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A B S T R A C T

Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which
post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing func-
tional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects
gene regulation and also allows for protein moonlighting. Extracellular vesicles are found in most body fluids and
participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-trans-
lationally deiminated proteins and extracellular vesicles (EVs) are described for the first time in shark plasma.
We report a poly-dispersed population of shark plasma EVs, positive for phylogenetically conserved EV-specific
markers and characterised by TEM. In plasma, 6 deiminated proteins, including complement and immunoglobu-
lin, were identified, whereof 3 proteins were found to be exported in plasma-derived EVs. A PAD homologue was
identified in shark plasma by Western blotting and detected at expected 70kDa size. Deiminated histone H3, a
marker of neutrophil extracellular trap formation, was also detected in nurse shark plasma. This is the first report
of deiminated proteins in plasma and EVs, highlighting a hitherto unrecognized post-translational modification
in key immune proteins of innate and adaptive immunity in shark.

1. Introduction

Peptidylarginine deiminases (PADs) are phylogenetically conserved
calcium-dependent enzymes which post-translationally convert arginine
into citrulline in target proteins in an irreversible manner, causing
functional and structural changes in target proteins (Vossenaar, 2003;
[1–3]. Protein deimination affects gene regulation, causes generation of
neoepitopes [4,5] and may also allow for protein moonlighting, an evo-
lutionary acquired phenomenon facilitating proteins to exhibit several
physiologically relevant functions within one polypeptide chain [6–8].
PADs are widely studied in cancer, autoimmune and neurodegenera-
tive diseases [3–5] and crucial roles have also been described in CNS
regeneration [9,10]. PADs have been identified throughout phylogeny
from bacteria to mammals, with 5 tissue specific PAD isozymes in mam-
mals, 3 in chicken, 1 in bony fish [11,12]; Magnadottir 2018a [13]).
In teleost fish, recent studies have identified novel roles for PADs and

deiminated proteins during early teleost ontogeny and in mucosal and
innate immunity [8,13–15]. In elasmobranchs, a PAD has been de-
scribed in whale shark (Rhincodon typus; XP_020374364) but no studies
on protein deimination have hitherto been carried out in sharks.

Extracellular vesicles (EVs) are found in most body fluids and par-
ticipate in cellular communication via transfer of cargo proteins and ge-
netic material [4,16–19]. EVs in plasma can also be useful biomarkers
to reflect health status [20,21]. Work on EVs has hitherto mainly been
in the context of human pathologies while some studies on EVs and EV
cargo have been recently performed in teleost fish, including in response
to infection (Ilev et al., 2018; Yang et al., 2019), in mucosal immunity
[15] and cancer [22]. Roles for EVs in inter-organ communication have
also been described in zebrafish (Danio rerio) [23].

Given the basal position cartilaginous fish maintain in jawed-ver-
tebrate phylogeny, the genesis of immunoglobulin superfamily-based
adaptive immune mechanisms in this group and the unusual lympho-
cyte antigen receptor biology that has been described in these animals
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[24], we felt that an analysis of deimination in a shark species was
mandated. The nurse shark (Ginglymostoma cirratum) was identified as a
shark species with a wealth of historical serological studies and reagents
in which to launch the work.

In the current study we assessed deiminated proteins in shark plasma
and plasma-derived EVs, and report for the first time deimination and
EV-mediated export of key immune factors in an elasmobranch species.

2. Materials and methods

2.1. Fish and sampling

Nurse shark (Ginglymostoma cirratum) sample collection was con-
ducted under Texas A&M Institutional Animal Care and Use Protocol
#2015–0374. The animal was collected by Dynasty Marine (Marathon,
FL) under Florida Fish and Wildlife Special Activity License
#18-2013-SR to MFC, then shipped to College Station TX. The shark
was euthanized and bled out after an overdose of MS222. Blood was col-
lected in EDTA tubes from the caudal sinus of the two year old nurse
shark and plasma was collected by centrifuging at 300 g for 10min.
Plasma was immediately frozen at −80 °C until further use.

