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 27 

Carbohydrate intake and ketosis in self-sufficient multi-stage ultramarathon 28 

runners 29 

 30 

Abstract 31 

Ultra-endurance athletes accumulate an energy deficit throughout their events and those 32 

competing in self-sufficient multi-stage races are particularly vulnerable due to load carriage 33 

considerations. Whilst urinary ketones have previously been noted in ultra-endurance exercise 34 

and attributed to insufficient carbohydrate (CHO) availability, not all studies have reported 35 

concomitant CHO intake. Our aim was to determine changes in blood glucose and β-36 

hydroxybutyrate concentrations over five days (240 km) of a self-sufficient multi-stage 37 

ultramarathon in combination with quantification of energy and macronutrient intakes, estimated 38 

energy expenditure and evaluation of energy balance. Thirteen runners (8 male, 5 female, mean 39 

age 40 ± 8 years) participated in the study. Glucose and β-hydroxybutyrate were measured every 40 

day immediately post-running, and food diaries completed daily. CHO intakes of 301 ± 106 41 

g·day-1 (4.3 ± 1.8 g·kg-1·day-1) were not sufficient to avoid ketosis (5-day mean β-42 

hydroxybutyrate: 1.1 ± 0.6 mmol.L-1). Furthermore, ketosis was not attenuated even when CHO 43 

intake was high (9 g·kg-1·day-1). This suggests that competing in a state of ketosis may be 44 

inevitable during multi-stage events where load reduction is prioritised over energy provisions. 45 

Attenuating negative impacts associated with such a metabolic shift in athletes unaccustomed to 46 

CHO and energy restriction requires further exploration. 47 

 48 

Key words: ketones, running, ultra-endurance, carbohydrate, performance, nutrition, energy 49 

deficit 50 

 51 



3 
 

Introduction 52 

 53 

Self-sufficient multi-stage ultramarathons are conducted over multiple days and athletes must 54 

carry all necessary clothing, equipment, and food required for the race in a backpack. Extreme 55 

environments, rough sleeping conditions and increased load carriage from backpacks result in 56 

long days of high physical, mental and emotional effort. It is recognised that many participants 57 

in ultra-endurance races compete in a state of negative energy balance and insufficient 58 

carbohydrate intake (Costa et al. 2013; Wardenaar et al. 2015). The reasons have been well 59 

explored elsewhere (Costa et al. 2016; Costa et al. 2017; Stuempfle and Hoffman 2015; 60 

Stuempfle et al. 2013) but some of the most common are gastrointestinal issues and the inability 61 

to consume enough calories to offset energy. In the case of self-sufficient events, these factors 62 

are compounded by a deliberate decision by athletes to compromise energy intake for reduced 63 

load to carry (Alcock et al. 2018; Lucas et al. 2016; McCubbin et al. 2016).  64 

 65 

During periods of acute carbohydrate (CHO) insufficiency ketone bodies (acetoacetate (AcAc) 66 

and beta-hydroxybutyrate (β-HB)) are produced as an integral component of homeostasis (Cox 67 

and Clarke 2014). As blood glucose and insulin levels drop, free fatty acids are liberated from 68 

adipose tissue and partially oxidised in the liver producing ketones (Cahill 1981). The brain can 69 

then utilise these circulating ketone bodies for up to 60% of its energy requirements, the 70 

remainder coming from gluconeogenesis (Cox and Clarke 2014; Egan and D’Agostino 2016). 71 

Ketones also become an alternate energy source for the heart and skeletal muscle (Cox and 72 

Clarke 2014; Egan and D’Agostino 2016) reducing nitrogen depletion and allowing for the 73 

retention of lean muscle mass (Cahill 2006). This suggests that during a self-sufficient, multi-74 

stage ultramarathon  when limited by restricted exogenous energy and CHO sources, being in a 75 

state of ketosis may be beneficial to athletes.  76 
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 77 

In practice however, being in a state of ketosis during athletic endeavours is generally regarded 78 

as undesirable due to the initial ‘adaptation period’ characterised by lethargy and fatigue, as well 79 

as the potential for impaired performance due to glycogen depletion, inefficient utilization of 80 

muscle substrates, and reduced exercise economy (Burke et al. 2017; Phinney et al. 1983; Yeo 81 

et al. 2011). Although metabolic adaptations to low carbohydrate or calorie restricted diets 82 

demonstrably occur within five days (Goedecke et al. 1999) it has been suggested that athletes 83 

may require several weeks, if not months, to adapt fully (Volek et al. 2016). This may have 84 

negative implications for athletes who experience this transition period during multi-stage ultra-85 

endurance events. 86 

 87 

Early studies on starvation (Azar and Bloom 1963; Bloom and Azar 1963; Cahill 1981; 88 

