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Abstract 

Microbial fuel cells (MFCs) hold great promise for simultaneous wastewater treatment 

and electricity production. However, their performance is currently hampered by 

several challenges including high cathodic potential losses and cost of platinum (and 

other materials) used as a catalyst for the oxygen reduction reaction. These challenges 

could be overcome by using biological catalysts (oxidoreductase enzymes e.g. laccase 

& microbes). This work investigated the treatment of azo dye (Acid orange 7, AO7) in 

MFC utilising biological catalysts as replacements for platinum. 

Various ways of mitigating pH changes in the cathode of MFCs and its effect on laccase 

activity were studied initially. Use of Nafion 117 membrane limited salinity and pH 

changes in the cathode (0.1 M acetate buffer) leading to prolonged laccase activity and 

faster anodic dye decolourization compared to using CMI7000 membrane; similarly, 

automatic pH control was better than using a higher acetate buffer strength (0.2 M). To 

improve robustness and shelf life, laccase was immobilized by different approaches 

using polyaniline (PANI), copper alginate beads and Nafion polymer. PANI-laccase 

showed the highest activity, producing a power density of 38.2±1.7 mW m-2 compared 

to 28±1 mW m-2 freely suspended enzyme. There was 81% activity retained after 1 

cycle (5 days) for PANI laccase compared to 23.8% for freely suspended laccase. The 

cathodic dye decolourization was over 85% for freely suspended laccase, 81% for Cu-

alginate systems,76% for PANI, and 73% for Nafion-immobilized laccase. 

The efficiency and mechanism of dye degradation were compared between feeding the 

dye in the anode (S. oneidensis) and the cathode chamber (laccase). Power density and 

decolourization rate were better when dye was fed in the cathode (> 80% 

decolourization in 24 h, Pmax 50±4 mW m-2) compared to anode (20% decolourization 

in 24 h, Pmax 42.5±2.6 mW m-2). GC-MS analysis revealed benzoic acid and hexanoic 

acid for laccase degradation products, whereas S. oneidensis produced colourless 

unstable aromatic amines that underwent auto-oxidation to produce colour. Further, to 

improve the efficiency of laccase, two natural redox mediators (syringaldehyde (Syr), 

acetosyringone (As)) and artificial mediator ABTS were used in the cathode. The 

presence of ABTS and As increased power density from 54.7±3.5 mW m-2 to 77.2±4.2 

mW m-2 and 62.5±3.7 mW m-2 respectively. The power decreased to 23.2±2.1 mW m-2 

for laccase with syr. There was increase in decolourization by 20% with addition of 

mediators. Thus, the natural mediator As improved dye decolourization and power.  

To develop an efficient microbial biocathode, activated sludge from textile treatment 

plant was enriched by potentiostatic method. The biofilm produced a power density of 

64.6±3.5 mW m-2 compared to platinum (Pt) 72.7±1.2 mW m-2 in a MFC. The rate of 

dye decolourization at the anode was similar in both Pt and biocathode MFCs. The 

microbial community analysis revealed a selection of chemolithoautotrophic organisms 

that fix CO2 for their metabolism. Altogether, these results suggest that laccase and 

microbial biocathode have the potential to be an excellent catalyst for ORR in MFC 

with efficiency equivalent to Pt.   
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1.1 Overview 

1.1.1 Microbial Fuel cells in dye treatment 

Azo dyes constitute 60%-70% of dyes worldwide and are widely used in textile, food, 

cosmetics, paper and leather industries (Rawat et al., 2016). Due to their low substrate 

fixation rate they are washed out into the water discharged from these industries. Azo 

dyes are aromatic compounds with one or more -N=N- present in their molecular 

structure. The breakdown products of azo dyes are aromatic amines which are known 

to be carcinogenic and genotoxic. European Union (Annex XVII of the REACH 

regulation; No, 1907/2006) regulation has banned 22 aromatic amines (AA) that are 

carcinogenic in humans and animals (Brüschweiler and Merlot, 2017). This constitutes 

about 48% of parent azo dyes with the banned AA but the remaining 52% of azo dyes 

used still contain non-regulated amines that are toxic. These discharged AAs affect the 

ecology of the natural water streams and the surrounding soil. The azo dyes go through 

conventional activated sludge systems unchanged; this affects light penetration in the 

receiving water bodies and is not aesthetically pleasing. 

The various physicochemical methods currently used for textile effluent treatment 

include membrane filtration, coagulation/flocculation, adsorption and advanced 

oxidation processes such as chlorination, bleaching, ozonation and Fenton oxidation 

(Slokar and Majcen Le Marechal, 1998; Robinson et al., 2001; Pizzolato et al., 2002; 

Kusvuran et al., 2004; Gogate and Pandit, 2004). These methods have shown to be 

effective but there are several limitations in terms of environmental impact, energy 

consumption, secondary sludge production and cost. Biological methods include using 

bacteria and fungi to treat the dye containing wastewater (Ooi et al., 2007; Pandey et 

al., 2007). The microorganisms in anaerobic sludge systems may be affected by high 

salinity and toxicity of the dyes. Moreover, under anaerobic conditions the dyes are 

not completely degraded (Singh and Arora, 2011). Wild type strains are incapable of 

assimilating large dye molecules under aerobic conditions and therefore the dye 

remains unaffected. 

In recent years, microbial fuel cells (MFCs) have shown promise in treating dyeing 

effluents with simultaneous power production. The major advantage of using MFCs 

are low sludge production, a robust process that can withstand high salinity (5% TDS) 

and wide pH ranges (pH 6-9) and is suitable for small installations with low organic 
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load (1-10 Kg BOD per day). MFC is a bioelectrochemical system that utilizes 

microorganisms to oxidize organic substrates at the anode to produce electrons and 

protons that are transferred via the electrode and proton exchange membrane to the 

cathode for oxygen reduction. Exoelectrogens such as Shewanella, Geobacter species 

shuttle the electrons extracellularly to the electrode in the absence of oxygen and these 

electrons are captured as electric current. Many studies have focussed on 

decolourization of azo dyes at the anode of MFCs (Fernando et al., 2012; Hsueh et al., 

2014; Jayaprakash et al., 2016).  At the anode under anaerobic conditions the -N=N- 

bond is cleaved in the presence of microorganisms to form aromatic amines (Hou et 

al., 2011a; Fernando et al., 2012). The aromatic amines as discussed above are toxic 

and they need to be degraded further under aerobic conditions.  

To commercialize MFCs for effluent treatment, there should be high power production 

and complete dye degradation with low cost. Many studies to improve power, focus 

on electron transfer mechanisms, microorganisms present, use of various substrates 

and redox mediators etc. at the anode of MFCs (Gorby et al., 2006; Aeschbacher et al., 

2010; Cao et al., 2010). At the cathode, the catalyst used plays an important role in 

carrying out efficient oxygen reduction reaction (ORR). In this thesis, the focus was 

on improving the ORR at the cathode of MFCs with simultaneous dye degradation. 

1.1.2 Statement of the problem 

A major limiting factor in a MFC is the oxygen reduction reaction (ORR) at the 

cathode. This is partly due to the high overpotentials and partly due to oxygen mass 

transfer limitation in the cathode. The most effective and commonly used cathode 

catalyst thus far is platinum. The high cost of Pt (1gm = £192: Sigma Aldrich) and low 

sustainability of platinum hinders the scaling up of MFCs for wastewater treatment. 

Many transition metal-based catalysts such Mn, Co, V and their oxide forms have been 

used as cathode catalysts in MFCs as a replacement for platinum (Gong et al., 2014; 

Noori et al., 2016). These catalysts have produced power comparable to Pt but the 

stability of these metals have been a challenging issue. The possible leaching of the 

metals into the environment and their toxic effects should be taken into consideration 

(Yuan et al., 2016). Furthermore, the aromatic amines formed by the cleaving of azo 

bond could have potential toxic effects. The complete degradation of the azo dye-

containing wastewater in a more efficient, sustainable and eco-friendly manner is 

required for its safe disposal into water streams.  
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1.1.3 Biocathodes in MFCs 

A possible alternative for platinum and other noble metal catalysts is the use of 

biological catalysts (e.g. enzymes, microorganisms) because they are cheap, 

environmentally friendly and sustainable. Oxidoreductase enzyme e.g. laccase could 

be used as cathode catalysts in MFCs as possible alternative to platinum (Luo et al., 

2010; Bakhshian et al., 2011). Laccase is a multi-copper containing oxidoreductase 

enzyme that is capable of one electron oxidation of other substrates and four electron 

reduction of O2 to H2O (Galhaup and Haltrich, 2001). Laccase from the fungi Trametes 

versicolor is thermodynamically favourable for oxygen reduction at the cathode due 

to its high redox potential (780 mV vs SHE). Laccase is also capable of azo dye 

degradation through a free radical mechanism forming phenolic compounds, therefore 

avoiding the formation of toxic aromatic amines (Tauber et al., 2008).  

There is also potential to use microorganisms with the ability to accept electrons from 

the electrode to catalyse the oxygen reduction reaction at the cathode. Such microbes 

are enriched from various environmental sources to produce electroactive bacteria 

(Wang et al., 2013; Milner et al., 2016) Biocathodes could contribute to advancements 

needed to implement MFCs for practical applications with potential cost savings and 

operational sustainability. 

1.2 Aims and Objectives 

Very few studies have utilized laccase and laccase producing fungi at the cathode of 

MFCs for ORR and dye decolourization (Bakhshian et al., 2011; Savizi et al., 2012; 

Lai et al., 2017; Lai et al., 2017). The use of enzymatic cathodes maybe expected to 

be limited by the poor stability of the enzymes in the system and environmental factors 

such as pH, salinity, metal ions etc. To develop an enzyme based biocathode it is 

important to extend enzyme lifetime and protect them from deactivation. 

To my knowledge, there are no studies that observed the effect of pH changes on 

laccase activity or various immobilization methods to improve the activity in a MFC 

with simultaneous dye decolourization. In addition to improving the robustness it was 

also necessary to understand the degradation mechanism of laccase in comparison to 

the microbial metabolic route. This will provide the insight not only to understand the 
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toxicity of the by-products but motive to prefer the cathode-based degradation instead 

of anode-based. Although many studies have individually been reported on anode and 

cathode-based degradation of dye, no study have determined the exact difference in 

the efficiency and mechanism of degradation. Further on laying the groundwork on 

stability of the system and mechanism, there are several approaches to accelerate the 

dye degradation rate which mainly involves use of natural mediators. Biocathode 

alternative to laccase can be pursued in a microbial system for ORR as it would be of 

interest to determine if laccase-like reaction can be performed in a stable manner by 

microbial biofilm under similar conditions. This will greatly reduce the cost further as 

these systems once developed are robust and easy to maintain. 

The overall aim and objective of this work was to develop a laccase and microbial 

based biocathode for oxygen reduction reaction (ORR) and investigate their effect on 

dye decolourization in a double chambered microbial fuel cell.  

To achieve the above aim the research was directed through the following specific 

objectives. 

1.2.1 Specific Objectives 

a. To investigate the methods for mitigating pH changes in the cathode of MFC 

for maintaining laccase activity 

In this study various strategies to mitigate pH changes in the cathode chamber and 

their impact on laccase activity and power production in a MFC were investigated. 

The investigation was carried out in the context of azo dye decolourization at the 

anode.  

b. To compare different laccase immobilization methods with regards to their 

application of biocathodes for azo dye treatment 

In this study, laccase in the three immobilized states (Cross-linking, entrapment in 

beads and micellar encapsulation) was compared with freely suspended enzyme with 

respect to dye decolourization, enzyme activity retention, power production and 

reusability in the cathode of a microbial fuel cell. This study aimed to emphasize the 

effect of immobilization on laccase ability to perform as efficient cathode catalyst. The 

performance of the laccase electrode was evaluated against platinum and Fe-N/C 

catalysts at the cathode of MFCs. 
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c. To understand and compare the dye degradation mechanism in the anode and 

cathode chamber of MFC. 

In this study, the rate of decolourization and degradation of dye under anaerobic 

condition in the presence of bacteria at the anode of MFC and in aerobic condition in 

the presence of laccase enzyme at the cathode of MFC was compared independently 

to understand the difference in the mechanism and the nature of the products formed 

in both types of degradation.  

d. To utilize natural mediators to enhance laccase activity and rate of dye 

decolourization 

Redox mediators are needed if substrates cannot directly interact with the active site 

of the enzyme. The effect of natural phenolic mediators such as syringaldehyde and 

acetosyringone on dye decolourization and power density in a laccase biocathode 

MFC was investigated. The synergistic effect of dye and mediator as oxidising 

substrates for laccase were also inferred in this study. 

e. To develop a microbial catalyst for efficient oxygen reduction reaction at the 

cathode of MFC. 

Electron accepting microorganisms could be a feasible alternative to platinum or 

enzymes as cathode catalysts. This study therefore, enriched and identified new 

electron accepting microorganisms from an inoculum of activated sludge from a textile 

treatment plant. The biocathode developed was compared with platinum to evaluate 

the performance at the cathode of MFC. 

 

 

 

 

 

 

 

 



6 
 
 

 

1.3 Literature Review 

1.3.1 History of Dyes 

The art of dyeing is as old as the human civilization. Natural dyes have been used since 

ancient times for colouring and printing purposes. The earliest written record of 

dyestuff dates to 2600 BC in China. There are mentions of dyed fabrics in Persia and 

India in 331 BC and 327 BC respectively. These natural dyes were made from plants 

(indigo), animal sources (cochineal) and minerals (ocher). The blue colour in indigo 

dye was derived from plants in India and South-East Asia and purple colour was made 

from molluscs found in the Mediterranean Sea. The madder dye made from the root 

of the madder plant was most popular natural dye in the 19th Century due to the brilliant 

and exotic red colour. Indigo was widely used until the early 1900s as it achieved a 

bright blue colour that was fast to washing and light. The natural dyes were expensive 

due to the demand for the sources of its production. 

In 1856, an English chemist William Henry Perkin accidently discovered a purple dye 

while trying to synthesize quinine an antimalarial drug from aniline. This dye readily 

dyed silk and had good colour fastness compared to any other dye. This was the first 

synthetic dye produced and it was named mauveine after the French word for purple 

mallow flower. The first synthetic azo was Bismarck Brown synthesized by the 

German chemist Johann Peter Griess in the year 1858.  

1.3.2 Classification of Dyes 

The synthetic dyes can be classified in several ways depending on the nature of their 

chromophore, method of application to the substrate, the substrate type etc. Some dyes 

are directly applied to the fabrics while others require mordants.  Mordants are 

chemicals that help bind the dye to the fabric by forming co-ordination complex with 

the dye, which then binds to the fabric (IUPAC, 1997). Commonly used mordants are 

alum, sodium chloride and some salts of aluminium, copper, tin, iron, potassium etc.   

The textile industry-based classification of dyes and their substrates are: 

a. Cellulose Textile Dyes 

b. Protein Textile Dyes 

c. Synthetic Textile Dyes 
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1.3.2.1 Cellulose Textile Dyes 

These textile dyes are used for cellulosic fibres such as cotton, jute and their blends. 

a. Direct Dyes 

Direct dyes are used for cotton and other cellulosic fibres without the use of mordants. 

They are bound to the substrate by Van der Waals, hydrogen and dipole bonds. These 

dyes are highly soluble in water and are applied in baths containing electrolyte and 

salts to control the adsorption rate of the dyes. However, they have poor fastness 

during the wash and tend to fade out quickly. This is due to the weak bonding between 

the dye and the fibre (Waring and Hallas, 1990). The commonly used direct dyes are 

Brilliant Blue (C.I. Direct Blue 106), copper blue 2R (C.I. Direct Blue 151). 

b. VAT Dyes 

VAT dyes are insoluble in water; therefore, they are solubilised with a reducing agent 

such as sodium dithionate in the presence of sodium hydroxide (alkali) and affixed to 

the fibre. Oxidation of the dyed fabric returns the native insoluble form of the dye 

(Kiernan, 2001). These dyes are the fastest for cotton, linen and rayon. Indigo, a natural 

dye derived from Indigo plant, is the original dye characteristic to this class. The dyes 

are used with mordants to dye other type of fibres such as wool, polyester, nylon. 

Examples of VAT dyes are VAT Blue 1 (C.I. 73000), VAT Orange 2 (C.I. 59300). 

c. Fibre Reactive Dyes 

Reactive dyes are highly coloured organic substances that form covalent bonds with 

fibre molecules.  Due to the strong bonding with the fibre they are light and wash 

fastedness. These dyes can be used for all types of fibre such as cotton, rayon, silk, 

wool, nylon and even for printing purposes. They become integral part of the textile 

fibre and are used by weavers for blending them into the fabric. The dyes are divided 

into ‘hot’ and ‘cold’ dyes depending on the temperature of application. These are the 

most permanent of all dyes and the colour cannot be removed once fixed to the fabric 

(Waring and Hallas, 1990). Some examples of reactive dyes are CI Reactive Black 5, 

C.I. Reactive Red 3 etc.  
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1.3.2.2 Protein Textile Dyes 

These dyes are best suited for protein fibres i.e. those obtained from animals. They 

include silk, wool, mohair (goats).  

d. Acid Dyes 

Acid Dyes (Anionic) are highly soluble in water and are effective for protein fibres 

such as silk, wool, nylon and modified acrylics. They contain sulphonic acid groups 

that are usually present as sodium sulphonate salts which increase the solubility in 

water by imparting a negative charge. In an acidic solution, the -NH2 functionalities 

of the fibres are protonated to give a positive charge that interacts with the negative 

dye to form ionic interactions. Apart from this, Van-der-Waals bonds, dipolar bonds 

and hydrogen bonds are also formed between the dye and fibre. Most acid dyes possess 

azo, anthraquinone and triarylmethane structures (Sekar, 2011). Most commercially 

used acid dyes are Acid Red 88, Acid Orange 7, Acid Blue 45 etc. 

1.3.2.3 Synthetic Textile Dyes  

         These dyes are used for fibres such as nylon, acrylic, rayon, polyester etc.  

e. Basic Dyes 

They are a class of dyes containing the cationic functional groups such as -NR3
+ or 

=NR2
+. Since they have the cationic functional group they are well suited for fabrics 

that are anionic or negatively charged to form a strong bond. The dyes are very bright 

in colour but their poor colourfastness and have limited use in natural fibres. Basic 

dyes are best suited for acrylic fibres. The first synthetic dye mauveine discovered 

accidentally by Perkin was a basic dye. Methylene blue and crystal violet are some of 

the prominent basic dyes used today (Clark, 2011). These dyes are prominently used 

for staining in microbiology studies. The bacterial cells (nucleic acids) are negatively 

charged so they bind easily to the positively charged dye.  

f. Disperse Dyes 

These dyes have low water solubility, non-ionic and usually appear as colloidal or fine 

aqueous suspensions. They are used for dyeing nylon, cellulose triacetate, polyester 

and acrylic fibres. Disperse dyes are applied at high temperature (130°C) and pressure 

in dye baths as dispersions by direct colloidal adsorption by the hydrophobic fibres. 

The high temperatures sublime the dye which makes it easier to enter the fibre and 
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once cooled down the dye condenses to the colloidal state and is adsorbed by the fibre. 

The dyeing rate can be influenced by the choice of dispersing agent used and they have 

fair to good light fastness (Gulrajani, 2011). Disperse Yellow 18, Disperse Blue 14 are 

some examples of disperse dyes. 

1.3.3 Colour Chemistry 

The dyes possess colour due to the presence of a chromophore in their molecular 

structure. In a chromophore moiety the energy difference between the two molecular 

orbitals falls within the range of the visible spectrum. As the visible light falls on the 

molecule it is absorbed when the electron is excited from the ground state to an excited 

state (Allen, 1971). In addition to chromophores, dyes also contain auxochromes that 

are functional groups which modifies the ability of chromophore to absorb light by 

altering the wavelength. Some of the functional groups are carboxylic acid, sulfonic 

acid, amino and hydroxyl groups.  

The two different types of chromophores are: 

a. Conjugated pi systems 

In conjugated pi systems chromophore, the electrons jump between eight extended pi 

orbitals creating a series of alternating single and double bonds. Extending the 

conjugated systems with multiple bonds will tend to shift it to longer wavelengths and 

vice versa.  The shift between short and long wavelengths will influence the absorption 

and reflection of different colours.  Some examples of this chromophores are retina, 

food colourings, fabric dyes (Figure 1.1), β-carotene, lycopene, pH indicators 

(Abrahart, 1977).  

 

Figure 1.1: Examples of chromophoric groups present in organic dyes (Abrahart, 

1977). 
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b. Metal complex chromophores 

These chromophores contain transition metal complexes bound to a ligand. Common 

examples are chlorophylls in plants, haemoglobin in the red blood cells and metal 

complex dyes. In the two examples the metal being iron in porphyrin ring for 

haemoglobin (Figure 1.2(a)) and magnesium in chlorin-type ring for chlorophyll. The 

highly conjugated pi-bonding system of the macrocycle ring absorbs visible light. The 

excited state lifetime and the nature of the central metal can influence the absorption 

spectrum of the metal-macrocycle complex (Gouterman, 1978).  

In dyes they are typically monoazo dyes that form co-ordination complex with 

transition metals such as nickel, chromium, cobalt and copper. They are used for wool, 

silk and nylon to achieve excellent colour and light fastness. Some examples are Acid 

Violet 78 (Figure 1.2(b)), Acid Blue 159 (Chakraborty, 2011).  

  

(a) (b) 

Figure 1.2: (a) Structure of haemoglobin with Fe metal complex (Wu et al., 2010) 

and (b) Acid Violet 78 dye indicating Cr metal complex chromophores  

 

1.3.4 Azo Dyes 

Azo dyes have excellent colouring properties and are the largest group of synthetic 

dyes and pigments used in the industry (Pandey et al., 2007). Over 60%-70% of all 

dyes used in the textile industry are azo-based (Rawat et al., 2016); other dye classes 
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being anthraquinone dyes, xanthene dyes, triphenylmethane dyes etc. They are 

characterised by the functional group -N=N- usually linked to an aromatic ring (Figure 

1.3). Azo dyes come in various classes (disperse, acid, direct) based on their mode of 

attachment to fibre surfaces. The most common classes used in industry include acidic 

dyes (e.g. Acid orange-7 (AO7) (Fig. 1.5a), Acid black 107), reactive dyes (e.g. 

Reactive red 3, Reactive black 5) and disperse dyes (e.g. Disperse blue-79) 

(www.sophied.net). 

Figure 1.3: General chemical formula for azo dyes. (Source: IUPAC, 1997). R and R’ 

may be alkyl but they are usually aromatic.  

Azo dyes are synthesized in two stages i.e. in Step 1 is the conversion of an aromatic 

compound to diazonium salt (Figure 1.4(a)). These diazonium salts are prepared at 

temperatures below 5° C therefore they relatively unstable at room temperature 

(Aljamali, 2015).  

Figure 1.4(a): The first step in azo dye formation: Conversion of aromatic amines to 

diazonium salts (Aljamali, 2015). 

Step 2: The diazonium salts are then coupled with phenol, naphthol, aromatic amine 

to produce azo dyes (Figure 1.4(b)). The resulting azo group is the chromophore and 

the hydroxyl, amino groups are the auxochromesFigure 1.4(b): The second step in 

azo dye formation: Diazonium salt coupling with 2-naphthol gives orange/red dye 

colour (Aljamali, 2015).  
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The addition of electron donating groups (-NH2
+) to the azobenzene structure results 

in bathochromic shift (shift of emission spectrum to longer wavelength) and the 

presence of electron with drawing group (-OH) produces a hyposchromic shift (shorter 

wavelength). This attributes to the different maximum absorbance (λmax) for 

structurally similar dyes with different substituent groups.   

Azo dyes are classified based on their number of azo bonds (N=N) present in their 

structure. Most commonly used in the textile industry are the monoazo (Figure 1.5(a)) 

and diazo dyes (Figure 1.5(b)). 

(a) 

(b) 

Figure 1.5: Examples of azo dyes: (a) Acid orange 7, a monoazo dye (b) Congo 

Red, a diazo dye. 

1.3.5 Azo dye usage and it’s environmental impacts 

At present there are over 2000 azo dyes used in industries for fabrics, printing inks, 

paints, varnish, lacquer and wood stains. The highest usage is in textile industry for 

dyeing the fabrics. The azo dyes are produced within the cellulosic fibres, by first 

impregnating the fibre with one dye component followed by treatment with the other 

component thus forming the dye. Since the dye is formed within the fibre it is very 

fast to washing and is widely preferred in the textile industry.  
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To dye 1 Kg of cotton fabric 150-200 litres of water is utilised by the dyeing factories. 

The fixation rate of azo dyes is as low as 50%, so the remaining dyes are disposed 

through the wastewater. There is an estimated 2.8 × 105 tons of textile dyes discharged 

into the effluent water from textile industries worldwide (Jin et al., 2007). The 

coloured effluents affect transparency and aesthetic appearance of the water (Figure 

1.6). The decrease in light penetration impacts the aquatic eco system and results in 

loss of biodiversity (de Aragao Umbuzeiro et al., 2005). Azo dyes have potential toxic 

effects on human health with certain azo dyes having nitro groups are known to be 

mutagenic (Chung and Cerniglia, 1992). The toxic, mutagenic effects of the dye may 

result from direct action of dye or from the aromatic/alkyl amines derived from their 

biotransformation.  

 

Figure 1.6: Discharge of textile dyeing effluents in natural water bodies 

(https://civildigital.com/pollution-control-in-dye-industry/) 

Typical effluent from textile industries have a COD ranging from 150-12,000 mg L-1, 

pH (7-12), salinity (1000-1600 mg L-1 as chloride), colour (50-2500 on a Pt-Co scale), 

total nitrogen (70-80 mg L-1) and total suspended solids (15-8000 mg L-1) (Fernando, 

2014). At present there are tough regulations in place to monitor the discharge of azo 

compounds into the environment. Consent discharge limits vary from country to 

country depending also on whether the discharge is to a sewer line or to a natural water 

body. In England, according to the Water Framework Directive the permissible limits 

for discharged water are: BOD (18.7 mg L-1), COD (24.6 mg L-1), ammonia (17.3 mg 
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L-1), phosphorous (63.3 mg L-1) (www.wfduk.org). In India the water quality standard 

for discharge set by the Central Pollution Control Board (CPCB) is 35 mg L-1 for BOD, 

250 mg L-1 for COD, and 100 mg L-1 for suspended solids (Murty and Kumar, 2011). 

Therefore, there are strict regulations in all the countries to treat the textile wastewater 

before discharging it into natural water bodies.  

1.3.6 Current methods in treatment of textile wastewater 

Azo dyes are known to be xenobiotic compounds that possess electron withdrawing 

groups that generates electron deficiency thereby making them resistant to degradation 

(Singh et al., 2014). There are several physio-chemical and biological methods 

developed to treat azo dye containing wastewater.  The methods used in the treatment 

of dyes are as follows: 

1.3.6.1 Chemical Methods 

a. Advanced Oxidation Process (AOP) 

AOP produces a highly reactive, non-specific hydroxyl radical (OH.) capable of 

degrading organic substances in the wastewater. In photocatalytic oxidation process 

UV light is irradiated on a photocatalyst to induce oxidation of organic molecules. On 

photoexcitation the electrons jump from the valence to the conduction band leaving a 

hole (h+) in the valence band. The highly oxidative h+ may directly react with the 

organics in wastewater or indirectly oxidise them through the formation of OH. 

radicals (Giménez et al., 1997). TiO2 is commonly used for dyeing effluents due to its 

non-toxic, photochemical stability and highly reactive nature in the presence of UV 

irradiation. The other AOP is the Fenton’s reaction, in which OH. radicals are 

produced by addition of H2O2 to Fe2+ salts. Hydrogen peroxide is added to an acidic 

solution (pH 2-3) of Fe2+ to form the hydroxyl radicals.  

 Fe2+ + H2O2 → Fe3+ + OH• + OH− 

 Fe3+ + H2O2   → Fe2+ + H+ + HO2
. 

The OH• radicals are powerful oxidisers and are capable of non-specific oxidation of 

the organic and inorganic substances in wastewater to reduce the COD, BOD. Fe3+ 

reacts with H2O2 to regenerate the Fe2+ ions (Gogate and Pandit, 2004).   It is used as 

a pre-treatment for decolourizing the dyeing effluents. Fenton’s process involves four 

stages namely pH adjustment, oxidation, neutralization and coagulation for 

http://www.wfduk.org/
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precipitation of the organic substances. The major limitation of this method is the high 

requirement of acid and alkali to maintain the required pH, high sludge yield etc (Wang 

et al., 2011).  

b. Sodium Hypochlorite (NaOCl) 

NaOCl has been widely used in bleaching, disinfection and cleaning operation in food 

industry. In a solution at pH 5-10 NaOCl exists in equilibrium between two forms i.e. 

undissociated hypochlorous acid (HOCl) and the dissociated hypochlorite ion (OCl-) 

(Urano and Fukuzaki, 2005). HOCl confers the antimicrobial property whereas the 

OCl- is responsible for the cleaning efficiency. Urano and Fukuzaki, 2011 have 

observed the mode of action of NaOCl on decolourising azo dye Acid Orange 7. They 

have determined that the dissociated form of OCl-  has high polarity which chlorinates 

the electron density azo linkage in the dye acid orange 7 leading to the decolourization 

of the dye. The undissociated form HOCl showed low reactivity with the dye due to 

its neutral charge (Urano and Fukuzaki, 2011). 

c. UV light/H2O2 

The photochemical degradation of dyes is favoured due to its complete mineralization 

while operating at mild temperature and pressure. UV light acts on H2O2 to produce 

OH. free radicals which in turn attacks the azo bond in dyes (Yiqi Yang et al., 1998). 

It is highly efficient for contaminants that require high level of oxidation such as 

chlorinated hydrocarbons and inorganic substances (e.g. cyanides). When UV light 

hits H2O2 it is cleaved to produce two hydroxyl radical per unit of radiation absorbed 

(Glaze et al., 1987).                   

The hydroxyl radical reacts with organic compounds to form organic radicals which 

then reacts with oxygen to produce peroxyl radicals that initiates the thermal oxidation 

of the organic contaminants to less harmful products (Legrini et al., 1993). The major 

drawback in this reaction is the presence of Cl-, CO3
- in the water as they react with 

OH. and decrease the number of free radicals available for oxidation (Liao et al., 2001). 

Another limitation is that the molar extinction co-efficient of H2O2 (19.6 M-1cm -1) is 

relatively small, therefore the UV light absorbed is less and the number of hydroxyl 

radicals produced is reduced (Glaze et al., 1987). Due to this high volume of H2O2 are 

used which increases the cost of the treatment method.  



16 
 
 

d. Coagulation/flocculation 

Coagulation is the addition of chemicals to the wastewater to alter the physical state 

of the particles in the water to form aggregated suspended solids. In flocculation, these 

aggregates are bridged together to form larger agglomerates that are then removed by 

sedimentation. In effluent treatment plants, coagulation is the most efficient pre-

treatment method and is suitable for large molecular weight dyes and surfactants. The 

commonly used coagulants/flocculants are FeCl3, Al2(SO4)3, cationic and anionic 

polyacrylamide etc. Golob et al, 2005 have observed that combination of a cationic 

flocculant and Al2(SO4)3·18H2O produced best results (98% decolourization, 45% 

COD reduction) for dye baths that contain acid and reactive dyes (Golob et al., 2005). 

The drawback in this method is the production of sludge which poses disposal 

problems and it is less effective for dyes that are highly soluble in water (Anjaneyulu 

et al., 2005).  

 

1.3.6.2 Physical Methods 

a. Adsorption 

This method of decolourization does not involve any chemical reactions, is simple and 

economically feasible. This phenomenon is based on the intra-molecular forces 

(usually Van der Waals forces) of attraction between the solution and the highly 

porous solid adsorbent (Nageeb, 2013). Various factors influence the dye adsorption 

efficiency such as dye/sorbent interaction, pH, adsorbent surface area, adsorbent pore 

size, temperature etc (Crini, 2006).  The different types of adsorbents used are 

activated carbon, peat, wood chips, fly ash and coal, silica gel. Activated carbon (AC) 

is the most commonly used absorbent and is highly effective for acid, mordant, 

cationic dyes and less effective for VAT, disperse and reactive dyes. The major 

disadvantage of AC is that it is suitable only for particular type of pollutant and 10-

15% of the sorbent is lost during its regeneration. In recent years natural substrates 

such as clay, corn cobs and rice hulls are used to replace activated carbon. They are 

available readily and their decolourization efficiency is equivalent to that of AC 

(Robinson et al., 2001).  
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b. Membrane Filtration 

One of the most commonly used and important method in wastewater treatment is the 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) process. These 

involve passing water at high pressure through microporous membranes for filtration 

and purification. UF is the first stage of filtration to remove the suspended solid 

particles and insoluble dyes from the water. The pore size of UF membranes are 0.01 

microns.  NF membranes have pore size ranging from 0.5-2.0 nm and are capable of 

filtering out organic substances, viruses and salts in the wastewater (Liang et al., 

2014). UF and NF require significantly low pressure compared to RO membranes. RO 

is highly effective for removing the total dissolved solids (TDS) to reduce the hardness 

of the water and is the last process employed in effluent treatment plants. The pore 

size of RO membrane is 0.1 nm and it removes all microorganisms in the water. RO 

is used widely in water filters for purifying drinking water. The disadvantage of these 

methods is the high cost of membranes, fouling and the water requires extensive pre-

treatment (Robinson et al., 2001). There is 40% water wastage during the RO process.  

 

1.3.6.3 Biological Methods 

Biological methods are widely used in treating textile effluents to reduce the amount 

of chemicals and to develop eco-friendly water treatment systems. 

a. Bacteria 

Activated sludge is the widely used process in textile treatment plants to reduce the 

COD and BOD but it is less efficient in removing the colour from dyeing effluents. 

Dye degradation takes place in aerobic and anaerobic conditions and the mechanism 

varies under each condition. Due to the recalcitrant nature of the dyes they are resistant 

to bacterial degradation under aerobic conditions. The azo dye degradation by bacteria 

in anaerobic conditions takes place by the reductive cleavage of the N=N bond and 

involve different mechanisms using enzymes, redox mediators and reduction by 

sulphides etc (Pandey et al., 2007) (Figure 1.7).  
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Figure 1.7: Mechanisms of dye degradation by bacteria under anaerobic conditions 

(Pandey et al., 2007). 

The bacteria degrade the azo dyes in two stages and there is two electron transfer 

mechanism at each stage to the azo dye that acts a final electron acceptor (Saratale et 

al., 2011) . The mechanism involves flavin dependent reductase that act as electron 

shuttle between nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 

flavoproteins and the azo dyes that results in dye reduction. These were classified as 

flavin dependent azo reductase enzymes (dos Santos et al., 2007).  It is suggested that 

the azo dye decolourization may be a fortuitous one in which the dye acts as electron 

acceptor during the electron transport chain (Russ et al., 2000). Since azo dyes are 

large and usually charged, they are likely to be reduced extracellularly or with 

membrane bound enzymes. Bacteria that are capable of decolourizing the dyes under 

anaerobic and microaerophilic environments are Klebsiella sp., Bacillus sp., 

Pseudomonas aeruginosa, Enterobacter sp., Pseudomonas sp., Morganella sp. 

(Barragán et al., 2007; Sarayu and Sandhya, 2012). These bacteria are incapable of 

utilizing dye as the sole carbon source and require additional carbon source as electron 

donor for dye decolourization.  

Redox mediators are known to increase the rate of electron transfer from the bacteria 

to the azo dye. Flavin derivatives such as riboflavin, FAD, FMN and quinone 
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compounds such as anthraquinone-2,6-disulfonate (AQDS), anthraquinone-2-

sulfonate (AQS) have been studied as redox mediators for azo dye decolourization. 

The redox potential for the redox mediators determines the efficiency and rate at which 

it transfers electrons. Most redox mediators have a redox potential ranging from -200 

mV to -350 mV and the more negative it is the greater the potential for dye 

decolourization (Saratale et al., 2011). The rate of azo dye Reactive Red 

decolourization was enhanced 3.7-fold with addition of 25 µM AQDS as redox 

mediator in a one stage anaerobic sludge reactor (Rodrigues da Silva et al., 2012).  

Another mechanism is the non-specific extracellular reactions occurring between 

reduced compounds of anaerobic metabolism e.g. sulphides. Inorganic compounds 

such as sulphide, ferrous ion formed as end metabolites can decolourize the dye 

extracellularly. It was observed that sulphate reducing bacteria (SRB) decolourized 

Congo red azo dye extracellularly while producing H2S (Diniz et al., 2002). 

Few organisms when acclimated with the dye for a period of time, grow aerobically 

on dye as sole carbon source and utilise the degradation products for their energy and 

growth. Pseudomonas sp. KF46 and Pseudomonas sp. K24 can grow aerobically on 

azo dye Orange I and Orange II (Blumel et al., 2001). The limitation is that these 

species cannot utilize other dyes (sulfonated) and is limited to the specific dye used 

for their acclimatization.  

The degradation of aromatic amines under aerobic environment is favoured as the 

bacteria possess enzymes that can degrade them. A standalone aerobic or anaerobic 

system cannot completely mineralize the dyes. A sequential anaerobic/anaerobic 

coupled system is required for complete breakdown of the aromatic amines.  Eustace 

et al, 2014 have observed that the anaerobic/aerobic sequential reactor can completely 

degrade acid orange 7 dye (AO7) into less toxic products compared to a single 

anaerobic system (Fernando et al., 2014). 

b. Fungi 

There are wide varieties of fungal species used for bioremediation and they are more 

efficient than bacteria in degrading dyes. White rot fungi such as Trametes versicolor, 

P. chrysosporium, have been studied extensively for their dye degrading properties 

(Gomaa et al., 2008; Casas et al., 2009; Yang et al., 2017). Fungal bioreactors have 

been developed by immobilizing the fungal mycelia in continuous packed-bed 
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bioreactor, fed batch and continuous fluidized-bed bioreactor to test for 

decolourization of Orange II dye. All three reactors were efficient in decolourizing the 

dye and were suitable for long term operation (2 months). However the use of fungi 

for continuous reactors is limited due to poor mass transfer a result of mycelia clogging 

the reactor bed (Zhang et al., 1999). The maintenance of aseptic condition is required 

as bacterial contamination, which tends to grow faster than fungi, will inhibit the 

fungal action (Sen et al., 2016). Their extracellular enzymes namely laccase, 

manganese peroxide and lignin peroxidase are capable of non-specific degradation of 

a wide range of dyestuff. The use of the enzymes reduces the need for nutritional 

supplements and decreases the substrate diffusion limitation caused by the bacterial 

cells (Jin et al., 2007). Laccase in particular is known for its complete degradation of 

dyes and their aromatic amines (Chivukula and Renganathan, 1995; Tauber et al., 

2005).  

The above methods have shown to be effective but there are several limitations in 

terms of environmental impact, energy consumption and cost. The chemical methods 

utilise large quantities of chemicals, produce high volumes of sludge and the end 

products from these reactions are unpredictable (dos Santos et al., 2007). Adsorption 

on activated carbon is the most popular and highly effective treatment for wastewater 

containing dyes. The major disadvantage is the high cost of regeneration of the 

adsorbent and the method is less effective against disperse, reactive and direct dyes 

(Robinson et al., 2001). Membrane separations remove all types of dyes and produce 

high quality effluent but the membranes suffer from limited lifetime, the process of 

fouling and the periodic replacement is not cost effective (Wu et al., 1998). Biological 

treatment methods have environmental benefits and offer economic advantage over 

the physicochemical methods. Wild type strains are incapable of assimilating large 

dye molecules under aerobic conditions and therefore dye remains unaffected. 

Although genetically modified (GMO) bacteria act on the dye under microaerophilic 

conditions (Pandey et al., 2007), these GMOs are not regulated for use outside 

laboratory settings.  

1.3.7 Bio electrochemical systems and wastewater treatment 

From the above discussion it is apparent alternative wastewater treatment methods that 

are cost effective and eco-friendly must be explored. In recent years, 

bioelectrochemical systems such as microbial fuel cell (MFC) and microbial 



21 
 
 

electrolysis cell (MEC) have shown great promise in not only wastewater treatment 

but also in power production (Logan et al., 2006).  

The concept of bioelectrochemical system dates to 1911 when M.C. Potter discovered 

that microbes utilise organic substances and produce energy in the form of electricity 

(Potter, 1911). Further development was carried out in 1931 by Cohen who observed 

the potential difference between various microorganisms and built a battery that 

produced 2 mA of current from 35 volts (Cohen, 1931). In a period of 50-60 years 

there were few discoveries based on renewable energy from organic waste, the use of 

mediators to shuttle electrons from inside the cell to the electrodes. In the late 1990’s, 

with the discovery of extracellular electron transfer (EET) there was significant 

interest in this field and work on BES had started to increase. The demonstration of 

the mechanism of EET by microorganisms in the absence of mediators to produce 

electric current spurred the onset of microbial fuel cell studies (Kim et al., 1999).  

An MFC consists of an anode and cathode connected by an external circuit and 

separated by a cation exchange membrane (Figure 1.8). The microorganisms present 

at the anode metabolise the organic matter to produce protons and electrons.  These 

electrons and protons are transferred to the cathode via electrode and cation exchange 

membrane where they combine with oxygen to form water in the presence of a catalyst. 

Microorganisms such as Shewanella, Geobacter, Rhodoferax are exoelectrogens that 

can form biofilms on the electrode without any mediators (Logan et al., 2006)  (Figure 

1.8). At the cathode there are metal based catalyst such as platinum, gold, titanium; 

chemical catalysts - potassium ferricyanide, potassium bromate; biological catalysts - 

bacteria, fungi, enzymes that carry out oxygen reduction reaction (ORR).  An example 

of reactions at anode and cathode of MFC is given below. 

 

Anode in an MFC (Oxidation of substrate) 

 

Cathode reaction (Reduction of oxygen) 

C6H12O6 + 6H2O → 24e- + 24H+ + 6CO2    O2 + 4e- + 4H+ → 2H2O 
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Figure 1.8: Schematic representation of a microbial fuel cell depicting bacteria at the 

anode and the ORR at the cathode 

Microbial electrolysis cell (MEC) is similar technology to MFC but instead of an 

external load, power is supplied to the system to drive the reaction. MECs are studied 

for producing hydrogen and methane which can serve as an alternative to fossil fuels. 

They may also be used to treat pollutants such as azo dyes, chlorinated hydrocarbons, 

metal ions etc. (Logan et al., 2006).  

1.3.7.1 Internal losses in MFC 

Figure 1.9: The voltage vs current plot depicting the potential losses occurring 

in a MFC compared to the theoretical potential (Modified from (Rismani-Yazdi 

et al., 2008). 
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In a fuel cell the theoretical efficiency is calculated to be 100% at standard temperature 

and pressure. In practice it cannot reach the calculated theoretical values due to the 

number of potential losses encountered while running a MFC. The polarisation curve 

depicts the three typical losses occurring in a MFC (Figure 1.9). 

a. Activation Losses 

In any reaction there is an initial activation energy barrier that needs to be overcome 

for the reaction to proceed. To overcome this energy barrier, current is drawn from the 

fuel cell by the reactants present at the anode and cathode. The potential loss due to 

activation of the reactions is called activation losses or activation overpotentials 

(Rismani-Yazdi et al., 2008). At the anode during oxidation reaction these losses occur 

at electrode surface when electrons are transferred to and from the bacterial cell via 

mediators or electron shuttles. These losses are dominated at low current densities and 

increase exponentially as current increases (Figure 1.9). The activation loss can be 

reduced by increasing the temperature or the electrode surface area and employing 

enriched biofilms (Logan et al., 2006). 

 In the cathode the losses are a result of catalyst present that accepts electrons from the 

electrode for oxygen reduction reaction. A number of metal cathode catalysts have 

high activation overpotentials thus causing major limitation in a MFC (Kodali et al., 

2017). To improve cathode reactions catalyst with low overpotentials should be 

developed.   

b. Ohmic Losses 

The ohmic loss is the resistance to flow of electrons through the electrodes and 

electrode interconnections and ions through the ion exchange membrane or electrolyte. 

This loss can be minimized by decreasing the electrode spacing, increasing the 

electrolyte conductivity and good electrical interconnections (Logan et al., 2006). An 

efficient reactor design can drastically reduce the ohmic loss. 

c. Concentration/mass transport losses 

These losses occur due to the mass transfer limitation of the reactants to and from the 

electrode and due to the development of concentration gradients near the surface of 

the electrodes (Fernando, 2014). This results in reactant depletion or product 

accumulation that prevent diffusion of electrons and ions (Rismani-Yazdi et al., 2008). 
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Concentration losses occur at high current density and they can be minimized by 

proper mixing of the bulk electrolyte. This is a major loss at the cathode due to the low 

oxygen solubility in aqueous solutions. The mass transfer of oxygen to the electrode 

surface is slow and contributes to the loss in voltage (Erable et al., 2012).  

1.3.7.2 Electron transfer mechanisms in MFCs 

Electron transfer plays a vital role in electricity production in an MFC. The transfer 

mechanisms at the anode and cathode depends on the substrate, catalyst, mediator etc. 

(Figure 1.10). The figure below illustrates the type of electron transfer mechanisms at 

the anode and cathode of MFC. 

