

University of Westminster Eprints
http://eprints.wmin.ac.uk

Automatic deployment of interoperable legacy code services.

Gabor Kecskemeti1, Yonatan Zetuny1, Tamas Kiss1, Gergely Sipos2, Peter
Kacsuk2, Gabor Terstyanszky1 and Stephen Winter1

1 School of Informatics, University of Westminster

2 2MTA SZTAKI Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary

This is an electronic version of a paper presented at the CoreGRID Workshop
on Grid Systems, Tools and Environments (WP7 Workshop) (in conjunction
with GRIDS@Work), 12-14 Oct 2005, Sophia Antipolis, France.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Automatic Deployment of Interoperable Legacy Code Services
 G. Kecskemeti1, Y. Zetuny1, T. Kiss1, G. Sipos2, P. Kacsuk2, G. Terstyanszky1, S. Winter1

1Centre of Parallel Computing,Cavendish School of Computer Science,
University of Westminster, 115 New Cavendish Street, London W1W 6UW,

2MTA SZTAKI Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary

Abstract

The Grid Execution Management for Legacy Code Architecture (GEMLCA) enables
exposing legacy applications as Grid services without re-engineering the code, or even
requiring access to the source files. The integration of current GT3 and GT4 based
GEMLCA implementations with the P-GRADE Grid portal allows the creation,
execution and visualisation of complex Grid workflows composed of legacy and non-
legacy components. However, the deployment of legacy codes and mapping their
execution to Grid resources is currently done manually. This paper outlines how
GEMLCA can be extended with automatic service deployment, brokering, and
information system support. A conceptual architecture for an Automatic Deployment
Service (ADS) and for an x-Service Interoperability Layer (XSILA) are introduced
explaining how these mechanisms support desired features in future releases of
GEMLCA.

1. Legacy Code Services for the Grid
The Grid requires special Grid enabled applications capable of utilising the
underlying middleware and infrastructure. Most Grid projects so far have either
developed new applications from scratch, or significantly re-engineered existing ones
in order to be run on their platforms. This practice is appropriate in this context,
where the applications are mainly aimed at proving the concept of the underlying
architecture. However, as the Grid becomes stable and commonplace in both
scientific and industrial settings, a demand will be created for porting a vast legacy of
applications onto the new platform. Companies and institutions can ill afford to throw
such applications away for the sake of a new technology, and there is a clear business
imperative for them to be migrated onto the Grid with the least possible effort and
cost. Grid computing is now progressing to a point where reliable Grid middleware
and higher level tools will be offered to support the creation of production level Grids.
A high-level Grid toolkit should definitely include components for turning legacy
applications into Grid services.
The Grid Execution Management for Legacy Code Architecture (GEMLCA) [1]
enables legacy code programs written in any source language (Fortran, C, Java, etc.)
to be easily deployed as a Grid Service without significant user effort. GEMLCA does
not require any modification of, or even access to, the original source code. A user-
level understanding, describing the necessary input and output parameters and
environmental values such as the number of processors or the job manager required, is
all that is needed to port the legacy application binary onto the Grid.
In order to offer a user friendly application environment, and support the creation of
complex Grid applications from building blocks, GEMLCA is integrated with the
workflow oriented P-GRADE Grid portal [2]. Using the integrated GEMLCA – P-
GRADE portal solution users can create complex Grid workflows from legacy and
non-legacy components, map them to the available Grid resources, execute the
workflows, and visualise and monitor their execution.

A drawback of the current solution is the static mapping of legacy components onto
resources. Before creating the workflow the legacy application has to be deployed on
the target site, and during workflow creation, but prior to its submission, the user has
to specify the resource where the component will be executed. It would be desirable
to allocate resources dynamically at run-time and to automatically deploy a legacy
component on a different site in order to achieve better performance.
Figure 1 illustrates how GEMLCA can be extended with these functionalities. Instead
of mapping the execution of workflow components statically to the different Grid
sites, the abstract workflow graph created by the user is passed to a resource broker
together with quality of service (QoS) requirements. The broker contacts an
information service and tries to map different components of the workflow to
different resources and pre-deployed services. If user QoS requirements cannot be
fulfilled with the currently deployed services, or if the required service is not
deployed on any of the resources, the broker contacts the automatic deployment
service in order to deploy the code on a different site. As the sites can belong to
different Grids with different middleware, policy and security standards, the deployer
service should resolve these interoperability problems.
Unfortunately no currently existing information system, resource broker or
deployment service can be directly used and integrated with GEMLCA to solve these
problems. Significant research, extension and improvement of existing solutions are
necessary. In this paper we concentrate on a subset of this complex architecture and
propose a solution for the Automatic Deployment Service (ADS) and for an x-Service
Interoperability Layer (XSILA).

