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Abstract
Background: The	incidence	of	constipation	increases	among	the	elderly	(>65 years),	
while	 abdominal	 pain	 decreases.	Causes	 include	 changes	 in	 lifestyle	 (e.g.,	 diet	 and	
reduced	 exercise),	 disease	 and	 medications	 affecting	 gastrointestinal	 functions.	
Degenerative changes may also occur within the colo- rectum. However, most evi-
dence is from rodents, animals with relatively high rates of metabolism and accel-
erated aging, with considerable variation in time course. In humans, cellular and 
non- cellular changes in the aging intestine are poorly investigated.
Purpose: To examine all available studies which reported the effects of aging on cel-
lular and tissue functions of human isolated colon, noting the region studied, sex and 
age of tissue donors and study size. The focus on human colon reflects the ability to 
access full- thickness tissue over a wide age range, compared with other gastrointesti-
nal regions. Details are important because of natural human variability.
We found age- related changes within the muscle, in the enteric and nociceptor in-
nervation, and in the submucosa. Some involve all regions of colon, but the ascend-
ing colon appears more vulnerable. Changes can be cell-  and sublayer- dependent. 
Mechanisms are unclear but may include development of “senescent- like” and associ-
ated inflammaging, perhaps associated with increased mucosal permeability to harm-
ful luminal contents.
In summary, reduced nociceptor innervation can explain diminished abdominal pain 
among the elderly. Degenerative changes within the colon wall may have little im-
pact on symptoms and colonic functions, because of high “functional reserve,” but 
are likely to facilitate the development of constipation during age- related challenges 
(e.g.,	lifestyle,	disease,	and	medications),	now	operating	against	a	reduced	functional	
reserve.
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1  |  INTRODUC TION

The elderly experience diminished abdominal pain.1–4 Furthermore, 
the prevalence of lower bowel disorders is increased.5 For example, 
estimates of chronic constipation among elderly within the commu-
nity are >7% to >42%,6–11 rising to >50%	within	nursing	homes.12–14 
Chronic constipation is associated with impaired quality of life and 
complications which if untreated, can lead to fecal impaction, incon-
tinence, bowel perforations, and increased healthcare costs.15–19 
Fecal incontinence, more common in older adults,20–22 may encour-
age institutionalization.23–26

Medications are often used by the elderly, including opioid re-
ceptor	agonists	(pain	relief),	drugs	antagonizing	at	muscarinic	acetyl-
choline	and	other	receptors	(e.g.,	antidepressants),	and	antagonists	
of	 Cav1	 voltage	 gated	 calcium	 channels	 (raised	 blood	 pressure).	
These may alleviate abdominal pain and/or disrupt GI motility.27–32 
Constipation among the elderly14 can also be associated with dis-
ease	 (e.g.,	 clinical	 depression,	 hypothyroidism,	 and	 long-	term	 sur-
vival of colorectal/anal carcinoma18,33),	 and	changed	 lifestyle	 (e.g.,	
reduced calorie and fluid intake and impaired mobility34–36).	The	ex-
istence and influence of age- related degeneration on human bowel 
functions is less clear.

Studies on physiological changes in bowel functions among the 
elderly provide inconsistent conclusions. In healthy volunteers, age- 
related impairment of rectal sensitivity to mechanical distension is 
reported by some, without changed muscle compliance and tone,37 
whereas others found no changes.38,39 Most studies suggest small 
and large intestinal motility is well- preserved during normal adult 
working lives,40,41 but evidence for declined functions among the 
healthy elderly is inconsistent. For example, movements of the small 
and/or large intestine were no different to younger adults,38,42–47 
whereas reduced contractile activity43 and transit within the small 
intestine,48 reduced migrating motor complex activity,7,49 increased 
oro- caecal transit times,50 and reduced colonic or rectosigmoid 
transit44,46,47 are reported.

Perhaps the effects of aging on the lower bowel can be bet-
ter understood by studying isolated tissues, so cellular functions 
can be investigated. Laboratory animals are often used, notably 
mice and rats. These suggest an age- dependent loss of extrinsic 
and enteric innervation, reduced ability of muscle to contract, re-
duced	numbers	of	pacemaker	cells	(interstitial	cells	of	Cajal;	ICCs)	
and changes in numbers of enteroendocrine and mast cells within 
the mucosa.51–59 However, rodents have high rates of aging, high 
metabolic rates and differ significantly from humans, in gastro-
intestinal anatomy, neuronal functions, receptor pharmacology 
and molecular structures.60 This is compounded by extensive 
genetic variation between different strains of laboratory mice,61 
influencing, in a strain- dependent manner, how aging affects gas-
trointestinal innervation and functions.62,63 Thus, to understand 
how aging affects human intestinal functions it is important to in-
vestigate the human. We examine the strength and physiological 
significance of this evidence.

2  |  SCOPE OF RE VIE W

The	 term	 “elderly”	 defines	 people	 around	 65–75 years	 of	 age	 and	
above,64,65 but is influenced by variables affecting biological aging 
or senescence, including culture, lifestyle, and genetics. Here, we 
compare between adults of different ages and not adults versus de-
veloping juveniles or children.

The focus is on the colon, perhaps the most readily available, “in-
tact”	human	gastrointestinal	tissue	(e.g.,	“macroscopically	normal”	tis-
sue	from	patients	with	bowel	cancer,	5–10 cm	away	from	the	tumor).66 
For robust conclusions, different variables must be considered. First, 
the different regions of colon must be studied separately, given the 
differences in positioning, functions, embryonic origin, blood supply, 
extrinsic innervation, length, and gene expression.67–76 Second, the 
question “what is normal?” must be considered as it is difficult to 
fully exclude pathological changes. For example, in colonic mucosa, 
changes	in	gene	expression	can	occur	up	to	10 cm	from	the	tumor.77 
Nevertheless,	when	using	tissues	from	the	same	region	and	removed	
for the same disorder, it is possible to compare different age groups. 
Third, individual variations mean that patient details must be recorded 
and sample sizes large enough to generate meaningful conclusions.66 
Finally, studies may be influenced by type of surgery, preparation, and 
storage of tissue.66	All	this	is	important	when	weighing	the	strengths	
and weaknesses of data generated from human tissues.