 

Figure 1.10: Possible mechanisms for bacterium/anode electron transfer and oxygen 

reduction at cathode. (A) Direct transfer through cytochromes; (B) Electron transfer 

through ‘‘nanowires’’ or pili; (C) Through redox mediators; (D) Direct oxidation of 

excreted catabolites (e.g. formate, H2, etc.) (E) Direct reduction of oxygen to water, 

commonly platinum electrode; (F) Through catalysis at an electrode modified by e.g. 

transition metal complex catalysts; (G)  Bacterial catalysis; (H) Through an enzymatic  

catalyst with mediator (e.g. laccase + ABTS) (Schaetzle et al., 2009). 
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a. Anode 

The two types of electron transfer mechanism from the bacteria to the electrodes are 

direct electron transfer and mediated electron transfer. 

i) Direct Electron Transfer 

The direct electron transfer is carried out by bacteria such as Shewanella sp., 

Geobacter sp. and Rhodoferax ferrireducens through extracellular cytochromes or 

nanowires known as ‘pilli’. These bacteria conduct electrons transfer to the electrode 

via extracellular membrane bound cytochromes (Bond et al., 2012). Shewanella 

oneidensis MR1 is the most widely studied organism for its EET pathway. It has been 

observed that the Mtr pathway comprising of five protein complexes namely CymA, 

MtrA, MtrB, MtrC, and OmcA is responsible for the electron transfer to the surface of 

the anode in a MFC (Kouzuma et al., 2015). The other type of  DET observed in both 

G. sulfurreducens and S. oneidensis is through conductive appendages that are called 

nanowires or ‘pilli’ (Reguera et al., 2005; Gorby et al., 2006). These bacteria form 

biofilm on the electrode surface and the composition and thickness of biofilm is 

directly dependent on the power output. 

ii) Mediated Electron Transfer 

Before the discovery of DET, mediators were added externally to aid the shuttling of 

electrons from the bacterial cell to the electrode surface. These exogeneous electron 

shuttles were neutral red, methylene blue, anthraquinone-2,6-disulfonic acid (AQDS) 

and anthraquinone-2-sulfonic acid  (AQS) (Park et al., 2000; Aeschbacher et al., 

2010). The production of natural endogenous electron mediators by the bacteria was 

discovered by (Rabaey et al., 2005). Shewanella was observed to produce flavins and 

P. aeruginosa to produce pyocyanin as mediators that facilitate the electron transfer 

(Rabaey et al., 2005; Marsili et al., 2008).  Another method of redox mediator 

production is the oxidation of the catabolites (eg. H2, formate). Schroder et al, 

produced hydrogen gas from E. coli, the H2 was then re-oxidized at a polyaniline 

modified platinum catalyst electrode and produced a current density of 1.5 mA cm-2 

(Schröder et al., 2003).   

The exact mechanism of electron transfer is a controversy as it is not clear whether it 

is through nanowires, cytochromes or endogenous mediators.  
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b. Cathode 

 The electrons and protons from the anode are transferred to the cathode where they 

are reduced to water by oxygen. The oxygen reduction reaction (ORR) at the cathode 

is a limiting factor in a MFC due to high overpotentials on the electrode and partly due 

to oxygen mass transfer limitation in the cathode.  

                                         O2 + 4H+ + 4e-  → 2H2O (E°=1.23 V vs SHE) 

There are various metal-based catalysts that carry out the ORR at the cathode in a 

microbial fuel cell.  

i) Direct oxygen reduction by noble metal-based catalysts 

Platinum was the most commonly used cathode catalysts in fuel cells due to its low 

over potential and to improve the ORR. For decades, considering its superior 

performance platinum is the benchmark for all cathode catalyst comparisons. The 

standard redox potential of platinum is 1.2 V vs SHE which is close to that of oxygen, 

thus making Pt the favourable catalyst for ORR.  Logan et al, 2005 demonstrated that 

Pt-MFC produced a power density of 33 mW m-2 compared to 3.4 mW m-2 for MFC 

with plain carbon electrode (Logan et al., 2005a). The power was further increased to 

480 mW m-2 in a single chamber MFC consisting of Pt catalyst prepared by Nafion 

binder (Cheng et al., 2006). Although platinum produces good power output the high 

cost and low sustainability hinders the scaling up of MFCs. Gold coated copper (Cu-

Au) wires have been utilized as cathode catalyst in a MFC to treat wastewater and 

obtained a power density of 2.9 mW m-2 (Kargi and Eker, 2007). The use of gold, 

silver electrodes is not economically feasible for large scale water treatment MFCs.  

ii) ORR by Metal Oxide catalysts 

In recent years there has been a transition to PGM (Platinum Group Metals) free 

catalysts for oxygen reduction reactions with transition metal compounds impregnated 

with Nitrogen doped Carbon (N-C) serving as a good replacement for Pt. Transition 

metals such as Fe, Mn, Co and Ni in their salt forms have been infused with precursor 

aminoantipyrine (AAPyr) and used as cathode catalysts in MFC. AAPyr is an organic 

precursor rich in carbon and nitrogen. The maximum power density obtained was 

highest for Fe-AAPyr with 251 mW cm-2 followed by 196 mW cm-2 (Co-AAPyr), 171 

mW cm-2 (Ni-AAPyr) and 161 mW cm-2 (Mn-AAPyr) (Santoro et al., 2015; Kodali et 
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al., 2017). Trace (1.05%) levels of Fe was impregnated with nitrogen doped carbon 

(NC) and observed electrochemically that the ORR activity of Fe-N/C matched that of 

Pt/C (Rincón et al., 2014). The same group have used macrocyclic complex (MnN4, 

CoN4) infused with nitrogen doped carbon (NC) to study the oxygen reduction reaction 

(ORR) and oxygen evolution reaction (OER). Metal macrocyclic compounds contain 

a central metal ion surrounded by four nitrogen (N4) atoms.  They observed that MnxOy 

/NC, CoxOy/NC catalysts produced very low over potential and were efficient ORR 

and OER catalyst compared to Pt, RuO2 and IrO2 (Masa et al., 2014). The possible 

leaching of the metal into wastewater, their toxicity and the environmental impacts 

should be taken into consideration when using metal based catalysts (Yuan et al., 

2016). 

iii) Chemical catalysts as terminal electron acceptors 

Apart from oxygen chemicals such as potassium ferricyanide, permanganate, bromate 

have been used as electron acceptors at the cathode of double chambered MFCs. 

Ferricyanide used as catholyte increased the power by a factor of 1.5 -1.8 compared to 

oxygen alone with a Pt-carbon electrode in an MFC. This was due to the increase in 

efficiency of mass transfer and large cathode potential (Oh and Logan, 2006) . The 

redox potential of ferricyanide (E°~ 436 mV vs SHE) is not as high as platinum but it 

has low over potentials, thereby increasing the speed of the reaction and producing 

high power output. However for practical applications ferricyanide is not economical, 

is toxic and difficult to recycle (Ucar et al., 2017).  

Potassium permanganate is another chemical catholyte used in MFCs owing to its high 

redox potential of E° ~ 1.52 V vs SHE. You et al, 2006 have observed a power density 

of 115.60 mW m-2 for permanganate catholyte compared to 25.62 mW m−2 for 

hexaferrocyanate and 10.2 mW m−2 for oxygen alone. Similar to all soluble catholytes 

it requires constant replenishment and is therefore not suitable for large scale 

applications (You et al., 2006). 

1.3.7.3 Microbial fuel cells in dye treatment 

MFC are extensively explored for treatment of dye containing wastewater and 

simultaneous electricity production. The major advantages of MFC compared to the 

conventional wastewater treatment methods are 1) Potential for power production 

rather than power consumption 2) Low sludge yield 3) Operates at mild temperatures 
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and atmospheric pressure 4) MFCs offer the possibility of carrying out either anodic 

oxidation or cathodic reduction of the dyes. 

a. Anode dye decolourization 

In an MFC there are two modes of dye decolourization i.e. at anode and at cathode. At 

the anode under anaerobic conditions the -N=N- bond is cleaved in the presence of 

microorganisms to form aromatic amines (Figure 1.11) (Hou et al., 2011a; Fernando 

et al., 2012). The term decolourization and degradation are used interchangeably as 

some studies have looked at only decolourization and others degradation of the dyes. 

 

Figure 1.11: An example illustrating the anaerobic reductive cleavage of azo bond in 

Acid orange 7 dye (Fernando, 2014). 

The various microorganisms used at the anode to treat textile wastewater include 

Shewanella sp., Geobacter sp., Bacillus sp., Pseudomonas sp., Enterobacter sp., E.coli 

etc (Fernando et al., 2012; Hsueh et al., 2014; Jayaprakash et al., 2016). Fernando et 

al., 2012 have reported >90% decolourization and COD removal of Acid Orange 7 at 

the anode in the presence of S. oneidensis MR-1 and pyruvate in a platinum catalysed 

MFC. The azo dyes methyl orange (MO), Congo red, reactive blue (72) were 

decolourized (greater than 80%) in a double chambered MFC with Pseudomonas 

aeruginosa at the anode with glucose as the substrate (Jayaprakash et al., 2016). The 

use of pure cultures is not feasible due to the presence of unknown microbial 

community in the wastewater. 

Apart from pure cultures bacteria from wastewater, aerobic and anaerobic sludge have 

been used due to their robustness in real wastewater. There was greater than 90% 

decolourization of 300 mg L-1 Congo Red and a maximum power density of 192 mW 

m-2 in the presence of mixture of anaerobic: aerobic sludge in a single chamber MFC 
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with air cathode (Hou et al., 2011a). The synergy between the different 

microorganisms present in wastewater and sludge also increase the power output. 

Various substrates used in the anode include glucose, acetate, lactate, cysteine, ethanol 

(Logan et al., 2005b; Kim et al., 2007; Manohar and Mansfeld, 2009). Cao et al, 2010 

investigated the effects of using glucose, ethanol and acetate as substrates for 

degradation of Congo Red in a single chamber MFC with air cathode. They had 

observed that glucose produced the maximum power density of 103 mW m-2 with 98% 

decolourization of the dye (Cao et al., 2010). The effect of co-metabolism to degrade 

azo dyes have been studied by Fernando et al, 2012. Cheap co-substrates such as 

rapeseed cake, molasses, corn steep liquor were used with sodium pyruvate as the 

primary carbon source to observe the decolourization kinetics of Acid Orange 7 dye 

by Shewanella oneidensis. The rate of decolourization (>90% in 30 hours) was high 

in the presence of the co-substrates (Fernando et al., 2012). The process of 

decolourization is a fortuitous one, carried out during the biotransformation of the co-

substrates.  

Wastewater from breweries, textile plants, meat processing plant, food processing, 

swine waste etc were also used for their organic content (Min et al., 2005; Oh and 

Logan, 2005; Heilmann and Logan, 2006; Feng et al., 2008).  

There are certain redox mediators used to accelerate the electron transfer for reduction 

of the azo dyes and other pollutants in the wastewater. Redox mediators such as 

riboflavin and humic acids were electrodeposited on polypyrrole graphite electrodes 

in MFC containing anaerobic: aerobic sludge to study the effect of Congo red 

decolourization. The redox mediators modified electrode decreased the internal 

resistance by 31% to 49% and increased the power output by 20% to 66%, depending 

on the concentration of the mediators, compared to bare graphite electrode (Huang et 

al., 2017). Although the redox mediators are effective in enhancing the wastewater 

treatment, they are quite expensive to use in real time applications.  

b. Cathode dye treatment 

Since the anode dye treatment could only decolourize the dye others have utilized it at 

the cathode to determine if complete degradation could be obtained with dye being the 

terminal electron acceptor.  
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Dye decolourization at the cathode was studied with graphite electrodes in a microbial 

electrolysis cell. A 0.012 KWh power was applied to the cathode to cleave the azo 

bond of Acid Orange 7 dye and decolourize it to form aromatic amines. The azo dye 

is reduced by accepting electrons and protons from the anode (Mu et al., 2009). The 

possibility of using azo dyes as the electron acceptor in the cathodes was experimented 

by (Liu et al., 2009). The dye received electrons from the respiration of K. pneumoniae 

strain L17 in the anode in the absence of oxygen in the cathode. As a result, the -N=N- 

double bond was broken down and the dye decolourized. There was complete 

reduction of Methyl Orange, Orange I, Orange II dye to aromatic amines in three days 

with peak power density of 34.77 mW m-2 (Liu et al., 2009). To decrease the internal 

resistance and increase dye decolourization modified tubular  type MFC was designed. 

Various concentrations (0.14 mM to 2 mM) of  AO7 dye was fed to the cathode to 

observe the rate of decolourization. The dye acted as terminal electron acceptor and 

there was rapid decolourization with >90% in 12 h and the overall decolourization was 

>98% (Kong et al., 2013). The electron transfer between the electrode and dye was 

enhanced by modifying the electrode with redox mediators with thionine and AQDS 

to observe the decolourization of methyl orange dye. Thionine modified system 

increased the rate of decolourization by 20% and power density by three times 

compared to unmodified system (Liu et al., 2011).  

In a MFC the dye can be decolourized under anaerobic conditions at anode in the 

presence of microorganisms or at the cathode by accepting electrons and protons from 

the fuel cell. In both the mechanisms there is only dye decolourization and not 

complete degradation. Therefore, an aerobic treatment is required for complete 

degradation of the dye. The advantage of anode dye decolourization is the presence of 

aerobic cathode can improve the power production in MFC compared to anaerobic 

cathode conditions (Liu et al., 2009; Li et al., 2010). This is due to the high reduction 

potential of oxygen (1.23 V). 

To achieve the complete degradation of azo dye and produce electricity an MFC was 

combined with Fenton like advanced oxidation process. There was 89% AO7 

degradation with a power density of 16 mW m-3 and GC-MS analysis of AO7 

degradation indicated the presence of benzaldehyde and phenol- based intermediates 

which can be further mineralized to CO2 and H2O by Fenton’s oxidation. Although the 
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performance of FeVO4 is excellent, the reusability after each cycle is a major hindrance 

in practical applications (Luo et al., 2011).  

Chemicals such as Fe-EDTA, persulphate, potassium ferricyanide have been used as 

catholytes in aiding azo dye decolourization. Orange G dye achieved a decolourization 

efficiency of 97% and maximum power density of 91.1 mW m-2 with Fe-EDTA and 

potassium persulphate as the cathode solution and glucose as substrate at the anode 

(Niu et al., 2012). In large scale industrial applications chemicals are expensive and 

their reaction are not sustainable. 

1.3.8 Biological catalysts 

The methods discussed above for azo dye treatment were effective in only 

decolourizing the dye and not complete degradation. The complete degradation of the 

azo dye-containing wastewater in a more efficient, sustainable and eco-friendly 

manner is required for its safe disposal into water streams. To efficiently degrade azo 

dyes and develop cheap alternatives to platinum, biological catalysts (e.g. enzymes, 

microorganisms) are investigated for their use in the cathode of MFCs to carry out 

oxygen reduction reaction and dye degradation. 

In recent times, enzymes and microorganisms are being explored for their catalytic 

efficiency due to the eco-friendly nature and sustainability. Enzymes such as 

peroxidases (Manganese peroxidase (MnP), lignin peroxidase (LiP), horse radish 

peroxidase) and oxidases (laccase, bilirubin oxidase, ascorbate oxidase) have been 

used for fuel cell and bioremediation applications (Fernández, 2011; Durand et al., 

2012; Falade et al., 2017) . MnP and LiP are widely used for lignin degradation in 

paper and pulp industry and for degradation of synthetic dyes. HRP is efficient in 

removal of phenols and aromatic amines from industrial effluents (Regalado et al., 

2004) . However, these peroxidases cannot be used as cathode catalyst in a fuel cell as 

they require H2O2 that is expensive for water treatment and fuel cell applications. 

Billirubin oxidase (BOD) and laccase are blue copper proteins that have been used in 

fuel cell and bioremediation applications (Liu et al., 2009; Madhavi and Lele, 2009; 

Szczupak et al., 2012). Laccase is widely preferred for industrial application due to the 

high redox potential (780 mV/690 mV vs SHE for BOD), high catalytic activity, wide 

substrate specificity and easy protein engineering. It is easily produced by large 

number of fungal sources and can be upscaled for large scale applications.  
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1.3.8.1 Laccase Enzyme  

Laccases (EC 1.10.3.2, oxidoreductases) are extracellular enzymes that belong to a 

family of multicopper oxidase that also include ascorbate oxidase, ceruloplasmin and 

bilirubin oxidase. They are found in higher plants, fungi, insects and few bacteria. The 

first laccase was discovered in 1883 in the sap of Japanese lacquer tree, Rhus 

vernicifera by Yoshida. The presence of laccase in fungi was revealed in 1889 by 

Bertrand and Laborde and since then they have been found in various fungal sources 

(Ascomycetes, Basidiomycetes and Deuteromycetes) especially in white rot fungi that 

degrade lignin (Upadhyay et al., 2016). The most common wood rot fungi that produce 

laccase are Trametes versicolor, Pycnoporus cinnabarinus, Trametes hirsuta, 

Trametes villosa, Pleurotus ostreatus etc. There are few bacteria such as Bacillus 

subtilis, Azospirillum lipoferum etc that produce the enzyme (Madhavi and Lele, 

2009).  

Laccase enzymes have a molecular weight ranging from 60-100 KDa and exist as 

monomers or homodimers with an isoelectric point ranging from 3 to 7 (Figure 1.12). 

Most fungal laccases have a pH optimum ranging from 3.6 to 5. 
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Figure 1.12: Structure of Laccase indicating the Cu2+ active sites (Christopher et al., 

2014) 

Laccase catalytic centre contains four copper atoms distributed in three redox sites 

(Figure 1.12). The Type 1 Cu2+ confers the blue colour of the protein in its reducing 

state, where the oxidation of substrate takes place. The electrons from oxidation is 

transferred from T1 Cu2+ to the Type 2/Type 3 Cu2+ cluster where oxygen is reduced 

to water. Laccase is capable of one electron oxidation of other substrates and four 

electron reduction of O2 to H2O (Fernández, 2011). 

In native form of enzyme all four copper atoms exist in fully oxidized state (Cu2+) 

(Christopher et al., 2014). The redox potential of T1 Cu site is higher for fungal laccase 

(780 mV vs SHE) compared to plant (430 mV vs SHE) and bacterial laccases (455 

mV vs SHE) (Kunamneni et al., 2007). Due to the high redox potential there are wide 

range of substrates that include phenols, aromatic amines and other environmental 

pollutants. The enzyme acts directly to oxidise phenolic substrates whereas it requires 
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mediators for non-phenolic substrates. In nature, laccase is used by white rot fungi in 

the breakdown and complete degradation of lignin. Laccase mechanism of oxidation 

of its natural substrates such as phenolic compounds is given below (Figure 1.13).  

Figure 1.13: Mechanism of laccase oxidation of lignin by producing phenoxy radicals 

and quinones (Modified from (Madhavi and Lele, 2009)) 

Laccase attacks the phenolic subunits leading to C𝛼 oxidation, C𝛼-C𝛽 cleavage and 

aryl-alkyl cleavage. The oxidation of substrates involves loss of a single electron and 

production of phenoxy radicals (Figure 1.13). These radicals are unstable and further 

bring about a variety of reactions such as non-specific bond cleavage, radical 

polymerization, modification of functional groups etc. leading to complete oxidation 

of substrate and subsequent reduction of water to complete the catalytic cycle 

(Madhavi and Lele, 2009). Redox potential between T1 copper site in laccase and the 

substrate is plays a vital role in efficient oxidation and laccases with higher redox 

potential than the substrates have higher rate of oxidation.  

Laccase has been widely studied in the past decades for application in food industry, 

textile industry, paper and pulp industry, bioremediation and as biosensors (Upadhyay 

et al., 2016).  
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1.3.8.2 Laccase application in treatment of dyes 

Laccase enzyme has been employed in textile industry for bio-bleaching of cotton 

fabrics, roving treatment to improve the yarn regularity, anti-shrink treatment of wool, 

improving the dye fixation on wool etc (Couto and Toca-herrera, 2006). Laccase was 

also used in denim garments to obtain a stone wash finish where the excess indigo is 

removed from the fabrics. Phenol induced laccase from T. versicolor was very 

effective to obtain stone washing finish for denim garments in the absence of 

mediators (Pazarloǧlu et al., 2005).  

The major application of the enzyme is its ability to decolourize and degrade dyes 

present in the textile wastewater. Most commonly used laccase is of fungal origin but 

there are also few bacterial laccases reported. Laccase can oxidise both phenolic and 

non-phenolic dyes directly, therefore it acts on a variety of dye chromophore groups 

such as azo, anthraquinone, triarylmethane, indigoid etc. Purified laccase from fungus 

T. hirsuta was used to treat textile effluents containing azo, anthraquinone, 

triarylmethane, indigoid dyes etc. The effluents were decolourized, and their toxicity 

reduced by 80% making it suitable for reuse the water for dyeing purposes (Abadulla 

et al., 2000). Isolated laccase enzymes and their various fungal sources have been used 

for textile water treatment (Table 1.1). White rot fungi Coriolus versicolor was able 

to decolourize 14 different structured dyes with decolourization >80% for 10 dyes 

(Knapp et al., 1995). There is a combination of enzymes such as manganese 

peroxidase, lignin peroxidase and laccase acting on the dye while using the fungal 

source. The major disadvantage of using fungi is the need for maintaining aseptic 

conditions and it requires constant replenishment of media.  
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Table 1.1: The types of dyes treated with laccase from different fungal sources  

Laccase Source                Dye Treated References 

T. hirsute Triarylmethane, indigoid, azo, and anthraquinonic dyes (Abadulla et al., 2000) 

T. versicolor Acid orange 7 (AO7), acid blue 74 (AB74), reactive red 2 (RR2) and reactive 

black 5 (RB5) 

(Ramírez-Montoya et al., 

2015) 

T. villosa Azo dye: 3-(4-dimethylamino-1-phenylazo) benzenesulfonic acid (dye I) and 3-

(2-hydroxy-1-naphthylazo) benzenesulfonic acid (dye II) 

(Zille et al., 2005) 

Pycnoporus cinnabarinus Azo dye -direct blue (Schliephake et al., 2000) 

Pleurotus ostreatus Triphenylmethane Dyes, anthraquinone dye (Hou et al., 2004; Yan et al., 

2009) 

Trametes pubescens Anthraquinonic AB62, RB19, Azoic AB194, Acid Red 266, and Acid Yellow 49, 

reactive dyes 

(Spina et al., 2016; Casieri 

et al., 2008) 

Coriolopsis gallica Remazol Brilliant Blue R (RBBR), Reactive Black 5 (RB5) and Bismark Brown 

R (BBR) 

(Daâssi et al., 2014) 

Pycnoporus sanguineus Reactive blue 4 and Orange G (Atteke et al., 2013) 

Paraconiothyrium 

variabile 

 

Bromophenol blue, commassie brilliant blue, panseu-S, Rimazol brilliant blue R, 

Congo red, and methylene blue 

(Forootanfar et al., 2012) 
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Laccase Source                                           Dye Treated References 

T. modesta Acid blue, Acid violet, Basic red, Direst blue, reactive black, Triphenylmethane 

Dyes, heterocyclic azo dye, indigo carmine 

(Kandelbauer et al., 2004; 

Nyanhongo et al., 2002) 

T.trogii Azo dye, Remazol Brilliant Blue R, 69.6% Reactive Blue 4, and Acid Blue (Zeng et al., 2011a; Daâssi 

et al., 2013) 

Aspergillus tamarii Coomassie brilliant blue (CBB), 

bromophenol blue (BPB), and malachite green (MG) 

(Ramalingam et al., 2010) 

Aspergillus bombycis Reactive Red 31 (Khan and Fulekar, 2017) 

Aspergillus ochraceus Vinyl sulfone, sulfonated monoazo (Telke et al., 2010) 

Streptomyces ipomoeae Reactive blue, cresol red, indigo carmine azo dye (Blánquez et al., 2018) 

Funalia trogii Acid red, acid black, reactive blue, reactive red, Lanasol Black R (Tilli et al., 2011) 
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The use of enzymes such as peroxidases and phenol oxidases for azo dye degradation 

is well documented by various researches (Chivukula and Renganathan, 1995; Kwang-

Soo and Chang-Jin, 1998). There are various mechanisms reported by which laccase 

degrades the dyes.  Some studies reported the non-cleavage of azo bond followed by 

a non-specific free radical mechanism by the enzyme which results in phenolic end 

products, while other observed azo bond cleavage (Tauber et al., 2008; Pereira et al., 

2009; Telke et al., 2010). Chivukula and Renganathan, 1995 studied the degradation 

of azo dyes by laccase from P. oryzae. This mechanism of laccase is initiated by two 

sequential abstraction of electrons from the phenol ring of the dye (Figure 1.14). The 

first electron removal is from the -OH moiety of the phenol resulting in phenoxy ion 

(phenol-O.) and the second electron removal results in the formation of carbonium ion 

(C+) which is stabilized in the ring through resonance. These electrons reduce the Cu2+ 

of the laccase to Cu+. The carbonium ion is attacked by nucleophilic water resulting in 

the cleavage between nitrogen and phenolic ring. This causes the formation of 

benzoquinone and 4-sulfophenyldiazene. 4-sulfophenyldiazene reacts rapidly with 

oxygen and the nitrogen moiety is cleaved resulting in phenyl diazene radical.  

Phenyl diazene radical rapidly loses nitrogen as gas molecule and reacts with another 

oxygen molecule to form 4-sulphophenyl hydroperoxide (Chivukula and 

Renganathan, 1995). 

Figure 1.14: Possible mechanism of degradation of azo dyes by laccase (Chivukula 

and Renganathan, 1995) 
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The above products are then subjected to desulfonation, deamination, aromatic ring 

cleavage depending on the structure of the dye to form less toxic products (Legerská 

et al., 2016). The extent of degradation and azo bond breakage depends on the redox 

potential of the laccase. Fungal laccases have higher redox potential than bacterial 

laccase therefore they can break the azo bond to degrade and mineralize the dyes 

(Pereira et al., 2009). T. modesta laccase was utilised to degrade azo dyes CI Acid 

Orange 5, CI Acid Orange 52 and CI Direct Blue 71. They observed the rate of 

degradation was 2 times higher for AO 52 compared to AO5 due to the presence of 

electron rich methyl group (AO 52) that donate electrons for the catalysing the reaction 

(Tauber et al., 2008). Thus, inferring that electron rich phenolic rings and functional 

groups aid in better degradation of the dye. The rate and time taken for degradation of 

azo dyes depends on the type of laccase and the structure of the azo dyes.  

1.3.8.3 Laccase catalysed fuel cells 

Apart from bioremediation, laccases have been used as cathode catalysts in fuel cells. 

While the anode consists of enzymes such as glucose oxidase, alcohol dehydrogenase 

the commonly used cathode enzyme for oxygen reduction is laccase (Kim et al., 2006). 

The catalytic efficiency depends on the redox potential of the enzyme. The redox 

potential of T1 site of different laccases have been determined using various substrates 

and mediators. It varies from 430 mV vs SHE for Rhus vernicifera (tree laccase) to 

780 mV vs SHE for Trametes versicolor (fungal laccase). High redox potential 

lacasses are efficient in substrate oxidation and are suitable for bioremediation and 

fuel cell applications (Shleev et al., 2005). 

Laccases from T. versicolor and T. hirsuta can achieve four proton/four electron 

reduction of oxygen to water at very low over potentials of 30-70 mV (Le Goff et al., 

2015). At the cathode, there are two types of electron transfer: direct and mediated 

electron transfer. Direct electron transfer (DET) is the direct transfer of electrons from 

the Cu2+ catalytic site of enzyme to the electrode (Figure 1.15). The T1 catalytic site 

that is responsible for electron transfer between the electrode and the T2/T3 site should 
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be close to the electrode to obtain DET. In a fuel cell in the absence of substrates 

laccase accepts electrons from the electrode for oxygen reduction reaction. 

 

Figure 1.15: Direct Electron transfer and Mediated Electron transfer between laccase 

and electrode in a fuel cell (Le Goff et al., 2015). 

Mediated electron transfer (MET) takes place in the presence of redox mediators that 

shuttle electrons between the electrode and the enzyme catalytic site. The redox 

mediators are used for laccase that have low redox potential and are unable to perform 

DET (Figure 1.15). The redox potential of the mediators should be close to the 

potential of the enzyme active site for higher efficiency (Le Goff et al., 2015). A 

detailed background on laccase redox mediators are discussed in chapter 6 (Section 

6.1).  

Laccases from Trametes species have been widely used as cathode catalysts in fuel 

cells due their high redox potentials (Gutiérrez-Sánchez et al., 2012; Lalaoui et al., 

2013; Bollella et al., 2018). The culture supernatant of T. versicolor laccase was 

assessed for its electrochemical activity in a half cell configuration. The maximum 

current density obtained was 129±19 mA cm-2 at 400 mV vs SCE (Sané et al., 2013). 

Similarly, Fokina et al, 2015 have proved that laccase from other fungal source can 

also exhibit superior performances. The culture supernatant containing laccase from 

Pycnoporus sanguineus produced equivalent current density of 115.0 ± 3.5 μA cm-2 at 

400 mV vs. SCE at pH 5 (Fokina et al., 2015). Various configuration of fuel cell, 

electrode materials, redox mediators and protein engineering is carried out constantly 

to improve performance of laccase-based fuel cells.  
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1.3.8.4 Laccase as cathode catalyst in Microbial Fuel cells 

Biocathodes have been gaining increasing attention in the cathode of microbial fuel 

cells. There is a need to replace platinum and other metal-based catalyst for oxygen 

reduction reaction (ORR) to develop cheap MFCs for treatment of effluent wastewater. 

Laccase was first employed at the cathode of MFC, by Schaetzle et al, 2009 by 

immobilizing the enzyme in poly(ethylene glycol) diglycidyl ether hydrogels on a 

platinum electrode. This biocathode was used in a MFC containing soil and garden 

compost inoculum in the anode. The maximum power density produced was 6.8 mW 

m-2 and on addition of ABTS it increased to 37 mW m-2 (Schaetzle et al., 2009). 

Further, laccase from T. versicolor was immobilized with ABTS using Nafion polymer 

on carbon paper electrode and it’s electrochemical performance was compared to 

platinum in an MFC. The anode consisted of river sludge inoculum with sodium 

acetate as the substrate. Lac/ABTS electrode produced a high-power density of 160 

mW m-2 comparable to platinum with 190 mW m-2. The enzyme activity in the 

immobilized laccase was retained even after 800 hours of operation in MFC (Luo et 

al., 2010).  

Another study by Higgins et al, 2011 developed a hybrid MFC with Shewanella 

oneidensis MR-1 at the anode and an air breathing laccase cathode in the absence of 

mediators. The cathode was prepared by hydraulic pressing of carbon black (Vulcan 

carbon), PTFE composite and nickel mesh together. Laccase was then added on to the 

above electrode to be absorbed. The system produced a power density of 26 W m-3 

and the electrode longevity was 4.75 days (Higgins et al., 2011). Although, the above 

methods of immobilization aided in electron transfer and obtain high power output, 

the use of mediator and the enzyme immobilization stability in the presence of dye 

needs to be evaluated if the system is to be employed for bioremediation. 

The laccase producing white rot fungus Coriolus versicolor has been directly used in 

MFC cathode to facilitate electron transfer. The fungus was grown at the cathode 

chamber with respective growth media and the anode chamber was filled with 

ferricyanide. The maximum power density produced was 320 ± 30 mW m-3 which was 

lower than purified laccase with 480± 30 mW m-3. This was due to the fungal adhesion 

of fungal filaments onto the electrode which inhibited electron transfer (Wu et al., 

2012). 



42 
 
 

1.3.8.5 Laccase application in MFC dye decolourization 

A few studies have used laccase in a microbial fuel cell in decolourizing dyes 

(Bakhshian et al., 2011; Savizi et al., 2012).  A 500 U ml-1 of freely suspended laccase 

was used at the cathode chamber to decolourize reactive blue dye. The overall dye 

removal was 87% with a coulombic efficiency of 13.9% after 80 hours of operation 

(Bakhshian et al., 2011). The same group electropolymerized methylene blue on the 

electrode and crosslinked with laccase-chitosan (120 U mg-1 of chitosan) to study 

decolourization of Reactive Blue dye. They yielded a maximum power density of 58.8 

mW m-2 and a decolourization efficiency of 74% for Reactive Blue 221 dye after 120 

hours (Savizi et al., 2012). They observed that immobilization of the enzyme 

maintained the activity better then free loaded enzyme. Therefore, different 

immobilization methods need to be considered to enhance laccase stability in dye 

degradation applications. 

The fungal source was directly employed at the cathode to observe decolourization. 

The fungus Ganoderma lucidum was immobilized on the cathode surface to degrade 

azo dye Acid orange 7. Acid orange 7 dye was used as the carbon source for the fungal 

growth and they obtained >90% decolourization with a power density of 13.38 mW 

m-2 (Lai et al., 2017).  Further enhancement in power and decolourization was obtained 

by using same fungal source in a MFC that contained a super adsorbent polymer mixed 

with polyvinyl alcohol to develop a new proton exchange membrane for efficient 

proton transfer from anode to cathode. This air cathode MFC produced a high-power 

density of 207.74 mW m-2 with 96.7% decolourization of AO7 (Lai et al., 2017).  

The use of fungal based cathodes requires maintaining an aseptic environment and 

constant media replenishment. The slow growth of the fungi leads to the possibility of 

contamination by bacteria and the fungal mycelia may also inhibit electron transfer in 

the electrode. In wastewater treatments an additional step of decontamination is 

required before reusing or discharging water.  

1.3.8.6 Challenges in using laccase biocathodes in MFCs 

Although laccase was immobilized in MFC cathodes and used for dye decolourization, 

there are various factors that lead to the decrease of enzyme activity over time and 

affecting the MFC performance. Laccases from fungi were shown to be inhibited by 

environmental factors such as pH and temperatures changes (Madhavi and Lele, 
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2009).  Xu, has studied the pH effect on laccase activity with phenolic and non-

phenolic substrates. He concluded that the pH profile is a bell-shaped curve for laccase 

that varies with individual enzyme irrespective of the substrate. The variation in the 

pH is due to the difference in the redox potential between the substrate and the T1 Cu2+ 

centre or the inhibition of T2/T3 Cu2+ centres by OH- ions in alkaline pH (Xu, 1997). 

The optimum pH for T. versicolor laccase was 4.5 when ABTS was used as the 

substrate (Stoilova et al., 2010).  

A study of T. versicolor laccase inhibition profile with  heavy metals such as Mn2+, 

Cd2+ and Zn2+  revealed that Cd2+ was a strong inhibitor at high concentrations (80 

µM), whereas there was  no inhibition observed for Zn2+ and Mn2+ using 

syringaldazine as the substrate (Lorenzo et al., 2005). Other inhibitors include copper 

chelating agents such as EDTA, citric acid, oxalic acid, malonic acid, sulphamic acid 

and hydroxylammonium chloride. Lac II from T. versicolor was highly stable in the 

presence of EDTA compared to other chelating agents (Lorenzo et al., 2005). Halides 

(Cl-, Fl-, Br-), azides, cyanides and hydroxides inhibit laccase activity and disrupt the 

internal electron transfer by binding to type 2 and type 3 copper (Madhavi and Lele, 

2009).  

These factors inhibiting laccase performance in a MFC can be addressed by either 

maintaining strict conditions in the cathode or by developing robust laccase-based 

systems by various immobilization methods.  

1.3.8.7 Microorganisms as cathode catalysts in MFC 

Microbial biocathode is gaining interest due to the low cost, environment friendly and 

sustainable nature. The aerobic microorganisms at the cathode form biofilm on the 

electrode and use oxygen as the terminal electron acceptor. Many previous studies 

have demonstrated the use of microorganisms as catalyst at cathode for oxygen 

reduction reaction (ORR) in MFCs (Clauwaert et al., 2007; Mu et al., 2015). Mao et 

al., 2010 have achieved a maximum potential difference of over 600 mV with an 

external resistance of 100 Ω in a MFC with ferro/manganese-oxidizing bacteria as 

cathode catalyst and acetate as substrate at the anode. The start-up period was quite 

slow with maximum voltage obtained after 150 hours (Mao et al., 2010). A minimum 

period of 20-30 days was required for the acclimation of microorganism to achieve a 

maximum voltage in a MFC (Clauwaert et al., 2007).  
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Biocathodes have been explored for their potential in treating wastewater. Antibiotic 

chloramphenicol containing wastewater was treated using aerobic sludge as catalyst at 

the cathode with glucose as substrate. There was 96% reduction of chloramphenicol 

in 24 hours with an applied voltage of 0.5 V (Liang et al., 2013). The bacterial analysis 

of the biocathodes revealed Proteobacteria as the dominant community. Similarly, a 

98% decolourization of Congo red dye was observed in a single chamber BES 

bioanode-biocathode (activated sludge) with 0.3 V applied voltage (Kong et al., 

2014b).  

From the above studies it appears that additional voltage is required for the oxidation 

of dye products. Microorganisms that can function as catalyst in the electron transfer 

process can also be utilised at the cathode. Manganese and iron are generally used as 

electron transfer mediators to achieve high electron transfer efficiency under aerobic 

conditions. These microbes catalyse the oxidation of Mn(II) and Fe (II) and the 

electrons produced in the process is used for oxygen reduction in the cathode of the 

fuel cells (He and Angenent, 2006). A few examples of electron accepting 

microorganisms are listed below: 

a. Iron bacteria (Acidiothiobacillus ferrooxidans): Fe2+ → Fe3+ + e- (He and 

Angenent, 2006)  

b. Nitrifying bacteria (Nitrobacter): NO2- → NO3- + e-  (Puig et al., 2011) 

c. Manganese oxidising bacteria: Mn2+ → Mn4+ + 2e-  

d. H2 oxidising bacteria (Ralstonia eutropha): H2 → 2H+ + 2e-  

Though biocathodes have the possibility for low cost and sustainable MFCs, further 

research is required to improve the start-up rate and increase the power output by a 

factor of 5-10 for its feasibility in commercial use. As suggested by (He et al., 2015) 

more understanding in mechanisms of electron transfer between electrode, 

microorganism and electron acceptor in the cathode is required for increased power 

output. 

In recent times, microorganisms capable of accepting electrons from the anode are 

being developed from soil and sludge sources consisting of mixed microbial 

community. These are discussed in detail in chapter 7, section 7.1. 
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1.4 Summary 

Enzymes and microorganisms have the potential to serve as cathode catalysts as a 

replacement for platinum, but they are fraught with various limitations that needs to 

be addressed. 

Laccase loss of activity over time requires new ways of preserving the stability e.g. 

methods for mitigating pH changes in the cathode of MFC and immobilization of 

laccase was performed to develop effective laccase biocathode for dye 

decolourization. Some studies reported feeding the dye in the anode chamber while 

others fed the dye in the cathode chamber but there has been no systematic 

investigation of the difference in the efficiency/mechanisms of degradation between 

the two approaches. Redox mediators are often used to mediate electron transfer 

between substrates and laccase. Artificial mediators however can be toxic at high 

concentrations (0.5 mM). To improve the laccase dye decolourization and ORR 

activity natural redox mediators could be employed. 

Microbial biocathode performance depends on the source of inoculum and enrichment 

procedure. A more targeted source of dye degraders e.g. activated sludge system 

treating textile wastewater would serve as a good source of inoculum and the use of a 

potentiostatic poised electrode would decrease the time required for enrichment. 

1.5 Highlights  

This work improves our understanding of the potential of using biological catalysts 

(enzymes and microorganisms) as replacement of platinum catalysts in microbial fuel 

cells designed for azo dye wastewater treatment. In particular, the work contributes 

to the importance of maintaining macroenvironment conditions such as pH and 

salinity for efficient enzyme activity and the role that enzyme immobilisation plays in 

improving the stability and viability of laccase as an ORR catalyst. Further the 

efficiency of natural redox mediators for laccase activity and the distinction between 

anodic microbial-based reduction and cathodic laccase-mediated oxidation of azo dyes 

have been reported for the first time in this study. The nature of electroautotrophs 

enriched on a potentiostatically poised electrode as a cathode catalyst has also been 

observed. The work suggests that laccase and microbial biocathodes have the potential 

to be excellent catalysts for ORR in MFCs with efficiency equivalent to that of Pt. 
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Chapter 2  

     Materials and Methods
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2.1 Chemicals 

The chemicals used for media preparation i.e sodium pyruvate, casein hydrolysate, 

trace minerals, vitamins; standards for HPLC analysis sulfanilic acid and 1-amino-2-

naphthol and the Acid Orange 7 (Orange II sodium salt), Congo Red dye were all 

analytical grade purchased from Sigma Aldrich (UK).    

 

 

 

 

(a) 

 

                                                

 

 

(b) 

Figure 2.1: (a) Structure of Acid Orange 7; (b) Congo Red dye used in the study 

The COD reagent Ficodox Plus™ was purchased from Fisher Scientific, UK. Nafion, 

TBAB, Polyaniline and all the chemicals used for immobilization studies were 

purchased from Sigma Aldrich and used without further purification.  

2.2 Bacterial strains 

The bacteria in the anode of MFC for all the studies was Shewanella oneidensis MR 1 

strain   (NCIMB: 14063) and for toxicity analysis it was Vibrio fischeri strain 

(NCIMB: 13938). Both the strains were obtained from NCIMB (UK) and the stock 

cultures were cryopreserved at -80 °C. Shewanella sp. was revived and grown in Luria 

Bertani (LB) broth at 30 °C for a period of 5 hours before inoculating in the anode 

chamber containing anolyte in all the chapters. The sludge used for enrichment in 

chapter 7 was obtained from activated sludge tank of Andipalayam common textile 

effluent treatment plant (CETP), Tiruppur, India and maintained at 30 °C.  
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2.3 MFC Anode media components 

The below composition in the anode was the same for all the reactors in all the studies. 

The anolyte consisted of minimal salts medium containing (per litre): 0.46 g NH4Cl, 

0.22 g (NH)2SO4, 0.117 g MgSO4, 7.7 g Na2HPO4.7H2O, 2.87 g NaH2PO4 along with 

1% (v/v) trace minerals as described by (Marsili et al., 2008) (Table 2.2) and 1% (v/v) 

vitamin mix as described by (Wolin et al., 1963) (Table 2.1) . The carbon source was 

pyruvate at a concentration of 1 g L-1 and casein hydrolysate was added at 500 mg L-

1. The pH of the anode solution was adjusted to 7.  pH and ionic strength were 

measured using a calibrated benchtop combined pH and ionic strength meter (pH/CON 

700 meter, Cole-Parmer, UK). 

Table 2.1 The composition of vitamin mix stock solution (100x) used in this study                                                        

Components Concentration (mg L-1)  

 

P-aminobenzoic acid (PABA) 
 

 50 

L-ascorbic acid  

 

100 

Folic acid   
 

50 

Riboflavin 
 

10 

Nicotinic acid 
 

100 

Pantothenic acid 

 

100 

Thiamine hydrochloride 
 

10 

Biotin 100 
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Table 2.2: The composition of the trace elements stock solution (100x) used in this 

study 

Components Concentration (mg L-1) 

Nitrilotriacetic acid (NTA)                                                      1500 

FeSO4 .7H2O                                                                            300 

CoCl2 .6H2 O 170 

ZnCl2   170 

NiCl2     120 

MnCl2 .4H2O                                                                           100 

NaSeO4 100 

NaMoO4    90 

CuSO4 .5H2O 40 

NaWO4.2H2O                                                                          20 

AlK(SO4)2 .12H2O   5 

H2BO4      5 

 

2.4 MFC Cathode components 

Laccase enzyme (EC 1.10.3.2) with 13.6 U mg-1 of activity from Trametes versicolor 

used in the cathode chamber for chapters 3 and 4 was obtained from Sigma Aldrich 

(UK). In chapter 5 and 6, a crude commercial fungal laccase with 10 U mg-1 of activity 

obtained from Enzyme India Pvt. Ltd, Chennai was used. ABTS and laccase redox 

mediators syringaldehyde and acetosyringone used in chapter 6 have all been 

purchased from Sigma Aldrich.  
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Table 2.3: Structure and molecular weights of redox mediators used in chapter 6 

Redox 

Mediators 

 

ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 

acid) 

 

Syringaldehyde 

 

Acetosyringone 

 

Molecular 

weight 

(g mol-1) 

 

 

                                       514.7 

 

         182.17 

 

      196.19 

 

 

 

 

Structure 
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2.5 Design of bioelectrochemical systems used in this 

study 

The MFC used in all the chapters was the 'H'-type reactor with a working volume of 

200 ml in each chamber. The two chambers were clamped together with a metal clip 

and separated by cation exchange membrane (CMI-7000, Membranes International-

USA) (Figure 2.2). The electrodes were constructed from carbon fibre (non-woven) 

with a surface area of 25 cm2 connected to a tin-coated copper wire. The connections 

were coated with non-conductive epoxy for insulation. An external load of 2000 Ω 

was used for experiments in chapters 3,4,5,6 and 200 Ω in chapter 7 and the potential 

across the resistor was recorded using the Picolog ADC-24 (Pico Technology, UK) 

online data logging system. The aeration for the cathode chamber was supplied 

through an air stone fitted to an oxygen pump.  

 

Figure 2.2 : A H-type microbial fuel cell used in this study 
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2.6 Analytical Procedures 

The analytical methods used in the study and the rationale for employing them have 

been discussed in this section. 

2.6.1 Acid Orange 7 Decolourization 

The decolourization of AO7 in the anode in chapter 3,7 and at the cathode in chapter 

4,5,6 was measured at various time intervals using a UV-visible spectrophotometer at 

a wavelength of 484 nm which is the maximum absorption wavelength for the dye. 

The decolourization efficiency (DE) was calculated by 

DE (%) =  
𝐀𝐨− 𝐀𝐭  

𝐀𝐨
 × 𝟏𝟎𝟎 

Ao and At are the absorbance units at the initial and each time point respectively. A 

time series was plotted for the absorbance values measured. 

2.6.2 Electrochemical Analysis 

The voltage across the system was recorded every 10 minutes using a data acquisition 

system Picolog (Pico Technology, UK). The current through the unit was calculated 

using Ohm’s Law: 

                                  𝑪𝒖𝒓𝒓𝒆𝒏𝒕 (𝑰) =  
𝑽𝒐𝒍𝒕𝒂𝒈𝒆 (𝑽)

𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 (Ω)
 

The power produced was calculated using the following formula: 

                                            P = I x V 

where P is power in Watts, I is current in amperes and V is the electric potential in 

volts. 

The power and current per surface area of electrode (25 cm2 and 31 cm2 in chapter 7) 

was used to calculate the power and current density. To carry out polarisation tests, 

each MFC unit was connected to various external resistances ranging from 10 Ω to 1 

MΩ and the potential measured using a multimeter. The slope of the current vs voltage 

plot was used to determine the internal resistance of the system. 
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2.6.3 Coulombic efficiency (CE) 

CE is the efficiency of the system to convert the electrons produced by the bacterial 

metabolism into electric current.  The number of coulombs recovered is high if the 

microorganism at the anode completely oxidizes the organic substrates to produce 

electrons. The CE was calculated by the following formula (Logan et al., 2006): 

CE (%) =  
𝑴 ∫ 𝑰 𝒅𝒕

𝒕
𝟎

𝒃∗𝑭∗𝑽𝒂𝒏𝒐𝒅𝒆∗∆𝑪𝑶𝑫
 

where M is the molecular weight of oxygen (32), ∫ 𝐼 𝑑𝑡
𝑡

0
 is the integration of current 

over the time period in an experiment (C), b number of electrons exchanged per mole 

of oxygen (4), F is Faraday constant (96485 C mol−1), Vanode is working volume of 

anode and COD is change in COD over time (g L−1). 

