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Abstract 

Amyloid β (Aβ) is the major component of the senile plaques in Alzheimer’s disease 

(AD). The mechanism underlying cell death in AD includes oxidative stress, 

apoptosis, impaired mitochondrial function and receptor mediated effects. 

Compounds that specifically bind to Aβ are neuroprotective. Catalase is an 

antioxidant enzyme that specifically binds Aβ. Kisspeptin (KP) is a product of the 

KiSS-1 gene and contains an Aβ binding domain, which also interacts with Aβ. The 

localization of catalase, KP and Aβ in the AD brain plus the effects of catalase and 

KiSS-1 overexpression in neuronal cells were investigated in the present study. 

Tissue sections from the AD pons region were immunohistochemically stained to 

determine if catalase or KP colocalized with Aβ deposits. The immunohistochemistry 

results show that immunoreactive KP or immunoreactive catalase co-localizes with 

immunoreactive Aβ in AD pons sections. These results suggest that endogenous 

catalase and KP could play neuroprotective roles in AD.  

Catalase and KiSS-1 overexpressing gene models were created by stably 

transfecting human catalase and KiSS-1 constructs into SH-SY5Y cells and 

overexpression confirmed by RT-PCR, immunocytochemistry and Western blotting. 

The effects of Aβ and H2O2 on cell viability were determined by either MTT (3-(4, 5-

Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) or trypan blue assay.  

Catalase overexpressing SH-SY5Y neurons showed a reduced susceptibility to Aβ 

and H2O2 toxicity compared to vector control cells. The catalase overexpression 

neuroprotection could by reduced by the catalase activity inhibitor 3-Amino-1,2,4-

triazole and an inhibitor of catalase-Aβ interactions benzothiazole aniline-tetra 

(ethylene glycol). 

The KiSS-1 overexpressing SH-SY5Y neurons also showed a reduced susceptibility 

to Aβ and H2O2 toxicity compared to vector control cells. The KiSS-1 overexpression 

neuroprotection could by reduced by an anti-KP antibody, the oyxtocin antagonist 

atosiban and the cyclooxygenase inhibitor SC-560. 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl


In conclusion, both catalase and KP colocalize with Aβ in AD pons sections and 

overexpression of catalase or KiSS-1 is neuroprotective against Aβ toxicity. 
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Chapter 1- Introduction 

1.1 Introduction to Alzheimer’s disease 

Alzheimer’s disease (AD) is a progressive neurological disorder that leads to 

dementia in the elderly. It has been estimated that more than 25 million people 

worldwide are suffering from AD, and the number is expected to triple by the 

year 2050 (Mayeux and Stern, 2012). There is no cure for AD and it can 

eventually lead to death of the patient. In 1906 a German scientist and 

neuropathologist Alois Alzheimer described two pathological alterations in the 

brain of a female patient suffering from dementia. He described the presence of 

a ‘peculiar substance’ occurring as extracellular deposits in specific regions of 

the patient’s brain, which are now called amyloid plaques (Masters et al., 1985; 

Mann et al., 1996; Dickson 1997; Gillardon et al., 2007). Not until 1980s was it 

discovered that the plaques found in the patient’s brain consisted of aggregates 

of a small peptide called amyloid-β (Aβ) (Glenner and Wong 1984; Masters et 

al., 1985). Neurofibrillary tangles (NFTs) were the second lesion described by 

Alzheimer. In the late 1980s it was discovered that the NFTs are composed of 

aggregates of tau protein, which have become abnormally hyperphosphorylated 

in AD (Kosik et al., 1986; Grundke-Iqbal et al., 1986; Ihara et al., 1986; Goedert 

et al., 1988). 

1.1.1 Risk factors  

Age is the single major risk factor for AD, with a 2% chance of developing AD at 

the age of 65 increasing to a 40% chance at the age of 85 and over (Gao et al., 

1998). The second major risk factor for AD is family history, with a threefold to 

fourfold risk among individuals having a first-degree relative with AD (Van Duijn 

et al., 1991). Early onset of AD is rare, affecting only 5% of patients between 

the ages of 30-60 years (Van Duijn et al., 1991). Early onset familial AD is 

inherited in an autosomal dominant manner, with genetic mutations on 

chromosomes 21, 1 and 14, resulting in the formation of abnormal amyloid 

precursor protein (APP), presenilin-2 (PSEN 2) and presenilin-1 (PSEN 1) 

precursor proteins (Wu et al., 2012). Three different isoforms of apolipoprotein 

E (ApoE) exist in humans; they are ApoE2, ApoE3, and ApoE4. The presence 

of ApoE4 on chromosome 19 appears to be another major risk factor for the 

development of late AD (Tsai et al., 1994). Inheritance of one or more copies of 
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ApoE4 is associated with an early and dose dependent risk of AD (Manelli et 

al., 2007).  

Loss of neurons and synaptic alterations are consistent features of AD 

(Cummings et al., 1998). In the AD brain there is a deficit of choline 

acetyltransferase (ChAT), an enzyme responsible for the synthesis of 

acetylcholine (ACh) (Bowen et al., 1976). The ACh plays an important role in 

learning and memory (Drachman et al., 1974). Due to the loss of ACh in AD 

brain the “cholinergic hypothesis of AD” was proposed which states that - 

degeneration of cholinergic neurons in the basal forebrain and the loss of 

cholinergic neurotransmission in the cerebral cortex and other areas 

significantly contribute to the deterioration of cognitive function in AD patients 

(Bartus et al., 1982; Francis et al., 1999). Whilst AD is a multi-neurotransmitter 

disease the most common alteration in the AD brain is loss of cholinergic 

markers, ChAT, and acetyl cholinesterase (Bartus et al., 1982). In addition there 

is also a deficit of other neurotransmitters and neurohormones such as 

serotonin (Palmer et al., 1987), corticotropin-releasing hormone (CRH) (Bissette 

et al., 1985), somatostatin (Davies et al., 1980) and noradrenaline 

(Hammerschmidt et al., 2013) in AD plus animal models of AD. 

1.1.2 Biomarkers of Alzheimer’s disease  

The cerebrospinal fluid (CSF) can be a source of AD biomarkers, as the CSF is 

in direct contact with the brain and the molecular composition of CSF reflects 

the biochemical changes in the brain (Tang and Kumar, 2008). The total 

concentrations of tau or Aβ 1-42 in the CSF are possible biomarkers for AD 

diagnostics. A threefold increase in the concentration of tau and a 50% 

decrease in Aβ 1-42 compared to controls have been observed in the CSF of 

AD patients (Blennow and Hampel, 2003). Increased levels of free or 

conjugated ubiquitin are found in the CSF of patients with mild cognitive 

impairment (MCI) progressing to AD (Simonsen et al., 2007). A defect in 

ubiquitin could impair removal of unwanted proteins via the proteasome (Lopez 

Salon et al., 2000). Collection of CSF is an invasive procedure; therefore finding 

peripheral biomarkers would be of great interest. Plasma levels of Aβ 1-42 

could be used as an AD biomarker, as a reduction in Aβ 1-42 was observed in 

patients with MCI progressing towards AD (Rembach et al., 2014). Loss of 
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neurons in AD leads to atrophy of the brain, thus atrophy could be used as a 

marker for AD progression (Simonsen et al., 2007). Positron emission 

tomography (PET) could be used to investigate amyloid deposits; multivalent 

microscopy can detect amyloid deposition labelled with Thioflavin S or T 

derivatives (Bacskai et al., 2003). Near-infrared imaging is used for 

quantification of the cerebral amyloidosis in vivo (Raymond et al., 2008). 

1.1.3 Amyloid precursor protein 

One of the major toxic agents involved in the progression of the AD is thought to 

be Aβ peptide (Mohamed et al., 2011). The Aβ peptide is cleaved by the 

secretase complex from the (APP) at the neural membrane (Haass and Selkoe, 

2007). In 1987 APP was discovered as the only source of Aβ (Kang et al., 

1987), it has been extensively studied due to its role in the generation of 

plaques in AD (Hardy and Selkoe, 2002). The APP gene belongs to the highly 

conserved family of the type-1 transmembrane proteins (Walsh et al., 2007; 

Jacobsen et al., 2009; Guo et al., 2012). The APP family also includes APLP1 

(amyloid precursor like protein 1) and APLP2 (amyloid precursor protein like 

protein 2), however neither APLP1 nor APLP2 contain the Aβ peptide sequence 

(Walsh et al., 2007). The precise physiological function of APP is unknown but it 

is thought to play a role in cell adhesion (Soba et al., 2005), cell motility (Chen 

and Yankner, 1991), neuronal survival and neurite outgrowth (Qiu et al., 1995; 

Perez et al., 1997). Transgenic mice that overexpressed wild type APP were 

found to have enlarged neurons (Oh et al., 2009). Knockout of endogenous 

APP expression in mice showed age dependent deficits in passive avoidance 

learning, suggesting a role of APP in long-term memory (Senechal et al., 2008). 

The APP, APLP1 and APLP2 show redundancy and knockout studies suggest 

that APP has some distinct physiological functions (Heber et al., 2000), which 

could be mediated by the Aβ peptide sequence that is unique to the APP. 

 

 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796369/#R30
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1.1.4 Down syndrome and Alzheimer’s disease  

The APP protein is coded by the APP gene located on chromosome 21 

(Goldgaber et al., 1987; Tanzi et al., 1988). Down syndrome (DS) is the result of 

trisomy of chromosome 21, and is the most frequent cause of mental 

retardation (Yang et al., 2002). In DS the APP gene is overexpressed (Wilcock 

and Griffin, 2013). In the brain, neuritic amyloid plaques were found in both 

children and adults with DS (Leverenz and Raskind, 1998). A mutation in 

chromosome 21 has been linked to familial AD (St George-Hyslop et al., 1987) 

and trisomy of chromosome 21 has been linked to precocious development of 

AD (Wisniewski et al., 1985). The finding that APP overexpression in DS is 

associated with the development of AD has contributed to the development of 

the amyloid-cascade hypothesis (Hardy and Higgins, 1992). This observation 

suggests that patients with DS could be a potential human group to study AD 

progression. 

1.1.5 Amyloid precursor protein processing  

The APP protein is produced in neurons and processed rapidly (Lee et al., 

2008). Multiple alternative pathways exist for APP processing, some of which 

lead to the generation of the Aβ peptide (Figure 1-1). The APP protein has three 

domains, the N-terminal ectodomain, a single hydrophobic transmembrane 

domain and a short intracellular domain (Muller and Klemens, 2013). From the 

endoplasmic reticulum and Golgi apparatus, APP is delivered to the axon and 

from there it is transported to synaptic terminals by fast axonal transport (Koo et 

al., 1990). Crucial steps in APP processing occur at the surface of the cell and 

in the trans-Golgi network (TGN). From the TGN the APP is transported to the 

cell surface or in an endosomal compartment in clathrin-associated vesicles 

(O'Brien and Wong, 2011). Under normal conditions, at the surface of the cell 

the APP is processed directly by α-secretase followed by γ-secretase. This “non 

amyloidogenic” pathway precludes the generation of toxic Aβ peptide and leads 

to the formation of soluble APPα (APPsα) and αCTF (C-terminal fragment) upon 

cleavage by α-secretase. αCTF is further cleaved by γ-secretase to produce the 

P3 peptide and APP intracellular domain (AICD) (Tian et al., 2010). The P3 

peptide is an N-terminal truncated Aβ peptide corresponding to Aβ 17-40 and 

http://www.sciencedirect.com/science/article/pii/S0197458013001863#bib55
http://www.sciencedirect.com/science/article/pii/S0197458013001863#bib192
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Aβ 17-42, its molecular weight is approximately 3 kDa and thus the name P3 

(Dulin et al., 2008). The importance of P3 peptide in AD is still unclear, it has 

been suggested that P3 peptide represents a benign form of amyloid (Dickson 

1997). 

In AD, the APP is sequentially cleaved by β and γ-secretase to generate Aβ 

peptide, which plays a causative role in the pathogenesis of AD (Hardy and 

Allsop, 1991). Beta site APP cleaving enzyme (BACE1) or β secretase is an 

enzyme encoded by the BACE 1 gene (Vassar 2004). The γ-secretase complex 

contains either PSEN 1 or PSEN 2 in complex with supporting proteins 

(Smolarkiewicz et al., 2013). This cleavage by β and γ-secretase generates 

soluble APPβ (APPsβ) and the C99 fragment (membrane bound C-terminal 99 

amino acids of the APP or CTF). It has been suggested that α-secretase 

competes with β-secretase for the APP substrate to reduce Aβ production 

(Nitsch et al., 1992). Following β-secretase cleavage C99 becomes a substrate 

for γ-secretase, which cleaves C99 to generate carboxy terminus Aβ and this 

peptide is released from the cell (Vassar 2004). The cleavage by γ-secretase is 

not precise and produces a range of Aβ peptides, which vary in length; the most 

common forms are Aβ 1-40 and Aβ 1-42 (Fukumoto et al., 1996). The α-CTF 

produced by α-secretase cleavage of APP has been demonstrated to function 

as a γ-secretase inhibitor for Aβ production (Tian et al., 2010). 
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Figure 1-1. Amyloid precursor protein processing. Under normal conditions 

the APP is cleaved by α- secretase to generate APPsα (soluble APPα 

ectodomain) and α-CTF (C-terminal fragment). The α-CTF is further cleaved by 

γ-secretase to generate P3 peptide and AICD (APP intracellular domain). In AD 

the APP is cleaved by β-secretase to generate APPsβ (soluble APPβ 

ectodomain) and β-CTF (C-terminal fragment). The β-CTF is further cleaved by 

γ-secretase to generate Aβ and AICD. 

The APP processing could be caspase dependent resulting in the generation of 

two novel proteolytic fragments which are 25 and 35 kDa in size. These two 

fragments can be detected by antibodies against Aβ and the c-terminal caspase 

site (Fiorelli et al., 2013), suggesting a link between APP processing and 

apoptosis. Both Aβ 1-40 and Aβ 1-42 have been identified in amyloid plaques in 

AD brain, but Aβ 1-42 is the predominant form and the initially deposited 

species in plaques, the Aβ 1-40 appears later in the plaque evolution and 

maturation (Mann et al., 1996). The Aβ 1-42 is particularly important, as it is 

more prone to oligomerization, forming amyloid fibrils more readily than the 

shorter forms of Aβ (Burdick et al., 1992). In vitro studies have shown that Aβ 

can easily form fibrils, which could be associated with the mature fibrils found in 

the neuritic plaques. These plaques can be correlated to the extent of cognitive 

loss in AD (Cummings et al., 1996). Other forms of Aβ include modified Aβ with 

a pyroglutamate at amino acid position 3 (Aβ pE3-42) (Wittnam et al., 2012) and 

Aβ (11-42), which is generated by the β cleavage of APP at position 11 of the 

amyloid sequence (Willem et al., 2004). The present study will focus only on the 

major forms of Aβ (Aβ 1-40, Aβ 1-42).  

1.1.6 Amyloid cascade hypothesis  

The amyloid cascade hypothesis (Figure 1-2) was originally proposed by John 

Hardy and David Allsop in 1991. According to the amyloid cascade hypothesis, 

mismetabolism of APP initiates AD pathogenesis, subsequently leading to the 

aggregation of Aβ (especially Aβ 1-42). Formation of neuritic plaques further 

leads to the formation of NFTs and synaptic dysfunction. Synaptic dysfunction 

results in decreased neurotransmitters, ultimately leading to the death of the 

tangle bearing neurons. Loss of neurons causes dementia, which is the first 

symptom of AD (Hardy and Allsop 1991). The amyloid cascade theory was 

supported by the discovery of a mutation in the APP gene that causes 
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autosomal dominant AD (Goate et al., 1991). This hypothesis was further 

supported by evidence of autosomal dominant mutations in PSEN 1 and PSEN 

2 that can also cause AD (Rogaev et al., 1995), this was observed in families 

with early onset of AD (Familial AD). Presenilins are multi-pass transmembrane 

proteins that function as a part of the γ-secretase intra-membrane protease 

(Zhang et al., 2013). Mutations in ApoE are genetically associated with late 

onset familial AD (Corder et al., 1993). The presence of Aβ in senile plaques 

(SP) was interpreted as an effect of these mutations that eventually leads to cell 

death and dementia. It is still unclear whether the most deleterious form of Aβ 

peptides in the early stages of AD is represented by deposited fibrillar or soluble 

oligomeric peptide (Drouet et al., 2000). 

 

 

Figure 1-2. Amyloid cascade hypothesis. The flow chart represents the 

amyloid cascade hypothesis, which suggests that mutations in the APP, 

PSEN1, PSEN 2 and ApoE (FAD mutations) lead to aggregation of Aβ. 

Aggregated Aβ (soluble or fibrillar) instigates the formation of NFT and 

disruption of synaptic connections, leading to neuronal dysfunction and cell 

death. Loss of neurons ultimately leads to dementia (Reitz 2012). 
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1.1.7 Limitations of the amyloid cascade hypothesis  

The amyloid cascade theory does not explain the interactions between Aβ and 

tau. The theory suggests that amyloid plaques precede NFTs; the mechanism 

for this is not explained. Mutation in tau gene can cause autosomal dominant 

frontotemporal lobe dementia (Hutton et al., 1998). The tau pathology seen in 

autosomal dominant frontotemporal lobe dementia is similar to the tau 

pathology seen in AD, suggesting that amyloid plaques are not required for the 

development of AD and that tau pathology can itself cause neuronal loss. In 

APP transgenic mice, reduction in endogenous tau levels improved behavioural 

and other deficits that are mediated by Aβ (Roberson et al., 2007). The theory 

also suggests that SP and NFTs are the cause of the disease, but SP and NFTs 

could just be the product of the neurodegeneration rather than the cause 

(Karran et al., 2011). Apart from Aβ the plaques also contain metal ions (Tiiman 

et al., 2013), glycosaminoglycans (Ariga et al., 2010), the serum amyloid P 

component (Pepys et al., 1994), ApoE (Tsai et al., 1994) and collagen 

(Perlmutter et al., 1991), which could contribute to plaque formation. It has been 

suggested that the contradictions to the amyloid cascade theory could be 

removed by including redox-active metals in plaques as ions such as zinc, 

which can initiate Aβ fibrillization (Tiiman et al., 2013). 

1.1.8 Normal function of Amyloid-β. 

In primary culture neurons, inhibition of endogenous Aβ or immunodepletion of 

Aβ caused neuronal cell death (Plant et al., 2003), suggesting that Aβ has a key 

physiological role in survival of neurons. Endogenous Aβ production participates 

in a negative feedback that would keep the neuronal hyperactivity in check 

(Kamenetz et al., 2003). Mice lacking the APP gene showed impairment in long-

term potentiation (LTP) and the neurons showed reduced branching of 

dendrites and fewer synaptic boutons, there was no reduction in neuronal 

number despite the absence of Aβ (Dawson et al., 1999). These observations 

suggest that Aβ in moderation may play an important role in maintaining 

synaptic and cognitive function. 

 



Chapter 1- Introduction 

1.1.9 How Amyloid-β is neurotoxic? 

The Aβ is stacked as parallel β sheets in mature amyloid plaques (Petkova et 

al., 2006). Soluble Aβ aggregates ranging from small oligomers (Kayed et al., 

2003) to large assemblies called Aβ derived diffused ligands (ADDLs) (Lambert 

et al., 1998) or protofibrils constitute the plaques. The soluble form of Aβ was 

found to be more potent in toxicity than the fibrillar form of Aβ (Walsh et al., 

2002). The extracellular Aβ from the plaques can be taken up by the cells via 

low-density lipoprotein receptor related proteins (LRP), which facilitate the 

endocytosis of Aβ by direct binding or via the LRP ligand ApoE (Bu et al., 2006) 

or the receptor for advanced glycation end products (RAGE) (Deane et al., 

2003). These receptors interact with Aβ and transport it across the blood brain 

barrier (Deane et al., 2003). The exogenous Aβ also binds to the α7 nicotinic 

ACh receptor and the cell internalizes the peptide, which results in accumulation 

of intracellular Aβ (Nagele et al., 2002). 

Several lines of evidence show that Aβ is generated intracellularly in AD, with 

the toxicity of intracellular Aβ preceding the toxicity of senile plaques and 

neurofibrillary tangles (Gouras et al., 2000). Intracellular Aβ 1-42 can elicit 

synaptic toxicity similar to amyloid-plaques, even in the absence of amyloid 

plaques (Mucke et al., 2000). Intracellular accumulation of Aβ is seen in 

mitochondria, ER, Golgi and cytosol (LaFerla et al., 2007). The impairment of 

the mitochondrial metabolism in AD has been well documented (Hirai et al., 

2001). Progressive accumulation of Aβ in mitochondria leads to impairment of 

the electron transport chain, ultimately leading to mitochondrial dysfunction and 

increased oxidative stress (OS) (Bozner et al., 1997; Muirhead et al., 2010). 

Mitochondrial dysfunction can result in increased production of reactive oxygen 

species (ROS) and decreased ATP production (Kirkinezos and Moraes, 2001). 

An increase in OS leads to lipid peroxidation, protein and DNA oxidation 

(Markesbery 1997). Increased production of ROS can eventually lead to cell 

death. Neuronal death induced by Aβ displays the characteristics of apoptosis 

(Loo et al., 1993). Aβ activates caspases, the effector of apoptosis in neuronal 

cells, and caspase inhibitors can block Aβ induced cell toxicity in synaptosomes 

(Mattson et al., 1998). The physiological level of Aβ modulates synaptic 

plasticity and memory (Puzzo et al., 2008) together with activity dependent 
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regulation of synaptic vesicle release (Abramov et al., 2009). Abnormal 

accumulation of Aβ can interfere with synaptic transmission or LTP in the 

hippocampus in vivo (Selkoe 2008).  

It has been shown that the Aβ peptide is directly incorporated into neuronal 

membranes and forms cation-sensitive ion channels also known as amyloid 

channels (Kawahara 2010). Formation of the amyloid channels increases the 

intracellular concentration of calcium, which could be the primary event for 

neurodegeneration. Similar channel formation was also seen with the islet 

amyloid polypeptide (IAPP) and Prion protein (PrP) in a gonadotropin-releasing 

hormone (GnRH) secreting neuronal cell line (Kawahara et al., 2000). The Aβ 

interacts with PrP (Laurén et al., 2009; Gunther et al., 2010), and IAPP 

receptors (Fu et al., 2012) triggering multiple signalling pathways leading to 

neurodegeneration. 

1.1.10 Other neurotoxic amyloid peptides  

1.1.10.1 Islet amyloid polypeptide  

Type 2 diabetes mellitus (T2DM) is a progressive disease with 90% of the 

subjects exhibiting islet amyloid deposits (Hull et al., 2004). Islets amyloid 

deposition involves aggregation of the normal β-cell peptide, IAPP, which is also 

known as amylin. This contributes to the deterioration of β cell function and 

reduced β cell mass observed in T2DM (Hull et al., 2004). IAPP is co-secreted 

with insulin (Kahn et al., 1990). Factors such as insulin resistance that cause 

insulin secretion can also elevate IAPP secretion (Clark et al., 1990). Both IAPP 

and Aβ share common features of disease progression, such as increased OS 

and mitochondrial dysfunction (Gotz et al., 2009). The IAPP peptide, similar to 

Aβ can induce apoptotic cell death (Hiddinga and Eberhardt, 1999); they both 

cause a dose, time and cell specific neurotoxicity, supporting the notion that 

they cause toxicity in similar fashion (Lim et al., 2008).
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1.1.10.2 Prion protein  

The PrPs are a group of proteins with unique ability to fold into different 

conformations. The normal prion PrPc (cellular PrP) predominantly consists of 

two large alpha-helices, whereas the disease causing infectious form PrPSc 

(isoform PrP) consists of beta-pleated sheets (Norrby et al., 2011), similar to 

Aβ. The infectious form is the causative agent of the transmissible spongiform 

encephalopathies including Creutzfeldt- Jacob disease (CJD) (Aguzzi et al., 

2008). A number of neuropathological similarities and genetic links exist 

between AD and CJD. The coexistence of AD pathology in CJD has been 

reported (Hainfellner et al., 1998) in CJD patients with AD like pathology. A 

previous study has shown up regulation of PrPc in neurodegeneration and has 

suggested that it could be involved in defence against OS (Voigtlander et al., 

2001). PrPc has been shown to promote Aβ plaque formation in mice 

(Schwarze-Eicker et al., 2005) and play a role in the cellular uptake of Aβ 

(Laurén et al., 2009), suggesting that PrP not only plays a role in CJD but also 

in AD pathogenesis. 

1.1.11 Similarity between amyloid peptide sequences  

The Aβ, amyloid-Bri (ABri), amyloid-Dan (ADan), PrP and IAPP, play a key role 

in the pathology of AD (Buxbaum and Linke, 2012), Familial British dementia 

(Tsachaki et al., 2010), Familial Danish Dementia (Gibson et al., 2004), CJD 

(Norrby 2011) and T2DM (Zraika et al., 2010). The Aβ 25-35, IAPP 20-30, PrP 

115-125, ABri-11-21 and ADan 11-21 share sequence similarity (Figure 1-3) 

suggesting that they may have similar mechanisms of fibril formation plus 

neurotoxicity. Compounds that can inhibit Aβ toxicity could therefore also be 

useful against neurotoxicity of other amyloid peptides. All the amyloid peptides 

except IAPP are produced in the brain; IAPP is produced in the pancreatic islet-

β cells (Serup et al., 1996). A recent study has shown the deposition of IAPP in 

the brain of diabetic patients (Jackson et al., 2013), suggesting a need for 

neuroprotection in the treatment of T2DM.  
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Figure 1-3. The sequence similarity between Aβ 25-35 and different 

amyloid peptides. The amino acid sequences of Aβ 25-35, IAPP 20-30, PrP 

115-125, ABri-11-21 and ADan 11-21. Amino acids identical to those found in 

Aβ 25-35 are shown in red, whilst those with similarity are shown in blue. The 

purple box represents the core region of similarity. 

 

1.2 Oxidative stress in Alzheimer’s disease  

One of the most well known effects of Aβ is its capacity to induce and be 

induced by OS (Borghi et al., 2007); Aβ induces OS in vitro and in vivo 

(Tamagno et al., 2012). OS is believed to be an early event in AD, as extensive 

oxidative damage is observed in MCI, which is considered as a transition stage 

between normal aging and dementia (Lovell and Markesbery, 2001). The 

membrane damage, cytoskeleton derangement and cell death due to OS 

suggests that OS plays an important role in AD progression (Perry et al., 2000). 

The ROS are by-products of cellular metabolism, generated during 

mitochondrial oxidative phosphorylation and resulting in molecules such as 

hydrogen peroxide (H2O2) or molecules with unpaired electrons such as 

superoxide. The brain is highly vulnerable to OS because of its high 

consumption of oxygen, high levels of polyunsaturated fatty acids and low levels 

of antioxidants (Floyd and Hensley, 2002). The free radical hypothesis of aging 

postulates that accumulation of ROS in the cell damages mitochondria, the 

nucleus, cell membranes and cytoplasmic proteins (Harman 1992). 
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1.2.1 Amyloid-β a major link between oxidative stress and 

Alzheimer’s disease  

In a murine knock-in model of AD with APP and PS1 mutations, excessive 

production of Aβ and impairment of antioxidant enzymes with mitochondrial 

dysfunction was reported (Anantharaman et al., 2006). The brain is rich in 

polyunsaturated fats; Aβ promotes copper mediated generation of 4-hydroxy-2-

nonenal (HNE) from polyunsaturated lipids. HNE is produced from lipid extracts 

by oxidative lipid damage; HNE covalently modifies the histidine side chain 

(residues 6, 13 and 14) of Aβ. This modified Aβ has increased affinity for lipid 

membranes and an increased tendency to aggregate into amyloid fibrils (Murray 

et al., 2007). This suggests that products of OS such as HNE modify Aβ and 

increase Aβ misfolding. In addition Aβ can also induce the production of 

inflammatory mediators such as tumor necrosis factor-α or interleukin-1β, 

leading to microglia activation, OS induction, and enhanced processing of APP 

to generate more Aβ (Akiyama et al., 2000). 

The expression and activity of the APP cleaving enzyme BACE1 is increased by 

OS (Tamagno et al., 2002). Increased activity of BACE1 causes overproduction 

of Aβ and the neurons show morphological signs of apoptotic cell death 

(Tamagno et al., 2005). OS also increases the activity of γ secretase in vivo and 

the γ secretase regulates expression of BACE1 (Tamagno et al., 2008). This 

suggests that OS increases the activity and expression of the key secretase 

enzymes involved in processing APP to Aβ peptides, which results in 

overproduction of Aβ. 

1.2.2 Other risk factors  

It has been previously proposed that hypoxia-inducible factor 1α-mediated 

hypoxia can alter APP processing by increasing the activity of β secretase and γ 

secretase. This increase in the enzyme activity facilitates increased Aβ 

production (Zhang et al., 2007). Hyperglycaemia leads to the formation of 

advanced glycation end-products (AGEs) (Takeuchi and Makita, 2001). The 

AGEs are involved in the production of ROS, especially superoxide and H2O2 

(Carubelli et al., 1995). The AGEs also mediate OS production by interacting 

with RAGE, AGEs can increase BACE1 expression by binding with RAGE, 
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which is followed by strong production of ROS and activation of nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, the NF-κB 

transcriptional factor can be activated by RAGE (Granic et al., 2009). The NF-

κB regulates expression of BACE1, increased BACE1 and ROS leads to Aβ 

production and accumulation (Bourne et al., 2007). Oxidation products of 

cholesterol such as oxysterol enhance Aβ production in neuronal cells (Gamba 

et al., 2011). The sterol regulatory element binding protein 2 transcription factor 

regulates BACE1 expression, suggesting a role of cholesterol in the 

pathogenesis of AD (Mastrocola et al., 2011). These results point towards the 

role of ROS in the regulation of Aβ and aging processes (Figure 1-4). 
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Figure 1-4. Risk factors for the generation of ROS. The flow chart represents 

the different age related risk factors such as hypoxia, hyperglycaemia and 

hypercholesterolemia that contribute to the generation of ROS, which leads to 

increased expression and activity of BACE1 and γ secretase, the end result 

being increased production and accumulation of Aβ (Tamagno et al., 2012). 

 

1.2.3 Amyloid-β induction of oxidative stress  

Aggregation of Aβ leads to the generation of free radicals in AD (Hensley et al., 

1994). The Aβ causes increased accumulation of H2O2 in cells, which results in 

free radical induced lipid peroxidation and ultimately cell death (Behl et al., 

1994). An inhibitor of neutrophil nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase, diphenylene iodonium (Cross and Jones, 1991) inhibits Aβ in 

B12 cells and CNS neurons; it also inhibited H2O2 production in B12 cells (Kopp 

and Stanton 1997). Another NADPH oxidase inhibitor neopterin (Kojima et al., 

1993) also inhibited Aβ toxicity, suggesting that Aβ generation of H2O2 requires 

the activation of NADPH linked oxidase (Behl et al., 1994).  

