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Vista - goals and objectives
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Vista aims to study the main forces (‘factors’) that will shape the future of ATM in 
Europe at the 2035 and 2050 horizons

More specifically:

• trade-off between, and impacts of, primary regulatory and business
(market) forces;

• trade-offs within any given period;

• trade-offs between periods;

• whether alignment may be expected to improve or deteriorate as we 
move closer to Flightpath 2050’s timeframe

Focus on five stakeholders: airlines, ANSPs, airports, passengers, and 
environment.



Vista - Project overview
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Workflow:

• Build an extensive list of business and regulatory factors likely to 
impact the ATM system.

• Classify the factors: short-term/long-term, likelihood of occurrence, 
importance of their impact on the ATM system, etc.

• Build current and future scenarios.

• Building model requirements:

• consider as many (important) factors as possible in a flexible way;

• produce level of detail required and achievable to capture relevant 
metrics.

• Iterative model development in consultation with stakeholders.

• Trade-off analysis.



Vista – How to produce a trade-off 
analysis
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Trade-off: inverse relationship between two indicators. When one improves, the 
other worsens.

Two types of trade-off:

• Correlation with time series:

• Past time-series: usually not enough data for macro indicators

• Future time-series: need a model

• Causal relationship: with a model.

What about a change in the system? How to compute the relationship between 
metrics in totally new environment?



How to produce quantitative 
knowledge for the future?
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Challenges in data acquisition in Vista
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'Raw data':

• Format (and sometimes content!) not consistent over time and over bodies 
providing them

• Openness: rarely open, usually expensive, or simply hard to get with very 
convoluted rules.

• Quality: individual projects redoing over and over the same quality checks 
on the same datasets.

• As many procedure to acquire data as number of datasets (at least): 
financial for airports, financial for airlines, financial for ANSPs, schedules, 
flight plans, real trajectories, itineraries, fares, etc.

'Phenomenological laws':

• Coming directly from theory and or other machine learning studies.

• Assumptions sometimes not clear, validity subject to other checks on the 
system

• Can be completely wrong, whereas raw data can lie only where recorded 
incorrectly!



Scenario definition in Vista
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Vista is a 'what-if' scenario analyser. Answers to:

• What happens if I do this in the system?

And not:

• What will happen in 2035 or 2050?

==> Scenario definition, where different external factors can influence the 
system. Aim is not to compute the likelihood of a given scenario.

Factors are subdivided into two main categories:

• Business factors: cost of commodities, services and technologies, volume of 
traffic, etc. => demand and supply

• Regulatory factors: from EC or other bodies, e.g. ICAO, => ‘rules of the 
game’

Use in particular the different targets and high level views of SESAR to have a 
idea of the possible values of the parameters.



Scenario definition in Vista
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Regulatory factors:

• Regulations affecting gate-to-gate phase

• SESAR development and integration (RSI): e.g., SES, Common projects.

• Performance based regulations (RPB): e.g, Performance review body

• ANSP requirements (RAR): e.g., Common requirements

• Regulations affecting airports

• Airport demand (RAD): e.g., slots

• Airport processes (RAP): e.g., ground handling market

• Airport access / egress (RAA): e.g., airport access policies

• Regulations affecting other areas

• Other regulations (ROR): e.g, passenger provision schemes, emission 
schemes

22 factors in total

Some of the regulatory factors are enablers of business factors



Scenario definition in Vista
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Business factors

• Factors affecting gate-to-gate phase

• SESAR operational changes (BTS): e.g., Free-routing

• Other operational and technical changes (BTO): e.g., Passenger 
reaccomodation tools

• Airport processes and accessibility

• Airport access / egress (BAA): e.g., multimodality

• Airport processes (BAP): e.g., self-processing

• Demand and other economic factors

• Demand evolution (BED): e.g., economic development

• Other economic factors (BEO): e.g., fuel price

37 factors in total



Scenario definition in Vista
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Multi-layered architecture of Vista
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Multi-layered architecture of Vista
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Three main layers correspond to:

• Strategic:

• Producing main flows in Europe based on macro-economic variables

• Pre-tactical:

• Producing flights plans (and disruptions).

• Tactical:

• Simulating a real day of operation with microscopic pax tracking.

Transversal layers consist of stakeholders:

• Airlines: choose flights, react to delay, etc.

• Airports: deliver departure and arrival capacity, create congestion, etc.

• ANSPs: deliver ATC capacity, create regulations etc.

• Passengers: choose best itineraries based on fares and other parameters, 
make their trips with possibility of disruption, etc.

• Environment: is passively impacted by NOx and CO2



Multi-layered architecture of Vista
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Data management in a multi-layered 
architecture
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Data need to be:

• Consistent among layers,

• Easily accessible (for computing power),

• Traceable between the different blocks

==> All data are based on a single database, accessible to all the blocks. This 
ensures consistency, traceability and reproducibility.

More challenges come with this data architecture:

• How to enforce consistency between input and output of two block?

• How to take into account the multiple runs of the stochastic layers?

• What is the right balance between flexibility (NoSQL) and consistency 
(SQL)?

==> Now use a MySQL database.



Calibrating the model

Data science in aviation 2017 workshop, 29SEP17, EASA HQ, Cologne 18

Calibration is done in several steps:

• Direct calibration:

• Extract some values from historical data (including literature) and 
set them directly in the model:

• E.g.: price elasticity for passengers

• Put some phenomenological relationships obtained otherwise:

• E.g.: cost of delay for airline as a function of delay.

• Indirect calibration:

• Supervised learning: a parameter is swept (in a smart way) in order 
for another one to reach a value extracted from data.

• E.g.: cost of capital for airlines is calibrated to have the historical 
flows of passengers between airports.

• Reinforcement learning: for instance, agents in the model modify 
their behaviour in order to be self-consistent across layers.

• E.g.: cost of delay used to compute main flows should be the 
same as the actual cost of delay during the tactical phase.



Studying the output: how to recognise 
a trade-off?
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▪ Stochastic context, correlative trade-offs
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▪ Stochastic context, trade-offs comparison



Studying the output: how to recognise 
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▪ Deterministic trade-off: dependence of distribution over deterministic 
parameter



Trade-off example: predictability vs 
punctuality
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▪ One airport, unpredictability of departure delay is changed artificially



Trade-off example: LLC vs trad
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▪ Simplified setup: four airports, two airlines LLC/trad, capacity increase of airport 3



Trade-off example: LLC vs trad
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▪ On average, everyone is better off after the capacity increase



Trade-off example: LLC vs trad
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▪ But some agents 
are actually losing 
from the capacity 
increase!



Conclusions

• Vista aims at understanding the trade-offs (or synergies) between KPIs in 
(current and) the future (2035 & 2050) air transportation world.

• Requires forecasting the values of the KPIs, and also their relationships:

• Either by pure machine learning.

• Or by injecting other phenomenological laws into the model.

• Vista is based on a multi-layered architecture requiring very diverse types of 
data as input.

• Additionally, the different layers of the model need to communicate 
smoothly and reliably, thus requiring a central data repository.

• Calibration (or training) is a main issue in this type of model and requires 
several steps involving data reduction and internal optimisation.

• The trade-off analysis requires different techniques, including statistical 
regressions, and also careful data aggregation. Different tools can be used to 
help choose the best situation, including Pareto analysis etc.

• Trade-offs can appear between different types of stakeholders, among 
different actors of the same type, among periods, etc.
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