3  |  SENSORY AFFERENT NEURONS

In human ascending and descending/sigmoid colon from patients 
aged	 24–82 years	 (n = 20,	 removed	 mostly	 for	 bowel	 cancer;	 all	
regions	considered	together),	a	significant	reduction	was	observed	
in	the	multiunit	response	to	capsaicin	and	bradykinin	(10–11	donors/
group,	 mostly	 males)	 but	 not	 the	 single-	unit	 colonic	 mesenteric	
nerve	to	capsaicin	(n = 5;	confirming	a	previous	study78).79 These data 

Key points

• Reduced nociceptor innervation can explain diminished 
abdominal pain among the elderly.

•	 Age-	related	changes	also	occur	within	the	muscle,	in	the	
enteric innervation, and in the submucosa. Some involve 
all regions of colon, but the ascending colon appears 
more vulnerable. Changes can be cell-  and sublayer- 
dependent. Mechanisms may include development of 
“senescent- like” and inflammaging states.

• Constipation among the elderly is more likely to occur 
during	 age-	related	 challenges	 (e.g.,	 lifestyle,	 disease,	
and	medications)	affecting	functions	of	the	bowel	that	
now have reduced functional capacity caused by age- 
dependent degenerative changes.
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suggested an age- dependent loss of afferent innervation, because 
chemosensitivity of individual neurons was unchanged. Further 
studies must examine the effects of aging on noxious mechanical 
stimuli	(reduced	in	mouse	colon)	and	on	pelvic	afferent	nerves	which	
signal pain and need for defecation.79

In an earlier study,80 the power was diluted by using human ileum, 
ascending, transverse, descending and sigmoid colon, and rectum, to-
gether, removed mostly for bowel cancer but sometimes for inflam-
matory and other conditions. With increasing age, resting afferent 
nerve	 activity	 (n = 19	 tissues)	 and	 spontaneous	 burst	 firing	was	 de-
creased.	 In	 three	 sigmoid	colons	 (42-	,	55-	,	 and	67-	year-	old	donors)	
the increase in afferent nerve activity to bradykinin was thought to be 
blunted	by	increased	age,	and	in	10	patients,	between	50	and	80 years	
of age, the density of substance P- immunoreactive nerve fibers within 
the mucosa, a marker of afferent nerve endings, was reduced with 
increasing age.

Reduced immunoreactivity for transient receptor potential 
ankyrin-	1	 (TRPA1)	 and	 vanilloid-	1	 (TRPV1)	 channels,	 and	 reduced	
TRPA1	gene	 transcription	was	 found	within	 sigmoid	 colon	biopsies	
from	healthy	elderly	versus	younger	adults	 (respectively	65–75	and	
18–40 years,	n = 48	and	52).4 Both channels are expressed by extrinsic 
neurons	(TRPA1	is	also	elsewhere	such	as	epithelial	and	enteroendo-
crine	cells)	and	may	functionally	interact.81 However, others found no 
change	in	TRPA1	RNA	expression	within	the	mucosa	of	human	ileum	
(n = 5)	and	colon	(n = 15,	all	regions)	combined,	comparing	<65	versus	
>65 years	of	age.80

3.1  |  Conclusions

Further work is needed to understand the effects of aging on 
mechano- sensitive afferent innervation, paying attention to region 
of colon and study power. Data suggesting that nociceptor innerva-
tion decreases with increasing age appears consistent. They are also 
consistent with studies among the healthy elderly, demonstrating 
reduced	sensitivity	to	visceral	pain	(balloon	distention	in	esophagus	
and rectum37,82)	and	abdominal	pain.1–4 Perhaps as a consequence, 
the	prevalence	of	 irritable	bowel	syndrome	(defined	 in	part	by	oc-
currence	of	abdominal	pain)	 is	reduced	among	the	elderly,	but	less	
welcome, the elderly have reduced ability to sense pain during ap-
pendicitis, delaying onset of medical care.4,79

4  |  SMOOTH MUSCLE

The thickness of sigmoid colon circular muscle was unchanged 
when	healthy	elderly	were	compared	with	younger	adults	(Table 1).	
However, such measurements do not reflect functions or changes 
in constituent parts. Recent studies suggest that total collagen con-
tent	 is	 increased	within	 colon	of	 the	elderly	 (earlier	 studies	 found	
no changes but higher levels of mature cross- linked collagen, sug-
gesting increased rigidity; Table 1).	For	example,	in	ascending	colon	
from the elderly without diverticulitis, increased total collagen was 

demonstrated	 in	 the	muscularis	externa	 (especially	 taenia coli)	and	
submucosa	 (Table 1).83,84 Perhaps for some, this increase reflects 
diverticulosis that has not progressed to diverticulitis, with progres-
sion depending on the subtype of collagen and/or degrading matrix 
metalloproteinases.85 Functional studies using colon from patients 
with diverticulitis, report increased efficacy and potency of ligands 
causing circular muscle contraction86,87 or longitudinal muscle relax-
ation.88 By contrast, in circular muscle of ascending and descending 
colon	 from	15	adult	 and	19	elderly	patients	 (Table 1),68 no differ-
ences were found in muscle tension generated during contraction 
or relaxation evoked by different ligands. The latter appears to 
conflict with an earlier study using sigmoid colon circular muscle, in 
which differences were found in amplitude of contractions evoked 
by different stimuli, between adult and elderly males and females.89 
However, poor definition of n-	values	(muscle	strips,	not	patients),68 
compromises interpretation.

In one other study, collagen fibrils within the submucosa of de-
scending colon became smaller and more tightly packed with in-
creasing	age	(>60 years;	n = 7),	relative	to	ascending	colon.90	A	higher	
collagen content may also exist within the internal anal sphincter of 
aging	 incontinent	patients	 (mean	51.5 years),91 possibly contributing 
to reduced ability of the sphincter to maintain resting pressure and 
achieve maximum squeeze pressure,92–94 although not all agree.38,39,95 
In addition to increased collagen content, suggested causes are rela-
tive reductions in smooth muscle cells and increased connective tis-
sue with age.96,97

4.1  |  Conclusions

The	apparent	mismatch	between	muscle	function	(no	differences	in	
tension	generated	during	contraction/relaxation)	and	structure	(in-
creased	total	collagen)	of	human	colon	requires	investigation.	How	
does aging affect:

• Different types of collagen in different sublayers of the colon 
wall.

•	 The	distribution	of	elastin	within	 the	muscularis	externa	 (a	pre-
liminary study found increased elastin and collagen around the 
myenteric plexus of the elderly98).

