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Abstract 

We present an approach to automatically segment and la- 
bel a continuous observation sequence of hand gestures for  
a complete unsupervised model acquisition. The method 
is based on the assumption that gestures can be viewed 
as repetitive sequences of atomic components, similar to 
phonemes in speech, governed by a high level structure con- 
trolling the temporal sequence. We show that the generat- 
ing process for  the atomic components can be described in 
gesture space by a mixture of Gaussian, with each mixture 
component tied to one atomic behavioul: Mixture compo- 
nents are determined using a standard EM approach while 
the determination of the number of components is based on 
an information criteria, the Minimum Description Length. 

Keywords: Gesture Recognition, Automatic Segmenta- 
tion, Automatic Labelling, Data Driven Model Acquisi- 
tion, Model Order Selection, Minimum Description Length 
(MDL), Atomic Gesture Components, Unsupervised Learn- 
ing. 

1. Introduction 
Natural gestures are expressive body motions with under- 
lying spatial and in particular temporal structure, which is 
probabilistic and often ambiguous. To account for such 
characteristics, the temporal structure of gestures can be 
modelled as stochastic processes under which salient phases 
of the structure are modelled as states and prior knowledge 
on both state distributions and observation covariances is 
learned from training examples [3, 15, 17, 11, 191. How- 
ever, the collection of training examples as well as the deter- 
mination of states requires the segmentation and alignment 
of gestures. This task is ill-conditioned due to measure- 
ment noise, non-linear temporal scaling based on variations 
in speed and most notably human variation in the perform- 

' ing of a gesture. As a result the segmentation in gesture 
recognition typically involves manual intervention and hand 
labelling of image sequences. 

In this paper we present a method to automatically seg- 
ment and cluster continuous observation sequences of nat- 
ural gestures for the unsupervised acquisition of gesture 
models, using only contextual information derived from the 
observation sequence itself. Our work is motivated by re- 
cent research in the field of Natural Gestures that identi- 
fied two basic gesture types. Gestures based on two move- 
ment phases, away from a rest position into gesture space 
and back to the rest position and gestures based on three 
movement phases, away from the rest position into gesture 
space (preparation), followed by a small movement with 
hold (stroke) and back to the rest position (retraction) [ 121. 
Our approach, therefore, is based on the assumption that 
gestures can be viewed as a recurrent sequence of atomic 
components, similar to phonemes in speech, starting and 
ending in rest positions and governed by a high level struc- 
ture controlling the temporal sequence. 

Automatic temporal gesture segmentation and partition- 
ing into atomic components is achieved through a multi- 
scale analysis of the input trajectories for discontinuities, 
such as those that occur between preparation and stroke and 
rest positions that occur after strokes or transition into and 
out of gesture space. We show that atomic components, 
once normalised and projected into a gesture space, form 
clusters that correspond to atomic components. The density 
distribution of this gesture space can be described by a mix- 
ture of Gaussian, where each mixture component, k, models 
a different atomic component. Consequently, the determi- 
nation of atomic components requires the determination of 
an optimum number of unknown clusters K ,  known as the 
problem of model order selection, and the estimation of the 
model parameters pk for k = 1 . . . K .  

Maximum likelihood methods such as k-means [8] or 
Expectation-Maximisation (EM) [5] provide effective tools 
for the determination of mixture components. However, the 
resulting mixture model depend on the a priori knowledge 
of the number of mixtures. The model order can be de- 
termined using constructive algorithms that employ cross 
validation techniques for model training [ 131, however the 
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disadvantage of such methods is that they require a valida- 
tion set, which in our case is not available. Alternative ap- 
proaches to determine the number of clusters are based on 
information criteria, such as A Information Criterion (AIC) 
[ 11, Bayesian Information Criterion (BIC) [ 161 and Mini- 
mum Description Length (MDL) [ 141. In the following sec- 
tions we will show how MDL can be used to automatically 
segment the components within gesture space into clusters 
that correspond to atomic gestures, without any a priori 
knowledge on the number of atomic components present. 

The rest of this paper is organised as follows. We first 
give an overview of related work. In Section 3 we describe 
the temporal segmentation of gestures and their partition- 
ing into atomic components. In Section 4 we describe the 
gesture space representation and in Section 5 we show how 
MDL can be used for the automatic clustering of atomic 
components in gesture space. We describe experiments on 
the clustering in Section 6 and conclude in Section 7. 

2 Related Work 
The following paragraph gives a short review on papers ad- 
dressing the concepts of automatic segmentation and unsu- 
pervised model acquisition. 

