
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Automated first order natural deduction

Bolotov, A., Bocharov, V., Gorchakov, A. and Shangin, V.

A paper published in the proceedings of the 2nd Indian International Conference on

Artificial Intelligence, Pune, India, December 20-22, 2005. IICAI 2005 ISCAI. pp. 1292-

1311.

The WestminsterResearch online digital archive at the University of Westminster aims to

make the research output of the University available to a wider audience. Copyright and

Moral Rights remain with the authors and/or copyright owners.

Automated First Order Natural Deduction

Alexander Bolotov*, Vyacheslav Bocharov**, Alexander Gorchakov** and
Vasilyi Shangin**

* Harrow School of Computer Science
University of Westminster

Watford Road, Harrow HA1 3TP, UK.
A.Bolotov@wmin.ac.uk

http://www2.wmin.ac.uk/bolotoa/index.html

** Department of Logic, Moscow State University, Moscow, 119899, Russia.
{shangin,gorchakov}@philos.msu.ru

Abstract. We present a proof-searching algorithm for the classical first
order natural deduction calculus and prove its correctness. For any given
task (if this task is indeed solvable), a searching algorithm terminates,
either finding a corresponding natural deduction proof or giving a set of
constraints, from which a counter-example can be extracted. Proofs of
the properties which characterize correctness of the searching algorithm
are given. Based on a fully automatic goal-directed searching procedure,
our technique can be efficiently applied as an automatic reasoning tool in
a deliberative decision making framework across various AI applications.

1 Introduction

Natural deduction calculi (abbreviated in this paper by ‘ND’) originally were
developed in the mid-thirties by Gentzen [11] and Jaskowski [13] and we speak
of a natural deduction of G-style and J-style, correspondingly. In this paper we
concentrate on the latter approach where the construction of a proof is given
as a synthetic procedure.1 Jaskowski-style natural deduction was improved by
Fitch [9] and simplified by Quine [17].

Further development of such systems was controversial. On the one hand,
there has been an obvious interest in these ND formalisms as they represent
a ‘natural’ way of reasoning. On the other hand, ND was often considered as
inappropriate for an algorithmic representation [10], even in the simplest case
of classical propositional logic. This scepticism is not surprising because the
application of introduction rules allows us to introduce into the proof arbitrary
formulae. In other words, an introduction rule of this type violates the subformula
property, which requires that in a derivation, any formula which occurs in the
conclusion of a rule, is a subformula of its premises.

As a consequence, ND systems of this type have been primarily studied within
the framework of philosophical logic, being widely used in teaching (but again,

1 We consider sequent, or Gentzen style, calculi as purely analytic since they are based
upon purely analytic procedures.

mostly in philosophy curriculum) and have been ignored by the automated
theorem-proving community, where research has been mostly concentrated on
purely analytic methods such as resolution and tableau based approaches [1].

Recently, ND systems have been studied within a wider community. One
of the most recent examples of the interest in natural deduction is the areas of
logical frameworks [15], where the notion of hypothetical judgements, i.e.reasoning
from hypothesis, as in the natural deduction, is essential. Here, in particular, ND
systems have been developed for intuitionistic linear logic [16].

In this paper we present a proof searching algorithm for the ND system
of classical first order logic (FOL) and establish its correctness. Our ND-based
theorem proving engine is based upon a goal-directed searching procedure. We
believe that this makes it relevant in the areas of simulation of a deliberative
decision making process. Additionally, since our procedure is fully automatic, if
refined, it can be potentially applied as an efficient reasoning tool in modelling
complex knowledge based systems.

It is now commonly accepted [8] that if we think about possible practical use
of an ND system, we would significantly benefit if the particular ND calculus
is built systematically. In other words, it must be built in such a way that the
technique developed would allow us to cover a number of logics by a manipulation
of the ND rules.

In our analysis of the ND calculi, we follow this systematical approach. The
particular ND-calculus we are interested in is described in detail in [5]. It is a
modification of Quine’s representation of subordinate proof [17] developed for
classical propositional and first-order logic. It has been recently extended to intu-
itionistic logic [14]. The proof-searching strategies for propositional intuitionistic
logic [5], which have been recently developed, are based upon the proof-searching
strategies for classical propositional natural deduction calculus [3]. In this paper
not only do we extend our approach to FOL and present an improved version of
the algorithm, but more importantly, bridge the gap contained in [4] justifying
the correctness of the proposed system [18], [5].

We believe that the goal-directed nature of our proof searching technique
opens broad perspectives of application of these techniques in many AI areas,
and first of all, in agent engineering [20]. Moreover, though the complexity of our
proof searching techniques is still an open problem, we know that the complexity
is not a function of the length of the input but of the type of the input. In other
words, once a proof for some input, say, for a formula ((p ⊃ q) ⊃ p) ⊃ p (famous
Peirce law) has been obtained, its length will not increase for a longer input
of the same type, ((p ⊃ (q ∧ r)) ⊃ p) ⊃ p. These observations will be clearer
when the reader becomes familiar with our developments and we will return to
these problems in conclusion.

The paper is organized as follows. In §2 we review a natural deduction system
for classical FOL. In §3 we describe the proof-searching technique giving several
underlying searching strategies in §3.1 and the algorithm itself in §3.2. Subse-
quently, in §4, we establish correctness of the algorithm and in §5 we demonstrate

its application. Finally, in §6, we provide concluding remarks and identify future
work.

2 Natural Deduction System

Here we overview the underlying natural deduction system, following [2].2 To
simplify the presentation we consider a standard formulation of first-order logic
without functional symbols and equality. The only technical agreement we en-
force is that negation is the strongest logical connective.

Notation

– By a literal we understand a proposition or its negation.
– By an elementary quantifier free formula we understand a literal or a formula

of the type Pn(t1, . . . , tn), where Pn is a n-ary predicate and t1, . . . , tn are
terms (i.e. individual variables or constants).

– We will use the symbols ‘`’ and ‘|=’ as follows. By writing Γ ` B we mean
a task to establish a natural deduction derivation of a formula B from a set
of assumptions Γ . If Γ , in Γ ` B, is empty then the task is to prove that
B is a theorem, and in this case we will simply write ` B. The abbreviation
Γ |= B stands for establishing that B is a logical consequence of a set of
assumptions Γ . If Γ , in Γ |= B, is empty then the task is to show that B is
a valid formula and in this case we will simply write |= B.