• The ability of the taenia coli to contract.
• The ability of taenia coli and circular muscle to respond to muscle 

stretch or distension?

5  |  INTERSTITIAL CELL S OF C A JAL

In human colon, different networks of ICCs orchestrate muscle 
movements, driven by enteric and extrinsic neurons, and interacting 
with platelet- derived growth factor receptor- positive fibroblast- like 
cells, fibroblasts, and glial cells.99,100 One group of ICCs is associated 
with	 the	 myenteric	 plexus.	 This	 is	 stimulus-	dependent	 (e.g.,	 neu-
ronal),	 orchestrating	 high-	amplitude	 propagating	 pressure	 waves.	
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Another	 is	 associated	 with	 the	 submuscular	 plexus	 and	 by	 spon-
taneously	 and	 rhythmically	 depolarizing	 (~3 cycles/min),	 serves	 as	
the	dominant	pacemaker.	A	third	group,	within	the	longitudinal	and	
circular muscles, transmits pacemaker activity throughout the mus-
culature and mediates neural stimuli. Finally, an ICC network exists 
in association with the subserosa, possibly pacing the longitudinal 
muscle.

The effects of aging on each network of ICCs within human 
colon has not been conducted. However, the number and network 
volume of ICCs within the myenteric plexus and circular muscle 
have been shown to decrease with age, by ~13%/decade	 over	
25–70 years;	the	decline	was	similar	in	ascending	and	sigmoid	colon	
and not associated with sex.101 Recently, a small study used western 
blotting	to	show	reduced	c-	kit	and	connexin-	43	protein	(markers	of,	
respectively,	ICC	and	gap	junction	proteins)	in	the	colon	(region	and	
muscle	layer	not	specified)	of	elderly	people	(n = 4	each	for	27–36	
and	72–82-	year-	old	groups).102 Perhaps loss of ICCs during aging 

is related to increased oxidative stress- inducing cellular apoptosis, 
combined with an inability to replenish ICCs via stem cells.101

5.1  |  Conclusions

In mice, an age- dependent loss of ICCs uniformly affected all 
stomach	regions	and	 layers	 (myenteric	and	muscle	 layers),	unlike	
disease which might affect discrete areas.103,104 For human colon 
the effect of aging on the different networks of ICCs has not been 
systematically examined and the consequences on propulsive/re-
tropulsive/segmental movements are unclear. However, since the 
tissues used were from patients with no reported motility disor-
ders, perhaps the observed changes simply make the elderly more 
susceptible	 to	other	disruptive	 influences	 (e.g.,	 lifestyle/medica-
tions/disease);	this	idea	is	discussed	later.	By	contrast,	in	sigmoid	
colon	 from	patients	with	 slow	 transit	 constipation	 (STC),	 loss	 of	

TA B L E  1 Effect	of	old	age	on	muscle	thickness,	collagen	content,	and	contractile	ability	in	the	human	colon.

Region Ages/Patients Studied Observation Comment

Muscle thickness, collagen content

Sigmoid colon110 18 donors aged between 21 and 
94 years

No	clear	change	in	thickness	of	
circular muscle

Ascending,	transverse,	
descending and sigmoid 
colon172

11	and	9	patients	aged,	respectively,	
<60	and	>60 years

No	age-	related	changes	in	total	
collagen content and no differences 
between	these	patients	and	5	others	
with	diverticulosis	(aged	67–80 years);	
a higher level of mature cross- linked 
collagen in colons from subjects 
>60 years	compared	with	those	
<60 years,	suggested	an	increase	in	
rigidity

Assumed	full-	thickness	
tissues. Collagen 
concentration assessed 
by measurement of 
hydroxyproline content

Ascending	colon83 Adult	(22–60 years;	6	males,	6	
females)	and	elderly	(70–91 years;	6	
males,	4	females)

Histochemical staining demonstrated 
an increase in total collagen content 
in submucosa and muscularis externa

Overall increase in collagen 
concentration assessed 
by measurement of 
hydroxyproline content173

Ascending	and	Descending	
colon84

Ascending	(adults:	22–60 years;	6	
males,	6	females;	elderly:	70–91 years;	
6	males,	4	females)	and	Descending	
(adults:	23–63 years;	6	males,	7	
females;	elderly:	66–88 years;	6	
males,	4	females)

Greater occurrence of total collagen 
in the taenia coli compared with 
circular muscle

The ascending colon 
has a greater collagen 
concentration than the 
descending colon, as 
assessed by histochemical 
and biochemical methods173

Muscle contractile ability

Ascending	and	descending	
colon; circular muscle68

Adult	versus	elderly	(for	carbachol	
study, respectively, n = 7/7	and	8/12	
for	ascending	and	descending	colon)

No	change	in	tension	developed	
during contraction evoked by 
carbachol, or during muscle relaxation 
in response to the nitric oxide donor 
sodium nitroprusside

Largest study to date

Sigmoid colon circular 
muscle88

~60 years	versus	mid-	late	70 s Elderly females more sensitive to 
carbachol- induced muscle contraction 
but elderly males more sensitive to 
electrically evoked cholinergically 
mediated contractions

n- values are muscle 
preparations used, not 
patients

Proximal, distal, sigmoid 
colon studied together174

Average	age	was	69 ± 3 years Age-	dependent	increase	in	ability	of	
dissociated muscle cells to contract 
in response to different ligands, 
including carbachol

Perhaps enzyme digestion 
influences how cells respond
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ICCs	 (associated	 with	 myenteric	 and	 submucosal	 plexuses,	 lon-
gitudinal,	 and	 circular	muscle)	 and	myenteric	 neurons,	 has	 been	
reported,	compared	with	patients	without	STC	(respectively	aged	
42–76	and	23–71 years,	n = 8/6).105

6  |  ENTERIC NERVOUS SYSTEM (ENS)

Several animal studies report losses of enteric neurons during aging 
(e.g.,	 mouse102).	 However,	 when	 the	 accompanying	 increase	 in	
length	and	thickness	of	the	muscle	are	considered	(changing	den-
sity	of	 neurons),	 no	 age-	related	 changes	were	 found	 (mice106).	 In	
human colon, early reports of loss of enteric neurons, based largely 
on small studies, are now contradicted by larger studies which 
found	little-	or-	no	loss	(see	below	and	Table 2).	For	studies	on	en-
teric	neuronal	numbers	in	other	GI	regions	(human,	animal).107,108