2.2. Extracellular vesicle isolation and NTA analysis

EVs were isolated by step-wise centrifugation according to estab-
lished protocols using ultracentrifugation and the recommendations of
MISEV2018 (the minimal information for studies of extracellular vesi-
cles 2018 [25]). Shark plasma was diluted 1:4 in ultrafiltered (using
a 0.22μm filter) Dulbecco's PBS and then centrifuged at 4000 g for
30minat 4 °C for removal of cells and cell debris. The supernatant was
collected and centrifuged at 100,000 g for 1hat 4 °C. The pellet was
then resuspended in DPBS and washed again at 100,000 g for 1hat
4 °C. The resulting EV-enriched pellet was resuspended in 100μl DPBS,
diluted 1/100 in DPBS and analysed by nanoparticle tracking analy-
sis (NTA), based on Brownian motion of particles in suspension, using
the NanoSight NS300 system (Malvern, U.K.). The NanoSight was used
in conjunction with a syringe pump to ensure continuous flow of the
sample, with approximately 40–60 particles per frame and videos were
recorded for 5×60min. The replicate histograms generated from these
recordings were averaged.

2.3. Transmission electron microscopy

EVs were isolated from plasma as before, the EV pellets were fixed
with 2.5% glutaraldehyde in 100mM sodium cacodylate buffer (pH 7.0)
for 1hat 4 °C, resuspended in 100mM sodium cacodylate buffer (pH
7.0), placed on to a grid with a glow discharged carbon support film,
stained with 2% aqueous Uranyl Acetate (Sigma-Aldrich) and thereafter
viewed in TEM.

2.4. Western blotting

Shark plasma and plasma EV isolates (an EV pellet derived from
200μl plasma, reconstituted in 100μl PBS after isolation and purifi-
cation) were diluted 1:1 in 2 x Laemmli sample buffer, boiled for
5minat 100 °C and separated by SDS-PAGE on 4–20% TGX gels (Bio-
Rad U.K.) and transferred to nitrocellulose membranes using semi-dry
Western blotting. Blocking of membranes was in 5% bovine serum al-
bumin (BSA, Sigma-Aldrich, U.K.) in TBS-T (tris-buffered saline (TBS)
containing 0.01% Tween-20, BioRad, U.K. (TBS-T)) for 1hat room tem-
perature (RT) and incubation with primary antibodies diluted in TBS-T
was performed at 4 °C overnight (F95 MABN328, Merck, 1/1000; PAD2
ab50257, Abcam, 1/1000; citH3 ab5103, 1/1000; CD63 (CD63 mole

cule, also known as LAMP-3 and TSPAN30) ab216130, 1/1000;
Flotillin-1 (Flot-1) ab41927, 1/2000). The membranes were washed in
TBS-T for 3×10minat RT and thereafter incubated in the correspond-
ing secondary antibody (anti-rabbit IgG BioRad or anti-mouse IgM Bio-
Rad, diluted 1/4000 in TBS-T) for 1h, at RT. Membranes were washed
for 6×10min in TBS-T and visualization performed using the UVP
BioDoc-ITTM System (Thermo Fisher Scientific, U.K.).

2.5. Immunoprecipitation and protein identification

The Catch and Release immunoprecipitation kit (Merck, U.K.) was
used together with the F95 pan-deimination antibody (MABN328,
Merck), which has been developed against a deca-citrullinated peptide
and specifically detects proteins modified by citrullination [26], to iso-
late total deiminated proteins from shark plasma and plasma derived
EVs. For F95 enrichment, 100μl plasma was used, according to the
manufacturer's instructions (Merck), while for EVs, total protein was
first extracted from EV pellets, using radioimmunoprecipitation assay
(RIPA) buffer (Sigma-Aldrich, U.K.), supplemented with protease in-
hibitor cocktail P8340 (Sigma-Aldrich), on ice for 2h followed by cen-
trifugation at 16,000 g for 30min to collect the supernatant containing
the proteins. IP was carried out on a rotating platform overnight at 4 °C,
and F95 bound proteins were eluted using denaturing elution buffer ac-
cording to the manufacturer's instructions (Merck). The F95 enriched
eluates were then either analysed by Western blotting or by LC-MS/MS
(Cambridge Proteomics, Cambridge, UK). Peak files were submitted to
Mascot (Matrix Science).