Therefore, we might be given either of the following tasks: to find an ND
derivation Γ ` B or to find an ND proof ` B.

Specifically for an ND calculus, in constructing an ND derivation, we are
allowed to introduce arbitrary formulae as new assumptions. Consequently, any
formula in a derivation is either an assumption or a formula which is obtained
as a result of the application of one of the inference rules.

Further, the set of rules is divided into the two classes: elimination and intro-
duction rules. Rules of the first group allow us to simplify formulae to which they
are applied. These are rules for the ‘elimination’ of logical constants. Rules of the
second group are aimed at ‘building’ formulae, introducing new logical constants.
In Figure 1 we define sets of elimination and introduction rules, where prefixes
‘el’ and ‘in’ abbreviate an elimination and an introduction rule, respectively.

– In the formulation of the rules ‘⊃ in’ and ‘¬ in’ the formula C must be the
most recent non discarded (see below) assumption occurring in the proof.

– In the formulations of the rules for the quantifiers A(t1/t2) abbreviates the
result of the correct substitution of any occurrence of a variable t1 by the
term t2 in formula A.

2 This natural deduction system has, for many years, been a subject of the main under-
graduate logic course taught at the Faculty of Philosophy, Moscow State University
and at the Harrow School of Computer Science, the University of Westminster.

Elimination Rules :

∧ el1
A ∧B

A

∧ el2
A ∧B

B

∨ el
A ∨B ¬A

B

⊃ el
A ⊃ B A

B

¬ el
¬¬A

A

∀ el
∀αA(α)

A(α/t)

∃ el
∃αA(α, γ1, . . . , γn)

A(α/β, γ1, . . . , γn)

Introduction Rules :

∧ in
A, B

A ∧B

∨ in1
A

A ∨B

∨ in2
B

A ∨B

⊃ in
B

C ⊃ B

¬ in
B ¬B

¬C

∀ in
A(α/β, γ1, . . . , γn)

∀αA(α, γ1, . . . , γn)

∃ in
A(α/t)

∃αA(α)

Fig. 1. ND-rules

– In rules ∀ in and ∃ el, variable β is absolutely flagged and any free vari-
ables γ1, . . . , γn in ∀αA(α) or ∃αA(α) are considered as relatively flagged
(relatively bounded) variables.

Definition 1 (ND-derivation). An ND-derivation of a formula B from a
(possibly empty) set of assumption Γ , abbreviated by Γ `ND B, is a finite se-
quence of formulae A0, A1, . . . , An, abbreviated as list proof which satisfies the
following conditions:

(i) Every Ai (0 ≤ i ≤ n) is either an assumption, a member of Γ , or the
conclusion of one of the ND-rules applied to some formulae which occur in
the derivation before Ai.

(ii) If Am (0 < m ≤ n) is a conclusion of the application of either of the fol-
lowing ND rules: ‘⊃ in’ or ‘¬ in’, and Ak (0 ≤ k < m) is the most recent
assumption of the derivation, then Ak and all formulae from Ak to Am−1,
inclusively, are discarded.

(iii) No variable is absolutely flagged twice or relatively binds itself.
(iv) The last formula, An, in the sequence list proof is identical with B.

The condition (ii) in the definition above means that if an assumption has
been discarded then every formula which depends on this assumption (including
the assumption itself) is also considered as discarded, i.e. it can not be involved
in any further derivation.

Definition 2 (Completed ND-derivation). An ND-derivation of a formula
B from a set of assumptions Γ is completed if, and only if, no absolutely flagged
variable occurs free in Γ and B.

Definition 3 (ND-Proof). An ND-proof is a completed ND-derivation where
the set of non-discarded assumptions is empty. The last formula of a proof is a
theorem.

In our graphical representation of the subordinate proof we adopt the tech-
nique where a hierarchy of boxes is represented by the nesting of square brackets
which are written on the left hand side of the derivation.

The following theorems establish meta-theoretical properties of the ND sys-
tem defined above. The corresponding proofs can be found in [5].

Theorem 1 (ND Soundness). [5] Let B1, B2, . . . , Bn be a completed ND deriva-
tion and let Γ be a set of non-discarded assumptions which occur in this deriva-
tion. Then the following propositions are valid.

– If Γ 6= ∅ then Γ |=ND Bn.
– If Γ = ∅ then |=ND Bn, i.e. Bn is a valid formula.

Theorem 2 (ND Completeness). [5] For any set of FOL, Γ , and any for-
mula, G, if Γ |= G then there exists Γ ` G, a completed ND derivation of G
from the assumptions Γ .

Example. In Figure 2 we illustrate the ND-derivation, providing the proof
for the following formula

∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x)) (1)

0. ∀x(P (x) ∧Q(x)) assumption
1. P (y1) ∧Q(y1) ∀ el, 0
2. P (y1) ∧ el1, 1
3. ∀xP (x) ∀ in, 2, y1 flagged
4. P (y2) ∧Q(y2) ∀ el, 0
5. Q(y2) ∧ el, 4
6. ∀xQ(x) ∀ in, 5, y2 flagged
7. ∀xP (x) ∧ ∀xQ(x) ∧ in, 3,6
8. ∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x)) ⊃ in, 7

Fig. 2. ND-proof of ∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x))

Here, taking into account the structure of the given formula, ∀x(P (x) ∧
Q(x)) ⊃ (∀xP (x)∧∀xQ(x)), we aim to derive its consequent, ∀xP (x)∧∀xQ(x),

from its antecedent, ∀x(P (x)∧Q(x)). Now, as our goal is a conjunctive formula,
we are trying to derive both conjuncts, ∀xP (x), and ∀xQ(x). Thus, step 1 is
obtained from 0 by eliminating the ∀ quantifier. Step 2 is derived by eliminat-
ing conjunction from 1. Introducing ∀ quantifier to formula 2 we deduce 3 and
variable y1 becomes absolutely flagged (in our comments to the proof we simply
write “y1 flagged”). Subsequent steps, 4-7, are analogous to 1-3: again we elimi-
nate ∀ from 0 deriving 4, then eliminating conjunction from the latter we get 5,
and introducing the ∀ obtain 6, provided that another variable, y2 is absolutely
flagged. At step 7 we introduce conjunction to 3 and 6, and, finally, introduce
implication to 7 deriving the desired formula (1).