1.2.4 Oxidative stress and mitochondrial dysfunction  

Mitochondria are unique cell organelles and perform key functions in ATP 

synthesis, calcium homeostasis and also play a major role in cell survival plus 

cell death. The mitochondrial respiratory chain is the major site for the 

generation of ROS in cells; mitochondria are also vulnerable to OS (Tan et al., 

1998; Grivennikova and Vinogradov, 2006). Mitochondrial dysfunction seems to 

play an important role in the pathogenesis of AD, as a number of mitochondrial 

and metabolic abnormalities have been identified in hippocampal neurons of AD 

compared to controls (Mutisya et al., 1994; Hirai et al., 2001). The mitochondrial 

abnormalities were also seen in neurons without neurofibrillary tangles, 

suggesting that mitochondrial abnormalities are an early event in AD (Hirai et 

al., 2001). A significant reduction in mitochondria, an increase in the 

mitochondrial DNA and proteins in the cytoplasm and in the vacuoles 

associated with lipofuscin (a lysosome suggested as the site of mitochondrial 

degradation by autophagy) were observed in AD brains (Hirai et al., 2001; Zhu 

et al., 2006). A significant decrease in the mitochondrial cytochrome oxidase 
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(complex IV) activity in the cortical regions of AD brains was also observed 

(Mutisya et al., 1994). A decrease in the electron transport enzymes could lead 

to increase in ROS and reduction in energy stores, contributing to 

neurodegeneration. 

The Aβ peptide was found localized in the mitochondria in the brains of AD 

patients (Devi et al., 2006; Manczak et al., 2006). The Aβ has been reported to 

interact with mitochondrial proteins such as amyloid binding alcohol 

dehydrogenase (ABAD), which have been implicated in AD (Yan et al., 1997; 

Milton et al., 2001; Muirhead et al., 2010). The ABAD catalyzes the reduction of 

ketones, aldehydes and oxidation of alcohols. Interaction of Aβ and ABAD 

inhibits the activity of ABAD. Transgenic mice and neuroblastoma cells stably 

transfected with human mutant APP, led to an increase in OS and reduced 

mitochondrial activity (Manckzak et al., 2006). Treatment of isolated 

mitochondria with Aβ caused oxidative injury to the mitochondrial membrane 

and inhibited key enzymes of mitochondrial respiratory chain leading to an 

increase in mitochondrial membrane permeability and cytochrome c release 

(Casley et al., 2002). Cytochrome c when released in the cytoplasm can 

activate the apoptotic pathway. Manganese superoxide dismutase (MnSOD) is 

the primary antioxidant enzyme, which protects mitochondria against 

superoxide. In a double homozygous knock-in mouse model expressing APP 

and PS-1 mutants, MnSOD was found to be a target of nitration and inactivation 

(Anantharaman et al., 2006). Decreased activity of MnSOD further increases 

ROS levels and leads to loss of mitochondrial membrane potential, caspase 

activation and apoptosis (Anantharaman et al., 2006). These results all point 

towards the central role of mitochondrial dysfunction in Aβ toxicity (Figure 1-5). 
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Figure 1-5. The schematic representation of oxidative stress mediated 

mitochondrial dysfunction and cell death. Oxidative stress (OS) leads to 

mitochondrial dysfunction, increased Aβ accumulation and reduction in 

antioxidant enzymes. Increased OS disrupts mitochondrial membrane potential, 

which leads to release of cytochrome c into the cytoplasm; cytochrome c 

activates caspase resulting in apoptosis. 

 

1.2.5 Antioxidant enzymes protect against oxidative stress and 

Amyloid-β toxicity. 

Mitochondrial targeted antioxidants were found to be protective against OS and 

Aβ toxicity (Manczak et al., 2010; Ma et al., 2011). In a recent study, the role of 

mitochondria-targeted catalase enzyme (MCAT) in life span extension of human 

APP transgenic mice was investigated. It was found that the APP transgenic 

mice that carried the human MCAT gene lived 5 months longer than APP mice 

without the human MCAT gene. Results showed that MCAT prevents abnormal 

APP processing, reduces Aβ levels and enhances Aβ-degrading enzymes in 

mice (Mao et al., 2012). 

The free radical antioxidant vitamin E protected PC12 cells from Aβ toxicity 

(Behl et al., 1992). The glutathione peroxidase (GSH-Px) reduces free H2O2 to 

water and superoxide dismutase (SOD) catalyzes the dismutation of superoxide 

into oxygen and H2O2. Cell lines genetically engineered to express higher levels 
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of antioxidant enzymes such as catalase and GSH-Px were found to be 

resistant to Aβ toxicity, suggesting that Aβ toxicity in part is mediated via H2O2 

(Sagara et al., 1996). In PC12 cells resistant to Aβ, the mRNA protein levels 

plus activity of catalase and GSH-Px but not SOD were found to be elevated. 

The increase in the activity of the catalase and GSH-Px correlate with increased 

resistance of the cells to peroxide and Aβ toxicity (Sagara et al., 1996). 

The Aβ peptide induces H2O2 production (Behl et al., 1994), which is one of the 

major ROS. Both superoxide (Turrens 2003) and H2O2 (Cadenas and Davis, 

2000) are produced in the mitochondria. Inhibitors of enzymes that are involved 

in the production of superoxide did not affect Aβ toxicity in primary neuronal cell 

culture (Behl et al., 1994). The levels of superoxide were not substantially 

elevated upon exposure to Aβ (Zhang et al., 1996). This suggests that 

superoxide may not be a major contributor to Aβ toxicity. On the other hand Aβ 

induced cellular increase of H2O2 has been strongly correlated to Aβ toxicity 

(Behl et al., 1994). 

The H2O2 is an uncharged molecule, one of the more stable ROS and freely 

diffusible both between and within the cell. The H2O2 can be generated by 

dismutation of the superoxide anion by SOD (Fridovich 1997) or by direct action 

of enzymes such as monoamine dismutase and NADPH oxidase (Halliwell 

2001). The NADPH oxidase inhibitors can also inhibit Aβ toxicity, suggesting 

that Aβ increases H2O2 production via NADPH oxidase (Behl et al., 1994). In 

vivo studies have shown that Aβ induces an increase in the activity of H2O2 

generating enzyme MnSOD, and decreases H2O2 consuming enzymes catalase 

and glutathione peroxidase in rat brain neocortex mitochondria (Kaminsky et al., 

2008). This suggests that increased levels of H2O2 could be due to reduced 

antioxidant enzyme activities or levels.  

Catalase and GSH-Px degrade H2O2 in cells both inside and outside 

mitochondria (Halliwell and Gutteridge, 2007). The activity of both the enzymes 

was increased in cells resistant to Aβ toxicity, and cells with increased 

expression of catalase and GSH-Px were resistant to Aβ toxicity (Sagara et al., 

1996). Addition of catalase to the extracellular environment of cultured cells was 

found to be protecting against Aβ toxicity (Behl et al., 1994; Zhang et al., 1996). 

Catalase was found to be physically associated with senile plaques in human 
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brain sections from AD patients (Pappolla et al., 1992; Lovell et al., 1995). The 

H2O2 readily diffuses across the cell membrane; the catalase enzyme converts 

H2O2 to H2O and O2. The cytoprotective effect of catalase is due to the 

reduction of H2O2 both inside and outside the cells (Halliwell and Gutteridge, 

2007). Catalase directly binds Aβ in a cell free assay (Milton 1999), whereas 

GSH-Px does not bind Aβ (Habib et al., 2010). The binding of catalase to Aβ 

results in the deactivation of the H2O2 degrading activity of catalase (Milton 

1999). 

1.2.6 Catalase activity and its structure  

Catalase is an enzyme found in all living organisms that are exposed to oxygen. 

Catalase catalyzes the breakdown of two molecules of H2O2 to water and 

oxygen (Chelikani et al., 2004). One molecule of catalase can convert 40 million 

of H2O2 molecules to water and oxygen per second. Human catalase is a 

tetramer with four polypeptide chains each 500 amino acid long. It contains four 

porphyrin haem groups that help in converting H2O2 to water and oxygen 

(Chelikani et al., 2004). 

 

Catalase is found in the peroxisome, cytosol, mitochondria and other cellular 

organelles (Habib et al., 2010). Catalase binds Aβ with the interaction between 

catalase and Aβ involving the 25-35 region of Aβ and a specific domain in the 

wrapping loop of the catalase protein (residues 401-410) (Milton et al., 2001; 

Rensink et al., 2002). The region of catalase that interacts with Aβ is referred to 

as catalase Aβ binding domain (CAβBD). 

 

 

 

1.2.7 Catalase binding to different amyloid peptides  
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The Aβ 31-35 fragment is the smallest fragment that inhibits the H2O2 degrading 

activity of catalase (Milton 1999). Catalase can also bind the fibrillar Aβ 

containing residues 29-32, this binding can be inhibited by the Aβ 31-35 

fragment, suggesting an important role for the Ile residues at 31 and 32 of the 

Aβ peptide (Milton and Harris, 2009). The region of Aβ (25-35) that catalase 

binds to is a Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu 

sequence found in human IAPP residues 24-27, PrP fibrils with a Gly-Ala-Val-

Val sequence also binds catalase (Milton and Harris 2010). These results 

suggest that catalase recognizes a Gly-Ala-Ile-Leu–like sequence in amyloid 

fibril-forming peptides and binds not only to Aβ but also other amyloid peptides 

such as IAPP and PrP (Figure 1-6). This sequence similarity suggests that 

catalase can bind to IAPP, Aβ and PrP, which could be a target for anti-amyloid 

therapeutic development (Milton and Harris, 2010). 

 

Figure 1-6. The sequence of catalase that binds Aβ, PrP and IAPP. Scheme 

A, blue box represents the proposed binding of catalase and CAβBD binding to 

Aβ, PrP and IAPP based on experimental evidence obtained with catalase and 

CAβBD to Aβ peptides (Milton 1999; Milton et al., 2001; Milton and Harris, 

2009; Milton and Harris, 2010). Scheme B green box represents the alternative 
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binding arrangement which was based on the original experimental results 

obtained with Aβ and CAβBD (Milton et al., 2001). The black box highlights Aβ 

31-35, the smallest sequence of Aβ that can bind catalase. The Aβ 31-35 

peptide fragment inhibits Aβ 1-42 peptide binding to catalase (Milton 1999; 

Milton and Harris, 2009). 

 

1.2.8 Effect of inhibiting the catalase amyloid binding 

interaction on cells  

The Aβ peptide and fibrils both bind catalase and disrupts the ability of catalase 

to convert H2O2 to water and oxygen (Milton 1999). Inhibiting the interaction 

between catalase and Aβ could reduce H2O2 levels and increase cell viability. 

Benzothiazole aniline (BTA) derivatives with four ethylene glycol units (BTA-

EG4) and six ethylene glycol units (BTA-EG6) were identified as molecules that 

could generate a protein resistant surface coating on aggregated Aβ peptides to 

inhibit catalase amyloid interactions (Inbar et al., 2006, Habib et al., 2010). They 

are cell permeable, lack toxicity, chemically stable in an oxidizing environment, 

have intrinsic fluorescent properties and a capability of accessing the same 

compartments of cells as Aβ. The BTA analogs have high affinity for Aβ 

oligomers and fibers (Walsh et al., 1999; Maezawa et al., 2008). 

Cellular internalization of Aβ by endocytosis or by the non-endocytotic pathway 

results in accumulation of Aβ within cells, where the Aβ interacts with catalase 

in the peroxisomes, cytosol and other organelles. The binding inhibits the 

activity of catalase to breakdown H2O2 (Figure 1-7, pathway 1), BTA-EGx 

prevents catalase-amyloid interaction by forming protein resistant surface 

coating on aggregated Aβ. This results in amyloid free catalase which can 

breakdown H2O2 (Figure 1-7, pathway 2) (Habib et al., 2010). 
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Figure 1-7. Cellular interactions between Aβ and catalase. Cellular 

internalization of Aβ by endocytosis or by non-endocytotic pathway brings Aβ 

into contact with intracellular catalase. The Aβ binds catalase, which inhibits 

catalase activity to breakdown H2O2 (pathway 1). The BTA-EGX forms a protein 

resistant surface coating on aggregated Aβ, preventing catalase-amyloid 

interaction (pathway 2). This results in preserving catalase activity to breakdown 

H2O2, reducing OS and allowing cell survival (Habib et al., 2010). 

 

1.2.9 The KiSS-1 gene product kisspeptin shows sequence 

similarity with the catalase Amyloid-β binding site  

The Basic Local Alignment Search Tool (Altschul et al., 1990) was used by 

Milton (2011) to find peptides that share sequence similarity with catalase Aβ 

binding site. Results identified a KiSS-1 metastasis suppressor (KiSS-1) gene 

product as having similarity (Milton 2011; Milton 2013) (Figure 1-8). Kisspeptins 

(KP) or metastin are peptide products of the KiSS-1 gene, which was first 
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discovered by Lee et al., (1996). The KP (42-51) sequence was found to show 

similarity with CAβBD (401-410). The CAβBD binds the Aβ 25-35 region that 

shows sequence similarity with the PrP and amylin, which plays a major role in 

the pathology of CJD and T2DM (Milton and Harris 2010). Since, CAβBD binds 

amyloid peptides; the results suggested that KP could show similar binding 

interactions with the amyloid peptides, which was confirmed by Milton (2011). 

 

Figure 1-8. Alignment of KiSS-1 gene products with catalase and 

proposed amyloid peptide interactions. The alignment represents the 

sequence similarity between human KiSS-1 preproprotein sequence 

(NP_002247.3) and human catalase sequence (NP_001743.1) - The red box 

represents the sequence of KP, which binds to Aβ, PrP and IAPP. The blue and 

green boxes highlights the Gly-Ala-Ile-Ile region that binds catalase in schemes 

A and B respectively; the black box highlights Aβ 31−35, which inhibits Aβ 1−42 

binding to catalase. 

 

In a previous study, administration of KP-10 in young male rats had shown 

increase in SOD and catalase activities compared to control groups (Aydin et 

al., 2010). This suggests that KP indirectly has antioxidant properties, which will 

be investigated in the present study.
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1.3 Kisspeptin  

The KP peptide was discovered as a product of the metastasis suppressor gene 

in the human malignant melanoma (Lee et al., 1996). The KiSS-1 gene is 

located on chromosome 1 (1q32) and the gene codes for a 145 amino acid 

precursor protein (West et al., 1998). The 145 amino acid precursor is cleaved 

to 54 amino acids peptide (Figure 1-9), which can be further cleaved to yield 

14,13 and 10 amino acid carboxyl-terminal fragments (Kotani et al., 2001) 

(Figure 1-9). The KP-10 being the smallest biologically active form, which is 

known to stimulate the GPR-54 receptor (Kotani et al., 2001; Bilban et al., 

2004). The biologically active KP peptides belong to the RFamide family of 

peptides, which share a common Arg–Phe–NH2 motif at their C-terminus 

(Kotani et al., 2001). 

 

Figure 1-9. The cleavage of the 145 amino acid KP precursor. The KP 

precursor (145 amino acid form) is cleaved into KP-54 (68-121), which could be 

further cleaved to KP-14 (108-121), KP-13 (109-121) and KP-10 (112-121) 

(Roseweir and Millar 2009). 

 

1.3.1 The kisspeptin G-protein coupled receptor 54  

The KP peptides are natural ligands of the G-protein coupled receptor 54 (GPR-

54) (Kotani et al., 2001). The GPR-54 receptor shares 45 % identity with the 

galanin receptors (Lee et al., 1999). The GPR-54 receptor sequence was found 

to be highly conserved in humans and rodents (Clements et al., 2001). The 
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GPR-54 was found in the brain, stomach, small intestine, thymus, spleen, lungs, 

testis, ovary, kidney and fetal liver (Kotani et al., 2001; Clements et al., 2001). In 

the brain GPR-54 is expressed in the cerebral cortex, putamen, medulla, spinal 

cord, hippocampus and thalamus (Clements et al., 2001). High expression of 

GPR-54 is found in placenta, pancreas, pituitary and spinal cord, suggesting a 

role in the regulation of endocrine function (Kotani et al., 2001). This was 

confirmed by administering KP in rats, which resulted in stimulation of oxytocin 

release (Kotani et al., 2001). In mice the GPR-54 receptor is essential for the 

development of the reproductive system (Funes et al., 2003), suggesting that 

KP peptides regulate reproductive functions. 

When KP binds to the GPR-54 receptor, the receptor couples to the Gq/11 

class of G-proteins to activate phospholipase C, which hydrolyzes phosphatidyl 

bisphosphate in the cell membrane to diacyl glycerol (DAG). DAG activates 

protein kinase C and inositol triphosphate (PI3), which modulates intracellular 

calcium. This leads to the phosphorylation of ERK1/2 and p38MAPK, cellular 

reorganization of stress fibers and induction of focal adhesion kinase to inhibit 

cell movement, which is thought to be important for inhibition of cancer 

metastasis (Hori et al., 2001; Kotani et al., 2001).  

1.3.2 Kisspeptin also activates neuropeptide FF receptors  

The KP peptides also activate two neuropeptide FF (NPFF) receptors, G protein 

coupled receptor 147 (NPFF1) and G protein coupled receptor 74 (NPFF2) 

(Lyubimov et al., 2010; Oishi et al., 2010). The NPFF peptide was the first 

identified mammalian RF amide peptide (Panula et al., 1996) originally isolated 

from bovine and characterized as a pain modulating peptide with anti-opioid 

activity (Panula et al., 1999). The NPFF sequence is cleaved from a precursor 

protein encoded by the NPFF gene and activates two different receptors NPFF1 

and NPFF2. Endogenous KP-13 and KP-14 have been shown to activate the 

NPFF2 receptor (Lyubimov et al., 2010). The KP peptide shares a C-terminal 

dipeptide RF-NH2 with NPFF, which activates the NPFF2 receptor and it was 

suggested that KP has the potential to mediate physiological effects and 

nociception in man via the NPFF2 pathway (Lyubimov et al., 2010). The actions 

of KP, mediated via NPFF receptors (Milton 2012), can be inhibited by the 

NPFF receptor antagonist 2-Adamantanecarbonyl-RF-NH2 (RF9) (Simonin et 
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al., 2006) but not by the GPR-54 receptor antagonist Ac-[(D)-A]-NWNGFG-[(D)-

W]-RF (KP234) (Roseweir et al., 2009). 

1.3.3 Kissorphin  

Cleavage of KP peptide by matrix metalloproteinase (MMP) to remove the 

amidated C-terminal tripeptide Leu-Arg-Phe-NH2 of the KP-10 sequence 

abolishes the activation of GPR-54 by KP peptides (Takino et al., 2003). The 

resultant peptide is left with a C-terminal glycine, which could be alpha 

amidated, a feature of many biologically active neuropeptides. This C-terminally 

amidated peptide is called kissorphin (KSO) (Figure 1-10). 

 

Figure 1-10. Comparison of kisspeptin, kissorphin and neuropeptide FF 

sequences. Sequence similarity between the biologically active KP-13, KP-10, 

KSO and NPFF peptides (Milton 2012). 

The sequence similarity between KP, KSO and NPFF explains how KP can 

stimulate NPFF receptors and the NPFF like biological activity of KSO (Milton 

2012). 

1.3.4 Kisspeptin pathway  

The KP peptide not only works as a metastasis suppressor but also plays a 

pivotal role in regulating the hypothalamic-pituitary-gonadal (HPG) axis. The KP 

peptide acts on hypothalamic GnRH neurons to stimulate GnRH release 

(Navarro 2012). The majority of GnRH neurons express the GPR-54 receptor, 

which KP peptides activate (Kotani et al., 2001). The HPG axis is under the 

control of steroid hormone feedback from the gonads, the steroid levels 

fluctuate during the menstrual cycle in females (Moenter et al., 2003). Estradiol 

feedback controls GnRH release, but the GnRH neurons only express estrogen 
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receptor β (ERβ) and not estrogen receptor α (ERα) (Shivers et al., 1983), ERβ 

does not play a role in the feedback. Therefore neurons upstream of the GnRH 

neurons, which express ERα, mediate the steroid effects on GnRH neurons. 

The KP neurons express ERα, progesterone receptor (PR) and androgen 

receptor (AR) and have the potential to relay the estradiol feedback effect on 

the GnRH neurons (Rance 2009). The KP neurons reside in the anterioventral 

periventricular nucleus (AVPV), the periventricular nucleus (PEN), the 

anterodorsal preoptic nucleus (ADP), the medial amygdala and the arcurate 

nucleus (ARC) in mouse (Gottsch et al., 2004). In rat and mouse the vast 

majority of GnRH neurons express GPR-54 (Irwig et al., 2004). The KP 

immunoreactive fibers make close contact with the GnRH neuronal cell bodies 

(Clarkson and Herbison, 2006) in the preoptic area and median eminence. The 

KP neurons form a source of KP ligands to stimulate GPR-54 expressed on the 

GnRH neurons in the hypothalamus. Binding of KP to the GPR-54 stimulates 

the GnRH neurons to release GnRH in the hypothalamus. GnRH release 

stimulates the release of gonadotropins - luteinizing hormone (LH) (Navarro et 

al., 2004) and follicle stimulating hormone (FSH) (Navarro et al., 2005) in the 

pituitary. The gonadotropins further stimulate the gonads to secrete estrogen, 

progesterone and testosterone, which lead to steroid negative or positive 

feedback (Navarro 2012). 

1.3.5 Sex steroids regulate positive and negative feedback of 

KiSS-1 gene 

In rodents, estradiol stimulates KiSS-1 expression in the AVPV, which in turn 

stimulates GnRH neurons to secrete GnRH resulting in positive feedback 

regulation of the HPG axis. The estradiol in the ARC inhibits KiSS-1 expression 

causing reduction in GnRH secretion, and resulting in negative feedback 

regulation (Smith et al., 2005; Smith 2008) (Figure 1-11). In mouse and rat, 

KiSS-1 mRNA expression is higher in the AVPV region of females than in males 

during puberty (Clarkson and Herbison et al., 2006). The increase in the 

number of KiSS-1 neurons in the AVPV region may contribute to the activation 

of GnRH neurons during puberty. Kisspeptin signalling appears critical for mice 

and men to reach puberty, mutations in the GPR-54 receptor results in 



Chapter 1- Introduction 

hypogonadotropic-hypogonadism (De Roux et al., 2003), whereas treatment 

with KP advances the onset of puberty (Navarro et al., 2004). 

 

 

Figure 1-11. The positive and negative feedback inputs in HPG axis. The 

KP neurons express ERα, AR and PR and generate KP, the ligand for the GPR-

54 located on the GnRH neurons. The binding of the ligand to the receptor 

stimulates GnRH release in the hypothalamus. The GnRH stimulates the 

release of LH and FSH in the anterior pituitary, LH and FSH in turn stimulates 

the gonads to release estrogen, testosterone and progesterone. Estrogen 

positively regulates the neurons in the AVPV region to express KiSS-1 gene, 

whereas it negatively regulates the neurons in the ARC to inhibit KiSS-1 

expression. These actions are mediated by ERα receptors on KP neurons 

(Roseweir and Millar 2009).  

 

The removal of sex steroid negative feedback results in increased levels of LH 

and FSH, which occurs post menopause. This increase in LH and FSH levels 

result in increased gene expression of GnRH and cellular hypertrophy of a 
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subpopulation of neurons in the human infundibular nucleus, which is the 

homolog of arcurate nucleus in other species (Rance and Young, 1991; Rance 

and Uswandi, 1996). 

1.3.6 The role of kisspeptin in passive avoidance learning in 

mice  

A recent study has shown that KP-13 could play a role in passive avoidance 

learning and memory consolidation (Telegdy and Adamik, 2013). In this study 

the effect of adrenergic, serotonergic, cholinergic, dopaminergic and GABA-A-

ergic and opiate receptors plus nitric oxide were investigated in mice. Receptors 

were blocked using various neurotransmitter antagonists including the α-

adrenergic receptor antagonist phenoxybenzamine (PHB); the α2-adrenergic 

receptor antagonist yohimbine (YO); the β-adrenergic receptor antagonist 

propranolol (PROP); the mixed 5-HT1/5-HT2 serotonergic receptor antagonist 

methysergide (MET); the nonselective 5-HT2 serotonergic receptor antagonist 

cyproheptadine (CYPR); the nonselective muscarinic ACh receptor antagonist 

atropine (ATR); the D2, D3, D4 dopamine receptor antagonist haloperidol (HAL); 

the γ-aminobutyric acid subunit A (GABAA) receptor antagonist bicuculline 

(BIC); the nonselective opioid receptor antagonist naloxone (NAL); and the nitric 

oxide synthase inhibitor nitro-L-arginine.  

The HAL and NAL did not block the effect of KP-13 on passive avoidance 

learning and memory consolidation suggesting no involvement of dopaminergic 

or opioid receptors in the response (Telegdy and Adamik, 2013). The PHB, YO, 

PROP, MET, CYPR, ATR, BIC and nitro-l-arginine inhibited the action of KP-13 

on passive avoidance learning. This suggests that the action of KP-13 at least 

on passive avoidance learning and memory consolidation is partly mediated 

through the interaction of α2-adrenergic, β-adrenergic, 5-HT2 serotonergic, 

muscarinic cholinergic and GABA-A-ergic receptor systems plus nitric oxide 

(Telegdy and Adamik, 2013).
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1.3.7 Kisspeptin’s antidepressant like effect  

A recent study (Tanaka et al., 2013) has shown an anti-depressant like effect of 

KP-13 in mice. The potential involvement of adrenergic, serotonergic, 

cholinergic, dopaminergic and gabaergic receptors in KP-13 mediated 

antidepressant like effect was investigated in a modified forced swimming test 

(FST) in mice. The forced swimming test (FST) revealed that KP-13 reversed 

immobility, climbing and swimming times, which represents the antidepressant 

like effect of KP-13. The PHB, YO and CYPR prevented these effects of KP-13, 

suggesting that the antidepressant like effect of KP-13 is mediated at least in 

part by α2-adrenergic and 5-HT2 serotonergic receptors (Tanaka et al., 2013). 

The α1/α2β-adrenergic receptor antagonist, prazosin (PR), PROP, MET, ATR, 

HAL and BIC did not have an effect on KP-13 mediated antidepressant like 

effect in mice, suggesting no role for the α1-adrenergic, β-adrenergic, 5-HT1 

serotonergic, muscarinic acetylcholine, dopaminergic or GABA-A-ergic systems 

in this response (Tanaka et al., 2013). 

1.3.8 Kisspeptin and Alzheimer’s disease  

In AD, disease specific changes are seen in the neuroendocrine systems (Bao 

et al., 2008; Tortosa and Clow 2012). The HPG axis changes profoundly with 

aging and the pathology of AD, CJD and T2DM is also associated with changes 

in the HPG axis (Verdile et al., 2008; George et al., 2010). The KP peptides are 

the major regulator of the HPG axis; the level of KP changes during menopause 

(Rance 2009) and notable sex differences in hypothalamic neurodegeneration 

is seen in the elderly (Rance 2009; Schultz et al., 1996). This sex dependent 

neurodegeneration is suggested to be due to impaired neuroendocrine function. 

A recent study has shown that KP neurons are likely to be among the earliest to 

undergo aging process while participating in reproductive decline in mice 

(Zhang et al., 2014). The onset of AD is usually post-menopausal, which could 

make women more susceptible to AD, raising the possibility that changes in 

reproductive function could play a role in AD (Bonomo et al., 2009). Changes in 

the expression of ERα and ERβ in the infundibular nucleus and hypothalamus 

have been related to the occurrence of AD (Hestiantoro and Swaab, 2004). The 

estrogen receptors regulate KP levels (Patisaul et al., 2012); this suggests that 

KP could play a role in AD pathology. Sex steroids such as estrogen and 
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testosterone were found to be neuroprotective in AD, but the level of sex steroid 

declines during aging (Pike et al., 2009). Andropause in males is associated 

with decreased memory function suggesting that changes in the HPG axis may 

influence memory function (Fuller et al., 2007). This suggests that changes in 

the reproductive hormones may play a major role in AD pathology. 



 Aim 

1.4 Aim  

Two major events occur during AD progression (1) accumulation of Aβ and (2) 

increased OS. During OS the cells fall short of antioxidant defences, partly due 

to interaction of Aβ with antioxidant enzymes such as catalase. Here the key 

unanswered question is whether protection against Aβ by catalase is via its 

antioxidant activity or Aβ binding activity or both. The overexpression of the 

catalase gene in a human neuronal SH-SY5Y cell line model was used to 

investigate the mechanism of catalase protection against Aβ toxicity. The KiSS-

1 protein is not an antioxidant enzyme and therefore if overexpression of KiSS-1 

were neuroprotective this would suggest an Aβ binding action was important. 

The aim of the present study was to create and characterise a SH-SY5Y human 

neuroblastoma cell line that is resistant to Aβ and OS. To achieve this, human 

catalase or KiSS-1 genes were overexpressed in human neuroblastoma SH-

SY5Y cells. Both the cell lines were characterized and the mechanism of 

neuroprotection was investigated. 
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2.1 Binding assay to test peptides binding to Amyloid-β  

The NUNC MaxiSorp™ high protein-binding capacity polystyrene 96 well 

ELISA plates were coated with test peptides (1 µg/ml) in carbonate buffer The 

carbonate buffer was prepared using 15 mM Na2CO3, 35 mM NaHCO3, 0.01% 

NaN3 (w/v) pH 9.6. The test peptides in carbonate buffer were incubated 

overnight at 4oC on the ELISA plate. The unoccupied sites on the plate were 

blocked using 0.2% (w/v) casein in carbonate buffer for 30 mins. Biotinylated 

Aβ (Bachem) was prepared in assay buffer (50 mM Tris-HCl, pH 7.5 plus 0.1% 

(w/v) Bovine serum albumen Cohn Fraction V (BSA), 0.1% (v/v) Triton X-100, 

0.01% (w/v) NaN3) and was incubated with test peptides on the ELISA plate for 

2 hrs. After the incubation, the ELISA plates were washed thrice with assay 

buffer to remove unbound material. An alkaline phosphatase polymer-

streptavidin conjugate (0.5 µg/ml) was added to the plate and incubated for 2 

hrs at 37oC. The plates were washed thrice to remove the unbound material 

after which the p-nitro phenyl phosphate (PNPP) substrate (1.0 mg/ml PNPP 

and 0.2 ml Tris buffer tablets dissolved in water) (Voller et al., 1976) 100 µl/well 

was added. The absorbance at 405 nm was determined using an ELISA plate 

reader. 

2.2 Cloning 

2.2.1 Preparation of chemically competent cells  

The E.coli top10 cells (Invitrogen) were grown overnight in 5 ml Lysogeny broth 

(LB) media. The next day this culture was diluted (1 in 10) in 50 ml of fresh LB 

media and cells were grown until an OD at 600 nm of 0.4 was reached. The 

media was centrifuged for 10 mins at 3000 rpm at 4oC. The supernatant was 

removed and the pellet was resuspended in chilled TSS (transformation and 

storage solution) buffer (0.0125 M PEG (Polyethylene glycol) 8000, 1 M MgCl2, 

2.5 ml DMSO (Dimethyl sulphoxide), 50 ml LB). 100 µl of the resuspended 

pellet was added to each eppendorf and stored at -80oC.
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2.2.2 Polymerase chain reaction amplification of catalase and 

KiSS-1 cDNA clones. 

The cDNA clones for the human catalase gene (NM_001752.3) and the human 

KiSS-1 gene (NM_002256.2) were obtained from Origene and the genes were 

amplified from the cDNAs (Origene) using the polymerase chain reaction (PCR) 

with the following primers (Table 1) (Invitrogen). 