6.1  |  Myenteric plexus

In	 the	 largest	 study	 conducted	 (30,306	neurons	within	~36 mm	of	
myenteric plexus/antibody/patient from ascending colon of 8 adult 
and	9	elderly	 (≥70 years)	and	9/10	adult/elderly	descending	colon),	
no age- related differences were found in the number of myenteric 
nerve cell bodies staining for the pan- neuronal marker, anti- HuC/D 
(anti-	human	neuronal	protein	C/D;	labelling	cell	nucleus	and	perikar-
yon),	within	ascending	or	descending	colon.	Furthermore,	there	was	
no	age-	related	difference	in	numbers	of	neurons	expressing	nNOS,	
nor a decline in neurite extension within the musculature of either 
region.68 However, the numbers of myenteric cell bodies exhibiting 
ChAT	immunoreactivity	was	increased	in	ascending	colon	from	the	
elderly, but not descending colon. Curiously, in the same study, and 
same area of colon, this change was accompanied by decreased cho-
linergic	neuromuscular	function	(discussed	in	Section	7).

A	study	using	laser-	dissected	myenteric	plexus	ganglia	(50	ganglia	
from	 each	 donor)	 to	 analyze	 expression	 of	 multiple	 genes	 (e.g.,	 ion	
channels,	 specific	 neuronal	 types,	 senescence,	 and	 oxidative	 stress),	
found	significant	differences	between	children	vs.	adults	(48–58 years)	
and	the	elderly	(70–95 years).109	“Adult”	colon	(n = 4)	represented	de-
scending or sigmoid colon and “Elderly,” a mix of ascending, transverse, 
descending,	or	sigmoid	colon	(n = 11),	removed	for	different	disorders.	
In distal colon, increased gene expression was observed in the elderly 
for	 the	 neurotrophin	 receptor	 p75	 and	 for	 nitric	 oxide	 synthase-	1.	
ChAT	gene	expression	exhibited	no	age-	dependent	differences	in	dis-
tal colon but was lower in elderly proximal, compared with distal colon.

Other studies with large numbers of patients found no age- 
dependent changes in several nerve markers within sigmoid colon. In one, 
nNOS,	VIP	and	SP-	immunoreactive	neurons	were	measured	over	ages	of	
21–94 years.110	In	another,	the	concentrations	of	VIP,	met5- enkephalin, 
neuropeptide Y and somatostatin were determined, following extraction 
from muscle of 28 patients <70 years	old	and	12	≥70 years.111

A	large	study	using	whole-	mount	preparations	of	colon	(10 days	to	
91 years;	all	regions	pooled	together)	found	an	age-	dependent	increase	

in proportion of ganglia containing empty spaces.112 This was associ-
ated with increased surface area of the ganglia. For these ganglia, there 
was	 no	 change	 in	 number	 of	 NADPH-	diaphorase-	positive	 neurons/
ganglion	 (nitrergic).	Correspondingly,	 the	number	of	 “normal”	ganglia	
(uniformly	 filled	with	neurons)	declined	when	all	 ages	were	grouped	
together,	but	most	clearly	among	the	elderly	(≥70 years).	Others	have	
looked	 for	 age-	related	changes	 in	 the	ENS	of	human	ascending	and	
sigmoid	colon,	testing	for	 linear	trends	(9	males,	7	females).113	A	de-
cline in numbers of nerve cell bodies/mm length of myenteric plexus 
staining	for	HuC/D,	ChAT	and	PGP-	9.5	was	observed,	but	not	nNOS.	
Analysis	as	numbers	of	ganglia/mm	length	or	neurons/ganglia	showed	
similar but less clear trends. However, the regression lines were influ-
enced	by	a	99-	year-	old	patient	(tissue	removed	for	unknown	reason),	
separated	by	17 years	from	the	next	oldest.	Confoundingly,	the	volume	
of nerve fibers in circular muscle and volume of neuronal structures in 
myenteric plexus was unchanged with age.113

Smaller studies reported a loss of enteric neurons. For example, 
a	34%–38%	decrease	in	myenteric	nerve	cells	in	small	intestine	and	
colon	(grouped	together)	comparing	20–35	and	>65 years	(n ≤ 6	each	
age	 group),98,114,115 accompanied by more numerous collagen and 
elastic fibers in the ganglia.98	Another	small	study	with	human	colon	
muscle	(layer	or	region	not	specified)	using	western	blotting,	showed	
reduced	ChAT	and	nNOS	 in	 the	 elderly	 (n = 4	 each	 for	 27–36	 and	
72–82-	year-	old	 groups).102 Within human small intestine, no age- 
dependent changes were found in surface area of enteric ganglia 
within	the	duodenum,	but	the	number	of	neurons	was	smaller	(~16%)	
within	the	elderly	(65–84 years;	n = 30	donors	but	distribution	among	
different	age	groups	not	stated).116 By contrast, an increased num-
ber	of	NOS-	expressing	myenteric	neurons	were	reported	in	terminal	
ileum	of	 the	elderly	 (78–86 years;	n = 8	vs.	n = 7	younger	adults;	all	
with cancer of ascending colon117).

6.2  |  Submucosal plexus

A	study	in	which	the	numbers	of	myenteric	neurons	were	thought	
to	decline	in	human	colon	with	increasing	age	(see	above),	found	no	
changes in submucosal plexus.113

Perhaps specific subpopulations of neurons are vulnerable to 
age- related changes. In a preliminary report, the density of calretinin- 
immunoreactive neurons and fibers were decreased in the sub-
mucosal	 plexus	of	 ascending	 colon	 from	 the	elderly	 (range	of	 ages:	
22–91 years)	 but	 not	 clearly	 in	 descending	 colon.	 In	 the	 mucosa,	
the decrease in density was greater in ascending versus descending 
colon.118 Others reported colocalization of calretinin- immunoreactive 
neurons with vasoactive intestinal peptide.119

6.3  |  Conclusions

First, all studies need to be properly powered and small n- values 
treated with caution. Second, different regions of colon must be 
studied. Third, aging has little- or- no effect on overall numbers 
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6 of 15  |     BAIDOO and SANGER

of enteric nerve cell bodies in ascending or descending colon, al-
though in the ascending colon myenteric cholinergic neurons may 
be damaged.