3 ND-proof Searching Strategy

The proof searching strategy is goal-directed. The core idea behind it is the cre-
ation of the two sequences of formulae: list proof and list goals. The first sequence
represents formulae which form a derivation (see Definition 1). In the second se-
quence we keep track of the list of goals. Here, each goal is either a formula or
two arbitrary contradictory formulae. We will abbreviate this designated type
of goal by false. An algo-derivation, NDalg, is a pair (list proof, list goals) whose
construction is determined by the searching procedure described below. On each
step of constructing an NDalg, a specific goal is chosen, which should be reached
at the current stage. Thus, the appropriate name for such a goal would be a
current goal. The first goal of list goals is extracted from the given task, we will
refer to this goal as to the initial goal.

Definition 4 (Reachability of a current goal). A current goal, Gn, 0 ≤ n,
occurring in list goals= 〈G1, G2, . . . , Gn〉, is reached if the following conditions
are satisfied:

– If Gn 6= false then Gn is reached if there is a formula A in list proof such
that A is not discarded and there exists a unification σ such that σ(Gn, A),
ELSE

– Gn is false and it is reached if there are formulae A and ¬B in list proof,
they are not discarded and there exists a unification σ such that σ(A,B).

In general, when we construct a derivation, we check whether the current goal
has been reached. If it has been reached then we apply the appropriate intro-
duction rule, and this is the only reason for the application of introduction rules.
As we will see later, such an application of an introduction rule is absolutely
determined by the structure of the previous goal and by the formulation of in-
troduction rules. Alternatively, (if the current goal has not been reached), we
continue searching for how we can update list proof and list goals. Note that
the construction of these sequences is determined either by the structure of the
current goal, or by the structure of complex formulae occurring within list proof.
Additionally, we introduce a mechanism of marking formulae within list proof
and list goals to indicate formulae that have been already analyzed as sources
for new goals and new formulae in list proof.

Now we describe a set of procedures which guide the construction of an algo-
proof.

3.1 Proof-Searching Procedures

Procedure 1. This procedure updates a sequence list proof by searching (in
a breadth-first manner) for an applicable elimination ND-rule. If it finds in
list proof a formula, or two formulae, which can serve as premises of an elim-
ination ND-rule, this rule is enforced and the sequence list proof is updated
by the conclusion of this rule. Here the elimination rules apply in the following
order: any rule to eliminate a Boolean operation, ∃ el, and, finally, ∀ el.
Procedure 2. Here a new goal is synthesized in a backward chaining style.
This procedure applies when Procedure 1 terminates, i.e. when no elimination
ND-rule can be applied, and the current goal, Gn, is not reached. The type of
Gn determines how the sequences list proof and list goals must be updated. In
fact, we have here two sub-procedures.

Procedure 2.1. This sub-procedure is invoked when Gn is not false. Here
the structure of the current goal, Gn, tells us which formulae must be added
into the sequence list proof and which goals into the sequence list goals. In
general, this procedure applies as follows. Suppose that list proof= P1, . . . Pk

and list goals= G1, . . . , Gn, where Gn is the current goal. If it is impossible, at
the present stage, to infer Gn then, looking at its structure, we derive a new
goal Gn+1 and set the latter as the current goal. Below we identify various
cases of applying sub-procedure 2.1, where Gn = F |¬A|A ∧ B|A ∨ B|A ⊃
B|∀αA|∃αA, and F is an elementary quantifier-free formula and A,B are
any formulae. Those rules which require additional comments are marked by
?. Let P1, . . . Pk = Γ and G1, . . . , Gn−1 = ∆.

(2.1.1) Γ ` ∆, F −→ Γ,¬F ` ∆,F, false
(2.1.2) Γ ` ∆,¬A −→ Γ, A ` ∆,¬A, false?

(2.1.3) Γ ` ∆, A ∧B −→ Γ ` ∆,A ∧B, B, A
(2.1.4.1) Γ ` ∆, A ∨B −→ Γ ` ∆,A ∨B, A
(2.1.4.2) Γ ` ∆, A ∨B −→ Γ ` ∆,A ∨B, B??

(2.1.5) Γ ` ∆, A ⊃ B −→ Γ, A ` ∆,A ⊃ B, B
(2.1.6) Γ ` ∆, ∀αA −→ Γ ` ∆, ∀αA, A(α/β)???

(2.1.7) Γ ` ∆, ∃αA −→ Γ ` ∆, ∃αA, A(α/γ)????

where
? A can be a literal, disjunction, or an ∃ quantified formula.

?? searching rule (2.1.4.2) applies when rule (2.1.4.1) fails, i.e. when apply-
ing rule (2.1.4.1), we have not managed to reach the left disjunct of the
goal A ∨ B, in which case the subroutine invoked into this attempt is
deleted and rule (2.1.4.2) is fired.

? ? ? in the rule (2.1.6) β is an absolutely flagged variable and for any free
variable δ in ∀αA, δ is marked as relatively flagged in any formula of the
list proof.

? ? ?? in the rule (2.1.7) γ is not an absolutely flagged variable.
Procedure 2.2. This sub-procedure is invoked when Gn is false. It searches
for complex formulae in the sequence list proof which can serve as a source
for new goals. If such a formula is found then its structure will determine the
new goal to be generated. Below by Γ, Ψ we understand a list of formulae in
list proof with the designated formula Ψ which is considered as a source for
new goals. Obviously, Ψ can have the structure of ¬A , A ∨B or A ⊃ B.

(2.2.1) Γ,¬A ` ∆, false −→ Γ,¬A ` ∆, false, A
(2.2.2) Γ,A ∨B ` ∆, false −→ Γ, A ∨B ` ∆, false,¬A
(2.2.3) Γ, A ⊃ B ` ∆, false −→ Γ, A ⊃ B ` ∆, false, A

Applying the rule (2.2.1) we have ¬A in the proof and are aiming to derive,
A itself. If we are successful then this would give us a contradiction. When
we apply rule (2.2.2), the proof already contains A ∨B and our target is to
derive ¬A. If we are successful then we would be able to derive B by ∨ el
rule. Similarly, applying rule (2.2.3) we already have A ⊃ B in the proof and
we aim at deriving A as this would enable us to apply the ⊃ el rule. Note
also that the selection of new goals determined by Procedure 2.2 is directly
linked to the fact that an exhausted algo-derivation forms a Hintikka set [12]
(see also §4 for details).