2. Automatic Deployment Service in GEMLCA
In the current GEMLCA architecture legacy code services are deployed and mapped
manually to Grid resources at workflow construction time. As a pre-requisite to
extending GEMLCA with QoS based brokering and load-balancing capabilities,
services have to be automatically deployed or migrated from one site to another. This
section describes the challenges faced when deploying services, and proposes a
general architecture for an Automatic Deployment Service.

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

P-GRADE
Portal Server

Desktop 1

Web browser

Legacy applications

Grid Site 1

Desktop N

Web browser
Abstract workflow

Legacy applications

Grid Site 2

Broker

Information
Service

Automatic
deployer

Figure 1 Brokering, information system and automatic deployment support in GEMLCA

2.1 Deployment Scenarios
There are several research efforts identifying and implementing solutions for
scenarios when automatic deployment of services is important [3]. Each scenario can
be derived from the following two basic cases:
1. Deploying new Grid services. This scenario means the deployment of a new Grid

service onto a target site by the service developer. Dependencies have to be
detected and resolved by the automatic service deployment tool, and the service
container has to be prepared accordingly in order to prevent misbehaviour.

2. Migrating existing Grid services. This scenario occurs when migrating an already
deployed Grid service to a different site where a dependency description is
available. However, even within the same Grid, this description could be in a
different format than is required, depending on the selected service container. An
automated deployment tool should provide a transformation between different
dependency descriptions. Where the description is not appropriate, dependencies
have to be investigated like in the previous scenario.

Based on these two basic scenarios the following examples illustrate where automatic
service deployment is important in a Grid environment:
- Automatic selection services. An already deployed service can’t process any more

request as its hosting container is overloaded. The service has to be migrated to a
site with lower load, and some of its requests have to be redirected to the newly
deployed service.

- Grid systems integration. Joining different Grids can be more efficient when some
services are installed on both of them. Migration of a service in this situation may
result in lower communication overhead. In this case a translation is needed
between the different site description languages, and deployment specific
information has to be provided. Following this, the system has to install the proper
environment on the Grid receiving the service in order to carry out the migration.

- Refining existing services. Some services (usually data retrieval solutions) provide
very generic information to their users, irrelevant to their real, usually restricted,
needs. In this case users have to filter this information in order to retrieve what is
relevant for them. To avoid high network traffic this filtering can be implemented
and deployed as a new service on the site where the general service resides.

 2.2 Deployment Service Architecture
In order to support the previously described scenarios a layered deployment service
architecture has been identified. Figure 2 shows this architecture, and illustrates how
it is utilised when migrating an already deployed service to a target site. The
migration process and the tasks of the different layers of the architecture are the
following:
1. The Grid sites register themselves in an information system. The registration

contains basic site descriptions.
2. In order to be migrated from site A to an appropriate target site, the service

contacts the Automatic Deployment Service.
3. The deployment service queries the information system in order to access site

descriptions, and also generates the description of the service to be migrated. The
classifier module [4] tests the description of the service against the site
descriptions, and generates a set of sites that are the most capable of hosting the
service. All the descriptions, with the help of ontologies, are transformed into a
meta-description suitable for classification [5]. Following this, the dependency
checker investigates the capabilities of the selected sites. The capabilities should

be identified with a black box method as the source code is not available in
GEMLCA. In a black-box method, dependencies are detected using an observer
execution environment. The service uses generic test data that affects all of its
features in order to gather runtime dependencies, such as the files accessed,
network connections used, or environment variables needed to be set up. The
generated descriptions are stored in the information system for further use.

4. Based on the information received from the dependency checker the comparator
prepares some metrics (cost and time requirements of the deployment based on the
descriptions), and selects the site with the lowest deployment cost (Site B in our
example) [6].

5. In order to make Site B compatible with Site A from the service’s point of view,
the dependency installer prepares several installation scripts and environment
configuration files/setup scripts. These scripts have to take care of all third party
software necessary for the service. The established network connections have to
be simulated with a proxy. This proxy has to be prepared on both sites.

6. The deployer prepares a sandbox [7] on SiteB in order to separate the execution of
the service from others. The sandboxing technique used can be various; e.g. a
basic chrooted environment, some Java security model based solution, or a
virtualisation technique (Xen, VirtualPC, VMware). The deployer interfaces with
the actual sandboxing technique to create a new sandbox, and then the installation
scripts, created in the previous step, are executed in it.

7. The deployer notifies SiteA, and negotiates the transfer of the service between the
sites. The negotiator can detect the available and accessible transfer services on
each site. It also has the capability to act as an intermediate layer between the
source and the destination, if it is necessary. The service has to be registered with
the new host environment in an execution environment specific way without
restarting it (the state information of services should not be modified) [8]).

After the transfer is completed between the two sites the service becomes available on
the new site.