2.6.4 Chemical Oxygen Demand (COD) 

COD is defined as the amount of oxygen required to oxidize organic matter present in 

the wastewater. It was measured by the standard closed reflux titrimetric method 

described by Environment Agency (UK), based on APHA method 5220D. This 

method utilizes a strong oxidant potassium dichromate (K2Cr2O7) to oxidize the 

organics under acidic (H2SO4) conditions. Silver is added to catalyse the oxidation of 

alcohols and low molecular weight acids. 

a. Procedure 

The samples obtained from the MFC were centrifuged at 8000 rpm for 10 mins and 

the supernatant was then filtered through 0.2 µm filter to remove suspended biomass. 

To 2 ml of appropriately diluted samples 4 ml of COD reagent- Ficodox (Fisher 

Scientific) containing sulphuric acid, K2Cr2O7, Ag2SO4 was added and digested at 

150ºC for two hours. The samples were then titrated against Ferrous Ammonium 

Sulphate (0.025 M) by adding 2 drops of Ferroin indicator to determine the residual 

K2Cr2O7 present.  

The COD was calculated by the following formula: 

                                        COD = 8000 * (Vb - Vs) * DF * M 

          Volume of Sample 
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where, DF is the dilution factor, M is the molarity of FAS (0.025), Vb  and Vs are the 

titrant volumes of FAS for blank and substrate.  

The percentage COD removal was calculated as follows:  

             COD Removal (%) =   CODI – CODS  X 100 

              CODI 

    Where, CODI is the initial and CODs is the sample COD values at various time 

points respectively. 

2.6.5 Laccase Enzyme Activity 

The activity of laccase was measured using ABTS (2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid)) as a substrate. A solution of 2 ml acetate 

buffer (100 mM, pH 4.5), 1 ml ABTS (0.5 mM) and 1 ml of enzyme was used for 

freely suspended enzyme in all the chapters. The oxidation of ABTS by laccase was 

observed by a change in colour (light to dark blue) and measured using a UV 

spectrophotometer at 420 nm. The enzyme activity unit (U) was defined as the amount 

of enzyme required to oxidize 1.0 µmol ABTS min-1 at 25°C (Eggert et al., 1996).  

a. Enzyme Immobilization yield  

The immobilization yields of the enzyme in chapter 4 was calculated by:  

𝐈𝐦𝐦𝐨𝐛𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 𝐲𝐢𝐞𝐥𝐝 (%) =  
𝐀𝐦𝐨𝐮𝐧𝐭 𝐨𝐟 𝐄𝐧𝐳𝐲𝐦𝐞 𝐢𝐦𝐦𝐨𝐛𝐢𝐥𝐢𝐳𝐞𝐝

𝐓𝐨𝐭𝐚𝐥 𝐄𝐧𝐳𝐲𝐦𝐞 𝐮𝐬𝐞𝐝 𝐢𝐧 𝐢𝐦𝐦𝐨𝐛𝐢𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧
 𝐱 𝟏𝟎𝟎 

The amount of enzyme immobilized was calculated by ABTS enzyme assay.  

2.6.6 Detection of metabolites by chromatographic methods 

High Performance liquid Chromatography (HPLC) is an analytical method used to 

separate a mixture of compounds to identify and quantify individual compound from 

that mixture. The separation is based on the stationary phase and the mobile phase. As 

the analyte is passed through the column together with the mobile phase, the 

components with strong interaction to the stationary phase will move slowly through 

the column with longer retention time and vice versa. The resulting elutant is then 

passed through an UV detector to produce a chromatogram to identify and quantify 

the sample based on the standards. The most commonly used is reverse phase HPLC 

that consists of a non-polar stationary phase (silica-based column) and polar mobile 
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phase (water + water miscible solvents). In RP-HPLC the principle is based on 

hydrophobic interaction with less polar molecules having a higher retention time than 

the polar components that are eluted quickly (Bélanger et al., 1997). 

a. Detection of AO7 decolourization products by RP-HPLC 

The decolourized products of the AO7 by S. oneidensis in Chapter 3 was detected 

using RP-High Performance Liquid Chromatography. The HPLC system (DIONEX 

GS50) was equipped with a Phenomenex Gemini C18 reversed phase column (5μm, 

150 x 4.6 mm). Aromatic compounds were quantified using HPLC with standard 

reductive compounds of AO7, sulfanilic acid and 1-amino-2-naphthol which were 

detected at wavelengths 248 nm and 284 nm respectively. The mobile phase consists 

of 50% methanol and 50% 33 mM (pH 7) phosphate buffer with a flow rate of 1 ml 

min-1.The presence of degradation products from the sample was confirmed by the 

retention times (Rt) of the standards (Fernando et al., 2012).  

b. Quantification of Pyruvate consumption by Ion-exchange Chromatography 

The principle of Ion-exchange chromatography is based on the attraction between the 

charges of the stationary phase and the sample. The components that are same charge 

as the column are excluded from binding while the oppositely charged compounds are 

bound to the column. They are eluted by changing the pH of the mobile phase based 

on the charge (cation or anion) of the ion exchange column. Anion exchange 

chromatography is commonly used for detection of proteins, carbohydrates, sugars 

amino acids etc. The negatively charged molecules bind to the positively charged 

column and these molecules are then eluted out with either low or high ph mobile 

phase based on the charge of the compound analysed. 

i) Procedure 

In chapter 5, pyruvate consumption at various time intervals was quantified anion 

exchange chromatography. The HPLC system (Thermo Scientific: Dionex Ultimate 

3000) was equipped with Phenomenex Rezex ROA-Organic Acid H+ (8%) (300 x 7.8 

mm) column. Pyruvate utilization was quantified using sodium pyruvate standard. The 

mobile was an isocratic solution of 1% Phosphoric acid (H3PO4) with a flow rate of 

0.2 ml min-1 and the volume of sample was 10 µl. The samples were detected with a 

Photodiode Array (PDA) detector at 210 nm and 214 nm.  
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2.6.7 Morphological characterisation using Scanning Electron 

Microscopy (SEM) 

Scanning electron microscopy is used to study the morphological characteristics of a 

sample on a nano-scale level by scanning its surface with a beam of electrons. As the 

electrons excite the atoms in the sample, secondary electrons are emitted on the surface 

of the sample that are collected through a detector to produce an image. The electron 

beams can be easily ionised in air and lose their energy; therefore, the imaging is 

performed under vacuum.  

SEM provides useful information on the morphology and topography of the samples 

on solid surface. In some studies, it is equipped with Energy-dispersive X-Ray 

Spectroscopy (EDS), to provide the elemental composition. SEM is widely used for 

characterization of enzymes immobilized solid surfaces. It provides input on the 

morphological changes occurring on the surface during each immobilization step and 

to confirm the outcome of the procedure. The physical stability of the immobilized 

electrode i.e. peeling, sloughing, tearing etc. can also be easily visualized using this 

technique.  

The topology of laccase immobilized on various support materials have been widely 

characterized by SEM (Nogala et al., 2008; Sadighi and Faramarzi, 2013).  

a. SEM procedure for immobilized laccase electrodes 

In chapter 4, PANI, Nafion and Cu-alg laccase were subjected to SEM analysis to 

determine the morphological characteristics. The samples were mounted on to 

aluminium stubs using double side sticky carbon tape. A thin layer of gold was coated 

on the surface of the samples to enhance conductivity. The samples were then 

examined in an Inspect-F scanning electron microscopy (SEM) equipped with EDS at 

a vacuum of 5.0 x 10-5 torr and an accelerating voltage of 30 kV.  

2.6.8 Functional group identification by Fourier-transform infrared 

spectroscopy (FTIR) 

FTIR is a sensitive technique that is used to identify the presence of certain functional 

groups in an organic/inorganic material. The principle relies on the absorption of IR 

radiation by the chemical bonds present in the sample. As the sample is irradiated by 

IR rays, the bonds present in the molecule vibrates at various frequencies depending 

on their type and elements present. The frequencies are represented as wavenumbers 
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in the FTIR spectra; therefore transmission/absorbance vs wavenumber (cm-1) is 

plotted. The wavenumbers range from (400 cm-1 to 4000 cm-1) for organic molecules 

and they correspond to the functional groups present.  Various vibrations of the bonds 

such as stretching, stoking, bending, puckering etc can also be inferred from the 

spectra. The spectra produced by these groups may vary from strong to weak, sharp to 

broad depending on the vibrational frequency of functional group.  

Attenuated total reflection- Fourier transform infrared (ATR-FTIR) is variation of 

FTIR for solid samples that uses IR radiation through a crystal (diamond) with high 

total internal reflection for obtaining the spectra. It is widely used method to study 

immobilization of the enzymes on solid materials as it provides a concise information 

during each steps of functionalization. The nature of chemical bonds formed during 

the immobilization, their stability and their orientation can be analysed (Morhardt et 

al., 2014). The immobilization of laccase by various methods such as adsorption, 

cross-linking and encapsulated have been widely validated by FTIR (Ahn et al., 2007; 

Gahlout et al., 2017; Zhang et al., 2018).  

a. FTIR procedure for laccase electrodes 

In chapter 4, PANI and Nafion laccase electrodes were subjected to FTIR analysis to 

determine the presence of functional groups on immobilization. Perkin Elmer 

Spectrum Two FTIR-ATR Spectrometer was used at a resolution of 8 cm-1 for 25 scans 

from the range 400 to 4000 cm-1. Plain carbon electrode was used as the background. 

2.6.9 Identification of metabolites from laccase dye degradation by 

Gas Chromatography/Mass Spectrometry (GC-MS) 

GC-MS is the combination of Gas chromatography that is used to separate the 

individual compounds from a mixture and Mass spectrometry used to identify and 

quantify the compounds. This is a powerful technique to detect substances at very low 

concentration (< 0.1 ppm) and it is suitable for volatile and semi-volatile compounds.   

The sample mixture is injected through the GC inlet, where it is vapourised at high 

temperature and carried through the GC column by a stream of carrier gas (Helium, 

N2). The compounds in the mixture are separated based on the interaction with the 

stationary phase (column) and elute at various retention times. These compounds then 

enter the MS where they are ionised and detected. There are various ionisation 
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methods depending on the ion source i.e. electron ionisation (EI) that uses electrons, 

chemical ionisation that utilizes a reagent gas (methane, ammonia). 

In EI the separated compounds are hit by a stream of electrons that results in the 

fragmentation and ionisation of the molecules. Ionisation causes loss of electron that 

creates a radical cation with a positive charge M+. The mass (m) of the fragments 

divided by their charge (z) m/z represents the molecular weight of the compounds. 

After ionisation these fragments enter a detector where they are scanned against a 

broad range of mass fragments to determine the m/z values of each compound. The 

m/z values are compared with a library (NIST) containing the spectra of all compounds 

to identify them individually (Sneddon et al., 2007). The presence of a library is very 

helpful in identifying unknown components.  

GC-MS is widely used in environmental applications, forensic analysis, perfume 

analysis, medical purposes etc. In the environment it is used to identify pollutants in 

soil or water samples.  

In chapter 5 we have utilised GC-MS to identify the products acid orange 7 dye 

degraded by laccase. As discussed in Section 1.3.8.2 laccase degradation of the dye is 

through a non-specific free radical mechanism. The resulting products were unknown 

therefore, GC-MS was ideal for this study.  

a. GC-MS Analysis Procedure 

The dye degradation products from both the anode and cathode chamber were analysed 

through GC-MS. Since the samples were of aqueous in nature, they were extracted 

into organic solvent to make it suitable for the analysis.  

The samples were extracted with dichloromethane (DCM) using liquid:liquid 

extraction at a combination of pHs (acidic, neutral and basic). This modification of pH 

effectively neutralises any charged compounds (e.g. phenolics, amines etc.) and allows 

a better partition into the organic solvent. For the extraction 2ml of sample (various 

pH) was added to 2 ml dichloromethane (DCM) to allow the compounds to separate 

from the aqueous phase to organic phase. The sample at pH 7 was best extracted into 

DCM.  

The extracted sample was introduced into the GC-MS (Agilent) equipped with Restek 

Rxi-5ms (20 m x 180μm x 0.18μm) column. The initial temperature was held at 40 °C 
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for 1 minute, and then ramped at 10 °C min-1 until 340 °C which was then held for 10 

mins. The interface temperature was 280 °C.  A 1µl sample was injected on a pulsed 

splitless injection at 250 °C. The flow rate of carrier gas helium was at 1.1 ml min-1. 

Electron ionisation (EI) was used with MS source temperature at 230 °C and Quad 

temperature at 150 °C. The m/z range selected was from 25 to 750 amu. The products 

were identified using NIST mass spectra database. Internal standards were injected in 

between the samples to validate the method used.  

2.6.10 Microtox toxicity analysis 

Microtox assay is a method that utilizes the bioluminescent bacteria Vibrio fischeri to 

detect toxic pollutants in water, air, soil etc. V.fischeri possesses luminescence as a 

part of their cellular respiration and when exposed to toxic substances they inhibit the 

respiration thereby decreasing the luminescence. The rate of change in luminescence 

is directly correlated with the toxicity of the substance (Johnson, 2005). Microtox is 

used to test the toxicity of drinking water, lake and river sediments, industrial effluents 

etc.  

a. Procedure 

This assay was performed to determine the toxicity of AO7 decolourized samples in 

chapter 3 and chapter 5. Freeze dried Vibrio fischeri (NCIMB strain 13938) was 

revived by growing them in NCIMB growth medium 1537 (Oceanibulbus medium).  

Table 2.4: Composition of Oceanibulbus medium for Vibrio fischeri 

Component         Concentration (g L-1)  

Tryptone                      10  

Yeast extract                      5  

NaCl                                                                                                      10 

Sigma Aldrich sea salts ready mixture (S9983)                           14  

       

   

V. fischeri was grown in the above medium for 48 hours (22 °C, 150 rpm), the cells 

were harvested by centrifuging at 4000 g, washed twice with sterile phosphate buffer 



60 
 
 

(100 mM, pH 7.1) and suspended in 2% NaCl before starting the assay. The dye 

decolourization products of Shewanella (anode)  in chapter 3 and 5; the autooxidation 

products of Shewanella sp. and laccase dye degradation (cathode) in chapter 5 were 

analysed for their toxicity through Microtox Assay. Serial dilutions of the samples 

with 2% NaCl in the presence of the V. fischeri cell suspension was carried out in a 96 

well plate. The plate was incubated at 15°C for 10 mins and the luminescence was 

measured using a Fluostar Optima plate reader. The absolute light units were recorded 

and IC50, a concentration which inhibits 50% of light was calculated for each sample. 

The IC50 concentrations were expressed as the COD equivalent of the samples in 

chapter 1.  

2.6.11 Cyclic Voltammetry 

Electrochemical methods are important in understanding the surface reactions on the 

electrode most notably the oxidation-reduction process. These techniques are usually 

carried out in a three-electrode set-up. The electrode to be analysed is referred to as 

the working electrode. To measure the potential, a reference electrode is used whose 

potential is well established. Some of the commonly used reference electrodes are 

Standard hydrogen electrode (SHE) with potential of  ~0  mV (IUPAC, 1997), 

Ag/AgCl electrode +197 mV vs SHE and Standard Calomel electrode (SCE) +248 mV 

vs SHE etc. The current is measured between the working and a third electrode called 

counter electrode which carries out the counter reaction to the working. This three-

electrode set-up with a potentiostat is widely used in electrochemistry to study the 

interface reactions in fuel cells. One of the commonly used method for studying the 

electrode redox reaction is cyclic voltammetry (CV). CV involves sweeping the 

potential of the electrode between a wide potential range and measuring the 

corresponding current obtained (Figure 2.3). The speed at which the potential is 

scanned (scan-rate) is critical as the peak current obtained is dependent on it. The scan 

rate is dependent on the rate of the reaction to be observed with chemical reactions 

usually requiring a faster scan rate compared to biological reactions.  
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Figure 2.3: A CV of Flavin adenine dinucleotide (0.1 mM) at scan rate of 50 mV s-1 

from -0.7 V to -0.1 V. 

The oxidation/anodic reaction is characterized by a peak in the forward scan direction 

(negative to positive) and a reduction/cathodic reaction is observed by a negative 

current peak in the reverse scan direction (positive to negative). In the above reaction 

oxidation occurs at a potential of -0.3 V and reduction at -0.45 V (Figure 2.3). A CV 

can also provide information about multiple redox reactions through multiple peaks 

and reversibility of the process through presence or absence of the peaks. Laccase has 

been studied extensively using CV to understand the electron transfer mechanism (Le 

Goff et al., 2015). 

a. Laccase immobilized electrodes CV procedure 

In chapter 4, the cyclic voltammetry (CV) measurements for activity of laccase was 

performed in a three-electrode system with the working electrode as the PANI 

laccase/Nafion laccase electrode, platinum as the counter and Ag/AgCl as reference 

electrode. The CV was carried out in pH 4.5 acetate buffer (100 mM) using a 

potentiostat Keysight B2900A by cycling between potentials of 1 V to 1.5 V at             

20 mV s-1. 

b. Dye degradation products CV 

In chapter 5, CV measurements were carried out for standards 1-Amino-2-Naphthol, 

sulfanilic acid, acid orange 7 dye and the dye degradation products.  A three-electrode 
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system with the working electrode as glassy carbon, platinum as the counter and 

Ag/AgCl as reference electrode was used. The three standard compounds were 

prepared in deionised water at a concentration of 100 mg L-1. The dye degradation 

products were filtered to remove any bacterial cells to prevent interference. CV was 

carried out using a potentiostat Keysight B2900A by cycling between potentials of       

-1 V to 1.5 V at 50 mV s-1.   

c. CV of redox mediators in the presence and absence of laccase 

In chapter 6, CV measurements of redox mediators ABTS, syringaldehyde and 

acetosyringone in the presence and absence of laccase was performed. A three-

electrode system with the working electrode as glassy carbon, platinum as the counter 

and Ag/AgCl as reference electrode was used. The three mediators were prepared in 

deionised water at a concentration of 50 µM. CV was carried out using a CH 660A 

potentiostat (CH Instruments, USA ) by cycling the potential between -1 V to 1 V at 

50 mV s-1. 

2.6.12 Chronoamperometry (CA) 

Chronoamperometry involves the application of constant potential to the working 

electrode over a period of time and subsequent measurement of the current produced. 

The current obtained follows the Cottrell’s equation as given by: 

i = nFAD1/2 Cо Π
-1/2 t-1/2 

where i is the steady state current, n is the number of electrons transferred, D is the 

diffusion coefficient, F is the Faradays constant, A is the area of electrode, Cо is the 

concentration of the analyte and t is the time. In CA the current decreases with time 

because of depletion in the concentration of the analyte. In case of microbial cathode, 

the current tends to increase with time due to increased microbial metabolism in 

presence of substrate. On depletion of substrate the current gradually decreases. These 

alternate steps continue until a stable biofilm is obtained beyond which a steady state 

current is obtained independent of the substrate concentration. CA is widely used to 

enrich electrogenic microorganisms by forming biofilms on electrode surfaces. By 

applying anodic/cathodic potential to the electrode, bacteria that can donate or accept 

electrons for their metabolism are selected from the mixed microbial community.  
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a. Microbial enrichment procedure using CA 

In chapter 7, chronoamperometry technique was using in a three-electrode system to 

enrich electrogenic bacteria. A three-electrode system with Ag/AgCl as the reference 

electrode, graphite rod of 45 cm2 as the counter and graphite rod 31 cm2 as the working 

electrode was used for the enrichment of a microbial consortia. The electrodes were 

connected to a Uniscan (PG581) potentiostat with an applied voltage of -0.1 V and the 

current was recorded every 20 minutes with a UiEChem software in 

chronoamperometry mode. 

2.6.13 Microbial community analysis by PCR-DGGE 

The microbial community in chapter 6 was analysed by PCR, DGGE and sequencing 

of the 16s ribosomal DNA (rDNA) gene of the bacteria.  

a. Importance of 16srDNA 

The advent of PCR and gene sequencing have given rise to phylogenetic studies 

among various genes, species or populations. The 16s rDNA is a gene segment that 

codes for 16s rRNA that is highly conserved among different species of bacteria and 

archaea. It has been observed that even distantly related bacteria share a high 

functional similarity of 16s rRNA (Tsukuda et al., 2017). The sequencing of these 

genes provides the genus and species information of unidentifiable bacteria from a 

microbial community. This enables the identification and classification of various 

species in an environment. The 16s rRNA is 1.5 kb in length with 9 hyper variable 

regions (V1-V9) (Figure 2.4). 

 

Figure 2.4: The hypervariable regions of 16s rRNA with V3 and V4 highly targeted 

region for PCR amplification (Yang et al., 2016). 
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b. Amplification by PCR 

Polymerase Chain Reaction (PCR) is the commonly used technique to amplify a 

targeted DNA fragment for further analysis. It is a DNA replication process carried 

out invitro that requires template DNA, primers for the target region, nucleotides (A, 

T, G and C) and DNA polymerase. During the reaction, in the first step the temperature 

is increased above the melting point of DNA to separate the complementary double 

strands, a process called denaturation. The temperature is then lowered to allow the 

primers bind to the target region and this process is called annealing. Finally, the 

temperature is raised again for the DNA polymerase to add nucleotides and extend the 

primers to form a double stranded DNA (Garibyan and Avashia, 2013). Each cycle 

doubles the number of DNA copies. This process is repeated for a specified number 

of cycles to get the desired DNA concentration. The 16s rRNA has universal set of 

primers for V3-V4 regions. 

c. Denaturing Gradient Gel Electrophoresis (DGGE)  

DGGE is a molecular fingerprinting technique used to separate a mixture of PCR 

products based on their sequence composition. It is based on the stability of the 

nucleotide bonds, as adenine and thymine are bound together by two hydrogen bonds 

while guanine and cytosine are stronger with three hydrogen bonds. During the DGGE, 

a high temperature (60 °C) is maintained while the DNA migrates through a 

polyacrylamide gel containing increasing concentrations of denaturants (urea and 

formamide). The high temperature is to aid in melting the DNA and to slow it’s 

movement through the gel. As the DNA strands reach the concentrations of 

denaturants the strand unwinds by breaking the bonds between the nucleotides and this 

denaturing slows the mobility of DNA in the gel. They are then separated by variation 

in the sequences of the DNA i.e. fragments with higher G-C content would be 

denatured slowly due to the strong hydrogen bonding compared to A-T nucleotides. 

The different melting temperatures cause the sequences to migrate at different rates to 

form bands at various positions the gel (Strathdee and Free, 2013). Each band 

represents an individual gene, species or population from a mixed community. A G-C 

clamp is usually placed at the 5’ end of the forward primer during PCR to prevent 

complete unwinding of the DNA to single strands.  
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d. Microbial community analysis procedure of the enriched biofilm 

In chapter 7, the initial sludge used for enrichment and the enriched samples were 

subjected to PCR-DGGE and sequencing to identify the species.  

The DNA from the sludge sample and three (Plank, EB, EW) sample was extracted 

with Sigma Aldrich GenElute soil DNA isolation kit. The extracted DNA was tested 

for purity with A260/A280 ratio and quantified using a Nano-Drop (Nano-1000, 

Thermo Scientific, USA) spectrophotometer. The presence of DNA was then verified 

on 1% (w/v) agarose gel and then subjected to PCR.  

The PCR reaction mixture (50 µl) consisted of the following components (Fernando, 

2014): 

2X PCR master mix (Thermo Scientific) 25 µL  

Nuclease free water 22 µL 

Forward and Reverse primers 1 µL each 

Template whole genomic DNA 1 µL 

 

The V3 region of the 16s rRNA was amplified using the primer sequences: F357-GC 

(5'-CGC  CCG  CCG  CGC  GCG  GCG  GGC  GGG  GCG  GGG  GCA CGG GGG 

GCC TAC GGG AGG CAG CAG-3') and R518 (5'-ATT ACC GCG GCT GCT GG-

3') (Fernando, 2014).  

The PCR was performed using Quiagen Rotor-Gene instrument with the following 

settings: initial temperature at 95 °C for 5 mins; followed by 45 cycles of 95 °C for 

0.5 min, 58 °C for 1 min, 72 °C for 1 min, and finally at 72 °C for 7 mins. The size of 

the PCR products was confirmed by running through 1% (w/v) agarose gel.  

DGGE was performed using a CBS Scientific DASG-250 universal mutation detection 

system. The PCR products were loaded on 8% polyacrylamide gel with the a 30%-

60% range of denaturing gradient.  
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Table 2.5: The components of the denaturing gradient gel used in this study 

(Fernando, 2014). 

Components 0% 30% 60% 

Tris acetate EDTA (TAE)  buffer 50X stock 

(ml) 

0.5 0.5 0.5 

Acrylamide (40% 37.5:1 stock) (ml) 5 5 5 

Deionised Formamide (ml) - 3 6 

Urea (gm) - 3.15 6.3 

Glycerol (ml) 0.5 0.5 0.5 

 

The gel was cast using the gradient deliver system and the samples loaded with 6X – 

Promega tracking dye. Electrophoresis was carried out at 120 V for 4 hours in 1X TAE 

buffer. After electrophoresis the gel was stained by SYBR Safe Red DNA stain 

(Sigma) and viewed on a Safe Imager 2.0 Blue Light Transilluminator. The individual 

bands of interest were then excised and placed in 50 µl nuclease free water for 48 

hours to elute the DNA from the gel. The DNA was subjected to another round of PCR 

using universal primer set F338 (5'-ACT CCT ACG GGA GGC AGC AG-3') and 

R518 with the same PCR conditions as before. The PCR samples were then loaded on 

1.5% agarose gels for verification. After verification the remaining PCR product was 

purified using QIAquick (QIAGEN) PCR Purification Kit and sent for Sanger 

sequencing to Eurofins GATC Biotech, Germany.  

2.6.14 Metagenomic analysis by Illumina Next Generation 

Sequencing (NGS) method 

Next generation sequencing was performed on the samples to identify the microbial 

community. Illumina is a high throughput NGS technique that uses the sequencing by 

synthesis method. In this method, fluorescent labelled deoxyribonucleotide 

triphosphates (dNTPs) are incorporated into the DNA template during each synthesis 

cycle by a DNA polymerase. These nucleotides are identified by their fluorescence 

signal during each cycle. The process of adding each nucleotide and reading the signal 

is carried out in parallel across millions of fragments. These fragments are then 

compared against a library to identify and generate a sequence. Illumina sequencing 

has advantage over Sanger sequencing as it provides in-depth analysis of the genes 
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and produces error-free reads with high accuracy (https://emea.illumina.com). 

Amplicon sequencing is used to target a particular region or a subset of genes. 

Illumina-NGS is widely used for diverse metagenomic samples as it alleviates the need 

for DGGE separation, and the mixed microbial samples can be analysed directly by 

amplifying the 16s rRNA sequence. 

a. Sample preparation for NGS  

The initial sludge referred as “sludge”, planktonic cells referred as “plank”, biofilm on 

the graphite rod denoted as “EB” and biofilm on the wired connection known as “EW” 

were prepared for amplicon sequencing. The genomic DNA from the sludge sample 

and three (Plank, EB, EW) samples was extracted with Sigma Aldrich GenElute soil 

DNA isolation kit (Sigma Aldrich, UK). The extracted DNA was tested for purity with 

A260/A280 ratio and quantified using a Nano-Drop (Nano-1000, Thermo Scientific, 

USA) spectrophotometer. The samples were sent to NovoGene Genome Sequencing 

Company, China for 16s rRNA amplicon sequencing. 

b. Sequencing preparation carried out by NovoGene 

The DNA concentration and purity were monitored on 1% agarose gel and the 

concentration of DNA was diluted to 1ng μL-1 using sterile water. PCR amplification 

was carried out with Phusion High-Fidelity PCR Master Mix (New England Biolabs) 

for the 16s V4 region using 515F-806R primers. The PCR products were then 

quantified on 2% agarose gel and the samples that produced bright bands in the 400-

450 bp region were used for subsequent analysis. The PCR products were purified 

using Qiagen Gel Extraction Kit (Qiagen, Germany). The libraries were generated on 

NEBNext Ultra DNA Library Prep Kit for Illumina and the quality assessed on Qubit 

2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyser 2100 system. The 

samples were sequenced on Hiseq 2500 platform to generate 250 bp paired-end reads.  

c. Bioinformatics Analysis by NovoGene 

The data analysis to produce Operational Taxonomic Units (OTU) clusters was 

performed with Uparse software (Uparse v7.0.1001) for all the effective tags. For 

species annotation at each taxonomic rank Mothur software was performed against the 

small subunit ribosomal ribonucleic acid (SSU rRNA) sequences against the  SILVA 

Database (http://www.arb-silva.de/) (Threshold:0.8~1). Phylogenetic relationship in 

http://www.arb-silva.de/
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the samples was established by multiple sequence alignment using the MUSCLE 

software (Version 3.8.31). Alpha and Beta diversity analysis for Observed-species, 

Shannon and PCA (Principle Component Analysis) was calculated using QIIME 

(Version 1.7.0) and displayed with R software (Version 2.15.3). The detailed method 

of data analysis and the software used is given in the Appendix 4. 

2.6.15 Statistical analysis 

All experimental data indicated in the text and graphs are the means of triplicate 

experiments unless otherwise stated. The error bars in the graphs and values in the text 

represent the standard deviation of the mean (SD). The two tailed t-test was performed  

using SPSS statistical software package.                        
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       Chapter 3 

Decolourization of Acid orange 7 in MFC with a 

laccase-based biocathode: Influence of mitigating pH 

changes in the cathode chamber
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3.1 Background 

Laccases from fungi have the potential to be inhibited by number of environmental 

factors such as salinity, pH (Madhavi and Lele, 2009).  The pH optima for fungal 

laccase with ABTS as substrate is in the range of 3-5. pH  affects the total net charge 

of enzymes and the distribution of charges on their exterior surfaces and these changes 

affect the activity and structural stability of the enzyme.  

In a MFC the oxidation of substrate by the microorganisms in the anode produces 

protons and electrons. The incomplete transfer of protons across the membrane results 

in an acidic environment at the anode and the movement of cations to the cathode 

increases both the salinity and pH in the cathode chamber.  pH gradients have adverse 

effects on the performance of MFCs by interfering with metabolic activity in the anode 

and increasing potential losses at the cathode. According to the Nernst equation, these 

pH gradients cause high anodic equilibrium potential and/or low cathodic equilibrium 

potential that significantly lowers the cell voltage and causes a loss of ~60 mV per unit 

pH change (Rozendal et al., 2008; Popat et al., 2012). Fokina et al, 2015 have observed 

that increase in pH by one unit caused a decrease in oxygen reduction potential in the 

range of 30-80 mV in a biofuel cell using laccase as cathode catalyst (Fokina et al., 

2015).  Changes in charges with pH can also affect the activity, structural stability and 

solubility of enzymes. Salinity affects the movement of charged groups and the 

solubility (hence activity and stability) of enzymes. 

In order to increase the stability of laccase in MFC cathodes and improve MFC 

performance various strategies (Section 3.2.1) to mitigate pH changes in the cathode 

chamber were explored in this study. The investigation was carried out in the context 

of treatment of azo dye containing wastewater. 

3.2 Materials and Methods 

3.2.1. Experimental design 

The MFC used in the study was the 'H'-type reactor with a working volume of 200 ml 

in each chamber. The electrodes were constructed from carbon fibre (non-woven) with 

a surface area of 25 cm2. Four systems were set up to mitigate pH changes in the 

cathode chamber. System 1 which will be referred to as ‘Nafion’ involved using 

Nafion 117 as the ion exchange membrane. System 2 referred to as ‘pH control’ 
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involved automatically controlling the pH in the cathode through feedback control by 

addition of acid or base. System 3 referred to as ‘buffer strength’ involved using a 

buffer of higher strength 200 mM compared to other systems have used 100 mM 

acetate buffer (pH 4.5) as buffer. System 4 referred to as ‘CEM’ involved using 

CMI7000 membrane as the ion exchange membrane. These conditions are summarised 

in Table 3.1 including a rationale for each. 

Table 3.1: Summary of variables employed in this study along with the rationale for 

employing them 

MFC 

System  

pH mitigation 

measure 

Other conditions  Rationale 

   

   [1] 

Nafion 

Nafion 117 membrane Buffer in cathode chamber 

100 mM acetate pH 4.5  

High proton affinity 

and transport (Scholz, 

2008). 

 

  [2] 

   pH 

control 

Automatic pH control 

by acid (HCl) or base 

(NaOH) addition (0.1 

M) 

Buffer in cathode chamber 

100 mM acetate pH 4.5 to 

begin with;  CMI7000 

membrane 

 

   Tight control of pH. 

 

 [3] 

Buffer 

strength 

 

Buffer strength 

increase 

 

Buffer in cathode chamber 

200 mM acetate pH 4.5; 

CMI7000 membrane. 

 

Decouples effects due 

to pH changes from 

those due to salinity 

changes. 

 

  [4] 

CEM 

 

CMI7000 membrane 

 

Buffer in cathode chamber 

100 mM acetate pH 4.5 

 

Cheap and commonly 

used membrane. 

 

3.2.2 Operating conditions 

The composition in the anode was the same for all the reactors. The anode media 

components and their concentrations are detailed in Chapter 2, Section 2.3. Nafion 117 

membrane was pre-treated by heating in each of the following solutions at 60 °C for 

60 minutes: 0.1 M H2SO4, 0.1 M H2O2 and finally in deionised water. CMI7000 ion 

exchange membrane was soaked in 5% NaCl for 12 hours prior to use. The anode and 

cathode were connected to a resistor of 2 KΩ. The anode was inoculated with 10% v/v 

S. oneidensis MR-1 culture previously grown in Luria Bertani broth to log phase (OD 
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of 0.4) and the dye Acid Orange 7 was added at a concentration of 150 mg L-1. The 

anode chamber was sparged for 10 minutes with nitrogen gas to remove any dissolved 

oxygen and maintain an anaerobic environment. The cathode chamber consisted of 

commercial laccase (Sigma Aldrich, UK) from Trametes versicolor (13.6 U mg-1) in 

a buffer solution. In systems 1, 2 and 4 300 U L-1 of laccase was added to 100 mM 

acetate buffer with pH 4.5 and in system 3 300 U L-1 of laccase was added to 200 mM 

of acetate buffer at pH 4.5. The cathode chamber was maintained in aerobic conditions 

by supplying air through an air stone at a rate of 200 ml min-1.  Experiments were 

conducted at a temperature of 30 ºC over a period of 10 days.  

3.2.3 Analytical Procedures 

The chapter 2, analytical procedures (Section 2.6) details the procedures used for each 

chapter and the rationale behind performing the tests. The analytical procedures 

followed in this study were AO7 decolourization (Section 2.6.1), electrochemical tests 

(Section 2.6.2), Coulombic efficiency (Section 2.6.3), COD (Section 2.6.4), laccase 

enzyme activity (Section 2.6.5), Detection of AO7 decolourization products by RP-

HPLC (Section 2.6.6(a)), Vibrio toxicity profile (Section 2.6.10) and statistical 

analysis (Section 2.6.15). pH and ionic strength were measured using a calibrated 

benchtop combined pH and ionic strength meter (pH/CON 700 meter, Cole-Parmer, 

UK). 

3.3 Results and Discussion 

3.3.1 AO7 decolourization   

The decolourization of Acid Orange 7 was measured at the maximum absorption 

wavelength for the dye (484 nm). The overall dye removal efficiency was 89%  in  the 

reactor  containing Nafion  compared  to  82% in system 2 (pH automatically 

controlled), 80% in system 3 (increased buffer strength)  and 78%  in system 4 (CEM).  

There was greater than 50% colour removal within 48 hours for Nafion-containing and 

automatically controlled pH systems (Figure 3.1). At the end of the runs there was 

78% COD reduction in the Nafion reactor followed by 76% in both pH control and 

buffer strength reactors. The CEM reactor showed a 74% COD reduction.  
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Figure 3.1: Comparison of  Acid orange 7 decolourization rates in the various MFC 

systems over a period of 100 hours 

A combination of increased proton transport, mitigated pH changes in the cathode 

chamber (see section 3.3.2) resulted in a better performance in Nafion system which 

is also evident by a high COD reduction. Biologically, the azo bond is thought to be 

cleaved under anaerobic conditions in the anode chamber leading to decolourization, 

but the mechanism is not clear. Since azo dyes are large and usually charged, they are 

likely to be reduced extracellularly. It has been suggested that the decolourization 

process is a fortuitous one where azo dye might act as an electron acceptor supplied 

by carriers of the electron transport chain. There also suggestions that decolourization 

is due to non-specific extracellular reactions occurring between reduced compounds 

of anaerobic metabolism e.g. sulphides and the azo dyes. Others suggest that anaerobic 

reductive cleavage of the azo bond is aided by azoreductases, the electron shuttling 

being aided by soluble redox mediators e.g. flavins (Saratale et al., 2011; Fernando, 

2014). 

3.3.2 pH and salinity changes in the cathode chamber 

The initial pH was 4.5 in all the reactors and 2.5 mS cm-1 ionic strength. The MFC 

with 200 mM buffer  had an initial ionic strength of 5.32 mS cm-1. From Figure 3.2 it 

can be observed that the nafion-MFC had a better catholyte pH control with pH 
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changing from 4.5 to 5.5 as compared to CEM-MFC where the pH increased to 8.6. 

The increase in pH and the ionic strength in the cathode chamber of Nafion setup 

suggest the migration of cations to the cathode. Nafion is a sulfonated 

tetrafluorethylene copolymer that consists of a hydrophobic fluorocarbon backbone (–

CF2–CF2–) to which hydrophilic sulfonate groups (SO3
-) are attached (Mauritz and 

Moore, 2004). The negatively charged SO3
- groups have high levels of proton 

conductivity that allows H+ ions to be transported to the cathode chamber of a MFC.  

Rozendal et al, 2006 suggested that although the diffusion coefficient of the metal ions 

are much smaller than the protons for Nafion membrane, the concentration of these 

ions is 105 higher than the protons in a MFC (Rozendal et al., 2006). Increase in both 

pH and ionic strength in CEM-MFC as compared to Nafion MFC may be explained in 

terms of higher cation transport as compared to proton transport. Nafion had a better 

control over the metal ion transport from anode to cathodic chamber as compared to 

the CEM. This is evident in this study where there is an increase in ionic strength from 

2.5 mS cm-1 to 6.25 mS cm-1 in Nafion-MFC whereas CEM-MFC has an increase of 

2.5 mS cm-1 to 22.5 mS cm-1. The difference between Nafion and CEM ionic strength 

was statistically significant (p <0.05) as observed by independent sample t-test. The 

increase in ionic strength in Nafion-MFC is due to cation transport from anode as 

Nafion possesses undesired affinity for cation species other than protons (Rozendal et 

al., 2006).  

 

Figure 3.2: Initial (time 0) and final (10 days) pH and ionic strength in each setup 

over a period of 7 days 
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The increase in buffer strength from 100 mM to 200 mM maintained a similar pH 

range as the Nafion system suggesting that the increased salinity relative to the Nafion 

system may be the reason for its poorer dye decolourization efficiency and lower 

maximum power density.  

3.3.3 Current and Power generation  

The maximum voltage recorded was 250 mV for the Nafion system. The other three 

systems recorded a much lower voltage with CEM showing the lowest voltage of 140 

mV. Polarisation tests indicated a maximum power output of 16 mW m-2 for Nafion, 

13.3 mW m-2 in pH-controlled system, 11 mW m-2 and 6.5 mW m-2 for Buffer strength 

and CEM systems respectively (Figure 3.3 (a)). The internal resistances of the MFCs 

was calculated from the potential vs current density graph (Figure 3.3 (b)). Nafion 

produced the lowest internal resistance of 0.860±0.075 kΩ followed by pH control 

1±0.12 kΩ; buffer strength 1.2±0.15 kΩ and CEM 1.3±0.17 kΩ. The power density 

and internal resistances followed the trend observed by Kim et al, 2007 with Nafion 

performing better than CEM (Kim et al., 2007). The Coulombic efficiency for Nafion 

was 1.13%; for  pH control 1.07%;  for buffer strength  0.895% and  for CEM  0.71%. 

The low coulombic efficiency could be due to the consumption of electrons for the 

reduction of azo dye and accumulation of incompletely oxidised metabolites like 

acetate under anaerobic condition (Newton et al., 2009).  

The improved power density in the Nafion system could be due to the reduction of 

metal ions migration and higher proton transport to the cathode minimising pH 

changes compared to other systems. This correlates with study by Harnisch, 2008 

which suggests that number of protons transported across Nafion is higher than CEM, 

thereby maintaining the pH equilibrium in Nafion system (Harnisch, 2008).  A similar 

system with 195 mg L-1 Acid Orange 7 (AO 7) as dye, Pt as catalyst and CMI 7000 as 

ion exchange membrane gave a Pmax value of 24 mW m-2 (Fernando et al., 2012). 

Although the pH control MFC had better control over catholyte pH as compared to other 

systems, there was a significant increase in the ionic strength of the system. Based on 

salinity values the power density values for the pH control system would be expected to 

be intermediate between CEM and buffer strength systems. The fact that the power 

density of the pH control system was higher than that of the buffer strength CEM system 
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suggests that maintaining optimal pH value in the cathode chamber to be more important 

to power generation than the differences in salinity in the systems tested.  

 

 
(a) 

 
(b) 

Figure 3.3: (a) Polarisation curves for each system (b)Power density curve with 

Pmax for each system obtained by varying the external resistance from 10Ω-1MΩ 

at day 3. 
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3.3.4 Laccase Enzyme Activity at the cathode 

Figure 3.4 shows the trend for enzyme activity in all the systems over time.  Nafion 

117 membrane was able to limit salinity and pH changes in the cathode chamber 

leading to prolonged enzyme activity in comparison to other systems (p < 0.05).  Popat 

et al., 2012 argue that the ORR at pH 7 takes the form O2 + 2H2O + 4e → 4OH- and 

not O2 + 4H+ + 4e → H2O as is widely assumed. They suggest that the poor buffering 

of the catholyte and/or sluggish diffusion of hydroxide causes high cathodic 

overpotentials and is the main limiting factor of power production in MFCs (Popat et 

al., 2012). The poor performance of the buffer and CEM systems with regard to 

enzyme activity is attributed to the production of OH- ions  which have been known 

to hamper electron transfer from T1 to T2/T3 Cu sites in laccase (Xu, 1996).  

Increasing the buffer strength from 100 mM to 200 mM improved enzyme activity 

(Figure 3.4). This has also been observed in Pleurotus ostreatus laccase in which 

buffer strengths up to 100 mM  increased the rate of enzyme activity (Hassan et al., 

2012). In the case of CEM a large shift in pH as compared to the other systems, 

probably causes a big shift in the standard reduction potential of the ORR reaction 

which might lead to  H2O2 formation (instead of water) causing negative feedback 

inhibition of laccase. The effect of H2O2 inhibition was observed by (Milton et al., 

2013) in a single chamber enzymatic fuel cell employing laccase for O2 reduction. 

Figure 3.4: Laccase Activity indicating the change in absorbance over time for a 

period of 10 days 
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The pH profile for Trametes versicolor laccase is a bell shaped curve with optimum 

activity at 4.5 and decreasing gradually as the pH increases (Stoilova et al., 2010). This 

might explain the better performance of the pH control system over the buffer strength 

and CEM systems.  pH affects the total net charge of enzymes and the distribution of 

charges on their exterior surfaces and these changes affect the activity and structural 

stability of the enzyme.   

The laccase activity in this study in the nafion system remained stable for a period of 

24 hours after that constant loss in activity each day was observed. Incubated laccase 

from T. versicolor in citrate buffer (pH 5) remained stable for 48 hours after which 

there was constant deactivation with a half-life of 7 days (Rubenwolf et al., 2012).  

3.3.5 Detection of degradation products through HPLC 

HPLC analysis revealed the presence of Sulfanilic acid and 1- amino-2-naphthol, the 

aromatic products of AO7 degradation (Figure 6). The retention times were Sulfanilic 

acid Rt= 1.7 mins and 1-amino-2-naphthol Rt= 2.7 mins respectively (Figure 3.5).  

 

Figure 3.5:  HPLC analysis of degradation products with peaks representing the dye 

decolourization products with their retention time 

3.3.6 Toxicity Testing 

The Microtox toxicity assay conducted at the end of the run using Vibrio fischeri 

indicated that the degradation products were toxic. The half maximal inhibitory 

concentration (IC50) for Nafion was at 200 mg COD L-1 and around 150 mg COD L-1 

for all other samples (p < 0.05, Anova)  (Figure 3.6). The toxicity and COD are directly 
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related as high COD indicates higher reduced organic content such as the aromatic 

amines from dye breakdown  (not oxidised completely) that are toxic in nature. 

The toxicity of the degradation products sulfanilic acid and 1- amino-2-naphthol is 

widely reported in various literature but an independent study done in our lab suggests 

that this can be reduced by using a second aerobic treatment step (Fernando, 2014). 

 

Figure 3.6: Relative luminescence inhibition in relationship to COD. There was no 

statistically significant difference in the levels of toxicity in the systems tested after a 

run time of 10 days. 

3.4 Conclusion 

This study investigated various ways of mitigating pH changes in the cathode 

chambers of MFCs and their effect on laccase activity and decolourization of a model 

azo dye Acid orange 7 in the anode chamber. The methods included using Nafion 117 

and CMI7000 as membranes, automatic control of pH in the cathode chamber and 

using a high strength buffer. 

