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Most previous empirical studies using the Heath–Jarrow–Morton model
(hereafter referred to as the HJM model) have focused on the one-factor
model. In contrast, this study implements the Das (1999) two-factor
Poisson–Gaussian version of the HJM model that incorporates a jump
component as the second-state variable. This study aims at examining
the performance of the two-factor model through comparing it with the
one-factor model in pricing and hedging the Eurodollar futures option.
The degree of impact arising from the jump factor also is examined. In
addition, three new volatility specifications are constructed to enhance
further the pricing performance of the model. Their performances are
compared according to three performance yardsticks—in-sample fitting,
out-of-sample pricing, and the hedging test. The result indicates that
the two-factor model outperforms the one-factor model in both the
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in-sample and out-sample price fitting, but the one-factor model per-
forms better in the hedging test. In addition, the HJM model, coupled
with the proposed volatility specification, leads to good fitting results that
will be of considerable use to practitioners and academics in guiding
model choice for interest-rate derivatives. © 2002 Wiley Periodicals, Inc.
Jrl Fut Mark 22:839–875, 2002

INTRODUCTION

This study aims at contributing to the literature in three respects. First,
most studies done previously have focused on the implementation of
one-factor HJM models, but a two-factor model generally is believed to
describe better the term structure. Bliss and Ritchken (1996) showed
that a two-factor model is more appropriate to explain movements in
interest rates. This study extends empirical tests to the two-factor HJM
model, which can capture further the subtleties of the forward rate
process. Das (1999) developed a Poisson–Gaussian version of the HJM
model by adding a jump component to the pure-Gaussian model. This
enabled the two-factor model to capture better the observed skewness
and kurtosis of the interest rates (Das, 1999). Das briefly illustrated the
model using U.K. bond-market data. The present study conducts a
detailed empirical examination of this two-factor HJM model by apply-
ing a set of distinct volatility structures and implementing it on actively
traded Eurodollar futures and futures options. Moreover, a detailed
comparison is made between the one- and two-factor models. From this
comparison, the degree of pricing impact of the jump component is
highlighted. The ability of the models in forecasting the future option
price by testing its out-of-sample fit of daily option prices also is exam-
ined. For this predictive test, the previous day’s option and asset prices
are used to infer the required parameters and volatility values, which
then are used to forecast the current day’s option prices.

Second, as the option valuation under the HJM framework is deter-
mined mainly by the volatility function of the forward rates (Heath,
Jarrow, & Morton, 1992), the specifications of volatility structure have a
strong bearing on the pricing accuracy of the claims. Hence, it is by all
means beneficial to identify more-sophisticated volatility functions that
can improve further the pricing performance. 

Amin and Morton (1994) empirically tested a large set of volatility
functions using a one-factor HJM model. This study tests the fitting per-
formance of volatility functions using both the one- and two-factor HJM
models. Moreover, a new set of volatility specifications is introduced for
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the analysis. One of the volatility functions being tested is that proposed
by Das (1999), which allows for a humped structure of the term struc-
ture of volatility. The present study also constructs three new volatility
specifications that allow for the humped term structure of volatilities and
compares these three volatility functions with those designed by Das
(1999) and Amin and Morton (1994) on the goodness of fit to the mar-
ket option values. From the comparison, critical factors that affect the
pricing performance are identified.

Third, the performance of the five volatility functions in hedging the
options is studied. The delta hedges are estimated for all of the volatility
structures being tested. The deltas then are used to hedge the options
using their underlying assets. Two types of hedging strategies are applied
to each volatility function. Errors for hedges that are rebalanced either
every day or every five days are calculated to measure the hedging effec-
tiveness of each volatility function.

The lattice approach is used for implementing the two HJM models
because it can price American options in the same manner as Eurodollar
futures options, while the Monte Carlo Simulation generally only values
European options. The Poisson–Gaussian version of the two-factor
model cannot be represented by a binomial tree as can the pure-
Gaussian one-factor model. However, when the volatility specification
that leads to the recombining process is used, a hexanomial tree can be
used for the two-factor model (Das, 1999).

American options are priced by a backward induction procedure that
takes at each node the maximum of the intrinsic value and the option
value should it not be exercised (Bühler, Uhrig-Homburg, Walter, &
Weber, 1999).

MODEL

The model originally was developed and modified by Heath, Jarrow, and
Morton (1990, 1991, 1992). However, this study considers the multi-
factor HJM models as illustrated by Inui and Kijima (1998). The one-
factor HJM model is discussed first. The evolution of the forward rate in
the one-factor model is generated by incorporating the drift-adjustment
terms (DATs) developed by Grant and Vora (1999) in the forward rates to
avoid the occurrence of arbitrage opportunities.

This study then proceeds to the two-factor HJM model under the
Das (1999) framework. A jump factor is taken as the second state
variable in the two-factor model for developing the lattice of forward
rates.
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At trading time t, the HJM term-structure model drives the dynamics
of the forward rate curves for all maturities by the following
stochastic differential equation (Inui & Kijima, 1998):

(1)

where f(t, T) represents the one-period forward rate at maturity T, as
observed at time t; h is the discrete time interval; d(t, T,) is the drift
coefficients of the forward rate f(t, T), while ji(t, T, f(t, T)) denotes the
ith random shock; and denotes the independent
N-dimensional Brownian motions.

The one- and two-factor models are developed in discrete time to
facilitate the actual implementation.

One-Factor HJM Model

For N � 1, Eq. (1) is expressed as a one-factor model.

for (2)

where A(t, T,.) is the drift term and s(t, T, f(t, T)) is the volatility coeffi-
cient of the forward rate.

Grant and Vora (1999) derived the drift term A(t, T,.) by means of
the local-expectation hypothesis. The expected rate of return of the
underlying asset over a single period should equal the spot rate in that
period under the condition of local expectations (Ritchken, 1996).
Hence,

(3)

(4)

where E stands for the expectation operator under the martingale proba-
bility measure. Equation (4) can be rewritten as

ln cE (exp(�gT�h�1
k�t�h�1 f(t � h, kh)h))

exp(�gT�h�1
k�t�h  f(t, kh)h)

d � f(t, t)

ln cE(P(t � h, T))
P(t, T)

d � f(t, t)

t � T,�T � [0, t]� s(t, T,  f(t, T) )¢Z1(t)

 f(t � h, T) � f(t, T) � A(t, T,.)h

Z � [Z1(t), . . . , ZN(t)]

 � a
N

i�1
ji(t, T,  f(t, T))¢Zi(t),�T � [0, t]

 f(t � h, T) � f(t, T) � d(t, T,)h

T(T � t)
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(5)

The forward rate f(t, T) is assumed to be distributed normally with
mean m and variance s2, where

as

(6)

Hence,

(7)

The general form of the drift is denoted as

(8)

The evolution of the forward rate then can be derived by the HJM tree

(9)f(t � h, T) � e f(t, T) � A(t, T,.)h � s(t, T)2h with probability 12
 f(t, T) � A(t, T,.)h � s(t, T)2h with probability 12
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Two-Factor HJM Model

For N � 2, Eq. (1) becomes a two-factor HJM equation. Das (1999)
derived the model in a discrete time format as follows:

(10)

where a(t, T,.) is the drift term of the forward rate, s(t, T, f(t, T)) is the
Gaussian coefficient, and and are the random shocks for the
jump-diffusion process where

X1 � N(0, 1)

X1 denotes the diffusion component while X2 is the jump compo-
nent with mean m and variance g2. Its distribution is governed by point-
process N, which takes on a value of 1 with a probability of 1 � e�l,
where l is the probability of a jump at any time interval h, and is
expressed as 

Under the martingale condition, the risk-neutral drift a(t, T) is expressed
as

(11)

where the right-hand side could be denoted as ln(A). The expectation
term A is expanded as follows:

 � exp a c� a
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If the volatility specification does not include the state variable,
f(t, T), then the process is path recombining. Thus, the evolution of the
forward rate can be generated by a hexanomial tree.