Table 1. List of sequencing primers 

 

Table 2. The PCR conditions used were as follows  

Step Description Temperature Time 

1 Initiation temperature 95oC 1 minute 

2 Denaturation temperature 95oC 30 seconds 

 

3 Annealing temperature for 

catalase gene 

60oC 30 seconds 

4 Annealing temperature for 

KiSS-1 

58oC 30 seconds 

Gene Primer 

Direction 

Primer Sequence (with 

restriction site in red) 

Restriction 

Enzyme 

Catalase Forward 5’ AAGCTTATGGCTGACAGCC 

GGGAT 3’ 

Hind III 

Catalase Reverse 5’ GCGGCCGCCAGATTTGC 

CTTCTCCCTTGC 3’ 

Not I 

Kisspeptin Forward 5’ TTAGGATCCATGAACTC 

ACTGGTTTCTTGGCA 3’ 

Bam HI 

Kisspeptin  Reverse 5’ ATACTCGAGGCCCCGCC 

CAGCGCTTCT3’ 

Xho I 
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5 Elongation temperature 72oC 45 seconds 

6 Repeat 1-5 for 30 cycles   

The PCR products were purified using a Qiagen miniprep kit. 

2.2.3 Restriction Digestion  

After amplification of the gene the restriction enzyme digestion was set up as 

follows, 500 µg of plasmid DNA was restriction digested using 5 units of 

restriction enzyme - Not I and Hind III for catalase gene, Bam HI and Xho I for 

the KiSS-1 gene. The genes were purified using a Qiagen PCR purification kit. 

The plasmid pcDNA™4/TO/myc-His A (Invitrogen) (Figure 2-1) was also 

digested with the restriction enzymes to create the sticky ends. The plasmid 

was gel purified (0.5% agarose gel) using Qiagen gel purification kit. 

 

Figure 2-1. Vector map of pcDNA™4/TO/myc-His (Invitrogen).
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2.2.4 Ligation  

Restriction enzyme digested catalase and KISS-1 PCR products and the vector 

were ligated together using 5 units of T4 DNA ligase (Invitrogen) at 16oC for 2 

hrs. The ligation mixture was prepared in 1:3 ratio of the vector (3 µls) to the 

gene (9 µls).  

2.2.5 DNA sequencing 

To confirm the DNA sequence of the gene cloned, the DNA sample was 

sequenced at UCL (Scientific Support Services at the Wolfson Institute for 

Biomedical Research and the UCL Cancer Institute). The DNA sequenced data 

was analysed using bioinformatics programmes Expasy translate and BLAST. 

2.2.6 Agarose gel electrophoresis of DNA samples 

A 1% agarose gel was prepared by dissolving 0.5 mg of agarose (Promega) in 

50 ml of 1X Tris-Borate-EDTA (TBE) buffer 5X TBE (1.1 M Tris; 900 mM boric 

acid; 25 mM EDTA; pH 8.3). The solution was heated to a boiling point in a 

microwave. Once cooled to room temperature the solution was poured into an 

electrophoresis tray (with an appropriate size comb) and allowed to set at room 

temperature for 30 min. DNA sample was mixed with loading dye (6 x loading 

dye, Invitrogen) and was loaded into the wells of the gel. The electrophoresis 

was performed at 140 volts in 1X TBE buffer for 45 mins. The gel was 

transferred to a tray containing ethidium bromide 0.5 µg/ml for 5 mins. To 

observe the bands the gel was visualised under ultraviolet light using a 

transilluminator. 

2.3 Cell Culture  

A frozen aliquot of the human neuroblastoma SH-SY5Y cell line (Biedler et al., 

1978) was thawed and was added to 10 ml of a 1:1 mixture of Dulbecco’s 

modified Eagle’s medium (DMEM) and HAM’s F12 with Glutamax (Invitrogen). 

The media used for cell culture was prepared by adding 10% v/v foetal calf 

serum (Sigma), 1% non-essential amino acids, penicillin (100 units/mL), and 

streptomycin (100 mg/mL). The media with the cells was centrifuged at 1500 

rpm for 5 mins at 4oC. The supernatant was discarded and the pellet was 
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resuspended in fresh media. The cells were grown in 25 cm2 flasks at 37oC and 

5% v/v CO2. Media was changed every 3 days, when the cells reached 

confluency they were split into two flasks and were maintained at the same 

conditions as mentioned above. 

2.3.1 Transfection  

SH-SY5Y cells (1.2x106/ml) were plated into a 6 well plate; the cells were 

allowed to settle down for 24 hrs, when the cells were 40% confluent, the 

transfection mix was added to the cells as below. 

2.3.2 Transfection mixture preparation  

The transfection mixture was prepared by adding 2.5 µg plasmid DNA in sterile 

dH2O diluted with 188 µl DMEM (serum and antibiotic free) + 12.5 µl (25 µg) 

lipofectamine diluted with 313 µl DMEM in a sterile polypropylene tube. The 

transfection mix was vortexed for 10 seconds and incubated at room 

temperature for 5 to 10 mins. The media from the 6 well plate was removed and 

replaced with serum and antibiotic free media. The transfection mixture was 

dispensed drop wise into each well with gentle shaking. Afterwards the plate 

was incubated at 37oC/5%v/v CO2 for 4 hrs. After this incubation the media was 

replaced with fresh media and incubated for 24 hrs. Fresh media with the 

selecting agent zeocin (100 µg/ml) was added after a further 24 hrs, to select 

the cells with the vector. The media was refreshed twice a week; confluent cells 

were transferred into a bigger flask. 

To create tetracycline inducible cells, the double transfected (pcDNA™6/TR and 

pcDNA™4/TO/myc-His) cells were cultured in a medium containing zeocin (100 

µg/ml) and blasticidin (5 µg/ml) for 4 weeks. 

2.3.3 Preparation of mammalian protein lysate  

The total protein lysate was made from 1x107 cells. The cells were washed with 

ice cold phosphate buffered saline (PBS: 137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4) (to remove media) and centrifuged at 1500 rpm for 

5 mins at 4oC. The pellet was resuspended (until no clumps were seen) in cell 

lysis buffer containing 100 µl 1x NP-40 buffer (1% v/v Nonidet P-40 [Perbio], 20 
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mM Tris-HCl pH 7.8, 150 mM NaCl, 2 mM MgCl2 and 1mM EDTA) containing 

protease inhibitors (Complete protease inhibitor cocktail tablet). After 30 mins 

incubation at 4oC the nuclei and cell debris were removed by centrifuging at 

1500 rpm for 5 mins at 4oC. The supernatant (protein lysate) was transferred 

into a fresh tube and stored at -80oC. The protein was quantified using a 

Bicinchoninic acid assay (BCA) (Sigma). 

2.3.4 SDS-PAGE 

After the quantification of the proteins using BCA, they were separated by SDS-

PAGE using the 10% w/v resolving gel constituted as follows: 

 5 ml acrylamide/bisacrylamide 29:1 (30% w/v) (Protogel® National 

Diagnostics) 

 3.75 ml resolving buffer (1.5 M Tris-HCl pH 8.8, 0.4% w/v SDS) 

 6.25 ml ddH2O 

 15 µl N,N,N’,N’- Tetramethylethlenediamine (TEMED) 

 150 µl 10% w/v ammonium persulphate (APS) solution. 

The 4% w/v stacking gel was constituted as follows: 

 1 ml acrylamide/bisacrylamide (29:1) (30%) 

 1 ml stacking buffer (0.5 M Tris-HCl pH 6.8, 0.4% SDS w/v) 

 5 ml ddH2O 

 15 µl TEMED 

 150 µl of 10% w/v APS solution 

The polymerised gel was transferred to the running tank and filled with 1X gel 

running buffer (23 mM Tris HCl pH 8.3, 192 mM glycine, 0.1% w/v SDS). The 

loading samples were prepared by mixing 15 µl of the protein lysate (45 µg/ml) 

and 15 µl of 2X Laemmli sample buffer (4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromphenol blue, 0.125 M Tris-HCl, pH 6.8) (Sigma) 

and the samples were heated to 95oC for 5 min. The samples were loaded and 

the gel was run at 140 V for 45 mins.
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2.3.5 Western blotting and antibody detection  

After SDS PAGE the proteins were transferred to nitrocellulose membrane in 1X 

transfer buffer (25 mM Tris-HCl pH 8.3, 192 mM glycine, 20% v/v methanol, 

0.1% w/v SDS) at 200V for 30 mins. After transfer the membrane (Protran 

nitrocellulose transfer membrane - Whatman) was blocked in 10% w/v Marvel in 

10 ml PBS and 0.1% v/v tween-20 and was left at 4oC overnight (blocking 

solution). Next day the membrane was incubated with the primary antibody for 1 

hr at room temperature. After incubation the membrane was washed thrice 

(each wash 5 min) with PBS, 0.1% v/v Tween-20. The membrane was then 

incubated with horseradish peroxidase (HRP)-conjugated secondary antibody at 

a 1:1000 dilution in the blocking solution for 1 hr at room temperature. After 

incubation the membrane was washed thrice with PBS (0.3% v/v Tween -20) 

and then thrice with PBST (0.1% v/v Tween-20) and the membrane was ready 

for development. 

2.3.6 Enhanced chemiluminescence (ECL) development  

For the detection of the HRP secondary antibody, Super Signal® West Femto 

chemiluminescence system (Pierce Biotechnology) was used. Each reaction 

reagent was mixed in a 1:1 ratio before incubating with the membrane for 5 

mins at room temperature. The membrane was then sandwiched between two 

sheets of clear plastic and developed using a UVP imaging system.  

2.3.7 Western blot stripping buffer  

Stripping buffer was used to remove the primary and secondary antibody of KP 

or catalase and to reprobe the nitrocellulose membrane with rabbit-actin primary 

antibody. The stripping buffer was prepared using 200 mM glycine, 3.4 mM 

SDS, 0.001% (v/v) tween-20 was added to 800 ml distilled water, after the pH 

was adjusted to 2.2 distilled water was added to bring up the volume to 1 L. 
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2.3.8 Membrane incubation  

The stripping buffer was added to the membrane till the membrane was 

completely covered by the buffer. The membrane was incubated at room 

temperature for 5-10 mins on a shaker. After the incubation the buffer was 

replaced with fresh stripping buffer and was allowed to incubate for 5-10 mins. 

The buffer was discarded and PBS was added to the membrane for 10 mins, 

this step was repeated twice. After washing the membrane with PBS, TBST (tris 

buffered saline and tween 20) was added to the membrane and incubated for 5 

mins, this step was also repeated twice. After washing with TBST the 

membrane was blocked with 5% (w/v) marvel and was probed with actin 

primary antibody. 

2.4 Catalase activity  

The activity of catalase was measured according to the method described by 

Góth (1991); the cell lysates for the activity assay were prepared from 1x107 

cells. The quantification of the protein in the cell lysates was determined by 

using nanodrop, 50 µg of the cell lysate was used to measure the activity of 

catalase using 10 mM H2O2, PBS and 32.4 mM ammonium molybdate at 405 

nm. When H2O2 and ammonium molybdate are added to the cell lysate, the 

catalase breaks down H2O2, which prevents the reaction between H2O2 and 

ammonium molybdate. In the absence of catalase, H2O2 reacts with ammonium 

molybdate and the product of the reaction is visibly seen as a yellow colour and 

the absorbance can be measured at 405 nm. To ensure the specificity of the 

assay, the activity of the catalase enzyme was inhibited by an irreversible 

inhibitor of catalase activity 3-Amino-1,2,4-triazole (3-AT) (Margoliash and 

Novogrodsky, 1958) (5 mM). The cell lysates were incubated with 3-AT 

overnight to allow the inhibition of catalase enzyme activity. Inhibition of 

catalase activity by 3-AT suggests that the breakdown of H2O2 was due to 

catalase. Activity was calculated from a standard curve (0 - 100 kU/l) using 

purified human catalase (EC 1.11.1.6) from human erythrocytes of known 

activity. Activity was expressed as U/mg protein (Milton 2001; Milton 2008). 
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2.5 RNA extraction  

To extract the total RNA from the SH-SY5Y cells an RNeasy® Mini Kit (Qiagen) 

was used. In accordance with the manufacturer’s instructions 5x106 cells were 

harvested, washed once with PBS and the cell pellet was resuspended in 600 µl 

RLT buffer. The cell pellet was loosened thoroughly by flickering the tube 

followed by vortexing until no clumps were visible. The lysate was homogenized 

by vortexing for 1 min. An equal of 70% (v/v) ethanol was added to the 

homogenized lysate and was mixed by pipetting. The sample was applied to an 

RNeasy® spin column in a collection tube and centrifuged at 15,000 x g for 15 

sec. After discarding the supernatant, the RNeasy® spin column was washed 

once with 700 µl RW1 buffer (15,000 x g for 15 seconds) and twice with 500 µl 

RPE buffer (15,000 x g for 15 seconds). Next, the RNeasy® spin column was 

placed in a 1.5 ml collection tube, 50 µl of RNase free water was added directly 

to the spin column membrane and centrifuged at 15,000 x g for 1 mins to elute 

the RNA. The total RNA concentration was determined by measuring the 

absorption at 260 nm using the nanodrop spectrophotometer. The integrity of 

the RNA was checked on a 0.5% (w/v) agarose gel. 

2.5.1 Reverse transcriptase and cDNA synthesis 

The reverse transcription for the cDNA synthesis was carried out using 

QuantiTect® Reverse transcription Kit (Qiagen). In accordance with the 

manufactures’ instructions, the template RNA was thawed on ice while the 

gDNA wipeout buffer, Quantiscript® reverse transcriptase, Quantiscript® RT 

buffer, RT primer mix and RNase free water were thawed at room temperature. 

The genomic DNA elimination reaction was prepared on ice by mixing 12 µl 

template RNA with 2 µl gDNA wipeout buffer. The reaction was brought to a 

total volume of 14 µl using RNase free water. The mix was incubated for 2 mins 

at 42oC and immediately placed back on ice. Next, the reverse transcription 

master mix was prepared on ice, composing 1 µl Quantiscript® reverse 

transcriptase, 4 µl Quantiscript® RT buffer (5X) and 1 µl RT primer mix. The 

entire (14 µl) gDNA elimination reaction was added to the reverse transcription 

master mix. The reverse transcription reaction (RT reaction) was first incubated 
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at 42oC for 15 mins followed by incubation at 95oC for 3 min, to inactivate 

Quantiscript® reverse transcriptase. The cDNA sample was stored at -20oC. The 

RT-PCR was used to qualitatively detect gene expression using the prepared 

cDNA. The cDNA prepared was used to detect the expression levels of catalase 

and KiSS-1 gene in SH-SY5Y cells. To determine the expression of the genes, 

cDNA from the cells was used as a template for the PCR. The PCR conditions 

used were same as those used for the amplification of the respective genes 

(Using same primers for the catalase and KiSS-1 as described in section 2.2.2.) 

2.6 Immunohistochemistry  

Pons sections from a 72-year-old male with AD (Cat No: ab4586; Lot No: 

B506287) and a 26-year old normal male (Cat No: ab4316; Lot No: A504234) 

and BAM-10 mouse anti-Aβ antibody were obtained from Abcam PLC, 

Cambridge, UK. Rabbit anti-KP 45-54 antiserum was purchased from Bachem 

AG, Switzerland. Goat anti-mouse Alexa-Fluor 568 and goat anti-rabbit Alexa-

Fluor 488 were purchased from Chemicon, UK. The VECTASHIELD® mounting 

media was purchased from Vector laboratories Ltd, UK. The CAT-505 mouse 

anti-catalase antibody, alkaline phosphatase conjugated goat anti-rabbit IgG, 

alkaline phosphatase conjugated anti-mouse IgG and all other chemicals were 

purchased from Sigma-Aldrich, UK. 

The Pons tissue sections used were 5 µM in thickness, which were pre-

mounted and paraffin embedded. The sections used had been diagnosed and 

examined by a licensed pathologist and were ethically obtained. To remove the 

paraffin, the sections were dipped in xylene, 2x5 min. The slides were hydrated 

with 100% ethanol, 2x3 min. The slides were further hydrated with 95% ethanol, 

1 min. The slides were rinsed with distilled water and were blocked using 10% 

(v/v) goat serum for 1 hour. After blocking the sections, they were incubated 

with the primary antibody at 1:1000 dilutions at 4oC overnight. Next day, the 

sections were washed 3x5 mins with PBST before the secondary antibody was 

added at 1:500 dilution for 1 hour. The sections were washed 3x5 mins with 

PBST and cover slips were mounted with Vectashield® Mounting Media. 
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2.7 Immunocytochemistry  

The SH-SY5Y cells with vector alone and cells overexpressing the catalase and 

the KiSS-1 gene were plated in a six well plate, the plate was left in the 

incubator overnight at 37oC and 5% CO2. The cells were washed with media 

(DMEM) without serum followed by 2x PBS washes. The cells were fixed using 

4% (w/v) paraformaldehyde followed by 3 washes with PBS. To permeabilize 

the cells, the cells were treated with ice-cold methanol for 30 min and then 

washed 3x with PBS. To prevent the non-specific binding of the primary and the 

secondary antibody to the plate, the plate was blocked with PBS-BSA for 15 

mins and was washed 3x with PBS. The cells were incubated with the primary 

antibody in PBS-BSA for 1 hour. The cells were washed thrice with PBS before 

adding the secondary antibody in PBS-BSA and incubating for 30 mins in the 

dark. The cells were washed 3x PBS and were incubated with 100 µg/ml RNase 

A for 20 mins at 37oC. After washing the cells thrice with PBS, the cells were 

treated with TO-PRO® - 3 Iodide (642⁄661; Invitrogen) for 20 min. The cells were 

washed 3x with PBS and visualized under the confocal microscope. 

2.8 Confocal Microscopy  

The images were acquired by sequential scanning using a Leica TCS SP2 

confocal system (Leica Microsystems, Milton Keynes, UK) with a 63× ceramic 

dipping objective. A 488 nm laser was used for excitation of Alexa-Fluor 488 

labelled goat anti-rabbit IgG, while a 543 nm laser was used for Alexa-Fluor 568 

labelled goat anti-mouse IgG excitation and a 633 nm laser for the TO-PRO® - 3 

Iodide excitation. 

2.9 Cell viability assay  

To determine the viability of the cells the MTT assay was used. The cells were 

plated into a 96 well plate (tissue culture treated). The plate was incubated for 

24 hrs, allowing the cells to adhere to the plate. The neurotoxins were added to 

the plate and incubated for 2-4 hrs at 37oC. After incubation MTT (5 µg/ml) 50 

µl/well was added. The plate was incubated for 3-4 hrs until purple crystals 



Chapter 2 - Methods 

appeared. Once the purple colour was observed, the crystals were dissolved 

using the solvent (50 µl/well) (80% v/v DMSO and 20% v/v ethanol). The plate 

was read using an MTT plate (absorbance 540-650 nm) reader. Trypan blue 

(0.4% w/v) was used to confirm the viability of cells exposed to Aβ. The cells 

were counted and the percentage of cells alive calculated as those cells that 

excluded the trypan blue dye, while dead cells were stained blue. 

2.10 Data analysis 

All data are expressed as means ± s.e.m. For cytotoxicity experiments data are 

expressed as percentage dead (trypan blue stained) cells or percentage control 

cells MTT reduction. Statistical analysis was performed by one-way analysis of 

variance (ANOVA) for more than two groups of test samples or students-t test 

using GraphPad Prism software (version 6). Post-hoc analysis of ANOVA data 

was carried with Tukey or Dunnett multiple comparison based on the 

recommendations of GraphPad Prism software for the data sets concerned. For 

all experiments a P value of < 0.05 was considered statistically significant. The 

data shown is the best representation of the means of the biological repeats. 
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3.1 Introduction  

Catalase binding to Aβ has previously been characterized (Milton 1999; 

Rensink et al., 2002). Catalase was shown to have an Aβ binding domain, 

which binds Aβ, using an antisense peptide approach (Milton et al., 2001). 

Peptides that share sequence similarity with the catalase Aβ binding domain 

could also bind Aβ (Milton et al., 2001). Kisspeptin (KP) shares sequence 

similarity with catalase Aβ binding domain, and has been shown to bind Aβ 

(Milton 2011; Milton 2013). Compounds that bind amyloid peptides can 

potentially modify aggregates in the brain (Novick et al., 2012). One of the 

characteristics of an amyloid peptide is its ability to interact with Congo red 

(Buxbaum and Linke, 2012). Thioflavin T is another classic marker for the 

detection of amyloid fibrils. Thioflavin T and Congo red have similar binding 

sites on an amyloid fibril (Groenning 2010). Thioflavin derivatives such as BTA-

EGx inhibit catalase binding to Aβ (Habib et al., 2010). Therefore the binding of 

biotinylated-Aβ to KP was determined plus the effect of Congo red on 

biotinylated-Aβ binding to KP. 

An irreversible inhibitor of catalase activity, 3-AT was reported to bind catalase 

and inhibit the ability of catalase to breakdown H2O2 (Margoliash and 

Novogrodsky, 1958). Another compound BTA-EG4 can bind Aβ and inhibit the 

catalase – amyloid interaction (Habib et al., 2010); KP- 45-50 inhibits Aβ toxicity 

(Milton 2011). Therefore the effect of 3-AT, BTA-EG4 and KP 45-50 on the 

binding of biotinylated-Aβ to immobilized catalase was determined.
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3.1.1 Aim. 

 To confirm the binding interactions of catalase and KP with Aβ.  

3.1.2 Objectives 

 To characterise the binding interaction of catalase and KP with Aβ using 

binding assay. 

 To investigate the role of 3-AT, BTA-EG4 and KP 45-50 in catalase-

amyloid interaction. 

3.1.3 Hypothesis 

Proteins that share sequence similarity with Aβ, can bind to Aβ peptide. This 

binding interaction promotes cell survival and decreased cell death. Compounds 

such as catalase and KP share sequence similarity with Aβ, based on this 

sequence similarity the binding interaction between catalase, KP and Aβ will be 

investigated in the present chapter. 
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3.2 Results  

3.2.1 Binding interaction between KP and Aβ  

Binding of Aβ to KP peptides has previously been shown using biotinylated-Aβ 

binding KP coated ELISA plates (Milton 2011; Milton 2013). ELISA was used to 

confirm the binding interaction between KP and Aβ. The ELISA plates were 

coated with KP 1-54, KP-13 and KP-10 peptides (1 µg/ml) overnight, the 

unoccupied sites on the plates were blocked using 0.2% (w/v) casein in 

carbonate buffer for 30 mins. Biotinylated Aβ 1-42 (1 µg/ml) was added and 

incubated overnight at 4oC. An alkaline phosphatase polymer-streptavidin 

conjugate (0.5 µg/ml) was added to the plate and incubated for 2 hrs at 37oC. 

Absorbance readings at 405 nm showed significant binding of biotinylated Aβ to 

KP-54, KP-13 and KP-10 when compared to the binding to control wells (Figure 

3-1A).  

The binding interaction between KP and biotinylated Aβ could be inhibited by 

Congo red. The Congo red was used where an ELISA plate was coated with 

KP-54 to which biotin labelled Aβ alone or labelled Aβ plus freshly prepared 

Congo red was added and incubated at 4oC overnight. Results showed that 

biotinylated Aβ bound to KP and that this binding could be inhibited by Congo 

red in a dose dependent manner (Figure 3-1B). 
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Figure 3-1. Binding interaction between KP and Aβ. ELISA was used to 

determine the interaction between KP and biotinylated Aβ 1-42 and to 

investigate if the binding interaction could be modified by Congo red. (A) ELISA 

plates were coated with KP-54, KP-13 and KP-10 or KP-54 (1 µg/ml) alone or 

no peptide (control). (B) The plate was coated with KP-54 to which biotinylated 

Aβ 1-42 alone or biotinylated Aβ 1-42 plus freshly prepared Congo red (0 - 100 

mM) was added and incubated at 4oC overnight. Results are mean ± S.E.M (n = 

6); * = P < 0.05 vs Aβ (one-way ANOVA). 

 

3.2.2 Catalase and Aβ dose response curve and catalase 

binding to Aβ 1-40, Aβ 25-35 and Aβ 31-35  

Catalase binding to Aβ has previously been shown using biotinylated-Aβ 

binding catalase coated ELISA plates (Milton 1999). To confirm catalase 

binding to Aβ, ELISA plates were coated with catalase (1 µg/ml), overnight. 

Next day, different doses of biotinylated Aβ 1-42 ranging from 0-100 µM were 

added to the catalase coated ELISA plate and incubated overnight at 4oC. 

Results showed the catalase-amyloid interaction increased with an increase in 

the concentration of Aβ (Figure 3-2A). This report supports the previous results 

that found catalase binds Aβ with high affinity (Milton 1999). To investigate the 

binding of catalase to Aβ of different peptide lengths, ELISA plates were coated 

with catalase (1 µg/ml), overnight. Next day, either biotinylated Aβ 1-42 (1 

µg/ml) or biotinylated Aβ 1-42 plus unlabelled Aβ 1-40, Aβ 25-35 and Aβ 31-35 

(1 µg/ml) was added to the catalase coated ELISA plate, the plate was 

incubated overnight at 4oC. Results (absorbance at 405 nm) showed that 

catalase bound to biotinylated Aβ 1-42, this catalase binding to biotinylated Aβ 

1-42 could be inhibited by unlabelled Aβ 1-40, Aβ 25-35 and Aβ 31-35 (Figure 

3-2B). This shows that the unlabelled and labelled Aβ bound the same site and 

suggests that the catalase recognizes a region of Aβ containing the 31-35 

sequence. 



Chapter 3 - Amyloid-β binding to catalase and kisspeptin 

 

Figure 3-2. Catalase and Aβ dose response curve. (A) ELISA plates were 

coated with catalase (1 µg/ml) and different concentrations of biotinylated Aβ 1-

42 (0 - 100 µM) were added and incubated overnight at 4oC. (B) To investigate 

the binding of catalase to amyloid β peptides of different lengths, an ELISA 

plate was coated with catalase (1 µg/ml). Either biotinylated Aβ 1- 40 (1 µg/ml) 

alone or together with unlabelled Aβ 1-40, Aβ 25-35 and Aβ 31-35 (1 µg/ml) 

were added to the plate and the plate incubated overnight at 4oC. Results are 

mean ± S.E.M (n = 6); * = P < 0.05 vs biotinylated Aβ alone (one-way ANOVA). 

 

3.2.3 Effects of BTA-EG4, KP 45-50 and 3-AT on Aβ binding to 

catalase  

To further investigate the binding of catalase to Aβ, the effect of BTA-EG4, KP 

45-50 and 3-AT on catalase binding to Aβ 1-42 was tested. ELISA plates were 

coated with catalase (1 µg/ml). The catalase coated ELISA plates were 

incubated with (1 µM) biotinylated Aβ in the presence of 0-80 mM 3-AT, 0 – 80 

mM BTA-EG4 or 0 – 80 µM KP 45-50 overnight at 4oC. Results (absorbance at 

405 nm) showed that BTA-EG4 and KP 45-50 significantly inhibited catalase 

amyloid binding, whereas 3-AT had no effect on catalase-amyloid interaction 

(Figure 3-3). KP was more effective in inhibiting catalase-amyloid interaction 
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(1.25 µM), compared to BTA-EG4 (2.5 mM) (Figure 3-3). These observations 

suggests that KP and BTA-EG4 can bind Aβ, KP can inhibit catalase binding to 

Aβ and BTA-EG4 is required in higher concentrations to inhibit catalase-amyloid 

interaction, these results are consistent with the previous study (Habib et al., 

2010). 3-AT does not interfere with catalase-amyloid interaction, suggesting that 

3-AT could not enhance Aβ toxicity by inhibiting catalase-amyloid interaction. 

 

Figure 3-3. Effects of BTA-EG4, KP 45-50 and 3-AT on Aβ binding to 

catalase. Catalase coated plates (1 µg/ml) were incubated with 1 µM 

biotinylated Aβ 1-42 in the presence of 0 - 80 mM 3-AT (blue circles), 0 - 80 mM 

BTA-EG4 (red circles), or 0 - 80 µM KP 45-50 (yellow circles). Results are mean 

± S.E.M (n = 6); * = P < 0.05 vs biotinylated Aβ (one-way ANOVA). 
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3.3 Discussion  

The dose response curve of catalase-amyloid interaction (section 3.2.2) is in 

agreement with previous experimental studies of the binding interaction 

between catalase and Aβ (Milton 1999; Habib et al., 2010). In the present study 

catalase has been shown to bind different peptide lengths of labelled and 

unlabelled Aβ (section 3.2.2). Due to the sequence similarity between KP and 

catalase, binding studies with KP and Aβ showed similar results as the binding 

interaction between catalase and Aβ. The KP 1-54, KP 1-13 and KP-10 were 

shown to bind biotin labelled Aβ (section 3.2.1), in agreement with Milton 

(2011). The binding interaction between KP and Aβ was inhibited when Congo 

red was added. Biotin labelled Aβ 1-42 could not bind to KP in the presence of 

Congo red resulting in decreased absorbance readings (section 3.2.1). This 

suggests that Congo red and KP bind to the same region of Aβ and compete for 

the binding site when added together. 

Congo red and Thioflavin T compete for the binding sites on Aβ (Groenning 

2010). Thioflavin derivative BTA-EG4 was shown to inhibit catalase-amyloid 

interaction (Habib et al., 2010). The effect of BTA-EG4, catalase activity inhibitor 

3-AT and KP 45-50 peptide on the catalase-amyloid interaction was 

investigated. Results showed that BTA-EG4 and KP 45-54 significantly inhibited 

catalase-amyloid interaction, whereas 3-AT did not have any effect on catalase-

amyloid binding interaction (section 3.2.3). This confirms the results obtained in 

the previous study, which showed the inhibition of catalase-amyloid interaction 

by BTA-EG4 (Habib et al., 2010). The KP was more effective than BTA-EG4 as 

KP could significantly inhibit the interaction at 1.25 µM compared to BTA-EG4, 

which was required at higher concentration 2.5 mM to inhibit catalase-amyloid 

interaction (section 3.2.3). The requirement of milli molar concentration of BTA-

EG4 to inhibit catalase-amyloid interaction is in agreement with previous studies 

(Inbar et al., 2006; Habib et al., 2010). 
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3.4 Conclusion  

The results presented in this chapter confirm that the Aβ peptide binds to both 

catalase and KP peptides, in agreement with previous studies (Milton 1999; 

Inbar et al., 2006; Habib et al., 2010; Milton 2011; Milton 2013). The KP 45-50 

fragment can inhibit the binding to catalase, suggesting that both catalase and 

KP target a similar region of the Aβ peptide. These results provide a basis for 

looking for co-localization of KP and catalase with the Aβ containing plaques in 

the AD brain. They also suggest that neuronal overexpression of these Aβ 

binding compounds has the potential for neuroprotection against Aβ toxicity. 
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4.1 Introduction  

The KP peptide was found to have sequence similarity with the catalase region 

that binds Aβ (Milton 2011). Catalase binding to Aβ has previously been shown 

(Milton 1999) and confirmed in Chapter 3 (Figure 3-2). The binding of catalase 

has previously been found in amyloid plaques in the AD brain (Pappolla et al., 

1992). The deposition of amyloid in the plaques is the central feature of AD 

pathology (Karran et al., 2011; Reitz 2012). Aβ deposition occurs in different 

parts of the brain as the disease progresses (Thal et al., 2002; Alafuzoff et al., 

2009). A previous study has shown that Aβ deposits localize last in the 

cerebellum and pons region of the brain (Thal et al., 2002). Overexpression of 

the APP gene in transgenic mice showed a similar sequential pattern, where the 

deposition of Aβ was last localized in cerebellum and pons region of the brain 

(Rijal Upadhaya et al., 2012). This resistance to Aβ deposition in pons and 

cerebellum suggests the presence of endogenous neuroprotective components 

that delay the deposition of Aβ in these areas of the brain. 