Procedure 3. This procedure checks reachability of the current goal in the
sequence list goals. If, according to Definition 4, the current goal Gn is reached
then the sequence list goals is updated by deleting Gn and setting Gn−1 as the
current goal.
Procedure 4. Procedure 4 indicates that one of the introduction ND-rules, i.e.
a rule which introduces a logical connective or a quantifier, must be applied. We
will see below that any application of the introduction rule is completely deter-
mined by the current goal of the sequence of goals. This property of our proof
searching technique protects us from inferring an infinite number of formulae in
list proof.

Procedure 5 – Unification. We adopt the unification algorithm from Chang-
Lee [6, 18]. This unification algorithm analyzes formulae position from left to
right (as usual) and prevents a variable from binding itself (which is not a usual
feature determined by the properties of the calculus in question). It is not suffi-
cient for the proof searching to find a unification. Additionally, this underlying
substitution should not violate clause (iii) of Definition 1. That is why a proce-
dure for checking a substitution for preserving this property is incorporated in
our unification algorithm.

The unification algorithm is shown to be complete and always finds the most
general unifier. If a formula in list proof unifies with the current goal of a sequence
of goals, this goal is deleted from a sequence of goals and the previous goal (if
any) becomes the current goal. If the initial goal is reached we obtain the desired
ND-inference.
Now we are ready to describe a searching algorithm, specifying the application
of the procedures above.

3.2 Proof-Searching Algorithm

First, let us explain, schematically, the performance of the proof-searching algo-
rithm by describing its major components. These components correspond to the
searching procedures presented in §3.1.

Given a (decidable) task Γ ` G, where Γ is possibly empty, we already
have the first goal, G0 = G, which is the initial goal and the current goal at
the same time. At this stage we apply Procedure 3, checking if G0 is reached.
Assume that G0 is not reached. Then we apply Procedure 1, obtaining all possible
conclusions of the elimination ND rules checking if G0 can be reached in this
way. If we fail, then Procedure 2 is invoked, and, dependent on the structure
of the goals G0, then G1, etc the sequence list proof is updated by adding new
assumptions and the sequence list goals by adding new goals. Note, that each
time we add new formulae to list proof, we check if we can reach the current goal
by applying elimination rules. If the current goal is reached, then we determine
which introduction rules are to be applied. Suppose, however, that we still have
no luck. This could only be in the case, when current goal is set as false and
we do not have contradictory formulae in list proof. Now we update list goals
looking for possible sources of new goals in the complex formulae in list proof.
We continue searching until either we reach the initial goal, G0, in which case we
terminate having found the desired derivation, or until list proof and list goals
cannot be updated any further. In the latter case we terminate, and no derivation
has been found and a (finite) counterexample can be extracted. Note again,
that this termination of the algorithm is guaranteed for any given decidable
task. However, it is obvious that this procedure might not terminate due to the
undecidability of FOL.

Below we formulate the main stages of the proof-searching algorithm referring
the reader to [18, 6].

We define a technique to introduce and to eliminate marks for formulae in
list proof and list goals. Most of these special marking schemes are devoted to
prevent looping either in application of elimination rules or in searching. The
aims of marking are:

– to keep track of formulae that were used as premisses of the elimination rules
invoked in procedure 1,

– to keep track of formulae in list proof that were considered as sources of new
goals when procedure 2.1 applies,

– to deal with specific cases of goals, such as, for example, the case 2.1.4: here,
before applying sub-procedure 2.1.4.1 we mark the goal A∨B and if both this
sub-procedure and the subsequent 2.1.4.2, fail then we delete from memory
part of the algo-proof starting from the goal A∨B, set up a new assumption
¬(A∨B) and a new goal, false. Similar marking is provided for formulae of
the type ∃xA(x) occurring in list proof.

– to inform the searching algorithm that no more elimination rules are appli-
cable.

Formulation of the algorithm.

(1) Given a task Γ ` G, we consider G as the initial goal of the derivation and
write G into list goals. If the set of given assumptions in Γ is not empty then
these assumptions are written in a list proof. Set current goal = G, go to (2).

(2) Analysis of the reachability of the current goal, Gn, and the applicability of
elimination rules, (see Procedure 3 described in §3.1).

(2a) If Gn is reached then go to (3) ELSE
(2b) ∗ (if elimination rules are applicable) go to (4) ELSE

∗ (if no more elimination rules are applicable) go to (5).
(3) Based on the structure of the goal reached

(3a) If Gn (reached) is the initial goal then terminate, the desired ND proof
has been found, EXIT, ELSE

(3b) (Gn is reached and it is not the initial goal). Apply Procedure 4 (which
invokes introduction rules), go to 2.

(4) Apply Procedure 1 (which invokes eliminations rules), go to (2).
(5) Apply Procedure 2.

(5a) If Gn 6= false then apply Procedure 2.1 (analysis of the structure of Gn),
go to (2) ELSE

(5b) Apply Procedure 2.2 (searching for the sources of new goals in list proof),
go to (2) ELSE

(5c) (if all formulae in list proof are marked, i.e. have been considered as
sources for new goals), go to (6).

(6) Terminate (see comment below). No ND proof has been found. EXIT.

Recall that the termination is guaranteed for any decidable input, and for
these examples the algorithm would reach its termination state (3a) (success)
or (6) (failure). On the other hand, for some inputs, nothing prevents us of an
infinite looping through different stages of the algorithm never reaching these
termination stages.

4 Correctness of the Algorithm

In this section we will sketch proofs of the main theorems which characterize the
correctness of the NDalg algorithm, namely, its soundness and completeness.

Before establishing soundness and completeness properties of the NDalg, we
introduce a notion of the exhausted NDalg.

Definition 5. An algo-derivation is exhausted if none of the elimination ND
rules can be applied and none of the formulae in the sequence list proof can serve
as the source of a new goal.