The Eurodollar futures call option is valued by backward induction
using the following equation proposed by Jarrow (1996):

(12)

where C(t, st) is the call option price at time t; Et denotes the risk-neutral
expectation conditional on the information set at time t; r(t, st) and
P(t, st) represent the spot rate and futures price, respectively, at time t
and state s; and Kt is the strike price at time t.

Volatility Functions

There is a rich class of volatility structures available for HJM models,
and five distinct forms of volatility specification are examined here.
These volatility functions can be nested into a general form as follows:

s[t, T, f(t, T)] � {s0 � [s1 � s2(T � kt)]e�h(T�t)} f(t, T)

This general form captures the five volatility functions as special
cases and synthesizes with the HJM model into an unified framework.
These five volatility functions are as follows.

Humped Model: s[t, T, f(t, T)] � s0 � [s1 � s2(T � t)]e�h(T�t)

Heath, Jarrow, Morton, and Spindel (1992) indicated the humped shapes
of the historical volatility function of Treasury rates. Other studies of
fixed-income derivatives also exhibited humped shapes in the volatility
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s( # )

 � exp a c aT�h

j�t�h�1
 s(t, jh)2h �

1
h

 (T � t)(�m � g) dhb  x 
l

4

 � exp a c aT�h

j�t�h�1
 s(t, jh)2h dhb  x 

1 � l

2

 � exp a c aT�h

j�t�h�1
 s(t, jh)2h �

1
h

 (T � t)(�m � g) dhb  x 
l

4

 � exp a c � a
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structure of interest rates (Moraleda & Vost, 1997). Das (1999) proposed
a generalized volatility function (also labeled the humped model) that
generates a humped term structure of volatilites expressed as:

where A governs the level of the term structure of volatilities, B controls
the slope, C captures the curvature, and D is a damping parameter (Das,
1999).

The above function is modified slightly into the general form
expressed by Ritchken and Chuang (1999). The function also is modified
to contain a time invariance property (Amin & Morton, 1994) that
depends on (T � t) instead of only T.

s[t, T, f(t, T)] � s0 � [s1 � s2(T � t)]e�h(T�t)

where

s[t, T, f(t, T)] and h are non-negative.

Humped-and-Curvature-Adjusted Model: 
s[t, T, f(t, T)] � s0 � [s1 � s2(T � kt)]e�h (T�t)

A new volatility function is constructed as an extension of the Das
(1999) humped volatility function by multiplying the time t with an
adjustment factor k(T � kt). This gives the curvature parameter s2 more
flexibility in controlling the curvature of the term structure of volatilities. 

As in the Das (1999) humped volatility function, the humped-and-
curvature-adjusted model leads to a recombining path. Hence, it will
reduce greatly computational time and cost.

Humped-and-Proportional Model: 
s[t, T, f(t, T)] � {s0 � [s1 � s2(T � t)]e�h (T�t)} f(t, T)

A new volatility function is designed to be proportional to the forward
rate level by multiplying a time t forward rate with the humped volatility
structure.

 h �
1
D

 s2 �
C
D

 s1 � B

 s0 � A

s(T) � A � B exp a�T
D
b � C 

T
D

 exp a�T
D
b
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The function is constructed according to the requirements of
the HJM class volatility structure and can be expressed as w(t, T)
min[ f(t, T), M], where w(t, T) is a non-negative deterministic function as
derived by Das (1999), and M is a very large positive constant. Hence,
the function is proportional to the value of the forward rate at time t. The
proportionality implies that forward rates are non-negative ( Jarrow,
1996), but it also makes the dynamics of the forward-rate process non-
Markovian. This is to test whether the proportionality will improve the
goodness of fit in option pricing.

Linear-Exponential Model: s[t, T, f(t, T)] � [s1 � s2(T � t)]e�h (T�t)

The specification of the damping volatility structure provides the mean-
reversion property that can reduce the change of occurrence of negative
rates on the tree. Moreover, the function allows tree recombining (Das,
1999) and greatly reduces computational effort.

Linear-Proportional Model: s[t, T, f(t, T)] � [s1 � s2(T � t)] f(t, T)

The function was shown by Amin and Morton (1994) to provide better
price-fitting performance. This two-parameter model is used to compare
with the other newly created forms to analyze their relative pricing per-
formance.

The five volatility functions are compared to examine their goodness
of fit to the market data.

Parameter Estimation

The parameters of the volatility functions and the jump component
must be determined to construct the evolution of the forward rates.
First, the initial term structure of the forward rate is generated using
the current futures prices of different maturities. The term structure of
the forward rate then is estimated based on the method proposed by
Amin and Morton (1994), using the implied volatility figures of the pre-
vious day. Second, M futures options of the same maturity are taken at
the same point of time. M should be greater than or equal to the
number of the parameters to be estimated. The parameters then are
varied to minimize the sum of the squared errors of the following
equation.

(13)Sum of Squared Error � a
M

i�1
[�mod,i(£ ) � �i]

£
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where and are the model price and market price of the ith
option of the same maturity date. This results in an estimate of the implied
option value and the corresponding parameter values at that day. With the
same procedure executed for each day, a time series of the volatility
parameters in the sample period is generated. The estimation procedure is
repeated for each term of maturity and each volatility specification.

Empirical Analysis

Data

Three-month Eurodollar futures and futures option prices are used in
this study for several reasons. First, they are traded actively on the
Chicago Merchant Exchange. This study will be most beneficial to prac-
titioners should it identify any better alternatives in pricing the futures
options. Second, as the term of maturity of the Eurodollar futures con-
tract is normally less than one year, it is possible to construct the whole
initial-term structure. All of these factors facilitate the implementation
of the HJM model (Amin & Morton, 1994). The sample period ranges
from December 13, 1999 to March 7, 2000. The daily ask quote futures
prices of each maturity and the corresponding futures option prices are
obtained from the Bloomberg database. There are 836 observations in
the sample. Any incomplete data are discarded.

Empirical Tests

Three sets of empirical tests are conducted for the HJM models. These
tests measure the performance of the models in respect of in-sample
fitting, out-of-sample pricing, and hedging. The out-of-sample pricing
indicates the model mis-specification and how well the models forecast
the future option prices. On the other hand, the hedging test examines
the ability of the models to capture the dynamic relationship between the
option and underlying asset values (Bakshi, Cao, & Chen, 1997).