Neuroprotection against Aβ by the CRH peptide has been well established 

(Facci et al., 2003; Bayatti and Behl, 2005). The CRH is a peptide hormone and 

neurotransmitter involved in the stress response, and evokes the release of 

adrenocorticotrophic hormone from pituitary (Arborelius et al., 1999). CRH 

neuroprotection was found to be receptor mediated (Facci et al., 2003), CRH 

does not bind Aβ unlike catalase (Milton 1999). The CRH peptide was found 

associated with Thioflavin-S positive amyloid deposits in the AD brain (Powers 

et al., 1987) and reduced levels of CRH was found in some parts of the brain in 

AD (De Souza et al., 1987).  

The KP peptide (Brailoiu et al., 2005), CRH peptide (Austin et al., 2003) and 

catalase (Moreno et al., 1995) are all found in the pons region of the brain. In 

this study the localization of immunoreactive (ir) KP, CRH and catalase in 

relation to Aβ deposits have been determined in pons sections from a male AD 

patient.
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4.1.1 Aim  

 The pons sections of an AD patient was used to investigate the presence 

of immunoreactive catalase and KP in the amyloid plaque like deposits. 

4.1.2 Objectives 

 To characterise the binding of anti-Aβ, anti-KP, anti-catalase and anti-

CRH antibodies. 

 Staining the pons sections of a normal male patient with characterized 

antibodies against Aβ and KP. 

 Staining the pons sections of the AD patient with characterized 

antibodies against Aβ, catalase, KP and CRH. 

4.1.3 Hypothesis 

As KP and catalase bind Aβ in a cell free assay, the localization of catalase, KP 

and Aβ in an AD patient’s pons sections may shed some light on the binding 

interaction of these peptides in AD. Immunohistochemistry will be used to detect 

the localization of catalase, KP and Aβ in the AD patient’s pons sections.  
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4.2 Results  

4.2.1 Characterization of antibodies  

The binding of BAM-10 mouse anti-Aβ antibody (Kotilinek 2002), rabbit anti-Aβ 

21–32 antiserum (Milton 2005), rabbit anti-KP 45–54 antiserum, CAT-505 

mouse anti-catalase antibody (Hwang et al., 2007), and KCHMB001 mouse 

anti-CRH antibody (Milton 1990) were tested for binding to Aβ, KP, NPFF, 

catalase, and CRH. The ELISA plates were coated with Aβ 1–42, Aβ 17–40, KP 

1–54, KP 45–54, NPFF, catalase, and CRH. The binding interaction was 

detected using alkaline phosphatase conjugated secondary antibodies and p-

nitrophenylphosphate substrate. Results showed that both BAM-10 antibody 

(Figure 4-1A) and anti-Aβ 21–32 antiserum (Figure 4-1B) both bound to the full 

length Aβ 1- 42, but did not bind to KP, NPFF, catalase or CRH. The BAM-10 

antibody is specific for Aβ 1–12 (Kotilinek et al., 2002) and did not show binding 

to Aβ 17- 40, whereas anti Aβ 21–32 antiserum binds to the Aβ 17- 40. The 

anti-KP 45-54 antiserum (Figure 4-1C) showed significant binding to KP 1- 54, 

KP 45-50 and NPFF; however it did not cross react with Aβ, catalase or CRH. 

The CAT-505 anti-catalase antibody (Figure 4-1D) showed significant binding to 

catalase, the antibody did not cross react with Aβ, KP, NPFF, or CRH peptides. 

The KCHMB001 anti-CRH antibody (Figure 4-1E) showed significant binding to 

CRH and showed no cross-reactivity with Aβ, KP, NPFF or catalase. 

A second set of plates were coated with Aβ 1- 42 and were pre-incubated with 

the following peptides or proteins - KP 45–54, NPFF, catalase, or CRH 

overnight before addition of BAM-10 mouse anti-Aβ antibody (Figure 4-2A), 

anti-Aβ 21–32 antiserum (Figure 4-2B), anti-KP 45-54 antiserum (Figure 4-2C), 

CAT-505 anti-catalase antibody (Figure 4-2D) or KCHMB001 anti-CRH antibody 

(Figure 4-2E). Both anti-Aβ antibodies showed significant binding to Aβ 1- 42 

even after pre-incubation with the other peptides (Figure 4-2A & B). The anti-KP 

45-54 showed significant binding to the plate coated with Aβ 1- 42 and 

pretreated with KP 45-54. No cross reactivity of the antibody to NPFF was 

observed (Figure 4-2C). The CAT-505 mouse anti-catalase antibody showed 

significant binding to the plate coated with Aβ 1- 42 and pretreated with catalase 

(Figure 4-2D). The KCHMB001 mouse anti-CRH antibody did not bind 
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significantly to the plate coated with Aβ 1- 42 and pretreated with CRH (Figure 

4-2E). 

These results suggest that the BAM-10 mouse anti-Aβ antibody (Kotilinek 

2002), rabbit, anti-Aβ 21–32 antiserum (Milton 2005), rabbit anti-KP 45–54 

antiserum and CAT-505 mouse anti-catalase antibody (Hwang et al., 2007) are 

suitable for co-localization studies of these proteins that bind the Aβ peptide to 

examine whether the proposed binding interactions have the potential to occur 

in the AD brain. 
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Figure 4-1. Characterization of antibodies- To characterise the binding of the 

antibodies to the respective antigens, plates were coated with Aβ 1- 42, Aβ 17–

40, KP 1–54, KP 45–54, NPFF, catalase, and CRH (1 µg/ml overnight). The 

BAM-10 mouse anti-Aβ antibody (A), rabbit anti-Aβ 21–32 antiserum (B), rabbit 

anti-KP 45–54 antiserum (C), CAT-505 mouse anti-catalase antibody (D) and 

the KCHMB001 mouse anti-CRH antibody (E) were added to the plate and 

binding determined by ELISA. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control (one-way ANOVA). 
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Figure 4-2. Characterization of antibody binding to Aβ-protein complexes. 

To characterise the binding of the antibodies to complexes formed between Aβ 

and the respective proteins or peptides, plates coated with Aβ 1- 42 (1 µg/ml 

overnight) and pretreated either one the following peptides or proteins - KP, 

NPFF, catalase and CRH. The BAM-10 mouse anti-Aβ antibody (A), rabbit anti-

Aβ 21–32 antiserum (B), rabbit anti-KP 45–54 antiserum (C), CAT-505 mouse 

anti-catalase antibody (D) and the KCHMB001 mouse anti-CRH antibody (E) 

were added to the plate and binding determined by ELISA. Results are mean ± 

S.E.M (n = 8); * = P < 0.05 vs control (one-way ANOVA).  

 

4.2.2 Detection of KP and Aβ in a normal pons section  

Pons sections from a 26 year old normal Male (Cat No: ab4316; Lot No: 

A504234) was used to investigate the co-localization of KP and Aβ. The normal 

pons sections were double labelled with anti-KP 45-54 and BAM-10 anti-Aβ 

antibodies (Kotilinek et al., 2002). Goat anti-mouse IgG Alexa- Fluor 568 (red) 

and goat anti-rabbit IgG Alexa-fluor 488 (green) were used as secondary 

antibodies.  

Immunohistochemical analysis with anti-KP 45-54 antibody alone (Figure 4-3A) 

showed staining that was detectable by green fluorescence and not red 

fluoresence. Immunohistochemical analysis with BAM-10 anti-Aβ alone showed 

staining that was detectable by red fluorescence and not green fluorescence 

(Figure 4-3B). Staining the normal pons sections with the secondary antibodies 

(goat anti-mouse IgG-Alexa-Fluor 568 and goat anti-rabbit IgG-Alexa-Fluor 488, 

1:500) for 1 hour (Figure 4-3D,E,F) alone did not show any background 

staining. The results from double label immunohistochemistry results showed 

the staining of tissue with anti-KP45-54 and BAM-10 anti-Aβ antobodies. There 

was no co-localization of anti-KP45-54 and BAM-10 anti-Aβ label observed in 

the normal pons sections (Figure 4-3C). 
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Figure 4-3. Detection of KP and Aβ in normal pons sections. Normal pons 

sections were double labelled with anti-KP 45-54 (A) and BAM-10 anti- Aβ 

antibodies (B) to detect co-localization of KP and Aβ (C). Incubating the slides 

with secondary antibody alone was used to identify background staining 

(D,E,F). KP appears green and Aβ appears red. The overlap of KP and Aβ 

appears yellow. Bars = 50 µm. 

 

4.2.3 Detection of KP and Aβ in an AD pons section  

Pons sections from a 72-yearold male with AD (Cat No: ab4586; Lot No: 

B506287) were double labelled with anti-KP 45-54 (Figure 4-4A) and BAM-10 

(Figure 4-4B) anti-Aβ antibodies. Results showed that the anti-KP antibody co-

localized with anti-Aβ antibodies in AD pons sections (Figure 4-4C). Pre-

absorption of the antibody with NPFF (10 µg/ml) (Figure 4-4D) (Iijima et al., 

2011) did not reduce the KP signal and co-localization with anti-Aβ antibody 

was still observed (Figure 4-4F). The co-localization of KP and Aβ was only 

observed in plaque like deposits rather than throughout the tissue. Incubation of 

the slides with secondary antibodies alone (Figure 4-4 G, H and I) did not give 

any background staining, suggesting that the staining observed is specific for 

KP and Aβ antibodies. 
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Figure 4-4. Dectection of KP and Aβ in AD pons sections. The pons 

sections from an AD patient were double labelled with anti-KP 45-54 (A) and 

BAM-10 anti-Aβ antibodies (B) to detect co-localization of KP and Aβ (C). Pre-

absorption (D) of the anti-KP antibody with NPFF (10 µg/ml for 24 hrs) prior to 

double labelled with BAM-10 anti-Aβ antibodies (E) was used to confirm co-

localization of specific KP binding and Aβ (F). Incubating the slides with 

secondary antibody alone was used to identify background staining (G,H,I). KP 

appears green and Aβ appears red. The overlap of KP and Aβ appears yellow 

and examples are labelled with arrows in (C) and (F). Bars = 50 µm. 
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4.2.4 Detection of catalase in amyloid like plaques in AD pons 

sections  

Previous studies have shown the presence of catalase in AD amyloid plaques 

(Pappolla et al., 1992). This observation was confirmed by double label 

immunohistochemistry with a CAT-505 monoclonal anti-catalase antibody 

(Figure 4-5A) and polyclonal anti-Aβ 21-32 antibody (Figure 4-5B) in AD pons 

sections. Results showed the label with both antibodies and co-localisation of 

catalase in amyloid like plaque deposits (Figure 4-5C). Incubation of the slides 

with the secondary antibodies alone did not show any background staining 

(Figure 4-5 D, E and F), suggesting that the staining was specific. This confirms 

the presence of immunoreactive catalase in plaque like deposits in AD pons 

section. 

 

Figure 4-5. Dectection of catalase and Aβ in AD pons sections. Pons 

sections from AD patient were stained with CAT-505 monoclonal anti-catalase 

antibody (A) and polyclonal anti-Aβ 21-32 antibody (B) to detect co-localization 

of catalase and Aβ (C). Incubating the slides with secondary antibody alone was 

used to identify background staining (D,E,F). Catalase appears red and Aβ 

appears green. The overlap of catalase and Aβ appears yellow and an example 

is labelled with an arrow in (C). Bars = 50 µm. 
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4.2.5 Double label immunohistochemistry for KP and catalase. 

The pons sections from an AD patient were stained with anti-KP antibody, pre-

absorbed with NPFF (10 µg/ml) for 24 hrs (Figure 4-6A) and CAT-505 

monoclonal anti-catalase antibody (Figure 4-6B). Results showed that the 

amyloid like plaque deposits were stained with both the catalase and KP 

antibodies and both the antibodies co-localized in the pons section (Figure 4-

6C). At higher magnification, it was observed that catalase and KP occupied 

different sites, with only a small proportion of co-localization within the amyloid 

plaque like deposits (Figure 4-6 C, D and E). This suggests the presence of 

multiple binding sites on Aβ, which allows the binding of both catalase and KP, 

sometimes the binding sites could be next to each other allowing co-localization 

of catalase and KP. Amyloid plaques like deposits with only catalase or KP 

were not observed. Incubation of the slides with the secondary antibodies alone 

did not show any background staining (Figure 4-6 G, H and I). 
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Figure 4-6. Double labeling immunohistochemistry for KP and catalase. 

The pons sections from an AD patient were incubated with pre-absorbed (with 

NPFF 10 µg/ml) anti-KP antibody (A,D) and CAT-505 monoclonal anti-catalase 

antibody (B,E) to detect co-localization of KP and catalase (C,F). Incubating the 

slides with secondary antibody alone was used to identify background staining 

(G,H,I). Catalase appears red, KP appears green and co-localization appears 

yellow. The arrows labelled 1 correspond to an example of KP only label in (D) 

and (F); arrows labelled 2 correspond to an example of catalase only label in 

(E) and (F); and arrows labelled 3 correspond to an example of KP and catalase 

co-localizing in (D), (E) and (F). Bars = 50 µm (A-C) and (G-I) and 5 µm (D) to 

(F).
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4.2.6 Detection of CRH in amyloid like plaques in AD pons 

sections  

A previous study has shown the presence of CRH in AD amyloid plaques 

(Powers et al., 1987). To confirm the presence of CRH in pons sections of an 

AD patient, the sections were incubated with KCHMB001 monoclonal anti-CRH 

antibody (Figure 4-7A) and polyclonal anti- Aβ 21-32 antibody (Figure 4-7B). 

Results showed label with both antibodies and co-localization of the Aβ and 

CRH in plaque like deposits (Figure 4-5C). The polyclonal Aβ antibody showed 

a similar pattern of labeling, as seen with the BAM-10 anti- Aβ monoclonal 

antibody. Incubation of the slides with the secondary antibodies alone did not 

show any background staining (Figure 4-5D, E and F), suggesting that the 

staining observed was specific for the primary antibodies used. 

 

Figure 4-7. Detection of CRH and Aβ in AD pons sections. Pons sections 

from AD patient were stained with KCHMB001 monoclonal anti-CRH antibody 

(A) and polyclonal anti-Aβ 21-32 antibody (B) to detect co-localization of CRH 

and Aβ (C). Incubating the slides with secondary antibody alone was used to 

identify background staining (D,E,F). CRH appears red and Aβ appears green. 

The overlap of catalase and Aβ appears yellow and an example is labelled with 

an arrow in (C). Bars = 50 µm. 
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4.3 Discussion  

In AD the event of deposition of amyloid plaques in the cerebellum and pons 

region of the brain seems to occur at the end, i.e. after deposition of Aβ plaques 

in all the other regions of the brain (Thal et al., 2002). This suggests that 

endogenous neuroprotective processes may play a role in delaying Aβ 

deposition in these brain regions. The double label immunohistochemistry 

shows the co-localization of KP and Aβ in plaque like deposits. The presence of 

KP in amyloid plaque like deposits has never been shown before, this is a novel 

observation (section 4.2.3). The anti-KP antibody is known to cross react with 

NPFF, to eliminate the possibility of cross-reactivity, the anti-KP antibody was 

pre-absorbed with NPFF (10 µg/ml) for 24 hrs. The pre-absorption did not 

reduce the signal that was previously observed with anti-KP antibody, 

suggesting that the anti-KP antibody is not cross reacting with NPFF and the 

antibody signal observed is specific for KP (section 4.2.3). The co-localization of 

catalase with Aβ (section 4.2.4) and CRH with Aβ (section 4.2.6) in pons 

sections of AD patients, confirms previous observations (Powers et al., 1987; 

Pappolla et al., 1992).  

Staining the pons section of the AD brain with anti-catalase and anti-KP 

antibodies showed that both KP and catalase occupied specific sites on the 

plaque like deposits. Co-localization of immunoreactive catalase and KP was 

also observed, this could be due to the presence of more than one binding site 

in close vicinity in the plaque like deposits (section 4.2.5).The binding of 

catalase (section 3.2.2) and KP (section 3.2.1) to Aβ confirmed previous studies 

(Milton 1999; Milton 2011). The CRH peptide does not bind Aβ (Milton 1999) 

and from the antibody characterization no complexes were detected (section 

4.2.1). This suggests that mere the presence of KP, catalase and CRH in the 

plaque like deposits does not confirm binding of KP, catalase or CRH to Aβ. 

The peptides or proteins could be trapped in the plaques or could be present in 

close vicinity to Aβ or it could be that the peptides or proteins bind to some 

other component of the plaque.  

The direct interaction between KP and Aβ (section 3.2.1) combined with the 

immunohistochemistry results suggest that KP and Aβ might interact in an AD 
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brain. The presence of both catalase and KP in the pons section of the AD brain 

may contribute to neuroprotection against Aβ toxicity and could delay 

neurodegeneration. Further experimental investigations are required to confirm 

these findings. 

4.4 Conclusion  

The results presented in this chapter confirm the co-localization of catalase with 

Aβ deposits in the AD brain, in agreement with previous studies (Pappolla et al., 

1992). The co-localization of KP with Aβ deposits in the AD brain is the first 

demonstration of this novel observation. The co-localization of CRH with Aβ 

deposits in the AD brain confirms a previous study (Powers et al., 1987). In view 

of the failure of the anti-CRH antibody to detect CRH bound to the Aβ peptide in 

vitro, these results suggest that co-localization is not necessarily due to specific 

binding interactions. The use of sections from a single patient clearly points to 

the need for further studies to confirm the interactions observed. The results for 

KP and catalase co-localization with Aβ deposits in the pons region of an AD 

patient support the suggestion that these compounds may be protective against 

Aβ toxicity. The results provide further support for the rational of investigating 

catalase and KP overexpression in neuronal cells as a neuroprotective 

mechanism and suggest that such studies may be relevant to AD.  
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5.1 Introduction  

The OS response can damage critical biological molecules and initiate a 

cascade of events leading to impaired cellular function or cell death (Halliwell 

1992). It has also been suggested that the senile plaque dense regions in AD 

may represent an environment of elevated OS (Hensley et al., 1995). The brain 

is more vulnerable to OS, compared to other organs due to its high lipid content, 

high oxygen metabolism and low levels of anti-oxidants defences (Reddy 2006). 

Before the onset of AD pathology, mitochondrial OS occurs leading to AD 

progression (Manczak et al., 2006). Mitochondria are cellular organelles that 

perform several cellular functions, including production of cellular ATP. 

Mitochondria are responsible for generating reactive oxygen species mostly 

during the electron transport chain (Muirhead et al., 2010). In a murine 

experimental knock-in model of AD with APP and PS1 mutations, production of 

excessive Aβ resulted in mitochondrial dysfunction and antioxidant enzyme 

impairment (Anantharaman et al., 2006). Increased ROS induced by 

mitochondrial dysfunction causes oxidation of DNA, the hydroxyl radicals react 

with both the purine and pyrimidines bases of DNA (Halliwell and Cross, 1994). 

This leads to permanent modification of the genetic material, which is the first 

step involved in mutagenesis, aging and age related diseases, including cancer 

and AD (Mao and Reddy, 2011). Mitochondrial dysfunction is proposed to link 

neuronal synaptic loss and amyloid deposition (Du et al., 2008). 

One of the most studied effects of Aβ is to induce and be induced by OS 

(Borghi et al., 2007). The Aβ has been suggested to be a prooxidant (Hensley 

et al., 1996). The Aβ induces the production of H2O2 (Behl et al., 1994) which 

could act as fuel to increase OS load. The accumulation of Aβ could also be 

influenced by OS. The APP expression is increased by the oxidative products 

and oxidant agents (Cheng and Trombetta, 2004; Patil et al., 2006). In SH-

SY5Y human neuroblastoma cells the OS induced by H2O2 causes an increase 

in the levels and intracellular accumulation of Aβ (Misonou et al., 2000). It has 

been shown that oxidatively damaged membrane proteins promote aggregation 

and misfolding of Aβ proteins into fibrils, which promotes oxidative damage in 

synthetic lipid membranes (Murray et al., 2007). Thus the vicious cycle of OS 
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and Aβ continues throughout AD, both increasing simultaneously in response to 

one another. 

One of the mechanisms of Aβ induced ROS is the binding of Aβ to cellular 

enzymes that maintain low physiological levels of ROS (Yan et al., 1997; Milton 

1999). This binding interaction could potentially result in increased production of 

ROS or reduced degradation of ROS. The major ROS in cells are superoxides 

and hydroxyl radicals derived from H2O2 (Halliwell 1992). Mitochondria are the 

major source for the production of both superoxide and H2O2 (Cadenas and 

Davies, 2000). The Aβ peptide has been shown to accumulate in mitochondria 

(Devi et al., 2006) and therefore Aβ could interact with the mitochondrial 

proteins. Catalase and glutathione peroxidase are the primary enzymes to 

breakdown H2O2 both inside and outside mitochondria (Halliwell and Gutteridge, 

2007). Cells resistant to Aβ toxicity had elevated levels of catalase and 

glutathione peroxidase (Sagara et al., 1996) and the activity of both the 

enzymes was reduced in rat brains exposed to Aβ. Overexpression of 

glutathione peroxidase made the neuronal cells (PC12 cells) resistant to Aβ 

toxicity (Barkats et al., 2000). Extracellular addition of catalase was found to be 

protective against Aβ toxicity (Behl et al., 1992). PC12 cells genetically 

engineered to express higher levels of both catalase and glutathione peroxidase 

were found to be resistant to Aβ toxicity (Sagara et al., 1996). The Aβ in a cell 

free assay binds catalase (figure 3-2) (Milton 1999) but not glutathione 

peroxidase (Habib et al., 2010). The catalase-amyloid binding interaction 

deactives the H2O2 degrading activity of catalase (Milton 1999) and this 

interaction could increase OS load.  

 In the present study the role of catalase overexpression in neuronal cells 

against OS was investigated. For this study human neuroblastoma SH-SY5Y 

cells were used. The SH-SY5Y cells have neuroblastic morphological 

characteristics, they resemble human fetal sympathetic neurons grown in 

primary culture (Lukas et al., 1993). The SH-SY5Y cells possess many 

properties of dopamenergic neurons and are used as a neuronal model for 

Parkinson’s disease (Xie et al., 2010) as well as AD (Agholme et al., 2010). The 

SH-SY5Y cells express the catalase gene (Habib et al., 2010) which suggest 

that the cells possess the machinery to make active catalase, by folding the 
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protein into a tetramer. SH-SY5Y cells can grow by mitosis or by extending 

neurites to the surrounding area. SH-SY5Y cells were transfected with the 

human catalase gene to overexpress catalase protein. The catalase gene 

overexpression will be tested against H2O2 and CoCl2 toxicity. The CoCl2 is a 

mimic of hypoxia and it induces the generation of ROS (Kotake-Nara and Saida, 

2007). The activity of catalase can be inhibited by 3-AT (Milton 2001), the 

importance of catalase activity in neuroprotection against H2O2 toxicity will be 

tested in cells overexpressing catalase gene. 

5.1.1 Tetracycline inducible system 

In the T-RExTM system the expression of the gene of interest is repressed in the 

absence of tetracycline and induced in the presence of tetracycline (Yao et al., 

1998). The major component of the T-RExTM sytem is the inducible expression 

plasmid (pcDNA™4/TO/myc-His). The expression of the gene of interest (in this 

case the catalase gene) is controlled by the strong CMV promoter (Boshart et 

al., 1985) into which two copies of the tet operator 2 (TetO2) have been inserted 

in tandem. Each TetO2 consists of the 19 Nucleotide sequences 5´- 

TCCCTATCAGTGATAGAGA-3´, which serves as a binding site for two tet 

repressors (TetR). The second major component of the T-RExTM sytem is the 

pcDNA™6/TR regulatory vector which expresses high levels of TetR gene 

(Postle et al., 1984). Both the vectors can be transfected into mammalian host 

cells by standard transfection methods. 

In the absence of tetracycline, the Tet repressor forms a homodimer, which 

binds to the TetO2 sequence in the promoter of the pcDNA™4/TO/myc-His 

vector (Hillen and Berens, 1994). The two TetO2 sites in the promoter of the 

pcDNA™4/TO/myc-His vector serve as the binding site for four molecules of 

TetR. Binding of TetR to the TetO2 sequence represses the transcription of the 

catalase gene. When tetracycline is added, it binds to the TetR homodimers 

with a 1:1 stoichiometry that results in a conformational change in the repressor. 

After the conformational change, the TetR can no longer bind to the Tet 

operator, which resumes the overexpression of the catalase gene (Figure 5-1). 

The tetracycline inducible system will be used to confirm the expression of the 

catalase gene in the PCat cells. The expression of the catalase gene can then 
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be regulated, which can be used to test the significance of catalase gene 

overexpression in neuroprotection against Aβ toxicity. 

 

Figure 5-1. The mechanism of action of the tetracycline inducible system. 

(The figure was adapted from Invitrogen manual)
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5.1.2 Aim  

 To create and characterize a human SH-SY5Y cell line overexpressing 

the human catalase gene. 

5.1.3 Objectives  

 Amplification of the catalase gene using PCR. 

 Analyzing the restriction digest of the pcDNA™4/TO/myc-His expression 

vector containing the catalase gene. 

 Create PCat cell line stably overexpressing human catalase. 

 Create PCatTR6 cell line stabley expressing a tetracycline inducible 

catalase expression system. 

 Estimation of catalase gene mRNA expression in PCat cells. 

 Analyzing the expression of the catalase gene in the presence and 

absence of tetracycline using the TRex inducible system (Tet On and Off 

System). 

 Analyzing the overexpression of the catalase gene in PCat cells using 

Immunocytochemistry. 

 Analyzing the overexpression of the catalase gene in PCat cells using 

western blotting. 

 Investigating the effect of H2O2 on PCat cells. 

 Measurement of catalase activity in PCat. 

 The effect of cobalt chloride on PCat cells. 

5.1.4 Hypothesis 

Catalase is an antioxidant and could relieve from the OS seen in AD. Increasing 

the level of antioxidant defences could improve cell survival by protecting the 

cells against oxidants. The antioxidant enzyme catalase was overexpressed in 

SH-SY5Y cells to understand whether increased catalase mediates protection 

against H2O2 induced cell death. 
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5.2 Results 

5.2.1 Characterization of catalase (PCat) gene overexpressing 

SH-SY5Y human neuroblastoma cells  

For the overexpression of catalase, the human catalase gene was cloned into 

the pcDNA™4/TO/myc-His expression vector and transfected into naïve SH-

SY5Y neuroblasoma cells. 

5.2.1.1 Amplification of the catalase gene using PCR. 

To investigate the role of catalase gene overexpression against Aβ and OS, the 

pcDNA™4/TO/myc-His expression vector (Origene) was used to clone the 

catalase gene, which would be later transfected into SH-SY5Y cells. Using PCR 

the catalase gene was amplified from the pCMV6-XL5 vector containing human 

catalase gene (Origene). The PCR conditions used for the amplification are 

mentioned in the materials and methods (2.2.2). The PCR product was run on a 

1% agarose gel, where the catalase gene band was found to be 1.5 Kbp (Figure 

5-2).  

 

Figure 5-2. PCR amplification of the catalase gene. PCR products were 

seperated on a 1 % agarose gel. Lane 1 - 1kb ladder, lane 2 - PCR product of 

the KiSS-1 gene, lane 3 - PCR product of the catalase gene. The PCR products 
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were amplified from the pCMV6-XL5 vector containing human KiSS-1 gene or 

the human catalase gene (Origene). 

 

5.2.1.2 Analyzing the restriction digestion of the 

pcDNA™4/TO/myc-His expression vector containing the 

catalase gene  

The catalase gene was cloned in the pcDNA™4/TO/myc-His expression vector, 

to confirm the cloning the vectors were digested using the restriction enzymes 

that would release catalase from the vector (Hind III and Not I). Figure 5-3 

represents the restriction enzyme digestion of the vector containing the catalase 

gene. The linearised empty restriction digested vector was used as a control 

which was found to be 5.1 Kbp whereas the cloned catalase gene was found to 

generate two bands, the linearised vector band 5.1 Kbp and the cloned band of 

1.5 Kbp. The DNA sequence of the cloned catalase gene was further confirmed 

by DNA sequencing (See Appendix 10.1), the DNA sequence of the gene was 

found to be correct without any mutations (NM_001752.2). 

 

Figure 5-3. The restriction digest analysis of the pcDNA™4/TO/myc-His 

expression vector containing the catalase gene. The 1% agarose gel picture 

shows the restriction digestion of the catalase gene cloned into the 

pcDNA™4/TO/myc-His vector. Lane 1 - 1 kbp ladder, lanes 2 and 5 - linearised 
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pcDNA™4/TO/myc-His empty vector, lanes 3 and 4 - catalase gene restriction 

digested (1.5 Kbp) from the pcDNA™4/TO/myc-His vector (5.1 Kbp).  

 

5.2.1.3 Transfection of catalase gene and selection of stably 

expressing PCat cell line 

The pcDNA™4/TO/myc-His vector containing the catalase gene was 

transfected into the naïve SH-SY5Y cells. The cells were cultured in the 

presence of zeocin to select pcDNA™4/TO/myc-His vector expressing cells. 

After culture for 4 weeks in zeocin the stable PCat cell line was subsequently 

cultured under standard cell culture conditions. 

A control cell line was created by transfecting the pcDNA™4/TO/myc-His vector 

into the naïve SH-SY5Y cells. The cells were cultured in the presence of zeocin 

to select pcDNA™4/TO/myc-His vector expressing cells. After culturing for a 

number of weeks in zeocin the stable PVect cell line was subsequently cultured 

under standard cell culture conditions. 

To create tetracycline inducible catalase expressing cell lines PCat cells were 

transfected with pcDNA™6/TR and stable cell lines selected with zeocin and 

blasticidin for 4 weeks. The resultant PCatTR6 cell line was subsequently 

cultured under standard cell culture conditions. 

5.2.1.4 Estimation of catalase gene mRNA expression levels in 

PCat cells  

The total RNA extracted from the the PCat cells was used to perform RT- PCR 

using a one step RT-PCR kit (Qiagen). Figure 5-4 represents the RT-PCR 

analysis of the PCat and PVect cells. The gel picture shows an increased 

mRNA expression of the catalase gene band of 1.5 Kbps in the PCat cells (lane 

3) compared to PVect cells (lane 5). The negative control did not show any 

bands (lane 4) (water + PCR master mix) which suggests that the PCR 

amplication was specific. From the RT-PCR analysis, which is considered a 
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semi-quantitative assay, it could be suggested that the catalase mRNA 

expression levels were higher in PCat cells compared to PVect cells. 