3. Results

3.1. PAD and deiminated proteins in shark plasma

Total deiminated proteins in shark plasma were detected using the
F95 pan-deimination antibody, revealing a range of proteins between
10 and 250kDa (Fig. 1A). A PAD homologue was identified in shark
plasma by Western blotting via cross reaction with human PAD2 and
detected at an expected 70kDa size (Fig. 1B). Deiminated histone H3
was also detected in shark plasma at the expected 20kDa size (Fig.
1C). Deiminated protein candidates were further identified by F95 en

Fig. 1. Western blotting of deiminated proteins and PAD in shark plasma. A. To-
tal deiminated proteins were identified in shark plasma and plasma EVs, using the F95
pan-deimination specific antibody. B. Shark PAD was identified at the expected size of
approximately 70kDa using the human PAD2 specific antibody. C. Deiminated histone
H3 (citH3), representative of neutrophil extracellular traps (NETs) was verified in shark
plasma.
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richment and LC-MS/MS analysis in shark plasma and 6 protein hits
with nurse shark are listed in Table 1.

3.2. Extracellular vesicle analysis in shark plasma

EVs from shark plasma were characterised by size exclusion using
NTA, by morphological analysis using transmission electron microscopy
(TEM) and by Western blotting using EV-specific markers (Fig. 2). A
poly-dispersed population of EVs in the size range of 30–365nm, with
peaks at 31, 105, 145 and 280nm was identified by NTA analysis (Fig.
2A), while Western blotting confirmed that the EVs were positive for
the EV-specific markers CD63 and Flot-1, which have been established
to be conserved in teleost fish but not shown in shark before, but did
react with molecular weight bands at expected sizes (Fig. 2B). EVs were
further characterised by morphology using TEM (Fig. 2C), confirming a
poly-dispersed population.

3.3. Protein analysis of deiminated proteins in shark plasma derived EVs

Shark plasma EVs showed positive for deiminated proteins by West-
ern blotting, using the pan-deimination F95 antibody (Fig. 3A). Deim-
inated proteins were further identified by F95 enrichment and LC-MS/
MS analysis in EVs isolated from shark plasma revealed 3 protein hits
with nurse shark, all of which were also identified in total plasma,
namely novel antigen receptor (NAR), haptoglobin and hemopexin. Pep-
tide sequences and m/z values are shown in Table 2. Overlap with deim-
inated proteins identified in shark plasma and plasma EVs are shown in
Fig. 3B.

4. Discussion

For the first time, deiminated proteins are described in nurse shark
(Ginglymostoma cirratum), unravelling novel aspects of post-translational
deimination in key proteins of innate and adaptive immunity. A PAD
homologue was identified for the first time in nurse shark plasma

Table 1
Deiminated proteins identified by F95 enrichment in total plasma of nurse shark (Ginglymostoma cirratum). Deiminated proteins were isolated by immunoprecipitation using the pan-deim-
ination F95 antibody. The F95 enriched eluate was analysed by LC-MS/MS and peak list files were submitted to mascot. Only peptide sequence hits scoring with G. cirratum are included.
Peptide sequences and m/z values are listed.

Protein name m/z Peptide sequence Score (p<0.05) a Total score

H9LEQ0_GINCI
Haptoglobin

386.7313 R.NDIALVK.L 64 639

511.2690 R.VYVGIEDAR.E 76
539.7878 K.WIDGIIHPQ 29
787.3453 R.NTDLGYEFPTCEK.V 90
567.6074 K.TGHVAGWGVEGTGETSR.A 77
852.8761 R.DFSDEGVYVCTIDGK.W 107
428.4166 R.EITAAHQVHVEDVHYHPR.M 62
752.8566 K.LKEDVHFSNHIMPACLPAHDYAEEGK.T 53
929.6622 R.DGDDYYAAGVLSYDEGCAGEVYAVYTDVHHYLK 80