Work is needed to look for possible changes in neuronal sub-
populations.	 A	 notable	 omission	 is	 the	 lack	 of	 discrimination	
between cell bodies for enteric motor-  and inter- neurons, and in-
trinsic	primary	afferent	neurons	(IPANs).	Motor	neurons	projecting	
to	the	muscle	appear	unaffected	by	aging	(no	change	in	density	of	
neurite	extensions	within	 the	muscle),	but	 the	effects	of	aging	on	

interneuron	varicosities	and	on	 IPAN	projections	 into	 the	mucosa	
(or	 their	 functions)	 are	 unknown.	 IPANs	 detect	 mechanical	 and	
chemical stimuli from the lumen and help initiate propulsive/retro-
pulsive movements.

Finally, the recent identification of age- dependent changes in lin-
eage	composition	of	the	ENS	(decline	in	neural-	crest	derived	neurons	
and	replacement	by	mesoderm-		derived	neurons)	opens	new	avenues	
for research. In mice, the change may be related to loss of enteric 
neurons. In humans, the consequences are unclear.120

TA B L E  2 Effect	of	old	age	on	the	numbers	and	densities	of	enteric	neurons	and	subpopulations	in	the	human	colon.

Region Patients Studied/ages Enteric nerve populations Plexus/sublayer Age- related change

Ascending,	transverse,	
descending, sigmoid 
colon98

No	known	digestive	
pathologies; separated into 
20–35	and	>65-	year	groups,	
n = 6	each;	sex	not	stated

Total	(Giemsa	stain)/area Myenteric plexus Mean	37%	loss	with	increasing	age;	
no differences between regions

Colon; regions not 
specified112

Colon removed for different 
disorders;	168	males	and	
females;	10 days	to	92 years

Different stains used, 
including	NADPH-	
diaphorase	(NADPH-	d)	
as a marker of neurons 
expressing nitric oxide 
synthase

Myenteric plexus When all ages considered 
together, the proportion of ganglia 
containing empty spaces increased 
with age, associated with increased 
surface area of the ganglia, without 
change	in	number	of	NADPH-	
diaphorase- positive neurons/
ganglion

Descending & sigmoid 
colon113

Removed	for	bowel	cancer	(one	
unknown);	9	males,	7	females;	
33–99 years

Total neuron population 
(HuC/D,	PGP	9.5)	and	
neurons	staining	for	ChAT	
and	nNOS

Myenteric and 
submucosal 
plexus, and 
circular muscle

Myenteric plexus: Loss of HuC/D-  
and	ChAT-	IR	neuron	numbers	
with age; no change in number of 
nNOS-	IR	neurons
Submucosal	plexus:	No	age-	related	
change in number of HuC/D- IR, 
ChAT	or	nNOS-	IR	neurons
Muscle:	No	age-	related	change	in	
volume	of	PGP	9.5-	IR	nerve	fibers

All	regions	of	Colon109 Removed mostly for bowel 
cancer	but	also	diverticulitis;	19	
males	and	females;	4 months	to	
95 years

Laser dissection of 
myenteric ganglia; studied 
by qPCR, and whole- mount 
staining with β- nicotinamide 
adenine dinucleotide 
phosphate	(β-	NADPH)	and	
Senescence β- galactosidase

Myenteric plexus Increased gene expression in 
the elderly for the neurotrophin 
receptor	p75	and	a	subpopulation	
of nitric oxide synthase in distal 
colon	(~16.6%	loss)
No	age-	dependent	change	in	ChAT	
gene expression in distal colon 
but expression smaller in elderly 
proximal, compared with distal 
colon

Ascending	&	descending	
colon68

Removed for non- obstructive 
bowel	cancer;	36	males	and	
females	separated	into	35–60	
and	≥70-	year	groups

Total neuron population 
(HuC/D,	PGP	9.5)	and	
neurons	staining	for	ChAT	
and	nNOS

Myenteric plexus 
and circular 
muscle

Numbers	of	HuC/D	and	NOS-	IR	
enteric neurons unchanged with 
age
ChAT-	IR	neurons	increased	in	
elderly ascending colon but 
unchanged in descending colon
Density	of	PGP9.5	staining	
unchanged in ascending colon of 
the elderly; in descending colon the 
density was reduced only in deep 
circular muscle of the elderly

Ascending	&	descending	
colon118

Removed for non- obstructive 
bowel cancer; 48 males and 
females	separated	into	22–60	
and	≥70-	year	groups

Calretinin- IR enteric neurons Mucosa Density of calretinin- IR enteric 
neuronal fibers in the ascending 
and descending colon were 
reduced in the elderly

Abbreviations:	ChAT,	choline	acetyltransferase;	IR,	immunoreactive;	NADPH,	nicotinamide	adenine	dinucleotide	phosphate;	nNOS,	neuronal	nitric	
oxide	synthase;	NOS,	nitric	oxide	synthase;	PGP9.5,	protein	gene	product	9.5;	qPCR,	quantitative	polymerase	chain	reaction.

 13652982, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/nm

o.14848 by N
icholas B

aidoo - U
niversity O

f W
estm

inster , W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  7 of 15BAIDOO and SANGER

7  |  NEUROMUSCUL AR FUNC TIONS

A	 large	 study	concluded	 that	aging	 impairs	 cholinergic	 function	 in	
circular muscle of ascending, not descending colon.68 Thus, elec-
trically evoked, cholinergically mediated contractions of ascending 
colon	from	the	elderly	were	smaller	versus	younger	adults	(respec-
tively n = 25	and	14),	whereas	the	ability	of	the	muscle	to	contract	
in response to acetylcholine was unchanged. The change corre-
sponded with an increase, in the same region of colon, in number of 
cell	bodies	staining	for	ChAT	(Section	6.1).	The	link	between	these	
two observations is unclear. However, evidence derived from aging 
cholinergic	neurons	of	the	central	nervous	system	(CNS),121 makes it 
possible to speculate that reduced cholinergic function was related 
to	impaired	transport	of	ChAT	to	the	nerve	terminals	for	synthesis	of	
acetylcholine.68 Further work is needed.

Another	study	found	that	the	amplitude	of	inhibitory	junction	po-
tentials	in	circular	muscle	of	descending	colon	(evoked	by	electrical	stim-
ulation	and	largely	mediated	by	ATP	from	purinergic	neurons	acting	at	
P2Y receptors122,123)	declined	with	increasing	age	(n = 16;	49–84 years)	
with	no	change	 in	 resting	membrane	potentials.	A	decline	 in	women	
may	precede	that	in	men,	although	the	numbers	studied	(respectively	9	
and	7)	were	small.	The	physiological	consequences	are	unclear.