It is easy to see that in the exhausted derivation NDalg= (list proof, list goals)
built for the task Γ ` G, if NDalg has not been found, then the last goal in the
sequence list goals is always false.

Theorem 3. Let A1, A2, . . . , An be a derivation constructed following the proof-
searching algorithm, and let Γ be the set of non-discarded assumptions in this
derivation. Then Γ |=ND An.

Proof. Theorem 3 follows from Theorem 1 (soundness of the ND system). (End)

For the proof of completeness theorem we need the following lemma.

Lemma 1. Let Σ abbreviate a set of non-discarded formulae in list proof, T (Σ)
abbreviate the set of all terms occurring in formulae of list proof. Then in an
exhausted algo-derivation obtained for a task Γ ` G, the set, Σ, forms a Hintikka
set [12], i.e. for any A, B ∈ Σ the following conditions are satisfied:

(1) no formula A and ¬A both occur in Σ;
(2) if ¬¬A ∈ Σ then A ∈ Σ;
(3) if A ∧B ∈ Σ then A ∈ Σ and B ∈ Σ;
(4) if ¬(A ∧B) ∈ Σ then either ¬A ∈ Σ or ¬B ∈ Σ;
(5) if A ∨B ∈ Σ then either A ∈ Σ or B ∈ Σ;
(6) if ¬(A ∨B) ∈ Σ then ¬A ∈ Σ and ¬B ∈ Σ;
(7) if A ⊃ B ∈ Σ then either ¬A ∈ Σ or B ∈ Σ;
(8) if ¬(A ⊃ B) ∈ Σ then A ∈ Σ and ¬B ∈ Σ.
(9) if ∀αA(α) ∈ Σ then A(α/t) ∈ Σ, for all t ∈ T (Σ).

(10) if ¬∀αA(α) ∈ Σ then ¬A(α/t) ∈ Σ, for some t ∈ T (Σ).
(11) if ∃αA(α) ∈ Σ then A(α/t) ∈ Σ, for some t ∈ T (Σ).
(12) if ¬∀αA(α) ∈ Σ then ¬A(α/t) ∈ Σ, for all t ∈ T (Σ).

Proof.
(1) – immediate, by the construction of Σ.

(2) – if ¬¬A ∈ Σ then, since the algo-derivation is exhausted, A should occur
in list proof, as the ‘¬ el’ ND-rule must have been applied to ¬¬A.

(3) – A ∧ B ∈ Σ, then again, since the algo-derivation is exhausted, A and B
should occur in the list proof, as the ‘∧ el’ ND-rule must have been applied
to A ∧B.

(4) – if ¬(A ∧ B) ∈ Σ then, since the algo-derivation is exhausted, by rule
(2.2.1) of Procedure 2.2 of the proof-searching algorithm, ¬(A ∧B), should
have served as a source of a new goal, A ∧ B. Further, A ∧ B, should have
generated, by rule (2.1.3) of Procedure 2.1, new goals A and B. If A ∧ B
has been reached then it must have been involved in an application of the
‘¬ in’ rule, together with ¬(A ∧ B), in which case the latter would have
been discarded. Therefore, A ∧ B is not reached, and, so either A or B is
not reached. Again, since the algo-derivation is exhausted, either ¬A or ¬B
should occur within list proof.

(5) – if A ∨ B ∈ Σ then, following rule (2.2.2) of Procedure 2.2, ¬A should
appear as a goal. If it has been reached then by ‘∨ el’ rule, B must be in the
proof. Alternatively, if ¬A has not been reached, since the algo-derivation is
exhausted, by rule (2.1.2) of Procedure 2.1, A must have occurred in list proof
as an assumption. By the construction of the algorithm, A in this case is not
discarded.

(6) – if ¬(A ∨ B) ∈ Σ then, following by rule (2.2.1) of Procedure 2.2 of the
algorithm, A∨B should appear as a goal. If it has been reached then, since
the algo-derivation is exhausted, ¬(A∨B) and A∨B should have been used as
premises of the ‘¬ in’ rule, in which case ¬(A∨B) would have been discarded.
Thus, the goal A∨B is not reached. By a special technique linked to the rules
(2.1.4.1) and (2.1.4.2) of Procedure (2.1), ¬A∧¬B should have appeared as
a new goal which is reached ‘automatically’. (This special technique is fired
when rules 2.1.4.1 and 2.1.4.2 fail, in which case the subroutine called by
these rules is deleted, a new goal, the negation of the goal A ∨ B is taken
as a new assumption, and a new goal, false, is set up.) It is obvious then
that from ¬(A ∨ B) the algorithm would have derived both ¬A and ¬B.
Therefore, both ¬A and ¬B are in Σ.

(Cases (7) and (8) can be proved analogously.)

(9) if ∀αA(α) ∈ Σ then, according to the proof searching technique (see rule
(2.1.6) of Procedure 2.1) we would generate formulae eliminating the ∀ quan-
tifier using every variable from T (Σ).
(Cases (10) – (12) can be proved analogously.)

(End)

Now, based on Lemma 1, we can prove the completeness theorem.

Theorem 4 (Completeness). For any (possibly empty) set of FOL formulae,
Γ , and any FOL formula, G, if Γ |=ND G then the proof-searching algorithm
NDalg terminates having found the desired derivation Γ ` G.

