furniture) (0.02) (0.005) (0.03)  (0.02)  
SIC32 0.33*** 0.017*** 0.65***  0.97*** 34.9 
(Other Manufacturing) (0.02) (0.004) (0.02)  (0.03)  
SIC33 0.34*** 0.025*** 0.63***  0.87*** 8.2 
(Repair and Installation) (0.02) (0.005) (0.02)  (0.02)  

Notes: Standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels 
respectively. The reported cost shares are within-industry averages. The cost-shares and standard errors for capital 
shares are reported at three digits due to the small size of the standard errors.  

Table 4b. Implied Cost Shares/Output Elasticities and Implied Elasticity of Substitution under 
the Cost-Shares Method – 2-Digit ICT Industries 

 Cost shares/Output Elasticities    
 𝛽𝑗

𝑙 𝛽𝑗
𝑘 𝛽𝑗

𝑚  (𝜂𝑗 − 1)/𝜂𝑗 Implied 𝜂𝑗  

 (7) (6) (5)  (1) (2) 
SIC58 0.52*** 0.41*** 0.07***  0.90*** 10.2 
(Publishing Activities) (0.04) (0.03) (0.02)  (0.02)  
SIC59 0.64*** 0.30*** 0.06***  0.77*** 4.4 
(Motion Pictures) (0.05) (0.05) (0.01)  (0.03)  
SIC60 0.56*** 0.38*** 0.05***  0.73*** 3.7 
(Programming & Broadcasting) (0.03) (0.04) (0.01)  (0.06)  
SIC61 0.70*** 0.23*** 0.06***  0.88*** 8.7 
(Telecommunications) (0.04) (0.02) (0.02)  (0.01)  
SIC62 0.46*** 0.48*** 0.05***  0.85*** 6.8 
(Computer Programming) (0.01) (0.02) (0.02)  (0.02)  
SIC63 0.42*** 0.48*** 0.09**  0.83*** 5.9 
(Information Service) (0.04) (0.04) (0.01)  (0.02)  

Notes: Standard errors are in parentheses. ***, **, * denote statistical significance at the 1%, 5% and 10% levels 
respectively. The reported cost shares are within-industry averages.  
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Figure 6. Decomposition of TFPQ* Index (2008 = 1) Using the Alternative Cost-Shares 

Method 
Notes: The TFPQ* index shows the evolution of a revenue-share weighted index of TFPQ* between 2008 
and 2019, where the value of the index is set equal to 1 in 2008. The revenue shares are calculated at the 
sectoral level. The decomposition of the index is based on equation (6) in the text. We have combined the 
reallocation and entry/exit terms into a single broad reallocation index.  
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Figure 7. Comparison of log TFPQ* Distributions in 2008 and 2019 (Cost-Shares 

Method) 
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Figure 8. Measured TFPQ* Across Deciles – Cost-Shares Method 

Notes: Deciles based on the cumulative market share (see text and Appendix 3 for details). The figure shows 
the revenue-share weighted average TFPQ* for the firms in the decile. In the lower panels, 1 + Cumulative 
Log Difference matches the overall change in the index of TFPQ* between 2008 and 2019 shown in Figure 
6.   
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Figure 9. Understanding the Decline in Within-Firm TFPQ*: Scatterplot of TFPQ* Growth 

and Lagged Revenue (Cost-Shares Method) 
Notes: Outliers including TFPQ* growth rate below -0.006 and lag revenue share above 0.008 are trimmed 
(ICT only) for presentation purposes. 
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Figure 10. Comparison of measured Log TFPQ* between for the Baseline and Cost-

shares Methods 
Notes: We show measured log TFPQ* for each method normalised by the method-specific revenue-share 
weighted mean TFPQ* for the sample.  The correlations between the methods are 0.94 for manufacturing 
and 0.96 for ICT.  

 
 