3. x-Service Interoperability
The ADS presented in the previous section offers solution for automatic deployment
of services within the same administrative domain. However, interoperability issues
have to be taken into consideration when bridging different Grid domains. The aim of

Figure 2 Automatic Deployment Service Architecture

Site B

Dependency checker
Classifier

Description comparator

Deployer
Dependency installer

Automatic
deployment service

Site C

Site D

Site A
Service

Information
service

2 3
1

1

1

4

5

6

7

7 Service

1

our Grid services interoperability research is to build on existing policy and security
solutions and standards that are managed independently by different Grid sites, and to
develop an architecture that is capable of bridging isolated Grids in a flexible, scalable
and dynamic manner. As a result of this work, GEMLCA is significantly extended to
enable the deployment, creation, invocation and management of Grid services
between multi-domain Grid environments, thus enabling a dynamic integration of
different Grid sites.
A general interoperability architecture, the x-Service Interoperability Layer (XSILA),
has been specified in order to handle interoperability issues between Grid clients and
Grid services when they are in different domains (“x” refers to any kind of Grid or
Web service in this context). Extending the ADS with XSILA enables the automatic
deployment of a Grid service into different domains. XSILA serves as a bridge
between the different Grids, and makes the deployment to a different domain
transparent for the ADS by redirecting the communication between the ADS and the
services though XSILA, as illustrated on Figure 3. The architecture is composed of
five layers:

1. Negotiator Layer - collects interoperability properties, such as access
mechanisms, policies, and security mechanisms of the involved domains.

2. Analyzer Layer - analyses the properties collected by the negotiator layer, defines
the differences between domains, and prepares a list of interoperability
requirements based on these differences.

3. Classifier Layer - classifies the interoperability requirements into interoperability
classes. It utilizes a mapping engine to create correlation between the demands of
each domain.

4. Dispatcher Layer - uses the mapping produced by the classifier layer to spawn a
Bridge Service that contains the generated mappings. Each dispatched bridge
includes a unique identifier which is then can be used by a client to access the
service.

5. Bridge Layer - encompasses one or more Bridge Services that are spawned by the
Dispatcher Layer. Each Bridge Service is intended to resolve a particular
interoperability problem. The Bridge service is discarded once a communication is
no longer required.

Figure 3 ADS and the x-Service Interoperability

4. Conclusion and Further Work
Deploying legacy applications on the Grid without reengineering the code is crucial
for the wider scientific and industrial take-up of Grid technology. GEMLCA provides
a general solution in order to convert legacy applications as black-boxes into OGSA
compatible Grid services, without any significant user effort.
Current GEMLCA implementations fulfil this objective, and the integrated GEMLCA
- P-GRADE Portal solution offers a user friendly Web interface and workflow support
on top of this. However, GEMLCA should be further developed and extended with
additional features, like information system support, brokering, load balancing or
automatic deployment and migration of services, in order to offer a more
comprehensive solution for Grid users.
This paper presented an Automatic Deployment Service Architecture that enables the
automatic deployment and migration of GEMLCA Grid services to different sites
within the same Grid domain. The combination of this architecture with the x-Service
Interoperability Layer extends deployment and migration capabilities to different
domains. Adding these features to GEMLCA enables service developers to deploy
their services automatically on the target site, or to migrate the service to a different
site, spanning multiple Grid domains when required, if execution is more efficient
there.
The implementation of these architectures and their integration with GEMLCA is
currently work in progress. Also, the investigation has already started how it could be
integrated and extended with existing information system and brokering solutions in
order to realise the full GEMLCA-based Grid presented in Figure 1 of this paper.

References
[1] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk: GEMLCA:

Running Legacy Code Applications as Grid Services, To appear in “Journal of Grid
Computing” Vol. 3. No. 1.

[2] Cs. Nemeth, G. Dozsa, R. Lovas, P. Kacsuk, “The P-GRADE Grid portal”, In:
Computational Science and Its Applications - ICCSA 2004: International Conference,
Assisi, Italy, 2004, LNCS 3044, pp. 10-19.

[3] J. B. Weissman, S Kim, D. England. Supporting the Dynamic Grid Service Lifecycle,
Technical Report, University of Minnesota, 2004,

[4] Mike James : Classification Algorithms, Wiley, 1985, ISBN: 0-471-84799-2
[5] M. Cannataro, C. Comito: A Data Mining Ontology for Grid Programming, Conf. Proc of

the 1st Workshop on Semantics in Peer-to-Peer and Grid Computing at the Twelfth
International World Wide Web Conference, 20 May 2003, Budapest, Hungary

[6] P. Watson, C. Fowler. An Architecture for the Dynamic Deployment of Web Services on
a Grid or the Internet, Technical Report, University of Newcastle, February, 2005.

[7] M. Smith, T. Friese, B. Freisleben. Towards a service-oriented ad hoc grid, Conf. Proc of
the ISPDC/HeteroPar Conference, 2004

[8] A. Ting, W. Caixia, X. Yong. Dynamic Grid Service Deployment, Technical Report,
March, 2004