Proof. We will sketch the proof of Theorem 4 by contraposition, which shows
that for any Γ and G, if no algo-derivation Γ ` G has been found, then there
exists an evaluation I such that formulae in Γ are true under I while G is false.
Assume we have a task Γ ` G, for which no derivation has been found. In other
words, this means that the following derivation cannot be found: Γ,G′ ` false,
where G′ is ¬G if the main connective in G is not negation, otherwise, if G
is of the form ¬H, then G′ = H. Let Γ ′ be a set of non-discarded formulae
in the exhausted derivation for Γ, G′. Following Lemma 1, the set Γ ′ forms a
Hintikka set, hence, by the Hintikka lemma [12], Γ ′ is a satisfiable set of formulae.
Therefore, we can find a valuation I such that all formulae in Γ ′ are true under
I. Therefore, (since Γ, G′ ⊆ Γ ′) under this interpretation, all formulae in Γ are
true while G itself is false. (End)

5 Application of the Proof Searching Algorithm

As the first example, let us apply the proof searching algorithm to find a proof of
the Peirce law, ((p ⊃ q) ⊃ p) ⊃ p. We apply the algorithm writing this formula as
the initial goal, G0, (the set, Γ , of given assumptions is empty). Next, following
step (5a) of the algorithm, we update list goals by the consequent of the goal,
G1 = p, and update list proof by its antecedent, (p ⊃ q) ⊃ p, setting p as the
current goal. So we get

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p

We are at step (2) of the algorithm. Since p is not reached and no elimination
rules are applicable, following (5a) of the NDalg algorithm, we add a new goal,
G2 = false, and a new assumption, ¬p. Thus, we obtain

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

Again, we are at step (2) of the algorithm. The current goal, false is not reached
and no elimination rules are applicable. Hence, following step (5b) of the NDalg

algorithm, we analyse complex formulae of the proof. The first complex formula
to be analysed is (p ⊃ q) ⊃ p. Applying (2.2.3) of Procedure 2.2 of the algorithm,
we update list goals by a new goal, G3 = p ⊃ q. Again, since we can not reach
this goal, following step (5a), we put p into list proof and q into the list goals,
setting G4 = q as the current goal:

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q

Note that although we have a contradiction in the proof, we do not apply the
corresponding introduction rule, ¬ in as the current goal is not false. Since q
cannot be reached at this stage, we apply (5a), updating list proof by ¬q and
list goals by G5 = false.

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q
3. ¬q assumption G0, p, false, p ⊃ q, q, false

Since false is now the current goal, and the proof contains complementary literals
p and ¬p, following (3b) of the algorithm, we apply the ‘¬ in’ introduction rule
to these formulae (respectively formulae 1 and 2 in the proof). This gives us ¬¬q
as the conclusion (formula 4 in the proof). At this stage we mark formula 3 as
discarded and delete false from list goals. The current goal now is q. Eliminating
double negation from ¬¬q, we get q on step 5.

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q
3. ¬q assumption G0, p, false, p ⊃ q, q, false
4. ¬¬q ‘¬ in’, 1,2 G0, p, false, p ⊃ q, q
5. q ‘¬ el’, 4 G0, p, false, p ⊃ q

Thus, we have reached the current goal, q, and, according to the algorithm,
we analyze the previous goal, p ⊃ q in this case. Applying (3b) of the searching
algorithm, we invoke ‘⊃ in’ rule which results in p ⊃ q. We write the latter
into the list proof and delete p and p ⊃ q from list goals. The current goal now
is false. Recall that the use of ‘⊃ in’ obliges us to discard all formulae 2–5 from
list proof. Next, applying ⊃ el rule to formulae 0 and 6, we obtain p at step 7 of
the proof.

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q
3. ¬q assumption G0, p, false, p ⊃ q, q, false
4. ¬¬q ‘¬ in’, 1,2 G0, p, false, p ⊃ q, q
5. q ‘¬ el’, 4 G0, p, false, p ⊃ q
6. p ⊃ q ‘⊃ in’, 5 G0, p, false
7. p ‘⊃ el’, 0,6 G0, p, false

This gives us a contradiction, with step 1, and, thus, the current goal, false has
been reached. Therefore, we apply the ‘¬ in’ introduction rule, obtaining ¬¬p

(the negation of the most recent non-discarded assumption), writing it as step 8
of the proof, deleting false from the list goals and setting p as the current goal.

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q
3. ¬q assumption G0, p, false, p ⊃ q, q, false
4. ¬¬q ‘¬ in’, 1,2 G0, p, false, p ⊃ q, q
5. q ‘¬ el’, 4 G0, p, false, p ⊃ q
6. p ⊃ q ‘⊃ in’, 5 G0, p, false
7. p ‘⊃ el’, 0,6 G0, p, false
8. ¬¬p ‘¬ in’, 1,7 G0, p

Eliminating double negation from ¬¬p, we get p on step 9, hence, we have
reached the current goal, p. Thus, according to the algorithm, we analyze the
previous goal, which in this case is the initial goal. This allows us to apply the
‘⊃ in’ rule and to derive the desired ((p ⊃ q) ⊃ p) ⊃ p:

list proof list goals
G0 = ((p ⊃ q) ⊃ p) ⊃ p

0. (p ⊃ q) ⊃ p assumption G0, p
1. ¬p assumption G0, p, false

G0, p, false, p ⊃ q
2. p assumption G0, p, false, p ⊃ q, q
3. ¬q assumption G0, p, false, p ⊃ q, q, false
4. ¬¬q ‘¬ in’, 1,2 G0, p, false, p ⊃ q, q
5. q ‘¬ el’, 4 G0, p, false, p ⊃ q
6. p ⊃ q ‘⊃ in’, 5 G0, p, false
7. p ‘⊃ el’, 0,6 G0, p, false
8. ¬¬p ‘¬ in’, 1,7 G0, p
9. p ‘¬ el’, 8 G0

10. ((p ⊃ q) ⊃ p) ⊃ p ‘⊃ in’, 9 G0 is reached

Now we will consider how the proof searching technique can build an ND
proof for formula (1) ∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x)). Note that as this
proof will be based upon proof searching technique it will differ, due to the
searching technique, from the previously presented proof of this formula in §2.

Analysing the structure of the initial goal, G0 = ∀x(P (x)∧Q(x)) ⊃ (∀xP (x)∧
∀xQ(x)), we set its antecedent as the assumption and its consequent as a new
goal.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)

Now we apply all possible elimination rules. Thus, applying ∀ el we infer the
formula P (x1) ∧Q(x1), where x1 is a new unflagged variable in the deduction.

Additionally, to prevent infinite applications of this rule we check the formula
with a special mark.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (x1) ∧Q(x1) 0, ∀ el G0, G1

2. P (x1) 1, ∧ el1 G0, G1

3. Q(x1) 1, ∧ el2 G0, G1

No elimination rules are applicable now. Thus, we consider the last formula
in the list goals, i.e. ∀xP (x) ∧ ∀xQ(x). The algorithm reduces this goal to the
new goals, ∀xP (x) and ∀xQ(x) and sets up the former as the current goal. Since
∀xP (x) is not reachable, the new goal is P (y1), where y1 is a new flagged variable.
(We will use variable xi as unflagged and yj as flagged.)