In-sample performance. The two HJM models undergo tests of their
fitting performances to the true market-option values in the in-sample
data set. To implement this procedure, the call options available on each
day are used to imply the parameter estimates of the model.

The parameters then are used to infer the corresponding model
option values of that day. The mean of the sum of the square of the
pricing errors for the in-sample then is computed for the five volatility
functions daily.

�i�mod,i(£ )
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The in-sample fitting performances of the HJM models are assessed
based on their mean price deviations against the mean strike prices. In
addition, the degree of price impact of the jump-state variable is exam-
ined in the two-factor model by comparing mean-square errors across
the moneyness in the two HJM models. The five volatility functions then
are ranked according to their mean-square errors versus moneyness.

Out-of-sample performance. In addition to the test of pricing per-
formance of the HJM models with the in-sample data, the predictability of
the model for future option values is evaluated by extending the test of fit-
ness to the out-of-sample data set. This test also will help to examine
whether the enhancement of the pricing performance of a particular
volatility function is due to the increase in the number of parameters or the
improvement of the structural form of the model (Bakshi et al., 1997).

To implement the predictive test, the parameter estimates and the
volatility function of the previous day are derived by using the call
options available that day. They then are used to forecast the current
day’s model option values. The computed model prices are subtracted
from the corresponding market option values of the current day to esti-
mate the mean-square error. This procedure is repeated daily for each
volatility function.

The results in three aspects are analyzed further. First, the overall
predictability of the two HJM models is examined by comparing the pric-
ing errors generated in the in-sample and out-of-sample data sets.
Second, the two HJM models are ranked according to their pricing per-
formances of option values in the out-of-sample data set. Finally, the
mean-square errors generated by the five volatility structures across the
entire moneyness are examined to identify the possible factors that influ-
ence the ranking of fitting performance of the volatility functions.

Hedging performance. The models and volatility functions are
examined according to their hedging performances using the single-
instrument hedging method illustrated by Bakshi et al. (1997).

According to this approach, the futures call option is hedged by its
underlying futures. The instrument delta is defined as the ratio of the
change of the model futures option prices triggered by an instantaneous
shift in the term structure to the corresponding change of the futures
prices (Amin & Morton, 1994).

With this hedging method, the parameter estimates of previous day
are derived and used to model the futures option price of the current day.
The short position of the futures call option is hedged by going long with
its underlying futures contract. Then the hedged position is liquidated
either in the following day or five days later (Bakshi et al., 1997). The
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mechanism is derived from the Bakshi et al. (1997) proposal, which is
summarized as follows:

At time t, let DX(t) be the delta under the volatility function X.
Hence, the value of the replicating portfolio at time t is expressed as

VX(t) � C(t) � DX(t)F(t) (14)

where VX(t) is the portfolio value at time t, while C(t) and F(t) represent
the futures call option value and the underlying futures price at time t,
respectively.

The portfolio is rebalanced at every time interval 	t. The portfolio
value is invested at a risk-free rate, r(t). Consequently, the change of the
portfolio value equivalent to the hedging error is expressed as

	VX(t) � V(t)er(t)	t � V(t � 	t) or

	VX(t) � DX(t)F(t � 	t) � C(t � 	t) � {C(t) � DX(t)F(t)}er(t)	t (15)

The portfolio is reconstructed, and the hedging error is calculated at
every time interval 	t. Then the average hedging error is

(16)

The hedging errors are squared to penalize the extreme values
(Skinner, 1998).

The mean square of hedging errors is computed according to the
following formula.

(17)

The absolute hedging error is formulated as 

(18)

The hedging errors and the above three measures are computed for
each volatility structure under the two HJM models. There are three
steps in the hedging procedure. The parameters first are determined
using the call option values of the previous day. These estimates then are
used to calculate the current day’s option value and to construct the delta
hedge. Finally, the portfolio is rebalanced either daily or after five days.
The process is repeated daily for each option in the sample.

ABS[¢VX(t)] �
1
Na

ƒ
N

w�1
¢VX(t � W¢t) ƒ

E[¢VX
2(t)] �

1
Na

N

w�1
¢VX

2(t � W¢t)

E[VX(t)] �
1
Na

N

w�1
¢VX(t � W¢t)
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There are other possible ways for hedging, such as the Vega hedge.
The Vega measures the sensitivity of an option to the changes in the
implied volatility. Hence, one could reduce the sensitivity of the option
to the volatility by using the Vega hedge. This helps eliminate some
model risk. However, it is not easy to implement the Vega hedge in prac-
tice. Moreover, the volatility of the underlying asset is not known with
certainty. To forecast what it will become in the future is difficult.
Therefore, the delta hedge is adopted for empirical study in this study,
but it will be insightful and valuable to examine hedging performance
using the Vega hedge in future research.

EMPIRICAL RESULTS

In-Sample Performance

One-Factor Model vs Two-Factor Model (Jump)

Figures 1 and 2 plot the market and model option prices derived by the
one- and two-factor models across the mean strike prices. The model
option prices estimated by the two-factor HJM framework fit the market
values better.

FIGURE 1
Mean market and model option prices derived by the one-factor HJM model across the mean strike

prices. This figure plots the mean market and model option prices across different strike prices.
The model option prices are derived by the one-factor HJM model coupled with various volatility
functions. All the options are sorted by the strike prices and grouped into eight categories. The

average strike price for each of the eight groups is plotted on the horizontal axis. The sample period
is from December 13, 1999 to March 7, 2000. There are 836 observations in the sample.
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FIGURE 2
Mean market and model option prices derived by the two-factor HJM model across the mean
strike prices. This figure plots the mean market and model option prices across different strike
prices. The model option prices are derived by the two-factor HJM model coupled with various

volatility functions. All the options are sorted by the strike prices and grouped into eight
categories. The average strike price for each of the eight groups is plotted on the horizontal axis.
The sample period is from December 13, 1999 to March 7, 2000 for almost all call options with

maturities in June, September, and December. There are 836 observations in the sample.
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The deviation is illustrated in Figure 3. For all the volatility func-
tions, the values derived from the two-factor HJM model have much
smaller deviations from the actual data. 

Table I indicates that the maximum price deviation generated by the
two-factor model is only 43% of that generated by the one-factor model.

Moreover, the mean price deviations for the one- and two-factor
models increase with the strike price, while the pricing error is more pro-
nounced at higher strike price for the one-factor model. This indicates
that the jump factor in the two-factor model helps to capture the skew-
ness and kurtosis in the interest-rate derivative (Das, 1999).

The pricing performance of the two models is illustrated in Figure 4,
which displays the mean-square errors of the humped-and-curvature-
adjusted model in pricing the option according to both the one- and two-
factor HJM framework. Similar patterns are found in other volatility
functions.

For the one-factor model, the mean-square errors of the option
prices increase from the in-the-money (ITM) region to the out-of-the-
money (OTM) region. The errors jump significantly at the OTM region.
However, the two-factor model consistently generates much smaller



Fixed–Income Derivatives 853

mean-square errors. Moreover, the errors are distributed more evenly
over the entire range of moneyness.