Nafion 117 membrane was able to limit salinity and pH changes in the cathode 

chamber leading to prolonged enzyme activity and improved performance of the 

system in comparison to other MFCs. The pH optima for laccase is 4.5 and there is a 



80 
 
 

gradual decrease in enzyme activity as the pH shifts from the optima. This is evident 

in MFC with CMI7000 membrane as they had the highest change in pH and ionic 

strength which contributed to low performance and decreased longevity of enzyme 

activity. The MFCs with pH control and increased buffer strength (200 mM) had 

higher power output due to better retention of enzyme activity than one with CMI7000 

membrane. Although Nafion performed better than other MFCs, its cost may hinder 

its usage in wastewater treatments and scaled up reactors.  

It is observed that pH control is essential for preserving laccase activity and increasing 

the performance of a MFC, but it does not guarantee sustained laccase activity that 

salinity increases also affects the activity and could be mitigated using a proton 

selective membrane. Therefore, it is essential to decouple pH and salinity to develop 

efficient biocathodes for MFCs. Moreover, laccase has the versatility of being 

engineered to improve the efficiency. With the advent of protein engineering, 

immobilization strategies etc. laccase holds potential to be an efficient cathode catalyst 

for oxygen reduction reaction. 

 



81 
 
 

       Chapter 4 

Laccase immobilization strategies for application as 

a cathode catalyst in microbial fuel cells for azo dye 

decolourization 
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4.1 Background 

4.1.1 Immobilization for stability and better direct electron transfer 

(DET) 

The use of enzymatic cathodes is limited by the short lifetime and stability of the 

enzymes in the system. In a fuel cell the lifetimes of the enzymes typically vary from 

7-10 days due to their fragile nature (Cooney et al., 2008). The deactivation of laccase 

from T. versicolor in citrate buffer (pH 5) at room temperature was studied by 

Rubenwolf et al. (2012) who observed that the enzyme remained stable for 2 days after 

which there was constant deactivation rate with a half- life of 7 days (Rubenwolf et 

al., 2012). In our previous study we have observed that maintaining strict conditions 

at the cathode can preserve laccase activity to some extent. These conditions cannot 

guarantee sustained activity and the enzyme cannot be reused. The previous study 

maintains the macro environment to provide optimal conditions for enzyme activity.  

The loss of enzyme activity over time is due to the loss of enzyme co-factors or 

disruption in the charges of amino acids that might result in enzyme denaturation. For 

sustained activity the enzyme must be protected from the environmental changes.   

Enzymes in the immobilized form are stable, resistant to changes in environmental 

factors e.g. pH and can be reused.  

Immobilization offers enzymes the structural stability, retention of activity, prevention 

from deactivation and protects it from external inhibitors. The immobilized enzymes 

can be reused to reduce the cost of the system. There are various types of 

immobilization depending on the enzyme, choice of support material and their 

applications. Immobilization of laccase on different support material with different 

methods have been explored widely (Davis and Burns, 1992; Lalaoui et al., 2013; Le 

Goff et al., 2015).  

4.1.2 Types of enzyme immobilization 

4.1.2.1 Adsorption 

The most simple and straight forward method of immobilization in which the enzyme 

is physically adsorbed onto the solid support. Adsorption is based on weak Van der 

Waals force, hydrophobic interaction and hydrogen bonds (Jesionowski et al., 2014). 

Since these are weak bonds the immobilization is reversible, where in the solid support 

can be reused several times even after the enzyme has been decayed. The method 
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involves immersing and incubating the solid support in the enzyme solution for a 

specific amount of time until adsorption has occurred (Mohamad et al., 2015).  

For applications in fuel cells, laccase enzyme from P. sanguineus was adsorbed on to 

buckypaper cathode and its electrochemical activity studied. The cathode polarization 

produced current density of 115.0 ± 3.5 µA cm-2 at 400 mV vs. SCE (Fokina et al., 

2015). Similarly, a hybrid microfluidic fuel cell containing Laccase/ABTS adsorbed 

on carbon to develop a Lac/ABTS/C cathode electrode. This electrode was tested in a 

fuel cell containing AuAg/C anode and produced a maximum power density of 0.45 

mW m-2 (López-González et al., 2014).  

Although adsorption is a cheap, simple and easy method of immobilization, the 

bonding is very weak to prevent the enzyme from leaching out and losing its activity.  

4.1.2.2 Covalent bonding 

 This is the most commonly used method for immobilization due to the strong bonding 

and irreversible enzyme attachment. This method utilizes the functional groups amino 

(lysine), carboxylic (aspartic, glutamic acid), thiol (cysteine) of the enzymes to form 

covalent bonds with the support material (Guisan, 2006) (Figure 4.1).  

 

 

 

 

 

 

 

   

Figure 4.1: Laccase formation of covalent bonds on carbon nano tubes (Le Goff et al., 

2015) 

Carbon nanotubes (CNT) are widely used for laccase immobilization for their good 

conductivity, nano-structure that provides effective direct electron transfer and the 
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large surface area for high enzyme loading (Le Goff et al., 2015) (Figure 4.1). 

Functionalized CNTs and nanoparticles are also used to immobilize laccase for dye 

decolourization, effluent treatment, chlorophenol degradation applications. They help 

in retaining enzyme activity in the presence of the pollutants to make it reusable for 

various cycles (Dai et al., 2016; Othman et al., 2016; Taheran et al., 2017). MWCNTs 

on cellulose nitrate support was used for covalent bonding of laccase to study the 

decolourization of Reactive Black (RB5) dye. There was 84% decolourization in the 

presence of 1-hydroxybenzotriazole (HBT) as mediator and 95% of its activity was 

retained for 10 cycles of reaction (Othman et al., 2016).  

Cross linking is a method of immobilizing enzymes on the electrode through use of 

cross-linking agent namely glutaraldehyde. It forms covalent bonds between the amine 

group (lysine) of the enzymes and any external polymers (Mohamad et al., 2015). A 

novel biocathode was fabricated by Zhang et al, 2015 using laccase coated with 

polymer polyethylenimine (PEI) followed by crosslinking with glutaraldehyde for 

decolourization of Acid Orange 7 dye. PEI has large number of amino groups that 

enables easy crosslinking with the enzyme. This biocathode had higher 

decolourization kinetics and enzyme stability compared to free laccase solution 

(Zhang et al., 2015). 

4.1.2.3 Entrapment 

 In this method the enzyme is caged in a porous matrix by covalent or non-covalent 

bonds (Datta et al., 2013). The matrix would physically limit the enzyme from leaching 

out and shields the enzyme from potential inhibitors. Polymers are suitable entrapment 

matrices as there is control over the polymerization process, modification of functional 

groups and easy co-immobilization of enzymes. The simplest form of entrapment is 

the gelation of poly anionic or cationic polymers in the presence of counter ions. 

Polymer matrix commonly used are alginate, carrageenan, collagen, polyacrylamide, 

gelatin etc. (Guisan, 2006; Mohamad et al., 2015). Entrapment of laccase in polymers 

is the most widely used method for dye decolourization application (Chhabra et al., 

2015; Koklukaya et al., 2016; Bagewadi et al., 2017). Laccase from Trametes 

versicolor was entrapped within a chitosan grafted polyacrylamide hydrogel to study 

its durability on degrading dye Malachite Green. The half-life of hydrogel 

immobilized laccase was 13 times longer than free laccase and there was greater than 

90% colour removal in both systems. The enzyme was reusable for 6 cycles (Sun et 
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al., 2015). In recent years redox polymers have been used for entrapping laccase to aid 

in DET to the electrode for fuel cell applications (Ackermann et al., 2010). Osmium 

([Os(2,2’-bipyridine)2(polyvinylimidazole)10Cl]+/2+) based hydrogels have been 

developed to entrap laccase from Melanocarpus albomyces for reduction of oxygen. 

They have produced a current density of 3.8 mA cm-2 at 0.2 V vs Ag/AgCl (Kavanagh 

et al., 2008).  

4.1.2.4 Encapsulation 

In this type of immobilization, the enzyme is caged in micelles of polymer that have 

hydrophobic interior and hydrophilic exterior. These micelles increase the enzyme 

stability compared to water or buffer (Cooney et al., 2008). Since the enzymes are pH 

dependent the micelles create a perfect environment for laccase to prevent enzyme 

denaturation from pH changes. Various dehydrogenase enzymes have been 

encapsulated by Nafion modified with tetraalkylammonium bromides. Nafion 

micelles helps in retention of enzyme activity by providing a protective outer shell. 

The dehydrogenase enzymes immobilized in Nafion and tetrabutylammonium 

bromide (TBAB) had retained activity for over 45 days (Moore et al., 2004). Laccase 

from Rhus vernificera was immobilized with Nafion modified TBAB and used as air 

breathing biocathode in a 40% direct methanol fuel cell (DMFC). The system 

produced a maximum current density of 50 mA cm-2 and a power density of 8.5 mW 

cm-2. The lifetime of the laccase biocathode was 290 hours in the DMFC (Gellett et 

al., 2010). 

Each immobilization method has their advantages and limitations (Table 4.1) 

depending on the enzyme used and the application. 
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Table 4.1: Types of enzyme immobilization with their advantages and disadvantages 

Type of immobilization Method Advantage Disadvantage 

Adsorption Enzymes are adhered to 

surface of carrier matrix 

through ionic, hydrophobic 

or van der Waals interaction 

(Jesionowski et al., 2014) 

1. Relatively simple 

2. Reduces conformational changes or 

denaturation of enzymes  

3.  Suitable for wide variety of carriers 

(Huang and Cheng, 2008) 

1. Weak bonding (Cooney et al., 2008) 

2. Exposed to microenvironment (pH, 

Temperature) 

3. Depends on affinity between enzyme 

and carrier matrix 

Covalent bonding 

(Cross- linking) 

Enzyme is attached to the 

matrix by covalent bonds 

(Guisan, 2006) .  

1. Strong Bonding 

2. No leakage 

3. Higher stability (Romo-Sánchez et 

al., 2014) 

1. Enzyme loading limited by matrix 

functional group density (Cooney et 

al., 2008) 

2. Structural and conformational change 

3. Diffusional limitation to the active site 

of the enzyme 

Encapsulation Enzyme is caged micelles of 

polymer having hydrophobic 

interior and hydrophilic 

exterior (Moehlenbrock and 

Minteer, 2017) 

1. Retains native enzyme structure 

2. Minimal enzyme requirement 

3. No chemical modification  

 

1. Not suitable for large substrates 

2. Diffusional limitation (Cooney et al., 

2008) 

3. Microcapsules are sensitive to 

surrounding medium to like pH, ionic 

strength etc. 

Entrapment 

 

Enzyme is caged in a porous 

matrix by covalent or non-

covalent bonds (Datta et al., 

2013) 

1. Retains native enzyme structure  

2. Minimal enzyme requirement 

3. No chemical modification 

1. The polymer used in entrapment might 

be charged resulting in lower activity. 

2. Difficult to control the pore size 

3. Enzyme leaching 

4. Diffusional barrier 
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4.1.3 Types of laccase immobilization used in this study 

Immobilizing enzymes on the electrode provides direct electron transfer and higher 

power output (Cooney et al., 2008). Monomers of conducting polymers like Poly 

Aniline (PANI) can be electropolymerized to form conductive layers of desired 

thickness on the surface of the base electrode. PANI has the advantage of possessing 

an exposed amine group that can be used for the cross linking with the enzyme. 

Laccase and glucose oxidase enzymes have been immobilized on polyaniline 

nanofibres for biofuel cell applications (Kim et al., 2014, 2011). 

Another method of immobilizing the enzyme is the entrapment in to beads. This 

method has advantage of retaining the native structure of enzyme as compared to that 

of cross-linking method. Laccase is a copper-dependent enzyme and immobilizing in 

copper alginate beads will retain more activity compared to other methods. 

Teerapatsakul et al. 2007 have observed that the immobilization yield and enzyme 

activity was higher when CuSO4 was used as crosslinking solution compared to CaCl2 

(Teerapatsakul et al., 2007).  

The third method of immobilization was encapsulation of laccase in Nafion micelles 

formed by modifying the polymer with an alkyl ammonium salt such as 

tetrabutylammonium bromide (TBAB) (Meredith et al., 2012). The quaternary 

ammonium cations modify the Nafion to less acidic form by replacing the protons and 

counteracting the sulfonate groups. They also increase the size of micelles and 

channels which should result in favourable enzyme immobilization. Meredith et al, 

2012 have developed this relatively new method to immobilize various enzymes and 

observed an increase in enzyme activity (Meredith et al., 2012).   

Platinum is the most commonly used cathode catalyst for high performance fuel cells. 

In recent years there has been a transition to PGM (Platinum Group Metals) free 

catalysts for oxygen reduction reactions with metal compounds impregnated with 

Nitrogen doped Carbon (N-C) serving as a good replacement for Pt. Masa et al, 2013 

have impregnated trace (1.05%) levels of Fe with nitrogen doped carbon (NC) and 

observed electrochemically that the ORR activity of  Fe-N/C matched that of Pt/C 

(Masa et al., 2013).  

In this study, laccase in the three immobilized states (Cross-linking, entrapment in 

beads and micellar encapsulation) was compared with freely suspended enzyme with 
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respect to dye decolourization, enzyme activity retention, power production and 

reusability in the cathode of a microbial fuel cell. This study aims to emphasize the 

effect of immobilization on laccase ability to perform as efficient cathode catalyst. The 

performance of the laccase electrode was evaluated against platinum and Fe-N/C 

catalysts. 

4.2 Materials and Methods 

4.2.1 Chemicals 

The Fe-N/C catalyst was obtained from Dr. J. Masa from Ruhr-University Bochum in 

Germany. The laccase used was commercial laccase (Sigma Aldrich, UK) from 

Trametes versicolor (13.6 U mg-1).  

4.2.2 Laccase Immobilization  

a. Polyaniline laccase  

Polyaniline (PANI) immobilization was carried out by electropolymerization of 0.1 M 

Aniline in 1 M Sulphuric acid with carbon fibre (2.5 cm2) as working electrode, 

titanium wire as counter electrode and Ag/AgCl as reference using Keysight B2900A 

potentiostat. A current density of 4.5 mA cm-2 for 50 seconds was used for 

electropolymerization of aniline on to bare carbon electrodes. After 

electropolymerization, PANI was functionalised using 1.25% glutaraldehyde at 37 ºC 

for 15 mins. This was followed by the addition of laccase enzyme 1 U ml-1 (60 Units) 

to the solution for cross linking for 15 mins. Enzyme assay (Section 2.6.5) of the 

laccase solution was carried out before and after cross linking to get an estimate of 

amount of laccase immobilized.  

b. Copper Alginate Beads 

The Cu-Alginate immobilization procedure was adapted from (Teerapatsakul et al., 

2007). A 3% w/v Sodium alginate was dissolved in 40 ml of water. A total activity of 

60 Units of laccase was added to the alginate solution. The above mixture was passed 

through a 21-gauge syringe into 0.15 M cross-linker copper sulphate solution. The 

beads were allowed to rest for 45 minutes after which they were washed with and 

incubated in acetate buffer. Enzyme assay (Section 2.6.5) was performed on the beads, 

the cross-linking solution to determine the immobilization yield (2.6.5(a)). 
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c. Nafion micelles preparation 

The salt modified Nafion micelles was prepared according to the method developed 

by (Meredith et al., 2012). A 2 ml of 5% w/v Nafion solution (Sigma) was added to 

78.3 mg of TBAB (tetrabutylammonium bromide) and vortexed at 1500 rpm for 10 

minutes. The solution was poured in a weighing boat and the solvent was allowed to 

evaporate. After 18 hours a yellow transparent film was formed at the bottom on the 

weighing tray. The tray was then filled with 18 MΩ deionised (DI) water and soaked 

for 24 hours to remove the excess alkyl ammonium bromide salts and HBr. The water 

was removed, and the polymer rinsed with DI water was allowed to dry. The resulting 

dry film was suspended in 2 ml ethanol.  

Immobilization of laccase in Nafion micelles was performed by dissolving the enzyme 

in 10 ml acetate buffer (pH 4.5) to achieve a total activity of 60 Units. 1 ml of the 

ethanol-polymer suspension was added to 2 ml of the enzyme solution and vortexed. 

The resultant mixture was poured on to the electrode and the solvent allowed to 

evaporate, thus forming a film on the electrode surface. 

4.2.3 Platinum and Fe–N/C Electrode Preparation 

The cathode contained a Pt catalyst layer with a Pt loading of 0.5 mg cm-2. Pt powder 

for the cathode was mixed with carbon black powder (Sigma Aldrich, UK) for a 10% 

(w/w) mixture. This mixture was suspended in Nafion solution (Sigma Aldrich) and 

the suspension was applied as a   uniform   coating   on   the cathode   electrodes   using   

a   paint   brush and allowed to air dry. The same approach was used for Fe–N/C 

catalyst electrode preparation. 

4.2.4 Experimental design 

The MFC used in the study was the 'H'-type reactor with a working volume of 200 ml 

in each chamber. The electrodes were constructed from carbon fibre (non-woven) with 

a surface area of 25 cm2. Cation exchange membrane CMI7000 ion exchange 

membrane was soaked in 5% NaCl for 12 hours prior to use. 

Four systems were setup with laccase in the cathode chamber and one without enzyme: 

System 1 with Polyaniline crosslinked to laccase electrode referred to as "PANI 

laccase" to reduce ohmic loss; System 2 with laccase entrapped in copper alginate 

beads referred to as "Cu-Alg Laccase" to reduce enzyme denaturation; System 3 with 
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laccase freely suspended in the buffer referred to as "Free laccase"; System 4 with 

laccase immobilized in Nafion micelles is referred to as “Nafion Laccase” to maintain 

activity and System 5 referred to as "Control" which consisted of dye and buffer in the 

absence of laccase. Free laccase was added at 0.3 U ml-1 (60 Units/200 ml) in the 

cathode chamber. The total of 60 Units was maintained initially for all laccase 

immobilized systems.  

The immobilized and free enzymes were suspended in 200 ml of 100 mM acetate 

buffer (pH 4.5) with 100 mg L-1 of Acid Orange 7 dye. The cathode chamber was 

maintained in aerobic conditions by supplying air through an air stone at a rate of 200 

ml min-1.  For platinum comparison System 1 with platinum coated electrode is 

referred as "Platinum and System 2 with Fe-N/C coated electrode is referred to as “Fe-

N/C". The immobilized enzymes, platinum and Fe-N/C electrode were suspended in 

200 ml of 100 mM acetate buffer (pH 4.5).  

4.2.5 Operation of the Microbial fuel cell  

The composition in the anode was the same for all the reactors. The anode media 

components and their concentrations are detailed in Chapter 2, Section 2.3. The pH of 

the anolyte was initially adjusted to 7. The anode and cathode were connected to a 

resistor of 2 kΩ. The anode was inoculated with 10% v/v S. oneidensis MR-1 culture 

previously grown in Luria Bertani broth to log phase (OD:0.4). The anode chamber 

was sparged for 10 minutes with nitrogen gas to remove any dissolved oxygen and 

maintain an anaerobic environment. Experiments were conducted at a temperature of 

30 ºC. One cycle in this study represents 5 days. The experiments were carried out in 

triplicates. 

4.2.6 Analytical Procedures 

The analytical procedures followed in this study were AO7 decolourization (Section 

2.6.1), electrochemical tests (Section 2.6.2), laccase enzyme activity and 

immobilization yield (Section 2.6.5 & 2.6.5(a)), Morphological characterisation using 

Scanning Electron Microscopy (SEM) of immobilized laccase electrodes (Section 

2.6.7), functional group analysis of immobilized electrodes by FTIR (Section 2.6.8), 

Cyclic voltammetry (CV) of the laccase electrodes (Section 2.6.11 (a)) and statistical 

analysis (Section 2.6.15). 
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4.3 Results and Discussion 

4.3.1 Characterization of immobilized laccase biocathode system 

The immobilized laccase cathodes were analysed for their functional, morphological 

and electrochemical characteristics using FTIR, SEM and cyclic voltammetry (CV) 

respectively. 

4.3.1.1 Functional group analysis of Laccase biocathodes by FTIR 

Functional group analysis was performed for polymer-based laccase immobilized 

biocathodes viz. PANI-laccase and Nafion-laccase. As both the immobilizations were 

multi-step procedures it was necessary to understand the modifications in the polymer 

during each step and the robustness of the laccase on immobilization. 

FTIR was carried out to confirm the presence of PANI functionalization on the 

electrode (Figure 4.2a). The 1314 cm-1 is typical of PANI (emeraldine base) attributed 

to C-N stretch vibration of the quinoid ring. The peak at 1175 cm-1 indicates the 

vibration mode of –NH+ of the charged polymer. After the glutaraldehyde cross linking 

this mode disappears due to the crosslinking with laccase. This mode in PANI is 

responsible for the delocalized electron and hence the conductivity. The peak at 882 

cm-1 corresponds to the N-H wag of the 1⁰ and 2⁰ amine which disappears on cross-

linking with the enzyme (Figure 4.2(a)). Another peak characteristic of the PANI 

deposited in sulphuric acid was observed at 1047 cm-1 which is due to the sulphonation 

of the ring due to the substitution of the SO3
- in place of NH3

+ (Figure 4.2a). The strong 

peak observed at 1627 cm-1 is due to the C=C in vibration within the ring (Stejskal and 

Gilbert, 2006). 

The Nafion functional group showed a CF stretch at 1134 cm-1 and 1213 cm-1 which 

is characteristic of tetrafluoroethylene backbone (Figure 4.2b). The mild peak at 1048 

cm-1 indicates the sulfonated terminal of the tetrafluoroethylene chain (Kunimatsu et 

al., 2010). On functionalization with TBAB, a peak appeared at 978 cm-1 which 

indicated the presence of 40 N+ embedded within the polymer (Figure 4.2b) (Hu et al., 

2016).  The laccase was characterized by the peaks at 1559 cm-1 and 1959 cm-1 which 

indicates the amine and carboxylic moiety of its amino acids (Figure 4.2b). For both 

PANI and Nafion immobilization, laccase was characterized by the presence of Amide 

I (1600-1690 cm-1) and Amide II (1480-1575 cm-1) for -CO and -NH stretch 

respectively (Kong and Yu, 2007).  



92 
 
 

  

                                                            (a) 

(b) 

                                                                

Figure 4.2: FTIR spectra indicating the presence of functional groups of the 

polymer and immobilized laccase (a) PANI/Laccase (b) TBAB/Nafion/laccase 
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4.3.1.2 Morphological analysis of the immobilized laccase biocathode using 

SEM 

Morphological analysis was performed for PANI laccase, Cu-Alg laccase and Nafion 

laccase electrodes. The main significance of this study was to understand the porosity 

of the Cu-Alg electrode and structural changes in the polymer (PANI, Nafion) on 

immobilization of the laccase. 

SEM images reveal the PANI fibres on the carbon electrode and the immobilized 

laccase (Figure 4.3 a-Inset). PANI appears as a polymer sheath formed over the carbon 

fibres. It is deposited primarily at close knit fibers of carbon due to higher charge 

density, with dimensions in the range of 30 x 50 µM. Crosslinking causes slight 

disruption of the membrane with the globular structure more prominent after laccase 

immobilization (Figure 4.3a). The adhesion of the globular laccase aggregates can be 

seen more prominently on the carbon fiber filaments, and thus is expected to have a 

low charge transfer resistance during the oxygen reduction reaction (ORR).  

The beads were found to have a porous morphology with pore size of around 130 nm 

to 170 nm in diameter (Figure 4.3b). EDS (Energy-dispersive X-ray spectroscopy) 

results obtained through EDS indicates the presence of Cu2+ in the beads (Figure 4.3b-

inset). The large size of the pores might have resulted in continuous release of laccase 

into the solution. 

TBAB modified Nafion was found to coalesce to form a film on the electrode surface 

(Figure 4.3c-Inset). Unlike PANI film, the Nafion membrane is evenly distributed over 

the carbon filaments. The porosity of the electrode was found to be decreased on the 

film formation, which might affect the charge density. A gelation of the Nafion 

polymer is seen on addition of TBAB. In the presence of laccase, the film appears to 

be a thick layer of membrane compared to bare TBAB Nafion (Figure 4.3c). Unlike 

PANI-Laccase, Nafion-laccase film was seen to be restricted to the surface of the 

electrode. In addition, the aggregate size of the enzyme-polymer was larger compared 

to PANI-laccase. 
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(a) 

(b) 

(c) 

Figure 4.3: SEM image of (a) Laccase-PANI Arrows indicate laccase, Inset-PANI 

(b) Cu-Alg-Laccase, Inset: EDS spectra (c) Nafion-Laccase, Inset-Nafion-TBAB 
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4.3.1.3 Electrochemical analysis of PANI and Nafion Laccase electrodes 

The electrochemical analysis of the immobilized laccase biocathodes were limited to 

the PANI-laccase and Nafion-laccase biosystems because of the conductivity of the 

polymer used. 

The redox property of the PANI-Laccase biocathode was analysed by cyclic 

voltammetry. An oxidation peak at 0.2 V indicates the presence of polyaniline on the 

electrode surface (Figure 4.4a).    

PANI did not display the multiple peaks usually observed in strong acids, as the 

electrolyte used in this study was a weak acetate buffer (Hassan et al., 2012). This 

indicates the differential ionisation state of PANI under buffered conditions. On cross-

linking with laccase an additional peak was observed at -0.32 V which might indicate 

oxygen reduction reaction (Le Goff et al., 2015). With increasing scan rate the rise in 

cathodic peak current was proportional to the square root of scan rate, indicating 

oxygen diffusion limited process (Figure 4.4a inset).  Thus, the laccase catalytic 

activity was preserved on cross-linking with PANI (Figure 4.4a).             

Nafion polymer alone did not show any characteristic peaks due to absence of the 

characteristic redox moiety. In presence of laccase the ORR takes place on the surface 

and the reduction peak appears at -0.6 V limited by oxygen diffusion (Figure 4.4b-

Inset). Nafion-laccase showed an overpotential compared to the PANI laccase, which 

might be due poor electron conductivity of the Nafion (Figure 4.4b). 
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Figure 4.4: Cyclic voltammetry of immobilized electrodes at 20 mV s-1 of (a) PANI 

and PANI cross-linked with laccase (b) Nafion-TBAB and Nafion-TBAB laccase 

system. Insets: Immobilized laccase at different scan rates. 
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4.3.2 Power generation of Laccase biocathodes  

The maximum voltage of 480±20 mV was recorded across 2 kΩ in the MFC with 

PANI laccase followed by freely suspended laccase (420±14 mV), Nafion-laccase at 

405±30 mV and Cu-Alginate laccase at 350±25 mV. The higher voltage of 

PANI/laccase MFCs compared to those with freely suspended laccase was probably 

due to the decreased proximity between the catalytic sites and the electrode, thus 

decreasing the ohmic and mass transfer resistance. Moreover, PANI is a conducting 

polymer, it decreases the charge transfer resistance of the electrode thus permitting the 

easy electron transfer. Although Nafion is also a conducting polymer, it is known to 

be an ionic conductor rather than an electron conductor (Heitner-Wirguin, 1996). In 

this study, laccase embedded in the Nafion without any mediators was less efficient in 

transferring electrons from the electrode to the enzyme compared to PANI.  The low 

voltage of Cu-Alg laccase system was probably due to the high diffusion barrier 

imposed by beads to both oxygen and electron transfer from the electrode. This agreed 

with the maximum power density which was 38.2±1.7 mW m-2 for MFCs with PANI 

and 28±1 mW m-2 for freely suspended laccase, 25.6±2.08 mW m-2 for Nafion and 

14.7±1.04 mW m-2 for laccase entrapped in beads (Figure 4.5). A maximum power 

density of only 6.5 mW m-2 was observed by Schaetzle et al. (2009) when laccase was 

immobilized in hydrogels due to the reduced electron transfer of the enzyme hydrogels 

(Schaetzle et al., 2009). Thus, it is evident that the distance between the enzyme and 

the electrode is critical in achieving good oxygen reduction and higher power output. 

PANI/laccase, Nafion/laccase and freely suspended enzyme have better contact with 

the electrode compared to the beads. The OCV for PANI laccase reached up to 900±35 

mV while for free laccase it was 700±20 mV, 640±48 mV for Nafion and 500±32 mV 

for laccase in Cu-alginate beads. The control MFC without enzyme at the cathode had 

low power density (0.6±0.08 mW m-2) due to the absence of catalyst for the oxygen 

reduction reaction. The internal resistance for MFCs with PANI was 1.4±0.15 kΩ 

which was the lowest compared to 2.1±0.12 kΩ for free laccase and 7.5±1 kΩ for the 

beads which was directly related to the above factors of ohmic and diffusion barrier. 

The internal resistance for Nafion laccase was 5.3±0.5 kΩ which might account for 

the low power output compared to PANI laccase. The coulombic efficiency was quite 
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low for all systems with PANI-laccase highest at 4.65±0.18%, Nafion with 

4.23±0.45%, Free laccase 3.83±0.11% and the lowest was Cu-Alg with 2.97±0.16 %.  

 

Figure 4.5: Comparison of Pmax (Maximum power density) for the different laccase 

based biocathode systems obtained by varying the external resistance from 10Ω-1MΩ 

on day 3. 

4.3.3 Dye decolourization in laccase biocathodes 

There was 85 ± 3% decolourization by MFC with enzyme in the freely suspended form 

compared to 75.6±2.1% for PANI laccase and 73±2% Nafion laccase over a period of 

5 days (Figure 4.6a). The decolourization in MFCs with Cu-Alg beads laccase was 

81±4%. There was >50% decolourization in the first 24 hours for free and Cu-Alg 

laccase.  Freely suspended laccase has the freedom of movement to interact with the 

dye and bring about better decolourization. On immobilization the protein becomes 

restricted to interact with the dye (Zille, 2006). In addition, the amount of enzyme 

cross-linked on the PANI laccase was lower (Section 4.3.4) than that of freely 

suspended enzyme due to the functional group density limitation of glutaraldehyde 

which also contributes to lower decolourization. Similarly, for Nafion-laccase 

limitation of the dye movement to the active site of the enzyme might have resulted in 
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lower decolourization compared to free laccase and Cu Alg-Laccase. The initial rapid 

decolourization is due to the high enzyme activity initially; the rate of decolourization 

decreases gradually as the enzyme activity decreases as shown in the enzyme activity 

graphs (Section 4.3.4).  There was significant amount of dye adsorbed on the alginate 

beads which indicates that part of decolourization is due to adsorption (Figure 4.6b). 

Control beads without laccase showed 8.2±0.5% decolourization of the dye. 

 

 

 

 

 

 

 

 

 

Figure 4.6(a): Comparison of decolourization rates of AO7 in the different laccase 

based MFC systems over a period of 7 days 

 

Figure 4.6(b):  Dye adsorption in copper alginate beads. Blue - Initial bead colour, 

Green- On adsorption of dye. 
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Similar results were observed by Daâssi et al, 2014 where 34% and 24% of dyes 

Reactive Black and Lanset Grey was adsorbed on calcium alginate beads with laccase 

(Daâssi et al., 2014). The laccase beads were reusable for two more cycles with the 

decolourization decreasing gradually each cycle (69% and 57%). There was no further 

decolourization observed after 120 hours in any of the systems.  

4.3.4 Enzyme activity of the laccase biocathodes in MFC 

The immobilization yield of the laccase immobilized systems was obtained by 

comparing the activity prior and after the immobilization. The immobilization 

efficiency was highest in Cu-Alg laccase with 73±8% yield followed by Nafion and 

PANI with 57±2% and 38±1% respectively.   

The enzyme activity was determined by ABTS assay for freely suspended laccase and 

for Cu-Alginate laccase. The relative decrease in activity for PANI-laccase and Nafion 

laccase on the electrodes were measured through cyclic voltammetry by comparing 

the cathodic peak current (Ipc) each day to the initial peak current (Figure 4.7).  Cyclic 

voltammetry of PANI laccase/Nafion-Laccase indicated a decrease in peak current 

(Ipc) with the number of days. (Figure 4.7- Inset). 

The relative percentage decrease in enzyme activity for each electrode compared to 

their initial activity is shown in Figure 4.8. PANI Laccase retained 81±2% activity 

after one MFC cycle (5 days), while freely suspended enzyme retained only 

23.8±1.8% activity after the first MFC cycle (5 days). The rate of enzyme deactivation 

was highest for freely suspended laccase with about 15.2±0.12% decrease in relative 

enzyme activity per day. The enzyme activity was also observed to be decreasing in 

Nafion-laccase with loss of activity at the rate of 6.2±0.39% per day in Nafion laccase 

compared to PANI laccase with just 3.8±0.6% per day. There was greater than 69±4% 

enzyme activity retained in Nafion-laccase after one cycle (5 days) (Figure 4.8). The 

immobilization of Nafion-laccase on to the electrode is through adsorption on the 

surface and this method involves weak interaction with the support material compared 

to crosslinking by PANI. This leaves a possibility of enzyme leaching out into the 

solution and losing its activity. The laccase activity was 5 times higher when 

immobilized with Nafion-TBAB compared to plain Nafion. Similar results was 

observed by Meredith et al, 2012 for certain enzymes immobilized with Nafion 

modified with TBAB (Meredith et al., 2012). 
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The laccase entrapped in Cu-alginate beads had an initial burst release of 25±0.8% 

within the 24 hours of immobilization in the catholyte of MFC; following this, per day 

4.3±0.6% for Cu-Alg Beads with retention of 61.5±2.5% after 5 days (Figure 4.8). The 

(a) 

(b) 

Figure 4.7: Laccase electrochemical activity with time (a) PANI-Laccase (b) 

Nafion-Laccase. Inset: Cathodic peak current vs time at 20 mV s-1 
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burst release might be due to repulsion between the negatively charged alginate (-29 

mV) and laccase (-6 mV) at pH of 4.5 as observed with the zeta potential. Mohan et 

al. 2005 observed that Horse-Radish Peroxidase (HRP) immobilized in alginate had 

poor performance due to the ionic interaction between the enzyme and alginate. Thus 

the activity retention was highest in PANI because of decrease in the entropy of the 

enzyme usually caused by the exposure of the hydrophobic residues to the water, thus 

lowering denaturation (Wong and Wong, 1992). Nafion polymer laccase retained 

better activity compared to Cu-Alg due to lower leaching of the enzyme and well 

protected microenvironment in the polymer micelle.  

 

 

 

 

 

 

 

 

 

Figure 4.8: Comparison of relative enzyme activity for each immobilized and free 

laccase system for a period of 5 days. 

4.3.5 Comparison of laccase system with the conventional Pt and Fe 

impregnated catalyst (Fe-N/C) 

The laccase biocathode MFC systems above were compared with the traditional Pt and 

Fe impregnated N-doped carbon catalyst for the power density in Shewanella 

oneidensis-based MFC. Pt and Fe-N/C produced a power density of 80±2 mW m-2 and 

54.7±2.4 mW m-2 respectively  (Figure 4. 9). 
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Figure 4.9: Comparison of maximum power density for Pt catalyst, Fe-N/C and 

PANI-Laccase. 

The highest power density produced by laccase biocathode (PANI-Laccase) (38.2±1.7 

mW m-2) was much lower than Pt (80±2 mW m-2, Figure 4.9), but factors such as cost 

of the enzyme and its concomitant dye decolourization rates serve as a major 

advantage.  The cost of platinum is 2.5 times higher than laccase. 1 gm of platinum 

costs £198 (Sigma Aldrich) compared to laccase at £70/gm. Enzyme loading in our 

study is much less compared to other studies (Teerapatsakul et al., 2007; Savizi et al., 

2012). The normalised power output for platinum was 0.04 mW/£ and 0.07 mW/£ for 

laccase. Laccase has 1.75 times higher power output per pound compared to platinum.  

The use of platinum electrodes in wastewater treatment has resulted in biofouling of 

the electrode and reduced power density (An et al., 2011). Fe-N/C and other metal 

oxides-based catalysts have shown to be cost effective and their performance is 

comparable to platinum. The possible leaching of the metal into wastewater, their 

toxicity and the environmental impacts should be taken into consideration. 
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Laccase serves a dual purpose in decolourizing the dye and carrying out the oxygen 

reduction reaction. Immobilization plays a key role in maintaining the stability, 

activity and reusability of the enzymes. The orientation of enzyme after 

immobilization is necessary for substrate oxidation and oxygen reduction. From the 

above results, PANI laccase maintained high activity and produced the highest power 

in a MFC. However, the decolourization was much less compared to the freely 

suspended enzyme. Nafion on being treated with TBAB was favourable for laccase 

immobilization. The dye decolourization observed in Nafion laccase is due the mixture 

casting of the Nafion suspension which allows the dye to pass through the membrane 

to reach the enzyme. This was observed by Schrenk et al, 2002 in a study which 

detected and quantified erythromycin on quaternary ammonium salt treated Nafion 

mixture suspensions compared to no detection in plain Nafion suspension (Schrenk et 

al., 2002).  The immobilization has the drawback of restricting protein movement and 

making it less accessible to the substrate. Similar results were obtained by Savizi et al. 

2012 with laccase in MFC, where freely suspended enzyme decolourized 77% of 

Reactive blue 221 dye compared to 70% in immobilized laccase (Savizi et al., 2012).  

PANI laccase electrodes were reusable for up to 3 cycles with the power and activity 

decreasing each cycle. Nafion and Cu-Alg laccase were reusable for two more cycles 

(Data in Appendix 1, Table A1&A2). Although copper alginate beads were proven to 

effectively decolourize and be reusable for greater than 10 cycles (Palmieri et al., 2005; 

Teerapatsakul et al., 2017), in this study the performance of the beads were poor 

producing the lowest power density of 14.7±1.04 mW m-2. The colour change (blue) 

in the anode indicated that there was movement of copper across the cation exchange 

membrane from cathode to anode which might have hindered the bacterial growth and 

decreasing the overall performance of the system. A comparison of Cu-Alg beads with 

Calcium alginate (Ca-Alg) beads was performed to evaluate the enzyme activity and 

power production. The Ca-Alg system produced better power (20.5 mW m-2) than Cu-

Alg probably due to calcium not being a heavy metal that inhibits bacterial growth 

even on migration to anode (Appendix 2, Figure A1).The enzyme activity was retained 

better with Cu-Alg beads (Appendix 2, Figure A2). The type of immobilization 

procedure is important as it affects the protein conformation and the ionic state of 

enzyme and its environment (Akertek and Tarhan, 1995). The use of laccase enzyme 



105 
 
 

provides better power and more versatility in water treatment applications as compared 

to using a fungal culture in a MFC (Lai et al., 2017). 

Thus, laccase cross-linked with PANI served as an effective system striking the right 

balance between enzyme activity, dye decolourization and power output in an MFC 

(Table 4.2). These factors make it a suitable robust catalyst in MFCs compared to Pt 

and other metal-based catalyst which are expensive and difficult to maintain. 

Table 4.2: Summary of the measured parameters for each system and the normalized 

power output 

Laccase 

immobiliza

tion 

methods 

Max. 

Power 

Density 

(mW m-2) 

Dye 

decolour

ization 

 (%) 

Relative 

Enzyme 

Activity 

after 1 cycle 

(%) 

Coulombic 

Efficiency (%) 

Power density 

per unit of 

enzyme per mg 

of dye 

decolourized 

(mW m-2 mg-1 

U-1) ** 

PANI Lac   38.2±1.7 75.6±2.1 81±2 4.65±0.18 0.11±0.003 

Nafion Lac 25.6±2.08 73±2 69±4 4.23±0.45 0.05±0.006 

Cu-Alg Lac 14.7±1.04 81±4 61.5±2.5 2.97±0.16 0.02±0.001 

Free Lac   28±1 85±3 23.8±1.8 3.83±0.112 0.03±0.0009 

 

**Power density (mW m-2) normalized with the amount of enzyme immobilized (U) 

with the amount of dye decolourized (mg) by each laccase immobilized systems. From 

the above table, PANI laccase shows the best performance when normalized with 

amount of enzyme immobilized and the amount of dye decolourized.  

4.4 Conclusion 

In this study, different methods of immobilization of the laccase were investigated 

with regards to their application as biocathodes in Shewanella based MFC. Four 

different systems were used, viz. laccase cross-linked with PANI to reduce ohmic loss, 

laccase entrapped in Cu alginate beads and encapsulated in Nafion micelles to 

maintain activity and free laccase for comparison.  Cu-Alg laccase showed better 

retention in activity after initial burst release but poor performance in power generation 
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due to high ohmic loss. Although both PANI and Nafion are conducting polymer, 

PANI was a better electron conductor and aided transfer of electrons from electrode 

to laccase efficiently compared to Nafion. PANI laccase showed a higher power 

density as compared to both Cu-alginate beads and freely suspended laccase due to the 

proximity of the enzyme to the surface of the electrode. The decolourization was 

highest in free laccase due to less orientation restriction of the active site, and lowest 

in PANI may be due to low amount of enzyme immobilized and unfavourable 

orientation for dye interaction. The Cu-alg and Nafion decolourization efficiency was 

median between free laccase and PANI laccase. Overall PANI laccase showed best 

performance and can be concluded to be economical due to its superior power and 

reusability with lower amount of enzyme as compared to Cu-alginate, Nafion and free 

laccase. Many studies have used large enzyme loadings of 500 U ml-1 to 2000 U ml-1 

and mediators for dye decolourization and higher power output in MFC. In this study, 

we have utilised much less enzyme loading (maximum 0.3 U ml-1 for free laccase) in 

the absence of mediators to bring about decolourization of dyes and produce a good 

power output which served as major advantage compared to Pt and metal oxide 

catalyst-based cathodes. The unstable nature of biological cathodes to wastewater is 

the major drawback for its efficiency in microbial fuel cells. Laccase has the versatility 

of being engineered for immobilization to extend their active lifetimes and a catalyst 

for ORR to provide the comparable efficiency to that of Pt. 
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    Chapter 5 

Degradation of Acid orange 7 in a microbial fuel cell: 

comparison between feeding the dye in the anode vs 

the cathode 
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5.1 Background 

In a MFC there are two modes of decolourization, at anode and at cathode. At the 

anode under anaerobic conditions the -N=N- bond of the azo dye is cleaved in the 

presence of microorganisms to form toxic aromatic amines (Hou et al., 2011; Fernando 

et al., 2012). These aromatic amines are recalcitrant in nature and do not undergo 

further degradation in that environment. They can be further reduced to less toxic 

products in the aerobic stage.  

Laccase has been widely used for various types of dye decolourization studies 

(Abadulla et al., 2000; Daâssi et al., 2013; Ramírez-Montoya et al., 2015). The major 

advantage of laccase is that it degrades the dye by non-specific free radical mechanism 

to form phenolic products thereby avoiding the formation of aromatic amines 

(Chivukula and Renganathan, 1995). In MFC, laccase was employed at cathode for 

oxygen reduction reaction (ORR) and dye degradation by (Bakhshian et al., 2011; 

Savizi et al., 2012). The aerobic degradation by laccase yielded products that are less 

toxic than the original dye. 

The individual decolourization in anode and at cathode was discussed in detail in 

literature review Section 1.3.7.3.   

Though the above studies have investigated azo dye decolourization in the anode and 

others in the cathode, it is not clear which approach is the best as different studies used 

different organisms, operating conditions, cathode catalyst etc, making a direct 

comparison of decolourization rates for each system difficult (Table 5.1). Therefore, 

this study aims to understand the mechanism of dye decolourization in both the 

processes (anode & cathode), and the nature of products formed, while operating under 

same conditions. 

This study compared the performance of MFCs treating Acid Orange 7 under 

anaerobic condition in the presence of bacteria at the anode of MFC and in aerobic 

condition in the presence of laccase enzyme at the cathode of MFC. The rate of dye 

decolourization, power density, COD reduction, degradation products and their 

toxicity were used as performance indicators.  
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Table 5.1: Features of dye degradation in the anode vs cathode of MFCs. 

                      Anode dye degradation                 Cathode dye degradation 

I.   Microbially mediated 

II. Reductive process forming aromatic 

amines 

III. Mechanism not clear- Azo 

reductase or reduction by exogenous 

mediators or reduction by sulphides 

(Section 1.3.6 c) 

IV. Microbes can be inhibited by parent 

dye or the dye degradation products. 

V. Complete mineralisation of dye is 

unlikely.  

I. Electrochemically mediated if the dye 

possesses a high redox potential or 

applying external power to the system 

II. Can involve oxidation of dye by 

laccase or other enzymes with oxygen as 

the terminal electron acceptor 

III. Dye or contaminants in wastewater 

may inhibit the enzyme activity 

IV. Complete mineralisation of dye is 

possible. 

 

5.2 Materials and Methods 

5.2.1 Experimental Design 

The MFC used in the study was the 'H'-type reactor with a working volume of 200 ml 

in each chamber. The electrodes were constructed from carbon fibre (non-woven) with 

a surface area of 25 cm2. Three MFC systems were setup. System 1 was dye in the 

anode with Shewanella oneidensis MR1 and laccase enzyme in the cathode, 

subsequently to be referred to as " MFC Dye Anode ". System 2 was with S. oneidensis 

in the anode and laccase in the presence of dye in cathode, subsequently to be referred 

to as " MFC Dye Cathode" and System 3 with absence of dye in both chambers known 

as MFCControl. Crude commercial laccase enzyme (10 Units mg-1) obtained from 

Enzyme India Pvt. Ltd, Chennai was used at an activity of 0.3 U ml-1 freely suspended 

in 200 ml of 100 mM acetate buffer (pH 4.5).  
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5.2.2 Operating conditions 

The anode media components and their concentrations are detailed in Chapter 2, 

Section 2.3. The anode and cathode were connected to a resistor of 2 kΩ. The anode 

was inoculated with 10% v/v S. oneidensis MR-1 culture previously grown in Luria 

Bertani broth to log phase (OD: 0.4). The anode chamber was sparged for 10 minutes 

with nitrogen gas to remove any dissolved oxygen and maintain an anaerobic 

environment.  

The cathode chamber was maintained in aerobic conditions by supplying air through 

an air stone at a rate of 200 ml air per min.  Experiments were conducted at a 

temperature of 30 ºC. All experiments were performed in triplicates.  

5.2.3 Analytical procedures 

The methods section details the analytical procedures and the rationale behind 

performing the tests. The analytical procedures followed in this study were AO7 

decolourization (Section 2.6.1), electrochemical tests (Section 2.6.2), Coulombic 

efficiency (Section 2.6.3), COD (Section 2.6.4), quantification of pyruvate 

consumption by Ion-exchange chromatography (Section 2.6.6 (b)), GC-MS analysis 

of dye degradation products (2.6.9), Vibrio toxicity profile (Section 2.6.10), Cyclic 

voltammetry of anode decolourized products (Section 2.6.11(b)),  and statistical 

analysis (Section 2.6.15).  