Consolazio et al. 1968) demonstrated the link between CHO insufficiency and ketosis. 89 

Consolazio et al. (1968) similarly noted that when in a daily energy deficit of 11.7 MJ (2 800 90 

kcal)  induced through fasting and exercise,  ketosis could be avoided by ingesting 1.8 MJ (420 91 

kcal, ~100 g) of CHO per day, an amount equal to the carbohydrate requirements of the brain 92 

(Cahill 1981). Subsequent guidelines have thus recommended a daily CHO intake of >100 g 93 

combined with a fat intake of less than 160 g to prevent ketosis during periods of caloric 94 

restriction (Marriott 1995; Montain and Young 2003). There is scarce data on ketosis and CHO 95 

intake during ultra-endurance exercise. Although the presence of urinary ketones has been 96 

reported in athletes during ultra-endurance events and attributed to insufficient CHO (Costa et 97 

al. 2014; Costa et al. 2013), not all studies have reported concomitant CHO intake (Jablan et al. 98 

2017; Weibel and Glonek 2007).  99 

 100 

. 101 
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 102 

There is a growing body of nutrition research in the field of ultra-endurance sports, but the focus  103 

is often on races where participants have access to exogenous food supplies through aid stations 104 

and/or crew assistance. Nutritional intake during a self-sufficient multi-stage race is restricted to 105 

what the participant is prepared to carry from the first day. This is, to our knowledge, the first 106 

study to quantify energy, CHO intake and β-HB during a fully self-sufficient multi-stage 107 

ultramarathon. The aim of this study was to determine changes in blood β-HB concentration 108 

during five days of a self-supported multi-day ultramarathon in combination with quantification 109 

of energy and macronutrient intakes. 110 

 111 

Methods 112 

 113 

Ethics statement 114 

Ethical approval was granted by the University of Westminster FST Research Ethics Committee 115 

(Application VRE1516-0780). All work was performed in accordance with the principles of the 116 

Declaration of Helsinki and participants gave written, informed consent. 117 

 118 

Participants 119 

Participants were recruited from the pool of registered competitors via an email sent out by the 120 

race organisers. Details of the study were also posted on a social media platform with a request 121 

for volunteers.  122 

 123 

Race conditions 124 

The study was conducted during a 7-day self-sufficient, multi-stage ultramarathon in the 125 

Namibian Desert in May 2016. Race organisers provided shelter for sleeping (10 person canvas 126 
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tents) and plain water at overnight campsites and plain water only at aid stations positioned 127 

approximately 10 km apart on the course. Competitors were required to carry all other personal 128 

and mandatory equipment, including food, in a backpack for the duration of the race. Race 129 

regulations stipulated a minimum food requirement of 14 000 kcal for the entire race.   130 

 131 

Course terrain was predominantly sandy (beach, dunes) with some vehicular dirt track, rocky 132 

sections and salt pans (hard packed mud and coral-like terrain). Recorded temperatures ranged 133 

between 16°C at night and 35°C during the day (mean daytime temperature 27°C ± 4°C). 134 

Humidity ranged from 25% to 51%.   135 

 136 

The competitors took seven days to complete the race, which totalled 250 km. This investigation 137 

took place during the first five days of the race during which the participants completed a total 138 

of 240 km.  Each day commenced at 08:00 and stage distances for the first four days were: 38 139 

km, 42 km, 42 km and 41 km. The fifth day, known as ‘the long stage’, was 77 km and 140 

competitors were allowed 27 hours to complete the distance. This format is characteristic of this 141 

series of races, and in practice results in most competitors having a full ‘rest’ day on day six 142 

which is when the final measures were taken. Upon completion of the 10 km stage on day 7 143 

(which was not included in the study) food and drink were provided by race organisers and then 144 

participants had a two hour bus ride back to the host town  145 

 146 

Study design 147 

Baseline measures were taken one day prior to the race (pre-race) and on the ‘rest day’ (day six), 148 

a minimum of 12 hours following the finish of the long stage. Blood and food diary data was 149 

collected on days one to five. A schematic of the study protocol is provided in Figure 1.   150 

 151 
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*** Figure 1 about here **** 152 