As the data-sampling interval is on a daily basis, the kurtosis is much
higher than that of monthly observations. The kurtosis normally leads to
fat-tailed distribution, hence generating the smile effect in the option pric-
ing. Consequently, the OTM options are traded at much higher volatilities
than the at-the-money (ATM) options. Furthermore, the skewness will
result in an asymmetric distribution of the interest rate (Das, 1999).

The two-factor model under discussion was developed by Das
(1999) according to the Poisson–Gaussian process in the HJM frame-
work. A jump component is added as the second state variable. This
helps to capture better the skewness and kurtosis effects in the pricing of
Eurodollar futures options. This test supports the claims and shows that
the two-factor model does fit the data much better than the normal one-
factor HJM model.

Figure 5 shows the mean pricing deviation of the model option
prices derived by the five volatility functions against the moneyness in
the one-factor and two-factor models.

FIGURE 3
Mean option-price deviation across the mean strike prices. This figure plots the mean price

deviation as a function of the strike prices. The solid lines represent the price deviations
generated by the one-factor HJM model coupled with various volatility functions. The dotted

lines represent the price deviations generated by the two-factor HJM model coupled with various
volatility functions. All the options are sorted by the strike prices and grouped into eight

categories. The average strike price for each of the eight groups is plotted on the horizontal axis.
The sample period is from December 13, 1999 to March 7, 2000. There are 836 observations in

the sample. The mean price deviation is defined as the market price minus the model price.
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TABLE I

Comparison of Option-Pricing Performance of Volatility Functions 
for the One- and Two-Factor HJM Models

Mean Strike Price

92.8 93.3 93.5 93.8 93.9 94.2 94.4 94.7

Panel A: One-Factor Model

Mean Mkt.
Opt. Value 0.54923 0.23361 0.14543 0.07707 0.03755 0.02774 0.01976 0.02046

Mean Model 
Opt. Value

Humped 0.54859 0.23643 0.14637 0.07843 0.03157 0.01826 0.01152 0.00783
Hump.&Curv. 0.54842 0.23620 0.14663 0.07820 0.03155 0.01830 0.01145 0.00795
Hump.&Prop. 0.55114 0.23754 0.14751 0.07532 0.02727 0.01569 0.00932 0.00532
Lin. Expo. 0.54799 0.23635 0.14642 0.07868 0.03166 0.01862 0.01146 0.00807
Lin. Prop. 0.55099 0.23748 0.14699 0.07522 0.02781 0.01615 0.00972 0.00556

Mean Price
Deviation

Humped 0.00064 �0.00283 �0.00094 �0.00136 0.00598 0.00948 0.00824 0.01263
Hump.&Curv. 0.00081 �0.00260 �0.00120 �0.00114 0.00599 0.00944 0.00831 0.01251
Hump.&Prop. �0.00191 �0.00394 �0.00207 0.00175 0.01028 0.01205 0.01044 0.01514
Lin. Expo. 0.00124 �0.00275 �0.00099 �0.00161 0.00589 0.00912 0.00830 0.01240
Lin. Prop. �0.00176 �0.00388 �0.00155 0.00184 0.00974 0.01159 0.01004 0.01490

Panel B: Two-Factor Model

Mean Mkt.
Opt. Value 0.54923 0.23361 0.14543 0.07707 0.03755 0.02774 0.01976 0.02046

Mean Model 
Opt. Value

Humped 0.54841 0.23356 0.14622 0.07895 0.03807 0.02595 0.01625 0.01537
Hump.&Curv. 0.54938 0.23357 0.14622 0.07903 0.03747 0.02531 0.01597 0.01555
Hump.&Prop. 0.54686 0.23464 0.14697 0.07909 0.03765 0.02593 0.01618 0.01616
Lin. Expo. 0.54980 0.23414 0.14693 0.07935 0.03863 0.02748 0.01727 0.01519
Lin. Prop. 0.55062 0.23562 0.14552 0.08137 0.03579 0.02237 0.01482 0.01385

Mean Price
Deviation

Humped 0.00082 0.00004 �0.00079 �0.00188 �0.00052 0.00179 0.00351 0.00510
Hump.&Curv. �0.00015 0.00004 �0.00079 �0.00197 0.00008 0.00243 0.00379 0.00491
Hump.&Prop. 0.00237 �0.00104 �0.00154 �0.00202 �0.00010 0.00181 0.00358 0.00430
Lin. Expo. �0.00057 �0.00053 �0.00150 �0.00228 �0.00109 0.00026 0.00249 0.00527
Lin. Prop. �0.00138 �0.00202 �0.00009 �0.00430 0.00176 0.00537 0.00494 0.00661

Note. This table summarizes the pricing deviation from the market value for the five volatility functions. Panel A records
the data for the one-factor model and panel B is for the two-factor model. The sample period is from December 13, 1999
to March 7, 2000 for almost all call options with maturities in June, September, and December. There are 836 observations
in the sample. The mean price deviation is defined as the market price minus the model price.
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The pricing deviation under the two-factor model generally is much
smaller than that of the one-factor model across the moneyness. 

Moreover, the pricing deviation of the volatility functions generally
exhibits a valley shape for the two-factor model. Along the line of money-
ness, the volatility functions tend to underprice the OTM futures call
options. However, the underpricing becomes smaller for the less OTM
options. The volatility functions then overprice the call options again at
the region between less OTM and ATM.

Subsequently, the volatility specifications underprice the options at
the region between ATM and less ITM, Finally, the degree of underpric-
ing decreases as the options become more ITM.

For the one-factor model, the mean pricing deviation that arises
with the five volatility functions shows a similar pattern to the two-factor
model across the moneyness, although the deviations for the one-factor
model generally are higher. The functions generally underprice the OTM
call options and overprice the less OTM calls and the ITM futures call
options. However, the degree of overpricing is much smaller than that of
underpricing.

FIGURE 4
Mean-square error across the mean moneyness. This figure plots the mean-square error for

pricing the call options as a function of the moneyness. The model option prices are estimated
using in-sample dataset. The line with square marks indicates the option prices derived by the

one-factor HJM model while the line with triangle marks shows the option values derived by two-
factor HJM model. The mean-square error is the mean of the square of the difference between

market option price and model option price. The moneyness is defined as the market futures price
minus the strike price for the futures call option. All of the options are sorted by moneyness.
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Volatility Functions

As shown in Table II, the five volatility functions, the humped and pro-
portional model outperforms the other four in fitting the market option
values. It has the smallest mean-square errors across the entire range of
moneyness. A similar result also is found in the study of Amin and
Morton (1994). The authors derived a linear-proportional model with
volatility function dependent on the level of interest rates. On pricing
the Eurodollar futures options, the model generated lower average
absolute error and better fitting performance.