To ensure that equal amount of the PCat and PVect cDNA were used in the 

PCR reaction shown in Figure 5-4, human actin primers were used to amplify 

the same amount of cDNA used for the RT- PCR of the PCat and PVect . The 

product of the RT-PCR was run on a gel and the band obtained show equal 

intensity indicating equal loading of the sample in each lane while performing 

the RT-PCR. The size of the actin bands obtained was found to be 100 bp. This 

indicated that the differences in PCat expression levels in Figure 5-4 were a 

true reflection of higher levels of expression of catalase in PCat versus PVect 

cells and that equal amount of sample was loaded throughout. 

 

 

Figure 5-4. Estimation of catalase gene mRNA expression in PCat 

cells. The RT-PCR gel picture shows the mRNA expression levels of the 

catalase in the PCat and PVect cell lines. Upper panel, lane 1- 1 Kb 

ladder, lane 2- catalase gene (positive control amplified from pCMV6-

XL5 containing Human catalase gene, Origene), lane 3- catalase mRNA 

expression in the PCat cells, lane 4- negative control (water+PCR master 



 

Chapter 5 - Catalase neuroprotection against H2O2 toxicity 

mix), lane 5- catalase mRNA expression in the PVect cells. The lower 

panel shows lane 1- 100 bp ladder, lane 2 and 3- mRNA expression 

levels of actin in PCat and PVect cells. 

5.2.1.5 Analyzing the expression of the catalase gene in the 

presence and absence of tetracycline using the TRex inducible 

system (Tet On and Off System)  

The tetracycline inducible system was used to switch on and off the 

overexpression of the catalase gene in the PCat cells. RT-PCR was used to 

check the induction and repression of the catalase gene under 1 µg/ml 

tetracyline final concentration. Figure 5-5 shows the difference between 

catalase mRNA expression levels of the induced and uninduced catalase gene 

in the presence and absence of tetracycline. The mRNA expression levels of 

catalase in both the PCat and PCatTR6 induced cells was found to be similar 

and higher compared to PCatTR6 uninduced cells. From the gel picture it can 

be suggested that the tetracyline inducible system is working and could be used 

to switch on and off the expression of the catalase gene using tetracycline. To 

ensure equal loading of the samples actin primers were used to amplify actin in 

all the three cell types. 

 

Figure 5-5. Tet inducible system and confirmation of uniform loading of 

the samples during RT-PCR using actin primers. The gel image shows the 
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induction and repression of the catalase gene in the PCatTR6 cells using 

tetracyline (1 µg/ml final concentration). Lane 1- 1.5 Kbps band, lane 2- mRNA 

expression levels of catalase in PCat cells, lane 3- mRNA expression levels of 

catalase in TR6 PCat uninduced cells, lane 4- mRNA expression levels of 

catalase in TR6 PCat induced cells (upper panel). Amplification of actin primers 

was used to ensure equal loading of samples during RT-PCR (lower panel). 

 

5.2.1.6 Analyzing the overexpression of the catalase gene in 

PCat cells using Immunocytochemistry  

Immunocytochemistry was used to confirm the overexpression of the catalase 

protein in the cytoplasm of the PCat cells compared to PVect cells. The CAT-

505 mouse anti-catalase antibody (1:1000, 1 µg/ml final concentration) was 

used as the primary antibody, the goat anti-mouse IgG- Alexa-Fluor 568 was 

used as the secondary antibody (1:500) to stain the immunoreactive catalase 

present in the cytoplasm of the cells. The nucleus was stained using TO-PRO®-

3 Iodide (642⁄661; Invitrogen). 
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Figure 5-6. Analyzing the overexpression of catalase gene in PCat cells 

using immunocytochemistry. Immunocytochemistry was carried out using the 

CAT-505 monoclonal anti-catalase antibody to stain PCat and PVect cells. 

Immunoreactive catalase (stained red) and TO-PRO®-3 Iodide (stained blue) 

was detected by confocal microscopy in the PCat (A) and PVect (B) cells. 

Figure C shows the staining of the PCat cells with the secondary antibody 

alone, to check for nonspecific staining.  

 

The immunocytochemistry showed a remarkable difference between the PCat 

cells compared to PVect cells. Figure 5-6A shows the immunoreactive catalase 

(stained red) in the cytoplasm of the PCat cells, which was higher compared to 

the level of immunoreactive catalase found in the cytoplasm of the PVect cells 

5-6B. There was no catalase found in the nucleus (stained blue). The 

immunocytochemistry clearly shows the overexpression of catalase in cells with 

the catalase gene compared to the cells with vector alone. Figure 5-6C shows 
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the staining of the PCat cells with the secondary antibody alone, which did not 

show any nonspecific staining. 

5.2.1.7 Analyzing the overexpression of the catalase gene in 

PCat cells using Western blotting  

The overexpression of the catalase gene in SH-SY5Y cells was also confirmed 

by western blotting, this was carried out to see if the cloned catalase gene 

resulted in overexpression of catalase protein in SH-SY5Y cells. Cell lysates 

from the PCat and PVect cells were used for the western blotting. The CAT-505 

monoclonal mouse anti-catalase antibody was used as the primary antibody 

and anti- mouse antibody was used as the secondary antibody. A band size of 

~60 kDa was observed on the western blot which is approximately the right size 

for the catalase protein (Figure 5-7). From the western blotting it could be 

concluded that the catalase gene was overexpressed in the PCat cells 

compared to PVect cells. To confirm equal loading of the samples, the 

nitrocellulose membrane was stripped using the stripping buffer and it was 

reprobed with anti-actin antibody. The ~42 kDa band represents actin stained 

with anti-actin antibody shows uniform loading of the samples during SDS page. 

 

Figure 5-7. Analyzing the overexpression of catalase gene in PCat cells 

using Western blotting. Lane 1- synthetic catalase (Abcam), lane 2- cell lysate 

from PVect cells, lane 3- cell lysate from PCat cells. To confirm equal loading of 

the samples actin was stained on the same blot using the anti-actin antibody 

which stained a band size of ~42 kDa. 
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5.2.2 The effect of H2O2 on PCat cells  

The PCat and PVect cells were exposed to different concentrations of H2O2 

ranging from 0-1000 µM. The cells were exposed to H2O2 for 2 hrs, after which 

MTT assay was perfomed to determine cell viability. The PCat cells showed a 

significant increase in the percentage of viable cells compared to PVect cells 

upon exposure to increasing concentrations of H2O2 (Figure 5-8A). This could 

be due to overexpression of the catalase, which efficiently breaks down H2O2 

and prevents the cells from experiencing OS which could lead to cell death. To 

confirm that the protection against H2O2 was due to catalase overexpression 

and not because of any other antioxidant enzyme, the activity of catalase was 

inhibited by an irreversible inhibitor of catalase activity 3-AT. The PCat and 

PVect cells were pretreated with different concentration of 3-AT (0-50 mM) for 

an hour before adding 500 µM of H2O2 . It was observed that the percentage of 

PCat viable cells significantly reduced with an increase in 3-AT concentration 

(Figure 5-8B). At higher concentrations of 3-AT the percentage of PCat viable 

cells became similar to the percentage of PVect viable cells. This observation 

suggests that catalase activity is important for protection against H2O2 , and 

cells overexpressing catalase were found to be resistant to H2O2 toxicity. 
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Figure 5-8. The effect of H2O2 on PCat cells. (A)The PCat (red circles) and 

PVect (blue circles) cells were exposed to a range of H2O2 concentrations (0 - 

1000 µM) and viability determined by MTT reduction. (B) The PCat (red circles) 

and PVect (blue circles) cells were exposed to 500 µM H2O2 plus different 

doses of 3-AT (0 - 50 mM) and cell viability determined by MTT reduction. 

Results are mean ± S.E.M (n = 8); * = P < 0.05 vs PVect (one-way ANOVA). 

 

5.2.3 Measurement of catalase activity in PCat and PVect cells  

The activity of the catalase produced by PCat cells was tested by measuring its 

ability to convert H2O2 to water and oxygen (Chapter 2; section 2.4). Cell lysates 

from PCat and PVect cells were extracted and used for the activity assay. The 

PCat cells with the catalase gene showed more than a 6 fold increase in the 

activity of catalase compared to the cells with vector alone. The activity of the 

catalase in the cell lysate from the PCat cells can be inhibited using 50 µM 3-AT 

indicating that the measured activity was due to catalase rather than other 

endogenous peroxidases expressed in the cells (Figure 5-9). 

 

Figure 5-9. Measurement of catalase activity in PCat and PVect cells. The 

graph shows catalase activity of cell lysates of PVect, PCat and PCat treated 

with 3-AT (50 µM), with results expressed as % of the PVect cell lysate activity. 

Results are mean ± S.E.M (n = 8); * = P < 0.05 vs PVect extracts; † = P < 0.05 

vs PCat extracts (one-way ANOVA). 
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5.2.4 The effect of cobalt chloride on PCat cells  

The PCat cells were found to be resistant to H2O2 toxicity, the PCat and the 

PVect cells were tested against a rage (0-500 µM) of CoCl2 (which is a mimic of 

hypoxia) concentrations. The cells were incubated with CoCl2 overnight and the 

next day MTT assay was performed. The dose response curve (Figure 5-10) 

shows that there was no significant difference between the toxicity found in the 

PCat and the PVect cells at doses above 10 µM. However, at the doses below 

10 µM there was significant protection by catalase overexpression in the PCat 

cells. The CoCl2 is known to activate ROS production (Jung et al., 2008) and 

the biphasic dose response curve seen in PVect cells suggests that the toxicity 

may have multiple components. The protection against low dose toxicity in the 

PCat cells suggests that at low doses of CoCl2 there may be H2O2 component to 

the toxicity. This indicates that both the cells lines were equally susceptible to 

CoCl2 toxicity at concentrations above 10 µM, and suggests that PCat and 

PVect cells would react the same way for any cytotoxin added in other 

experiments. This also shows that the resistance of PCat cells towards H2O2 

toxicity is quite specific, and does not extend to completely CoCl2 toxicity, as the 

CoCl2 toxicity is not primarily mediated via H2O2 (Kotake-Nara et al., 2007). 

 

Figure 5-10. The effect of cobalt chloride on PCat cells. Represents the 

dose reseponse curve of CoCl2 on PCat and PVect cells, both the cell lines 
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were treated with different doses of CoCl2 ranging from 0 - 500 µM overnight 

and viability determined by MTT reduction. Results are mean ± S.E.M (n = 8); * 

= P < 0.05 vs control (0 µM CoCl2); † = P < 0.05 PCat vs PVect (one-way 

ANOVA). 

 

5.2.5 Tetracycline inducible system  

The tetracycline inducible system was used to regulate the catalase gene 

overexpression in PCatTR6 cells. In the absence of tetracycline the expression 

of catalase gene is repressed (uninduced cells). The PCatTR6 cells were 

treated with 1000 µM H2O2 for 2 hrs (Figure 5-11), a significant decrease in the 

percentage of viable cells compared to control cells was observed. This 

susceptibility of the PCatTR6 cells to H2O2 was observed due to repression of 

the catalase gene. The PCatTR6 cells were induced by tetracycline (1 µg/ml 

final concentration) overnight. When the induced PCatTR6 cells were treated 

with 1000 µM H2O2 for 2 hrs, a significant increase in the percentage of viable 

cells compared to the uninduced PCatTR6 cells was observed. This suggests 

that the neuroprotection against H2O2 is due to catalase gene overexpression, 

which could be regulated by using the tetracycline inducible system. 

 

Figure 5-11. Effect of H2O2 on PCatTR6 cells in the presence and absence 

of tetracycline. The PCatTR6 cells were preincubated with or without 
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tetracycline (1 µg/ml) overnight prior to exposure to 1000 µM H2O2 for 2 hrs and 

viability determination by MTT reduction. Results are mean ± S.E.M (n = 8); * = 

P < 0.05 vs control; † = P < 0.05 vs H2O2 alone (one-way ANOVA). 

5.2.6 The conditioned media from PCat cells was 

neuroprotective against H2O2 toxicity  

Fresh media was added to the PCat and PVect cells, the media was collected 

after 24 hrs and was used to test if the conditioned media from the PCat and 

PVect cells would protect against H2O2 toxicity. The naïve SH-SY5Y cells were 

treated with different doses of H2O2 (0-1000 µM) and conditioned media from 

the PCat and PVect cells for 2 hrs. Results showed that the percentage of 

viabile cells was significantly higher in the naïve cells treated with conditioned 

media from the PCat cells compared to cells treated with conditioned media 

from PVect cells (Figure 5-12A). When SH-SY5Y cells were treated with H2O2 

(1000 µM) plus 50 mM 3-AT together with PCat or PVect conditioned media on 

SH-SY5Y cells, the PCat and PVect cells were equally susceptible to H2O2 

toxicity (Figure 5-12B).  

The SH-SY5Y cells treated with PCat conditioned media were resistant to H2O2 

toxicity unlike SH-SY5Y cells treated with PVect conditioned media. This could 

be due to the release of catalase into the media, which converts H2O2 to water 

and oxygen and protects the SH-SY5Y cells against ROS. This neuroprotection 

by the PCat conditioned media can be inhibited by 3-AT, confirming that the 

effect was not mediated by other peroxidase enzymes released into the media. 
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Figure 5-12. Effect of conditioned media from PCat and PVect cells on 

H2O2 toxicity. (A) Conditioned media from PCat (red circles) and PVect cells 

(blue circles) added to naïve SH-SY5Y cells in the presence of H2O2 (0-1000 

µM) and viability determined by MTT reduction. (B) Naïve SH-SY5Y cells were 

treated with conditioned media from PCat or PVect cells plus H2O2 (1000 µM) 

and 50 µM 3-AT and viability determined by MTT reduction. Results are mean ± 

S.E.M (n = 8); * = P < 0.05 vs PVect conditioned media; † = P < 0.05 vs H2O2 

alone (one-way ANOVA). 

 

5.2.7 His tag detection in PCat and PVect cells  

To detect the His-tagged catalase protein the PCat and PVect cells were double 

labelled with either HIS-1 monoclonal anti-poly-His antibody, to stain poly-His 

positive proteins, or CAT-505 monoclonal anti-catalase antibody, to detect 

overexpressed His-tagged catalase plus the nucleus was stained with TO-

PRO®-3 Iodide. The immunocytochemistry results showed label with TO-

PRO®-3 Iodide (blue), HIS-1 monoclonal anti-poly-His antibody (red) in both 

PVect (Figures 5-13) and PCat (Figure 5-14) cells. The pattern of staining by 

anti-poly-His antibody was similar in both PVect and PCat cells, the staining 

was observed in the nucleus and anti-poly-His antibody co-localized with TO-

PRO®-3 Iodide staining, the co-localization appeared purple, suggesting that 

the His-tagged catalase was in the nucleus (Figure 5-14). The staining with anti-
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catalase antibody was not in the nucleus and did not co-localize with TO-

PRO®-3 Iodide staining (Figure 5-14), the staining was in the cytoplasm as 

found in previous studies (Habib et al., 2010). This suggests that the HIS-1 

monoclonal anti-poly-His antibody did not detect His-tagged catalase, but the 

anti-poly-His antibody stained endogenous poly-His containing proteins within 

the nucleus. The cross-reactivity observed and the failure of the anti-poly-His 

antibody to stain the overexpressed His-tagged catalase suggests that this 

antibody is not suitable to discriminate between the endogenous catalase and 

His-tagged catalase in the SH-SY5Y neuroblastoma cell line. 

 

Figure 5-13. Poly-histidine and catalase immunocytochemical staining in 

PVect cells. The PVect cells were double labelled with HIS-1 monoclonal anti-

polyhistidine (A) and TO-PRO®-3 Iodide DNA staining (B) to detect co-

localization of polyhistidine containing proteins and DNA (C). The PVect cells 

were double labelled with CAT-505 monoclonal anti-catalase (D) and TO-

PRO®-3 Iodide (E) to detect co-localization of polyhistidine containing proteins 

and DNA (F). Bars = 5 µm (A-F). 
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Figure 5-14. Poly-histidine and catalase immunocytochemical staining in 

PCat cells. The PCat cells were double labelled with HIS-1 monoclonal anti-

polyhistidine (A) and TO-PRO®-3 Iodide DNA staining (B) to detect co-

localization of polyhistidine containing proteins and DNA (C). The PCat cells 

were double labelled with CAT-505 monoclonal anti-catalase (D) and TO-

PRO®-3 Iodide (E) to detect co-localization of polyhistidine containing proteins 

and DNA (F). Bars = 5 µm (A-F).
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5.3 Discussion  

To investigate the effect of catalase overexpression on H2O2 toxicity in the 

human neuroblastoma SH-SY5Y cells, an SH-SY5Y cell line that overexpressed 

catalase gene was created by cloning the catalase gene into 

pcDNA™4/TO/myc-His vector (section 5.2.1.1 and 5.2.1.1) and stably 

transfecting the vector into SH-SY5Y cells. The overexpression of catalase 

gene in transfected SH-SY5Y cells was confirmed by RT-PCR (section 5.2.1.4), 

immunocytochemistry (section 5.2.1.6) and western blotting (section 5.2.1.7). 

Furthermore, an activity assay (Sagara et al., 1996) was used to compare the 

catalase activity between the PCat and PVect cell lysates, by measuring the 

ability of the cell lysates to breakdown H2O2. The PCat cell lysate showed 6 fold 

increase in catalase activity compared to PVect cell lysate (section 5.2.3). 

Taken together, these results confirmed that PCat expressed significantly 

higher levels of active catalase than PVect cells.  

Overexpression of the catalase gene in SH-SY5Y cells was tested against H2O2 

toxicity. Results demonstrated that the enhanced level of the catalase gene 

expression in SH-SY5Y neurons is neuroprotective against H2O2 toxicity 

(section 5.2.2). The catalase neuroprotection against H2O2 toxicity could be 

inhibited by 3-AT (section 5.2.1). The 3-AT is an irreversible inhibitor of catalase 

activity (Milton 2001). This suggests that catalase overexpression can protect 

SH-SY5Y cells against H2O2 toxicity and the mechanism of neuroprotection 

requires active catalase. Inhibition of catalase activity by 3-AT makes the PCat 

cells susceptible to H2O2 toxicity.  

The PCat and PVect cells were not resistant to CoCl2 toxicity (a mimic of 

hypoxia) (section 5.2.4). This suggests that the neuroprotection by catalase 

overexpression is specific for H2O2 toxicity. To confirm that the catalase 

neuroprotection was by overexpression of the catalase gene in PCat cells, the 

tetracycline inducible system was used to regulate the catalase gene 

expression. The PCat cells were transfected with pcDNA6/TR vector, resulting 

in PCatTR6 cells, which could be induced using tetracycline (1 µg/ml). The 

working of the tetracycline inducible system was confirmed by RT-PCR (section 

5.2.1.5). In the absence of tetracycline, PCatTR6 cells (uninduced) were 
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significantly susceptible to H2O2 toxicity (section 5.2.5). In the presence of 

tetracycline, the gene expression was resumed which made the PCatTR6 

(induced) cells resistant to H2O2 toxicity. This observation suggests that the 

neuroprotection observed against H2O2 toxicity was due to catalase gene 

overexpression. The conditioned media harvested from PCat cells was 

neuroprotective against H2O2 toxicity (section 5.2.6). The conditioned media 

from PCat or PVect cells was added to the naïve SH-SY5Y cells together with 

H2O2 and 3-AT, both the naïve cells treated with PCat or PVect conditioned 

media were found to be susceptible to H2O2 toxicity in the presence of 3-AT. 

This suggests that conditioned media from PCat cells is neuroprotective against 

H2O2 toxicity, and this neuroprotection could be inhibited by 3-AT (section 

5.2.6). This could be due to the presence of neuroprotective components in 

PCat cells conditioned media, which was absent in the PVect cells conditioned 

media. 

The immunocytochemical studies with the HIS-1 anti-poly-His antibody suggest 

that the antibody cross reacts with other poly-histidine proteins in the nucleus 

and failed to detect his-tagged catalase in PCat cells (section 5.2.7). It has been 

suggested that a poly-His sequence specifically directs proteins to the nucleus 

(Paraguison et al., 2005; Salichs et al., 2009). The observations in the present 

study suggest that using HIS-1 anti-poly-His antibody may contribute to 

misinterpretation of results. 
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5.4 Conclusion 

The results presented in this chapter illustrate the creation of the catalase gene 

overexpressing SH-SY5Y cell line. The PCat cells were found to be resistant to 

H2O2 mediated cell death and this resistance to H2O2 could be inhibited by 3AT. 

This suggests that catalase activity is the key to protection against H2O2 

mediated toxicity. The expression of catalase could be regulated by the 

tetracycline inducible system which provides a further model system for 

investigation of catalase neuroprotection. 
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6.1 Introduction  

The Aβ peptide plays a pivotal role in the development of AD, amyloid plaques 

are the hallmarks used to diagnose AD in brain tissues (Selkoe, 1994; LaFerla 

et al., 2007). The data presented by Hansson Peterson et al., 2008 

demonstrated the transport of Aβ into rat mitochondria via the translocase of the 

outer membrane and Aβ was found to localize within mitochondrial cristae. 

Mitochondrial mislocalisation of Aβ leads to neuronal dysfunction in a drosophila 

model of AD (lijima-Ando et al., 2009). Accumulation of Aβ in mitochondria 

disrupts mitochondrial function resulting in increased production of ROS (Mao 

and Reddy 2011). The production of ROS induced by Aβ can lead to DNA 

damage and lipid peroxidation (Behl et al.,1994). Interestingly, there is 

increasing data that shows that antioxidant enzymes can significantly reduce 

ROS production, eventually improve cell survival and cellular function in vitro 

and in vivo (Wadsworth et al., 2008; Manczak et al., 2010; Van Raamsdonk and 

Hekimi 2010; Ma et al., 2011). 

An APP transgenic mouse was crossed with a mitochondrial targeted catalase 

mouse, to produce a double transgenic mouse. In the double transgenic mouse 

there was not only significantly reduced DNA oxidative damage but also 

inhibition of Aβ depositions, eventually improving the AD mouse lifespan (Mao 

et al., 2012). Cell line (PC12) genetically engineered to express higher levels of 

the antioxidant enzymes was found to be resistant to Aβ toxicity (Sagara et al., 

1996). Exogenous addition of catalase or antioxidants protects cultured neurons 

from Aβ toxicity (Behl et al., 1992; Behl et al., 1994). Catalase is an antioxidant 

enzyme which can efficiently break down H2O2 to water and oxygen (Kirkman 

and Gaetani 2007). Catalase protects cells against increased levels of H2O2 

induced by Aβ toxicity (Behl et al., 1994). In AD patients the blood levels of 

catalase protein are unchanged, but a decrease in the activity has been 

observed (Kharrazi et al., 2008; Puertas et al., 2012). This could be due to the 

interaction of catalase and Aβ within the erythrocytes, suggesting that the 

interaction could take place even in minimal cell devoid of nucleus (Clementi et 

al., 2004). The binding of catalase to Aβ possibly occurs between the CAβBD 

contained in the wrapping loop of the catalase 400-409 region and the 25-35 
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region of the Aβ peptide (Milton et al., 2001). A previous study has shown that 

only Aβ 29-40 fibrils but not Aβ 1-28 or Aβ 33-42 fibrils can bind to catalase 

(Milton and Harris, 2009). This suggests that amino acids 29-32 (Gly-Ala-Ile-Ile) 

of Aβ are key for the catalase-amyloid interaction. The 31-35 fragment of Aβ is 

the smallest fragment that could inhibit the activity of catalase (Milton 1999) and 

also inhibits catalase binding to Aβ fibrils (Milton and Harris, 2009). In a 

previous study (Sagara et al.,1996) the PC12 cells that were selected for Aβ 

resistance, were less susceptible to H2O2 toxicity. A higher expression and 

activity of the antioxdant enzymes was observed in the Aβ resistant PC12 cells. 

This study also demonstrated that cell lines engineered to express higher levels 

of antioxidant enzymes such as catalase and glutathione peroxidase were 

resistant to Aβ toxicity (Sagara et al., 1996). In the present study, the catalase 

gene has been overexpressed in PCat SH-SY5Y cells to determine the role of 

catalase gene overexpression in protection against Aβ toxicity. 

Catalase not only binds Aβ, but has been shown to bind other amyloid peptides 

such as the IAPP and PrP (Milton and Harris, 2010; Milton and Harris, 2013). 

This could be due to the sequence similarity shared by all the amyloid peptides, 

containing a potential catalase-binding domain (Figure 1-3). The amyloid 

deposits found in T2DM consists of IAPP (Janson et al., 1996; Höppener et al., 

2008).  

Compounds that specifically disrupt catalase-amyloid interactions were found to 

be neuroprotective against Aβ induced OS and toxicity (Habib et al., 2010). The 

KP peptide is one of the peptides that can bind Aβ and inhibit catalase-amyloid 

interaction (Figure 3-3). Both KP and catalase have been found together in 

amyloid plaque like deposits in the pons section of the AD brain (Figure 4-6). 

Binding studies have shown that BTA-EG4 can disrupt catalase-amyloid binding 

interaction (Figure 3-3). The tetra-ethylene glycol derivatives of BTA surround 

the aggregated Aβ with a bioresistive coating, preventing the association of 

aggregated Aβ with cellular proteins (Inbar et al., 2006). BTA derivatives can 

also cross the blood brain barrier and show high affinity for aggregated Aβ 

(Inbar et al., 2006). This suggests that disrupting the interaction between 

catalase and Aβ could be neuroprotective. The BTA derivatives can bind a 
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range of amyloid peptides (Inbar et al., 2006; Habib et al., 2010; Capule et al., 

2012) suggesting they could also be used to disrupt catalase interactions with 

IAPP and PrP (Milton and Harris, 2010; Milton and Harris, 2013). 

The inhibitors of catalase activity such as 3-AT or homocysteine (Milton 2008) 

were shown to significantly enhance Aβ toxicity. This suggests that catalase 

activity is required for protection against Aβ induced OS and toxicity. The 3-AT 

does not play any role in disruption of catalase-amyloid interaction (Figure 3-4). 

The 3-AT inhibits activity of catalase, but inactive catalase could still bind Aβ 

(Zang et al., 1996), which could be neuroprotective.
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6.1.1 Aim  

 To investigate the mechanism of neuroprotection of catalase gene 

overexpression against Aβ toxicity. 

6.1.2 Objectives  

 To investigate the effect of Aβ toxicity on PCat cells 

 To test the tetracycline inducible system against Aβ toxicity  

 To test the effect of PCat conditioned media on SH-SY5Y cells against 

Aβ toxicity. 

 To test the effect of different amyloid peptides on PCat cells 

 To determine the effect of BTA-EG4 on catalase neuroprotection against 

Aβ toxicity in PCat cells 

 To investigate the effect of H2O2 on PCat cells treated with BTA-EG4, KP 

45-50 and 3-AT 

6.1.3 Hypothesis 

Catalase shares sequence similarity with Aβ, it has also been            

found associated with amyloid plaque like deposits. The binding 

interaction between catalase and Aβ could be neuroprotective or it could 

lead to further cell death. By inhibiting the binding interaction using BTA-

EG4, the effect of catalase amyloid interaction in SH-SY5Y cells 

overexpressing catalase gene can be investigated. 
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6.2 Results  

6.2.1 The effect of Aβ toxicity on PCat cells  

The PCat and PVect cells were treated with Aβ 25-35 to determine the role of 

catalase gene overexpression in neuroprotection against Aβ toxicity. The PCat 

and PVect cells were exposed to different Aβ 25-35 doses (0 - 50 µM) overnight 

(Figure 6-1A) prior to MTT assay of cell vialibity. The dose response curve 

shows a significant increase in the percentage of PCat viable cells compared to 

PVect cells. Even at higher doses (50 µM) the PCat cells were more resistant to 

Aβ toxicity. The neuroprotection by catalase gene overexpression against Aβ 

has been shown here for the first time. 
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Figure 6-1. The effect of Aβ toxicity on PCat cells. (A) The PCat and PVect 

cells were exposed to different doses of Aβ 25-35 (0-50 µM) and viability 

determined by MTT assay. (B) The PCat and PVect cells were treated with 

different doses of 3-AT (0-50 mM) and 10 µM Aβ 25-35 and viability determined 

by MTT reduction. (C) The effects of Aβ (10 µM) in PCat and PVect cells 

determined by trypan blue assay (C). Results are mean ± S.E.M (n = 8); * = P < 

0.05 vs PVect plus (A) Aβ, (B) Aβ and 3-AT, (C) Aβ; † = P < 0.05 vs PVect plus 

Aβ; one-way ANOVA (A,B) or students t-test (C). 

 

To determine if catalase activity is required for neuroprotection against Aβ 25-

35, the PCat and PVect cells were pretreated with different concentrations of 3-

AT (0-50 mM) (Figure 6-1B) for an hour prior to being treated with 10 µM Aβ 25-

35 plus different concentrations of 3-AT. The viability of the cells was measured 

by MTT cell viability assay. Unlike the PVect cells, the PCat cells were still 

resistant to Aβ 25-35 toxicity, even at higher doses of 3-AT. The viability of the 

PCat cells did not reach the low level cell viability levels of the PVect cells, this 

suggests that the neuroprotection provided by catalase is partially but not 

entirely dependent on its activity.The other possible mechanism of 

neuroprotection could be a catalase-amyloid interaction, as Aβ can still bind 

inactive catalase (Zang et al., 1996) and this binding interaction could prevent 

Aβ toxicity. 

The neuroprotection by catalase overexpression against Aβ toxicity was also 

confirmed by trypan blue assay. The PCat cells were treated with 10 µM Aβ 25-

35 overnight, the trypan blue assay was used to count the number of viable 

cells (Figure 6-1C). Results obtained were consistent with the MTT assay result 

(Figure 6-1A), where the PCat cells were more resistant to amyloid toxicity 

compared to PVect cells.  

6.2.2 Tetracycline inducible system  

The tet inducible system was used to regulate levels of catalase gene 

expression, to determine the neuroprotection by catalase gene overexpression 

against Aβ (31-35) toxicity. The working of the tetracycline inducible system was 

confirmed by RT-PCR (Figure 5-5). In the absence of tet, the PCatTR6 cells 
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were treated with 50 µM Aβ (31-35) overnight. The PCatTR6 cells were found to 

be significantly susceptible to Aβ (31-35) toxicity in the absence of tet. However 

following the treatment of the PCatTR6 cells with tet (1 µg/ml) and 50 µM Aβ 

(31-35) overnight, the PCatTR6 cells were resistant to Aβ (31-35) toxicity 

(Figure 6-2). Tet alone did not have any effect on PCatTR6 cell viability. This 

clearly demonstrates that catalase gene overexpression is key for 

neuroprotection against Aβ (31-35) toxicity. 

 

Figure 6-2. Effect of Aβ on PCatTR6 cells in the presence and absence of 

tetracycline. The PCatTR6 cells were preincubated with or without tetracycline 

(1 µg/ml) overnight prior to exposure to 50 µM Aβ (31-35) overnight and viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control; † = P < 0.05 vs Aβ alone (one-way ANOVA).  

 

6.2.3 The effect of PCat conditioned media on SH-SY5Y cells 

against Aβ toxicity. 