7.1  |  Conclusions

Changes in neuromuscular functions during aging may make 
human ascending colon more susceptible to stool retention. One 
study examined the distribution of fecal loads and stool retention 
in	71	patients	aged	≥65 years.124	The	majority	 (52.1%)	with	high	
fecal	 load	scores	 (significant	stool	 retention)	had	 this	within	 the	
ascending colon, the remainder being distributed approximately 
equally between transverse and descending colon and rectosig-
moid region.

8  |  NEUROSECRETORY FUNC TIONS

Ussing chamber experiments with human small and large intestine 
found no age- related changes in mucosal basal resistance, basal 
short- circuit current, or current evoked by neuronal stimulation.125 
This	was	a	large	study	(435	donors)	using	duodenum,	jejunum,	ileum,	
ascending, transverse, descending and sigmoid colon, and rectum, 
obtained mostly from bowel cancer patients but also from other 
non-	inflammatory	disorders.	No	obvious	differences	were	noted	be-
tween the different regions or between tissues removed for differ-
ent disorders, so data were pooled.

8.1  |  Conclusions

The authors125 noted that earlier studies on intestinal ion transport 
in human intestine were small, possessed methodological issues, 

and had not examined the effects of age. Their findings suggested 
a lack of age- dependent changes in basal functions. However, more 
detailed investigations into neuronal- mucosal functions are war-
ranted, given the changes observed in neuronal- muscle functions 
and	the	potential	for	loss	of	calretinin-	immunoreactive	neurons	(see	
Section 6.2).

9  |  ENTERIC GLIAL CELL S (EGC)

EGCs surround myenteric and submucosal nerve cell bodies are 
within intramuscular layers and mucosa, surround nerve pro-
cesses and interact with enteroendocrine cells and the epithelial 
layer.126,127 They provide structural, metabolic and trophic support 
to enteric neurons, participate in neurotransmission, help regulate 
GI motility,128 and provide immunological support and potentially, 
form new neurons.129–132 Studies into EGCs are complicated by dif-
ferent morphometric and functional characteristics between spe-
cies, gender, region of gut wall, and by the absence of pan- glial cell 
markers.133–135 In myenteric ganglia of human descending colon, one 
study found no differences in expression of the gene for the EGCs 
marker S100 calcium- binding protein β	 (S100β),	 between	 adults	
(48–58 years)	and	the	elderly	(70–95 years).109	Another	found	no	dif-
ferences in expression of S100β by muscle layers of human ascend-
ing and descending colon from “adult” and “elderly” populations.136 
By contrast, loss of S- 100β- immunoreactive EGCs density was re-
ported within the myenteric ganglia and circular muscle of descend-
ing	colon	from	the	elderly	(6	males,	4	females),	compared	with	adult	
(6	males,	7	females).137 In a similar analysis the number of SOX- 10- 
immunoreactive EGCs were unchanged.137

9.1  |  Conclusions

The functional consequences of reduced S100β- immunoreactive 
EGCs within human colon are unclear. Others have associated loss of 
EGCs with enteric neurodegenerative disorders.138	Ablation	of	EGCs	
in mice induced changes in neurochemical coding of enteric neurons 
and altered intestinal motility.139,140 However, in human colon the 
maintained numbers of enteric neurones within the elderly suggests 
a different function.

10  |  MUCOSAL MAST, ENTEROCHROMAFFIN,  
AND ENDOCRINE CELLS

A	regression	analysis	suggested	that	the	density	of	mast	cells	in	mu-
cosa of distal ileum and ascending colon increased over the range of 
58–80 years	(n = 5	and	14	patients	respectively),	as	was	the	number	
of	enterochromaffin	cells	in	the	ileum,	but	not	colon	(n = 10	and	16	
respectively).80 With advancing age, mast cells were increasingly 
found in close apposition to extrinsic nerve terminals suggesting po-
tential compensation for sensory neurodegeneration.80 By contrast, 

 13652982, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/nm

o.14848 by N
icholas B

aidoo - U
niversity O

f W
estm

inster , W
iley O

nline L
ibrary on [18/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 15  |     BAIDOO and SANGER

in	 rectal	 biopsies	 from	 subjects	 below	 and	 above	 55 years	 (n = 20	
each),	the	mast	cell	count	was	reduced	in	the	more	elderly,	whereas	
there was no change in numbers of enteroendocrine cells containing 
5-	HT	and	peptide	YY.141

10.1  |  Conclusions

Further studies are required, which must consider potential region- 
dependent differences.

11  |  PATHWAYS OF CHANGE

These are well- reviewed.59 Here, brief summaries are provided, 
highlighting where human intestine was used.

11.1  |  Inflammaging

Chronic, low- level inflammation occurs in many tissues with advanc-
ing age, including the gut.142	 This	 is	 often	 called	 inflammaging.	 A	
possible driver is continuous stimulation of macrophages by imbal-
anced production and clearance of “molecular waste” during aging. 
This	is	debris	from	dead/damaged	cells	and	organelles	(including	the	
intestinal	microbiome),	 leading	 to	 inflammation	when	 detected	 by	
pattern recognition receptors.143	Cytokines	such	as	interleukin	(IL)-	
6,	IL-	1β,	and	TNFα are often linked with inflammaging, and the aging 
phenotype. In mice, an age- related increase in expression of pro- 
inflammatory cytokines was associated with increased incidence of 
post- operative ileus.144	Age-	related	changes	 in	 “pro-	inflammatory”	
status of macrophages have also been associated with increased cy-
tokines	and	immune	cells	in	the	ENS,	and	increased	loss	of	ganglionic	
cells.145	Any	effects	of	inflammaging	on	colonic	chemosensitive	af-
ferent neurons are likely to be blunted by an age- dependent loss of 
afferent	innervation	(Section	3).