Out-of-Sample Performance

One-Factor Model vs Two-Factor Model (Jump)

Panel A of Table III summarizes the mean-square errors of the two HJM
models in the in-sample and out-of-sample data sets. The errors in the
out-of-sample data set for both models are only slightly larger than those
in the in-sample data set. The out-of-sample error also represents the

FIGURE 5
Mean price deviation across the mean moneyness. This figure plots the mean price deviation of
the call options as a function of the moneyness. The dotted lines represent the price deviations

generated by the one-factor HJM model coupled with various volatility functions. The solid lines
represent the price deviations generated by the two-factor HJM model coupled with various

volatility functions. The mean price deviation is defined as the market price minus the model
price. The moneyness is defined as the market futures price minus the strike price 

for the futures call option. All of the options are sorted by moneyness.
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TABLE III

Out-of-Sample and In-Sample Pricing Performances
for the Volatility Functions*

Out-of-Sample In-Sample

Panel A: Overall Mean-Square Error

Volatility Functions One-Factor Two-Factor One-Factor Two-Factor
Humped 1.0895E–04 5.7338E–05 8.6696E–05 1.7540E–05
Humped & Proportional 4.0511E–04 5.0549E–05 1.1200E–04 1.7521E–05
Humped & Curvature 1.0677E–04 7.5193E–05 8.5508E–05 1.8563E–05
Linear Proportional 3.9902E–04 3.0073E–04 1.0552E–04 5.3382E–05
Linear Exponential 1.1203E–04 1.6285E–04 9.0278E–05 2.5059E–05

Panel B: Akaike Information Criterion (AIC)†

Volatility Functions Parameter One Factor Two Factor One Factor Two Factor
Humped 4 — 1,995 — 2,532 — 2,186 — 3,522
Humped & Proportional 4 — 897 — 2,637 — 1,972 — 3,523
Humped & Curvature 5 — 2,010 — 2,303 — 2,196 — 3,473
Linear Proportional 3 — 912 — 1,148 — 2,024 — 2,593
Linear Exponential 2 — 1,976 — 1,663 — 2,156 — 3,228

*Panel A illustrates the mean-square errors of the two HJM models in fitting the out-of-sample and in-sample data. The
reported mean-square error is the sum of square of the difference between the model option prices and true market val-
ues in the sample. The table also measures forecast errors for the five volatility functions under the out-of-sample catego-
ry. The out-of-sample forecast option values are derived based on the previous day’s parameter estimates. The in-sample
model option values are based on the parameter estimates of that day. Panel B illustrates the comparison of alternative
model using Akaike information criterion (AIC). The smaller the AIC, the better the model in price fitting is. The sample
period is from December 13, 1999 to March 7, 2000 for almost all call options with maturities in June, September, and
December. There are 836 observations in the sample.
†AIC � N 
 ln(residual sum of squares) � 2n, where N is the number of usable observation, n is the number of parameter
estimated.

forecast error and is close to zero. The HJM model is deemed to be good
generally at forecasting the options. When the pricing errors under the
out-of-sample category for the one- and two-factor model are compared,
the two-factor model is found consistently to outperform the one-factor
model in pricing the option. The former generally has lower mean-
square errors than the latter.

Table III shows the mean-square errors for the five volatility func-
tions for both the one- and two-factor models. These errors generally
range from 4 
 10�4 to 1.7 
 10�5. Hence, the pricing performances of
the volatility functions under test are quite close.

In examining the empirical quality of the one- and two-factor mod-
els, the methodology of Bühler et al. (1999) is used to compare the devi-
ation between the market and model price. The two-factor model
outperforms the one-factor model.

The results in Table III are validated further by the regression
results of the market and model option values. Panels A and B in



Fixed–Income Derivatives 859

Table IV report the systematic bias between the market and model
prices. The F-statistics of the joint test that b0 � 0 and b1 � 1 signifi-
cantly are rejected for all models. A similar observation was made by
Amin and Morton (1994).

The b1 coefficients of the volatility functions in the two-factor HJM
model are consistently higher than those in the one-factor model. This
again indicates that the two-factor model gives a better estimation of

TABLE IV

Regression Results of Market Option Prices and Model Option Prices
(Market Price � b0 � b1 Model Price � e)*

Volatility Functions b0 b1 R2 F Stat.†

Panel A: One-Factor Model

Humped 0.00532 0.98751 0.99796 58.8
(13.79) (9.61)

Hump.&Curv. 0.00669 0.98503 0.99276 56.5
(9.22) (9.60)

Hump.&Prop. �0.00124 0.96546 0.99283 158.5
(�1.68) (14.35)

Lin. Expo. 0.00472 0.98771 0.99779 49.2
(11.76) (9.03)

Lin. Prop. �0.00116 0.96569 0.99293 152.6
(�1.59) (14.23)

Panel B: Two-Factor Model

Humped �0.0003 0.99440 0.99874 47.8
(�0.97) (4.57)

Hump.&Curv. �0.0006 0.99144 0.99842 9.29
(�1.74) (6.26)

Hump.&Prop. �0.00015 0.99729 0.99885 12.1
(�0.50) (2.31)

Lin. Expo. �0.00081 0.98924 0.99649 67.3
(�1.58) (5.29)

Lin. Prop. 0.00424 0.98459 0.99344 34.0
(6.10) (5.55)

Hump. Hump.
Volatility Function Humped &Curv. &Prop. Lin. Expo. Lin. Prop.

Panel C: F Test: One- vs Two-Factor Model

F Test 514.6 2,986.9 4,368.9 – 64.9

*This table reports the regression results of the market prices and model prices generated by the five distinct
volatility functions. The t statistics for b0 � 0 and b1 � 1 are reported in parentheses. The sample period is from
December 13, 1999 to March 7, 2000 for almost all call options with maturities in June, September, and
December. There are 836 observations in the sample.
†F statistic for joint test of b0 � 0 and b1 � 1.
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the market data. Moreover, for all of the volatility functions.
This result reconciles with that of Amin and Morton (1994).

Panel C of Table IV reveals the F-test result between the one- and
the two-factor models. The F test is used to compare the fit of the two
models, that is, the one-factor model is assumed to be nested within the
two-factor model. The F test generally is far greater than one, which
means that the two-factor model is better than the one-factor model in
pricing the options. However, for the linear exponential model, the R2

in the one-factor model is higher than that in the two-factor model.
Therefore, under the linear exponential volatility function, the one-factor
model has higher goodness of fit in the regression analysis than the two-
factor model. The model that incorporates the linear-exponential
function with the jump-diffusion process is internally less stable and gen-
erates more pricing errors in the out-of-sample fit. This result also is
reflected in Table III. Future investigation should apply the same test to a
new data set.

Volatility Functions

Overall performance. As with the result of the in-sample fit, the
humped and proportional model overwhelms the other four volatility
functions in forecasting the market option values. The model consistent-
ly has the lowest mean-square errors across the entire range of money-
ness in the out-of-sample data set as illustrated in Table V.

The Akaike information criterion (AIC) also is used for the model
selection. According to the calculation shown in Panel B of Table III, the
ranking of pricing performance of the volatility functions further is sup-
ported. The humped and proportional model attains the smallest AIC
figure and hence gives the best price fitting.

Four sets of comparisons are made of the volatility functions in their
relative pricing performances to identify the possible factors that affect
pricing accuracy.

Path dependence. The first comparison is illustrated in Figure 6,
which shows the pricing performances of the humped and proportional
model and the humped model. Both models have the same number of
parameters. However, as the humped and proportional model has the
forward rate attached in the function, the forward-rate process is non-
recombining.