 153 

Performance 154 

Although this study was not interventional, data collection took place during a competitive race 155 

event. Therefore, finishing times were converted into average velocity (km·hr-1) and used as a 156 

measure of performance. Race timings were recorded via timing chips carried by competitors 157 

and official results were provided by the race organisers.  158 

 159 

Anthropometry 160 

Anthropometric measures were taken with participants in their racing clothes comprised of shorts 161 

(males) and shorts and bra tops (females) for both pre- and rest day measures. All participants 162 

were sockless and shoeless during the measures. Height was measured pre-race to the nearest 0.1 163 

cm (Seca 213 stadiometer, Seca, Birmingham, UK). Body mass was measured pre-race and on 164 

the rest day to the nearest 100 g (Seca 877 flat scales, Seca, Birmingham, UK). Scales were 165 

placed on a wooden board to provide a stable surface in the field.  166 

 167 

The sum of skinfolds was determined pre-race and on the rest day using the four-site 168 

Durnin/Womersley skinfold method (Durnin and Womersley 1974). Skinfold thicknesses were 169 

measured on the right side of the body to the nearest 0.2 mm using Harpenden skinfold callipers 170 

(Baty International, West Sussex, UK). All anthropometric measures were conducted by the 171 

same investigator (technical error of measurement (TEM) of 3.5%) 172 

 173 

Glucose and β-hydroxybutyrate 174 

Every day, immediately post-stage, blood glucose (GLUC) and β-hydroxybutyrate (KET) were 175 

measured via capillary sampling from the fingertip using two CardioChek analysers (Polymer 176 
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Technology Systems, Indianapolis, USA) and PTS Panels single-analyte test strip. Each analyser 177 

was specific either to GLUC or KET throughout the study. Limits of detection for GLUC and 178 

KET were 1.11-33.3 mmol·L-1 and 0.19 - 6.72 mmol·L-1 respectively. Analyser testing using 179 

check strips was performed daily on both analysers. 180 

 181 

Blood samples were collected with participants in a standardised seated posture, immediately on 182 

crossing the finish line of the stage. Ketosis was defined as a blood β-hydroxybutyrate 183 

concentration of ≥ 0.5 mmol·L-1 (Volek et al. 2015). 184 

 185 

Whilst the assessment of urinary ketones is a convenient and cost effective method in the field, 186 

hyper- and hypohydration, both common issues in ultra-endurance events (Hoffman and 187 

Stuempfle 2014; Hoffman et al. 2012), can result in false negatives and false positives 188 

respectively (Brewster et al. 2017). Urine strip testing is subjective, semi-quantitative and cannot 189 

control for how long urine has been sitting in the bladder. Blood analysis of ketones however 190 

provides a quantifiable indication of current metabolic state through circulating β-HB. 191 

 192 

Pack weights 193 

All competitors in the race had their packs weighed during check-in and results were provided 194 

to the investigators by the race organisers. 195 

 196 

Food diary and energy intake 197 

Participant food intake was restricted to what they chose to carry on day one, therefore similar 198 

to the method employed in Stuempfle et al. (2013), individualised food diaries itemising every 199 

food product carried on day one were prepared for each participant. The diary was provided to 200 

participants at the end of each day for them to identify what and how much they had eaten, as 201 
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well as noting if food had been lost, thrown away or exchanged with/obtained from, another 202 

competitor. Food diaries were then collected by the researcher following the last meal of the day 203 

prior to the participant retiring for the evening. Analysis of the energy content and macronutrient 204 

profile of foods was performed using Nutritics® dietary analysis software (v1.8, Nutritics Ltd, 205 

Dublin, Ireland). All packaged foods were analysed according to manufacturer provided data. 206 

Non-packaged foods were entered using equivalent foods existing in the database. 207 

Approximately 1 week postrace, participants were sent an email with their nutrition data and 208 

asked for clarifications and corrections. 209 

 210 

 Estimated energy expenditure 211 

To provide a conservative estimate of total daily energy expenditure so as not to overestimate 212 

differences in energy balance, three components were calculated for each participant for each 213 

day of the study.  214 

 215 

1. Sleeping: Predictive equations were used to estimate basal metabolic rate (BMR). The 216 

Cunningham (Cunningham 1980) and Harris Benedict (Harris and Benedict 1918) 217 

equations are recognised as being appropriate for athletic populations (Thomas et al. 218 

2016), with the former more suitable for females and the latter for males (Jagim et al., 219 

2017). It was assumed that participants slept for 8 hours per 24-hour period. 220 