The conditioned media from PCat cells was harvested, to test if it was 

neuroprotective against Aβ toxicity on SH-SY5Y cells. The SH-SY5Y cells were 

treated with 25 µM Aβ (25-35) plus conditioned media from PCat or PVect cells 

overnight. Results showed that the SH-SY5Y cells treated with PCat 

conditioned media were resistant to Aβ toxicity (Figure 6-3). The SH-SY5Y cells 

treated with PVect conditioned media were significantly susceptible to Aβ 
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toxicity. Next, the SH-SY5Y cells were treated with conditioned media from 

PCat or Pvect cells plus 25 µM Aβ (25-35) and 50 µM 3-AT overnight. Results 

showed that the SH-SY5Y cells treated with PCat conditioned media were not 

affected by addition of 3-AT, but the toxicity of Aβ was still significant in the SH-

SY5Y cells treated with PVect conditioned media, 3-AT and Aβ. This suggests 

that the PCat conditioned media is neuroprotective against Aβ toxicity, and this 

neuroprotective component in the PCat conditioned media was not effected by 

3-AT (results consistent with previous study by Zhang et al., 1996). 

 

Figure 6-3. Effect of conditioned media from PCat and PVect cells on Aβ 

toxicity. Naïve SH-SY5Y cells were treated with conditioned media from PCat 

or PVect cells plus 25 µM Aβ (25-35) and 50 µM 3-AT overnight and viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs PVect conditioned media (one-way ANOVA). 

 

 

 

6.2.4 The effect of different amyloids on PCat cells  
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The sequence similarity between the different amyloid peptides suggest that 

they could interact with catalase and overexpression of the catalase gene could 

be neuroprotective against Aβ, ABri, ADan, IAPP and PrP toxicity. To 

investigate the role of catalase in neuroprotection, the PCat and PVect cells 

were exposed to 25 µM Aβ (25-35), ABri (1-34), ADan (1-34), IAPP (20-29) and 

PrP (106-126) toxicity overnight. The results (Figure 6-4A) showed that the 

PCat cells were significantly resistant to Aβ, ABri, ADan, IAPP and PrP toxicity 

compared to PVect cells. This is the first demonstration of catalase gene 

overexpression being neuroprotective against Aβ, ABri, ADan, IAPP and PrP 

toxicity. 
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Figure 6-4. The effect of different amyloid peptides on PCat cells. (A) The 

PCat and PVect cells were exposed to 25 µM Aβ, ABri (1-34), ADan (1-34), 

IAPP (20-29) and PrP (106-126) overnight and viability determined by MTT 

reduction. (B) The PCat cells were exposed to either 25 µM Aβ, ABri (1-34), 

ADan (1-34), IAPP (20-29) and PrP (106-126) or together with 3-AT (50 mM) 

overnight and viability determined by MTT reduction. Results are mean ± S.E.M 

(n = 8); * = P < 0.05 vs PVect; † = P < 0.05 vs amyloid peptide alone (one-way 

ANOVA). 
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The activity of catalase in the PCat cells was inhibited by 3-AT. The cells were 

pretreated with 50 mM 3-AT for an hour prior to the addition of 25 µM of Aβ, 

ABri (1-34), ADan (1-34), IAPP (20-29) and PrP (106-126) overnight (Figure 6-

4B). The 3-AT significantly enhanced the toxicity of various amyloid peptides, 

which decreased the percentage of viable cells compared to the cells treated 

with amyloid peptides alone. This suggests that catalase activity is required for 

neuroprotection against amyloid peptides. The possible mechanism of 

neuroprotection being, catalase antioxidant activity, which breaks down H2O2 

induced by amyloid peptides. 

6.2.5 The effect of BTA-EG4 on catalase neuroprotection against 

Aβ toxicity in PCat cells  

To understand the importance of the catalase-amyloid interaction in catalase 

neuroprotection, BTA-EG4 was used to block the catalase-amyloid interaction. 

The BTA-EG4 has a relatively low molecular weight (416.18 Da) and it has been 

shown to be taken up by SH-SY5Y neurons and to disrupt catalase-amyloid 

interactions (Habib et al., 2010). The BTA-EG4 was not toxic to SH-SY5Y 

neurons and was previously shown to be neuroprotective against Aβ toxicity at 

concentrations of 20 μM or higher (Habib et al., 2010). This was observed in the 

previous study done by Habib et al., 2010 where 25 μM Aβ was pre-incubated 

with different concentrations of BTA-EG4 for 12 hrs before adding the mixture to 

the naïve cells to block catalase-amyloid interaction. 
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Figure 6-5. The effect of BTA-EG4 on catalase neuroprotection against Aβ 

toxicity in PCat cells. (A) PCat cells were incubated with 0 - 20 μM BTA-EG4 

alone (blue circles) or BTA-EG4 plus 50 μM Aβ (red circles) overnight and 

viability determined by MTT reduction. (B) PVect cells (blue columns) or PCat 

cells (red columns) were incubated with 20 μM BTA-EG4 alone (striped open 

columns), 25 μM, Aβ (filled columns) or BTA-EG4 plus 25 μM Aβ (striped filled 

columns) overnight and viability determined by MTT reduction. Results are 

mean ± S.E.M (n = 8); (A) * = P < 0.05 vs 50 μM Aβ alone; (B) * = P < 0.05 vs 

PVect; † = P < 0.05 vs 25 μM Aβ alone (one-way ANOVA). 

 

In the present study, contrasting results were found to previously published 

findings (Habib et al., 2010); this could be due to the difference in the 

experimental procedure. The PCat cells were pretreated with different 

concentration of BTA-EG4 (0 - 20 μM) overnight, to allow the uptake of BTA-EG4 

into the cells before adding Aβ to the cells. The next day 50 μM Aβ (25-35) was 

added together with BTA-EG4 to the PCat cells and was further incubated for 24 

hrs prior to determination of cell viability. There was no toxicity observed when 

PCat cells were treated with different concentrations of (0-20 μM) BTA-EG4 

alone (Figure 6-5A). But, when the PCat cells were treated with different 
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concentrations of BTA-EG4 (0-20 μM) and 50 μM Aβ, at 20 μM the BTA-EG4 

significantly increased the toxicity of 50 μM Aβ. The increased toxicity of 50 μM 

Aβ suggests that a dose of 20 μM BTA-EG4 is sufficient to disrupt catalase-

amyloid interaction and to allow Aβ to exert a toxic effect on PCat cells. This 

suggests that blocking the catalase-amyloid interaction could increase the 

toxicity of Aβ, which could lead to cell death. When the PCat and the PVect 

cells were treated with 20 μM BTA-EG4 plus 25 μM Aβ, the BTA-EG4 increased 

the toxicity of Aβ in the PCat cells (Figure 6-5B). The 20 μM BTA-EG4 alone 

was not toxic to the PCat or PVect cells. This suggests that BTA-EG4 enhances 

the toxicity of Aβ by inhibiting catalase-amyloid interaction, which could be the 

reason for increased Aβ toxicity only in PCat cells and not in PVect cells. 

6.2.6 The effect of KP 45-50 against Aβ toxicity in PCat  

To eliminate the possibility that any protein binding interaction with Aβ in PCat 

cells will enhance the toxicity of Aβ, the binding interaction between KP and Aβ 

was examined. The experimental conditions used were same as used for BTA-

EG4, were the PCat cells were pretreated with different concentrations of KP 

45-50 (0 - 20 µM) overnight prior to treatment with KP (0- 20 µM) alone or 50 

μM Aβ (25-35) plus KP 45-50 (0 - 20 µM) for 24 hrs. 

Results showed PCat cells treated with KP alone or Aβ plus KP did not enhance 

the toxicity of Aβ (Figure 6-6). The higher doses of KP (10 and 20 µM) were 

found to be neuroprotective against Aβ toxicity. This suggests that the 

enhancement of Aβ neurotoxicity in PCat cells by BTA-EG4 was specific, and 

that any endogenous Aβ binding compound such as KP may not have a similar 

effect.  
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Figure 6-6. The effect of KP 45-50 against Aβ toxicity in PCat cells. The 

PCat cells were pretreated with 20 µM KP 45-50 overnight, prior to the 

treatment with 20 µM KP alone (blue circles) or 20 µM KP + 50 µM Aβ (red 

circles) and incubated overnight with viability determined by MTT reduction. 

Results are mean ± S.E.M (n = 8); * = P < 0.05 vs 50 μM Aβ alone (one-way 

ANOVA). 

 

6.2.7 The effect of BTA-EG4 on various catalase-amyloid (Aβ 25-

35, ABri 1-34, ADan 1-34, IAPP 20-29 and PrP 106-126) 

interactions in PCat cells  

The Aβ and catalase interaction was inhibited by BTA-EG4; different amyloid 

peptides were tested to see if BTA-EG4 would disrupt catalase-amyloid (Aβ 25-

35, ABri 1-34, ADan 1-34, IAPP 20-29 and PrP 106-126) interactions and 

induce cell toxicity. The PCat cells were pretreated with 20 µM BTA-EG4 for 24 

hrs prior to the treatment with different amyloid peptides. 

The cells were treated with 25 µM amyloid peptides; Aβ 25-35, ABri 1-34, ADan 

1-34, IAPP 20-29, PrP 106-126 and 20 µM BTA-EG4 for 24 hrs. Results showed 

that BTA-EG4 increased the toxicity of all the amyloid peptides, compared to the 

cells treated with the peptide alone (Figure 6-7). This suggests that a binding 

interaction between catalase and the amyloid peptides is the key for 
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neuroprotection, inhibiting the catalase-amyloid interaction increases the toxicity 

of the amyloid peptides.  

 

Figure 6-7. The effect of BTA-EG4 on amyloid toxicity in PCat cells. The 

effect of 20 µM BTA-EG4 pre-treatment prior to addition of 25 µM amyloid 

peptides; Aβ 25-35, ABri 1-34, ADan 1-34, IAPP 20-29, PrP 106-126 plus 20 µM 

BTA-EG4 was tested on PCat cells incubated overnight and viability determined 

by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 vs amyloid 

peptide alone (one-way ANOVA). 

 

6.2.8 The effect of H2O2 on PCat cells treated with BTA-EG4, KP 

45-50 and 3-AT  

To understand the affect of BTA-EG4, KP and 3-AT on PCat cells treated with 

H2O2, the PCat cells were pretreated with 20 µM BTA-EG4, 10 µM KP 45-50 

and 50 mM 3-AT overnight. Next day, 500 µM of H2O2 plus 20 µM BTA-EG4 or 

10 µM KP 45-50 or 50 mM 3-AT was added to the cells for 2 hrs prior to the 

MTT assay. Results showed that BTA-EG4 and KP did not enhance the toxicity 

of H2O2 unlike 3-AT, which significantly enhanced the toxicity of H2O2 (Figure 6-

8). This suggests that the enhancement of Aβ toxicity in catalase gene 

overexpressing cells by BTA-EG4 is specific for amyloid peptides and more 
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likely be due to inhibition of catalase-amyloid binding interaction, BTA-EG4 and 

KP did not the affect the ability of catalase to breakdown H2O2. 

 

Figure 6-8. The effect of H2O2 on PCat cells treated with BTA-EG4, KP 45-50 

and 3-AT. The PCat cells were pretreated with either 20 µM BTA-EG4, 10 µM 

KP 45-50 or 50 mM 3-AT prior to the treatment with 500 µM H2O2 for 2 hrs and 

viability determination by MTT reduction. Results are mean ± S.E.M (n = 8); * = 

P < 0.05 vs control (cell treated with media only), † = P < 0.05 vs cells treated 

with H2O2 only, (one-way ANOVA).
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6.3 Discussion 

The catalase gene was overexpressed in SH-SY5Y cells to determine the 

effects of catalase gene overexpression against Aβ toxicity. The catalase gene 

overexpression was found to be neuroprotective against Aβ toxicity (section 

6.2.1). This is consistant with a previous study where increased expression of 

catalase and glutathione peroxidase made cells resistant to amyloid toxicity 

(Sagara et al., 1996). Catalase neuroprotection against Aβ toxicity was partly 

inhibited by 3-AT (section 6.2.1). As 3-AT only inhibits catalase activity (section 

5.2.2) and does not interfere with the catalase-amyloid interaction (section 3.2.3 

) this suggests that 3-AT could decrease catalase neuroprotection by inhibiting 

catalase activity. This also shows that although 3-AT inhibits the activity of 

catalase, inactive catalase could still bind Aβ (Zang et al., 1996), which could be 

neuroprotective. The catalase neuroprotection against Aβ toxicity was 

confirmed by both MTT (section 6.2.1) and trypan blue assay (section 6.2.1).  

The tetracycline inducible system was used to regulate catalase gene 

expression. Results showed that catalase gene expression was key for 

neuroprotection against Aβ toxicity, repressing the expression of the catalase 

gene made the PCatTR6 cells susceptible to Aβ toxicity (section 6.2.2). The 

conditioned media from the PCat cells was also found to be neuroprotective 

against Aβ toxicity (section 6.2.1), where addition of 3-AT did not seem to alter 

the neuroprotective effect of the PCat conditioned media. This suggests that the 

neuroprotective component of the PCat conditioned media was unaltered by 3-

AT. 

The catalase gene overexpression was found to be neuroprotective against Aβ 

toxicity; the PCat cells were used to test neuroprotection against other amyloid 

peptides such as Aβ (25-35), ABri (1-34), ADan (1-34), IAPP (20-29) and PrP 

(106-126). Results showed that catalase was resistant to Aβ (25-35), ABri (1-

34), ADan (1-34), IAPP (20-29) and PrP (106-126) toxicity (section 6.2.4). The 

toxicity of the amyloid peptides was significantly enhanced by 3-AT in PCat cells 

(section 6.2.4), which suggests that the neuroprotection was due to activity of 

catalase. 
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To further understand the mechanism of neuroprotection by catalase binding to 

Aβ, the catalase-amyloid interaction was disrupted by BTA-EG4. The BTA-EG4 

surrounds Aβ aggregates and does not allow Aβ to interact with cellular proteins 

(Habib et al., 2010; Capule et al., 2012). The inhibition of the catalase-amyloid 

interaction by BTA-EG4 has been confirmed (section 3.2.3). The BTA-EG4 by 

itself was not toxic to PCat cells, but when added together with Aβ, it enhanced 

the toxicity of Aβ at a dose of 20 µM BTA-EG4 (section 6.2.5) in PCat cells. The 

BTA-EG4 did not have any effect on Aβ toxicity in PVect cells (section 6.2.1). 

This suggests that disruption of catalase-amyloid interaction by BTA-EG4 could 

enhance Aβ toxicity in PCat cells.  

To confirm that any compound that can bind Aβ will not enhance Aβ toxicity in 

PCat cells, the effect of KP 45-50 was tested on PCat cells against Aβ toxicity. 

The KP 45-50 can bind Aβ and could inhibit the interaction catalase-amyloid 

interaction (section 3.2.3). Unlike the BTA-EG4 the KP did not enhance the 

toxicity of Aβ in PCat cells, but was found to be neuroprotective against Aβ 

toxicity (section 6.2.6). This suggests that the role of BTA-EG4 is specific and 

that the increased toxicity observed was due to disruption of catalase-amyloid 

interaction. It also shows that not all the compounds that bind Aβ will 

necessarily enhance the toxicity of Aβ in PCat cells. 

The effect of treatment of PCat cells with BTA-EG4 and different amyloid 

peptides; Aβ 25-35, ABri 1-34, ADan 1-34, IAPP 20-29 and PrP 106-126 were 

investigated. The BTA-EG4 enhanced the toxicity of all the amyloid peptides 

(section 6.2.7). This suggests that BTA-EG4 enhances the toxicity of all the 

amyloid peptides by disrupting catalase-amyloid interaction. The effects of BTA-

EG4, KP and 3-AT on the toxicity of H2O2 were also investigated in the PCat 

cells (section 6.2.8). Results showed that BTA-EG4 and KP did not enhance the 

toxicity of H2O2, unlike 3-AT in PCat cells. This indicates that BTA-EG4 does not 

affect the activity of catalase and could enhance the toxicity of Aβ by disrupting 

catalase-amyloid interaction (section 6.2.8). 



 

Chapter 6 - Catalase neuroprotection against amyloid-β toxicity 

 

Figure 6-9.The proposed model of catalase-amyloid interaction. The 

diagram represents the proposed model of catalase-amyloid interaction (A). The 

3-AT could bind to catalase (B) resulting in decreased catalase activity (can no 

longer breakdown H2O2) and increased amyloid toxicity.The catalase-amyloid 

interaction could be blocked by BTA-EG4 (C), which leaves catalase unaffected 

(can efficiently breakdown H2O2) by Aβ.
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6.4 Conclusions 

The results of this chapter represent the mechanism of catalase neuroprotection 

against Aβ toxicity. Catalase was found to be neuroprotective against not only 

Aβ but also other amyloid peptides such as IAPP and PrP. The mechanism of 

neuroprotection was found to have both an activity of catalase and catalase-

amyloid binding interaction components. This neuroprotection could be inhibited 

by either 3-AT or BTA-EG4. The compounds that inhibit catalase-amyloid 

interaction have been found to be neuroprotective (Habib et al., 2010; Capule et 

al., 2012). The results obtained in the present study contradict the previous 

reports, as the inhibition of catalase-amyloid interaction was found to have 

decreased the viability of the PCat cells. It could be possible that BTA-EG4 

enhances the toxicity of Aβ only in PCat cells, since no increase in toxicity was 

observed in PVect cells treated with BTA-EG4 and Aβ. 
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7.1 Introduction  

The KP peptides are major regulators of the HPG axis, which act on GnRH 

neurons to activate GnRH release, which in turn stimulates LH and FSH 

(gonadotrophins) (Navarro and Tena-Sempere, 2011). The KP peptide was 

discovered as a product of a human melanoma KiSS-1 metastasis suppressor 

gene (Kotani et al., 2001). Overexpression of KiSS-1 gene in human melanoma 

cell lines suppressed metastasis in athymic nude mice (Lee et al., 1996). The 

KP peptides are products of the KiSS-1 gene, the full length pre-pro-protein 

gets processed to yield KP-54, and shorter derivatives of KP peptide comprising 

of the C-terminal KP-14 (41-54), KP-13 (42-54) and KP-10 (45-54) (Kotani et 

al., 2001). The KP-10 peptide is the smallest form, which is biologically active, 

to stimulate the GPR-54 receptor (Kotani et al., 2001; Bilban et al., 2004). 

Binding of KP to GPR-54 leads to GnRH secretion, failure of GPR-54 

stimulation by KP leads to hypogondotropic hypogonadism (De Roux et al., 

2003). Recent studies have shown that KP-13, KP-10 and KSO can stimulate 

the NPFF receptors and therefore some KP actions could also be mediated by 

the NPFF receptors (Lyubimov et al., 2010; Oishi et al., 2010; Milton 2012).  

It has been demonstrated that catalase residues 400-409 contain the Aβ 

binding domain (Milton 2001), which was found to be neuroprotective and that a 

peptide containing these residues, CAβBD, can inhibit interactions between 

catalase and Aβ fibrils (Milton and Harris, 2009). A comparison between human 

catalase and KiSS-1 preproprotein sequences has shown that the KiSS-1 

preproprotein contains a CAβBD-like sequence (Figure 1-8). 

The sequence similarity as shown in Figure 1-8 raises the possibility of KP 

binding to Aβ, IAPP and PrP, and this suggests that it could be neuroprotective 

against Aβ toxicity (Milton 2011; Milton 2013). The SH-SY5Y neuroblastoma 

cells express the KiSS-1 gene (Poomthavorn et al., 2009) and contain the 

necessary secretary vesicle machinery to release neuroendocrine hormones 

(Godall et al., 1997). This suggests that the SH-SY5Y cells can process the 

KiSS-1 preproprotein to smaller kisspeptins. In the present study, the KiSS-1 

gene was cloned in a pcDNA™4/TO/myc-His vector and the SH-SY5Y cells 
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were transfected with the KiSS-1 gene (PKiSS cells). The SH-SY5Y cells 

transfected with empty vector were used as control (PVect cells). The 

overexpression of the KiSS-1 gene was confirmed by RT-PCR and 

immunocytochemistry. The PKiSS and PVect cells were exposed to Aβ, IAPP 

and PrP to investigate the role of KP in neuroprotection against Aβ, IAPP and 

PrP. To understand the mechanism of neuroprotection the anti-KP 45-50 

antibody (Iijima et al., 2011), GPR-54 and NPFF receptor antagonists KP234 

(Roseweir et al., 2009) and RF9 (Simonin et al., 2006) were also tested in these 

experiments. 

Previous studies have shown a relationship between gonadotrophins and OS 

(Muthuvel et al., 2006; Murugesan et al., 2007). Increases in OS lead to a 

decrease in LH and FSH, which is induced by hypothalamic malfunction. It has 

also been shown that production of LH is reduced in the anterior pituitary due to 

OS, and that the normal levels could be restored by treatment with an 

antioxidant, vitamin C (Muthuvel et al., 2006; Murugesan et al., 2007). A 

previous study has also shown that serum LH and FSH increase in parallel with 

catalase and SOD in post-varicocelectomy patients (Hurtado et al., 2007). In a 

study carried out by Aydin et al., 2010, the KP was shown to have an indirect 

antioxidant effect. In this study high level of SOD and catalase were found in 

young male rats treated with KP. In the present study, the indirect role of KP as 

an antioxidant was investigated in PKiSS cells. High levels of KP should 

increase the expression level of catalase protein (Aydin et al., 2010), if so the 

PKiSS cells should be resistant to H2O2 toxicity similar to the PCat cells. The 

expression level of catalase in PKiSS cells will be determined by RT-PCR and 

the indirect antioxidant effect of KP will be tested by exposing the PKiSS cells to 

H2O2.
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7.1.1 Aim  

 To determine the effect of KiSS-1 gene overexpression in SH-SY5Y cells 

against Aβ toxicity.  

7.1.2 Objectives  

 Amplification of the KiSS-1 genes using PCR. 

 Estimation of KiSS-1 gene mRNA expression in PKiSS cells. 

 To investigate whether the overexpression of the KiSS-1 gene protects 

against Aβ toxicity. 

7.1.3 Hypothesis 

The  KP peptide shares sequence similarity and binds to Aβ, it has been 

found associated with amyloid plaque like deposits in the AD patient 

pons brain sections. As peptides that bind Aβ could be neuroprotective, 

the overexpression of KiSS-1 gene could also show neuroprotection 

either via binding interaction with Aβ or through binding to its receptor. 

The effect of KiSS-1 gene overexpression in SH-SY5Y cells against Aβ 

toxicity was investigated in this chapter. 
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7.2 Results  

7.2.1 KP peptide neuroprotection against different amyloid 

peptides (Aβ, IAPP, PrP, ABri and ADan). 

The KP 45-50 peptide has recently been identified as an amyloid binding 

peptide, which binds to the same region of Aβ, IAPP and PrP as catalase and 

inhibits their toxicity (Milton 2011; Milton 2013). The effect of pretreatment of 

naïve SH-SY5Y cells with 1 µM and 10 µM of KP 45-50 for 24 hrs prior to the 

treatment with 25 µM amyloid peptides (Aβ, IAPP, PrP, ABri and ADan) was 

tested. Results show that 1 µM KP does not have any significant effect on the 

toxicity of Aβ 25−35, IAPP 20−29, PrP 106−126, ABri 1−34, or ADan 1−34 

(Figure 7-1A). Treatment with 10 µM KP 45-50 significantly reduced the toxicity 

of the Aβ 25−35, IAPP 20−29, and PrP 106−126, but had no effect on the 

toxicity of ABri 1−34 or ADan 1−34 (Figure 7-1B). 
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Figure 7-1. KP 45-50 neuroprotection against different amyloid peptides. 

Naïve SH-SY5Y cells were pretreated with 1 µM (A) and 10 µM (B) of KP 45-50 

for 24 hrs prior to the treatment with 25 µM Aβ 25−35, IAPP 20−29, PrP 

106−126, ABri 1−34, or ADan 1−34 alone or together with KP 45-50, after 

overnight incubation the viability was determined by MTT reduction. Results are 

mean ± S.E.M (n = 8); † = P < 0.05 vs control (cell treated with media only were 

considered as 100 percent), * = P < 0.05 vs cells treated with amyloid peptide 

only, (one-way ANOVA). 
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This experiment suggests that KP is neuroprotective against amyloid peptides 

and overexpression of KP in SH-SY5Y cells could protect the cells against 

amyloid insults. 

7.2.2 Characterization of PKiSS human KiSS-1 gene 

overexpressing SH-SY5Y human neuroblastoma cells  

For the overexpression of KiSS-1, the human KiSS-1 gene was cloned into the 

pcDNA™4/TO/myc-His expression vector and transfected into naïve SH-SY5Y 

neuroblasoma cells. 

7.2.2.1 Amplification of the KiSS-1 gene using PCR  

The KiSS-1 gene was cloned into the pcDNA™4/TO/myc-His vector (Invitrogen) 

and this was later transfected into SH-SY5Y cells, to investigate the role of 

KiSS-1 gene overexpression against Aβ toxicity. The KiSS-1 genes was 

amplified from pCMV6-XL5 vector containing human KiSS-1 gene (Origene) 

using PCR, the PCR conditions used for the amplification are mentioned in the 

materials and methods (2.2.2). After the PCR, the PCR product was run on 1% 

agarose gel, where the KiSS-1 gene band was found to be 0.47 Kbps (Figure 7-

2).  
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Figure 7-2. Amplification of the KiSS-1 genes using PCR. The 1 % agarose 

gel picture shows the PCR amplification of the KiSS-1 gene from the pCMV6-

XL5 vector containing human KiSS-1 gene (Origene). Lane 1- 1kb ladder, lane 

2- PCR product of the KiSS-1 gene. 

 

7.2.2.2 Analyzing the restriction digestion of the 

pcDNA™4/TO/myc-His expression vector containing the KiSS-1 

gene  

The KiSS-1 gene was cloned in the pcDNA™4/TO/myc-His expression vector. 

To confirm the cloning the vector was restriction enzyme digested using the 

restriction enzymes - KiSS-1 (Bam HI and XhoI). Figure 7-3 represents the 

restriction digestion of the vector containing the KiSS-1 gene. The cloned KiSS-

1 gene generated two bands upon restriction enzyme digestion, the linearized 

pcDNA™4/TO/myc-His vector band 5.1 Kbps and the KiSS-1 band of 0.47 

Kbps, which is the right size for the KiSS-1 gene. The sequence of the cloned 

KiSS-1 gene was further confirmed by DNA sequencing (UCL DNA sequencing 

service, see Appendix 10.2); the DNA sequence of the gene was found to be 

correct without any mutations. 
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Figure 7-3. Analysis of the restriction digest of the pcDNA™4/TO/myc-His 

expression vector containing the KiSS-1 gene. Restriction enzyme digestion 

of the KiSS-1 gene cloned into the pcDNA™4/TO/myc-His vector, the size of the 

vector was found to be 5.1 Kbps and the KiSS-1 gene 0.47 Kbps (lane 2 and 3), 

which is the predicted size for the KiSS-1 gene, lane 1- 1kb ladder. 

 

7.2.2.3 Transfection of KiSS-1 gene and selection of stably 

expresing PKiSS cell line 

The pcDNA™4/TO/myc-His vector containing the KiSS-1 gene was transfected 

into the naïve SH-SY5Y cells. The cells were cultured in the presence of zeocin 

to select pcDNA™4/TO/myc-His vector expressing cells. After culture for 4 

weeks in zeocin the stable PKiSS cell line was subsequently cultured under 

standard cell culture conditions. 

The PVect cell line (Chapter 5: Section 5.1.2.3) was used as a control. 

7.2.2.4 Estimation of KiSS-1 gene mRNA expression levels in 

PKiSS cells  

The overexpression of the KiSS-1 gene was confirmed by RT-PCR. The gel 

image (Figure 7-4) of the KiSS -1 gene RT-PCR represents a comparison of 

expression levels of KP mRNA in PKiSS, PCat and PVect cells. The mRNA 

expression of KP is higher in the PKiSS cells (lane 5) compared to PVect cells 

(lane 4), this suggests that KP is overexpressed in PKiSS cells compared to 

PVect cells or PCat cells. 
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Figure 7-4. Estimation of KiSS-1 gene mRNA levels expression in PKiSS 

cells. The gel picture represents the KP mRNA expression levels in the PVect, 

PCat and PKiSS cells. Lane 1 - 1 Kb ladder, lane 2 - KiSS-1 gene (positive 

control amplified from vector (invitrogen)) , lane 3 - negative control (water), 

lane 4 - KP mRNA expression levels in the PVect cells, lane 5 - KP mRNA 

expression levels in the PKiSS cells, lane 6 - mRNA expression levels of KP in 

PCat cells. 

 

7.2.2.5 The mRNA expression levels of the catalase gene in 

PKiSS cells, and confirmation of uniform loading of the 

samples during RT-PCR using actin primers  

To investigate the role of KP as an indirect antioxidant, which may act by 

increasing catalase levels, RT-PCR was performed using PKiSS, PCat and 

PVect cells. If KP was acting indirectly as an antioxidant by increasing catalase 

levels in cells, then the mRNA expression levels of catalase could be higher in 

PKiSS cells compared to PVect cells. Results showed that increased catalase 

mRNA expression was only observed in PCat cells but not in PKiSS or PVect 

cells (Figure 7-5). This suggests that KP does not increase catalase levels in 

PKiSS cells and therefore probably does not act as an indirect antioxidant by 

activating catalase (as seen in liver by Aydin et al., 2010). 

To ensure that equal amounts of the sample were loaded into each lane of the 

gel shown in Figure 7-5, actin was used as a control. Human actin primers were 

used to amplify the same amount of cDNA used for the RT-PCR of PKiSS and 

PVect cells. The product of the RT-PCR was run on a gel, the bands obtained 

show that equal amount of each sample were loaded into each lane while 

performing the RT-PCR. The size of the actin bands obtained was found to be 

100 bps which is the expected band size. 
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Figure 7-5. The mRNA expression levels of the catalase in PKiSS cells. The 

catalase gene expression in PKiSS, PCat and PVect cells was determined by 

RT-PCR. The β-actin in PKiSS, PCat and PVect cells were determined as a 

control.  

 

7.2.2.6 Analyzing the overexpression of the KiSS-1 gene in 

PKiSS cells using Immunocytochemistry. 

Immunocytochemistry was used to confirm the overexpression of the KiSS-1 

gene in PKiSS cells and also to observe the localisation of kisspeptin within the 

cells. The SH-SY5Y cells were plated at a density of 1.2x106 in the 6-well plate, 

were first blocked with 10% bovine serum albumin. The primary antibody anti-

KP 45-54 (1:1000) was made in the blocking solution to detect the presence of 

KP in SH-SY5Y cells. The secondary antibody used was goat anti-rabbit IgG-

Alexafuor 488 (Abcam PLC, Cambridge; 1:500). The cells were visualised using 

confocal microscopy. 
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Figure 7-6. Analyzing the overexpression of the KiSS-1 gene in PKiSS 

cells using immunocytochemistry. PKiSS cells (A) and PVect cells (B) were 

double labelled with rabbit anti-KP 45-54 antibody (stained green) and TO-

PRO®-3 Iodide DNA staining (stained blue). PKiSS cells (C) were staining with 

the secondary antibody alone. (Bar scale = 10 µM). 