Q90544_GINCI
Novel antigen receptor

544.7826 K.QDQSSTPVVK.R 73 558

544.8201 R.STSEIAVLLR.D 38
617.8168 K.VFWQVNGVER.K 48
655.3514 K.TITSGFATTSPVK.T 63
709.8303 K.GVETQNPEWSGSK.S 68
1080.9901 R.LTSSVEEWQSGVEYTCSAK.Q 106
805.0931 R.LLPPSPEEIQSTSSATLTCLIR.G 81
981.1190 K.VMASEWDSGTEYVCLVEDSELPTPVK.A 81

A0A089YMI3_GINCI
Alpha 2-macroglobulin (Fragment)

491.2474 R.GSLFNNAMK.G 23 556

799.8751 R.LSSNNYQVYEPER.T 70
593.3202 K.LSHDVSVENQQPAIIK.V 44
595.9613 R.NQVSLHFSEEEELPK.G 40
697.0088 K.AEGVEIELTHSSFICPSGR.T 50
1228.0607 K.VYDYYETGDSVVTQYEAVEPK.L 149
837.1073 R.APSAEVEMTSYVLLALLSGTEVTK.S 58
997.5215 K.IHLHLPETVVQGSAWAYLAVQGDILGSAMENLDGLLR.L 123

A0A088MJF2_GINCI
C3 complement component

431.2510 K.NNVVIFR.A 42 553

506.3135 K.VGLIQPASVK.I 39
629.8041 R.NDNADVQNQIK.Y 33
640.8194 R.QASASMVAQPYK.T 84
480.5768 K.LIVSAANEHDENK.I 41
944.9333 K.AVCSPYIESYEDSIQK.A 92
985.8804 R.SDDDDYYSPYEDIMSR.S 67
1117.0438 R.GEYGGGYSTTQATMVALQSLAK.Y 87
819.1269 R.EIGQIVVNMLIPITSDLIPSFR.L 68

E7CQA0_GINCI
Hemopexin

479.1939 R.ADFMSCVQ 37 112

595.8249 K.LEGQFLIQDK.F 39
532.6042 K.TWPGLPDHIDAAFR.I 36

U5NJD0_GINCI
Secreted IgW heavy chain

790.4073 R.LLPPPAQETENQSR.V 54 54

U5NFT0_GINCI
Secreted IgW heavy chain

688.3569 K.DQVDQTGVVLSSK.R 44 44

a Ions score is −10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores >16 indicated identity or extensive homology (p < 0.05).
Protein scores were derived from ions scores as a non-probabilistic basis for ranking protein hits. Cut-off was set at Ions score 20.
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Fig. 2. Extracellular vesicles (EVs) isolated from shark plasma. A. Nanoparticle tracking analysis showing a poly-dispersed population of EVs in the size range of 30–365nm, with
peaks at 31, 105, 145 and 280nm. B. Shark plasma EVs are positive for the EV-specific markers CD63 and Flot-1. C. Morphological analysis of EVs from shark plasma by transmission
electron microscopy (TEM); scale bar is 50nm.

by Western blotting via cross reaction with human PAD2, which is the
phylogenetically most conserved PAD form [8], at an expected 70kDa
size as in mammalian PADs and also seen in halibut (Hippoglossus hip-
poglossus L.) PAD [13]. In elasmobranchs, PAD has previously been iden-
tified in whaleshark (Rhincodon typus, XP_020374364). Deiminated his-
tone H3, a marker of neutrophil extracellular trap formation (NETosis),
was also detected here in shark plasma and at similar size as has previ-
ously described in teleost fish [8,13]. NETosis is driven by PADs [27],
is conserved throughout phylogeny from fish to human, and is impor-
tant in innate immune defences against a range of pathogens including
bacteria, viruses and helminths [28–31]. NETosis has also been asso-
ciated with clearance of apoptotic cells and during tissue remodelling
in teleosts [8,13]. Deiminated histone H3 is described here for the first
time in an elasmobranch species. Further deiminated proteins identified
in shark plasma and plasma-derived EVs by F95 enrichment and LC-MS/
MS analysis included key proteins of innate immunity and acute phase
responses and are discussed below.