5.3 Results and Discussion 

5.3.1 Power Generation and COD reduction 

The open circuit voltage (OCV) was highest for MFCControl with 1.3 V followed by 

MFCDye Cathode with 950 mV and 930 mV for MFC Dye Anode. The maximum power 

density obtained from MFC Dye Anode was 42.5±2.6 mW m-2 and 50±4 mW m-2 for 

MFCDye Cathode and 57.8±1.6 mW m-2 for MFCControl. (Figure 5.1). The lower power 

density in case of dye in the anode indicates that the presence of AO7 had a significant 

effect on the growth rate of S. oneidensis. One of the major reasons affecting the cell 

viability might be the accumulation of anaerobic degradation products of azo dyes 

such as aromatic amines which are known to be toxic to the bacteria. Moreover, it has 



111 
 
 

been reported that the reduction of azo dyes by S. oneidensis under anaerobic condition 

is enhanced by mediators such as flavins and quinones (von Canstein et al., 2008; Le 

Laz et al., 2014).  These flavins produced by Shewanella are also responsible for the 

extracellular electron transfer to the electrode at the anode (Marsili et al., 2008). The 

competition of electrons from the flavins between dye and electrode might result in 

lower power in the MFCDye Anode. Another possible mechanism for lower power is as 

suggested by Sun et al., 2013, that in biological decolourization of dyes in MFCs a 

portion of the available electrons are transported to electrode while another portion of 

electrons are used for reductive decolourization of dyes. The absence of dye in both 

chambers increased the power in MFCControl due to bacteria shuttling electrons to the 

electrode rather than the dye and at cathode the electrode is the sole electron donor to 

laccase. The internal resistance of MFCControl was lowest with 1.5±0.07 kΩ followed 

by the MFCDye Anode with 1.72±0.11 kΩ and highest for MFCDye Cathode with 1.9±0.13 

kΩ. The presence of dye in both the chambers, decreases the overall ionic conductivity 

of the solution due to the low diffusion coefficient of the dye compared to other ions, 

thus increasing the internal resistance (Hori et al., 1987).  

There was 80.4±1.2% reduction in COD for MFCDye Cathode which was closely 

followed by the control system with 79.2±1.3% reduction for MFCControl and finally 

69±2% for MFCDye Anode. The Coulombic efficiency (CE) of the systems also followed 

the trend with 5% for MFCControl,  4.7%  and 3.6% for MFCDye Cathode and MFCDye 

Anode respectively. Overall, on comparing the voltage, CE, power density and COD 

MFCControl performance was the best. 

In the absence of dye at cathode, laccase accepts electrons from the electrode for 

oxygen reduction reaction. The redox potential of the dye (0.653 V vs SHE) is lower 

than that of laccase at 0.78 V vs SHE, therefore, in the system MFCDye Cathode the dye 

is oxidized easily for electrons that are used for ORR. The lower power in MFCDye 

Cathode than MFCControl might be due to the inhibition of the enzyme activity by the 

dye or its degradation products (Appendix 3, Figure A3). Since the bacterial electron 

transfer is quite slow, the anode reaction acts as a rate limiting step in the MFC. As a 

result, whilst there is competition between the dye and electrode for electron transfer 
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to laccase or inhibition of laccase by the dye, the power is not significantly affected 

by the cathode reaction. 

(a) 

(b) 

Figure 5.1: (a) Comparison of MFC performance for all MFC systems obtained by 

varying the external circuit resistance (10Ω –1MΩ) (b) Polarisation curves for all the 

systems used in the study conducted on day 3. 
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5.3.2 AO7 dye decolourization 

The decolourization of Acid Orange 7 was measured at the maximum absorption 

wavelength for the dye (484 nm). The rate of decolourization was faster in the MFCDye 

Cathode compared to MFC Dye Anode. There was >80% decolourization within the first 

24 hours for laccase compared to 20% for MFC Dye Anode (Figure 5.2). The overall dye 

decolourization in 96 hours was 97±2% for MFCDye Anode and 98±3% for MFCDye 

Cathode.  The enzyme activity graph in Appendix 3 indicates a decrease in 20% activity 

in the first 24 hours. In case of laccase the decrease in activity over time contributes 

to high decolourization during the initial period which then gradually decreases.  In  

MFCDye Anode, the bacteria have an initial lag phase (slower decolourization) followed 

by a log phase where there is an increased decolourization rate. Hence the time taken 

to reach maximum power density was also slower in case of dye in the anode as 

compared to the dye in the cathode.   

Anaerobic treatment of azo dyes involves the reductive cleavage of the N=N to form 

colourless aromatic amines. In the anode, azo dye under anaerobic conditions is 

reduced by Shewanella via azoreductase enzyme or by the Mtr respiratory pathway. 

Initially an azo reductase enzyme was speculated to be responsible for degradation of 

azo dyes by Shewanella, but these enzymes were effective only with cell extracts and 

not with intact cells. Thus, establishing that decolourization is mainly an extracellular 

process (Brigé et al., 2008; Hong and Gu, 2010). Recent studies have shown that Mtr 

respiratory pathway in S. oneidensis MR1 is responsible for azo dye reduction under 

anaerobic condition in which OmcA/MtrC plays the role of “azo reductase”. Flavins 

have been reported to aid and enhance the decolourization process (Cai et al., 2012). 

This is in concurrence with the lower power obtained for dye in anode due to the dye 

being the alternative electron acceptor to the electrode. 
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The decolourization by laccase follows an entirely different mechanism than the 

bacteria. There is production of free radicals by laccase enzyme that carries out non-

specific attack of the dye at various positions to yield a number of products. The 

mechanism of laccase dye degradation is given in details with schematics in the 

introduction Section 1.3.8.2 and the degradation products are discussed in the GC-MS 

section 5.3.6. The dye decolourization was faster with enzyme due to the faster 

reaction kinetics of enzyme compared to the bacteria.  

Figure 5.2: Decolourization of AO7 in the anode (S. oneidensis) and cathode 

(Laccase) of MFC over a period of 4 days 

5.3.3 Pyruvate consumption and growth curve of S. oneidensis MR1 

The rate of pyruvate consumption by Shewanella oneidensis MR1 at the anode was 

measured by Ion Chromatography to establish the relationship between utilization of 

carbon source, bacterial growth and the dye degradation. The concentration of 

pyruvate (Rt:12.4) decreased rapidly every three hours (Figure 5.3(a)). The lag phase 

in the first six hours is due to the bacterial acclimatization to the new media, from 9hrs 

there is rapid decrease in the pyruvate concentration until it is negligible by 35 hours 

(Figure 5.3(a)). The growth curve for S. oneidensis MR 1 (S.O. MR 1) indicates the 

log phase increasing consistently with the pyruvate consumption and by 24 hours it 

has reached the stationary phase (Figure 5.3 (b)). The growth rate of S. oneidensis is 

slower in the anaerobic condition compared to the aerobic state (Wang et al., 2010).  
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(a) 

(b) 

 

Figure 5.3: (a)HPLC analysis of Pyruvate consumption by MR1 for each time 

interval (b) Comparison of  MR 1 growth rate with pyruvate concentration. 
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There was gradual reduction of dye during the first 24 hours, but the rate of dye 

reduction was not concomitant with the bacterial growth rate (Figure 5.2 & 5.3 (b)). 

This suggests that the dye is not utilized by the bacteria for carbon source and the 

decolourization is a fortuitous one that happens during the bacterial metabolism 

reactions. The increase in dye reduction after 24 hours indicates the pyruvate 

metabolism by bacteria might have yielded reducing equivalents capable of dye 

reduction. The catabolism of pyruvate by S. oneidensis MR1 (S.O. MR1) produces 

NADH, flavin mononucleotide (FMN), riboflavins that aid in the extracellular electron 

transfer (EET) pathway (Kouzuma et al., 2015; Marsili et al., 2008). The reductive 

cleavage of the azo bond by “azoreductases” is aided by electron shuttling through 

soluble redox mediators e.g. flavins (Gomaa et al., 2017). The reduction of dye after 

pyruvate metabolism indicates these redox mediators produced might have aided in 

the decolourization. This also correlates with the low power for dye anode as part of 

electrons were shuttled to the dye rather than the electrode.  

5.3.4 Electrochemical analysis of dye degradation products 

The anode dye degradation products were analysed using cyclic voltammetry for the 

presence of reduction end products. The CV was compared with the standard 

compounds viz. acid orange 7, sulfanilic acid (SA) and 1-amino-2-naphthol (1-A-2-

N). Standard sulfanilic acid showed strong oxidation/reduction peaks at 0.94 V/0.811 

V and a weak oxidation/reduction couple at 0.27 V/0.211 V vs Ag/AgCl (Figure 5.4 

(a)). The CV of initial AO7 dye produced a redox couple at 0.89 V/0.7 V and 0.11 V 

/-0.08 V vs Ag/AgCl respectively (Figure 5.4 (a)). The shift in the peak potential is 

due to the presence of both SA and 1-A-2-N in the parent dye. The S. oneidensis 

degraded dye product showed a characteristic peak at 0.96 V indicating the presence 

of sulfanilic acid (Figure 5.4 (b)). There was no peak observed for 1-A-2-N, which 

might be the result of limited solubility of the compound in water.  Thus, it can be 

inferred that mechanism of dye degradation in anode is through the cleavage of the 

N=N azo bond separating the two rings. On the other hand, the laccase dye degradation 

at the cathode did not show any characteristic redox peaks indicating a completely 

different mechanism (Figure 5.4(b)). Since the redox peaks for both AO7 and 

sulfanilic acid were absent it can be presumed that the degradation involves a ring 

cleavage thus releasing the characteristic functional groups 
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(a) 

(b) 

Figure 5.4: Cyclic Voltammetry of (a) parent dye (AO7), standards SA and 1-A-2-

N (b) anode and cathode decolourized products, at 50 mV s-1 vs Ag/AgCl. 

 

 



118 
 
 

5.3.5 Auto-oxidation of S. oneidensis (anode) decolourized products 

The anaerobic dye degradation products (colourless) on exposure to air regained 

colour. This phenomenon of colour formation from decolourized products was 

referred to as auto-oxidation (Figure 5.5).  

 

Figure 5.5: The depiction of initial coloured dye together with the decolourized 

products and the coloured auto-oxidation products. 

To determine the possibility of auto-oxidation occurring in other azo dyes the 

anaerobic decolourization of Congo Red (CR), a diazo dye, was carried out in the 

presence of S. oneidensis to observe the stability of the decolourized products. Similar 

to AO7, the CR decolourized products were also auto-oxidized on exposure to air. 

Initially it was hypothesized the colour formation might be due to the diazotization (-

N=N-) of the auto-oxidized products to form the initial dye. Therefore, a UV-scan of 

the decolourized products, auto-oxidized products and the initial dye for both AO7 and 

CR was performed. The scan results revealed that the colour was not due to the 

formation of -N=N- present in the initial dyes (Figure 5.6).  
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Figure 5.6: UV-Scan of AO7 and CR initial dye, decolourized products and Auto-

oxidation products indicating the colour in the auto-oxidation products was not a result 

of diazotization. 

The auto-oxidation effect on anaerobic azo dye degradation products was first 

observed by (Kudlich et al., 1999). They determined that mono and diazo sulfonated 

dyes that produced aminohydroxynaphthalenesulfonate (AHNS) by-products were 

unstable, sensitive to oxygen and underwent dimerization to form coloured products. 

The auto-catalysis of Acid Orange 7 (AO 7) studied by (Carvalho et al., 2008) detected 

that 1-amino-2-naphthol, formed by reductive cleavage of the dye, when exposed to 

aerobic conditions yielded products that are brown in colour. 

The nature of auto-oxidation products of AO7 has not been discussed in literature thus 

far. A GC-MS analysis of these products was performed to identify and determine the 

pathway that leads to the formation of colour.  

 

 

 



120 
 
 

5.3.6 GC-MS analysis of dye degradation products 

5.3.6.1 S.O MR1 (anode) dye degradation products 

The mechanism of the dye degradation analysed by CV was further confirmed with 

GC-MS. Under anaerobic condition in MFCDye Anode, S. oneidensis was observed to  

symmetrically cleave the azo bond resulting in the formation of 1-amino-2-

naphthalenol (1-A-2-N) (M+H+=159, Rt: 18.13) and aminobenzene sulfonic acid 

(sulfanilic acid). Sulfanilic acid (SA) being highly polar molecule was not detected in 

GC-MS. 2-amino-1-naphthalenol (M+H+=159, Rt: 18.49) was also present in the 

degradation products of Shewanella indicating the formation of various aromatic 

amine metabolites during the reductive decolourization of AO7 (Figure 5.7). The 

presence of aminobenzenes under anaerobic dye decolourization of AO7 was also 

observed by (Fernando et al., 2012). In chapter 3, HPLC analysis of anode products 

revealed the presence of 1-A-2-N and SA which corroborates with the GC-MS results.  

5.3.6.2 Auto-oxidation products and mechanism 

The initial products obtained were the same as in anode dye decolourized i.e., 1-amino-

2-naphthalenol (1-A-2-N) (M+H+=159, Rt: 18.13), aminobenzene sulfonic acid 

(sulfanilic acid), 2-amino-1-naphthalenol (2-A-1-N) (M+H+=159, Rt: 18.49). On 

exposure to oxygen, 2-amino-1-naphthalenol was oxidized to 2-amino-1,4-

naphthoquinone (2ANQ) (M+H+= 173, Rt: 15.75) (Figure 5.7). The 2ANQ further 

underwent substitution reaction with carboxylic acids (acetate from bacterial 

metabolism) in the reaction medium to produce 2-methoxy-1,4-naphthoquinone 

(2MNQ) (M+H+= 188, Rt: 14.84) an orange coloured product (Figure 5.7). 2MNQ is 

an orange colour organic pigment originally derived from the soil (Lambert et al., 

1971). The colour formation in the auto-oxidized products might be due to the 

presence of the above pigment.  

The other quinones observed in the GC-MS of auto-oxidation products were 4-

quinolinecarboxyaldehyde (M+H+= 157, Rt:11.61) and 4-Thio-methyl-1,2-

naphthoquinone (M+H+=176, Rt:14.43) with 1,2- naphthoquinone being a product of 

1-A-2-N oxidation (Figure 5.7). A clear mechanism of sulfanyl group (SO2-) addition 

could not be further explained. Quinones are precursors for anthraquinone dyes and a 

number of these compounds have a chromophore moiety (Matsuoka, 1990). The 

production of quinone intermediates during anaerobic degradation of dyes is seen in 
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number of mono and diazo dyes. In general, quinones possess redox mediating 

properties and aid in azo dye decolourization by transferring electrons between dye 

and bacteria (Van der Zee et al., 2000).  

 

Figure 5.7: Putative dye degradation pathway by S. oneidensis MR 1 at the anode and 

the auto-oxidation mechanism based on the intermediate products obtained from GC-

MS analysis 

The presence of a variety of quinone intermediates and their subsequent conversion 

products that yield a colour clearly indicates the mechanism of colour formation due 

to auto-oxidation. 
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This was also observed by Kudlich et al., (1999) in which the naphthalene derivatives 

of azo dye degradation underwent auto-oxidation to form dimers which resulted in 

colour formation. In their study the oxidation of aminohydroxynaphthalenesulfonates 

(AHNS) to naphthoquinonesulfonates and their subsequent dimerization developed a 

coloured product. The substitution reaction with carboxylic acid might be similar to 

that of 5-hydroxy-1,4-naphthoquinone when treated with acetic anhydride to form 5-

hydroxy-3-methoxy-1,4-naphthoquinone (Blauenburg et al., 2012). 

5.3.6.3 Laccase dye degradation products and mechanism 

The first step in laccase degradation mechanism for system MFCDye Cathode is the 

decolourization of the Acid Orange 7 dye by asymmetric cleavage of the -N=N- bond 

to form intermediates Naphthalen-2-ol and (4-sulfophenyl) diazenyl (Figure 5.8).  

The intermediate Naphthalen-2-ol undergoes aromatic ring cleavage to produce 1,2-

Benzenedicarboxylic acid (Phthalic acid) (M+H+=149.1, Rt:9.50). Pthalic acid 

functional group is further oxidized to form benzoic acid (M+H+=105, Rt: 7.89) 

(Figure 5.8).  

The other intermediate (4-sulfophenyl)diazenyl was subjected to oxidative 

desulfonation to form phenyldiazenyl. Phenyl diazene radical rapidly loses nitrogen 

(N2) as gas molecule and the nucleophilic substitution of hydroxyl radical (OH-) on 

the aromatic ring results in the formation of phenol. Phenols are the natural substrates 

for laccase therefore the oxidative ring cleavage of phenol ring was carried out to form 

fatty acid such as hexanoic acid (M+H+=60, Rt: 4.95) (Figure 5.8). Hexanoic acid is a 

non-toxic compound that is present in food products available for human consumption. 

The benzoic acid pathway was also observed by (Fernando et al., 2014) for aerobic 

degradation of AO7 suggesting that mono-oxygenase enzymes from bacteria were 

capable of the degradation pathway. Due to the slow bacterial metabolism, only the 

larger intermediate products were observed in their study.  The rapid laccase reaction 

in this study led to the formation of smaller and simple products.  

The symmetric and asymmetric cleavage depends on the dye structure and the type of 

enzyme used. It is suggested that bacterial laccase with low redox potential are not 

capable of cleaving the azo bond. (Pereira et al., 2009) observed that laccase from 

Bacillus subtilis oxidized mono azo dye Sudan Orange G to produce oligomers and 
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polymers by radical coupling reactions without the cleavage of the azo bond. 

Therefore, fungal laccase with high redox potential can effectively cleave the azo 

bonds to bring about decolourization.  

 

 

Figure 5.8: Putative laccase dye degradation pathway deduced from the intermediates 

form GC-MS analysis 

The azo dye degradation by laccase follows asymmetrical ring cleavage followed by 

oxidative deamination, desulfonation, demethylation depending on the structure of the 

ring (Telke et al., 2010) . The formation of phenyl diazene radical and loss of N2 was 

also observed by (Chivukula and Renganathan, 1995)  for degradation of phenolic azo 

dyes by P. oryzae laccase. The attack of dioxygen on phenolic ring cleavage by laccase 
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is widely seen in oxidation of lignin products and catechol (Crestini and Argyropoulos, 

1998; Chen et al., 2017). Laccase oxidation of dye is through highly reactive free 

radicals that are involved in the above reactions and since they are non-specific a wide 

number of products are formed. This mechanism produces phenol-based products 

thereby avoiding the formation of toxic aromatic amines (Figure 5.8).  

5.3.7 Toxicity Analysis 

The toxicity of the samples was analysed by V. fischeri toxicity assay to determine the 

percentage inhibition of the dye degradation products to the bacterial cells. The 

samples were subjected to dilutions and the corresponding inhibition values were 

plotted against each dilution (Figure 5.9(a)).  

(a) 

 

Figure 5.9(a): V. fischeri toxicity profile indicating the % inhibition for each 

dilution for all the products 

It is evident that the auto-oxidation products have higher inhibition compared to anode 

(MFCDye Anode) and cathode (MFCDye Cathode) treated products. In the initial 

concentration, cathode treated products are comparatively more inhibitive than the 
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anode products. As seen in the graph on increasing the concentration, the anode 

products have an upward trend while laccase products are quite constant throughout. 

As the concentration of the anode effluents increase the toxicity increases. Similar 

trend was observed for the auto-oxidation products.  

Laccase degradation of dye is through a free radical mechanism that produces a huge 

number of products (phenol, benzoic acid, hexanoic acid) compared to Shewanella 

degradation. These products are monocyclic hydrocarbons that could be degraded 

readily in next stages of water treatment. The LD50 concentration of benzoic acid for 

mammalian cells is 2.3 gm/Kg (MSDS, Sigma Aldrich). The overall concentration of 

the dye is 100 mg/L in this study. Therefore, the concentration of dye breakdown 

would be expected to be lower than 100 mg/L, which is a very low concentration to 

exhibit toxicity. The horizontal curve for cathode products might be due to the 

formation of phenol-based products by laccase that are toxic to the V. fischeri or the 

consumption of the dissolved oxygen by laccase enzyme that created anoxic 

conditions for the bacteria. Vibrio fischeri is a highly sensitive organism and it’s EC50 

for phenol is 23 mg L-1 (Fernando et al., 2014). 

In contrast, 1-amino-2-napthalenol obtained from by reductive cleavage of the dye by 

S. oneidensis is known to be xenobiotic and are classified as possible human 

carcinogens by the International Agency for Research on Cancer (Group 1 or 2B) and 

the European Union (Category 1A or 1B). In Japan, 20% of workers involved in the 

production of aromatic amines developed uroepithelial cancer (Hamasaki et al., 1996). 

The auto-oxidation of these amines yielded products that are more toxic than the parent 

amines.  

The auto-oxidation products showed highest toxicity to the Vibrio cells due to the 

presence of naphthoquinone intermediates (Figure 5.9 (a) & 5.7). Naphthoquinones 

are highly reactive oxidative species that are known to cause cellular oxidative stress 

that affects the signalling pathway in the cells (Klotz et al., 2014). Quinones are used 

for medicinal purposes due to their anti-fungal, anti-bacterial and antioxidant 

properties. They are used in cancer drugs due their ability to form Reactive oxygen 

species (ROS) that attack and destroy the tumour cells (Verrax et al., 2011).  

The toxicity measurements are a relative comparison between each system. There are 

various methods for testing the toxicity depending on the application of the discharged 
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effluents. In this study, Microtox assay was utilized due to its high level of sensitivity 

compared to methods like MTT.  

5.4 Conclusion 

There are several azo dye degradation pathways depending on the treatment methods. 

In the current study two different systems i.e. MFC with dye at the anode in presence 

of S. oneidensis and MFC with dye at cathode in the presence of laccase, were explored 

for AO7 degradation. A MFC system with absence of dye in both chambers was used 

as control.  The power density was highest for MFCControl  with 57.8±1.6 mW m-2 

followed by MFCDye Cathode with 50±4 mW m-2 and finally for MFC Dye Anode it was 

42.5±2.6 mW m-2. The same trend was followed for CE and COD respectively. The 

time required for decolourization was longer with bacteria (anode) where only 20% 

decolourization was obtained after 24 h whereas there was >80% for laccase during 

the same time. The overall decolourization was greater than 95% in both systems. The 

anode decolourized products were found to be unstable when exposed to oxygen 

resulting in autooxidation and regaining of the colour. On analysing the dye 

degradation products in GC-MS, it revealed simpler compounds such as benzoic acid 

and hexanoic acid for laccase, whereas S. oneidensis produced aromatic amines. The 

colour formation in auto-oxidation was likely due to the presence of quinones 

produced by oxidation of the aromatic amines. These products were much more toxic 

than the anode and cathode solutions. Therefore, from this study it was observed that 

laccase based MFC-dye decolourization systems are best suited for degradation and 

detoxification of azo dyes while producing good power output. Thus, the current study 

also provides an insight into the different mechanisms and pathways leading to 

maximal degradation of the azo dyes. To develop an ideal MFC system for dye 

degradation, further studies need to be carried out to prevent auto-oxidation of the 

treated products and feed anode effluents to the cathode or vice-versa to obtain 

complete degradation of the dyes. 
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         Chapter 6 

Role of laccase redox mediators in dye decolourization        

and power production in a MFC
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6.1 Background 

The redox potential of the substrate should be lower than that of laccase for oxidation 

to be thermodynamically feasible. The redox potential range for fungal laccase is 

between 0.4 V-0.8 V vs SHE, which is suitable for oxidation of phenolic substrates. 

For non-phenolic substrates that have a redox potential >1.3V vs SHE and cannot be 

oxidized directly by laccase; a redox mediator is required (Morozova et al., 2007).  

A redox mediator is a small molecular weight compound that is oxidised by the 

enzyme and reduced by the substrate continuously. They act as electron shuttles for 

large substrates that cannot access the active site of the enzyme and decrease the steric 

hindrance (Christopher et al., 2014). In laccase mediator systems (LMS), the enzyme 

oxidizes the mediators to form stable radicals with high redox potential that diffuse 

way from the enzyme active site and oxidize the substrates and get reduced in the 

process. In this way laccase indirectly oxidises substrates that have high redox 

potential or large size (Figure 6.1) (Kunamneni et al., 2007).  

  

Figure 6.1: Laccase substrate oxidation through mediators and subsequent reduction 

of mediators (Christopher et al., 2014). In a MFC setting the substrate can either be 

electrode or the dye which acts as an electron source for the mediators. 

A redox mediator should ideally be non-toxic, stable and should not inhibit the laccase-

mediated reaction in both its oxidized and reduced forms (Morozova et al., 2007). The 

first synthetic redox mediator reported was 2,2′-azinobis(3-ethylbenzthiazoline-6-

sulfonate) (ABTS) for laccase from T. versicolor for oxidation of non-phenolic lignin 

compounds (Bourbonnais and Paice, 1990). ABTS is first oxidised to generate cationic 

radical ABTS .+ that is sequentially oxidised to dication ABTS 2+: 

ABTS →  ABTS.+ 
→ ABTS2+ 
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The redox potential of ABTS.+ is 0.68 V vs SHE and ABTS2+ is 1.09 V vs SHE 

respectively (Christopher et al., 2014). ABTS is readily oxidised by various laccases 

and the mediator is constantly regenerated aiding in the enzyme reaction. The two 

methods of mediation are Electron transfer (ET) route or radical hydrogen atom 

transfer (HAT). ABTS follows the ET route of mediation in which only electrons are 

involved in the formation of free radicals and in oxidation/reduction of the mediator 

(Section 6.3.3, Figure 6.8). In HAT mechanism, besides an electron, a H+ ion is 

abstracted from hydroxyl groups of the mediators resulting in O. free radical that aids 

in the mediation (Section 6.3.3, Figure 6.7). Another mediator that is involved in 

laccase lignin degradation and bleaching of kraft pulps is 1-Hydroxybenzotriazole 

(HBT) (Call and Mücke, 1997). HBT possess N-OH functional group, therefore the 

oxidation produces a highly reactive nitroxyl radical (N–O·) which then targets the 

weak C-H bonds in the lignin substrates resulting in their breakdown. Other mediators 

with the N-OH group are violuric acid (VLA), N-hydroxyacetanilide (NHA), TEMPO 

(Cañas and Camarero, 2010). Although laccase mediator systems were initially used 

for delignification and bio bleaching of wood pulps, they have now been widely used 

for degradation of xenobiotics compounds and dyes.  

Soares et al, 2001 have revealed that Remazol Blue was only decolourized when redox 

mediators violuric acid (VA) and HBT were added to laccase. There was complete 

decolourization within 20 mins of adding VA as mediator for laccase.  On the contrary, 

high concentrations of HBT (>11 mM) inhibited laccase activity (Soares et al., 2001). 

Laccase mediator system (LMS) is not required for many low molecular weight dyes. 

LMS is most commonly used for degradation of contaminants like Chlorophenols and 

large substrates with high redox potentials (Wu et al., 2008; Zeng et al., 2017). 

6.1.1 Phenolic Mediators 

Although ABTS and HBT are the most widely used redox mediators for laccase, the 

artificial mediators are not economically feasible, and they are toxic to the enzymes in 

the long run. In recent times, natural mediators have been explored for their 

environmental friendliness and low-cost. These natural mediators are phenolic 

compounds that exist in nature and mediate lignin oxidation in white rot fungi. The 

commonly used phenolic mediators are syringaldehyde, acetosyringone, vanillin, 

acetovanillone, methyl vanillate, p-coumaric acid etc (Cañas and Camarero, 2010). 
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They have been widely studied for their mediating capabilities in oxidation of dyes 

and other recalcitrant compounds. The above mediators were compared with ABTS 

and HBT for decolourization of different dyes with laccase from T. versicolor and P. 

cinnabarinus. Syringaldehyde and Acetosyringone showed 100% decolourization of 

Acid blue 74 with both laccases while there was >85% decolourization for Reactive 

Black 5 dye in less than 1 hour for both the dyes. There was less than 50% 

decolourization of Acid Blue 74 by ABTS and HBT in the same time period. The 

phenolic mediators were more rapid and efficient in oxidation of the dyes than their 

synthetic counterparts (Camarero et al., 2005). In another study, they have concluded 

laccase-syringaldehyde as the best system for decolourization of azo dyes Red FN-

2BL, Red BWS, Remazol Blue RR and Blue 4BL with efficiency of 98%, 88%, 80% 

and 78% respectively with the above decolourization achieved in less than 2 hours 

(Mendoza et al., 2011). The decolourization efficiency of various LMS depends on the 

dye structure and the competency of the mediator towards a specific functional group. 

The mechanism of laccase mediation varies between each mediator. It was observed 

for lignin oxidation (Section 1.3.8.1, Figure 1.13) ABTS/Laccase carried out Cα 

oxidation and coupling of the lignin subunits whereas HBT/laccase polymerized them 

(Hilgers et al., 2018). 

Laccase stability and activity was decreased when incubated with redox mediators 

ABTS, HBT, TEMPO (2,2,6,6tetramethylpiperidin-N-oxyl) and VA at concentrations 

of 0.5 mM (Kurniawati and Nicell, 2007). Even in the absence of any mediator laccase 

activity decreased from 1000 U L-1 to 290 U L-1 in 15 days  (Mendoza et al., 2011). It 

is probably due to this reason that higher enzyme loadings such as 500 U ml-1 to 2000 

U ml-1 are used in various dye decolourising experiments (Stoilova et al., 2010). 

Therefore, methods to increase the stability of laccase and decrease the enzyme 

loading should be further examined.  

In this study natural mediators such as syringaldehyde and acetosyringone were 

studied with relatively low enzyme loadings (300 U L-1) to develop a low cost and 

sustainable laccase-mediator system. As the free radical forming moiety is different in 

case of natural and synthetic mediators, it was of interest to study the effect it has on 

the decolourization of AO7. The presence of laccase with natural phenolic mediators 

such as syringaldehyde and acetosyringone in a microbial fuel cell for dye 

decolourization has not been reported so far. The aim was to understand the effect of 
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mediators on dye decolourization and power density in a laccase biocathode MFC. 

The synergistic effect of dye and mediators as oxidising substrates for laccase was also 

inferred in this study. 

6.2 Materials and methods 

6.2.1 Experimental Design 

The MFC used in this study was the 'H'-type reactor with a working volume of 200 ml 

in each chamber. The electrodes were constructed from carbon fibre (non-woven) with 

a surface area of 25 cm2. The cathode chamber consisted of crude commercial laccase 

(Enzyme India Pvt. Limited, Chennai) from a fungal source (10 U mg-1) in acetate 

buffer (pH 4.5). Seven MFC systems were set up. System 1 was with S. oneidensis in 

the anode and laccase enzyme suspended in the cathode chamber in absence of 

mediator, subsequently to be referred to as "Control Lac”. System 2 was with S. 

oneidensis in the anode and laccase in the presence of ABTS in the cathode, 

subsequently to be referred to as "ABTS-lac". System 3 was with S. oneidensis in the 

anode and laccase in the presence of syringaldehyde in the cathode, subsequently to 

be referred to as "Syr-lac". System 4 was with S. oneidensis in the anode and laccase 

in the presence of acetosyringone in the cathode, subsequently to be referred to as "As-

lac". System 5 was with S. oneidensis in the anode and syringaldehyde in the cathode 

without laccase, subsequently to be referred to as "Syringaldehyde". System 6 was 

with S. oneidensis in the anode and acetosyringone in cathode without laccase, 

subsequently to be referred to as "Acetosyringone". System 7 was with S. oneidensis 

in the anode and ABTS in the cathode without laccase, subsequently to be referred to 

as "ABTS". Laccase enzyme (300 U L-1) was freely suspended in 200 ml of 100 mM 

acetate buffer (pH 4.5) and 100 mg L-1 of Acid Orange 7 dye was added in the cathode 

chamber. After subsequent trial experiments the concentration of the mediators were 

fixed at 50 µM. 

6.2.2 Operating conditions 

The composition in the anode was the same for all the reactors. The anode media 

components and their concentrations are detailed in Chapter 2, Section 2.3. The anode 

and cathode were connected to a resistor of 2 kΩ. The anode was inoculated with 10% 

v/v S. oneidensis MR-1 culture previously grown in Luria Bertani broth to an OD of 



132 
 
 

0.4. The anode chamber was sparged for 10 minutes with nitrogen gas to remove any 

dissolved oxygen and maintain an anaerobic environment.  

The cathode chamber was maintained in aerobic conditions by supplying air through 

an air stone at a rate of 200 ml air per min.  Experiments were conducted at a 

temperature of 30 ºC. All experiments were performed in triplicates. 

6.2.3 Analytical procedures 

The analytical procedures followed in this study were AO7 decolourization (Section 

2.6.1), electrochemical tests (Section 2.6.2), cyclic voltammetry of the redox 

mediators (Section 2.6.11(c)) and statistical analysis (Section 2.6.15).  

 

6.3 Results and Discussion 

6.3.1 Power Generation  

The power density was highest for ABTS-lac cathode with 77.2±4.2 mW m-2 

compared to control laccase (no mediators) with 54.7±3.5 mW m-2 (Figure 6.2(a)). 

This power density for ABTS-laccase is equivalent to the performance of platinum 

electrode (80 mW m-2) reported in chapter 4. Similar results were obtained by Luo et 

al., 2010 when laccase immobilized with Nafion-ABTS produced a power equivalent 

to platinum. The power density in this study was much higher than Schaetzle et al., 

2009 who obtained 37 mW m-2 with laccase-ABTS at cathode of a MFC. The power 

density was lower in their study due to the immobilization of the enzyme in hydrogels 

which might have created mass transport limitation for diffusion of electrons to the 

enzyme. 

ABTS is oxidised by laccase and it is regenerated (reduced) by receiving electrons 

from the electrode and the dye. The electrode and dye act as the substrates for ABTS 

regeneration. It is the most efficient mediator for laccase in fuel cells to produce high 

current output (Le Goff et al., 2015). The redox potential of the intermediates, ABTS 

.+ is 0.68 V  and ABTS 2+ is 1.09 V vs SHE respectively (Christopher et al., 2014). The 

high redox potential of ABTS radical aids laccase in efficient ORR which occurs at a 

potential of 1.2 V vs SHE. 
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The acetosyringone-lac produced a Pmax of 62.5±3.7 mW m-2 and for Syr-lac it was 

23.2±2.1 mW m-2 (Figure 6.2 (a)). The power density was higher for As-lac than 

control laccase without any mediators and it was vice versa for Syr-lac. The low power 

produced by syringaldehyde is probably due to it acting as substrate for laccase rather 

than mediator. The electron donating groups of the benzene ring in the phenolic 

compounds lowers their redox potentials which enables laccase to readily oxidizes 

these substrates for electrons that is used in oxygen reduction reaction (Cañas and 

Camarero, 2010). Since phenols are natural substrates for laccase they favour 

accepting electrons from phenol oxidation rather than from the electrode (Section 

6.3.3). This reduces the performance of the fuel cells. The higher power density in 

control laccase indicates that in the absence of mediators the electrons are accepted 

from the electrode. Although acetosyringone is also a phenolic compound, the power 

was greater than control laccase as it was efficiently regenerated as a mediator 

compared to syringaldehyde. The detailed mechanism for the mediation is discussed 

in section 6.3.3. Thus, from the Pmax it can be observed that acetosyringone is a lower 

affinity substrate for laccase as compared to syringaldehyde. This study is the first use 

of phenolic mediators in a MFC for laccase oxidation. 

The internal resistance was the lowest for As-lac system with 1.5±0.07 KΩ compared 

to 1.79±0.09 KΩ for control laccase. ABTS-lac system possessed an internal 

resistance of 1.89±0.11 KΩ, while Syr-lac system had the highest with 2.2±0.15 KΩ 

(Figure 6.2(b)). Acetosyringone was able to decrease the ohmic resistance of a laccase 

system compared to any other mediators. ABTS is a larger molecule (515 g mol-1) with 

higher molecular weight and higher diffusion co-efficient (2.5x10-10 m2 s-1) compared 

to acetosyringone (196 g mol-1) which is smaller molecule with lower diffusion co-

efficient (3.4x10-10 m2 s-1) (Srinivas and King, 2011; Preedy and Patel, 2012). This 

might have contributed to the difference in the internal resistance between the two 

mediators.  

In absence of laccase the power density for cathodes containing syringaldehyde and 

acetosyringone was 8.6 mW m-2and 7.5 mW m-2 respectively. 
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(a) 

(b) 

Figure 6.2: (a) Maximum Power density for mediator based and control MFCs 

obtained by varying the external resistance from 10Ω-1MΩ (b)Voltage vs Current plot 

(Slope=internal resistance) on day 3. 
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6.3.2 Acid Orange 7 decolourization 

The decolourization rate of AO7 was highest in case of As-lac followed by Syr-lac 

and finally unmediated laccase biocathode. There was greater than 87% 

decolourization in As-lac within 18 hours of addition of dye. Laccase without mediator 

was slightly slower with less than 80% decolourization in 18 hours (Figure 6.3). 

Overall there was > 90% decolourization for all laccase-based systems. Similar trend 

was observed for acetosyringone with Reactive Blue dye where >80% decolourization 

was observed in 2 hours (Camarero et al., 2005). As the two mediators are phenolic 

compounds that are substrates for laccase they are rapidly oxidised by the enzyme to 

produce phenoxy radicals that aid in dye decolourization (Camarero et al., 2005). In 

the presence of AO 7 dye, the mediated laccase prefers the oxidation of dye for 

electrons rather than the anodic electron source with redox potential of -0.2 mV 

(Marsili et al., 2008). The mediators are regenerated by abstraction of H+ from the dye 

and e- from the electrode respectively. Syringaldehyde and acetosyringone have been 

reported to have redox potential of 0.660 V and 0.580 V vs SHE (Pardo et al., 2013; 

Baker et al., 2014). In the absence of laccase, the mediators have lower redox potential 

than the dye (0.693 V vs SHE), therefore no decolourization was observed (Figure 

6.3). 

Figure 6.3: Decolourization of AO7 dye by laccase in the presence and absence of 

mediators over a period of 4 days. 
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The decolourization through ABTS-Laccase system was also attempted for 

comparison. Due to heavy interference with the colour of ABTS in the presence of 

laccase (blue), the decolourization could not be studied effectively.   

6.3.3 Electrochemical activity of the laccase-mediator systems 

To understand the reaction mechanism of the laccase-mediator systems, cyclic 

voltammetry (Section 2.6.11(c)) was performed. Syringaldehyde revealed a very weak 

oxidation peak at 0.73 V without any quantifiable cathodic current (Figure 6.4). In 

presence of laccase the oxidation peak was further decreased indicating its reduction 

reaction with the enzyme. There was absence of any redox peaks that are 

characteristics to redox mediators that indicates their regeneration. This might be due 

to laccase oxidizing syringaldehyde to syringic acid while producing phenoxy radicals 

and syringic acid further oxidizing to 2,6-dimethoxy-1,4-benzoquinone (DMBQ) (Lin 

et al., 2014; Volkova et al., 2012) (Figure 6.5). Due to the subsequent oxidation of 

syringaldehyde it is not regenerated and available as a mediator. The lower power 

density in Syr-lac might be a result of syringaldehyde oxidation products inhibiting 

laccase enzyme activity. 

 

Figure 6.4: Cyclic voltammetry of syringaldehyde in the presence and absence of 

laccase at a scan rate of 50 mV s-1. 
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Figure 6.5: Laccase oxidation of syringaldehyde to syringic acid and subsequent 

oxidation to benzoquinones. 

The CV of acetosyringone produced two redox couple peaks at 0.7 V/0.62 V and at 

0.42V/0.34 V (Figure 6.6). Acetosyringone has two major sites for oxidation/reduction 

reactions, one hydroxyl group at para position and a keto group attached to the ring 

(Chapter 2, Table 2.3). The redox reactions at these two functional groups contributes 

to the redox couples in the CV. Both functional groups cannot be oxidized at the same 

time therefore at any one time in a reaction either a phenoxy radical or an enolate ion 

can be present. These ions are intermediates of oxidation reduction reaction stabilized 

by the aromatic ring.  In presence of laccase, the peak at 0.7 V (close to laccase redox 

potential (0.780 V)) was reduced whereas the cathodic current at the second redox 

peak was increased and shifted to 0.31 V. This indicates that one of the functional sites 

is preferably oxidized by laccase. From reports earlier, it has been suggested that 

electron/hydrogen atom abstraction proceeds through the hydroxyl group present on 

the aromatic ring in acetosyringone (Martorana et al., 2013). Due to the presence of 

two functional groups the mechanism of redox mediation in acetosyringone is a 

combination of hydrogen abstraction route (HAT) and Electron transfer route 

(Martorana et al., 2013) (Figure 6.7). The presence of keto group (as opposed to only 

hydroxyl) prevents laccase from completely oxidizing the substrate to a different 

product as observed in syringaldehyde. The acetosyringone is regenerated at the 

electrode/dye and is available as a mediator contributing to the higher current output. 
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Figure 6.6: CV of acetosyringone indicating the oxidation/reduction peak in the 

presence and absence of laccase at a scan rate of 50 mV s-1 

Figure 6.7: Electron transfer (ET) and Hydrogen atom transfer (HAT) oxidation 

mechanisms of acetosyringone mediated by laccase (Martorana et al., 2013). 

In case of ABTS, there were two redox couples, first at 0.9 V /0.67 V and second at 

0.63 V/0.45 V (Figure 6.8 (b)). ABTS oxidation is a two-step mechanism where first 

it is oxidised to generate cationic radical (ABTS.+) that is sequentially oxidised to 

dication (ABTS2+) (Figure 6.8 (a)) (Bourbonnais et al., 1998). ABTS is readily 

oxidised by laccase and the mediator is constantly regenerated by accepting electrons 

from the electrode and the dye. The mechanism of ABTS mediation is through electron 

transfer (ET) route between enzyme and the substrate (Figure 6.8 (a))  
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(a) 

(b) 

Figure 6.8: (a) Two step oxidation of ABTS (Christopher et al., 2014) (b): CV of 

ABTS with and without laccase at 50 mV s-1.  
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The effect of laccase-mediator reaction on the reduction current was further tested by 

chronoamperometry. The electrode was poised at a constant potential of 0.7 V with 50 

µM mediator in the solution. A constant amount (0.03 U ml-1) of laccase was added to 

the solution to observe the effect on the current. It was observed that ABTS system 

gave the highest cathodic current of 600 µA, whereas syringaldehyde and 

acetosyringone system produced 150 and 125 µA respectively (Figure 6.9). 

 

Figure 6.9: Chronoamperometry depicting the reduction current for each mediator at 

a concentration of 50 µM.  

Although ABTS was the best mediator in terms of power production, acetosyringone 

performed comparably with an added advantage of dye decolourization. It is much 

cheaper and sustainable than ABTS. Syringaldehyde was the best substrate for laccase 

and was completely oxidized thus it did not act as a mediator to improve the 

performance of the MFC. Overall, acetosyringone-lac system can be preferred for dye 

decolourization and power production in a MFC. 
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6.4 Conclusion 

Mediators are known to improve the power density and efficiency of dye 

decolourization when used with laccase in the cathode of a MFC. For reasons 

regarding environment and economic advantage in the present study natural mediators 

such as syringaldehyde and acetosyringone was compared for their effectiveness to 

that of a synthetic mediator like ABTS. The presence of mediators increased the power 

density:  ABTS-lac cathode produced a Pmax of 77.2±4.2 mW m-2 while As-lac gave 

62.5±3.7 mW m-2. The control system without mediators produced 54.7±3.5 mW m-2 

while the power density was quiet low for Syr-lac with 23.2±2.1 mW  m-2.There was 

increase in decolourization by 20% with addition of mediators as compared to laccase 

in absence of mediators with As-lac achieving greater than 85% decolourization in 18 

hours. Electrochemical analysis performed to determine the redox properties of the 

mediators, revealed syringaldehyde did not produce any redox peaks thus inferring it 

was oxidized by laccase to syringic acid and further to quinone, making it unavailable 

as a mediator, while acetosyringone and ABTS revealed two redox couples 

demonstrating the redox behaviour of these compounds. Thus, acetosyringone served 

as an efficient mediator for laccase, aiding in increased rate of dye decolourization and 

power production in a MFC.
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                          Chapter 7 

Enrichment of microbial biocathodes to replace     

platinum catalyst in microbial fuel cells
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7.1 Background 

In recent times, microorganisms capable of accepting electrons from the electrode are 

being developed from soil and sludge sources consisting of mixed microbial 

community. This eliminates the need to use large quantities of Mn and Fe as terminal 

electron acceptors. The bacteria in the mixed community are identified through DGGE 

and 16srRNA sequencing. The aerobic biocathodes isolated from the various sources 

mainly belong to species from Alphaproteobacteria, Betaproteobacteria, Gamma 

proteobacteria, Bacteroidetes, Planctomycetes etc (Xia et al., 2012; Wang et al., 2013; 

Strycharz-Glaven et al., 2013; Du et al., 2014; Milner et al., 2016). The enrichment of 

electroactive bacteria takes place either in a three-electrode system known as half-cell 

(electron supplied externally) or a MFC (electron supplied from the anode).  To reduce 

the internal resistance and maximize the voltage produced a new biocathode was 

developed from dairy manure waste by (Zhang et al., 2012). The MFC anode consisted 

of anaerobic sludge from wastewater and the cathode contained soil mixed with dairy 

manure and operated for 102 days. The maximum power density produced was 15.1 

W m−3 with an internal resistance of 31 Ω. Microbial community analysis revealed 

highest presence of species from Alcaligenaceae family (38.3%), followed by 

Xanthomonadaceae (6.0%), Brucellaceae (5.1%), Bradyrhizobiaceae (4.2%), 

Enterobacteriaceae (4.0%) etc (Zhang et al., 2012).  