11.2  |  Mucosal permeability

Luminal contents are prevented from crossing into the intestinal 
wall by epithelial cells within the mucosa, sealed by tight junctions 
(transcellular	proteins,	 including	occludins	and	claudins).	The	 latter	
prevent pericellular leakage of luminal solutes, microorganisms and 
their toxins, digestive enzymes, and undigested food. Tight junc-
tions can break down in the elderly.146–148 Permeability to solutes, 
but not macromolecules were increased in terminal ileum biopsies 
from	the	elderly,	accompanied	by	elevated	expression	of	IL-	6	which	
may modulate claudin- 2 expression and solute permeability in the 
epithelium.149 Studies on different regions of human colon are now 
needed.	However,	a	note	of	caution	is	provided	by	Valentini	et	al,150 
who did not observe increased permeability of the small intestine of 
the	elderly	in	vivo	(215	non-	smoking	healthy	male/female	adults,	84	

aged	between	60	and	82 years),	suggesting	that	low	grade	inflamma-
tion together with relatively minor disease such as Type 2 diabetes, 
are needed to significantly increase permeability.

11.3  |  Microbiome

The gut microbiota, which differs between ascending and descend-
ing colon,151 is an important modulator in inflammaging.152 The 
colon has the densest population and richest diversity of microor-
ganisms.153 Older people have reduced diversity in microbiota spe-
cies and phyla.154–157 For example, a genomic study demonstrated 
loss of bacteria genes involved in producing short chain fatty acids 
(SCFAs)	 via	 fermenting	 dietary	 polysaccharides.154	 SFCAs	 are	 an	
energy source for the microbiota and intestinal epithelial cells, with 
regulatory	and	signaling	functions	in	the	gut	(e.g.,	increasing	mucus	
production by goblet cells, enhancing intestinal barrier integrity, 
anti-	inflammatory	 activity).158	 Reduced	 SCFAs	 can	 therefore	 pro-
mote gut inflammation.154,159 In addition, other bacteria flourish in 
an inflammatory environment to release effectors which help sus-
tain inflammation.160

11.4  |  Oxidative stress and senescence

Aging	is	associated	with	reduced	autophagy	and	mitophagy,	and	in-
creased oxidative stress, which can increase inflammation.161 This 
combination can induce senescence. Senescence is characterized by 
exit from the cell cycle, and a senescence- associated secretory phe-
notype, which includes cytokines and pro- inflammatory agents.162 
Senescent cells are normally rapidly cleared by the immune system. 
However, with increasing age clearance becomes less efficient. 
Senescent cells remain, enter a state of chronic senescence, con-
tinue to secrete pro- inflammatory molecules, and contribute to 
inflammaging and the aging phenotype.163,164	An	increased	expres-
sion of the chronic senescence marker, CDKN2A,165 was recently 
identified in the muscularis externa of ascending and descending 
colon of the elderly.136 Small upregulations of expression of several 
other genes were also identified, which in ascending colon were 
more positively associated with increased CDKN2A expression than 
with temporal age. These included genes involved with inflamma-
tion, oxidative stress, autophagy, axonal transport, and apoptosis.

Immunofluorescence	 for	 p16,	 encoded	 by	 CDKN2A, showed 
strong staining within the cytoplasm of enteric neurons of ascend-
ing,	not	descending	colon	(5710	neurons	examined	in	52	“adult”	[30–
60 years]	 and	 “elderly”	 [70+	 years]	patients)136; these data coincide 
with reduced cholinergic function in this area of colon.68 Interestingly, 
minimal	p16	co-	expression	occurred	within	enteric	glial	cells	(stained	
by S100β).	 In	summary,	these	data	were	surprising	for	two	reasons.	
Firstly, unlike proliferative glial cells, enteric neurons are post- mitotic. 
Secondly,	 as	 a	 cell	 cycle	 regulator,	 p16	 expression	 is	 usually	 found	
within	 the	 cell	 nucleus,	not	 cytoplasm.	Nevertheless,	precedent	ex-
ists within other cell types, with suggested roles in non- cell cycle 
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    |  9 of 15BAIDOO and SANGER

functions	 (e.g.,	 protection	 against	 DNA	 damage136).	 The	 causes	 of	
this “senescence- like” activity are unclear but could be related at least 
partly to inflammaging and oxidative stress pathways. Perhaps, since 
enteric neurons are post- mitotic, cellular debris cannot be “diluted” 
into daughter cells during mitosis, promoting accumulation of lipofus-
cin and a senescence- like state.166

11.5  |  Interactions between the endoplasmic 
reticulum and mitochondria

Within	the	CNS,	such	interactions	help	regulate	neuronal	functions	
and	changes	are	linked	with	neurodegenerative	disorders.	A	recent	
study described similar interactions and changes within the colonic 
ENS	 of	 healthy	 and	 a	 senescence-	accelerated	 strain	 of	 mouse.167 
Implications for the human bowel must now be explored.

12  |  CONCLUSIONS

Age-	associated	changes	in	structure	and	functions	of	the	colon	are	
summarized in Figure 1. These include a decline in myenteric cholin-
ergic neuromuscular function in ascending colon, perhaps caused by 
dysfunctional nerve axon transport, and expression of the chronic 
senescence	marker	p16	within	nerve	cell	cytoplasm.	Other	changes,	
in both regions of colon, include reduced numbers of ICCs, increased 
collagen within the muscle and submucosa, and a decline in nocic-
eptive	function.	Reduced	numbers	of	EGCs	(S100-	immunoreactive)	
have	been	observed	in	descending	colon	(other	regions	not	studied).	
What does not change are the total numbers of myenteric and sub-
mucosal neurons, the ability of circular muscle to contract and relax, 
and ability of the mucosa to generate current.

12.1  |  Aging and abdominal pain

Loss of nociceptive afferent innervation of human colon may explain 
why healthy elderly people have reduced sensitivity to visceral pain.

12.2  |  Region- dependent aging within the 
colon wall

Age-	dependent	changes	can	occur	throughout	the	colon	(e.g.,	 loss	of	
ICCs),	but	there	 is	greater	vulnerability	of	myenteric	 (cholinergic)	and	
submucosal	(calretinin-	immunoreactive	neurons)	innervation	within	the	
ascending	colon	(Table 3).	The	causes	are	unclear.	Speculation	involves	
loss of epithelial barrier function, allowing harmful material to enter.

12.3  |  Functional reserve

A	 high	 reserve	 capacity	 of	 the	 ENS	 is	 suggested	 for	 laboratory	
animals.52	 This	 means	 that	 the	 ENS	 tolerates	 some	 degeneration	
without	generating	symptoms.	A	similar	physiology	is	suggested	in	
humans.68,101,168 For example, age- related degenerative changes are 
identified in “macroscopically normal” colon from patients with non- 
obstructive bowel cancer, but these patients were not diagnosed 
with chronic constipation or other motility disorders.68 Thus, func-
tions may be maintained by the remaining cells.