Figure 6 indicates the mean-square errors derived by the humped
and proportional model and humped model across the moneyness. The
humped and proportional model generally prices the option better and

b1 � 1
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FIGURE 6
Comparison of humped model and humped and proportional model—mean-square

error across the mean moneyness. This figure compares the mean-square error
derived by two-factor models coupled with the humped model with that coupled with
the humped and proportional model. The error is plotted as a function of the mean

moneyness. The line with square marks is derived using the humped model while the
line with triangle marks is by the humped and proportional model. The mean-square

error is the mean of the square of the difference between market option price
and model option price. The moneyness is defined as the market futures price
minus the strike price for the futures call option. All of the options are sorted

by moneyness.
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has lower mean-square errors at both the OTM and ITM regions.
Therefore, the forward rate in the humped and proportional model helps
to improve the pricing performance.

However, although the humped and proportional model is better in
pricing performance, the degree of price improvement is limited. For the
path-independent humped model, the volatility structure allows map-
ping onto a recombining tree. This greatly reduces the computational
time. Hence, it is a wiser choice to use the path-independent volatility
function to price the simple American derivatives.

Number of parameters. The humped model and the linear exponen-
tial model are compared. Both functions could lead to a Markovian term
structure and exhibit the humped feature in the volatility structure.
However, the former is given an additional level s0 coefficient to ensure
the non-negativity of interest rates. This makes the humped model fit the
market values better.

Figure 7 shows that the mean square error of the humped model is
smaller than that of the linear exponential model. Moreover, the humped
model has better goodness of fit to both the OTM and ITM option
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FIGURE 7
Comparison of the humped model and linear-exponential model—mean-square error across the

mean moneyness. This figure compares the mean-square error derived by two-factor models
coupled with the humped model with that coupled with the linear-exponential model. The error
is plotted as a function of the mean moneyness. The line with square marks is derived using the

humped model while the line with triangle marks is derived by the linear-exponential model. The
mean-square error is the mean of the square of the difference between market option price and

model option price. The moneyness is defined as the market futures price minus the
strike price for the futures call option. All of the options are sorted by moneyness.

MSE Vs Mean Moneyness (Two-Factor: Hump. Vs Lin. Expo.)
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FIGURE 8
Comparison of the humped model and the humped-and-curvature-adjusted model—mean-square

error across the mean moneyness. This figure compares the mean-square error derived by two-factor
models coupled with the humped model with that coupled with the humped-and-curvature-adjusted

model. The error is plotted as a function of the mean moneyness. The line with square marks is
derived using the humped model while the line with triangle marks is by the humped-and-curvature-
adjusted model. The mean-square error is the mean of the square of the difference between market
option price and model option price. The moneyness is defined as the market futures price minus

the strike price for the futures call option. All of the options are sorted by moneyness.
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FIGURE 9
Comparison of the linear-exponential model and the linear-proportional model—mean-square

error across the mean moneyness. This figure compares the mean-square error derived by 
two-factor models coupled with linear-exponential model with that coupled with the 
linear-proportional model. The error is plotted as a function of the mean moneyness. 

The line with square marks is derived using the linear exponential model while the line with
triangle marks is derived by the linear-proportional model. The mean-square error is the mean of

the square of the difference between market option price and model option price. The
moneyness is defined as the market futures price minus the strike price for the futures call

option. All of the options are sorted by moneyness.

MSE Vs Mean Moneyness (Two-Factor: Lin. Prop. Vs Lin. Expo.)
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values, while the mean-square error for the linear exponential model
increases significantly at the OTM region.

The results indicate that the humped model with an additional level
parameter helps to price the option better. This reconciles with the
finding of Amin and Morton (1994) that the pricing performance of the
volatility specification improves as the number of parameters increase.

The humped and curvature-adjusted model and the humped model
are examined according to their relative pricing performance. As shown
in Figure 8, although the humped and curvature-adjusted model has one
more parameter than the humped model, the humped model has a
smaller mean-square error than the humped model at the ATM and ITM
regions. One of the possible reasons is that the curvature-adjustment fac-
tor that attaches to the time invariance does not help to improve the
structural fitting, and it makes the form of the model unstable and over-
fitting to noise during the in-sample fit (Bakshi et al., 1997). This eventu-
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FIGURE 10
Relative pricing performance of the five volatility functions—mean-square error across the

mean moneyness. This figure compares the mean-square errors derived by two-factor 
HJM models coupled with the five volatility functions being tested. The error is plotted as

a function of the mean moneyness. The mean-square error is the mean of the square of the
difference between market option price and model option price. The moneyness is defined as the

market futures price minus the strike price for the futures call option. All of the options are
sorted by moneyness.
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ally leads to lower predictability of next-day option prices when using the
previous day’s parameter estimates.

The linear-exponential and linear-proportional models are compared
in Figure 9. The linear-exponential model outperforms the linear-propor-
tional model although the mean-square error increases at the ITM region.
This again reconciles with the findings of Amin and Morton (1994), who
indicated that the additional parameter in the linear-exponential model
leads to better pricing performance of the traded options.

The relative performances of the five volatility functions are shown in
Figure 10. The relative-pricing performances measured by the mean-square
errors for the five volatility functions are ranked in the following order:

1. the humped and proportional model (the best);

2. the humped model;

3. the humped- and curvature-adjusted model;

4. the linear-exponential model; and

5. the linear-proportional model.
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Hedging Performance

One-Factor Model vs Two-Factor Model (Jump)

Table VI shows the overall performance of the two HJM models in hedg-
ing the futures call options. The two models are compared in terms of
average hedging errors, absolute hedging errors, and mean-squared hedg-
ing errors. For both models, the errors of the five-day hedging are higher
than those of one-day hedging. This is probably due to the nonlinear rela-
tionship between the futures option values and the underlying futures
prices. Therefore, the hedge ratio changes over time. The deviation of the
hedge ratio increases when the time interval of rebalancing is widened.

Based on the average hedging error, the two-factor model generally
performs better in hedging the option for both the one- and five-day
hedges.

However, according to the mean-squared hedging errors, the hedg-
ing performance of one-factor HJM models is better. A similar result is
found in the work of Bakshi et al. (1997). A particular reason for this
is illustrated in the following two figures.