Hemopexin is a scavenger protein of haemoglobin and a predom-
inant heme binding protein, which contributes to heme homeostasis

[32,33]. Hemopexin also associates with high density lipoproteins
(HDL), influencing their inflammatory properties [34]. Hemopexin is a
plasma glycoprotein and also named Warm temperature acclimation-as-
sociated 65-kDa protein (Wap65) in fish, and is associated with phys-
iological stresses, including increased water temperature, immune re-
sponse and heavy metal exposure. Wap65 has been identified in two
different forms in teleosts, which differ in response to stress-factors
and participate in inflammatory responses [35,36]. Hemopexin has also
been described in various tissues in teleosts, but with a main expression
in liver [37,38]. Hemopexin has been identified in nurse shark plasma
as a Ni(2+)-binding serum glycoprotein, termed APP Hx, and found to
bind heme, and to be present at unusually high levels in normal shark
serum [39]. Hemopexin is a known glycoprotein and while post-transla-
tional deimination of hemopexin was recently described in Atlantic hal-
ibut (Hippoglossus hippoglossus) [13], this is the first report of hemopexin
deimination in an elasmobranch species. Here, hemopexin was found
deiminated both in shark whole plasma and plasma-derived EVs.
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Fig. 3. LC-MS/MS analysis of deiminated protein profiles in shark total plasma and plasma-derived EVs. A. Western blotting confirms the presence of deiminated proteins in EVs
from nurse shark plasma as assessed by the F95 pan-deimination antibody. B. Venn diagram representing deiminated proteins identified in total plasma and plasma-derived EVs by F95
enrichment; three proteins were identified in common with both samples, while 3 proteins were found deiminated in plasma only.

Table 2
Deiminated proteins identified by F95 enrichment in extracellular vesicles isolated from plasma of nurse shark (Ginglymostoma cirratum). Deiminated proteins were isolated by immuno-
precipitation using the pan-deimination F95 antibody, the F95 enriched eluate was analysed by LC-MS/MS and peak list files were submitted to mascot. Only peptide sequence hits scoring
with G. cirratum are included. Peptide sequences and m/z values are listed.

Protein name m/z Peptide sequence Score (p<0.05)a Total score

Q90544_GINCI
Novel antigen receptor

544.8186 R.STSEIAVLLR.D 48 164

617.8140 K.VFWQVNGVER.K 50
652.2915 R.GSVYSCQVSHSATSSNQR.K 67

H9LEQ0_GINCI
Haptoglobin

539.7872 K.WIDGIIHPQ.- 35 35

E7CQA0_GINCI
Hemopexin

532.6020 K.TWPGLPDHIDAAFR.I 20 20

a Ions score is −10*Log(P), where P is the probability that the observed match is a random event. Individual ions scores >16 indicated identity or extensive homology (p < 0.05).
Protein scores were derived from ions scores as a non-probabilistic basis for ranking protein hits. Cut-off was set at Ions score 20.

Haptoglobin is an acute phase plasma protein and in mammals it
is involved in protection of oxidative damage by binding to haemoglo-
bin [40]. In shark, haptoglobin has been identified to be a divergent
MASP family member [41]. Haptoglobin has been identified in a range
of teleost and cartilaginous fish [41–43] and has for example important
against viral infections in teleosts [44]. Haptoglobin was here found to
be deiminated both in shark whole plasma and plasma-derived EVs.

Alpha 2-macroglobulin was identified here to be deiminated for
the first time in any species to our knowledge. It forms part of the in-
nate immune system and clears active proteases from tissue fluids [45].
Alpha-2-M is phylogenetically conserved from arthropods to mammals
and found at high levels in mammalian plasma and is closely related to
other thioester containing proteins, complement proteins C3, C4 and C5
[46,47], which are phylogenetically conserved in shark [48–50]. Here,
Alpha-2-M was found deiminated in whole plasma only and not identi-
fied to be exported in deiminated form in EVs.