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (x1) ∧Q(x1) 0, ∀ el G0, G1

2. P (x1) 1, ∧ el1 G0, G1

3. Q(x1) 1, ∧ el2 G0, G1,∀xQ(x), ∀xP (x), P (y1)

Now we are searching the list proof for a formula that unifies with P (y1).
Thus, we find P (x1) and a substitution σ1 = x1/y1. The goal P (y1) is, therefore,
reached. We apply σ1 to all formulae with free variable x1 in list proof.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1, ∀xQ(x),∀xP (x)

Next we use the following proof search rule: if a goal is A(β), where β is a
new flagged variable, and ∀αA(α) is the last goal in list goals, then by applying
∀ in to a formula A(β) in the list proof we automatically reach this goal. Thus,
we apply ∀ in to formula 2. (Recall that variable y1 is absolutely flagged.) Since
the current goal, ∀xQ(x), is not reachable the algorithm generates a new goal,
Q(y2), where y2 is a new flagged variable. The derivation now looks as follows:

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1, ∀xQ(x),∀xP (x)
4. ∀xP (x) 2, ∀ in, y1 flagged G0, G1, ∀xQ(x), Q(y2)

Next, since the algorithm cannot find a unification with Q(y2) (both y1 and
y2 are flagged), it puts ¬Q(y2) as a new assumption and false as a new goal.
Recall that formula 0 is marked. Now we have the case when we are allowed to
get rid of this mark and to re-apply ∀ el rule to 0 (and mark it again) obtaining
6 and then eliminate conjunction from the latter.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1, ∀xQ(x),∀xP (x)
4. ∀xP (x) 2, ∀ in, y1 flagged G0, G1, ∀xQ(x), Q(y2)
5. ¬Q(y2) assumption G0, G1, ∀xQ(x), Q(y2), false
6. P (x2) ∧Q(x2) 1, ∀ el G0, G1, ∀xQ(x), Q(y2), false
7. P (x2) 6, ∧ el1 G0, G1, ∀xQ(x), Q(y2), false
8. Q(x2) 6, ∧ el2 G0, G1, ∀xQ(x), Q(y2), false

Now ¬Q(y2) and Q(x2) are unifiable by a substitution σ2 = x2/y2. We apply
σ2, obtaining contradictory formulae, Q(y2) and ¬Q(y2), and next apply ¬ in
and then ¬ el.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1,∀xQ(x), ∀xP (x)
4. ∀xP (x) 2, ∀ in, y1 flagged G0, G1,∀xQ(x), Q(y2)
5. ¬Q(y2) assumption G0, G1,∀xQ(x), Q(y2), false
6. P (y2) ∧Q(y2) 1, ∀ el, σ2 G0, G1,∀xQ(x), Q(y2), false
7. P (y2) 6, ∧ el1, σ2 G0, G1,∀xQ(x), Q(y2), false
8. Q(y2) 6, ∧ el2, σ2 G0, G1,∀xQ(x), Q(y2), false
9. ¬¬Q(y2) 5,8, ¬ in G0, G1,∀xQ(x), Q(y2)
10. Q(y2) 9, ¬ el G0, G1,∀xQ(x), Q(y2)

Note that once the rule ¬ in has been applied, assumption 5 and formulae
6-8 became discarded. Now we have reached Q(y2). The previous goal is ∀xQ(x),
which is reachable by ∀ in, hence, variable y2 becomes absolutely flagged. Now

the current goal is ∀xP (x) ∧ ∀xQ(x) which is reachable from 4 and 11 by ∧ in.
Now we are left with the initial goal ∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x)).

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1,∀xQ(x), ∀xP (x)
4. ∀xP (x) 2, ∀ in, y1 flagged G0, G1,∀xQ(x), Q(y2)
5. ¬Q(y2) assumption G0, G1,∀xQ(x), Q(y2), false
6. P (y2) ∧Q(y2) 1, ∀ el, σ2 G0, G1,∀xQ(x), Q(y2), false
7. P (y2) 6, ∧ el1, σ2 G0, G1,∀xQ(x), Q(y2), false
8. Q(y2) 6, ∧ el2, σ2 G0, G1,∀xQ(x), Q(y2), false
9. ¬¬Q(y2) 5,8, ¬ in G0, G1,∀xQ(x), Q(y2)
10. Q(y2) 9, ¬ el G0, G1,∀xQ(x), Q(y2)
11. ∀xQ(x) 10, ∀ in, y2 flagged G0, G1

12. ∀xP (x) ∧ ∀xQ(x) 4,11, ∧ in G0

The initial goal ∀x(P (x) ∧Q(x)) ⊃ (∀xP (x) ∧ ∀xQ(x)) is reachable from 11
by ⊃ in. Applying this rule, we discard assumption 0 and all formulae 1-12 and,
thus, reach the initial goal.

list proof list goals
G0

0. ∀x(P (x) ∧Q(x)) assumption G0, G1 = ∀xP (x) ∧ ∀xQ(x)
1. P (y1) ∧Q(y1) 0, ∀ el, σ1 G0, G1

2. P (y1) 1, ∧ el1, σ1 G0, G1

3. Q(y1) 1, ∧ el2, σ1 G0, G1, ∀xQ(x), ∀xP (x)
4. ∀xP (x) 2, ∀ in, y1 flagged G0, G1, ∀xQ(x), Q(y2)
5. ¬Q(y2) assumption G0, G1, ∀xQ(x), Q(y2), false
6. P (y2) ∧Q(y2) 1, ∀ el, σ2 G0, G1, ∀xQ(x), Q(y2), false
7. P (y2) 6, ∧ el1, σ2 G0, G1, ∀xQ(x), Q(y2), false
8. Q(y2) 6, ∧ el2, σ2 G0, G1, ∀xQ(x), Q(y2), false
9. ¬¬Q(y2) 5,8, ¬ in, y2 flagged G0, G1, ∀xQ(x), Q(y2)
10. Q(y2) 9, ¬ el G0, G1, ∀xQ(x), Q(y2)
11. ∀xQ(x) 10, ∀ in G0, G1

12. ∀xP (x) ∧ ∀xQ(x) 4,11, ∧ in G0

13. ∀x(P (x) ∧Q(x)) ⊃
(∀xP (x) ∧ ∀xQ(x)) 12, ⊃ in G0 is reached

6 Discussion

We have presented a proof searching algorithm for classical first-order natural
deduction system and established its correctness. Note that most of the auto-
mated reasoning tools based on natural deduction are interactive. On the con-
trary, our approach enables potentially fully automatic implementation. We have

implemented the propositional part of the presented searching procedure and are
currently extending it to FOL. The technique has been tested on a large number
of problems for classical logic taken mostly from [7]. Also, to the best of our
knowledge, the only other ND-based theorem prover with a goal-directed pro-
cedure similar to that of the NDalg presented in this paper, has been developed
in CMU [19]. However, the underlying ND system that we use, differs in the
set of introduction rules, hence the searching algorithm uses essentially different
techniques.