Figures 11 and 12 illustrate the hedging errors generated under the
one- and two-factor models across the moneyness. The hedging errors

TABLE VI

Overall Hedging Performance of the One-and Two-Factor HJM Models

Average Absolute Mean-Squared 
Hedging Error Hedging Error Hedging Error

One-Factor Two-Factor One-Factor Two-Factor One-Factor Two-Factor

Panel A: One-Day Hedging

Humped �2.056E–03 1.098E–03 3.847E–03 7.818E–03 3.772E–05 4.813E–04
Humped & Curvature �2.069E–03 2.144E–05 3.839E–03 5.175E–03 3.735E–05 8.784E–05
Humped & Proportional �2.097E–03 �2.637E–03 3.838E–03 5.061E–03 3.643E–05 7.015E–05
Linear Exponential �1.728E–03 �1.264E–03 3.790E–03 5.047E–03 3.633E–05 7.147E–05
Linear Proportional �2.071E–03 �1.778E–03 3.839E–03 6.242E–03 3.660E–05 1.760E–04

Panel B: Five-Day Hedging

Humped �8.981E–03 6.972E–05 1.133E–02 1.780E–02 4.063E–04 1.859E–03
Humped & Curvature �9.004E–03 �8.280E–04 1.136E–02 1.205E–02 4.058E–04 4.753E–04
Humped & Proportional �9.238E–03 �1.245E–02 1.147E–02 1.467E–02 4.247E–04 5.980E–04
Linear Exponential �7.678E–03 �6.047E–03 1.028E–02 1.317E–02 3.709E–04 4.861E–04
Linear Proportional �9.141E–03 �4.538E–03 1.141E–02 1.618E–02 4.216E–04 1.195E–03

Note. This table summarizes the overall hedging performance of the two HJM models. The delta hedge of current day is derived using the
parameter estimates of the previous day. The replicating portfolio is determined and rebalanced in the following day. The absolute hedging
error is defined as the mean of the sum of the absolute value of the hedging error generated. The average hedging error is estimated for each
call option in the sample. The mean-squared hedging error is defined as the sum of the square of the hedging error generated. The sample
period is from December 13, 1999 through March 7, 2000. Panel A records the results for one-day hedging and panel B displays the results
for five-day hedging.
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FIGURE 11
One-day hedging error across the moneyness for the one-factor HJM model coupled with the

humped model. This figure compares the one-day hedging error derived by one-factor HJM models
coupled with the humped volatility function across the moneyness. The hedging error is defined as
the change of value of the replicating portfolio over the time interval of one day. The moneyness is

defined as the market futures price minus the strike price for the futures call option.

Hedging Errors Vs Moneyness (One-factor, humped)
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FIGURE 12
One-day hedging error across the moneyness for the two-factor HJM model coupled with the
humped model. This figure compares the one-day hedging error derived by two-factor HJM

models coupled with the humped volatility function across the moneyness. The hedging error
is defined as the change of value of the replicating portfolio over the time interval of one day.
The moneyness is defined as the market futures price minus the strike price for the futures

call option.
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generated fluctuate symmetrically along the line of moneyness.
However, the scale of fluctuation under the two-factor model is larger.
Although the average hedging errors are smaller for the two-factor model
due to the inter-canceling effect, the absolute values of the errors are
larger.

A possible explanation for the unsatisfactory hedging performance
of the two-factor model stems from the short hedging-rebalancing
period. The average jump-frequency parameter is estimated to be around
0.2 times per year. The possibility of the occurrence of a significant jump
is small during a one- or five-day interval. Thus, the hedging performance
may not be improved by incorporating jumps into the option-pricing
framework (Bakshi et al., 1997). Rather, a one-factor HJM model may be
adequate in hedging the option.

Volatility Functions

The hedging performances of the five volatility specifications are ranked
according to the absolute value of their hedging errors. Table VII pres-
ents the absolute hedging errors of the volatility functions against the
moneyness. The absolute hedging errors generally increase from the
OTM region to the ITM region. One of the possible reasons for this is
that the options at the OTM region are relatively less liquid and infre-
quently traded. Their option prices vary little after one or five days.
Consequently, the hedging errors in this region are relatively smaller, but
the trading volumes of the options increase when their strike prices
approach the market values. This may lead to the possibility of large
price movements of the option even at the one-day interval, which will
make the hedging errors increase when the moneyness moves toward the
ITM region.

The ranking of the hedging performances of the volatility functions
is evaluated further for both one- and five-day hedges under each HJM
model. The results are illustrated in the following four figures.

Figure 13 shows the one-day absolute hedging errors of the five
volatility structures under the two-factor model. The humped-and-
curvature-adjusted model performs the best among the five volatility
functions in hedging the OTM calls, while the humped-and-proportional
model is the best performer in hedging ATM and ITM call options. The
order of ranking of the five volatility functions in hedging the options in
these regions is:

1. the humped and proportional model (the best);

2. the linear exponential model;
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TABLE VII

Comparison of the Absolute Single-Instrument Hedging Errors of Futures Call
Options for Five Volatility Functions: One-Factor Model vs Two-Factor Model

Absolute Hedging Error

Volatility Functions �1.6110 �1.1590 �0.8436 �0.5384 �0.2320 0.3081

Panel A: One-Factor Model

Moneyness—One-Day Hedging

Humped 1.224E–03 1.537E–03 2.468E–03 3.548E–03 5.061E–03 9.087E–03
Humped & Curvature 1.222E–03 1.537E–03 2.496E–03 3.593E–03 4.973E–03 9.055E–03
Humped & Proportional 1.212E–03 1.519E–03 2.477E–03 3.489E–03 4.993E–03 9.178E–03
Linear Exponential 1.323E–03 1.595E–03 2.593E–03 3.416E–03 4.867E–03 8.799E–03
Linear Proportional 1.221E–03 1.554E–03 2.516E–03 3.501E–03 4.949E–03 9.132E–03

Moneyness—Five-Day Hedging

Humped 2.843E–03 2.755E–03 4.996E–03 8.070E–03 1.386E–02 3.475E–02
Humped & Curvature 2.841E–03 2.765E–03 5.011E–03 8.005E–03 1.396E–02 3.486E–02
Humped & Proportional 2.794E–03 2.642E–03 4.776E–03 7.712E–03 1.373E–02 3.640E–02
Linear Exponential 3.126E–03 2.898E–03 4.405E–03 6.489E–03 1.103E–02 3.307E–02
Linear Proportional 2.760E–03 2.662E–03 4.769E–03 7.602E–03 1.360E–02 3.630E–02

Panel B: Two-Factor Model

Moneyness—One-Day Hedging

Humped 1.747E–03 2.637E–03 5.192E–03 7.951E–03 1.141E–02 1.768E–02
Humped & Curvature 1.447E–03 1.816E–03 3.081E–03 4.517E–03 7.444E–03 1.253E–02
Humped & Proportional 2.320E–03 2.880E–03 4.065E–03 4.889E–03 5.802E–03 1.025E–02
Linear Exponential 1.875E–03 2.337E–03 3.529E–03 4.674E–03 6.152E–03 1.152E–02
Linear Proportional 1.744E–03 1.972E–03 3.633E–03 5.588E–03 8.747E–03 1.549E–02

Moneyness—Five-Day Hedging

Humped 3.718E–03 6.051E–03 9.597E–03 1.671E–02 2.453E–02 4.536E–02
Humped & Curvature 2.607E–03 2.894E–03 4.714E–03 8.318E–03 1.635E–02 3.671E–02
Humped & Proportional 5.775E–03 7.505E–03 1.095E–02 1.405E–02 1.713E–02 3.211E–02
Linear Exponential 3.596E–03 4.559E–03 7.364E–03 1.079E–02 1.635E–02 3.568E–02
Linear Proportional 3.955E–03 4.175E–03 7.573E–03 1.335E–02 1.956E–02 4.752E–02

Note. This table illustrates the hedging performance of the five volatility functions under the two HJM models. The delta
hedge of the current day is derived using the previous day’s parameter estimates. The replicating portfolio is determined
and rebalanced the following day or five days later. The absolute hedging error is defined as the absolute value of the
hedging error estimated for each call option in the sample. The moneyness is defined as the market futures price minus
the strike price for futures call option. All of the options are sorted by moneyness. The average moneyness is calculated
for each portion.