Rabaey and co-workers compared the efficiency of mixed microbial population with 

that of individual isolates for reducing oxygen in a MFC. The biofilm was obtained 

from a mixture of samples from river, pond and activated sludge plant after 212 days 

of incubation in MFC conditions. These biocathodes produced a maximum power 

density of 303 mW m-2. Analysis of the cathode microbial community revealed 

Sphingobacterium, Acinetobacter and Acidovorax sp. as dominant species. These 

isolates tested individually as cathode catalysts obtained maximum power of only 49 

mW m-2. Therefore, mixed populations seemed to produce significantly higher power 

than pure cultures due to the population density and the co-metabolic activity. The 

Sphingobacterium and Acinetobacter species were able to readily switch to hydrogen 

metabolism after few days incubation in H2/O2 environment indicating their 

adaptability to various substrates (Rabaey et al., 2008).  
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Although the start-up time is quite slow compared to chemical or enzyme catalyst, 

microbial cathodes can be regenerated and are suitable for long term usage. In an MFC, 

biocathodes produced a power density of 62 μW cm−2 which was comparable to 

platinum at 70 μW cm−2 (Milner et al., 2016). A decrease in activation overpotential 

was observed when the biocathodes were used in an MFC, suggesting that the bacteria 

act as true catalysts for oxygen reduction (Rabaey et al., 2008). As suggested by He 

and Angenent 2006, more understanding in mechanisms of electron transfer between 

electrode, microorganisms and electron acceptors at the cathode is required for 

increased power output. The source of inoculum, the enrichment method (half-cell, 

MFC) and the potential used can affect the type of microbial community selected 

(Table 7.1).
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Table 7.1: BES employed in development of microbial biocathode and the dominant microbial communities identified.  

Cathode Material Source of 

inoculum 

Enrichment 

method/Potential 

                   Microbial community References 

Carbon paper Aerobic 

sludge 

MFC (-0.1 V vs 

SCE) 

80% Uncultured Bacteriodetes 

13% Thiorhodospira sp. (γ-Proteobacteria) 

(Xia et al., 

2012) 

Carbon fibre Brush Nitrifying 

sludge 

MFC (1000 Ω) 38.8% Nitrosomonas sp.,2% Nitrate oxidizing bacteria; 

34.7%  Alkalilimnicola sp. 

(Proteobacteria) 

(Du et al., 

2014) 

Stainless Steel River water OCP Actinobacter, Firmicutes, Bacteriodetes, α, β and γ -

Proteobacteria 

(Lyautey et 

al., 2011) 

Graphite fibre 

brush/graphite granules 

Top soil MFC (500 Ω) Nitrobacter sp., Achromobacter sp., Acinetobacter sp. 

(Proteobacteria) 

Bacteriodetes 

 

(Zhang et 

al., 2011) 
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Cathode Material Source of 

inoculum 

Enrichment 

method/Potential 

                 Microbial community References 

Graphite fibre brush 

 

 

 

Sulphur 

reducing 

bacteria 

sludge (SRB) 

 

MFC (-0.8 V vs 

SHE) 

Desulfovibrio sp., Thiomonas sp., Sulfuricurvum sp. 

and Thiobacillus sp. 

(Blázquez et 

al., 2017) 

Graphite plate 

 

 

Acclimated 

SRB+ 

Magnetite 

particles 

MEC (0.8 V) 72.2% Desulfovibrio sp., 

14.2% Acetobacterium sp. 

(Hu et al., 

2018) 

Graphite granules Denitrifying 

sludge 

MEC Escherichia/Shigella spp., Actinotalea sp.,  

Desulfitobacterium sp. (Fe reducing bacteria); 

Petrimonas, Thermomonas, Chelatococcus (Denitrifying 

bacteria) species 

(Zhao et al., 

2018) 

Carbon cloth Aerobic 

sludge 

MFC (-0.3 V vs 

Ag/AgCl) 

39.9% Proteobacteria, 29.9% Planctomycetes,  

13.3% Bacteroidetes  

(Wang et al., 

2013) 

Carbon felt Activated 

sludge 

Half cell (0.1 V vs 

Ag/AgCl) 

23.3%-44.3% Unidentified  

γ- Proteobacteria 

(Milner et 

al., 2016) 
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As seen above various inoculum sources and enrichment methods produce different 

microbial communities capable of carrying out reactions such as oxygen reduction, 

denitrification etc at the cathode of MFC.  In this study, aerobic sludge from activated 

sludge tank of textile water treatment plant in India was used to develop a cathodic 

biofilm capable of oxygen reducing reaction (ORR). The catalytic efficiency of this 

biofilm was compared to Platinum in the cathode of a microbial fuel cell. The Acid 

orange 7 dye was added in the anode to compare the rate of dye decolourization in 

each system.  The sequencing and bioinformatics analysis of the biofilm was carried 

out to identify the dominant species responsible for electrochemical activity by 

comparing it with other forms of growth (planktonic) observed in the study. The aim 

was to isolate new strains of bacteria capable of performance equivalent to that of 

platinum in a MFC.  

7.2 Materials and Methods 

7.2.1 Preparation of half-cell for enrichment 

A three-electrode system with Ag/AgCl as the reference electrode, graphite rod of 45 

cm2 (14 cm x 0.5 cm) as the counter and graphite rod 31 cm2 (12 cm x 0.4 cm) as the 

working electrode was used for the enrichment of  microbial consortia. The counter 

electrode (CE) and working electrode (WE) were prepared by connecting a tin-coated 

Cu wire (0.2 mm) to the graphite rods. A small hole (size) was drilled into the graphite 

rods and the wire was threaded into the hole with a screw. The screw was tightened to 

keep the wire in place and in contact with the graphite rods. The screw and the wire 

end connected to the electrode was coated with non-conductive epoxy for insulation. 

The resistance of both the electrodes was measured to ensure conductivity. To prevent 

poisoning of Ag/AgCl electrode by the sludge, an agar bridge was constructed using a 

syringe and a glass capillary tube (Fig 7.1). A 10 cm length glass capillary tube was 

connected to the bottom of a 5 ml syringe with a rubber tubing to establish a firm 

connection. The plunger of the syringe was removed and 1.5% agar in 1M KCl was 

poured until it flowed through the full length of the glass capillary leaving 

approximately 2-3 ml in the syringe. It was allowed to cool and solidify. The remaining 

volume of syringe was filled with 1M KCl and the reference electrode was placed in 

the syringe to be floating in the KCl. The wires of both CE and WE were threaded 

through a hole pierced in the middle of a rubber septum in the screw cap of glass 

stoppers. Similarly, the bottom end of the capillary was passed through a hole pierced 
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in a larger rubber septum in the screw cap of glass stopper. These glass stoppers were 

sealed tightly in the inlets of the glass set-up. The glass-setup had five inlets, of which 

three were used for the electrodes, one for sampling and the other for aeration. For the 

aeration one end of the tube was connected to an air pump, it was passed through a 

syringe filter (0.2 µm) before entering the glass setup, and other end to an air stone. 

Another tube was connected to a syringe filter for air outlet. Both the air coming in 

and out were filter sterilized to avoid possible contamination.  

 

7.2.2 Operation of the half-cell 

The working volume for the electrochemical setup 

was 300 ml of minimal salts medium (MSM) 

containing (per litre): 0.46 g NH4Cl, 0.22 g 

(NH)2SO4, 0.117 g MgSO4, 7.7 g Na2HPO4.7H2O, 

2.87 g NaH2PO4 along with 1% (v/v) trace minerals 

as described by (Marsili et al., 2008) and 1% (v/v) 

vitamin mix as described by (Wolin et al., 1963). 

There was no organic carbon source added. A 10% 

w/v sludge, from activated sludge tank of 

Andipalayam common textile effluent treatment 

plant (CETP) in Tirupur, India was used as the source 

of inoculum. The electrodes were connected to a 

Uniscan (PG581) potentiostat, the whole setup was 

placed in the dark at 30 °C and aeration was supplied 

through an air pump.  The voltage applied was -0.1 V 

and the current was recorded every 20 minutes with a 

UiEChem software in chronoamperometry mode.  

The half-cell was operated in batch mode for 2 months with periodic change in the 

media until a stable current was obtained from the biofilm formed. The WE was placed 

at the cathode of MFC to assess its oxygen reduction efficiency. The enrichment was 

performed in the dark without additional carbon source to eliminate heterotrophs and 

photoautotrophs to select for electroactive bacteria capable of accepting electrons from 

the electrode for their metabolism. 

Figure 7.1: Three electrode 

electrochemical set-up used 

in this study 
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7.2.3 Platinum Electrode Preparation 

The cathode of one MFC contained a platinum catalyst layer with a Pt loading of 0.5 

mg cm-2.  Pt powder was mixed with carbon black powder (Sigma Aldrich, UK) for a 

10% (w/w) mixture. This mixture was dissolved in Nafion solution (Sigma Aldrich) 

and the suspension was applied on a graphite rod of 31 cm2 (12 cm x 0.4 cm) surface 

area.  

7.2.4 Experimental design 

The MFC used in the study was the 'H'-type reactor with a working volume of 200 ml 

in each chamber. Cation exchange membrane CMI7000 ion exchange membrane was 

soaked in 5% NaCl for 12 hours prior to use.  

Three systems were setup with the same conditions in the anode for all the reactors 

while changing the cathode electrodes. System 1 referred to as “Plain graphite MFC” 

consisted of a plain graphite as the cathode electrode in the absence of any catalyst. 

System 2 termed as “Platinum MFC” contained a platinum-coated graphite rod as the 

cathode catalyst. System 3 referred to as “Biocathode MFC” consisted of the biofilm 

enriched electrode at the cathode of the MFC. The MFC systems were connected 

across 200 Ω resistor. A 200 Ω was utilised based on the average resistance (142 Ω) 

calculated from average current (0.0007 V) and voltage (0.1 V) from the 

chronoamperometry used in the enrichment.  One cycle in this study represents 7 days. 

7.2.5 Operation of the Microbial fuel cell  

7.2.5.1 Anode of the Microbial fuel cell 

The anode electrode was a 31 cm2 (12 cm x 0.4 cm) graphite rod connected to a tin 

coated Cu wire. The anode media components and their concentrations are detailed in 

Chapter 2, Section 2.3. The anode was inoculated with 10% v/v S. oneidensis MR-1 

culture previously grown in Luria Bertani broth to log phase (OD: 0.4) and the dye 

Acid Orange 7 was added at a concentration of 100 mg L-1. The anode chamber was 

sparged for 10 minutes with nitrogen gas to remove any dissolved oxygen and 

maintain an anaerobic environment.  
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7.2.5.2 Cathode of the microbial fuel cell 

The three cathode electrodes used were biofilm enriched, platinum coated, and plain 

graphite rod. The catholyte was kept constant for all MFCs and it consisted of the same 

MSM, vitamins, trace minerals used in the half-cell (Section 7.2.2). The cathode 

chamber was maintained in aerobic conditions by supplying air through an air stone at 

a flow rate of 200 ml min-1.   

7.2.6 Analytical Procedures 

The analytical procedures followed in this study were spectrophotometry to determine 

AO7 decolourization (Section 2.6.1), electrochemical tests (Section 2.6.2), 

chronoamperometry (Section 2.6.12), microbial community analysis DGGE (Section 

2.6.13), Illumina Next Gen sequencing (Section 2.6.14) and statistical analysis 

(Section 2.6.15).   

7.3 Results and Discussion 

7.3.1 Enrichment of electron-accepting microbes using 

chronoamperometry  

A stable current was obtained from the biofilm after a period of 70 days. A stable 

current is defined by a phase where there is no sharp increase in current on replacement 

of the catholyte. The average peak current produced was -0.7 mA at -0.1 V vs 

Ag/AgCl. (Figure 7.2). 

 

 

 

 

 

 

 

 

Figure 7.2: Chronoamperometry of biofilm showing the peak current for each cycle 
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The increase in the reduction current suggests the formation of electroactive biofilm 

on the electrode surface (Figure 7.2). The current started to increase 5 days after the 

inoculation and reached the maximum after 20 days. The start-up time varies 

depending on the potential applied and the substrate used.  Biocathodes poised at 

different potentials produce different microbial communities (Table 7.1). In this study, 

- 0.1 V used for enrichment decreased the start-up time and produced current at a faster 

rate. 

Many studies utilized an organic carbon source (glucose, acetate) for the first few 

cycles to accelerate the formation of biofilm or a previously acclimated inoculum to 

decrease the start-up time (Xia et al., 2012; Zaybak et al., 2013). The activated sludge 

used in this study acclimated faster to the new media in the absence of organic carbon 

to form a biofilm. At day 60 there was an increase in current to a maximum of 0.9 mA 

after which it decreased to a steady state. The sustained current production for a period 

of 70 days indicates the electroactive behaviour of the biofilm.  

 

Figure 7.3 : Enriched biofilm after 70 days of chronoamperometry with arrows 

indicating the two types of biofilm formed i.e. near the wired connection and at centre 

of the electrode. 
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A biofilm formation was also observed on the connection between the wire and the 

graphite rod which suggests that the microorganisms are electrophilic and depend on 

the electrons for their respiration and other metabolic activities (Figure 7.3). The 

average resistance of the system was 142 Ω, varying depending on the current 

produced.   

Apart from biofilms on the electrodes, there was planktonic cells in the media and on 

the glass walls of the electrochemical set-up. The characteristics of the biofilm and 

planktonic cells were analysed by sequencing the microbial community. 

7.3.2 Power Density 

The maximum voltage (OCV) obtained was highest for Platinum MFC with 950 mV, 

890 mV for biocathode and 400 mV for plain graphite. The acclimated biocathode 

achieved a cell potential equivalent to Platinum MFC in 4-5 hours. The prior 

acclimation eliminates the start-up lag in MFC as observed by (Clauwaert et al., 2007; 

Mao et al., 2010).  A steady voltage was maintained for 7 days after which the media 

was replenished.  

The polarization tests revealed a maximum power density of 72.7±1.2 mW m-2 for 

Platinum MFC followed by 64.6±3.5 mW m -2 for Biocathode MFC and 4.3±0.1 mW 

m-2 for plain graphite MFC (Figure 7.4). The major limiting factor in a MFC is the 

high overpotentials at the electrodes and oxygen mass transfer at the cathode. The three 

losses to be considered are activation losses (AL) caused by high overpotential at 

electrodes, ohmic losses (OL) due to reactor design and the mass transfer losses (ML) 

due to low oxygen diffusion at cathode.  Platinum is the golden standard for catalytic 

activity due to the rapid rate of oxygen reduction reaction (ORR). The biocathode in 

this study decreased the activation over potential at the cathode and performed at a 

rate comparable to platinum. This was confirmed by voltage vs current density graph, 

where Pt MFC showed a steeper potential drop at lower current densities indicating a 

higher activation loss compared to the biocathode MFC (Figure 7.4 inset). Similar 

results were observed by (Rabaey et al., 2008) suggesting that the bacteria act as true 

catalysts for cathode reduction reaction. The instant start-up time and the high voltage 

of cathode is limited by the slow onset of anode reaction in this study.  The internal 

resistance of the cell with biocathode MFC was 680±32.2 Ω and with platinum it was 

655±43.1 Ω MFC. The internal resistance depends on several factors such as reactor 
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design, electrode configurations, type of catalyst etc. The distance between the 

electrodes is large (~13 cm) in the ‘H’ type reactor used in this study and this accounts 

for potential losses and high ohmic resistance. (Zhang et al., 2012) developed a novel 

tubular MFC with graphite brush electrodes (~2-3 cm distance between the electrodes) 

that produced a low internal resistance of only 30 Ω with a bioanode and biocathode. 

Therefore, with improvement in the reactor design the ohmic losses could be 

considerably reduced. The oxygen diffusion is low in aqueous solutions and the lack 

of stirring in anode contributes to the mass transfer losses. Due to the presence of 

biological catalysts at both anode and cathode the rate of electron transfer is 

compatible with each other. Therefore, biocathode is able to reduce the fuel cell losses 

and acts as an efficient catalyst in a MFC.   

 

Figure 7.4: Maximum power density for each cathode catalysts. Inset: Voltage/current 

graph for the cathodes indicating the losses. 

7.3.3 Dye Decolourization 

The rate of dye decolourization at the anode of MFC employing different cathode 

catalysts was assessed by adding 100 mg L-1 of Acid orange 7 dye in the anode 



154 
 
 

chamber. As the biofilm was enriched solely without a carbon source, introduction of 

dye in the cathodic chamber would have drastically shifted the microbial community 

due to the bacteria switching to the organic dye for its metabolism. The anodic 

decolourization of AO7 by S. oneidensis was observed to be at equivalent rate in both 

Pt and biocathode based MFC with >95% decolourization being obtained on the 5th 

day (Figure 7.5). 

 

Figure 7.5: Anodic dye decolourization in Shewanella oneidensis based MFC for 

different cathode catalysts. 

The similar rate of decolourization for all the systems indicate the dye decolourization 

at the anode is independent of the cathode reaction. The decolourization by the bacteria 

(S. oneidensis) is likely solely dependent on the enzymes and mediators produced 

during the bacterial metabolism. 

7.3.4 Microbial community analysis 

The microbial community analysis was carried out at the end of the study after the 

biofilm electrode was tested for its efficiency as cathode catalyst in a MFC. For better 

understating of the microbial biodiversity, the initial sludge and the biofilms formed 

were analysed by DGGE and Illumina-Next generation sequencing. The DGGE 
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analysis produced short partial sequences which could not be further analysed 

(Appendix 5). Therefore, Illumina NGS was performed on the samples. Four different 

types of samples were analysed viz. Sludge- Initial sludge used for enrichment, EB- 

biofilm on the graphite electrode, EW- biofilm on the connecting copper wires and 

plank- planktonic cells formed on the walls of the enrichment set-up. The 16s region 

of the whole genome was amplified and subjected to sequencing by synthesis. The 

amplified tags were then identified based on the DNA match >97% and were clustered 

as operational taxonomic units (OTU). Sludge had OTUs of 1044 and after enrichment 

EB had an OTUs of 889, whereas EW and Plank had 930 and 822 respectively (Figure 

7.6 inset). These OTUs were compared with SILVA database to identify the consortia 

of species and annotate each of the samples. The number of observed species in sludge 

was 1044, which on enrichment decreased to ~765 for EW, less than 710 for EB and 

624 for plank (Figure 7.6). These results contradict  (Wang et al., 2013) who obtained 

a higher number of species in planktonic compared to biofilm. The higher number of 

species near the electrode wire (EW) suggests these bacteria are electrophilic and 

strive to accept the electrons for their metabolism. 

 

Figure 7.6: Observed number of species in each sample. Inset: OTUs  obtained from 

each of the samples. 



156 
 
 

Shannon index provides an estimate of the diversity and variance among the species 

population within a sample. A high diversity in the sample is characterized by a higher 

Shannon index. Sludge had a Shannon index of 6.648, highest among all the samples, 

indicating a highly diverse population (Figure 7.7). As the sample was obtained from 

activated sludge tank of a common textile effluent treatment plant, the organisms 

present will be dominantly aerobic or facultative aerobic Gram-negative organism 

tolerant to toxic dyes. As these dyes have complex structures a diverse population of 

organisms might thrive exhibiting synergism, syntrophy, co-metabolism etc. Shannon 

index was significantly reduced for EB and plank with 5.102 and 4.394 respectively 

(Figure 7.7). This indicates that the population within the enriched sample belonged 

to related groups carrying out similar metabolic function. On enrichment 

chemolithotroph group or similar group of organisms might have been enriched 

resulting in loss of other species. As these enriched organisms have similar function, 

the diversity in the samples was reduced.  

 

Figure 7.7: Shannon index for diversity variance among the species population in each 

sample 
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The relationship between various species in different samples were analysed by PCoA 

based on Unweighted Unifrac similarity. The analysis showed that the EB, EW and 

plank species were very closely related than those present in the initial sludge 

inoculum. Further, among the enriched samples, EW and EB share a close 

resemblance compared to the planktonic species (Figure 7.8).  

 

Figure 7.8: PCoA analysis of all the samples based on Unweighted Unifrac similarity 

The dominant phylum for all the samples were Bacteriodetes, Proteobacteria, 

Firmicutes, Actinobacteria and Acidobacteria. There was variation in the relative 

amount of species between sludge and the enriched samples. The sludge sample had 

the following dominant class α-Proteobacteria (24%), γ-Proteobacteria (15%) and 

Sphingobacteriia (12%) of Bacteriodetes phylum. On enrichment α-Proteobacteria 

(Plank 32%, EW 31% and EB 29%) was further increased and Sphingobacteriia was 

replaced with Flavobacteriia as the dominant class in that phylum (Figure 7.9). 
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Figure 7.9: The relative abundance for the dominant class in each phylum for all 

samples. 

A Ternary plot between the orders of sludge, EB and plank sample show a significant 

increase in Flavobacteriales (Bacteriodetes) and Rhizobiales (α-Proteobacteria) in the 

enriched samples (EB, Plank) which was initially outnumbered by Sphingobacteriales 

and Rhodospirillales in the same phylum for sludge (Figure 7.10). Sphingomonadales 

is another order of α-Proteobacteria that is in high number in the enriched samples. In 

γ-Proteobacteria phylum, species of Xanthomonadales order increased from 8% in 

sludge to 12% in EB, while it decreased to 5% in plank. Further among Actinobacteria 

phylum, order of Cornyebacteriales was specially enriched in EB (11%), plank (8%) 

and EW (7%) samples (Figure 7.10).  
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Figure 7.10: Ternary plot for the Orders between Sludge, EB and Plank samples 

Rhodospirillaceae (15%) (Order-Rhodospirillales) the dominant family of 

Alphaproteobacteria class in sludge drastically diminished after enrichment (EB-

0.3%, Plank- 0.2%) (Figure 7.11). At genus level, Defluviicoccus sp. was present in 

highest number in that family. Defluviicoccus sp. exhibits an anaerobic metabolism 

with the ability of glycogen accumulation (Dai et al., 2007). It is a heterotrophic 

organism that exhibits sugar metabolism in the presence of glucose, acetate propionate 

etc.  Other species of Rhodospirillales order are known to be phototrophic bacteria that 

utilise light for their metabolism. As these organisms require organic carbon source or 

light for their survival, it is possible that they diminished on enrichment under no 

organic carbon or light environment in this study.  

Another dominant order in sludge that decreased on enrichment was 

Sphingobacteriales (12%) which contained (10%) Lentimicrobiaceae family (Figure 

7.11&7.12). Lentimicrobiaceae family consists of species that are found in anaerobic 

methanogenic high strength starch based wastewater (Sun et al., 2016). Further 

evidence of enrichment comes from the disappearance of Ignavibacterium genus 

(order-Igvanibacteriales) present in significant number in sludge (Figure 7.11 & 7.12). 

Ignavibacterium genus contains species that are chemoheterotroph, which relies on 

sugars and amino acid present in the media for metabolism and growth (Liu et al., 

2012). Therefore, it can be concluded that the enrichment conditions (no organic 
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carbon source, no light and presence of oxygen) enhanced the selection of microbial 

community capable thriving by accepting electrons from the electrode. 

 

 

Figure 7.11: Representation of microbial orders present in all the samples 

On enrichment, species of Flavobacteriales order and Flavobacteriaceae family 

formed the major population among the Bacteriodetes phylum in samples (EB- 20%, 

Plank-34%, EW- 12%) (Figure 7.11 & 7.12). Moheibacter was the dominant genus 

from the above family.  Moheibacter sediminis, a species of Moheibacter genus, was 

isolated from river sediment and was found to be catalase and oxidase positive (Zhang 

et al., 2014). The good performance of biocathode in MFC might be due to the catalase 

present in the bacteria that decomposes the H2O2  produced as a by-product of ORR 

and protect the bacterial cells from oxidative damage by reactive oxygen species 

(ROS).  
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There was increased species of order Rhizhobiales (23%-Plank, 19%-EB) and 

Sphingomonadales (6%-Plank, 7%- EB) in enriched samples, which was initially 

present in very low amounts in Sludge (3% and 0.5% respectively) (Figure 7.11). The 

species of order Rhizhobiales have been found to be dominant in MFC biocathode 

(Zhang et al., 2011) which accounts for its higher abundance in enriched samples 

compared to sludge. Bradyrhizobiaceae family (Rhizhobiales-Order) are known for 

nitrogen assimilation and carbon dioxide fixation and hence are chemoautolithotrophs 

(Figure 7.12). Rhodopseudomonas palustris a species of the Bradyrhizobiaceae family 

has been utilized in a microbial fuel cell to produce electricity (Xing et al., 2008). It 

can fix CO2 and switch between four modes of metabolism (Larimer et al., 2004). The 

versatile nature of Rhodopseudomonas and its ability to produce electric current makes 

it an ideal biocathode for MFC applications. Nitrobacter spp. of Bradyrhizobiaceae 

family present in the samples is also a known CO2 fixer. This indicates the presence 

of dominant autolithotrophs in the enriched samples. Thus, biofilm established has 

several bacteria that have electrogenic properties and utilise carbon dioxide in the air 

for their metabolism.  

 

      Figure 7.12: Representation of microbial families present in all the samples 
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The dominant species present in their respective families (Nitrosomonas europaea  

from Nitrosomonadeceae  family; Sphingobium aminese  from Sphingomonadaceae 

family; Nitratireductor indicus from Phyllobacteriaceae family and Gordonia 

polyisoprenivorans from Nocardiaceae family(Corynebacteriales order))  could be 

clearly observed on ternary plot between EB, EW and Plank samples (Figure 7.13). 

Nitrosomonas europaea was one of the prominent species that was enriched in all the 

biofilms, and hence it could be spotted at the centre of the ternary plot (Figure 7.13). 

N. europaea is a chemolithoautotroph, deriving its energy from oxidation of 

ammonium ions to nitrite (Laanbroek et al., 2002). The source of ammonia could be 

the ammonium chloride and ammonium sulphate present in the enrichment media. The 

nitrite produced by this species would have been utilised by Nitrobacter sp. as it 

obtains energy from oxidation of nitrite ions to nitrate ions (Grundmann et al., 2000). 

N. europaea  also has the ability to fix CO2 through Calvin cycle to form sugars that 

can be utilized by other organisms in the biofilm (Chain et al., 2003).  A species from 

phylum Actinomycetes, namely Gordonia polyisoprenivorans was seen to be enriched 

specifically in EB and plank biofilm. It was first isolated from automobile tyres and is 

one of the few available latex degrading microbes (Ding et al., 2017). The detailed 

metabolic pathway for this species is well established and is known to have benzoate 

degradation pathway where it can metabolize compounds such as amino-benzoate, 

toluene, chlorobenzene etc (Linos et al., 1999; Hiessl et al., 2012) which are known 

precursor and intermediates for various dyes. In addition, G. polyisoprenivorans 

coverts sugars to extracellular polysaccharides which is responsible for the formation 

of biofilms (Fusconi et al., 2006). One of the few chemoheterotrophs enriched on 

biofilms were Sphingobium aminese, which was present specifically on EB and plank 

samples (Figure 7.13). This species is capable of utilizing only organic carbon source 

for its metabolism. It was isolated form the soil and is known to degrade Nonylphenol 

an endocrine disrupting compound (Ushiba et al., 2003). The sugars formed by N. 

europaea  through Calvin cycle might have acted as the carbon source for  S. aminese. 

Only subtle differences were observed between Plank and EB samples. Plank had a 

higher population of Mesorhizhobium sp. and Paracoccus pantotrophus. P. 

pantotrophus has nitrate reductase which can convert nitrate to nitrite (Sears et al., 

2000). In addition, P. pantotrophus has the ability to fix CO2 through ribulose bi-

phosphate pathway (Bardischewsky and Friedrich, 2001). The primary microbe that 

might be responsible for the cathodic current is Nitratireductor indicus through the 
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process of denitrification. Although it’s an enzymatic process, the source of electron 

for the perisplamic enzyme might be through the cascade between graphite and 

biofilm. Nitratireductor indicus has the ability to degrade crude oil and was isolated 

from the deep-sea water of the Indian ocean and it reduces nitrate to nitrite (Lai et al., 

2011). A dominant genus observed in Xanthomonadaceae family was Luteimonas that 

was high in EB (11%) and EW(14%) compared to Plank (4%). Some species of this 

genus are capable of nitrate reduction to nitrite (Young et al., 2007) (Figure 7.12). The 

dominance of Luteimonas EB and EW indicates that it follows similar mechanism as 

Nitratireductor indicus to contribute to the current produced.  

 

 

Figure 7.13: Ternary plot indicating the dominant species in the enriched samples 

Luteimonas, the nitrate reducing bacteria is known to utilize organic acids and certain 

amino acids as the organic substrates. These metabolites are the by-products of other 

types of bacterial metabolism. Thus, the overall consortia of the microbes established 

in the biofilm had complementary metabolic roles leading to a formation of 

chemolithotrophic community. The overall schematic for the enriched biofilm is given 

below (Figure 7.14). 
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Figure 7.14: Schematic representation of metabolic activity between the microbes 

enriched in the biofilm 

Figure 7.14 depicts the metabolic interactions that are vital for maintaining the 

microbial community. These microbial interactions are widely seen in biofilms and 

planktonic bacteria. The CO2 fixers in the samples fix carbon dioxide to sugars that is 

utilized by other nitrate reducing species. Gordonia sp. utilizes sugars to form 

extracellular polysaccharides that aids in biofilm formation. The nitrate reducing 

bacteria accept electrons from the electrode to complete the reduction process at the 

cathode and produce current. The biofilm reaction is multi-trophic and the current 

produced in the MFCs is a combination of all bacterial interactions. There was no 

nitrates or nitrites source present in the media. The presence of ammonium salts in the 

buffered media enhanced the selection of nitrifying and denitrifying bacteria. Since 

the enrichment was initiated to select for microbes that carryout ORR at the cathode, 

no nitrogen gas measurements were carried out to confirm the occurrence of complete 

denitrification cycle. 
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Nitrates have been used as terminal electron acceptor at the cathode of MFCs. 

Biocathodes equipped for reduction of nitrate from wastewater produced a low power 

density of 9.4 mW m-2 in a MFC (Lefebvre et al., 2008). In this study, the power output 

of biocathode (64.6±3.5 mW m-2) was comparable to platinum (72.7±1.2 mW m-2) and 

it had lower activation overpotential than platinum. Therefore, it can be concluded that 

biocathodes utilising alternative terminal electron acceptors (nitrates) together with 

oxygen could be used to achieve a high-power output at the cathode of MFC. 

Several species present in the samples (Gordonia sp., S. aminese, Nitratireductor 

indicus) are capable of degrading environmental pollutants. The role of the species in 

nitrate reduction, pollutant removal and power production in a MFC is a perfect 

combination to develop an ideal MFC for bioremediation applications.  

7.4 Conclusion 

In this study, electroactive bacteria were enriched from textile wastewater for utilising 

as cathode catalyst in a MFC. The biofilm produced an average peak current of 0.7 

mA during the enrichment and produced a maximum power density of  64.6±3.5 mW 

m-2 comparable to platinum (72.7±1.2 mW m-2) when employed in a MFC. The 

acclimated biocathode eliminated the start-up lag and decreased the activation over 

potential at the cathode and performed at a rate comparable to platinum. The voltage 

vs current density graph revealed a higher activation loss for platinum compared to the 

biocathode, suggesting that the bacteria act as true cathode catalysts. The microbial 

community analysis of initial sludge sample and the enriched samples (plank, EB, EW) 

revealed the selection of  chemolithoautotrophic organisms that fix CO2 for their 

metabolism. The most dominant order of species was Flavobacteriales (Bacteriodetes) 

and Rhizhobiales (Alphaproteobacteria) in the enriched samples. A nitrogen cycle 

micro-environment was observed with the presence of Nitrosomonas and 

Nitratireductor species. The metabolic interaction between CO2 fixers and reduction 

of nitrate to nitrite contributes to the biofilm formation and current production.  
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   Chapter 8 

Concluding Remarks
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The aim of the study was to develop enzyme and microbial biocathode systems for 

efficient ORR and dye decolourization in MFC. 

The use of enzyme cathode was expected to be limited by poor stability of the enzymes 

in the system and environmental factors such as pH, salinity, metal ions etc. In Chapter 

3, various ways of mitigating pH changes in the cathode of MFCs and their effect on 

laccase activity and decolourization of a model azo dye Acid orange 7 in the anode 

chamber were investigated. Experiments were run with catholyte pH automatically 

controlled via feedback control, by using acetate buffers (pH 4.5) of various strength 

(100 mM and 200 mM), with CMI7000 as the cation exchange membrane and Nafion 

117 membrane. Results showed that using Nafion 117 membrane limits salinity and 

pH changes in the cathode (100 mM acetate buffer as catholyte) leading to prolonged 

laccase activity and faster AO7 decolourization compared to using CMI7000 as a 

membrane; similarly, automatic pH control in the cathode chamber was found to be 

better than using higher strength (200 mM) acetate buffer. MFCS with Nafion 

membrane produced the highest power of 16 mW m-2. The results suggested that while 

pH control in the cathode chamber is important, it does not guarantee sustained laccase 

activity; that salinity increases affect the activity but could be mitigated using a cation 

selective membrane such as Nafion.  

In view of the above findings, strategies to prolong laccase activity were needed. 

Therefore, suitable immobilization techniques to maintain the activity and increase 

longevity of the enzyme were employed (Chapter 4). Laccase was immobilized using 

three different approaches, i.e. crosslinking with electropolymerized polyaniline 

(PANI), entrapment in copper alginate beads (Cu-Alg) and encapsulation in Nafion 

micelles (Nafion), in the absence of redox mediators. These laccase systems were 

employed in a cathode of MFCs for decolourization of Acid orange 7 (AO7) dye with 

electrons generated from Shewanella oneidensis MR-1 oxidation of pyruvate in the 

anode chamber.  The enzyme in the immobilized states was compared with freely 

suspended enzyme with respect to dye decolourization at the cathode, enzyme activity 

retention, power production and reusability. PANI laccase showed the highest stability 

and activity, producing a power density of 38.2±1.7 mW m-2 compared to 25.6±2.08 

mW m-2 for Nafion laccase, 14.7±1.04 mW m-2 for Cu-Alg laccase and 28±1 mW m-

2 for the freely suspended enzyme. There was 81% enzyme activity retained after 1 
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cycle (5 days) for PANI laccase compared to 69% for Nafion and 61.5% activity for 

Cu-alginate laccase and 23.4% activity retention for the freely suspended laccase 

compared to initial activity. The dye decolourization was highest for freely suspended 

enzyme with over 85% decolourization whereas for PANI it was 75.6%, Nafion 73% 

and 81% Cu-alginate systems respectively. All the immobilized laccase systems were 

reusable for more than two cycles. Cost comparisons revealed that on a per pound 

basis, power production from laccase-based MFCs (0.07 mW/£) was 1.75 times better 

than those based on platinum (0.04 mW/£).  

On establishing laccase potential for catalysing the ORR, it was of interest to compare 

and understand the mechanism of Acid Orange 7 dye degradation by bacteria (S. 

oneidensis) at the anode and laccase at the cathode (Chapter 5). A comparison of the 

two approaches was made in this study in which Acid orange 7 dye was loaded in the 

anode chamber in the presence of Shewanella oneidensis species or in cathode 

chamber in the presence of laccase. The systems were compared in terms of power 

production, dye decolourization, COD reduction, degradation products and their 

toxicity. The power density was higher with 50±4 mW m-2 for dye cathode and 

42.5±2.6 mW m-2 for dye anode. The decolourization was slower with Shewanella 

species where only 20% decolourization was obtained after 24 h whereas with laccase 

>80% decolourization was obtained within 24 h of operation. The anode decolourized 

products were unstable and underwent autooxidation to produce colour. GC-MS 

analysis revealed simpler compounds such as benzoic acid and hexanoic acid for 

laccase degradation products, whereas Shewanella species produced aromatic amines. 

The colour formation in autooxidation was due to the presence of quinones produced 

by oxidation of the aromatic amines. These products were more toxic than anode and 

cathode products.  Therefore, the power and decolourization rate of dye was better for 

the system with dye in cathode in the presence of laccase enzyme. Thus, the study 

provided an insight into the different mechanisms and pathways leading to maximal 

degradation of the azo dyes. 

To further enhance the dye decolourization and power production of laccase 

biocathodes redox mediators were utilised in a subsequent study (Chapter 6). ABTS is 

the most widely used redox mediator for laccase but synthetic mediators are costly, 

and they are toxic to the enzymes in the long run. Therefore, natural mediators such as 

syringaldehyde and acetosyringone were explored for their environmental friendliness 
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and low-cost. These natural mediators are phenolic compounds that exist in nature and 

mediate lignin oxidation in white rot fungi. The presence of ABTS and acetosyringone 

increased the power density from 54.7±3.5 mW m-2 (control laccase without 

mediators) to 77.2±4.2 mW m-2 and 62.5±3.7 mW m-2 respectively. The power 

decreased to 23.2±2.1 mW m-2 for laccase with syringaldehyde. There was increase in 

decolourization by 20% with addition of mediators as compared to laccase in absence 

of mediators. Cyclic voltammetry analysis revealed the redox nature of the mediators 

by producing oxidation/reduction peaks for acetosyringone and ABTS. 

Syringaldehyde did not show any redox peaks in their CV. Laccase oxidized 

syringaldehyde to syringic acid and subsequently to quinones thus making it 

unavailable as a mediator. Although the power produced was highest for ABTS, dye 

decolourization could not be studied due to strong colour interference from laccase-

ABTS reaction. Therefore, acetosyringone acted as an efficient mediator for laccase 

aiding in increasing the rate of dye decolourization and power production. 

To determine whether microorganisms could be used as cathode catalysts in MFCs, 

activated sludge from a textile treatment plant was enriched by potentiostatic method 

for a period of 70 days (Chapter 7). The enrichment conditions were set to eliminate 

heterotrophic or photoautotrophic growth and select for electroactive bacteria capable 

of accepting electrons for their respiration only from the cathode. The biofilm formed 

generated an average current of 0.7 mA during the enrichment. The biofilm was 

employed in the cathode of MFC with Shewanella oneidensis MR1 anode and 

compared with platinum. The maximum power density obtained was 72.7±1.2 mW m-

2 for platinum and 64.6±3.5 mW m-2 for biocathode. The biocathode in this study 

decreased the activation over potential at the cathode and performed at a rate 

comparable to platinum. The activation losses were lower for biocathode compared to 

platinum. The microbial community analysis of initial sludge sample and the enriched 

samples (plank, EB, EW) revealed the selection of  chemolithoautotrophic organisms 

that fix CO2 for their metabolism. The most dominant order of species was 

Flavobacteriales (Bacteriodetes) and Rhizhobiales (Alphaproteobacteria) in the 

enriched samples. A nitrogen cycle micro-environment was observed with the 

presence of Nitrosomonas and Nitratireductor species. The metabolic interaction 

between CO2 fixers and reduction of nitrate to nitrite contributes to the biofilm 

formation and current production. From the microorganism selected in this study, it 
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was observed that the cathode reaction was a combination of nitrate reduction and 

oxygen reduction reactions. These results prove that biocathodes utilising alternative 

terminal electron acceptors (nitrates, sulphates) together with oxygen can provide an 

efficient power output comparable to platinum at the cathode of MFC. 

Overall, from the above studies for laccase-based MFCs, acetosyringone mediated 

laccase produced the highest power density (62.5±3.7 mW m-2) together with faster 

decolourization of Acid Orange 7 dye. The crude laccase used in this study produced  

comparable power (50±4 mW m-2 ) and dye degradation (98%) to mediated laccase.  

Microbial biocathode (64.6±3.5 mW m-2) was the most efficient cathode catalyst 

performing at a rate equivalent to platinum (72.7±1.2 mW m-2). 
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From this study it is evident that biocathodes are a suitable alternative to platinum as 

cathode catalysts. They have an added advantage of dye decolourization together with 

power production. To develop a more robust model for azo dye degradation using 

biocathodes further research can be conducted. 

9.1 Enhancement of power production in microbial 

biocathode 

In Chapter 7, an aerobic biofilm was enriched that performed equivalent to platinum 

as cathode catalyst in a MFC. To further enhance the power production, individual 

species can be isolated from the biofilm and tested for their electrogenic activity. Due 

to time and equipment constraints we were unable to perform more electrochemical 

analysis of the biofilm. Cyclic voltammetry (CV) provides information on the kinetics 

of electron transfer between the electrode and the biofilm. It also helps to determine 

the reversibility of the reaction, the presence of any redox reaction intermediates and 

the redox potential of the reaction. Electrochemical impedance spectroscopy (EIS) is 

used to deduce the resistance between the electrode/biofilm and resistance within the 

biofilm that will aid in understanding the electron transfer pathway in the 

microorganisms. These techniques aid in characterizing the biofilm and their 

electrogenic properties, to further improve the catalytic activity. 

A selection of microbial community can be developed by varying the enrichment 

methods and parameters to develop a biocathode producing higher power than 

platinum. The method of enrichment can be varied i.e. open or closed circuit MFC 

enrichment, poised potential in MFC, poised potentiostat (this study) etc. The 

parameters such as different poised potentials, resistors and electrodes can also be 

varied to obtain electroactive biofilms. Alternatively, versatile bacteria such as 

Rhodopseudomonas palustris that can switch between four modes of metabolism can 

be employed at cathode of MFC. It can switch between: photoautotrophic, 

photoheterotrophic, chemoautotrophic and chemoheterotrophic modes (Larimer et al., 

2004). R. palustris have been observed to decolourize (reactive red 195 dye) and bring 

about complete mineralisation of the dye under anaerobic conditions (Çelik et al., 

2012). The bacteria has also been used in MFCs for power production (Xing et al., 

2008). Therefore, the adaptable nature could be exploited for developing R. palustris 
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based biocathode system for dye decolourization and power production. During the 

individual species selection, the substrate provided will depend on the inherent 

metabolic nature of the species. Eg: P. pantothropus will be tested in presence of 

nitrate, Nitrobacter in presence of nitrate and Sphingobium in presence of sugars.  

The dye decolourization in the presence of microorganisms at the cathode of MFCs 

have been carried out by applying external voltage (Kong et al., 2014;Yang et al., 

2016). The dye molecules are large therefore bacteria are unable to degrade them under 

aerobic conditions. Therefore, the sludge could be enriched in the presence of dye and 

the number of species capable of dye degradation under aerobic conditions can be 

isolated. These can be combined with the electrogenic bacteria from biofilm to develop 

a bioelectrochemical system that can degrade the dye and produce a good power 

output. 

9.2 Use of crude laccase extracts in MFC 

The fungal strain Trametes versicolor could be utilised to produce crude laccase that 

can be used in bioreactors. There are two types of fermentation to produce laccase 

from white rot fungi 1) solid state fermentation (SSF) 2) submerged fermentation. In 

SSF, the fungi are grown on solid supports that also acts as the carbon source. Under 

these conditions it mimics the natural growth environment and the production of the 

enzyme is greatly increased. In SF, a liquid media is used to grow the fungi (Stoilova 

et al., 2010). In both types of fermentation, the enzyme production is high with the 

presence of an inducer such as phenol-based products. The use of crude enzyme would 

reduce the cost, provide better activity and stability due to the presence of natural 

enzyme stabilizers in the fungal source. As laccase is an extracellular enzyme the crude 

extracts present in the spent media could be used directly which reduces the cost of 

purification. In dye decolourization studies the crude extracts of laccase aid in better 

decolourization due to the synergistic action of manganese peroxide, laccase and other 

lignolytic enzymes (Sen et al., 2016). The crude extracts have several advantage such 

as the presence of natural laccase mediators, various metabolites and residual 

macronutrients that can stabilise the crude enzyme (Zeng et al., 2011).  

Crude extracts were not used in this study due to the presence of the above interferents 

that would hinder true laccase activity studies. Commercial laccase has been utilised 

to establish various proof of concepts for factors mitigating laccase activity, 
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immobilization techniques and use of redox mediators. These concepts can be further 

validated using crude enzyme extracts for dye decolourization and power production 

in MFCs.  

9.3 Photosynthetic biocathodes as cathode catalysts 

Photosynthetic bacteria are a group of microorganisms that utilise sunlight as a source 

of energy to produce oxygen through photosynthesis. Chlorella vulgaris, one of the 

fastest growing microalgae has been used in a microbial fuel cell for power generation 

and in-situ oxygen production. Algae are responsible for producing 72% of the world's 

oxygen. The use of these organisms at the cathode to produce oxygen in-situ can 

eliminate the use of mechanical aeration  (Zou et al., 2009; Velasquez-Orta et al., 2009; 

Zhou et al., 2012).  

The sequestration of carbon dioxide from anode to cathode chamber to assist the 

growth of algae in a MFC was studied by (Wang et al., 2010). A microbial carbon 

capture cell (MCC) was constructed in which CO2 produced from glucose oxidation 

at the anode was fed into the cathode for photosynthesis by algae. The peak power 

density obtained was 4.1 to 5.6 W m-3 with Pt coated electrodes and 94% of the carbon 

input was captured by the MCC. (He et al., 2014) have utilised an immobilised 

(sodium alginate + CaCl2) Chlorella vulgaris at the cathode in the absence of platinum 

to treat wastewater and simultaneously produce electricity. Anaerobic sludge with 

glucose as the substrate was used at the anode and the CO2 from the anode was fed 

into the cathode. The maximum power density was 2.57 W m-3 with COD removal 

efficiency of 92.1 % and a 14.1% coulombic efficiency.  

Algae and cyanobacteria have been previously studied for their decolourization and 

degradation of azo dyes (Acuner and Dilek, 2004; El-Sheekh et al., 2009). Chlorella 

vulgaris, Oscillatoria rubescens, Elkatohrix viridis showed > 90% degradation of 

Basic Fuschin dye. The azo reductase in the algae breaks down the azo bond to form 

aromatic amines (El-Sheekh et al., 2009). A proposed mechanism of azo degradation 

pathway by algae in stabilisation ponds by (Jinqi and Houtian, 1992) (Figure 9.1). 
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Figure 9.1 : Suggested mechanism of of azo dyes degradation by algae (Jinqi and 

Houtian, 1992). 

Considering the power production and the dye degradation capabilities of algae it 

would be interesting to develop a photosynthetic MFC for dye degradation. These 

biocathodes would prove as renewable source of energy while operating using natural 

sunlight. 



176 
 
 

References 

Abadulla, E., Tzanov, T., Costa, S., Robra, K.H., Cavaco-Paulo, A. and Gübitz, 

G.M. (2000) Decolorization and detoxification of textile dyes with a laccase 

from Trametes hirsuta. Applied and environmental microbiology. 66 (8), 3357–

62. 