2. Racing: Metabolic Equivalent of Task (METs) (Ainsworth et al. 2011) were used to 221 

calculate the energy expenditure during racing each day based on average moving speed. 222 

Participant weight for day one was defined as pre-race weight plus starting backpack. 223 

Weight for subsequent days was calculated as pre-race weight plus starting pack weight 224 

minus average daily food weight (food eaten the previous day).  225 
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3. Rest: The remaining time (24 hours minus sleep and racing time) was defined as ‘rest’ 226 

and calculated at 1.3 METs (reclining, talking) (Ainsworth et al. 2011). 227 

 228 

Two competitors took ~20 hours to complete the ‘long stage’ (day 5).  In this instance, the 229 

assumptions were 20 hours racing, 1 hour ‘rest’ post-racing and 3 hours sleep for the 24 hour 230 

period. All other participants took less than 15 hours and were therefore estimated to have 8 231 

hours of sleep and at least one hour of rest on this day. 232 

 233 

Although the thermal effect of food accounts for approximately 10% of total daily energy 234 

expenditure, various factors such as body composition, macronutrient profile, meal timing, 235 

exercise and stress can all influence the metabolic response to feeding (Secor 2009). Therefore, 236 

rather than adding a blanket 10% to all estimates of energy expenditure this component has been 237 

excluded. The authors recognise this may result in underestimated energy expenditure and 238 

resultant calculated deficits. 239 

 240 

Statistical analysis 241 

Statistical analysis was completed using GraphPad Prism 7.4 for Windows (GraphPad Software, 242 

La Jolla California USA). All data was tested for normality using Shapiro-Wilk normality tests. 243 

Energy intake on day 5 did not pass the test for normality. Repeated measures ANOVA with 244 

Tukey’s post-hoc analysis was used to determine differences in variables between stages (energy 245 

intake and blood measures). Pre-post measures were analysed using paired t-tests and Cohen’s d 246 

was calculated for effect size.   247 

 248 

Relationships between variables were determined using Pearson’s correlation coefficient. In the 249 

case of non-parametric data (energy intake on day 5) Spearman’s rank coefficient was utilised. 250 
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Relationship strength was classified for the absolute r-value using thresholds of 0.1, 0.3 and 0.5 251 

for small, moderate and large respectively (Hopkins et al. 2009). Significance was set at p < 0.05. 252 

Data are presented as mean ± standard deviation (SD). 253 

 254 

Results 255 

 256 

Seventeen participants from a field of 219 entrants volunteered for the study, of which 13 were 257 

included in the final analysis (Table 1). Two withdrew from the race for reasons unrelated to the 258 

study (injuries sustained while running), one participant elected to withdraw from the study but 259 

continued with the race, and the nutritional data collected from one participant was incomplete 260 

and as such, their data was excluded from analysis. The 13 remaining participants represented 261 

6.6% of the finishing field: eight males (5% of male finishers) and five females (11% of female 262 

finishers), All participants had trained for the event, had previous ultramarathon experience and 263 

none reported cardiovascular or metabolic disorders..  264 

 265 

*** Table 1 about here *** 266 

 267 

Estimated energy expenditure and energy and macronutrient intakes 268 

Average total estimated energy expenditure for five days of racing was 113.6 ± 23.6 MJ which 269 

equates to 22.7 ± 6.6 MJ·day-1 and 2.3 ± 0.9 MJ·hour-1 during the racing periods of the day.  270 

 271 

Compared to the race rules that stipulated competitors must start the race carrying food providing 272 

a minimum of 14 000 kcal  (58.6 MJ), participants carried an average of 63.6 ± 10.5 MJ on day 273 

one (10.6 ± 1.7 MJ·day-1). Data from two participants were considered as outliers (>2 SD from 274 
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the mean) with one participant carrying 39.8 MJ and one carrying 88.5 MJ). The mean total 275 

energy content of the food carried by the 11 other participants was 63.5 ± 3.6 MJ. 276 

 277 

Mean energy intake over five days of racing was 48.0 ± 10.0 MJ (9.6 ± 2.6 MJ·day-1, range: 4.75 278 

-11.5 MJ). All participants were in negative energy balance of  64.6 ± 22.2 MJ (12.9 ± 6.3 279 

MJ·day-1 ) after five days (range: -44.6 to -2.7 MJ Over the course of the race, no participant 280 

consumed all the food they carried from the first day.  281 

 282 

Participants consumed 301 ± 106 g·day-1 CHO, contributing to 53% of total energy intake. Mean 283 

fat (FAT) intake was 85 ± 33 g·day-1 and protein (PRO) 85 ± 35 g·day-1 representing 32% and 284 