3. the humped and curvature adjusted model;

4. the linear proportional model; and

5. the humped model.

The five-day hedging performance of the two-factor model is illus-
trated in Figure 14, which displays the absolute hedging errors of the five
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FIGURE 13
One-day absolute hedging error across the mean moneyness for the two-factor HJM model

coupled with various volatility functions. This figure compares the one-day absolute hedging
error derived by two-factor HJM models coupled with various volatility functions across the mean
moneyness. The absolute hedging error is defined as the absolute value of the change of value of

the replicating portfolio over the time interval of one day. The moneyness is defined as the
market futures price minus the strike price for the futures call option. All of the options

are sorted by moneyness and divided into six portions with similar numbers of observations.
The average moneyness is calculated for each portion.

One-day Absolute Hedging Error Vs Moneyness (Two-factor)
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FIGURE 14
Five-day absolute hedging error across the mean moneyness for the two-factor HJM model

coupled with various volatility functions. This figure compares the five-day absolute hedging error
derived by two-factor HJM models coupled with various volatility functions across the mean

moneyness. The absolute hedging error is defined as the absolute value of the change of value of
the replicating portfolio over the time interval of five days. The moneyness is defined as the
market futures price minus the strike price for the futures call option. All of the options are
sorted by moneyness and divided into six portions with similar numbers of observations. The

average moneyness is calculated for each portion.

Five-day Absolute Hedging Error Vs Moneyness (Two-factor)
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volatility specifications across the moneyness. The five-day hedge exhibits
a pattern similar to that of the one-day hedge, although it generally has
larger hedging errors compared with the latter. The humped-and-
curvature-adjusted model has the lowest absolute hedging errors in the
OTM region. Moreover, similar to the ranking in the one-day hedge in the
ATM and ITM regions, the humped-and-proportional model performs
the best, followed by the linear-exponential model, and then by humped-
and- curvature-adjusted model, the linear-proportional model, and the
humped model.

Figures 15 and 16 show the absolute hedging errors of the volatility
function under the one-factor model in one- and five-day hedges, respec-
tively. For both types of hedge, the hedging performances of the five
volatility specifications are indistinguishable. The pattern is similar to
that in the two-factor model. In general, the humped-and-proportional
model is good at hedging options in the OTM region, while the linear-
exponential model performs better in the ATM and ITM regions. The
same ranking is shown in both the one- and five-day hedges.

FIGURE 15
One-day absolute hedging error across the mean moneyness for the one-factor HJM model

coupled with various volatility functions. This figure compares the one-day absolute hedging
error derived by one-factor HJM models coupled with various volatility functions across the

mean moneyness. The absolute hedging error is defined as the absolute value of the change of
value of the replicating portfolio over the time interval of one day. The moneyness is defined as
the market futures price minus the strike price for the futures call option. All of the options are

sorted by moneyness and divided into six portions with similar numbers of observations.
The average moneyness is calculated for each portion.

One-day Absolute Hedging Error Vs Moneyness (One-factor)
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CONCLUSION

This article studies the issue of option pricing by employing the two-
factor Heath–Jarrow–Morton (HJM) model according to the Das (1999)
framework. A jump factor is incorporated in the model to develop a
lattice of forward rates.

The study employs the methodology used by Amin and Morton
(1994) in the parameter estimation to facilitate the comparison. One-
and two-factor HJM models are compared under the same conditions to
examine the degree of pricing impact arising from the jump component in
the two-factor model. Moreover, the study introduces three new volatility
structures to examine their relative performances on option pricing.

The performances of the HJM models and the volatility functions
are examined in relation to in-sample fitting, out-of-sample predictabili-
ty, and single-instrument hedging. For the in-sample fit, the empirical
evidence indicates that the model option prices estimated by the two-
factor HJM model better fit the market values. The test indicates that
the jump component in the two-factor model helps to capture better the
kurtosis effects in the pricing of the Eurodollar futures option. 

FIGURE 16
Five-day absolute hedging error across the mean moneyness for the one-factor HJM model

coupled with various volatility functions. This figure compares the five-day absolute hedging error
derived by one-factor HJM models coupled with various volatility functions across the mean

moneyness. The absolute hedging error is defined as the absolute value of the change of value of
the replicating portfolio over the time interval of five days. The moneyness is defined as the
market futures price minus the strike price for the futures call option. All of the options are
sorted by moneyness and divided into six portions with similar numbers of observations. The

average moneyness is calculated for each portion.

Five-day Absolute Hedging Error Vs Moneyness (One-factor)
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Regarding the volatility functions, all three new models give better
estimations of the option values. Moreover, among the five volatility
functions under test, the humped-and-proportional model gives the low-
est overall mean-square errors. The order of ranking of fitting perform-
ance of the five volatility specifications is:

1. the humped-and-proportional model (the best);
2. the humped model;
3. the humped-and-curvature-adjusted model;
4. the linear-exponential model; and
5. the linear-proportional model.

For the out-of-sample test, the two-factor model once again outper-
forms the one-factor model in forecasting the future call option prices.
Moreover, the relative forecasting performances of the volatility func-
tions are ranked in the same order as in the in-sample test. 

Moreover, the humped-and-proportional model and the humped
model are compared to examine the degree of price impact from the
path-dependence factor. Both models have the same number of param-
eters. The path-dependent humped-and-proportional model is found to
have lower overall mean-square errors in pricing the option. The path-
dependence factor does help to improve the pricing performance.
However, the degree of price improvement is limited. Moreover, the use
of path-independent volatility function generally can shorten the com-
putation time because the function allows mapping onto a recombining
tree in valuing the option. Hence, it is preferable to use the path-
independent volatility function for valuing the plain vanilla options.

Moreover, the pricing performances of the humped model and the
linear-exponential model are compared. The additional level parameter
in the volatility structure helps the humped model to outperform the
linear-exponential model. A similar result is found in the comparison of
the linear-exponential model and the linear-proportional model, in
which the former has one more parameter than the latter. Therefore, the
number of parameters in the model does affect the performance of
the volatility function. This reconciles with the findings of Amin and
Morton (1994).

Regarding the hedging performances of the one- and two-factor
models in general, the hedging errors for the five-day hedge generally are
larger than the one-day hedge. This is probably due to the nonlinear rela-
tionship between the option values and their underlying futures prices.
The hedge ratio changes over time and is more likely to vary when the
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time interval of rebalancing is widened. Moreover, based on the average
hedging-error measures, the two-factor model performs better. However,
the one-factor model generally has smaller mean-squared hedging errors
and absolute hedging errors. This is due to the fact that while the hedg-
ing errors generated by both models fluctuate symmetrically along the
line of moneyness, the scale of fluctuation under the two-factor model is
larger. Therefore, although the average hedging errors are smaller for the
two-factor model because of the intercanceling effect, the absolute value
of hedging errors under that model are larger.
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