Complement component C3 plays a central role in all pathways
of complement activation and can also be directly activated by self-
and non-self surfaces via the alternative pathway without a recogni-
tion molecule [48,49]. In nurse shark C3 has been characterised as a
two-chain (α-chain and β-chain) thioester protein [50,51]. Contrary to
teleost fish, where various isoforms of C3 have been identified, in shark
only one C3 form has been so far described [51,52], although two com-
plete C3 cDNA clones (GcC3-1 and GcC3-2) have been reported [53].
The complement system forms part of the first lines of immune de-
fence against invading pathogens, in clearance of necrotic or apoptotic
cells [49,54–56] as well as regeneration [57,58] and tissue remodelling
[59–62]. This is the first report of deiminated complement C3 in an elas-
mobranch species, while C3 was recently identified for the first time in

deiminated form in halibut (Hippoglossus hippoglossus L.) [13].
Post-translational deimination of C3 may possibly influence its func-
tion including cleavage ability, binding, deposition and generation of
the convertase. Studies using pharmacological PAD inhibitors to hinder
protein deimination in a model of rheumatoid arthritis have for exam-
ple shown a decrease in C3 deposition in synovium and cartilage and
ameliorated collagen-induced arthritis [63,64]. It can be postulated that
deimination of C3 may facilitate its functional diversity and this may
be of importance in shark, where one C3 form (albeit two complete C3
cDNA clones- GcC3-1 and GcC3-2) has been reported [51–53]. Here, C3
was identified as deiminated in whole plasma only.

Novel antigen receptor (NAGR) is a heavy chain homodimer found
in cartilaginous fish and lacks a light chain [65–67]. Cartilaginous
fish are the oldest evolutionary animal group with adaptive immunity
[68,69]) and shark NAGR exhibits high target selectivity and affin-
ity, making it a desirable natural compound for development of tools
for therapeutics and immunothepray [24,70–72]; most recently using
VNARs for next-generation anti-TNF-α therapies [73]. As post-transla-
tional deimination has not been identified or studied in NAGR before,
our current finding may provide novel insights into function of these im-
mune proteins and be useful for refinement in therapeutic development
using VNARs. NAGR was found here to be deiminated both in shark
whole plasma and in plasma-derived EVs.

Secreted IgW heavy chain is part of the adaptive immune re-
sponses, and belongs to short forms of IgW [74]. IgW is one of the three
immunoglobulin isotypes in shark, besides IgM and IgNAR [75–77];
Criscitello et al., 2010; [78,79]. In cartilaginous fish multiple forms
of IgW have been described [77], including in sandbar shark (Car-
charhinus plumbeus) [80] and banded houndshark (Triakis scyllium)
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[74]. IgW can perform isotype switching and several secreted isoforms
have been identified in nurse shark [81]. Here, secreted IgW heavy
chain was found deiminated in whole plasma only but not deiminated
in plasma EVs.

Research on extracellular vesicles is a relatively new field in fish im-
munology and to our knowledge this is the first description of EVs in
an elasmobranch species. Studies on EVs have been carried out in some
fish models, for example in zebrafish (Danio rerio) for studies of infec-
tion [82], cancer [22,83,84] and drug delivery [85]. Roles for EVs in ze-
brafish gut [86], in cod mucosal immunity [15] and for inter-organ com-
munication [23] have also recently been described. As PADs have been
identified to play major roles in the regulation of EV release [87–89],
their contribution in EV-mediated communication in response to physi-
ological and pathophysiological changes remains a field of further stud-
ies.

Here we identify for the first time deiminated proteins in shark
plasma and EVs. Due to the fact that the nurse shark genome is not
fully annotated, the hits identified here may underestimate the amount
of deiminated proteins present in shark plasma and EVs. For the first
time deimination of key immune factors of innate and adaptive immu-
nity in shark is described, bringing a novel aspect on the possibility of
protein moonlighting of these immune proteins via post-translational
deimination. In continuation of the current pilot study, the assessment
of changes in deiminated proteins in shark plasma, and lateral transfer
via EVs, will be of great interest in response to infection, environmental
temperature and toxicology, as well as in the context of tissue remodel-
ling and regeneration.
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