15% of total energy intake respectively. Corrected for body mass, participants consumed 4.3 ± 285 

1.8 g·kg-1·day-1 CHO (range 1.6 to 9.1 g·kg-1·day-1 ), 1.2 ± 0.5 g·kg-1·day-1 FAT (range: 0.6 to 286 

2.0 g·kg-1·day-1), and 1.2 ± 0.6 g·kg-1·day-1 PRO (range: 0.4 to 2.6 g·kg-1·day-1). Neither absolute 287 

nor corrected intakes of energy (Figure 2A) nor macronutrients (Figures 2B, 2C and 2D) differed 288 

between stages (p > 0.5). 289 

 290 

 291 

*** Figure 2 about here *** 292 

 293 

Blood glucose and β-hydroxybutyrate 294 

Mean GLUC measured at the end of each stage of the race was 4.8 ± 1.0 mmol·L-1. Mean daily 295 

concentrations are presented in Figure 3. Blood glucose did not differ between baseline (5.1 ± 296 

0.97 mmol·L-1) and race days (p > 0.2). GLUC indicating hypoglycaemia (< 3.2 mmol·L-1 297 

(Mitrakou et al. 1991)) was reported once, in one participant on day five.  298 
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No participant registered blood β-HB > 0.5 mmol·L-1 pre-race. Ketosis was observed in four 299 

participants on day one and all participants on days two, three and five. There was a significant 300 

decrease in KET concentration on day four compared to days three and  five in all participants 301 

(p < 0.001). On day four, three participants had KET < 0.5 mmol·L-1. However, mean 302 

concentrations remained significantly higher than baseline (p < 0.002). Three participants (all 303 

different to those three with low KET on day four) did not meet the criteria for ketosis on the 304 

rest day at least 12 hours following the finish of the long stage. Mean KET during the race was 305 

1.1 ± 0.6 mmol·L-1.  306 

*** Figure 3 about here *** 307 

 308 

Performance 309 

Participants took 39.9 ± 7.1 hours to complete the 240 km run during the study period at an 310 

average velocity of 6.35 ± 1.0 km·hr-1 including all stops at checkpoints along the course.  311 

 312 

Pack weights 313 

Mean pack weight for the full field of competitors that finished was 9.6 ± 1.9 kg (range 5.6 – 19 314 

kg). Pack weight of the top 10 finishers was significantly lighter than those that finished in places 315 

11 – 196 (7.66 ± 1.2 kg vs -9.7 ±1.9  kg, p = 0.006). 316 

 317 

Correlations 318 

 319 

Neither absolute nor relative intakes of CHO or FAT correlated with KET (CHO: absolute r = 320 

0.03, p = 0.9, relative r = -0.004, p = 0.99; FAT: absolute r = -0.14, p = 0.65, relative r = -0.20, 321 

p = 0.50). There was a strong, negative relationship between both absolute PRO intake and KET 322 

(r = -0.61, p = 0.03) and relative PRO intake and KET (r = -0.54, p = 0.056). 323 
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 324 

Whilst there were no significant relationships between either daily energy intake or deficit 325 

(MJ·day-1) and GLUC (intake r = -0.19 p = 0.53, deficit r = -0.12 p = 0.71) or KET (intake r = -326 

0.28, p = 0.35, deficit r = -0.27, p = 0.36), there was a moderate relationship between the 327 

cumulative energy deficit and KET (r = -0.44, p = 0.0002). 328 

 329 

Performance was not correlated with mean KET (r = 0.22, p = 0.47) but had a strong relationship 330 

with total CHO intake (r = 0.62, p = 0.02). 331 

 332 

As the first significant increase in KET occurred on day two, a Pearson correlation analysis was 333 

used to assess the relationship between overall performance and the magnitude of β-HB 334 

concentration increase from baseline to day two. There was a large positive relationship between 335 

the magnitude of β-HB increase and overall performance that approached significance (r = 0.54, 336 

p = 0.06, figure 4). 337 

 338 

*** Figure 4 about here *** 339 

 340 

Discussion 341 

 342 

To the best of our knowledge this is the first study to investigate blood glucose and β-343 

hydroxybutyrate (β-HB) concentrations throughout a fully self-sufficient multi-stage 344 

ultramarathon and the influence of nutritional intake on these substrates. The main finding is that 345 

all participants in this study entered a state of ketosis within two days of the race commencing, 346 

with ketosis not correlated with CHO intake. 347 

 348 
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Historically, an energy deficit per se has not been considered enough to induce ketosis 349 