A	reduced	functional	reserve	may,	nevertheless,	increase	the	likeli-
hood of achieving a “tipping point,” at which symptoms develop when 
intestinal	functions	are	reduced	by	other	factors	(e.g.,	medications	and	
disease).	Similarly,	a	small,	age-	related	denervation	of	anal	sphincter	
musculature reduces its functional reserve, promoting incontinence 
when looseness of stool or depression of cerebral function, co- exist.169 

F I G U R E  1 Summary	of	major	structural	and	functional	changes	within	elderly	human	colon.

Ascending Colon
• Greater increase in collagen within taenia coli
• Reduced cholinergic neuromuscular function
• Increased number of ChAT-immunoreactive myenteric 

cell bodies
• Increased staining for p16 within cytoplasm of myenteric 

nerve cell bodies
• [Increased density of mast cells in ascending colon 

mucosa; other regions not studied]

• [Loss of S-100-
immunoreactive 
glia density in 
descending colon; 
other regions not 
studied]

All regions
• Decreased nociceptor innervation
• Increased total collagen in muscularis externa and submucosa
• Decreased number of interstitial cells of Cajal
All regions: No consistent changes
• Number of myenteric/ submucosal neuron cell bodies or NOS-immunoreactive cell bodies
• Tension generated during muscle contraction
• Mucosal basal resistance, short-circuit current, or current evoked by neuronal stimulation

See text for details
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10 of 15  |     BAIDOO and SANGER

Complications during childbirth may be exacerbated by age- related 
changes in how the pudendal nerve impacts anal sphincter functions 
in women.93,170 In addition, age- related changes in intestinal permea-
bility may have little importance until compromised by disease such as 
Type 2 diabetes.150

12.4  |  Gaps

What are the effects of aging on:

•	 Mechano-	sensitive	afferent	nerve	 functions	 (e.g.,	 low	threshold	
mechanosensitivity).

• The muscle response to stretch, especially for taenia coli	 (not	
studied).

• The different networks of interstitial cells of Cajal.
•	 Different	neuronal	phenotypes	of	the	ENS,	especially	within	the	

submucosal plexus.
• Mucosal permeability and functions.
•	 Numbers	of	mast/endocrine	cells	in	different	regions	of	colon.
•	 Numbers	and	activity	of	enteric	primary	afferent	sensory	neurons	
(not	studied).

• Males versus females in sufficiently powered studies.
• Pathways leading to damage.
• Mechanisms which make the ascending colon relatively more vul-

nerable to change.

Consideration needs to be given to the relationships between 
changed cellular structures and functions, and the pathophysiology 

of the intact lower bowel. Many reports a greater incidence of 
chronic	 constipation	 and	 related	 symptoms	 among	 the	 elderly	 (see	
Introduction)	so	it	seems	reasonable	to	suppose	that	these	are	at	least	
partly,	caused	by	degenerated	functions.	However,	a	Rome	IV	anal-
ysis highlighted a decline in gut–brain disorders among the elderly, 
including irritable bowel syndrome, functional dyspepsia and func-
tional constipation.171 Perhaps the mismatch is explained by reduced 
pain sensitivity and by differences between constipation that is “func-
tional” or related to degenerative changes.

13  |  LESSONS

RNA	expression	does	not	necessarily	 translate	 to	changes	 in	pro-
tein expression. This is not a new understanding but for the aging 
colon, it is illustrated by data on S100- immunoreactive glial cells and 
the	increased	staining	for	p16	within	the	ascending,	not	descending	
colon,	predicted	by	RNA	expression	to	increase	in	both	regions.

Given the natural variation among the human population and 
“life experiences,” the size of the study matters. For example, 
small studies claim differences in number of enteric neurons in 
“adult” and “elderly” populations, but larger studies report little- 
or- no change.

Different regions of colon must be studied separately as each has 
different functions and potential to age differently.
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TA B L E  3 Region-	dependent	vulnerabilities	of	the	human	colon	during	aging.

Observation Potential functional consequence

Laser- dissected myenteric plexus ganglia: Reduced expression of ChAT 
and greater expression of Ret receptor, in aging human proximal colon, 
compared to distal109

May reflect reduced cholinergic function in this area of colon, 
somehow	linked	with	increased	ChAT	protein	staining	within	nerve	cell	
bodies and compromised transport to nerve terminals68

Aging	of	the	human	colon	significantly	increases	the	risk	of	stool	
retention in ascending colon compared with descending colon124

Provides insight into vulnerability of aging human ascending colon

Although	there	was	no	age-	related	change	in	number	of	myenteric	
nerve cell bodies staining for the pan- neuronal marker, anti- HuC/D, 
within	ascending	or	descending	colon,	an	increase	in	ChAT	immuno-	
positive myenteric nerve cell bodies was observed in ascending, not 
descending colon. The latter was linked with a reduced cholinergic 
neuromuscular function in elderly ascending, but not descending 
colon68

Suggests age- dependent region- specific loss of cholinergic function. 
Hypothesized	age-	dependent	decrease	in	axon	transport	of	ChAT	from	
the cell bodies to the cholinergic nerve terminals and hence, a loss of 
function

Increased	staining	for	p16,	a	marker	of	chronic	senescence,	within	the	
cytoplasm of myenteric nerve cell bodies in aging ascending but not 
descending colon136

Suggests a region- dependent, post- mitotic cellular senescence- like 
activity involved with aging of enteric neurons

Total collagen content and concentration higher within muscularis 
externa of the ascending and descending colon from the elderly, but 
within the taenia coli this was higher in the elderly ascending compared 
with descending colon83,84

Suggests a loss of tensile strength for the muscularis externa of all 
regions of the elderly human colon, but a greater vulnerability of the 
tenia within the ascending colon, compared with descending colon

Age-	related	change	in	the	loss	of	calretinin-	immunoreactive	enteric	
neurons in the submucosal plexus of the ascending colon, but not 
clearly in descending colon118

Indicates a need to examine the effects of age on specific enteric nerve 
populations, and in particular, on enteric intrinsic primary afferent 
neurons, about which nothing is known

Abbreviations:	anti-	HuC/D,	anti-	human	neuronal	protein	C/D;	ChAT,	choline	acetyltransferase.
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