 

The immunocytochemistry results showed the presence of immunoreactive KP 

in both the PKiSS and PVect cells. The Figures 7-6A and 7B show an increase 

in the level of KP expression in PKiSS cells (Figure 7-6A) compared to PVect 

cells (Figure 7-6B),. The KP (stained green) seems to be located in primarily in 

the cytoplasm of the SH-SY5Y cells. Figure 7-6C shows the staining of the 

PKiSS cells with the secondary antibody alone, which did not give any 

nonspecific staining. 
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7.2.3 Overexpression of the KiSS-1 gene was neuroprotective 

against Aβ toxicity  

The KP neuroprotection against Aβ toxicity was investigated by exposing the 

PKiSS cells to 25 µM Aβ (25-35) toxicity overnight. The PKiSS and PVect cells 

were treated with different doses of Aβ (25-35) (0-50 µM) overnight. The PKiSS 

cells were more resistant to Aβ (25-35) toxicity compared to PVect cells, even at 

higher doses of Aβ. The neuroprotection of PKiSS cells against Aβ (25-35) 

toxicity was determined using an MTT assay (Figure 7-7A). Trypan blue cell 

viability assay was also used to determine the percentage of viable cells. 

Results showed that PKiSS cells had higher resistance to Aβ (25-35) toxicity 

compared to PVect cells (Figure 7-7B). This suggests that PKiSS cells were 

neuroprotective against Aβ toxicity compared to PVect cells.  

 

Figure 7-7. Effect of Aβ on the viability of PKiSS cells. The PKiSS and 

PVect cells were exposed to (A) different doses of Aβ (25-35) (0-50 µM) 

overnight and viability determined by MTT reduction or (B) 25 µM Aβ (25-35) 

overnight and viability determined by Trypan Blue dye exclusion. Results are 

mean ± S.E.M (n = 8); (A) * = P < 0.05 vs PVect plus Aβ, one-way ANOVA. (B) 

* = P < 0.05 vs PVect plus Aβ students t-test. 

 

7.2.4 KiSS-1 overexpression neuroprotection against different 

amyloid peptides  
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As KiSS-1 gene overexpression was found to be neuroprotective against Aβ 

toxicity, the PKiSS and PVect cells were treated with different amyloid- Aβ 1-42, 

Aβ 25-35, PrP 106-126 or IAPP 1-37 peptides 25 µM each overnight, to test if 

PKiSS cells were resistant to other amyloid peptides. Cell viability was 

determined by MTT assay, results showed that PKiSS cells were resistant to 

Aβ, PrP and IAPP toxicity compared to PVect cells (Figure 7-8). This suggests 

that KiSS-1 overexpression neuroprotection is not restricted to Aβ; it is also 

neuroprotective against PrP and IAPP. 

 

Figure 7-8. Effect of amyloid peptides on the viability of PKiSS cells. The 

PKiSS (red columns) and PVect (blue columns) cells were exposed to 25 µM 

Aβ 1-42, Aβ 25-35, PrP 106-126 or IAPP 1-37 overnight and viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control (cell treated with media only), † = P < 0.05 vs PVect cells treated with 

amyloid peptide, (one-way ANOVA).
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7.2.5 Possible mechanism of KiSS-1 overexpression 

neuroprotection  

To understand the mechanism of KiSS-1 overexpression neuroprotection 

against Aβ toxicity, the PKiSS cells were treated with 5 µM Aβ (1-42) and anti-

KP 45-50 antibody (10 µg/ml), GPR-54 receptor antagonist KP234 (10 µM) or 

NPFF receptor antagonist RF9 (10 µM) overnight, the cell viability was 

determined using MTT assay. Results showed that the anti-KP 45-50 antibody 

enhanced the toxicity of Aβ in PKiSS cells (Figure 7-9). This observation 

suggests that an extracellular binding interaction could be involved in KiSS-1 

overexpression mediated neuroprotection against Aβ toxicity, as the 

extracellular binding of KP to Aβ can be inhibited by the anti-KP antibody (Milton 

2011; Milton 2013). Blocking the binding interaction using anti-KP 45-50 

antibody increased the toxicity of Aβ in PKiSS cells. The KP or NPFF receptor 

antagonists did not have any effect on PKiSS cells. This suggests that the 

KiSS-1 overexpression neuroprotection is not mediated via actions of KP 

peptides on GPR-54 or NPFF receptors. 
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Figure 7-9. Possible mechanism of KiSS-1 overexpression 

neuroprotection. The PKiSS cells were exposed to 5 µM Aβ plus anti-KP 45-

50 antibody (10 µg/ml) or GPR-54 receptor antagonist KP234 (10 µM) or NPFF 

receptor antagonist RF9 (10 µM) overnight and cell viability determined by MTT 

reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 vs control (cells 

treated with media alone); † = P < 0.05 vs Aβ 1- 42; one-way ANOVA. 

 

7.2.6 KiSS-1 overexpressing cells conditioned media protects 

against Aβ toxicity  

To investigate the secretion of KP into the cullture media and to determine the 

neuroprotection of secreted KP against Aβ toxicity, the conditioned media from 

PKiSS, PVect and SH-SY5Y cells was collected after overnight incubation with 

the cells. The conditioned media from PKiSS, PVect and SH-SY5Y cells were 

added to the naïve cells together with Aβ 25-35 (10 µM) overnight. MTT assay 

results showed that the naïve cells treated with PKiSS media plus Aβ showed 

higher viability compared to the cells treated with PVect media plus Aβ (Figure 

7-10A). 

 

Figure 7-10. Effect of conditioned media from PKiSS and PVect cells on 

Aβ toxicity. (A) Naïve SH-SY5Y cells were treated with conditioned media from 

PCat or PVect cells plus 25 µM Aβ (25-35) overnight and viability determined by 
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MTT reduction. (B) The western blotting analysis immunoreactive KP in the 

conditioned media from PKiSS and PVect cells. Results are mean ± S.E.M (n = 

8); * = P < 0.05 vs control; † = P < 0.05 vs PVect conditioned media (one-way 

ANOVA).  

 

To determine the presence of KP release into the media from the PKiSS and 

PVect cells, the proteins in 6 ml of conditioned media were concentrated using 

Amicon system (Merck Millipore, UK). The concentrated media was loaded onto 

the SDS page without subjecting the media to denaturation; the proteins from 

the gel were transferred onto a nitrocellulose membrane. The KP was detected 

using anti-KP 45-54 primary antibody and horse peroxidase-conjugated goat 

anti-rabbit antibody. The western blot showed a band of less than 10 kDa, 

which represents immunoreactive KP in the conditioned media (Figure 7-10B). 

This suggests that KP is released into the media when the KiSS-1 gene is 

overexpressed in the SH-SY5Y cells. 

7.2.7 Testing the viability of KiSS-1 overexpressing cells 

against H2O2 toxicity  

To investigate the effect of H2O2 PKiSS and PVect cells were exposed to a 

range of H2O2 (0 - 1 mM) concentrations for 2 hrs prior to the MTT assay. Cell 

viability was determined by MTT assay, results showed that PKiSS and PVect 

cells were equally susceptible to H2O2 toxicity, there was no significant 

difference between the two cell types (Figure 7-11). This suggests that PKiSS 

neuroprotection is limited to Aβ, PrP and IAPP toxicity, KP does not act as an 

indirect antioxidant in PKiSS cells and does not protect cells against H2O2 

toxicity. 
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Figure 7-11. Effect of H2O2 on PKiSS and PVect viability. Represents the 

dose reseponse curve of H2O2 on PCat and PVect cells, both the cell lines were 

treated with different doses of H2O2 ranging from 0 - 1000 µM overnight and 

viability determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P 

< 0.05 vs control (0 µM H2O2); (one-way ANOVA).
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7.3 Discussion  

A sequence similarity was found between catalase Aβ binding domain (400-

409) and KP residues 42-51 (Figure 1-8) (Milton 2011; Milton 2013). This 

sequence similarity allows KP to bind Aβ and this binding interaction was found 

to be neuroprotective against Aβ toxicity. Exposure of naïve cells to amyloid 

peptides in the presence of 10 µM KP 45-50 was found to be neuroprotective, 

compared to 1 µM KP 45-50 which had no significant effect on amyloid peptides 

(section 7.2.1) toxicity. Overexpression of the KiSS-1 gene in human 

neuroblastoma SH-SY5Y cells was found to be neuroprotective against Aβ 

(section 7.2.3), PrP and IAPP toxicity (section 7.2.4). The overexpression of the 

KiSS-1 gene was confirmed by RT-PCR (section 7.2.2.4) and 

immunocytochemistry (section 7.2.2.6).  

This property of KP peptide neuroprotection against different amyloids is similar 

to the neuroprotection by catalase against Aβ, IAPP and PrP (Milton 2011; 

Milton 2013). This suggests that the sequence similarity between catalase and 

KP plays a key role in neuroprotection against different amyloids. To further 

understand the mechanism of neuroprotection, the PKiSS and PVect cells were 

treated with Aβ (1-42) and anti-KP 45-50 antibody or GPR-54 receptor 

antagonist KP234 or NPFF receptor antagonist RF9 (section 7.2.5). Only anti-

KP 45-50 antibody increased the toxicity of Aβ, whereas the KP234 and R9 did 

not alter the toxicity of Aβ in both PVect and PKiSS cells. This further 

strengthens the concept that extracellular KP-amyloid interaction is the key for 

neuroprotection, as anti-KP 45-50 antibody can inhibit KP and amyloid peptide 

interaction extracellularly. Inhibition of KP-amyloid interaction by anti-KP 

antibody increases Aβ toxicity. This also suggests that KP neuroprotection is 

not receptor (KP or NPFF) mediated or it acts via other receptors.  

Results obtained from RT-PCR (section 7.2.2.5) and MTT assay, obtained by 

exposing the PKiSS cells to H2O2 toxicity (section 7.2.7) suggest that the 

catalase levels were not increased in PKiSS cells. KP therefore does not act as 

an antioxidant directly or indirectly and does not play a role in protecting the 

cells against H2O2 toxicity.  
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The effects of KP on hormone secretion has already been studied in humans, 

KP could be used for stimulating reproductive activity (Chan 2013) or for the 

treatment of hypothalmic amenorrhoea (Jayasena et al., 2014). The expression 

of KP could be regulated by sex steriods in vivo (Matthew et al., 2013), 

suggesting that KP could be a potential therapy for protecting the brain against 

Aβ toxicity. The increased expression of catalase in AD brain could be 

beneficial compared to increased expression of KP, as catalase provides dual 

protection against the oxidative stress and Aβ toxicity. It could be difficult to 

increase catalase expression in the brain, whereas sex steroids could regulate 

KP. 

7.4 Conclusion 

The results presented in this chapter illustrate the creation of the PKiSS human 

kisspeptin overexpressing neuronal cell line, derived from the SH-SY5Y 

neuroblastoma. The KiSS-1 overexpression was found to be neuroprotective 

against Aβ, IAPP and PrP. The mechanism of KiSS-1 overexpression 

neuroprotection resembles catalase overexpression neuroprotection (Chapter 

6). In both cases an Aβ binding interaction with either extracellular KP or 

catalase appears to play a significant role. This could be due to the sequence 

similarity between catalase and KP (Milton 2011; Milton 2013). The 

neuroprotection was not GPR-54 receptor mediated, as the GPR-54 receptor 

antagonist KP234 did not block KiSS-1 overexpression neuroprotection against 

Aβ. Unlike catalase, KiSS-1 overexpression could not protect the PKiSS cells 

against H2O2 toxicity. The conditioned media from PKiSS cells was protective 

againt Aβ toxicity and immunoreactive KP was detective in the condition media 

of the PKiSS cells, suggesting that the released KP products played a role. 
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8.1 Introduction  

The KP peptides are ligands for the GPR-54 (Kotani et al., 2001; Kirby et al., 

2010) and NPFF receptors (Lyubimov et al., 2010; Oishi et al., 2010). The KSO 

peptide, a shorter derivative of KP peptide (828.88 Da), activates NPFF like 

receptors but not GPR-54 receptor (Milton 2012). The KP peptide plays a 

central role in the HPG axis by acting on GnRH neurons to stimulate GnRH 

release (Navarro and Tena-Sempere, 2012). Overexpression of the KiSS-1 

gene in human neuroblastoma SH-SY5Y cells was found to be neuroprotective 

against Aβ toxicity (Figure 7-7). The mechanism of KP neuroprotection was not 

receptor mediated (GPR-54 receptor) (Figure 7-9), a binding interaction 

between KP and Aβ was suggested to be the possible mechanism for 

neuroprotection.  

Recent studies have shown the effect of KP on passive avoidance learning and 

potential involvement of adrenergic, serotonergic, dopaminergic, cholinergic, 

gabaergic, opiate and nitric oxide receptors in mice. Results have shown that 

KP may partly act via all these receptors to facilitate passive avoidance learning 

in mice (Telegdy and Adamik, 2013). Another study has shown that KP has 

anti-depressant like effects in mouse, which could involve adrenergic and 

serotonergic receptors (Tanaka et al., 2013). This suggests that KP may act via 

other receptors and therefore the present study was conducted to characterize 

a model of KiSS-1 gene overexpression (PKiSS cells) neuroprotection against 

Aβ toxicity in SH-SY5Y neurons, and to determine the role of neurotransmitter 

systems in the neuroprotection. The KP peptide also plays a role in 

thermoregulation (Csabafi et al., 2013) and may therefore invoke prostaglandin 

responses (Brenneis et al., 2006), The effects of antagonists of KP, NPFF, 

opioids, oxytocin, estrogen, adrenergic, cholinergic, dopaminergic, serotonergic 

and γ- aminobutyric acid (GABA) receptors were tested (Table 3). Inhibitors of 

catalase, cyclooxygenase, nitric oxide synthase and the mitogen activated 

protein kinase cascade were also tested (Table 3). The PKiSS cells were 

pretreated with individual antagonists or antibody or inhibitors, 2 hrs prior to 

treatment with Aβ toxicity, cell viability was determined by MTT assay. 
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Table 3 Mechanism of KiSS-1 neuroprotection. 

Toxin  Dose 

Aβ 1-40  10 µM 

   

Drug Target Chemical Dose 

Aβ-Catalase interaction ASCAT peptide 100 µM 

Aβ-Protein interactions BTA-EG4 hydrate 10 µM 

   

Receptor Target Antagonist Dose 

Adrenergic Phenoxybenzamine hydrochloride (PHB) 10 µM 

 Prazosin hydrochloride (PR) 250 nM 

 Propranolol hydrochloride (PROP) 50 nM 

 Yohimbine hydrochloride (YO) 50 nM 

Cholinergic Atropine sulfate (ATR) 10 µM 

 Mecamylamine hydrochloride (MEC) 10 µM 

Serotonergic Methysergide maleate (MET) 1 µM 

 Cyproheptadine hydrochloride (CYPR) 10 nM 

GABA-A 1(S),9(R)-(−)-Bicuculline methiodide (BIC) 50 µM 

Estrogen Tamoxifen (TAMOX) 10 µM 

GPR-54 KP234 10 µM 

NPFF RF9 10 µM 

Opioid Naloxone (NAL) 1 µM 

 Naltrexone (NALTR) 1 µM 

Dopaminergic Haloperidol (HAL) 10 µM 

Oxytocin Atosiban (ATO) 1 µM 

   

Enzyme Target Drug Dose 

MAPK PD98059 50 µM 

Cyclooxygenase SC-560 1 µM 

Nitric oxide synthase NG-Methyl-L-arginine acetate salt (LNMA) 1 mM 

Catalase  3-Amino-1,2,4-triazole (3-AT) 50 mM 
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Table 3 shows the various chemicals used to block different receptors, enzymes 

and the Aβ-protein interactions to understand the mechanism of KiSS-1 

overexpression mediated neuroprotection against Aβ toxicity.
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8.1.1 Aim  

 To investigate the role of neurotransmitters, enzyme pathways and 

amyloid binding interactions in KiSS-1 overexpression mediated 

neuroprotection against Aβ toxicity. 

8.1.2 Objectives  

 To use different amyloid binding compounds to understand the 

mechanism of KiSS-1 overexpression mediated neuroprotection against 

Aβ toxicity. 

 To use different neurotransmitter antagonists to understand the 

mechanism of KiSS-1 overexpression mediated neuroprotection against 

Aβ toxicity. 

 To use different enzyme inhibitors to understand the mechanism of KiSS-

1 overexpression mediated neuroprotection against Aβ toxicity. 

8.1.3 Hypothesis 

Recently KP has been shown to play a role in passive avoidance 

learning and memory consolidation by acting via the neurotransmitters; it 

has also been shown to have an anti-depressant like effect. The KP 

mediated neuroprotection against Aβ could be via the neurotransmitters. 

In the present study various neurotransmitter antagonists will be used to 

understand the role of neurotransmitter in KP mediated neuroprotection 

against Aβ toxicity. 
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8.2 Results  

8.2.1 KP - Aβ interaction inhibited by ASCAT and BTA-EG4 in 

PKiSS cells  

The ASCAT peptide contains an Aβ like sequence (Milton et al., 2001). The 

ASCAT inhibits IAPP and PrP binding to KP but not Aβ binding (Milton 2011; 

Milton 2013), and could compete with KP to bind Aβ. Therefore, PKiSS cells 

were treated with ASCAT (100 µM) and Aβ (1-40) (10 µM) overnight. The dose 

of ASCAT used was previously shown to prevent Aβ inhibition of catalase, 

without having a neuroprotective effect (Milton et al., 2001). The ASCAT peptide 

did not enhance the toxicity of Aβ (1-40) in PKiSS cells (Figure 8-1). The BTA-

EG4 compound binds Aβ and prevents the association of Aβ with other proteins 

(Inbar et al., 2006). Treatment of PKiSS cells with BTA-EG4 (10 µM) and Aβ (1-

40) (10 µM) overnight did not enhance the toxicity of Aβ (Figure 8-1). The dose 

of BTA-EG4 used was previously shown to displace Aβ binding to catalase, and 

was not neuroprotective by itself (Habib et al., 2010). Results showed that 

blocking the interaction between KP and Aβ by ASCAT and BTA-EG4 did not 

increase Aβ toxicity, suggesting that KiSS-1 overexpression neuroprotection is 

not entirely mediated via a binding interaction or that it could be due to the 

compounds targetting a different part of Aβ to the KP products and therefore the 

compounds tested are not effective in this system. 
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Figure 8-1. Effect of Aβ binding compounds on Aβ toxicity in PKiSS cells. 

The PKiSS cells were treated with Aβ (1-40) (10 µM) and ASCAT (100 µM) or 

BTA-EG4 (10 µM) overnight and cell viability determined by MTT reduction. 

Results are mean ± S.E.M (n = 8); * = P < 0.05 vs control (cells treated with 

media alone); one-way ANOVA. 

 

8.2.2 The effect of opioid receptor antagonist, naloxone and 

naltrexone on KP mediated neuroprotection against Aβ toxicity 

in PKiSS cells  

Opioids were found to be neuroprotective against Aβ toxicity (Szegedi et al., 

2006; Cui et al., 2011), they were found to be involved in KP activation of GnRH 

(Lehman et al., 2010; Mostari et al., 2013). The effect of opioid antagonist NAL 

and NALTR (Sirohi et al., 2009) on KiSS-1 overexpression mediated 

neuroprotection was therefore tested. A dose of 1 µM of either NAL or NALTR 

effectively blocked the actions of opioid in cell culture models (Szegedi et al., 

2006; Cui et al., 2011). The PKiSS cells were treated with NAL (1 µM) or 

NALTR (1 µM) for 2 hrs prior to Aβ (10 µM) treatment overnight. The MTT 

results showed that NAL (Figure 8-2) and NALTR (Figure 8-2) significantly 
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enhanced KiSS-1 overexpression mediated neuroprotection against Aβ toxicity. 

The NAL alone did not have any effect of PKiSS cells, whereas NALTR had a 

proliferative effect on PKiSS neurons resulting in enhanced MTT reduction. 

 

Figure 8-2. Effect of opioid receptor antagonists on Aβ toxicity in PKiSS 

cells. The PKiSS cells were treated with naloxone (NAL) and naltrexone 

(NALTR) (1 µM each) for 2 hrs prior to the treatement with Aβ 1-40 (10 µM) 

overnight and cell viability determined by MTT reduction. Results are mean ± 

S.E.M (n = 8); * = P < 0.05 vs control (cells treated with media alone); † = P < 

0.05 vs Aβ 1- 40; one-way ANOVA. 

 

8.2.3 The role of oxytocin receptor activation in KP mediated 

neuroprotection in PKiSS cells  

The KP peptide stimulates the release of oxytocin in rats (Scott and Brown, et 

al., 2013). The SH-SY5Y cells express oxytocin receptors (Cassoni et al., 1998) 

and oxytocin has a proliferative effect on SH-SY5Y neurons (Bakos et al., 

2012). The KP peptide activates both oxytocin and vasopressin neurons (Kotani 

et al., 2001; Han et al., 2010; Scott and Brown, 2011). The ATO peptide 

derivative is an oxytocin antagonist, which also has affinity for vasopressin 
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receptors (Manning et al., 1995). Therefore the effect of oxytocin antagonist, 

ATO (1 µM) (Bakos et al., 2013) on KP mediated neuroprotection against Aβ 

(10 µM) was tested in PKiSS cells. The PKiSS cells were pretreated with ATO 

for 2 hrs prior to the treatment with Aβ overnight. The MTT viability results 

showed that ATO significantly enhanced the Aβ toxicity in PKiSS cells. The 

PkiSS cells treated with ATO alone were uneffected (Figure 8-3). This suggests 

that oxytocin receptor system plays a role in KP mediated neuroprotection 

against Aβ toxicity. 

 

Figure 8-3. Effect of an oxytocin receptor antagonist on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with atosiban (ATO) (10 µM) for 

2 hrs prior to the treatement with Aβ 1-40 (10 µM) overnight and cell viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control (cells treated with media alone); † = P < 0.05 vs Aβ 1- 40; one-way 

ANOVA. 
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8.2.4 The role of adrenergic receptor activation on KP mediated 

neuroprotection against Aβ toxicity in PKiSS cells  

A previous study has shown that KP-13 facilitates passive avoidance learning 

and memory consolidation in mice (Telegdy and Adamik, 2013), which could be 

inhibited by the α adrenergic receptor antagonist PHB, the α1/α2β adrenergic 

receptor antagonist PR, the α2-adrenergic receptor antagonist YO and the β-

adrenergic receptor antagonist PROP. The KP peptide was also shown to have 

anti-depressant effect in mice, which could be inhibited by the α2-adrenergic 

receptor antagonist YO. The effects of these α and β adrenergic receptor 

antagonists were tested against KP mediated neuroprotection against Aβ 

toxicity. The doses of PHB (10 µM) (Figure 8-4) (Bodenstein et al., 2005), PR 

(250 nM) (Liu et al., 2011), YO (50 nM) and PROP (50 nM) have previously 

been demonstrated to be effective in neuronal cell culture models.  

 

Figure 8-4. Effect of adrenergic receptor antagonists on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with Phenoxybenzamine 

hydrochloride (PBH) (10 µM) or yohimbine hydrochloride (YO) (50 nM) or 

prazosin hydrochloride (PR) (250 nM) or propranolol hydrochloride (PROP) (50 

nM) for 2 hrs, prior to treatment with Aβ 1-40 (10 µM) overnight and cell viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bodenstein%20J%5BAuthor%5D&cauthor=true&cauthor_uid=15857948
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vs control (cells treated with media alone); † = P < 0.05 vs Aβ 1- 40; one-way 

ANOVA. 

 

The PKiSS cells were pretreated with PBH or YO or PR or PROP for 2 hrs, prior 

to treatment with Aβ (10 µM) toxicity overnight. MTT results showed that PHB, 

YO and PR (Figure 8-4) did not enhance the toxicity of Aβ in PKiSS cells. PHB, 

YO and PR alone did not have any effect on the cells. PROP alone was 

significantly toxic to the cells, and it also further enhanced the toxicity of Aβ in 

PKiSS cells. This suggests that the effect of PROP was additive to Aβ toxicity. 

8.2.5 The role of cholinergic receptor activation in KP mediated 

neuroprotection against Aβ toxicity in PKiSS cells  

A previous study has shown that KP peptide facilitates passive avoidance 

learning and memory consolidation in mice, which could be inhibited by 

muscarinic (ATR) but not nicotinic (MEC) antagonists in mice (Telegdy and 

Adamik, 2013). The effect of ATR and MEC was tested on PKiSS cells. The 

doses of ATR (10 µM) and MEC (10 µM) have previously been demonstrated to 

be effective in neuronal cell culture models. The PKiSS cells were pretreated 

with ATR and MEC, prior to treatment with (10 µM) Aβ toxicity. Results showed 

that ATR (Figure 8-5) and MEC did not alter Aβ toxicity. This suggests that KP 

mediated neuroprotection against Aβ toxicity is not mediated via muscarinic or 

nicotinic cholinergic receptors. 
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Figure 8-5. Effect of cholinergic receptor antagonists on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with atropine (ATR) (10 µM) or 

mecamylamine (MEC) (10 µM) for 2 hrs, prior to treatment with Aβ 1-40 (10 µM) 

overnight and cell viability determined by MTT reduction. Results are mean ± 

S.E.M (n = 8); * = P < 0.05 vs control (cells treated with media alone); one-way 

ANOVA. 

 

8.2.6 The role of dopaminergic receptor activation in KP 

mediated neuroprotection against Aβ toxicity in PKiSS cells  

Previous study has shown that KP regulates dopamine levels in adult rats 

(Szawka et al., 2010). A sub population of KP neurons has been shown to 

synthesize dopamine (Clarkson and Herbison, 2011). The dopaminergic 

antagonist HAL has been suggested to be neuroprotective against Aβ toxicity 

(Yang and Lung, 2011). The human neuroblastoma SH-SY5Y cells are 

dopaminergic (Xie et al., 2010). Therefore, the role of dopaminergic receptors in 

KP mediated neuroprotection against Aβ toxicity was tested using dopamine 

receptor antagonist HAL, on PKiSS cells. The PKiSS cells were pretreated with 

HAL (10 µM) for 2 hrs, prior to treatment with (10 µM) Aβ (1-40) overnight. The 

dose of HAL (10 µM) has previously been demonstrated to be effective in 

neuronal cell culture models. Results showed that HAL had no significant effect 
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on Aβ toxicity (Figure 8-6). The neuroprotective effect of HAL against Aβ toxicity 

was not seen in PKiSS cells. 

 

Figure 8-6. Effect of a dopaminergic receptor antagonist on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with haloperidol (HAL) (10 µM) 

for 2 hrs, prior to treatment with Aβ 1-40 (10 µM) overnight and cell viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control (cells treated with media alone); one-way ANOVA. 

 

8.2.7 The role of serotonergic receptor activation in KP 

mediated neuroprotection against Aβ toxicity in PKiSS cells  

The KP peptide was shown to have antidepressant like effect, which could be 

inhibited by 5-HT2 serotonergic receptor antagonists in mice (Tanaka et al., 

2013). The KP peptide facilitates passive avoidance learning and memory 

consolidation in mice, which could also be inhibited by 5-HT2 serotonergic 

antagonists (Telegdy and Adamik, 2013). The effect of MET, a mixed 5-HT1/ 5-

HT2 serotonergic receptor antagonist, and CYPR, a nonselective 5-HT2 

serotonergic receptor antagonist, in KP mediated neuroprotection was therefore 

tested. The PKiSS cells were pretreated with MET (1 µM) and CYPR (10 nM) 



Chapter 8 – The role of neurotransmitters in KiSS-1 neuroprotection against 

amyloid-β toxicity 

for 2 hrs, prior to treatment with Aβ 1-40 (10 µM) overnight. The doses used 

have previously been shown to be effective in neuronal cell culture models.  

 

Figure 8-7. Effect of serotonergic receptor antagonists on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with Methysergide hydrochloride 

(MET) (1 µM) or Cyproheptadine hydrochloride (CYPR) (10 nM) for 2 hrs, prior 

to treatment with Aβ 1-40 (10 µM) overnight and cell viability determined by 

MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 vs control (cells 

treated with media alone); † = P < 0.05 vs Aβ 1- 40; one-way ANOVA. 

 

Results showed that CYPR alone was not toxic to PKiSS cells and it did not 

enhance Aβ toxicity (Figure 8-7). The MET alone was toxic to PKiSS cells, 

which significantly reduced the percentage of PKiSS viable cells, at a dose that 

is non-toxic to neuronal cell lines (Lambert et al., 1989). The MET further 

enhanced the toxicity of Aβ, suggesting that the toxicity of MET was additive to 

the toxicity of Aβ (Figure 8-7).  

 

8.2.8 The role of GABA-A receptor activation in KP mediated 

neuroprotection against Aβ toxicity in PKiSS cells 



Chapter 8 – The role of neurotransmitters in KiSS-1 neuroprotection against 

amyloid-β toxicity 

The KP peptide facilitates passive avoidance learning and memory 

consolidation in mice, which could be inhibited by the GABA-A antagonist, BIC 

(Telegdy and Adamik, 2013). Therefore the effect of BIC on KP neuroprotection 

against Aβ toxicity was tested in PKiSS cells. The PKiSS cells were pretreated 

with BIC (50 µM) for 2 hrs, prior to treatment with Aβ (10 µM) overnight. The 

dose used has previously been shown to be effective in neuronal cell lines. The 

MTT assay results showed that BIC had no significant effect on Aβ toxicity 

(Figure 8-8), which suggests that GABA-A receptor does not play a role in KP 

mediated neuroprotection against Aβ toxicity. 

 

Figure 8-8. Effect of a GABA-A receptor antagonist on Aβ toxicity in PKiSS 

cells. The PKiSS cells were pretreated with bicuculline (BIC) (50 µM) for 2 hrs, 

prior to treatment with Aβ 1-40 (10 µM) overnight and cell viability determined 

by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 vs control 

(cells treated with media alone); one-way ANOVA. 

 

8.2.9 The role of estrogen receptor activation on KP mediated 

neuroprotection against Aβ toxicity in PKiSS cells  

Estrogen receptors play a role in neuroprotection against Aβ toxicity (Zhang et 

al., 2004; Cui et al., 2011). Activation of estrogen receptors alters KP levels in 
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female mouse (Smith et al., 2005; Alçin et al., 2013). The effect of the estrogen 

receptor antagonist tamoxifen (TAMOX) on KP mediated neuroprotection 

against Aβ toxicity was therefore tested. The PKiSS cells were pretreated with 

TAMOX (10 µM) for 2 hrs, prior to treatment with Aβ (10 µM) overnight. The 

dose of TAMOX (10 µM) has previously been demonstrated to be effective in 

neuronal cell culture models. The MTT assay results showed the TAMOX had 

no significant effect on the toxicity of Aβ in PKiSS cells (Figure 8-9). 

 

Figure 8-9. Effect of an estrogen receptor antagonist on Aβ toxicity in 

PKiSS cells. The PKiSS cells were pretreated with tamoxifen (TAMOX) (10 µM) 

for 2 hrs, prior to treatment with Aβ 1-40 (10 µM) overnight and cell viability 

determined by MTT reduction. Results are mean ± S.E.M (n = 8); * = P < 0.05 

vs control (cells treated with media alone); one-way ANOVA. 

 

8.2.10 The role of catalase, cyclooxygenase, nitric oxide 

synthase and MEK kinase enzymes in KP neuroprotection 

against Aβ toxicity  

The KP peptide is known to increase catalase activity (Aydin et al., 2010), which 

is also neuroprotective against Aβ toxicity (Milton 2001). The KP peptide also 
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has thermoregulatory effects (Csabafi et al., 2013) and acts via nitric oxide in 

the facilitation of passive avoidance learning plus memory consolidation in mice 

(Telegdy and Adamik, 2013). Another possible mechanism of KP action can be 

via activation of MAPK pathway (Novaira et al., 2009). The effects of catalase 

inhibition, cyclooxygenase inhibition, nitric oxide synthase inhibition and also the 

mitogen activated protein kinase cascade inhibitor PD98059 on KiSS-1 

overexpression mediated neuroprotection against Aβ were tested to determine 

if these processes were involved in the observed neuroprotection (figure 8-10). 