(Consolazio et al. 1968): a concomitant reduction in CHO availability to less than 100g must 350 

occur. Here we show that despite a similar caloric deficit as that induced by Consolazio et al. 351 

(1968) ketosis still occurred in all participants despite a mean intake of 301 ± 106 g·day-1. 352 

Furthermore, ketosis was still evident in participants who consumed up to 600 g·day-1 of CHO. 353 

This lack of relationship between macronutrient intake and ketosis  but large relationship 354 

between cumulative energy deficit and ketosis suggests that the magnitude of the ongoing energy 355 

deficit and the manner in which it is induced (i.e. exercise induced vs energy restriction) may 356 

play a greater role than previously appreciated. 357 

 358 

Prior studies have also noted the presence of urinary ketones in ultra-endurance athletes despite 359 

apparently adequate CHO intakes (Costa et al. 2014; Costa et al. 2013; Jablan et al. 2017; Weibel 360 

and Glonek 2007). Costa et al. (2013) noted that 46% of runners in a multi-day ultramarathon (5 361 

days, 225 km) presented with urinary ketones indicative of ketosis at least once during the race 362 

despite CHO intakes of 520 g·day-1 (7.5 g·kg·day-1). Likewise, in a 24 hour ultramarathon, 363 

urinary ketones were present in 90% of runners whose average CHO intake was 881 g (37 g·hr-364 

1) (Costa et al. 2014). Weibel and Glonek (2007) found that in a six day race, 22 of 31 study 365 

participants produced urinary ketones, and although dietary intake was not recorded, they 366 

observed that some participants produced urinary ketones despite apparent high CHO intake. 367 

Likewise Jablan et al. (2017) reported a significant increase in urinary ketones in 81% of 368 

participants following a mountain ultra-marathon (mean race time 8.40 ± 1.28 hours) although 369 

CHO intake was not quantified. All these studies have attributed the presence of urinary ketones 370 

to insufficient CHO intake, but have not further explored the physiological implications of these 371 

findings. We suggest that rather than simply being an indication of participants not meeting CHO 372 

recommendations for performance, ketosis may be inevitable during certain ultra-endurance 373 
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events and that athletes will compete in a different physiological state than that which can be 374 

assumed for races where external supplies are available. This has practical implications for the 375 

self-sufficient, multi-stage athlete who must then manage the negative impacts of such an 376 

extreme dietary and metabolic shift whilst competing in an already physiologically stressful 377 

situation. 378 

 379 

Although fat-oxidation rates have been shown to double following a ketogenic diet, this has not 380 

translated into performance improvements for elite endurance athletes (Burke et al. 2017; 381 

McSwiney et al. 2018). However, a benefit may  exist for ultra-endurance athletes who are 382 

working at lower intensities for much longer periods of time with low CHO availability (Burke 383 

2015). Recent evidence also suggests that long-term ‘keto-adapted’ athletes (those regularly in a 384 

ketogenic state for at least 6 months)  not only have equivalent glycogen stores compared to 385 

athletes on high CHO diets, but are also able to replenish these stores in the absence of dietary 386 

CHO (Volek et al. 2016). This may be a crucial benefit for multi-stage athletes trying to recover 387 

for subsequent days of racing and suggests that incorporating periods of ketosis into training 388 

periods may better prepare athletes for these types of competitions. It is plausible that when 389 

confronted with such large energy deficits, athletes with greater metabolic flexibility, and 390 

specifically the ability to produce and utilise ketones more quickly would perform better. Our 391 

results show a trend in this direction and since to the best of our knowledge there are no studies 392 

quantifying the ‘efficiency’ of ketosis (how quickly people may become ketogenic without side 393 

effects), this deserves further exploration in future research. These results also raise the question 394 

of whether athletes might benefit from starting their events already in nutritional ketosis (without 395 

energy restriction) to avoid the adaptation period while racing.  396 

 397 



17 
 

In the present study we report a strong relationship between CHO intake and performance. 398 

Carbohydrate is undoubtedly ergogenic and we would expect to see increased CHO intake 399 

improve performance in ultra-endurance events (Mahon et al. 2014; Stellingwerff and Cox 2014). 400 