Abrahart, E.N. (1977) Dyes and Their Intermediates. New York, Chemical 

Publishing, 1–12. 

Ackermann, Y., Guschin, D.A., Eckhard, K., Shleev, S. and Schuhmann, W. (2010) 

Design of a bioelectrocatalytic electrode interface for oxygen reduction in 

biofuel cells based on a specifically adapted Os-complex containing redox 

polymer with entrapped Trametes hirsuta laccase. Electrochemistry 

Communications. 12 (5), 640–643. 

Acuner, E. and Dilek, F.B. (2004) Treatment of tectilon yellow 2G by Chlorella 

vulgaris. Process Biochemistry. 39 (5), 623–631. 

Aeschbacher, M., Sander, M. and Schwarzenbach, R.P. (2010) Novel 

Electrochemical Approach to Assess the Redox Properties of Humic 

Substances. Environmental Science & Technology. 44 (1), 87–93. 

Ahn, M.-Y., Zimmerman, A.R., Martínez, C.E., Archibald, D.D., Bollag, J.-M. and 

Dec, J. (2007) Characteristics of Trametes villosa laccase adsorbed on 

aluminum hydroxide. Enzyme and Microbial Technology. 41 (1–2), 141–148. 

Akertek, E. and Tarhan, L. (1995) Characterization of immobilized catalases and 

their application in pasteurization of milk with H2O2. Applied Biochemistry and 

Biotechnology. 50 (3), 291–303. 

Aljamali, N.M. (2015) Review in Azo Compounds and its Biological Activity. 

Biochemistry & Analytical Biochemistry. 04 (02), 169. 

Allen, R.L.M. (1971) Colour Chemistry. Springer US, 1-336. 

An, J., Jeon, H., Lee, J. and Chang, I.S. (2011) Bifunctional Silver Nanoparticle 

Cathode in Microbial Fuel Cells for Microbial Growth Inhibition with 

Comparable Oxygen Reduction Reaction Activity. Environmental Science & 



177 
 
 

Technology. 45 (12), 5441–5446. 

Anjaneyulu, Y., Sreedhara Chary, N. and Samuel Suman Raj, D. (2005) 

Decolourization of Industrial Effluents -- Available Methods and Emerging 

Technologies -- A Review. Reviews in Environmental Science and 

Bio/Technology. 4 (4), 245–273. 

de Aragao Umbuzeiro, G., Freeman, H.S., Warren, S.H., de Oliveira, D.P., Terao, 

Y., Watanabe, T. and Claxton, L.D. (2005) The contribution of azo dyes to the 

mutagenic activity of the Cristais River. Chemosphere. 60 (1), 55–64. 

Atteke, C., Mounguengui, S., Saha Tchinda, J.-B., Ndikontar, M.K., Ibrahim, B., 

Gelhaye, E. and Gelhaye, E. (2013) Biodegradation of Reactive Blue 4 and 

Orange G by Pycnoporus sanguineus Strain Isolated in Gabon. J Bioremed 

Biodeg. 4 (206), 2155–6.199. 

Bagewadi, Z.K., Mulla, S.I. and Ninnekar, H.Z. (2017) Purification and 

immobilization of laccase from Trichoderma harzianum strain HZN10 and its 

application in dye decolorization. Journal of Genetic Engineering and 

Biotechnology. 15 (1), 139–150. 

Baker, C.J., Mock, N.M., Whitaker, B.D., Hammond, R.W., Nemchinov, L., 

Roberts, D.P. and Aver’yanov, A.A. (2014) Characterization of apoplast 

phenolics: Invitro oxidation of acetosyringone results in a rapid and prolonged 

increase in the redox potential. Physiological and Molecular Plant Pathology. 

8657–63. 

Bakhshian, S., Kariminia, H.-R. and Roshandel, R. (2011) Bioelectricity generation 

enhancement in a dual chamber microbial fuel cell under cathodic enzyme 

catalyzed dye decolorization. Bioresource Technology. 102 (12), 6761–6765. 

Bardischewsky, F. and Friedrich, C.G. (2001) The shxVW locus is essential for 

oxidation of inorganic sulfur and molecular hydrogen by Paracoccus 

pantotrophus GB17: A novel function for lithotrophy. FEMS Microbiology 

Letters. 202 (2), 215–220. 

Barragán, B.E., Costa, C. and Carmen Márquez, M. (2007) Biodegradation of azo 

dyes by bacteria inoculated on solid media. Dyes and Pigments. 75 (1), 73–81. 



178 
 
 

Bélanger, J.M.R., Jocelyn Paré, J.R. and Sigouin, M. (1997) 'Chapter 2 High 

performance liquid chromatography (HPLC): Principles and applications', in 

J.M.R. Bélanger J.R.J. Paré (ed.) Techniques and Instrumentation in Analytical 

Chemistry. [Online]. Elsevier. pp. 37–59. 

Blánquez, A., Rodríguez, J., Brissos, V., Mendes, S., Martins, L.O., Ball, A.S., 

Arias, M.E. and Hernández, M. (2018) Decolorization and detoxification of 

textile dyes using a versatile Streptomyces laccase-natural mediator system. 

Saudi Journal of Biological Sciences (In Press). 

Blauenburg, B., Metsä-Ketelä, M. and Klika, K.D. (2012) Formation of 5-Hydroxy-

3-methoxy-1,4-naphthoquinone and 8-Hydroxy-4-methoxy-1,2-naphthoquinone 

from Juglone. ISRN Organic Chemistry.1–7. 

Blázquez, E., Gabriel, D., Baeza, J.A. and Guisasola, A. (2017) Evaluation of key 

parameters on simultaneous sulfate reduction and sulfide oxidation in an 

autotrophic biocathode. Water Research. 301–310. 

Blumel, S., Busse, H.J., Stolz, A. and Kampfer, P. (2001) Xenophilus azovorans gen. 

nov., sp. nov., a soil bacterium that is able to degrade azo dyes of the Orange II 

type. International Journal of Systematic and Evolutionary Microbiology. 51 

(5), 1831–1837. 

Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., 

Mills, D.A. and Caporaso, J.G. (2013) Quality-filtering vastly improves 

diversity estimates from Illumina amplicon sequencing. Nature methods. 10 (1), 

57–9. 

Bollella, P., Fusco, G., Stevar, D., Gorton, L., Ludwig, R., Ma, S., Boer, H., Koivula, 

A., Tortolini, C., Favero, G., Antiochia, R. and Mazzei, F. (2018) A 

Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified 

Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. 

Sensors and Actuators B: Chemical. 256, 921–930. 

Bond, D.R., Strycharz-Glaven, S.M., Tender, L.M. and Torres, C.I. (2012) On 

Electron Transport through Geobacter Biofilms. ChemSusChem. 5 (6), 1099–

1105. 



179 
 
 

Bourbonnais, R., Leech, D. and Paice, M. (1998) Electrochemical analysis of the 

interactions of laccase mediators with lignin model compounds. Biochimica et 

Biophysica Acta. 1379381–390. 

Bourbonnais, R. and Paice, M.G. (1990) Oxidation of non-phenolic substrates. FEBS 

Letters. 267 (1), 99–102. 

Brigé, A., Motte, B., Borloo, J., Buysschaert, G., Devreese, B. and Van Beeumen, 

J.J. (2008) Bacterial decolorization of textile dyes is an extracellular process 

requiring a multicomponent electron transfer pathway. Microbial 

biotechnology. 1 (1), 40–52. 

Brüschweiler, B.J. and Merlot, C. (2017) Azo dyes in clothing textiles can be 

cleaved into a series of mutagenic aromatic amines which are not regulated yet. 

Regulatory Toxicology and Pharmacology. 88, 214–226. 

Cai, P.J., Xiao, X., He, Y.R., Li, W.W., Chu, J., Wu, C., He, M.X., Zhang, Z., Sheng, 

G.P., Lam, M.H.W., Xu, F. and Yu, H.Q. (2012) Anaerobic biodecolorization 

mechanism of methyl orange by Shewanella oneidensis MR-1. Applied 

Microbiology and Biotechnology. 93 (4), 1769–1776. 

Call, H.P. and Mücke, I. (1997) History, Overview and Application of mediated 

lignolytic systems, especially lacasse-mediator-systems (Lignozyme®-process). 

Journal of Biotechnol. 53, 163–202. 

Camarero, S., Ibarra, D., Martinez, M.J. and Martinez, A.T. (2005) Lignin-Derived 

Compounds as Efficient Laccase Mediators for Decolorization of Different 

Types of Recalcitrant Dyes. Appl. Environ. Microbiol. 71 (4), 1775–1784. 

Cañas, A.I. and Camarero, S. (2010) Laccases and their natural mediators: 

Biotechnological tools for sustainable eco-friendly processes. Biotechnology 

Advances. 28 (6), 694–705. 

von Canstein, H., Ogawa, J., Shimizu, S. and Lloyd, J.R. (2008) Secretion of flavins 

by Shewanella species and their role in extracellular electron transfer. Applied 

and environmental microbiology. 74 (3), 615–23. 

Cao, Y., Hu, Y., Sun, J. and Hou, B. (2010) Explore various co-substrates for 

simultaneous electricity generation and Congo red degradation in air-cathode 



180 
 
 

single-chamber microbial fuel cell. Bioelectrochemistry. 79 (1), 71–76. 

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, 

E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, 

S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., 

Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, 

W.A., Widmann, J., Yatsunenko, T., Zaneveld, J. and Knight, R. (2010) QIIME 

allows analysis of high-throughput community sequencing data. Nature 

methods. 7 (5), 335–6. 

Carvalho, M.C., Pereira, C., Gonçalves, I.C., Pinheiro, H.M., Santos, A.R., Lopes, A. 

and Ferra, M.I. (2008) Assessment of the biodegradability of a monosulfonated 

azo dye and aromatic amines. International Biodeterioration & Biodegradation. 

62 (2), 96–103. 

Casas, N., Parella, T., Vicent, T., Caminal, G. and Sarrà, M. (2009) Metabolites from 

the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. 

Chemosphere. 75 (10), 1344–1349. 

Casieri, L., Varese, G.C., Anastasi, A., Prigione, V., Svobodová, K., Filippelo 

Marchisio, V. and Novotný, Č. (2008) Decolorization and detoxication of 

reactive industrial dyes by immobilized fungi Trametes pubescens and 

Pleurotus ostreatus. Folia Microbiologica. 53 (1), 44–52. 

Çelik, L., Öztürk, A. and Abdullah, M.I. (2012) Biodegradation of reactive red 195 

azo dye by the bacterium Rhodopseudomonas palustris 51ATA. African 

Journal of Microbiology Research. 6 (1), 120–126. 

Chain, P., Lamerdin, J., Larimer, F., Regala, W., Lao, V., Land, M., Hauser, L., 

Alan, H., Klotz, M., Norton, J., Sayavedra-Soto, L., Arciero, D., Hommes, N., 

Whittaker, M. and and Arp, D. (2003) Complete Genome Sequence of the 

Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph 

Nitrosomonas europaea Complete Genome Sequence of the Ammonia-

Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas 

europaea †. Journal of Bacteriology. 185 (9), 2759–2773. 

Chakraborty, J.N. (2011) '13 – Metal-complex dyes', in Handbook of Textile and 

Industrial Dyeing. [Online]. pp. 446–465. 



181 
 
 

Chen, M., Wang, L., Tan, T., Luo, X.C., Zheng, Z., Yin, R.C., Su, J.H. and Du, J.F. 

(2017) Radical mechanism of laccase-catalyzed catechol ring-opening. Wuli 

Huaxue Xuebao/ Acta Physico - Chimica Sinica. 33 (3), 620–626. 

Cheng, S., Liu, H. and Logan, B.E. (2006) Power densities using different cathode 

catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single 

chamber microbial fuel cells. Environmental Science and Technology. 40 (1), 

364–369. 

Chhabra, M., Mishra, S. and Sreekrishnan, T.R. (2015) Immobilized laccase 

mediated dye decolorization and transformation pathway of azo dye acid red 27. 

Journal of environmental health science & engineering. 1–9. 

Chivukula, M. and Renganathan, V. (1995) Phenolic Azo Dye Oxidation by Laccase 

from Pyricularia oryzae. Applied and environmental microbiology. 61 (12), 

4374–7. 

Christopher, L.P., Yao, B. and Ji, Y. (2014) Lignin Biodegradation with Laccase-

Mediator Systems. Frontiers in Energy Research. 212. 

Chung, K.T. and Cerniglia, C.E. (1992) Mutagenicity of azo dyes: Structure-activity 

relationships. Mutation Research/Reviews in Genetic Toxicology. 277 (3), 201–

220. 

Clark, M. (2011) Principles, processes and types of dyes. Woodhead Pub. 

Clauwaert, P., Van Der Ha, D., Boon, N., Verbeken, K., Verhaege, M., Rabaey, K. 

and Verstraete, W. (2007) Open air biocathode enables effective electricity 

generation with microbial fuel cells. Environmental Science and Technology. 41 

(21), 7564–7569. 

Cohen, B. (1931) The Bacteria Culture as an Electrical Half-Cell. Journal of 

Bacteriology. 21, 18–19. 

Cooney, M.J., Svoboda, V., Lau, C., Martin, G. and Minteer, S.D. (2008) Enzyme 

catalysed biofuel cells. Energy & Environmental Science. 1 (3), 320. 

Couto, S.R. and Toca-herrera, J.L. (2006) Lacasses in the textile industry. 

Biotechnology and Molecular Biology Review. 1 (December), 115–120. 



182 
 
 

Crestini, C. and Argyropoulos, D.S. (1998) The early oxidative biodegradation steps 

of residual kraft lignin models with laccase. Bioorganic & Medicinal 

Chemistry. 6 (11), 2161–2169. 

Crini, G. (2006) Non-conventional low-cost adsorbents for dye removal: A review. 

Bioresource Technology. 97 (9), 1061–1085. 

Daâssi, D., Rodríguez-Couto, S., Nasri, M. and Mechichi, T. (2014) Biodegradation 

of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate 

beads. International Biodeterioration and Biodegradation. 90, 71–78. 

Daâssi, D., Zouari-Mechichi, H., Frikha, F., Martinez, M.J., Nasri, M. and Mechichi, 

T. (2013) Decolorization of the azo dye Acid Orange 51 by laccase produced in 

solid culture of a newly isolated Trametes trogii strain. 3 Biotech. 3 (2), 115–

125. 

Dai, Y., Yao, J., Song, Y., Liu, X., Wang, S. and Yuan, Y. (2016) Enhanced 

performance of immobilized laccase in electrospun fibrous membranes by 

carbon nanotubes modification and its application for bisphenol A removal 

from water. Journal of Hazardous Materials. 317, 485–493. 

Dai, Y., Yuan, Z., Wang, X., Oehmen, A. and Keller, J. (2007) Anaerobic 

metabolism of Defluviicoccus vanus related glycogen accumulating organisms  

(GAOs ) with acetate and propionate as carbon sources. Water Research. 41, 

1885–1896. 

Datta, S., Christena, L.R. and Rajaram, Y.R.S. (2013) Enzyme immobilization: an 

overview on techniques and support materials. 3 Biotech. 3 (1), 1–9. 

Davis, S. and Burns, R. (1992) Covalent immobilization of laccase on activated 

carbon for phenolic effluent treatment. Applied Microbiology and 

Biotechnology. 37 (4), 474–479. 

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., 

Huber, T., Dalevi, D., Hu, P. and Andersen, G.L. (2006) Greengenes, a 

chimera-checked 16S rRNA gene database and workbench compatible with 

ARB. Applied and environmental microbiology. 72 (7), 5069–72. 

Ding, X., Yu, Y., Chen, M., Wang, C., Kang, Y., Li, H. and Lou, J. (2017) 



183 
 
 

Bacteremia due to Gordonia polyisoprenivorans: Case report and review of 

literature. BMC Infectious Diseases. 17 (1), 1–4. 

Diniz, P.E., Lopes, A.T., Lino, A.R. and Serralheiro, M.L. (2002) Anaerobic 

reduction of a sulfonated azo dye, Congo Red, by sulfate-reducing bacteria. 

Applied biochemistry and biotechnology. 97 (3), 147–63. 

Du, Y., Feng, Y., Dong, Y., Qu, Y., Liu, J., Zhou, X. and Ren, N. (2014) Coupling 

interaction of cathodic reduction and microbial metabolism in aerobic 

biocathode of microbial fuel cell. RSC Adv. 4 (65), 34, 350–355. 

Durand, F., Gounel, S., Kjaergaard, C.H., Solomon, E.I. and Mano, N. (2012) 

Bilirubin oxidase from Magnaporthe oryzae: an attractive new enzyme for 

biotechnological applications. Applied microbiology and biotechnology. 96 (6), 

14, 89–98. 

Lambert, E.N., Seaforth, C. E., and Ahmad, N. (1971) The Occurrence of 2-

Methoxy-l,4-Naphthoquinone in Caribbean Vertisols. Soil Science Society Of 

America. 35 (1), 7–8. 

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and 

high throughput. Nucleic Acids Research. 32 (5), 1792–1797. 

Edgar, R.C. (2013) UPARSE: highly accurate OTU sequences from microbial 

amplicon reads. Nature Methods. 10 (10), 996–998. 

Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. and Knight, R. (2011) UCHIME 

improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, 

England). 27 (16), 2194–200. 

Eggert, C., Temp, U. and Eriksson, K.L. (1996) The Ligninolytic System of the 

White Rot Fungus Pycnoporus cinnabarinus : Purification and Characterization 

of the Laccase. Appl. Environ. Microbiol. 62 (4), 1151–1158. 

El-Sheekh, M.M., Gharieb, M.M. and Abou-El-Souod, G.W. (2009) Biodegradation 

of dyes by some green algae and cyanobacteria. International Biodeterioration 

& Biodegradation. 63 (6), 699–704. 

Erable, B., Feron, D. and Bergel, A. (2012) Microbial Catalysis of the Oxygen 

Reduction Reaction for Microbial Fuel Cells : A Review. ChemSusChem. 5, 



184 
 
 

975–987. 

Falade, A.O., Nwodo, U.U., Iweriebor, B.C., Green, E., Mabinya, L. V and Okoh, 

A.I. (2017) Lignin peroxidase functionalities and prospective applications. 

MicrobiologyOpen. 6 (1), 1-14 . 

Feng, Y., Wang, X., Logan, B.E. and Lee, H. (2008) Brewery wastewater treatment 

using air-cathode microbial fuel cells. Applied Microbiology and 

Biotechnology. 78 (5), 873–880. 

Fernández, J.L.M. (2011) Laccases from new fungal sources and some promising 

applications. PhD thesis, Lund University, Sweden. 

Fernando, E. (2014) Treatment of azo dyes in industrial wastewater using microbial 

fuel cells. PhD thesis, University of Westminster, UK. 

Fernando, E., Keshavarz, T. and Kyazze, G. (2014) Complete degradation of the azo 

dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel 

cell, aerobic two-stage bioreactor system in continuous flow mode at ambient 

temperature. Bioresource technology. 156, 155–162. 

Fernando, E., Keshavarz, T. and Kyazze, G. (2012) Enhanced bio-decolourisation of 

acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial 

fuel cell. International Biodeterioration & Biodegradation. 72, 1–9. 

Fokina, O., Eipper, J., Winandy, L., Kerzenmacher, S. and Fischer, R. (2015) 

Improving the performance of a biofuel cell cathode with laccase-containing 

culture supernatant from Pycnoporus sanguineus. Bioresource Technology. 175, 

445–453. 

Forootanfar, H., Moezzi, A., Aghaie-Khozani, M., Mahmoudjanlou, Y., Ameri, A., 

Niknejad, F. and Faramarzi, M.A. (2012) Synthetic dye decolorization by three 

sources of fungal laccase. Iranian journal of environmental health science & 

engineering. 9 (1), 27. 

Fusconi, R., Leal Godinho, M.J., Cruz Hernández, I.L. and Segnini Bossolan, N.R. 

(2006) Gordonia polyisoprenivorans from groundwater contaminated with 

landfill leachate in a subtropical area: Characterization of the isolate and 

exopolysaccharide production. Brazilian Journal of Microbiology. 37 (2), 168–



185 
 
 

174. 

Gahlout, M., Rudakiya, D.M., Gupte, S. and Gupte, A. (2017) Laccase-conjugated 

amino-functionalized nanosilica for efficient degradation of Reactive Violet 1 

dye. International Nano Letters. 7 (3), 195–208. 

Galhaup, C. and Haltrich, D. (2001) Enhanced formation of laccase activity by the 

white-rot fungus Trametes pubescens in the presence of copper. Applied 

Microbiology and Biotechnology. 56 (1–2), 225–232. 

Garibyan, L. and Avashia, N. (2013) Polymerase chain reaction. The Journal of 

investigative dermatology. 133 (3), 1–4. 

Gellett, W., Schumacher, J., Kesmez, M., Le, D. and Minteer, S.D. (2010) High 

Current Density Air-Breathing Laccase Biocathode. Journal of The 

Electrochemical Society. 157 (4), B557. 

Giménez, J., Curcó, D. and Marco, P. (1997) Reactor modelling in the photocatalytic 

oxidation of wastewater. Water Science and Technology. 35 (4), 207–213. 

Glaze, W.H., Kang, J.-W. and Chapin, D.H. (1987) The Chemistry of Water 

Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet 

Radiation. Ozone: Science & Engineering. 9 (4), 335–352. 

Le Goff, A., Holzinger, M. and Cosnier, S. (2015) Recent progress in oxygen-

reducing laccase biocathodes for enzymatic biofuel cells. Cellular and 

Molecular Life Sciences. 72 (5), 941–952. 

Gogate, P.R. and Pandit, A.B. (2004) A review of imperative technologies for 

wastewater treatment II: hybrid methods. Advances in Environmental Research. 

8 (3), 553–597. 

Golob, V., Vinder, A. and Simonič, M. (2005) Efficiency of the 

coagulation/flocculation method for the treatment of dyebath effluents. Dyes 

and Pigments. 67 (2), 93–97. 

Gomaa, O.M., Fapetu, S., Kyazze, G. and Keshavarz, T. (2017) The role of 

riboflavin in decolourisation of Congo red and bioelectricity production using 

Shewanella oneidensis-MR1 under MFC and non-MFC conditions. World 

Journal of Microbiology and Biotechnology. 33 (3), 56. 



186 
 
 

Gomaa, O.M., Linz, J.E. and Reddy, C.A. (2008) Decolorization of Victoria blue by 

the white rot fungus, Phanerochaete chrysosporium. World Journal of 

Microbiology and Biotechnology. 24 (10), 2349–2356. 

Gong, X.-B., You, S.-J., Wang, X.-H., Zhang, J.-N., Gan, Y. and Ren, N.-Q. (2014) 

A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis 

of oxygen reduction in a microbial fuel cell. Biosensors and Bioelectronics. 55, 

237–241. 

Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., 

Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., 

Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., 

Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H. and Fredrickson, 

J.K. (2006) Electrically conductive bacterial nanowires produced by Shewanella 

oneidensis strain MR-1 and other microorganisms. Proceedings of the National 

Academy of Sciences of the United States of America. 103 (30), 11358–11363. 

Gouterman, M. (1978) Optical spectra and electronic structure of porphyrins and 

related rings. In Dolphin, D. (ed.) The porphyrins. Vol. III, New York, 

Academic Press, 1–165. 

Grundmann, G.L., Neyra, M. and Normand, P. (2000) High-resolution phylogenetic 

analysis of NO2--oxidizing Nitrobacter species using the rrs-rrl IGS sequence 

and rrl genes. International Journal of Systematic and Evolutionary 

Microbiology. 50 (5), 1893–1898. 

Guisan J M (2006) Immobilization of Enzymes and Cells. Methods in 

BiotechnologyTM. Jose M. Guisan (ed.). Vol. 22. Totowa, NJ: Humana Press. 

Gulrajani, M.L. (2011) '10 – Disperse dyes', in Handbook of Textile and Industrial 

Dyeing. [Online]. pp. 365–394. 

Gutiérrez-Sánchez, C., Jia, W., Beyl, Y., Pita, M., Schuhmann, W., De Lacey, A.L. 

and Stoica, L. (2012) Enhanced direct electron transfer between laccase and 

hierarchical carbon microfibers/carbon nanotubes composite electrodes. 

Comparison of three enzyme immobilization methods. Electrochimica Acta. 82, 

218–223. 



187 
 
 

Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D. V., Giannoukos, G., 

Ciulla, D., Tabbaa, D., Highlander, S.K., Sodergren, E., Methe, B., DeSantis, 

T.Z., Petrosino, J.F., Knight, R., Birren, B.W. and Birren, B.W. (2011) 

Chimeric 16S rRNA sequence formation and detection in Sanger and 454-

pyrosequenced PCR amplicons. Genome Research. 21 (3), 494–504. 

Hamasaki, T., Aramaki, K., Hida, T., Inatomi, H., Fujimoto, N., Okamura, T., Ozu, 

K. and Sugita, A. (1996) Clinical study of occupational uroepithelial cancer. 

Journal of UOEH. 18 (4), 247–59. 

Harnisch, F., Schroder, U., Scholz, F. (2008) The Suitability of Monopolar and 

Bipolar Ion Exchange Membranes as Separators for Biological Fuel Cells. 

Environmental Science & Technology. 42 (5), 1740–1746 

Hassan, H.K., Atta, N.F. and Galal, A. (2012) Electropolymerization of aniline over 

chemically converted graphene-systematic study and effect of dopant. 

International Journal of Electrochemical Science. 7, 11161–11181. 

Hassan, M.M., Elshafei, A.M., Haroun, B.M., Elsayed, M.A. and Othman, A.M. 

(2012) Biochemical Characterization of an Extracellular Laccase From 

Pleurotus ostreatus ARC280. Journal of Applied Sciences Research. 8 (8), 

4525-4536. 

He, C.-S., Mu, Z.-X., Yang, H.-Y., Wang, Y.-Z., Mu, Y. and Yu, H.-Q. (n.d.) 

Electron acceptors for energy generation in microbial fuel cells fed with 

wastewaters: A mini-review. Chemosphere. 140, 12-17. 

He, H., Zhou, M., Yang, J., Hu, Y. and Zhao, Y. (2014) Simultaneous wastewater 

treatment, electricity generation and biomass production by an immobilized 

photosynthetic algal microbial fuel cell. Bioprocess and Biosystems 

Engineering. 37 (5), 873–880. 

He, Z. and Angenent, L.T. (2006) Application of Bacterial Biocathodes in Microbial 

Fuel Cells. Electroanalysis. 18 (19–20), 2009–2015. 

Heilmann, J. and Logan, B.E. (2006) Production of Electricity from Proteins Using a 

Microbial Fuel Cell. Water Environment Research. 78 (5), 531–537. 

Heitner-Wirguin, C. (1996) Recent advances in perfluorinated ionomer membranes: 



188 
 
 

structure, properties and applications. Journal of Membrane Science. 120 (1), 

1–33. 

Hiessl, S., Schuldes, J., Thürmer, A., Halbsguth, T., Bröker, D., Angelov, A., Liebl, 

W., Daniel, R. and Steinbüchel, A. (2012) Involvement of two latex-clearing 

proteins during rubber degradation and insights into the subsequent degradation 

pathway revealed by the genome sequence of Gordonia polyisoprenivorans 

strain VH2. Applied and Environmental Microbiology. 78 (8), 2874–2887. 

Higgins, S.R., Lau, C., Atanassov, P., Minteer, S.D. and Cooney, M.J. (2011) Hybrid 

Biofuel Cell : Microbial Fuel Cell with an Enzymatic. ACS Catalysis. 994–997. 

Hilgers, R., Vincken, J.-P., Gruppen, H. and Kabel, M.A. (2018) Laccase/Mediator 

Systems: Their Reactivity toward Phenolic Lignin Structures. ACS Sustainable 

Chemistry & Engineering. 6 (2), 2037–2046. 

Hong, Y.-G. and Gu, J.-D. (2010) Physiology and biochemistry of reduction of azo 

compounds by Shewanella strains relevant to electron transport chain. Applied 

microbiology and biotechnology. 88 (3), 637–43. 

Hongfei, L., Su, J.,Ying, L and Yang, L. (2014) Catalytic Conversion of 

Lignocellulosic Biomass to Value-Added Organic Acids in Aqueous Media. 

Fangming Jin (ed.). Springer. 109-138 

Hori, T., Kojima, H., Rohnert, R.M. and Zollinger, H. (1987) Structure correlation 

between diffusion and of anionic and cationic dyes in water. 103, 265–270. 

Hou, B., Sun, J. and Hu, Y. (2011a) Simultaneous Congo red decolorization and 

electricity generation in air-cathode single-chamber microbial fuel cell with 

different microfiltration, ultrafiltration and proton exchange membranes. 

Bioresource technology. 102 (6), 4433–8. 

Hou, B., Sun, J. and Hu, Y. (2011b) Simultaneous Congo red decolorization and 

electricity generation in air-cathode single-chamber microbial fuel cell with 

different microfiltration, ultrafiltration and proton exchange membranes. 

Bioresource Technology. 102 (6), 4433–4438. 

Hou, H., Zhou, J., Wang, J., Du, C. and Yan, B. (2004) Enhancement of laccase 

production by Pleurotus ostreatus and its use for the decolorization of 



189 
 
 

anthraquinone dye. Process Biochemistry. 39 (11), 1415–1419. 

Hsueh, C.-C., Wang, Y.-M. and Chen, B.-Y. (2014) Metabolite analysis on reductive 

biodegradation of reactive green 19 in Enterobacter cancerogenus bearing 

microbial fuel cell (MFC) and non-MFC cultures. Journal of the Taiwan 

Institute of Chemical Engineers. 45 (2), 436–443. 

Hu, J., Zeng, C., Liu, G., Luo, H., Qu, L. and Zhang, R. (2018) Magnetite 

nanoparticles accelerate the autotrophic sulfate reduction in biocathode 

microbial electrolysis cells. Biochemical Engineering Journal. 13396–105. 

Hu, X., Lin, X., Zhao, H., Chen, Z., Yang, J., Li, F., Liu, C. and Tian, F. (2016) 

Surface functionalization of polyethersulfone membrane with quaternary 

ammonium salts for contact-active antibacterial and anti-biofouling properties. 

Materials. 9 (5), 1–12. 

Huang, L. and Cheng, Z.-M. (2008) Immobilization of lipase on chemically modified 

bimodal ceramic foams for olive oil hydrolysis. Chemical Engineering Journal. 

144 (1), 103–109. 

Huang, W., Chen, J., Hu, Y., Chen, J., Sun, J. and Zhang, L. (2017) Enhanced 

simultaneous decolorization of azo dye and electricity generation in microbial 

fuel cell (MFC) with redox mediator modified anode. International Journal of 

Hydrogen Energy. 42 (4), 2349–2359. 

Jayaprakash, J., Parthasarathy, A. and Viraraghavan, R. (2016) Decolorization and 

degradation of monoazo and diazo dyes in Pseudomonas catalyzed microbial 

fuel cell. Environmental Progress & Sustainable Energy. 35 (6), 1623–1628. 

Jesionowski, T., Jakub, Z. and Krajewska, B. (2014) Enzyme immobilization by 

adsorption: a review. Adsorption. 20, 801–821. 

Jin, X.-C., Liu, G.-Q., Xu, Z.-H. and Tao, W.-Y. (2007) Decolorization of a dye 

industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and 

Biotechnology. 74 (1), 239–243. 

Jinqi, L. and Houtian, L. (1992) Degradation of azo dyes by algae. Environmental 

Pollution. 75 (3), 273–278. 

Johnson, B.T. (2005) 'Microtox® Acute Toxicity Test', in Christian Blaise & Jean-



190 
 
 

François Férard (eds.) Small-scale Freshwater Toxicity Investigations: Toxicity 

Test Methods. [Online]. Dordrecht: Springer Netherlands. pp. 69–105. 

Kandelbauer, A., Maute, O., Kessler, R.W., Erlacher, A. and Gübitz, G.M. (2004) 

Study of dye decolorization in an immobilized laccase enzyme-reactor using 

online spectroscopy. Biotechnology and Bioengineering. 87 (4), 552–563. 

Kargi, F. and Eker, S. (2007) Electricity generation with simultaneous wastewater 

treatment by a microbial fuel cell (MFC) with Cu and Cu–Au electrodes. 

Journal of Chemical Technology & Biotechnology. 82 (7), 658–662. 

Kavanagh, P., Jenkins, P. and Leech, D. (2008) Electroreduction of O2 at a mediated 

Melanocarpus albomyces laccase cathode in a physiological buffer. 

Electrochemistry Communications. 10 (7), 970–972. 

Khan, R. and Fulekar, M.H. (2017) Mineralization of a sulfonated textile dye 

Reactive Red 31 from simulated wastewater using pellets of Aspergillus 

bombycis. Bioresources and Bioprocessing. 4 (1), 23. 

Kiernan, J. (2001) Classification and naming of dyes, stains and fluorochromes. 

Biotechnic & Histochemistry. 76 (5–6), 261–278. 

Kim, B.H., Kim, H.J., Hyun, M.S. and Park, D.H. (1999) Direct electrode reaction of 

Fe(III)-reducing bacterium, Shewanella putrefaciens. Journal of Microbiology 

and Biotechnology. 9 (2), 127–131. 

Kim, H., Lee, I., Kwon, Y., Kim, B.C., Ha, S., Lee, J. and Kim, J. (2011) 

Immobilization of glucose oxidase into polyaniline nanofiber matrix for biofuel 

cell applications. Biosensors & bioelectronics. 26 (9), 3908–13. 

Kim, J., Jia, H. and Wang, P. (2006) Challenges in biocatalysis for enzyme-based 

biofuel cells. Biotechnology Advances. 24 (3), 296–308. 

Kim, J.R., Cheng, S., Oh, S.-E. and Logan, B.E. (2007) Power generation using 

different cation, anion, and ultrafiltration membranes in microbial fuel cells. 

Environmental Science and Technology. 41 (3), 1004–1009. 

Kim, J.R., Jung, S.H., Regan, J.M. and Logan, B.E. (2007) Electricity generation and 

microbial community analysis of alcohol powered microbial fuel cells. 

Bioresource Technology. 98 (13), 2568–2577. 



191 
 
 

Kim, R.E., Hong, S.-G., Ha, S. and Kim, J. (2014) Enzyme adsorption, precipitation 

and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for 

highly stable enzymatic biofuel cells. Enzyme and microbial technology. 6635–

41. 

Klotz, L.O., Hou, X. and Jacob, C. (2014) 1,4-naphthoquinones: From oxidative 

damage to cellular and inter-cellular signaling. Molecules. 19 (9), 14902–14918. 

Knapp, J.S., Newby, P.S. and Reece, L.P. (1995) Decolorization of dyes by wood-

rotting basidiomycete fungi. Enzyme and Microbial Technology. 17 (7), 664–

668. 

Kodali, M., Santoro, C., Serov, A., Kabir, S., Artyushkova, K., Matanovic, I. and 

Atanassov, P. (2017) Air Breathing Cathodes for Microbial Fuel Cell using Mn-

, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. 

Electrochimica acta. 231, 115–124. 

Koklukaya, S.Z., Sezer, S., Aksoy, S. and Hasirci, N. (2016) Polyacrylamide-based 

semi-interpenetrating networks for entrapment of laccase and their use in azo 

dye decolorization. Biotechnology and Applied Biochemistry. 63 (5), 699–707. 

Kong, F., Wang, A., Cheng, H. and Liang, B. (2014) Accelerated decolorization of 

azo dye Congo red in a combined bioanode-biocathode bioelectrochemical 

system with modified electrodes deployment. Bioresource technology. 151, 

332–9. 

Kong, F., Wang, A., Liang, B., Liu, W. and Cheng, H. (2013) Improved azo dye 

decolorization in a modified sleeve-type bioelectrochemical system. 

Bioresource Technology. 143, 669–673. 

Kong, J. and Yu, S. (2007) Fourier Transform Infrared Spectroscopic Analysis of 

Protein Secondary Structures Protein FTIR Data Analysis and Band 

Assignment. Acta Biochimica et Biophysica Sinica. 39 (8), 549–559. 

Kouzuma, A., Kasai, T., Hirose, A. and Watanabe, K. (2015) Catabolic and 

regulatory systems in Shewanella oneidensis MR-1 involved in electricity 

generation in microbial fuel cells. Frontiers in Microbiology. 6, 1–11. 

Kudlich, M., Hetheridge, M.J., Knackmuss, H.-J. and Stolz, A. (1999) Autoxidation 



192 
 
 

Reactions of Different Aromatic o -Aminohydroxynaphthalenes That Are 

Formed during the Anaerobic Reduction of Sulfonated Azo Dyes. 

Environmental Science & Technology. 33 (6), 896–901. 

Kunamneni, A., Ballesteros, A., Plou, F.J. and Alcalde, M. (2007) Fungal laccase – a 

versatile enzyme for biotechnological applications. Applied Microbiology. 233–

245. 

Kunimatsu, K., Yoda, T., Tryk, D.A., Uchida, H. and Watanabe, M. (2010) In 

situATR-FTIR study of oxygenreduction at the Pt/Nafion interface. Phys. 

Chem. Chem. Phys. 12 (3), 621–629. 

Kurniawati, S. and Nicell, J.A. (2007) Efficacy of mediators for enhancing the 

laccase-catalyzed oxidation of aqueous phenol. Enzyme and Microbial 

Technology. 41 (3), 353–361. 

Kusvuran, E., Gulnaz, O., Irmak, S., Atanur, O.M., Ibrahim Yavuz, H. and Erbatur, 

O. (2004) Comparison of several advanced oxidation processes for the 

decolorization of Reactive Red 120 azo dye in aqueous solution. Journal of 

Hazardous Materials. 109 (1), 85–93. 

Kwang-Soo, S. and Chang-Jin, K. (1998) Decolorisation of artificial dyes by 

peroxidase from the white-rot fungus, Pleurotus ostreatus. Biotechnology 

Letters. 20 (6), 569–572. 

Laanbroek, H.J., Bär-Gilissen, M.J. and Hoogveld, H.L. (2002) Nitrite as a stimulus 

for ammonia-starved Nitrosomonas europaea. Applied and Environmental 

Microbiology. 68 (3), 1454–1457. 

Lai, C.-Y., Liu, S.-H., Wu, G.-P. and Lin, C.-W. (2017) Enhanced bio-decolorization 

of acid orange 7 and electricity generation in microbial fuel cells with 

superabsorbent-containing membrane and laccase-based bio-cathode. Journal of 

Cleaner Production. 166, 381–386. 

Lai, C.-Y., Wu, C.-H., Meng, C.-T. and Lin, C.-W. (2017) Decolorization of azo dye 

and generation of electricity by microbial fuel cell with laccase-producing 

white-rot fungus on cathode. Applied Energy. 188, 392–398. 

 



193 
 
 

Lai, Q., Yu, Z., Yuan, J., Sun, F. and Shao, Z. (2011) Nitratireductor indicus sp. 

nov., isolated from deep-sea water. International Journal of Systematic and 

Evolutionary Microbiology. 61 (2), 295–298. 

Lalaoui, N., Elouarzaki, K., Goff, A. Le, Holzinger, M. and Cosnier, S. (2013) 

Efficient direct oxygen reduction by laccases attached and oriented on pyrene-

functionalized polypyrrole/carbon nanotube electrodes. Chemical 

Communications. 49 (81), 9281-9283. 

Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., 

Pelletier, D.A., Beatty, J.T., Lang, A.S., Tabita, F.R., Gibson, J.L., Hanson, 

T.E., Bobst, C., Torres, J.L.T. y, Peres, C., Harrison, F.H., Gibson, J. and 

Harwood, C.S. (2004) Complete genome sequence of the metabolically 

versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature 

Biotechnology. 22 (1), 55–61. 

Le Laz, S., Kpebe, A., Lorquin, J., Brugna, M. and Rousset, M. (2014) H2-

dependent azoreduction by Shewanella oneidensis MR-1: involvement of 

secreted flavins and both [Ni–Fe] and [Fe–Fe] hydrogenases. Applied 

Microbiology and Biotechnology. 98 (6), 2699–2707. 

Lefebvre, O., Al-Mamun, A. and Ng, H.Y. (2008) A microbial fuel cell equipped 

with a biocathode for organic removal and denitrification. Water Science and 

Technology. 58 (4), 881–885. 

Legerská, B., Chmelová, D. and Ondrejovič, M. (2016) Degradation of synthetic 

dyes by laccases - A mini-review. Nova Biotechnologica et Chimica. 15 (1), 

90–106. 

Legrini, O., Oliveros, E. and Braun, A.M. (1993) Photochemical processes for water 

treatment. Chemical Reviews. 93 (2), 671–698. 

Liang, B., Cheng, H.-Y., Kong, D.-Y., Gao, S.-H., Sun, F., Cui, D., Kong, F.-Y., 

Zhou, A.-J., Liu, W.-Z., Ren, N.-Q., Wu, W.-M., Wang, A.-J. and Lee, D.-J. 

(2013) Accelerated Reduction of Chlorinated Nitroaromatic Antibiotic 

Chloramphenicol by Biocathode. Environmental Science & Technology. 47 

(10), 5353–5361. 



194 
 
 

Liang, C.-Z., Sun, S.-P., Li, F.-Y., Ong, Y.-K. and Chung, T.-S. (2014) Treatment of 

highly concentrated wastewater containing multiple synthetic dyes by a 

combined process of coagulation/flocculation and nanofiltration. Journal of 

Membrane Science. 469306–315. 

Liao, C.-H., Kang, S.-F. and Wu, F.-A. (2001) Hydroxyl radical scavenging role of 

chloride and bicarbonate ions in the H2O2/UV process. Chemosphere. 44 (5), 

1193–1200. 

Li, Z., Zhang, X., Lin, J., Han, S. and Lei, L (2010) Azo dye treatment with 

simultaneous electricity production in an anaerobic–aerobic sequential reactor 

and microbial fuel cell coupled system. Bioresource Technology. 101(12), 

4440-4445. 

Linos, A., Steinbuchel, A., Sproer, C. and Kroppenstedt, R.M. (1999) Gordonia 

polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an 

automobile tyre. International Journal of Systematic Bacteriology. 49, 1785–

1791. 

Liu, L., Li, F.B., Feng, C.H. and Li, X.Z. (2009) Microbial fuel cell with an azo-dye-

feeding cathode. Applied Microbiology and Biotechnology. 85 (1), 175–183. 

Liu, R.-H., Sheng, G.-P., Sun, M., Zang, G.-L., Li, W.-W., Tong, Z.-H., Dong, F., 

Hon-Wah Lam, M. and Yu, H.-Q. (2011) Enhanced reductive degradation of 

methyl orange in a microbial fuel cell through cathode modification with redox 

mediators. Applied Microbiology and Biotechnology. 89 (1), 201–208. 

Liu, Y., Huang, J. and Zhang, X. (2009) Decolorization and biodegradation of 

remazol brilliant blue R by bilirubin oxidase. Journal of Bioscience and 

Bioengineering. 108 (6), 496–500. 

Liu, Z., Frigaard, N., Vogl, K., Iino, T., Ohkuma, M. and Overmann, J. (2012) 

Complete genome of Ignavibacterium album , a metabolically versatile , 

flagellated , facultative anaerobe from the phylum Chlorobi. Fronteirs in 

Microbiology. 3 (May), 1–15. 

Logan, B.E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., 

Aelterman, P., Verstraete, W. and Rabaey, K. (2006) Microbial fuel cells: 



195 
 
 

Methodology and technology. Environmental Science and Technology. 40 (17), 

5181–5192. 

Logan, B.E., Murano, C., Scott, K., Gray, N.D. and Head, I.M. (2005a) Electricity 

generation from cysteine in a microbial fuel cell. Water Research. 39 (5), 942–

952. 

Logan, B.E., Murano, C., Scott, K., Gray, N.D. and Head, I.M. (2005b) Electricity 

generation from cysteine in a microbial fuel cell. Water Research. 39 (5), 942–

952. 

López-González, B., Dector, A., Cuevas-Muñiz, F.M., Arjona, N., Cruz-Madrid, C., 

Arana-Cuenca, A., Guerra-Balcázar, M., Arriaga, L.G. and Ledesma-García, J. 

(2014) Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C 

electrodes. Biosensors and Bioelectronics. 62, 221–226. 

Lorenzo, M., Moldes, D., Rodríguez Couto, S. and Sanromán, M.A. (2005) 

Inhibition of laccase activity from Trametes versicolor by heavy metals and 

organic compounds. Chemosphere. 60 (8), 1124–1128. 

Luo, H., Jin, S., Fallgren, P.H., Park, H.J. and Johnson, P.A. (2010) A novel laccase-

catalyzed cathode for microbial fuel cells. Chemical Engineering Journal. 165 

(2), 524–528. 

Luo, Y., Zhang, R., Liu, G., Li, J., Qin, B., Li, M. and Chen, S. (2011) Simultaneous 

degradation of refractory contaminants in both the anode and cathode chambers 

of the microbial fuel cell. Bioresource Technology. 102 (4), 3827–3832. 

Lyautey, E., Cournet, A., Morin, S., Boulêtreau, S., Etcheverry, L., Charcosset, J.-Y., 

Delmas, F., Bergel, A. and Garabetian, F. (2011) Electroactivity of phototrophic 

river biofilms and constitutive cultivable bacteria. Applied and environmental 

microbiology. 77 (15), 5394–401. 

Madhavi, V. and Lele, S.S. (2009) Laccase: Properties and applications. 

BioResources. 4 (4), 1694–1717. 

Magoč, T. and Salzberg, S.L. (2011) FLASH: fast length adjustment of short reads to 

improve genome assemblies. Bioinformatics (Oxford, England). 27 (21), 2957–

2963. 



196 
 
 

Manohar, A.K. and Mansfeld, F. (2009) The internal resistance of a microbial fuel 

cell and its dependence on cell design and operating conditions. Electrochimica 

Acta. 54 (6), 1664–1670. 

Mao, Y., Zhang, L., Li, D., Shi, H., Liu, Y. and Cai, L. (2010) Power generation 

from a biocathode microbial fuel cell biocatalyzed by ferro/manganese-

oxidizing bacteria. Electrochimica Acta. 55 (27), 7804–7808. 

Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A. and Bond, D.R. 

(2008) Shewanella secretes flavins that mediate extracellular electron transfer. 

PNAS. 105 (10), 6–11. 

Martorana, A., Sorace, L., Boer, H., Vazquez-Duhalt, R., Basosi, R. and Baratto, 

M.C. (2013) A spectroscopic characterization of a phenolic natural mediator in 

the laccase biocatalytic reaction. Journal of Molecular Catalysis B: Enzymatic. 

97, 203–208. 

Masa, J., Xia, W., Sinev, I., Zhao, A., Sun, Z., Grützke, S., Weide, P., Muhler, M. 

and Schuhmann, W. (2014) Mn(x)O(y)/NC and Co(x)O(y)/NC nanoparticles 

embedded in a nitrogen-doped carbon matrix for high-performance bifunctional 

oxygen electrodes. Angewandte Chemie (International ed. in English). 53 (32), 

8508–12. 

Masa, J., Zhao, A., Xia, W., Sun, Z., Mei, B., Muhler, M. and Schuhmann, W. 

(2013) Trace metal residues promote the activity of supposedly metal-free 

nitrogen-modified carbon catalysts for the oxygen reduction reaction. 

Electrochemistry Communications. 34, 113–116. 

Matsuoka, M. (1990) 'Quinone Dyes', in Infrared Absorbing Dyes. [Online]. Boston, 

MA: Springer US. pp. 35–43. 

Mauritz, K.A. and Moore, R.B. (2004) State of understanding of Nafion. Chemical 

Reviews. 104 (10), 4535–4585. 

Mendoza, L., Jonstrup, M., Hatti-Kaul, R. and Mattiasson, B. (2011) Azo dye 

decolorization by a laccase/mediator system in a membrane reactor: Enzyme 

and mediator reusability. Enzyme and Microbial Technology. 49 (5), 478–484. 

Meredith, S., Xu, S., Meredith, M.T. and Minteer, S.D. (2012) Hydrophobic Salt-



197 
 
 

modified Nafion for Enzyme Immobilization and Stabilization. Journal of 

Visualized Experiments. (65), 1–6. 

Milner, E.M., Popescu, D., Curtis, T., Head, I.M., Scott, K. and Yu, E.H. (2016) 

Microbial fuel cells with highly active aerobic biocathodes. Journal of Power 

Sources. 324, 8–16. 

Milton, R.D., Giroud, F., Thumser, A.E., Minteer, S.D. and Slade, R.C.T. (2013) 

Hydrogen peroxide produced by glucose oxidase affects the performance of 

laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose 

dehydrogenase as a replacement. Physical chemistry chemical physics : PCCP. 

15 (44), 19371–19379. 

Min, B., Kim, J., Oh, S., Regan, J.M. and Logan, B.E. (2005) Electricity generation 

from swine wastewater using microbial fuel cells. Water Research. 39 (20), 

4961–4968. 

Moehlenbrock, M.J. and Minteer, S.D. (2017) Introduction to the Field of Enzyme 

Immobilization and Stabilization, Methods in Molecular Biology, Humana 

Press, New York, 1–7. 

Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F. and Wahab, R.A. (2015) 

An overview of technologies for immobilization of enzymes and surface 

analysis techniques for immobilized enzymes. Biotechnology, biotechnological 

equipment. 29 (2), 205–220. 

Mohan, S.V., Prasad, K.K., Rao, N.C. and Sarma, P.N. (2005) Acid azo dye 

degradation by free and immobilized horseradish peroxidase (HRP) catalyzed 

process. Chemosphere. 58 (8), 1097–1105. 

Moore, C.M., Akers, N.L., Hill, A.D., Johnson, Z.C. and Minteer, S.D. (2004) 

Improving the environment for immobilized dehydrogenase enzymes by 

modifying nafion with tetraalkylammonium bromides. Biomacromolecules. 5 

(4), 1241–1247. 

Morhardt, C., Ketterer, B., Heißler, S. and Franzreb, M. (2014) Direct quantification 

of immobilized enzymes by means of FTIR ATR spectroscopy – A process 

analytics tool for biotransformations applying non-porous magnetic enzyme 



198 
 
 

carriers. Journal of Molecular Catalysis B: Enzymatic. 107, 55–63. 

Morozova, O. V., Shumakovich, G.P., Shleev, S. V. and Yaropolov, Y.I. (2007) 

Laccase-mediator systems and their applications: A review. Applied 

Biochemistry and Microbiology. 43 (5), 523–535. 

Mu, Y., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J. (2009) Decolorization 

of Azo Dyes in Bioelectrochemical Systems. Environmental Science & 

Technology. 43 (13), 5137–5143. 

Mu, Y., Rabaey, K. and Yuan, Z. (2015) Decolourization of Azo Dyes in Bio-

electrochemical Systems Decolorization of Azo Dyes. Bioelectrochemical 

Systems. 43 (13), 5137–5143. 

Murty, M.N. and Kumar, S. (2011) Water Pollution in India: An economic appraisal. 

India Infrastructure Report. 285–298. 

Newton, G.J., Mori, S., Nakamura, R., Hashimoto, K. and Watanabe, K. (2009) 

Analyses of current-generating mechanisms of Shewanella loihica PV-4 and 

Shewanella oneidensis MR-1 in microbial fuel cells. Applied and 

Environmental Microbiology. 75 (24), 7674–7681. 

Niu, C.-G., Wang, Y., Zhang, X.-G., Zeng, G.-M., Huang, D.-W., Ruan, M. and Li, 

X.-W. (2012) Decolorization of an azo dye Orange G in microbial fuel cells 

using Fe(II)-EDTA catalyzed persulfate. Bioresource technology. 126,101–106. 

Nogala, W., Burchardt, M., Opallo, M., Rogalski, J. and Wittstock, G. (2008) 

Scanning electrochemical microscopy study of laccase within a sol–gel 

processed silicate film. Bioelectrochemistry. 72 (2), 174–182. 

Noori, M.T., Ghangrekar, M.M. and Mukherjee, C.K. (2016) V2O5 microflower 

decorated cathode for enhancing power generation in air-cathode microbial fuel 

cell treating fish market wastewater. International Journal of Hydrogen Energy. 

41 (5), 3638–3645. 

Nyanhongo, G., Gomes, J., Gübitz, G., Zvauya, R., Read, J. and Steiner, W. (2002) 

Decolorization of textile dyes by laccases from a newly isolated strain of 

Trametes modesta. Water Research. 36 (6), 1449–1456. 

Oh, S. and Logan, B.E. (2005) Hydrogen and electricity production from a food 



199 
 
 

processing wastewater using fermentation and microbial fuel cell technologies. 

Water Research. 39 (19), 4673–4682. 

Oh, S.E. and Logan, B.E. (2006) Proton exchange membrane and electrode surface 

areas as factors that affect power generation in microbial fuel cells. Applied 

Microbiology and Biotechnology. 70 (2), 162–169. 

Ooi, T., Shibata, T., Sato, R., Ohno, H., Kinoshita, S., Thuoc, T.L. and Taguchi, S. 

(2007) An azoreductase, aerobic NADH-dependent flavoprotein discovered 

from Bacillus sp.: functional expression and enzymatic characterization. 

Applied Microbiology and Biotechnology. 75 (2), 377–386. 

Othman, A.M., González-Domínguez, E., Sanromán, Á., Correa-Duarte, M. and 

Moldes, D. (2016) Immobilization of laccase on functionalized multiwalled 

carbon nanotube membranes and application for dye decolorization. RSC 

Advances. 6 (115), 114690–114697. 

Palmieri, G., Giardina, P. and Sannia, G. (2005) Laccase-Mediated Remazol Brilliant 

Blue R Decolorization in a Fixed-Bed Bioreactor. Biotechnology Progress. 21 

(5), 1436–1441. 

Pandey, A., Singh, P. and Iyengar, L. (2007) Bacterial decolorization and 

degradation of azo dyes. International Biodeterioration & Biodegradation. 59 

(2), 73–84. 

Pardo, I., Chanagá, X., Vicente, A.I., Alcalde, M. and Camarero, S. (2013) New 

colorimetric screening assays for the directed evolution of fungal laccases to 

improve the conversion of plant biomass. BMC biotechnology. 13 (1), 90. 

Park, D.H., Kim, S.K., Shin, I.H. and Jeong, Y.J. (2000) Electricity production in 

biofuel cell using modified graphite electrode with Neutral Red. Biotechnology 

Letters. 22 (16), 1301–1304. 

Pazarlıoǧlu, N.K., Sariişik, M. and Telefoncu, A. (2005) Laccase: production by 

Trametes versicolor and application to denim washing. Process Biochemistry. 

40 (5), 1673–1678. 

Pereira, L., Coelho, A. V., Viegas, C.A., Santos, M.M.C. dos, Robalo, M.P. and 

Martins, L.O. (2009) Enzymatic biotransformation of the azo dye Sudan Orange 



200 
 
 

G with bacterial CotA-laccase. Journal of Biotechnology. 139 (1), 68–77. 

Pizzolato, T., Carissimi, E., Machado, E. and Schneider, I.A. (2002) Colour removal 

with NaClO of dye wastewater from an agate-processing plant in Rio Grande do 

Sul, Brazil. International Journal of Mineral Processing. 65 (3), 203–211. 

Popat, S.C., Ki, D., Rittmann, B.E. and Torres, C.I. (2012) Importance of OH- 

transport from cathodes in microbial fuel cells. ChemSusChem. 5 (6), 1071–

1079. 

Potter, M.C. (1911) Electrical Effects Accompanying the Decomposition of Organic 

Compounds. Proceedings of the Royal Society B: Biological Sciences. 84 (571), 

260–276. 

Preedy, V. and Patel, V. (2012) Biosensors and Environmental Health. CRC Press. 

DOI: 10.1201/b12775. 

Puig, S., Serra, M., Vilar-Sanz, A., Cabré, M., Bañeras, L., Colprim, J. and Balaguer, 

M.D. (2011) Autotrophic nitrite removal in the cathode of microbial fuel cells. 

Bioresource Technology. 102 (6), 4462–4467. 

Rabaey, K., Boon, N., Höfte, M. and Verstraete, W. (2005) Microbial phenazine 

production enhances electron transfer in biofuel cells. Environmental science & 

technology. 39 (9), 3401–8. 

Rabaey, K., Read, S.T., Clauwaert, P., Freguia, S., Bond, P.L., Blackall, L.L. and 

Keller, J. (2008) Cathodic oxygen reduction catalyzed by bacteria in microbial 

fuel cells. ISME Journal. 2 (5), 519–527. 

Ramalingam, Saraswathy, N., Shanmugapriya, S., Shakthipriyadarshini, S., 

Sadasivam, S. and Shanmugaprakash, M. (2010) Decolorization of textile dyes 

by Aspergillus tamarii, mixed fungal culture and Penicillium purpurogenum. 

Journal of Scientific and Industrial Research. 69 (2), 151–153. 

Ramírez-Montoya, L.A., Hernández-Montoya, V., Montes-Morán, M.A., Jáuregui-

Rincón, J. and Cervantes, F.J. (2015) Decolorization of dyes with different 

molecular properties using free and immobilized laccases from Trametes 

versicolor. Journal of Molecular Liquids. 212, 30–37. 

 



201 
 
 

Rashed, N.M. (2013). Adsorption Technique for the Removal of Organic Pollutants 

from Water and Wastewater, Organic Pollutants, IntechOpen, DOI: 

10.5772/54048.  Available from: 

https://www.intechopen.com/books/organicpollutants-monitoring-risk-and-

treatment/adsorption-technique-for-theremoval-of-organic-pollutants-from-

water-and-wastewater 

Rawat, D., Mishra, V. and Sharma, R.S. (2016) Detoxification of azo dyes in the 

context of environmental processes. Chemosphere. 155, 591–605. 

Regalado, C., García-Almendárez, B.E. and Duarte-Vázquez, M.A. (2004) 

Biotechnological applications of peroxidases. Phytochemistry Reviews. 3 (1–2), 

243–256. 

Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T. and Lovley, 

D.R. (2005) Extracellular electron transfer via microbial nanowires. Nature. 435 

(7045), 1098–1101. 

Rincón, R. a., Masa, J., Mehrpour, S., Tietz, F. and Schuhmann, W. (2014) 

Activation of oxygen evolving perovskites for oxygen reduction by 

functionalization with Fe–Nx/C groups. Chem. Commun. 50 (94), 14760–

14762. 

Rismani-Yazdi, H., Carver, S.M., Christy, A.D. and Tuovinen, O.H. (2008) Cathodic 

limitations in microbial fuel cells: An overview. Journal of Power Sources. 180 

(2), 683–694. 

Robinson, T., McMullan, G., Marchant, R. and Nigam, P. (2001) Remediation of 

dyes in textile effluent: a critical review on current treatment technologies with 

a proposed alternative. Bioresource Technology. 77 (3), 247–255. 

Rodrigues da Silva, M.E., Firmino, P.I.M. and dos Santos, A.B. (2012) Impact of the 

redox mediator sodium anthraquinone-2,6-disulphonate (AQDS) on the 

reductive decolourisation of the azo dye Reactive Red 2 (RR2) in one- and two-

stage anaerobic systems. Bioresource Technology. 121, 1–7. 

Romo-Sánchez, S., Camacho, C., Ramirez, H.L. and Arévalo-Villena, M. (2014) 

Immobilization of Commercial Cellulase and Xylanase by Different Methods 



202 
 
 

Using Two Polymeric Supports. Advances in Bioscience and Biotechnology. 05 

(06), 517–526. 

Rozendal, A., Hamelers, H.V.M., Rabaey, K., Keller, J. and Buisman, C.J.N. (2008) 

Towards practical implementation of bioelectrochemical wastewater treatment. 

Trends in biotechnology. 26 (8), 450–459. 

Rozendal, R. a., Hamelers, H.V.M. and Buisman, C.J.N. (2006) Effects of 

Membrane Cation Transport on pH and Microbial Fuel. Environmental science 

& technology. 40 (17), 5206–5211. 

Rubenwolf, S., Sané, S., Hussein, L. and Kestel, J. (2012) Prolongation of electrode 

lifetime in biofuel cells by periodic enzyme renewal Theoretical background. 

Bioenergy and Biofuels. 96, 841–849. 

Russ, R., Rau, J. and Stolz, A. (2000) The function of cytoplasmic flavin reductases 

in the reduction of azo dyes by bacteria. Applied and environmental 

microbiology. 66 (4), 1429–34. 

Russo, M.E., Giardina, P., Marzocchella, A., Salatino, P. and Sannia, G. (2008) 

Assessment of anthraquinone-dye conversion by free and immobilized crude 

laccase mixtures. Enzyme and Microbial Technology. 42 (6), 521–530. 

Sadighi, A. and Faramarzi, M.A. (2013) Congo red decolorization by immobilized 

laccase through chitosan nanoparticles on the glass beads. Journal of the 

Taiwan Institute of Chemical Engineers. 44 (2), 156–162. 

Sané, S., Jolivalt, C., Mittler, G., Nielsen, P.J., Rubenwolf, S., Zengerle, R. and 

Kerzenmacher, S. (2013) Overcoming bottlenecks of enzymatic biofuel cell 

cathodes: Crude fungal culture supernatant can help to extend lifetime and 

reduce cost. ChemSusChem. 6 (7), 1209–1215. 

Santoro, C., Babanova, S., Atanassov, P. and Li, B. (2013) High Power Generation 

by a Membraneless Single Chamber Microbial Fuel Cell ( SCMFC ) Using 

Enzymatic Bilirubin Oxidase ( BOx ) Air-Breathing Cathode. Journal of The 

Electrochemical Society. 160 (10), 720–726. 

Santoro, C., Serov, A., Villarrubia, C.W.N., Stariha, S., Babanova, S., Artyushkova, 

K., Schuler, A.J. and Atanassov, P. (2015) High catalytic activity and pollutants 



203 
 
 

resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application. 

Scientific Reports. 5 (May), 1–10. 

dos Santos, A.B., Cervantes, F.J. and van Lier, J.B. (2007a) Review paper on current 

technologies for decolourisation of textile wastewaters: Perspectives for 

anaerobic biotechnology. Bioresource Technology. 98 (12), 2369–2385. 

Saratale, R.G., Saratale, G.D., Chang, J.S. and Govindwar, S.P. (2011) Bacterial 

decolorization and degradation of azo dyes: A review. Journal of the Taiwan 

Institute of Chemical Engineers. 42 (1), 138–157. 

Sarayu, K. and Sandhya, S. (2012) Current Technologies for Biological Treatment of 

Textile Wastewater–A Review. Applied Biochemistry and Biotechnology. 167 

(3), 645–661. 

Savizi, I.S.P., Kariminia, H.R. and Bakhshian, S. (2012) Simultaneous decolorization 

and bioelectricity generation in a dual chamber microbial fuel cell using 

electropolymerized-enzymatic cathode. Environmental Science and Technology. 

46, 6584–6593. 

Schaetzle, O., Barrière, F. and Schröder, U. (2009) An improved microbial fuel cell 

with laccase as the oxygen reduction catalyst. Energy Environ. Sci. 2 (1), 96–

99. 

Schliephake, K., Mainwaring, D.E., Lonergan, G.T., Jones, I.K. and Baker, W.L. 

(2000) Transformation and degradation of the disazo dye Chicago Sky Blue by 

a purified laccase from Pycnoporus cinnabarinus. Enzyme and Microbial 

Technology. 27 (1–2), 100–107. 

Scholz, F. (2008) The Suitability of Monopolar and Bipolar Ion Exchange 

Membranes as Separators for Biological Fuel Cells. Energy Environ. Sci. 42 (5), 

1740–1746. 

Schrenk, M.J., Villigram, R.E., Torrence, N.J., Brancato, S.J. and Minteer, S.D. 

(2002) Effects of mixture casting Nafion® with quaternary ammonium bromide 

salts on the ion-exchange capacity and mass transport in the membranes. 

Journal of Membrane Science. 205 (1–2), 3–10. 

Schröder, U., Nießen, J. and Scholz, F. (2003) A Generation of Microbial Fuel Cells 



204 
 
 

with Current Outputs Boosted by More Than One Order of Magnitude. 

Angewandte Chemie International Edition. 42 (25), 2880–2883. 

Sears, H.J., Sawers, G., Berks, B.C., Ferguson, S.J. and Richardson, D.J. (2000) 

Control of periplasmic nitrate reductase gene expression (napEDABC) from 

Paracoccus pantotrophus in response to oxygen and carbon substrates. 

Microbiology. 146, 2977–2985. 

Sekar, N. (2011) '15 – Acid dyes', in Handbook of Textile and Industrial Dyeing. 

[Online], 1st ed. WoodHead Publishing, pp. 486–514. 

Sen, S.K., Raut, S., Bandyopadhyay, P. and Raut, S. (2016) Fungal decolouration 

and degradation of azo dyes: A review. Fungal Biology Reviews. 30 (3), 112–

133. 

Shleev, S., Jarosz-wilkolazka, A., Khalunina, A., Morozova, O., Yaropolov, A., 

Ruzgas, T. and Gorton, L. (2005) Direct electron transfer reactions of laccases 

from different origins on carbon electrodes. Bioelectrochemistry. 67,115–124. 

Singh, K. and Arora, S. (2011) Removal of Synthetic Textile Dyes From 

Wastewaters: A Critical Review on Present Treatment Technologies. Critical 

Reviews in Environmental Science and Technology. 41 (9), 807–878. 

Singh, R.P., Singh, P.K. and Singh, R.L. (2014) Bacterial Decolorization of Textile 

Azo Dye Acid Orange by Staphylococcus hominis RMLRT03. Toxicology 

international. 21 (2), 160–6. 

Slokar, Y.M. and Majcen Le Marechal, A. (1998) Methods of decoloration of textile 

wastewaters. Dyes and Pigments. 37 (4), 335–356. 

Sneddon, J., Masuram, S. and Richert, J.C. (2007) Gas chromatography-mass 

spectrometry-basic principles, instrumentation and selected applications for 

detection of organic compounds. Analytical Letters. 40 (6), 1003–1012. 

Soares, G.M.B., De Amorim, M.T.P. and Costa-Ferreira, M. (2001) Use of laccase 

together with redox mediators to decolourize Remazol Brilliant Blue R. Journal 

of Biotechnology. 89 (2–3), 123–129. 

Spina, F., Junghanns, C., Donelli, I., Nair, R., Demarche, P., Romagnolo, A., Freddi, 

G., Agathos, S.N. and Varese, G.C. (2016) Stimulation of laccases from 



205 
 
 

Trametes pubescens : Use in dye decolorization and cotton bleaching. 

Preparative Biochemistry and Biotechnology. 46 (7), 639–647. 

Srinivas, K. and King, J. (2011) Binary Diffusion Coefficients of Biomass-Based 

Carbochemicals In Subcritical Water Using Chromatographic Peak Broadening 

Technique. AIChE Annual Meeting,  

Stejskal, J. and Gilbert, R.G. (2006) Polyaniline: Preparation of a conductive 

polymer. (IUPAC Technical Report). Pure and Applied Chemistry. 74 (5), 

p.857–867. 

Stoilova, I., Krastanov, A. and Stanchev, V. (2010) Properties of crude laccase from 

Trametes versicolor produced by solid-substrate fermentation. Advances in 

Bioscience and Biotechnology. 01 (03), 208–215. 

Strathdee, F. and Free, A. (2013) Denaturing Gradient Gel Electrophoresis (DGGE). 

Methods in molecular biology (Clifton, N.J.). [Online]. pp. 145–157. 

Strycharz-Glaven, S.M., Glaven, R.H., Wang, Z., Zhou, J., Vora, G.J. and Tender, 

L.M. (2013) Electrochemical investigation of a microbial solar cell reveals a 

nonphotosynthetic biocathode catalyst. Applied and environmental 

microbiology. 79 (13), 3933–42. 

Sun, H., Yang, H., Huang, W. and Zhang, S. (2015) Immobilization of laccase in a 

sponge-like hydrogel for enhanced durability in enzymatic degradation of dye 

pollutants. Journal of Colloid and Interface Science. 450, 353–360. 

Sun, J., Li, W., Li, Y., Hu, Y. and Zhang, Y. (2013) Redox mediator enhanced 

simultaneous decolorization of azo dye and bioelectricity generation in air-

cathode microbial fuel cell. Bioresource Technology. 142, 407–414. 

Sun, L., Toyonaga, M., Ohashi, A., Tourlousse, D.M., Matsuura, N., Meng, X.-Y., 

Tamaki, H., Hanada, S., Cruz, R., Yamaguchi, T. and Sekiguchi, Y. (2016) 

Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic 

bacterium representing a new family in the phylum Bacteroidetes, and proposal 

of Lentimicrobiaceae fam. nov. International Journal of Systematic and 

Evolutionary Microbiology. 66 (7), 2635–2642. 

Szczupak, A., Kol-Kalmanz, D. and Alfonta, L. (2012) A hybrid biocathode: surface 



206 
 
 

display of O2-reducing enzymes for microbial fuel cell applications. Chemical 

Communications. 48 (1), 49–51. 

Taheran, M., Naghdi, M., Brar, S.K., Knystautas, E.J., Verma, M. and Surampalli, 

R.Y. (2017) Covalent Immobilization of Laccase onto Nanofibrous Membrane 

for Degradation of Pharmaceutical Residues in Water. ACS Sustainable 

Chemistry & Engineering. 5 (11), 10430–10438. 

Tauber, M.M., Gübitz, G.M. and Rehorek, A. (2008) Degradation of azo dyes by 

oxidative processes – Laccase and ultrasound treatment. Bioresource 

Technology. 99 (10), 4213–4220. 

Tauber, M.M., Guebitz, G.M. and Rehorek, A. (2005) Degradation of Azo Dyes by 

Laccase and Ultrasound Treatment Degradation of Azo Dyes by Laccase and 

Ultrasound Treatment. Society. 71 (5), 2600–2607. 

Teerapatsakul, C., Bucke, C., Parra, R., Keshavarz, T. and Chitradon, L. (2007) Dye 

decolorisation by laccase entrapped in copper alginate. World Journal of 

Microbiology and Biotechnology. 24 (8), 1367–1374. 

Teerapatsakul, C., Parra, R., Keshavarz, T. and Chitradon, L. (2017) Repeated batch 

for dye degradation in an airlift bioreactor by laccase entrapped in copper 

alginate. International Biodeterioration & Biodegradation. 120, 52–57. 

Telke, A.A., Kadam, A.A., Jagtap, S.S., Jadhav, J.P. and Govindwar, S.P. (2010) 

Biochemical characterization and potential for textile dye degradation of blue 

laccase from Aspergillus ochraceus NCIM-1146. Biotechnology and Bioprocess 

Engineering. 15 (4), 696–703. 

Tilli, S., Ciullini, I., Scozzafava, A. and Briganti, F. (2011) Differential 

decolorization of textile dyes in mixtures and the joint effect of laccase and 

cellobiose dehydrogenase activities present in extracellular extracts from 

Funalia trogii. Enzyme and Microbial Technology. 49 (5), 465–471. 

Tsukuda, M., Kitahara, K. and Miyazaki, K. (2017) Comparative RNA function 

analysis reveals high functional similarity between distantly related bacterial 16 

S rRNAs. Scientific Reports. 7 (1), 9993. 

Ucar, D., Zhang, Y. and Angelidaki, I. (2017) An Overview of Electron Acceptors in 



207 
 
 

Microbial Fuel Cells. Frontiers in microbiology. 8, 643. 

Upadhyay, P., Shrivastava, R. and Agrawal, P.K. (2016) Bioprospecting and 

biotechnological applications of fungal laccase. 3 Biotech. 6 (1), 15. 

Urano, H. and Fukuzaki, S. (2005) The Mode of Action of Sodium Hypochlorite in 

the Cleaning Process. Biocontrol Science. 10 (2), 21–29. 

Urano, H. and Fukuzaki, S. (2011) The Mode of Action of Sodium Hypochlorite in 

the Decolorization of Azo Dye Orange II in Aqueous Solution. Biocontrol 

Science. 16 (3), 123–126. 

Ushiba, Y., Takahara, Y. and Ohta, H. (2003) Sphingobium amiense sp . nov ., a 

novel nonylphenol-degrading bacterium isolated from a river sediment. 

International Journal of Systematic and Evolutionary Microbiology. 53, 2045–

2048. 

Velasquez-Orta, S.B., Curtis, T.P. and Logan, B.E. (2009) Energy from algae using 

microbial fuel cells. Biotechnology and Bioengineering. 103 (6), 1068–1076. 

Verrax, J., Beck, R., Dejeans, N., Glorieux, C., Sid, B., Pedrosa, R.C., Benites, J., 

Vásquez, D., Valderrama, J.A. and Calderon, P.B. (2011) Redox-active 

quinones and ascorbate: an innovative cancer therapy that exploits the 

vulnerability of cancer cells to oxidative stress. Anti-cancer agents in medicinal 

chemistry. 11 (2), 213–21. 

Volkova, N., Ibrahim, V. and Hatti-Kaul, R. (2012) Laccase catalysed oxidation of 

syringic acid: Calorimetric determination of kinetic parameters. Enzyme and 

Microbial Technology. 50 (4–5), 233–237. 

Wang, H., Hollywood, K., Jarvis, R.M., Lloyd, J.R. and Goodacre, R. (2010) 

Phenotypic characterization of Shewanella oneidensis MR-1 under aerobic and 

anaerobic growth conditions by using fourier transform infrared spectroscopy 

and high-performance liquid chromatography analyses. Applied and 

environmental microbiology. 76 (18), 6266–76. 

Wang, Q., Garrity, G.M., Tiedje, J.M. and Cole, J.R. (2007) Naive Bayesian 

classifier for rapid assignment of rRNA sequences into the new bacterial 

taxonomy. Applied and environmental microbiology. 73 (16), 5261–7. 



208 
 
 

Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. and Ren, N. (2010) Sequestration 

of CO2 discharged from anode by algal cathode in microbial carbon capture 

cells (MCCs). Biosensors and Bioelectronics. 25 (12), 2639–2643. 

Wang, Z., Xue, M., Huang, K. and Liu, Z. (2011) Textile dyeing wastewater 

treatment. Treating Textile Effluent, 

http://www.intechopen.com/source/pdfs/22395/intech-

textile_dyeing_wastewater_treatment.pdf. 91–116. 

Wang, Z., Zheng, Y., Xiao, Y., Wu, S., Wu, Y., Yang, Z. and Zhao, F. (2013) 

Analysis of oxygen reduction and microbial community of air-diffusion 

biocathode in microbial fuel cells. Bioresource Technology. 14474–79. 

Waring, D.R. and Hallas, G. (Geoffrey) (1990) The Chemistry and application of 

dyes. Plenum Press, Springer, US. 

Wolin, E.A., Wolin, M.J. and Wolfe, R.S. (1963) Formation of Methane by Bacterial 

Extracts. The Journal of biological chemistry. 238, 2882–6. 

Wong, S.S. and Wong, L. (1992) Chemical Crosslinking and the Stabilization of 

Proteins and Enzymes - Review. Enzyme Microb Technol. 14 (11), 866–874. 

Wu, C., Liu, X.-W., Li, W.-W., Sheng, G.-P., Zang, G.-L., Cheng, Y.-Y., Shen, N., 

Yang, Y.-P. and Yu, H.-Q. (2012) A white-rot fungus is used as a biocathode to 

improve electricity production of a microbial fuel cell. Applied Energy. 98, 

594–596. 

Wu, J., Eiteman, M.A. and Law, S.E. (1998) Evaluation of Membrane Filtration and 

Ozonation Processes for Treatment of Reactive-Dye Wastewater. Journal of 

Environmental Engineering. 124 (3), 272–277. 

Wu, T., Wang, X.S., Cohen, B. and Ge, H. (2010) Molecular Modeling of Normal 

and Sickle Hemoglobins. International Journal for Multiscale Computational 

Engineering. 8 (2), 237–244. 

Wu, Y., Teng, Y., Li, Z., Liao, X. and Luo, Y. (2008) Potential role of polycyclic 

aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation 

of an aged contaminated soil. Soil Biology and Biochemistry. 40 (3), 789–796. 

 



209 
 
 

Xia, X., Sun, Y., Liang, P. and Huang, X. (2012) Long-term effect of set potential on 

biocathodes in microbial fuel cells: Electrochemical and phylogenetic 

characterization. Bioresource Technology. 120, 26–33. 

Xing, D., Zuo, Y., Cheng, S., Regan, J.M. and Logan, B.E. (2008) Electricity 

Generation by Rhodopseudomonas palustris DX-1. Environmental Science & 

Technology. 42 (11), 4146–4151. 

Xu, F. (1997) Effects of redox potential and hydroxide inhibition on the pH activity 

profile of fungal laccases. Journal of Biological Chemistry. 272 (2), 924–928. 

Xu, F. (1996) Oxidation of phenols, anilines, and benzenethiols by fungal laccases: 

Correlation between activity and redox potentials as well as halide inhibition. 

Biochemistry. 35 (23), 7608–7614. 

Yan, K., Wang, H., Zhang, X. and Yu, H. (2009) Bioprocess of triphenylmethane 

dyes decolorization by Pleurotus ostreatus BP under solid-state cultivation. 

Journal of Microbiology and Biotechnology. 19 (11), 1421–1430. 

Yang, B., Wang, Y. and Qian, P.Y. (2016) Sensitivity and correlation of 

hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC 

Bioinformatics. 17 (1), 1–8. 

Yang, H.-Y., He, C.-S., Li, L., Zhang, J., Shen, J.-Y., Mu, Y. and Yu, H.-Q. (2016) 

Process and kinetics of azo dye decolourization in bioelectrochemical systems: 

effect of several key factors. Scientific Reports. 6 (1), 27243. 

Yang, S.-O., Sodaneath, H., Lee, J.-I., Jung, H., Choi, J.-H., Ryu, H.W. and Cho, K.-

S. (2017) Decolorization of acid, disperse and reactive dyes by Trametes 

versicolor CBR43. Journal of Environmental Science and Health, Part A. 52 

(9), 862–872. 

Yiqi Yang; Wyatt II, David Travis; Bahorsky, M. (1998) Decolorization of Dyes 

Using UV/H2O2 Photochemical Oxidation. Textile Chemist & Colorist . 30 (4), 

27–35. 

You, S., Zhao, Q., Zhang, J., Jiang, J. and Zhao, S. (2006) A microbial fuel cell using 

permanganate as the cathodic electron acceptor. Journal of Power Sources. 

1621409–1415. 



210 
 
 

Young, C.-C., Kampfer, P., Chen, W.-M., Yen, W.-S., Arun, A.B., Lai, W.-A., Shen, 

F.-T., Rekha, P.D., Lin, K.-Y. and Chou, J.-H. (2007) Luteimonas composti sp. 

nov., a moderately thermophilic bacterium isolated from food waste. 

International Journal of Systematic and Evolutionary Microbiology. 57 (4), 

741–744. 

Yuan, H., Hou, Y., Abu-Reesh, I.M., Chen, J. and He, Z. (2016) Oxygen reduction 

reaction catalysts used in microbial fuel cells for energy-efficient wastewater 

treatment: a review. Mater. Horiz. 3 (5), 382–401. 

Zaybak, Z., Pisciotta, J.M., Tokash, J.C. and Logan, B.E. (2013) Enhanced start-up 

of anaerobic facultatively autotrophic biocathodes in bioelectrochemical 

systems. Journal of Biotechnology. 168 (4), 478–485. 

Van der Zee, F.P., Lettinga, G. and Field, J.A. (2000) The role of (auto)catalysis in 

the mechanism of an anaerobic azo reduction. Water Science and Technology. 

42 (5–6), 301–308. 

Zeng, S., Qin, X. and Xia, L. (2017) Degradation of the herbicide isoproturon by 

laccase-mediator systems. Biochemical Engineering Journal. 119, 92–100. 

Zeng, X., Cai, Y., Liao, X., Zeng, X., Li, W. and Zhang, D. (2011) Decolorization of 

synthetic dyes by crude laccase from a newly isolated Trametes trogii strain 

cultivated on solid agro-industrial residue. Journal of Hazardous Materials. 187 

(1–3), 517–525. 

Zhang, F., Knapp, J.S. and Tapley, K.N. (1999) Development of bioreactor systems 

for decolorization of Orange II using white rot fungus. Enzyme and Microbial 

Technology. 24 (1–2), 48–53. 

Zhang, G., Zhao, Q., Jiao, Y., Wang, K., Lee, D.-J. and Ren, N. (2012) Biocathode 

microbial fuel cell for efficient electricity recovery from dairy manure. 

Biosensors and Bioelectronics. 31 (1), 537–543. 

Zhang, G., Zhao, Q., Jiao, Y., Zhang, J., Jiang, J., Ren, N. and Kim, B.H. (2011) 

Improved performance of microbial fuel cell using combination biocathode of 

graphite fiber brush and graphite granules. Journal of Power Sources. 196 (15), 

6036–6041. 



211 
 
 

Zhang, R.-G., Tan, X., Zhao, X.-M., Deng, J. and Lv, J. (2014) Moheibacter 

sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated 

from sediment, and emended descriptions of Empedobacter brevis, Wautersiella 

falsenii and Weeksella virosa. International Journal of Systematic and 

Evolutionary Microbiology. 64 (5), 1481–1487. 

Zhang, S., Wu, Z., Chen, G., Wang, Z., Zhang, S., Wu, Z., Chen, G. and Wang, Z. 

(2018) An Improved Method to Encapsulate Laccase from Trametes versicolor 

with Enhanced Stability and Catalytic Activity. Catalysts. 8 (7), 286. 

Zhang, X., Hua, M., Lv, L. and Pan, B. (2015) Ionic polymer-coated laccase with 

high activity and enhanced stability: application in the decolourisation of water 

containing AO7. Scientific reports. 58253. 

Zhao, J., Zhang, C., Sun, C., Li, W., Zhang, S., Li, S. and Zhang, D. (2018) Electron 

transfer mechanism of biocathode in a bioelectrochemical system coupled with 

chemical absorption for NO removal. Bioresource Technology. 254, 16–22. 

Zhou, M., He, H., Jin, T. and Wang, H. (2012) Power generation enhancement in 

novel microbial carbon capture cells with immobilized Chlorella vulgaris. 

Journal of Power Sources. 214, 216–219. 

Zille, A. (2006) 'Redox biodegradation of azo dyes', in 4th International Conference 

on Textile Biotechnology. [Online]. 2006 Seoul, Korea. 

Zille, A., Górnacka, B., Rehorek, A. and Cavaco-Paulo, A. (2005) Degradation of 

azo dyes by Trametes villosa laccase over long periods of oxidative conditions. 

Applied and environmental microbiology. 71 (11), 6711–6718. 

Zou, Y., Pisciotta, J., Billmyre, R.B. and Baskakov, I. V. (2009) Photosynthetic 

microbial fuel cells with positive light response. Biotechnology and 

Bioengineering. 104 (5), 939–946. 

 

 

 

 



212 
 
 

Webpages 

 
• www.sophied.net 

 

• https://civildigital.com/pollution-control-in-dye-industry/ 

 

• www.wfduk.org 

 

• https://emea.illumina.com 

 

 

 

 

 

 

  

http://www.sophied.net/
https://civildigital.com/pollution-control-in-dye-industry/
http://www.wfduk.org/
https://emea.illumina.com/


213 
 
 

Research Outputs  

 

 



214 
 
 

 



215 
 
 

 

Conference Publications 

Mani, P., Keshavarz, T., Kyazze, G. and Chandra, S. 2016. Improving the performance 

of microbial fuel cells using laccase-based biocathodes. Aulenta, F. and Majone, M. 

(ed.) EU-ISMET 2016: The 3rd European Meeting of the International Society for 

Microbial Electrochemistry and Technology. Department of Chemistry (NEC) 

Sapienza, University of Rome, Rome, Italy 26 - 29 Sep 2016 ISMET. 

Kyazze, G., Mani, P., Bowman, K., Farahmand, N., Breheny, M. and Keshavarz, T. 

2018. Degradation of azo dyes (Acid orange 7) in a microbial fuel cell: comparison 

between anodic microbial-mediated reduction and cathodic laccase-mediated 

oxidation. 4th European Meeting of the International Society for Microbial 

Electrochemistry and Technology. Newcastle University, Newcastle upon Tyne, 12 

Sep 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 



216 
 
 

Appendix 1 

Table A1: The performance of the immobilized electrodes in the 2nd cycle of MFC. 

 

 

 

Table A2: The performance of the immobilized electrodes in the 3rd cycle of MFC. 

 

 

 

 

 

 

 

 

 

 

 

Laccase 

immobilization 

methods 

Max.Power 

Density (mW m-2) 

Dye 

decolourization 

Efficiency (%) 

Relative Enzyme 

Activity after 2nd 

cycle (%) 

PANI Lac      28 58 61 

Nafion Lac      16.2 50 40 

Cu-Alg Lac      10 55 38 

Laccase 

immobilization 

methods 

Max.Power 

Density (mW m-2) 

Dye decolourization 

Efficiency (%) 

Relative Enzyme 

Activity after 3rd 

cycle (%) 

PANI Lac      23.6 50 45 

Nafion Lac      11 35 30 

Cu-Alg Lac       6 32.4 26 
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Appendix 2 

 

 
Figure A1: The immobilized enzyme activity for Calcium and copper alginate beads   

over a period of 5 days 

 

Figure A2: The maximum power density comparison for laccase immobilized in 

calcium and copper alginate beads 
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Appendix 3 

 

 
Figure A3: The relative enzyme activity of laccase in the absence and presence of the 

dye over a period of 5 days. 
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Appendix 4 

 

Figure A4.1: Initial and final COD Profile of the variables in chapter 3 

 

Figure A4.2: Initial and final COD of immobilized laccase in chapter 4 
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Figure A4.3: Initial and Final COD profiles for variables in chapter 5 
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Appendix 5 

 

 

Figure A5.1: Voltage generated over a period of 10 days at a 

resistance of 2 KΩ in chapter 3. 

Figure A5.2: Voltage generated over a period of 7 days at a 

resistance of 2 KΩ in chapter 4. 
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Figure A5.3: Voltage generated over a period of 9 days at a 

resistance of 2 KΩ in chapter 6. 

Figure A5.4: Voltage generated over a period of 10 days at a 

resistance of 200 Ω in chapter 7. 
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Appendix 6 

 

Figure A6: Growth curve of S. oneidensis in the presence and absence of Acid 

orange 7 dye 
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Appendix 7 

  Next Generation Sequencing: Bioinformatics analysis by NovoGene 

 

1. Paired-end reads assembly and quality control 

 

1.1 Data split 

 

Paired-end reads was assigned to samples based on their unique barcode and 

truncated by cutting off the barcode and primer sequence. 

 

1.2 Sequence assembly 

 

Paired-end reads were merged using FLASH 

(V1.2.7,http://ccb.jhu.edu/software/FLASH/) (Magoč and Salzberg, 2011),a very 

fast and accurate analysis tool, which was designed to merge paired-end reads 

when at least some of the reads overlap the read generated from the opposite end 

of the same DNA fragment, and the splicing sequences were called raw tags. 

 

1.3 Data Filtration 

 

Quality filtering on the raw tags were performed under specific filtering conditions 

to obtain the high-quality clean tags according to the QIIME(V1.7.0, 

http://qiime.org/index.html) quality controlled process (Bokulich et al., 2013; 

Caporaso et al., 2010). 

 

1.4 Chimera removal 

 

The tags were compared with the reference database (Gold database, 

http://drive5.com/uchime/uchime_download.html)using UCHIME algorithm 

(UCHIME Algorithm, 

http://www.drive5.com/usearch/manual/uchime_algo.html) (Edgar et al., 2011) 

to detect chimera sequences, and then the chimera sequences were removed 

(Haas et al., 2011). Then the Effective Tags finally obtained. 

 

2. OTU cluster and Species annotation 

 

2.1 OTU Production 

 

Sequences analysis were performed by Uparse software (Uparse v7.0.1001， 

http://drive5.com/uparse/) (Edgar, 2013). Sequences with ≥97% similarity were 

assigned to the same OTUs. Representative sequence for each OTU was screened for 

further annotation. 

http://ccb.jhu.edu/software/FLASH/)
http://qiime.org/index.html)
http://drive5.com/uchime/uchime_download.html)using
http://www.drive5.com/usearch/manual/uchime_algo.html)
http://drive5.com/uparse/)
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2.2 Species annotation 

 

For each representative sequence, the GreenGene Database 

(http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) (DeSantis et al., 

2006) was used based on RDP classifier (Version 2.2, 

http://sourceforge.net/projects/rdp-classifier/)   algorithm to annotate 

taxonomic information (Wang et al., 2007). 

 

2.3 Phylogenetic relationship Construction 

 

In order to study phylogenetic relationship of different OTUs, and the difference 

of the dominant species in different samples (groups), multiple sequence 

alignment were conducted using the MUSCLE software (Version 3.8.31，

http://www.drive5.com/muscle/) (Edgar, 2004). 

 

2.4 Data Normalization 

 

OTUs abundance information were normalized using a standard of sequence 

number corresponding to the sample with the least sequences. Subsequent analysis 

of alpha diversity and beta diversity were all performed basing on this output 

normalized data. 

 

3. Alpha Diversity 

 

Alpha diversity is applied in analyzing complexity of species diversity for a 

sample through6 indices, including Observed-species and Shannon diversity. All 

indices in the samples were calculated with QIIME (Version 1.7.0) and displayed 

with R software (Version 2.15.3). 

 

4. Beta Diversity 

 

Beta diversity analysis was used to evaluate differences of samples in species 

complexity, Beta diversity on both weighted and unweighted unifrac were 

calculated by QIIME software (Version 1.7.0). 

 

Principal Coordinate Analysis (PCoA) was performed to get principal coordinates 

and visualize from complex, multidimensional data. A distance matrix of weighted 

or unweighted unifrac among samples obtained before was transformed to a new set 

of orthogonal axes, by which the maximum variation factor is demonstrated by first 

principal coordinate, and the second maximum one by the second principal 

coordinate, and so on. PCoA analysis was displayed by WGCNA package, stat 

packages and ggplot2 package in R software (Version 2.15.3). 

http://greengenes.lbl.gov/cgi-bin/nph-index.cgi)
http://sourceforge.net/projects/rdp-classifier/)%20%20%20algorithm
http://www.drive5.com/muscle/)
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Appendix 8 

DGGE-Sanger Sequencing Results 

 

The samples subjected to PCR-DGGE were sequenced using Sanger method. The 

sequences obtained from the bands were as follows: 

 

Sequence 1 

 

AACTGGGCTCTCCTCCGCTCCGTCATCATCGTCACGGGTGAAGAGCTTTA

CAACCCTAAGGCCTTCCTCA 

CTCACGCGGCATGGCTGGATCAGGGTTTCCCCCATTGTCCAATATTCCCC

ACTGCTGCCTCCCGTAGGAG 

TATTGCTGCCTCCCAAGGAGTAAATTACGGAGGACTAGCGTGGTGGCAT

GTCGCTGGATTGGGGACTGCA 

TCCCCGAGACAAGGAGAGCAGCTGCGGAAAAAACAGCCCAGTCCTTGGC

CCGCCCTCTTAATGATTAAAT 

TCCCGTTTGTAATCTGTTGCAGTTCCGAAGAAGATTGTGATACTCCTTAG

GAGCTTGTTGCGTTTGATCC 

TTGGAGTGGATTGTGGAATGGATTTATAGTGGTGTGC 

 

Blast Results 
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Sequence 2 

 

 

AGGAGCTTCTCTGAGTACCGTCAGCCTCGATACTCGACGGGGGGGTTATT

CCTGAAAGAGCTCTTTACAA 

CCCATAAGGGTGTCTTCCTGGACGCGGCCCGGTGGGGTCAGACTTGCGTG

CATGGCCCAAGATTCATTAC 

GGCTGCCTCCCGTAGGAGTAAGTAAATATTGGGCAATGGACGCAAGTCT

GACCCACCGGCCGGGCAGGAG 

GAAGCCGTATGGGTTGTAAACTGCTTTTATCGGGAATACCCCGGTCGAGT

ATCGGGGCTAAGGTACATGA 

AGAATAAACATCGCTAACTCCGTGCCGCACCCGGTAATAG 

 

Blast Results 
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