 

Figure 8-10. Effect of enzyme antagonists on Aβ toxicity in PKiSS cells. 

The PKiSS cells were pretreated with 3-Amino-1,2,4-triazole (3-AT) (50 mM); 5-

(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole SC-560 

(1 µM); NG-Methyl-L-arginine acetate salt (LMNA) (1 mM) and 2’-Amino-3’-

methoxyflavone (PD98059) (50 µM) for 2 hrs, prior to treatment with Aβ 1-40 

(10 µM) overnight and cell viability determined by MTT reduction. Results are 

mean ± S.E.M (n = 8); * = P < 0.05 vs control (cells treated with media alone); † 

= P < 0.05 vs Aβ 1- 40; one-way ANOVA. 

 

The PKiSS cells were pretreated with the catalase inhibitor 3-AT (50 mM); the 

cyclooxygenase inhibitor SC-560 (1 µM); the nitric oxide synthase inhibitor NG-



Chapter 8 – The role of neurotransmitters in KiSS-1 neuroprotection against 

amyloid-β toxicity 

Methyl-L-arginine acetate (LMNA) (1 mM) and the MAPK pathway inhibitor 

PD98059 (50 µM) for 2 hrs, prior to treatment with (10 µM) Aβ. The doses used 

were previously found to be effective in neuronal cell lines. The MTT assay 

results showed that inhibitor of catalase activity, 3-AT did not have any effect on 

Aβ toxicity (Figure 8-10). The cyclooxygenase inhibitor SC-560 significantly 

enhanced Aβ toxicity (Figure 8-10B). The SC-560 alone was not toxic to PKiSS 

cells, but SC-560 increased the toxicity of Aβ  in PKiSS cells, suggesting that 

KiSS-1 overexpression mediated neuroprotection may act via cyclooxygenase 

to protect against Aβ toxicity. The LMNA did not alter Aβ toxicity or have a 

significant effect on its own (Figure 8-10). The PD98059 alone was, however, 

toxic to PKiSS cells and the toxicity of PD98059 was additive to the toxicity of 

Aβ in PKiSS cells.
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8.3 Discussion  

The KiSS-1 overexpression protects SH-SY5Y cells against Aβ toxicity (section 

7.2.3). The KP234 and RF9 did not reduce KiSS-1 overexpression mediated 

neuroprotection against Aβ toxicity, which suggests that KiSS-1 overexpression 

neuroprotection is not mediated via an action on the GPR-54 or NPFF receptors 

(section 7.2.5). The KiSS-1 overexpression neuroprotection was reduced by 

addition of anti-KP antibody, suggesting that binding interaction between KP 

and Aβ could be neuroprotective. Disrupting this interaction by anti-KP antibody 

could enhance Aβ toxicity. The levels of KP released by SH-SY5Y cells in 

response to Aβ may not be sufficient to provide full neuroprotection via a 

binding interaction. Compounds that block KP- Aβ interactions such as ASCAT 

and BTA-EG4 (Habib et al., 2010) did not enhance Aβ toxicity (section 8.2.1). 

Therefore the mechanism of neuroprotection may involve an alternative 

process, which could be receptor mediated. 

The opioid antagonists NAL and NALTR enhanced KiSS-1 overexpression 

neuroprotection against Aβ toxicity, suggesting that endogenous opioids play a 

role in Aβ toxicity. The NALTR caused a significant increased in the viability of 

PKiSS cells, which makes it difficult to interpret whether the increase in 

neuroprotection against Aβ was due to blocking the opioid receptors or due to 

the observed increase in cell proliferation (section 8.2.2). The KP anti-opioid 

activity has been suggested by activation of NPFF receptors (Lyubimov et al., 

2010; Oishi et al., 2010) and the KiSS-1 derivative KSO also acts as an NPFF 

ligand (Milton et al., 2012). The inhibitor of NPFF receptor RF9 is known to 

block the anti-opioid activity (Han et al., 2013), but it has recently been shown to 

be ineffective at blocking all the actions of NPFF (Maletinska et al., 2013). In 

PKiSS cells RF9 did not alter Aβ toxicity, suggesting that KiSS-1 

overexpression mediated neuroprotection may not involve endogenous opioid 

action. The ATO, a receptor antagonist of oxytocin system, significantly 

enhanced the toxicity of Aβ in PKiSS cells. The action of ATO also involves 

inhibition of vasopressin receptors (Manning et al., 2005). The KP peptide 

activates both oxytocin and vasopressin (Kotani et al., 2001; Han et al., 2001; 

Scott and Brown, 2011), suggesting that KiSS-1 overexpression mediated 

neuroprotection could involve either or both oxytocin and vasopressin systems. 
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The adrenergic, cholinergic, dopaminergic, serotonergic and GABA 

neurotransmitter systems plus the nitric oxide and estrogen receptor activated 

systems do not appear to play a role in KiSS-1 overexpression mediated 

neuroprotection against Aβ toxicity. The doses of β-adrenergic antagonist 

PROP and the mixed 5-HT1/5-HT2 receptor antagonist MET used were found to 

be non-toxic to SH-SY5Y cells (Lambert et al., 1989; Mikami et al., 2008). 

These doses were, however, toxic to PKiSS cells and also enhanced the toxicity 

of Aβ. The increased toxicity of Aβ observed was due to toxicity of PROP and 

MET on the PKiSS cells rather than the involvement of β-adrenergic and mixed 

5-HT1/5-HT2 receptors directly in the neuroprotection. 

The MAPK inhibitor PD98059 has previously been used to understand the 

mechanism of Aβ toxicity (Pettifer et al., 2004; Wang et al., 2007; Wang et al., 

2010). In the present study PD98059 did not enhance Aβ toxicity, suggesting 

that KiSS-1 overexpression mediated neuroprotection in PKiSS cells may not 

be via MAPK signaling pathway. The KP peptide is known to increase catalase 

activity (Aydin et al., 2010), but inhibiting catalase activity by 3-AT did not 

enhance Aβ toxicity, suggesting catalase activity may not be enhanced in 

PKiSS cells. 

The SC-560 significantly reduced KiSS-1 overexpression neuroprotection and 

enhanced Aβ toxicity. This suggests that KiSS-1 overexpression mediated 

neuroprotection could be via a cyclooxygenase dependent pathway (figure 8-

11). The SC-560 is an inhibitor of cyclooxygenase-1 that has previously been 

shown to reduce Aβ production in an AD mouse model (Choi et al., 2013). The 

SC-560 is not specific for cyclooxygenase-1 and could also inhibit 

cyclooxygenase-2 in some cell types (Brenneis et al., 2006). The KP peptide 

can modulate thermoregulatory responses in rats (Csabafi et al., 2013), which 

could be regulated via cyclooxygenase inhibitors (Nakamura 2011). As such 

KiSS-1 overexpression could be acting via prostaglandin synthesis mediated via 

cyclooxygenase in this overexpression model and in vivo.   



Chapter 8 – The role of neurotransmitters in KiSS-1 neuroprotection against 

amyloid-β toxicity 

  

Figure 8-11. The mechanism of KiSS-1 overexpression neuroprotection 

against Aβ toxicity. The KP (GPR-54) and NPFF (NPFFR 1/2) receptors do 

not play a role in neuroprotection, as the receptor anatagonists KP234 and RF9 

did not enhance Aβ toxicity. Anti-KP antibody increased the toxicity of Aβ, 

suggesting that a binding interaction between KP and Aβ could be 

neuroprotective. Overexpression of KiSS-1 neuroprotection against Aβ toxicity 

was observed to involve oxytocin (OT) /vasopressin (VP) receptor activation 

plus have a cyclooxygenase (COX-1/2) dependent component. Atosiban and 

SC-560 used to block OT/VP or COX1/2 pathway significantly enhanced Aβ 

toxicity.  

 

The KP and NPFF receptors do not play a role in KiSS-1 overexpression 

mediated neuroprotection against Aβ toxicity (Figure 8-11). The toxicity of Aβ 

was enhanced by anti-KP antibody, suggesting KP-Aβ interaction may provide 

some neuroprotection. The observations from the present study suggest that 

KiSS-1 overexpression mediated neuroprotection could involve 

oxytocin/vasopressin plus a cyclooxygenase dependent component, which 

could be due to endogenous oxytocin or vasopressin activating 
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cyclooxygenase. Both in vivo and in vitro administration of oxytocin (Gulliver et 

al., 2013; Penrod et al., 2013) and vasopressin (Milton et al., 1993; Nakatani et 

al., 2007) causes an activation of prostaglandin synthesis that is 

cyclooxygenase dependent. Stimulation of prostaglandin receptors was found to 

be neuroprotective against OS and Aβ toxicity (Echeverria et al., 2005). 

Blocking this pathway by oxytocin/vasopressin receptor antagonist ATO and the 

cyclooxygenase-1 inhibitor SC-560 enhances Aβ toxicity, suggesting a link 

between these pathways in KiSS-1 overexpression mediated neuroprotection 

against Aβ toxicity. Further experimental investigations are required to confirm 

the mechanism of KiSS-1 overexpression mediated neuroprotection against Aβ 

toxicity. 

8.4 Conclusion 

The mechanism of KiSS-1 overexpression mediated neuroprotection against Aβ 

has been illustrated in the present chapter. A range of neurotransmitter 

antagonists were to used to determine the role of neurotranmistters in KiSS-1 

overexpression mediated neuroprotection agasint Aβ. It was found that 

oxytocin/vasopressin antagonist ATO and cyclooxygenase-1 inhibitor SC-560 

enhanced Aβ toxicity in PKiSS cells. The KiSS-1 overexpression could be 

acting via activation of oxytocin/vasopressin receptors either directly or 

indirectly, which could in turn activate the cyclooxygenase pathway.  
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It is well documented that catalase binds Aβ (Milton 1999; Habib et al., 2010); 

the binding of catalase to Aβ was confirmed by a dose response curve (section 

3.2.2). Catalase is an antioxidant enzyme and shows binding to different lengths 

of Aβ (section 3.2.2). Therefore, the binding studies were found to be in 

agreement with previous studies showing catalase-amyloid interaction. Since, 

KP and catalase shares sequence similarity with the catalase Aβ binding site; 

the binding studies have shown that KP 54, KP 13 and KP 10 also bind Aβ 

(section 3.2.1). This binding between Aβ and KP could be inhibited by Congo 

red (section 3.2.1). This suggests that Congo red and KP target similar binding 

sites on Aβ, resulting in decreased KP binding to Aβ in the presence of Congo 

red. The present study suggests that peptides sharing sequence similarity with 

catalase Aβ binding domain could potentially bind Aβ. 

Formation of amyloid plaques is the central feature of AD; a study has shown 

that amyloid deposition is seen last in the cerebellum and pons region of the 

brain (Thal et al., 2002). This resistance to Aβ deposition in pons and 

cerebellum is consistent with the presence of endogenous neuroprotective 

components that delay the deposition of Aβ in these sections of the brain. The 

KP peptide (Brailoiu et al., 2005), CRH peptide (Austin et al., 2003) and 

catalase (Moreno et al., 1995) are all found in the pons sections of AD brain. 

Previous studies have shown the presence of catalase (Pappolla et al., 1992) 

and CRH (Facci et al., 2003) in amyloid plaques. In the present study, 

immunoreactive catalase, KP and CRH were detected in the amyloid plaque like 

deposits in the pons section of an AD patient. Prior to the detection of 

immunoreactive catalase, KP and CRH, antibody for each peptide was 

characterized for specific binding (section 4.2.1). Only anti KP 45-50 cross 

reacted with NPFF peptide, this is consistent with a previous study (Iijima et al., 

2011). All the other antibodies used were found to be specific for their peptides. 

Staining of the pons section of the AD patient with anti-catalase, KP, CRH and 

amyloid antibody showed the presence of immunoreactive catalase, KP and 

CRH in amyloid plaque like deposits (section 4.2.3, 4.2.4, 4.2.6). CRH did not 

bind Aβ (section 4.2.1) and the presence of immunoreactive CRH in amyloid 

plaques suggests that, the mere presence of immunoreactive CRH in the 

amyloid plaques does not confirm the binding of CRH to Aβ.  
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To eliminate the possibility of cross reactivity, the rabbit anti KP 45-50 antibody 

was pre-absorbed with NPFF overnight. The staining of the pons section of the 

AD brain with the pre-absorbed antibody did not decrease the immunoreactive 

KP signal (section 4.2.3). Staining the pons section of the AD patient with rabbit 

anti-KP 45-50 antibody, pre-absorbed with NPFF for 24 hrs (section 4.2.5) and 

CAT-505 monoclonal anti-catalase antibody (section 4.2.5) showed that 

catalase and KP occupied specific sites, with only a small proportion of co-

localization within the amyloid plaque like deposits (section 4.2.5). This study 

suggests that the presence of catalase and KP in the pons section of the AD 

brain may contribute to the neuroprotection and the late development of amyloid 

plaques in the pons section. KP interacts with Aβ (section 3.2.1), and the 

presence of KP in the amyloid plaque like deposits in the pons section of the AD 

patient suggests that KP and Aβ might interact in an AD brain. 

After confirmation of the presence of catalase and KP in the amyloid plaques of 

the AD brain section, the neuroprotective effect of KP and catalase 

overexpression in SH-SY5Y cells was tested. For this study, the catalase 

(NM_001752.2) and the KiSS-1 gene (NM_002256.2) were overexpressed in 

the human neuroblastoma SH-SY5Y cells.  

The catalase gene was cloned in the pcDNA™4/TO/myc-His vector and the 

vector was stably transfected in the naïve SH-SY5Y cells. The overexpression 

of the catalase gene in stably transfected cells was confirmed by RT-PCR 

(section 5.2.1.4), immunocytochemistry (section 5.2.1.6) and western blotting 

(section 5.2.1.7). The PCat cells showed a 6 fold increase in the catalase 

activity compared to PVect cells (section 5.2.3). As catalase is an antioxidant 

(Chelikani et al., 2003) and OS is one of the major events in the AD progression 

(Perry et al., 2000), the overexpression of catalase gene in SH-SY5Y cells was 

tested against H2O2 toxicity. The exposure of the PCat cells to H2O2 toxicity was 

found to be neuroprotective even at higher concentrations of H2O2 toxicity 

(section 5.2.2). In the presence of 3-AT an irreversible inhibitor of catalase 

activity (Margoliash and Novogrodsky, 1958), the neuroprotection decreased 

with an increase in the 3-AT concentration (section 5.2.2). This suggests that 

catalase activity is important for protection against H2O2 toxicity. The PCat and 

PVect cells were also exposed to CoCl2 (a mimic of hypoxia) (section 5.2.4) 

toxicity, both the cell lines were equally susceptible to CoCl2 toxicity, suggesting 
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that the neuroprotection by catalase is specific for H2O2 toxicity. To confirm that 

the catalase neuroprotection was provided by overexpression of catalase gene 

in PCat cells, the tetracycline inducible system was used to regulate the 

catalase gene expression. In the absence of tetracycline PCatTR6 cells 

(uninduced) were significantly susceptible to H2O2 toxicity (section 5.2.5). In the 

presence of tetracycline the PCatTR6 (induced) cells were significantly resistant 

to H2O2 toxicity (section 5.2.5). The conditioned media of PCat cells also was 

neuroprotective against H2O2 toxicity, and this neuroprotection could be 

inhibited by 3-AT (section 5.2.6). As the neuroprotection could be inhibited by 3-

AT, the neuroprotection could be due to the presence of protective components 

such as catalase in the PCat cells conditioned media which was absent in the 

PVect cells conditioned media. 

The catalase gene overexpression was also found to be neuroprotective against 

Aβ toxicity, this was confirmed by both MTT (section 6.2.1) and trypan blue 

assay (section 6.2.1). This neuroprotection was partly inhibited by 3-AT (section 

6.2.1). As 3-AT only inhibits catalase activity (section 5.2.2) and does interfere 

with catalase-amyloid interaction (section 3.2.3). This supports the fact that 3-

AT only inhibits activity of catalase, but inactive catalase could still bind Aβ 

(Zang et al., 1996), which could be neuroprotective. The conditioned media 

from the PCat cells was also found to be neuroprotective against Aβ toxicity 

(section 6.2.3). The addition of 3-AT did not seem to alter the neuroprotective 

affect of the PCat conditioned media, this suggests that the protection of extra-

cellular added catalase could be protective via a binding action. This suggests 

that the neuroprotective component of the PCat conditioned media was 

unaltered by 3-AT against Aβ toxicity. The tetracycline inducible system also 

supports the hypothesis that catalase gene expression was key for the 

neuroprotection against Aβ toxicity, as repressing the expression of catalase 

gene made the PCatTR6 cells susceptible to Aβ toxicity (section 6.2.2).  

Catalase not only binds Aβ, but has been shown to bind other amyloid peptides 

such as the IAPP, PrP (Milton and Harris, 2012), ABri and ADan. This could be 

due to the sequence similarity shared by all the amyloid peptides, containing 

potential catalase binding domain (section 1.1.11). Results showed that 

catalase was resistant to Aβ (25-35), ABri (1-34), ADan (1-34), IAPP (20-29) 

and PrP (106-126) toxicity (section 6.2.4). The toxicity of the amyloid peptides 
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was significantly enhanced by 3-AT in PCat cells (section 6.2.4), which 

suggests that the neuroprotection was due to activity of catalase. 

Congo red and Thioflavin T compete for the binding sites on Aβ (Groenning 

2010). Thioflavin derivative BTA-EG4 was shown to inhibit catalase-amyloid 

interaction (Habib et al., 2010). The effect of BTA-EG4, catalase activity inhibitor 

3-AT and KP 45-50 peptide on catalase-amyloid interaction was investigated. 

Results showed that BTA-EG4 and KP 45-50 significantly inhibited catalase-

amyloid interaction, whereas 3-AT did not have any effect on catalase-amyloid 

binding interaction (section 3.2.3). The BTA-EG4 compound surrounds Aβ 

aggregates and does not allow Aβ to interact with cellular proteins (Habib et al., 

2010). The BTA-EG4 by itself was not toxic to PCat cells, but when added 

together with Aβ, it enhanced the toxicity of Aβ at a dose of 20 µM BTA-EG4 

(section 6.2.5) in PCat cells. The BTA-EG4 did not have any effect on Aβ toxicity 

in PVect cells (section 6.2.5); suggesting that inhibition of catalase-amyloid 

interaction by BTA-EG4 at higher doses could enhance Aβ toxicity. To confirm 

that any compound that can bind Aβ will not enhance Aβ toxicity in PCat cells, 

the effect of KP 45-50 was tested on PCat cells against Aβ toxicity (As KP binds 

Aβ section 3.2.3). KP did not enhance the toxicity of Aβ in PCat cells, but was 

found to be neuroprotective against Aβ toxicity (section 6.2.6). This suggests 

that the role of BTA-EG4 is specific and that the increased toxicity observed was 

due to disruption of catalase-amyloid interaction, and not all the compounds that 

bind Aβ will necessarily enhance the toxicity of Aβ in PCat cells.  

The BTA-EG4 also enhanced the toxicity of Aβ 25-35, ABri 1-34, ADan 1-34, 

IAPP 20-29 and PrP 106-126 (section 6.2.7). This suggests that BTA-EG4 -

enhances the toxicity of all the amyloid peptides by disrupting catalase-amyloid 

interaction. The effect of BTA-EG4, KP and 3-AT on catalase activity was also 

investigated in the presence of H2O2 toxicity in PCat cells (section 6.2.8). BTA-

EG4 and KP did not enhance the toxicity of H2O2, whereas 3-AT enhanced the 

toxicity of H2O2 in the PCat cells. 

Catalase overexpression had dual protection, peroxisome targeted catalase can 

prevent or even reverse the effects of OS (Giordano et al., 2014). The 

sequence of catalase that binds Aβ could be ideal for designing drugs that can 

bind to Aβ. 
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A comparison between human catalase and KiSS-1 preproprotein sequences 

has shown that the KiSS-1 preproprotein contains a catalase like Aβ binding 

domain (Milton et al., 2012) (section 1.2.9). The SH-SY5Y cells express the 

KiSS-1 gene (Poomthavorn et al., 2009) and contain the necessary secretary 

vesicle machinery to release neuroendocrine hormones (Godell et al., 1997). 

The sequence similarity as shown in section 1.2.9 raises the possibility of KP 

binding to Aβ, IAPP and PrP, and this suggests that it could be neuroprotective 

against Aβ toxicity. Overexpression of the KiSS-1 gene in human 

neuroblastoma SH-SY5Y cells was found to be neuroprotective against Aβ 

(section 7.2.3), PrP and IAPP toxicity (section 7.2.4). This property of KiSS-1 

overexpression neuroprotection against different amyloids is similar to the 

neuroprotection by catalase overexpression neuroprotection against Aβ, IAPP 

and PrP. This suggests that the sequence similarity between catalase and KP 

plays a key role in neuroprotection against different amyloids. To further 

understand the mechanism of neuroprotection, the PKiSS and PVect cells were 

treated with Aβ (1-42) and anti-KP 45-50 antibody or GPR-54 receptor 

antagonist KP234 or NPFF receptor antagonist RF9 (section 7.2.5). Only anti-

KP 45-50 antibody increased the toxicity of Aβ, whereas the KP234 and NPFF 

did not alter the toxicity of Aβ in both PVect and PKiSS cells. This further 

strengthens the concept that KP-amyloid interaction is the key for 

neuroprotection as anti-KP 45-50 antibody probably inhibits KP and amyloid 

peptide interaction. Inhibition of KP-amyloid interaction by anti-KP antibody 

increases Aβ toxicity. This also suggests that KP neuroprotection is not receptor 

(KP or NPFF) mediated or it acts via other receptors.  

Recent studies have shown the effect of KP on passive avoidance learning and 

potential involvement of adrenergic, serotonergic, dopaminergic, cholinergic, 

gabaergic, opiate and nitric oxide receptors in mice. Results have shown that 

KP may partly acts via all these receptors to facilitate passive avoidance 

learning in mice (Telegdy and Adamik, 2013). Another study has shown that KP 

has anti-depressant like effects in mouse, which could involve adrenergic and 

serotonergic receptors (Tanaka et al., 2013). This suggests that KP may act via 

other receptors and therefore the present study was conducted to characterize 

a model of KiSS-1 gene overexpression (PKiSS cells) neuroprotection against 

Aβ toxicity in SH-SY5Y neurons, and to determine the role of neurotransmitter 
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systems in the neuroprotection. The KP and NPFF receptors do not play a role 

in KiSS-1 overexpression mediated neuroprotection against Aβ toxicity (section 

7.2.5). The toxicity of Aβ was enhanced by anti-KP antibody, suggesting KP-Aβ 

interaction may provide some neuroprotection. The observations from the 

present study suggest that KiSS-1 overexpression mediated neuroprotection 

could involve oxytocin/vasopressin plus a cyclooxygenase dependent 

component, which could be due to endogenous oxytocin or vasopressin 

activating cyclooxygenase. The SC-560 significantly reduced KiSS-1 

overexpression neuroprotection and enhanced Aβ toxicity (section 8.2.10). This 

suggests that KiSS-1 overexpression mediated neuroprotection could be via 

cyclooxygenase. The SC-560 inhibitor of cyclooxygenase-1 has previously been 

shown to reduce Aβ production in AD mouse model (Choi et al., 2013). The SC-

560 is not specific for cyclooxygenase-1 and could also inhibit cyclooxygenase-

2 in some cell types (Brenneis et al., 2006). KP can modulate thermoregulatory 

responses in rats (Csabafi et al., 2013), which could be regulated via 

cyclooxygenase inhibitors (Nakamura 2011; Morrison et al., 2012). As such 

KiSS-1 overexpression could be acting via prostaglandin synthesis mediated via 

cyclooxygenase in this overexpression model. 
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9.1 Conclusions 

The results of the present study represent the characterization of the catalase 

and KiSS-1 gene overexpressing SH-SY5Y cell lines. The overexpression of 

catalase gene in SH-SY5Y cells was found to be neuroprotective against Aβ as 

well as H2O2 toxicity. The The effect of BTA-EG4 on PCat and PVect cells 

suggests that blocking catalase-amyloid interaction could be neuroprotective 

but may also have other effects. This study shows the presence of KP in 

amyloid plaque like deposits in the pons section of an AD patient. 

Overexpression of KiSS-1 gene in SH-SY5Y cells was found to be 

neuroprotective against Aβ toxicity. The observations from the present study 

also suggest that KiSS-1 overexpression mediated neuroprotection against Aβ 

could involve oxytocin/vasopressin plus a cyclooxygenase dependent 

component. 

9.2 Limitations and future work 

The Immunohistochemistry study (chapter 4) was performed using one patient 

sample, a larger sample size and different regions of brain sections such as 

hippocampus could provide further understanding of catalase and KP co-

localization with Aβ in AD brain sections. The overexpression of catalase gene 

in SH-SY5Y cells could also be used to study the role of antioxidant catalase in 

other diseases such as Stroke and Parkinson’s disease which share an 

oxidative stress component. The KiSS-1 gene could be overexpressed in a 

pancreatic cell line to understand the role of KP in T2DM. The neurotransmitters 

study (chapter 8) performed using single dose of the neurotransmitter 

antagonist requires further investigation. A dose response curve for each of the 

neurotransmitter antagonist can provide an appropriate dose for blocking the 

receptors in SH-SY5Y cells. The amino acids involved in catalase Aβ interaction 

could be mutated to understand the significance of the amino acids in the 

binding interaction as well as to create modified CAβBD sequences which can 

bind Aβ with higher affinity. The CAβBD sequence could also be used to design 

peptides that can bind Aβ, which could be of therapeutic use in designing drugs 

for treating AD. 
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10.1 Catalase sequence from UCL sequencing facility 

CCCGGGTGGGACATTAGCAGAGCTCTCCCTATCAGTGATAGAGATCTCCC

TATCAGTGATAGAGATCGTCGACGAGCTCGTTTAGTGAACCGTCAGATCG

CCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGAC

CGATCCAGCCTCCGGACTCTAGCGTTTAAACTTAAGCTTATGGCTGACAGC

CGGGATCCCGCCAGCGACCAGATGCAGCACTGGAAGGAGCAGCGGGCC

GCGCAGAAAGCTGATGTCCTGACCACTGGAGCTGGTAACCCAGTAGGAGA

CAAACTTAATGTTATTACAGTAGGGCCCCGTGGGCCCCTTCTTGTTCAGGA

TGTGGTTTTCACTGATGAAATGGCTCATTTTGACCGAGAGAGAATTCCTGA

GAGAGTTGTGCATGCTAAAGGAGCAGGGGCCTTTGGCTACTTTGAGGTCA

CACATGACATTACCAAATACTCCAAGGCAAAGGTATTTGAGCATATTGGAA

AGAAGACTCCCATCGCAGTTCGGTTCTCCACTGTTGCTGGAGAATCGGGT

TCAGCTGACACAGTTCGGGACCCTCGTGGGTTTGCAGTGAAATTTTACACA

GAAGATGGTAACTGGGATCTCGTTGGAAATAACACCCCCATTTTCTTCATC

AGGGATCCCATATTGTTTCCATCTTTTATCCACAGCCAAAAGAGAAATCCTC

AGACACATCTGAAGGATCCGGACATGGTCTGGGACTTCTGGAGCCTACGT

CCTGAGTCTCTGCATCAGGTTTCTTTCTTGTTCAGTGATCGGGGGATTCCA

GATGGACATCGCCACATGAATGGATATGGATCACATACTTTCAAGCTGGTT

AATGCAAATGGGGAGGCAGTTTATTGCAAATTCCATTATAAGACTGACCAG

GGCATCAAAAACCTTTCTGTTGAAGATGCGGCGAGACTTTCCCAGGAAGAT

CCTGACTATGGCATCCGGGATCTTTTTAACGCCATTGCCACAGGAAAGTAC

CCCTCCTGACTTTTACATCCAGGTCATGACATTTAATCAGCAGAAACTTTTC

CATTTATCCATTCGATCTCACAGTTGACCTCACAGACTACCCTCTCATCCA

GTGTTAACTGATCTAACGATTCAGTTATTACTGCTGAGATGACGATGTCTC

GACAAGCAACATGCCAACTACATTGAAGTG 
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10.2 Kisspeptin sequence from UCL sequencing facility  

CTGGTTTCGGGATGGTATCAATAGAGAGCTCTCCCTATCAGTGATAGAGAT

CTCCCTATCAGTGATAGAGATCGTCGACGAGCTCGTTTAGTGAACCGTCA

GATCGCCTGGAGACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACC

GGGACCGATCCAGCCTCCGGACTCTAGCGTTTAAACTTAAGCTTGGTACC

GAGCTCGGATCCATGAACTCACTGGTTTCTTGGCAGCTACTGCTTTTCCTC

TGTGCCACCCACTTTGGGGAGCCATTAGAAAAGGTGGCCTCTGTGGGGAA

TTCTAGACCCACAGGCCAGCAGCTAGAATCCCTGGGCCTCCTGGCCCCCG

GGGAGCAGAGCCTGCCGTGCACCGAGAGGAAGCCAGCTGCTACTGCCAG

GCTGAGCCGTCGGGGGACCTCGCTGTCCCCGCCCCCCGAGAGCTCCGG

GAGCCCCCAGCAGCCGGGCCTGTCCGCCCCCCACAGCCGCCAGATCCCC

GCACCCCAGGGCGCGGTGCTGGTGCAGCGGGAGAAGGACCTGCCGAAC

TACAACTGGAACTCCTTCGGCCTGCGCTTCGGCAAGCGGGAGGCGGCAC

CAGGGAACCACGGCAGAAGCGCTGGGCGGGGCCTCGAGTCTAGAGGGC

CCTTCGAACAAAAACTCATCTCAGAAGAGGATCTGAATATGCATACCGGTC

ATCATCACCATCACCATTGAGTTTAAACCCGCTGATCAGCCTCGACTGTGC

CTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCCGTGCCTTCCTTG

ACCCTGGAAGGTGCCACTCCCACTGTCCTTTTCCTAATAAAATGAGGAAAT

TGCATCGCATTGTCTGAGTAGGTGTCATTTCTATTCTGGGGGTGGGGTGG

GGCAGGACAGCATGTGGGAGGATTGGGAAGACAATAGCAGGCTTGCTTG

GGGATGCGGTGGGCTCTATGGCTTCTGAGGCGGAAAGAACCATCTGGGG

TCTCTTGGGGGTATCCCCCACGCGCCCTGTAGCGTCCTCATTAAGCTGCG

TCTGGTGGGTGGTGGTTACGCAGCAGCGGGACCGCTAACCTTTGCAGCG

CCCTAATGCCCGCTTCTTTTTCGTTTCTCCTTTGTTCTCGCTCGTTGCCGTA

CTTTCCCGTCAAGCTTTATATCGTGGTTCCGTTAAGTTCGGAATTTTATGCC

TTAACGGACCCTCGAACTCCAAAAAACCTTGAAATAAGGAGTAATATGT 
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