However, nutritional intakes in this study were constrained by food choices made by the 401 

participants prior to starting the race. While evening meals were of similar composition across 402 

the cohort (typically commercial freeze-dried meals) the faster competitors took a higher 403 

proportion of ‘sports nutrition’ products (gels, bars) for daytime consumption which were higher 404 

in CHO than ‘real’ foods taken by the slower competitors (meat jerky, nuts, seeds, cheese). It 405 

therefore cannot be ruled out that CHO intake may have been coincidental to better performance 406 

rather than causal. Since total weight of food is a key consideration, it is unclear as to whether 407 

CHO or total energy should be prioritised when optimising race nutrition for a self-supported 408 

event. The magnitude of the energy deficit induced by physical exercise in these events suggests 409 

that increasing energy content using energy dense high fat foods may improve performance, but 410 

the performance benefits of CHO are undeniable, as long as they are available. 411 

 412 

There is little data on the relationship between increased pack weight through increased 413 

nutritional supplies (and therefore intake) and performance in multi-stage races. A recent case-414 

study suggests the benefits of increased energy consumption outweigh the detriments associated 415 

with an increase in pack weight (Alcock et al. 2018), although carrying enough food to meet 416 

energy requirements resulted in a pack weight of 14 kg. This contrasts with the mean 7.6 kg 417 

carried by the top 10 competitors in this race and is more than 2.5 times the weight of the pack 418 

of the winning competitor. The current literature provides little incentive to increase weight 419 

carried if athletes are already performing well with much lighter packs and concomitant reduced 420 

energy consumption. In these circumstances, these findings should direct future research into 421 
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appropriate training and preparation to attenuate potential ketogenic adaptation issues during 422 

races and optimise performance. 423 

 424 

β-hydroxybutyrate levels were not different from baseline on day one, however, we observed a 425 

significant 5.4 fold increase from baseline on day two (0.25 ± 0.08 mmol·L-1 to 1.35 ± 0.60 426 

mmol·L-1, p = 0.0003), which rose to a 6.4 fold increase from baseline on day three (0.25 ± 0.08 427 

mmol·L-1 to 1.6 ± 0.57 mmol·L-1, p < 0.0001). All participants exhibited reduced KET on day 428 

four, albeit still significantly higher than baseline, and KET increased again on days five and six. 429 

The universal drop in KET on day four was unexpected and does not have a ready explanation 430 

given that it was unrelated to macronutrient intakes or changes in physical activity. Although 431 

speculative, the combined GLUC and KET pattern is indicative of the starvation response as 432 

identified by Cahill (1976), the initial stages of which have distinct adaptation phases. Previously 433 

consumed meals will provide fuel for up to eight hours. During the subsequent 24 - 48 hours, 434 

liver glycogen is used to maintain glucose homeostasis and ketone production increases. 435 

Thereafter, as liver glycogen is depleted, gluconeogenesis increases while ketone utilization 436 

reduces the demand for glucose from tissues. This results in a temporary increase in blood 437 

glucose and concomitant drop in ketone production. After four to five days, major adaptations to 438 

energy metabolism occur and ketone utilization increases with a concurrent reduction in 439 

gluconeogenesis (Cahill 1976). The starvation response has previously been identified in athletes 440 

participating in a 1 230 km ultra-endurance cycling event (Geesmann et al. 2017). During the 54 441 

hour event, Geesmann et al. (2017) found that an energy deficit of 23.2 ± 19.1 MJ resulted in the 442 

suppression of testosterone, leptin and IGF-1. In some athletes these remained supressed for up 443 

to three days despite ad-libitum intake during recovery. Given the large energy deficits 444 

accumulated over five days by participants in this study, further research into the effects of 445 

starvation on the metabolic and hormonal health of ultra-endurance athletes is warranted. This is 446 
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of particular concern for athletes who train for, and compete in, several self-sufficient multi-447 

stage ultra-endurance events per year.  448 

 449 

While a major strength of this study was its applied nature, contributing to understanding 450 

metabolic shifts in athletes in a real-world, competitive environment, limitations must be 451 

considered.   .Energy expenditure was not directly quantified but the estimated energy 452 

expenditure of 2.3 MJ·hr-1 whilst racing is in line with previous studies on ultra-endurance racing. 453 

These include a 24 hr trail race (2.3 MJ·hr-1) (Costa et al. 2014), a 24 hr lab-simulated adventure 454 

race (3.1 MJ·hr-1), and a 6 day adventure race (2.1 MJ·hr-1) (Enqvist et al. 2010). The average 455 

daily energy expenditure in our study (22.7 MJ·day-1) was larger than previously reported for a 456 

multi-day ultramarathon of a similar format (5 days, 225 km, 16.0 to 20.0 MJ·day-1) (Costa et al. 457 