Moreover, we saw our task, first of all, as developing the ‘basic’ proof search-
ing algorithm. In other words, our aim was to establish the minimal set of proce-
dures which form a complete NDalg. This is why the underlying ND system was
also taken with the minimal set of elimination and introduction rules. As can
be expected, in this case, the payoff is a significant extension of the searching
space, and the complexity of the searching procedure. Thus, the important part
of our future work will be further refinement of the technique developed. We
believe that, since our machinery is based upon the minimal set of procedures,
it is open to any direction of possible refinement. One of these directions can be
seen, for example, in supplying the machinery with a set of derivations that may
significantly reduce the search space, and, hence, improve the complexity of its
performance.

Complexity, in turn, is another component of future research. Although we
have not studied this issue in detail, we believe that the following observation
is important. Due to its synthetic character, our searching technique performs
almost identically for classes of formulae with similar logical structures. For
example, if we substitute p and q by arbitrarily complex formulae in Peirce law
((p ⊃ q) ⊃ p) ⊃ p the NDalg proof for the latter will be schematically identical to
the NDalg proof presented in our paper. In other words, following our procedure,
in general, we are not forced to analyze the structure of complex subformulae
unless needed.

Things are different when a purely analytic proof searching procedures ap-
plies, like a tableau or a resolution based method. Here, unless the machinery is
supplied with additional mechanisms, the task is to reduce all complex subfor-
mulae to the level of literals. As a consequence, using our method we can have
very simple proofs for formulae with a very large number of variables. Similarly,
again, as the structure of formulae is the basis for the search strategy, there are
formulae which are difficult for analytic methods, but their proof is simple for the
NDalg. For example, the famous formula, (p∧ q)∨ (p∧¬q)∨ (¬p∧ q)∨ (¬p∧¬q),
which served as an example showing that analytic tableaux cannot polynomi-
ally simulate truth tables [8], is readily proved by the NDalg. On the other
hand, again, due to the synthetic character of ND searching procedures, we can
distinguish classes of formulae which are difficult for this approach, while corre-
sponding proofs in purely analytic methods are simple. These are, for example,
formulae, whose subformulae are ‘irrelevant’ to the NDalg derivation. Such for-
mulae might lead us to the redundant branches in the searching tree, but no
technique is known to distinguish them. This results in an increased complexity

of the algorithm. Moreover, we believe that only some partial solutions to this
problem can be found, while the general problem of avoiding such redundancy
cannot be solved.

References

1. L. Bachmair and H. Ganzinger. A theory of resolution. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, chapter 2. Elsevier, 2001.

2. V. Bocharov and V. Markin. Principles of Logic. Infra, Moscow, 1997. (In Russian).
3. A. Bolotov, A. Bocharov, and A. Gorchakov. A proof search algorithm for the

natural deduction classical propositional calculus. Logical Investigations, 3:181–
186, 1995. (in Russian).

4. A. Bolotov, A. Bocharov, and A. Gorchakov. Proof searching algorithm in classical
first-order calculus. Logical Investigations, 5, 1998. (In Russian).

5. A. Bolotov, V. Bocharov, A. Gorchakov, V. Makarov, and V. Shangin. Let Com-
puter Prove It. Logic and Computer. Nauka, Moscow, 2004. (In Russian).

6. C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic
Press, New York, 1973.

7. A. Church. Introduction to Mathematical Logic. Princeton, N.J., 1956.
8. M. D’Agostino and M. J. Mondadori. The taming of the cut. Classical refutations

with analytic cut. Journal of Logic and Computation., 4:285–319, 1994.
9. F. Fitch. Symbolic Logic. NY: Roland Press, 1952.

10. M. Fitting. First-Order Logic and Automated Theorem-Proving. Springer-Verlag,
Berlin, 1996.

11. G. Gentzen. Investigation into logical deduction. In The Collected Papers of
Gerhard Gentzen, pages 68–131. Amsterdam: North-Holland, 1969.

12. J. Hintikka. Notes on the quantification theory. Societas Scientarium Fennica
Commentationes Physico-Mathematicae, XVII(11), 1957.

13. S. Jaskowski. On the rules of suppositions in formal logic. In Polish Logic 1920-
1939, pages 232–258. Oxford University Press, 1967.

14. V. Makarov. Automatic theorem-proving in intuitionistic propositional logic. In
Modern Logic: Theory, History and Applications. Proceedings of the 5th Russian
Conference, StPetersburg, 1998. (In Russian).

15. F. Pfenning. Logical frameworks. In J. A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, chapter XXI, pages 1063–1147. Elsevier, 2001.

16. J. Polakow and F. Pfenning. Natural deduction for intuitionistic non-commutative
linear logic. In Proceedings of the 4th International Conference on Typed Lambda
Calculi and Applications (TLCA’99), Springer-Verlag LNCS, 1581, L’Aquila, Italy,
April 1999.

17. W. Quine. On natural deduction. Journal of Symbolic Logic, 15:93–102, 1950.
18. V. Shangin. Automatic Search for Natural Deduction in Classical First Order Logic.

PhD thesis, Department of Logic, Faculty of Philosophy, Moscow State University,
2004. (In Russian).

19. W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic). Studia
Logica, 60:67–100, 1998.

20. M. Wooldridge. Reasoning about Rational Agents. MIT Press, 2000.