2013) although in the study of Costa et al. (2013) overall distance and running time was less than 458 

our study. Additionally, participants in the study of Costa et al. (2013) had their food and 459 

equipment transported each day meaning that they could take, and thus consume, more food 460 

(intake in our study: 9.6 ± 2.6 MJ·day-1 compared to Costa et al. 2013: 14.0 ± 3.1MJ·day-1). 461 

Furthermore, this daily transportation of provisions also means  load carriage was reduced, 462 

potentially resulting in a lower energy expenditure (Lucas et al. 2016), given that the cohort in 463 

the present study had a mean starting pack weight of 8.6 kg. Therefore, we believe estimates of 464 

energy expenditure and subsequent deficits in the present study are reasonable. 465 

 466 

Due to logistical constraints in the field, morning pre-stage data collection of blood substrates 467 

was not possible but would have added a greater understanding of changes over the course of the 468 

race. Furthermore, although capillary testing is a well-recognised method of measuring ketones 469 

(Brewster et al. 2017), venous blood samples could take into account changes in blood plasma 470 

volume as well as identifying other biomarkers. It has been shown that blood plasma volume 471 
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increases over the course of a multi-stage ultramarathon (Alcock et al. 2018; Costa et al. 2014) 472 

suggesting that the participants’ ketone levels may have been even higher than recorded. 473 

However, given the remote nature of this race the logistics of storing, transporting and analysing 474 

whole blood was beyond the scope of the study. 475 

 476 

Conclusion 477 

Health and performance related issues in ultra-endurance athletes have been well established and 478 

the focus is currently on solving these issues (e.g. gut-training for optimal CHO intake). Unlike   479 

races where optimal nutritional strategies may be applied through external access to food self-480 

sufficient multi-stage ultra-marathons restrict intake to the load the athlete is prepared to carry 481 

from day one.. This is the first study to document changes in blood glucose and β-HB 482 

concentrations and concomitant nutritional intakes during a self-sufficient multi-stage ultra-483 

marathon. We showed that all participants were ketogenic by day two. This suggests that rather 484 

than being a nutritional choice, competing in a state of ketosis may be unavoidable in multi-stage 485 

events where load carriage considerations encourage energy and CHO restriction. .Given the 486 

potential negative impacts associated with such an extreme metabolic shift in athletes 487 

unaccustomed to such restriction (fatigue, increased perceived effort and changes to the 488 

hormonal milieu), prior keto-adaptation could be a useful strategy to improve health and 489 

performance in these athletes, however further work is required to elucidate the benefits of such 490 

an approach. 491 
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Table 1: Participant characteristics 

Note: Mean ± SD; * p < 0.001 vs pre-race; 
 

 

 

 

 

Figure 1. Schematic of study protocol. Blood samples were taken immediately post-stage every day at the 
finish line 
 

 

Pre-race Stage 1 
Distance 

(avg time) 

Stage 2 
Distance 

(avg time) 

Stage 3 
Distance 

(avg time) 

Stage 4 
Distance 

(avg time) 

Stage 5 
Distance 

(avg time) 
Rest day 

 

38 km 
(4.8 ± 0.9 hr) 

42 km 
(7.3 ± 1.0 hr) 

42 km 
(7.3 ± 1.3 hr) 

41 km 
(7.0 ± 1.4 hr) 

77 km 
(13.5 ± 3.1 hr) 
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Anthropometry  
 

Blood Collection    
 

Food Diary   

 Participant Characteristics 
(n= 13, 8 males, 5 females) 

 Pre-race Day 6 Cohen’s d 

Age (years)  40 ± 8 -  

Height (cm) 175.1 ± 8.1 -  

Body mass (kg) 73.1 ± 11.8 70.6 ± 11.6 * 0.1 

Sum of 4 skinfolds (mm) 38.1 ± 12.2 32.0 ± 10.8 * 0.3 

Starting pack weight (kg) 8.6 ± 1.3 -  
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Figure 2: Mean daily intakes of (A) energy, (B) CHO, (C) PRO and (D) FAT.   Δ Female; ● 
Male. Bars indicate mean intake 
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Figure 3. Blood GLUC and KET concentrations. * denotes a significant change from baseline. 
§ denotes a significant change from the day before. Data are presented as mean ± SD. 
 

 

 
 
 
Figure 4. The relationship between the change in ketone concentration from baseline on day two 
and overall performance as defined by average speed throughout the race (r = 0.54, p = 0.06) 
 

 

 