Engel and Rubin [6] describe an approach for the qual- 
itative classification of motion events. The events consist 
of smooth starts, smooth stops, pauses, impulse starts and 
impulse stops and are considered as motion events that par- 
tition a global motion into its psychological parts. Their 
method is based on a polar velocity representation and the 
derivation of first and second order derivatives. Wilson et 
a1 [21] presented an approach for the qualitative classifi- 
cation of natural gestures into either bi-or tri-phasic ges- 
ture. They identify plausible rest-state configurations of 
a speaker telling a story and parse the sequences in be- 
tween into either bi-or tri-phasic gestures using a priory 
knowledge of the temporal structure describing both ges- 
tures types. Wilson and Bobick [20] describe an adaptive ap- 
proach for unsupervised online learning of simple gestures 
for interactive control. Their algorithm requires a model of 
the temporal structure for the gesture to be learned, com- 
bined with contextual information derived from the appli- 
cation to bias the system in the early stages of runtime. 
Vogler and Metaxas [ 181 present an approach to continuous, 
whole-sentence American Sign Language (ASL) recogni- 
tion, based on a sequential phonological model of ASL. 
They break ASL into movements and holds, both are con- 
sidered phonemes and subsequently train Hidden Markov 
Models to recognise the phonemes, instead of whole signs. 
Galata et a1 [7] present an approach for the acquisition of 
statistical models of structured and semantically rich be- 
haviour. Activities are modelled as sequence of atomic be- 
haviour components, with variable length Markov models 

controlling the high level structure. Atomic behaviour com- 
ponents are seen as prototype sequence between two key 
prototypes, which in turn are identified as prototypes within 
the sequence, where changes drop below a preset threshold. 
The method can be used to generate and predict realistic 
human behaviour but can not generalise to previously un- 
seen sequences. Johnson [IO] presents an approach for the 
automatic acquisition of statistical behaviour models from 
continuous observations of long image sequences and de- 
rives a method for the assessment of behaviour typicality 
by exploiting the statistical nature of his behaviour models. 

3 Temporal Segmentation 

Temporal segmentation partitions a continuous observation 
sequence into plausible atomic components. Our approach 
is motivated by recent research in the field of Natural Ges- 
tures [12], that has identified five basic hand gesture types, 
iconic, metaphoric, cohesive, deistic and beat gestures. All 
gestures have their temporal signature in common. Gestures 
are typically embedded by the hands being in a rest state 
and can be divided into either bi-phasic or tri-phasic ges- 
tures. Beat and deictic gestures are examples for bi-phasic 
gestures. They have just two movement phases, away from 
the rest state into gesture space and back again, while iconic 
metaphoric and cohesive gestures have three, preparation, 
stroke and retraction. They are executed by transitioning 
from a rest state into gesture space (preparation), this is fol- 
lowed by a small movement with hold (stroke) and a move- 
ment back to the rest state (retraction). 

The complete observation sequence, is recorded as a 
continuous sequence of 2 0  vertices, containing the x and y 
positions of a person’s moving hand in an image plane. Seg- 
mentation is done in two steps. In a first step the complete 
observation sequence is analysed for segments where the 
velocity drops below a pre-set threshold to identify rest po- 
sitions and pause positions that typically occur in bi-phasic 
gestures between transition into and out of gesture space 
and in tri-phasic gestures between stroke and retraction. A 
second step analyses the segments for discontinuities in ori- 
entation to recover strokes. The applied method is based on 
Asada and Brady’s Curvature Primal Sketch [ 2 ] ,  depicted in 
Figure 1 .  

4. Gesture Space Representation 
Each atomic component extracted from the trajectory of 
a person’s moving hand, consists of c 2D vertices wc = 
[ X I ,  y1,22, y2, ..., zc, yc] with each component having a dif- 
ferent number of vertices c. Clustering algorithms, how- 
ever work on d-dimensional sets of N input vectors 2 = 
[ z l ,  22, ..., Z N ] .  This requires to transform the atomic com- 
ponents into a gesture space Figure 2. The transforma- 
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Figure 1: Discontinuity detection. The orientation of a 
two dimensional hand trajectory f ( t )  is convoluted with the 
first NA and second derivative N: of a Gaussian N,( t )  = 
( l / ( f ia )ezp( - t ’ /2(~~)  at different temporal scales (T = 
{nmin . . . am==}. The filter responses are analysed for charac- 
teristic maxima and zero crossings. Only discontinuities consis- 
tent over a large scale are registered, thus taking care of noise on 
different levels. a) Example trajectory containing a curvature dis- 
continuity A@. b) The trajectory in orientation space, relating the 
orientation of the curve to the arc length along the curve. c) Filter 
response N i  * f of the orientation of the trajectory f ( t )  convo- 
luted with the first derivative of a Gaussian No ( t ) .  d) Filter re- 
sponse N: * f of the orientation of the trajectory f ( t )  convoluted 
with the second derivative of a Gaussian N,( t ) .  As shown in d) 
corners give rise to a pair of peaks with a separation d, z 2 a  and 
height h, z I @ ~ / ( ~ ( T ’ ) .  Note, d, is linearly dependent on 
the scale constant U and monotonically decreases with 0,  which 
provides a strong clue for the detection of comers. 

tion consists of three steps. First the number of 2D ver- 
tices is normalised. The atomic components are approxi- 
mated by splines, interpolated into d vertices and stored as 
d-dimensional vector zi = [XI,  ~ 1 ~ 2 2 ,  y 2 ,  ..., ~ d ,  yd]. In a 
second step each vector zi is concatenated with a scale fac- 
tor si = (ci - cmin)/(cmaz - c,in), the ratio of the original 
number of vertices minus the minimal number and the max- 
imal number minus the minimal number of vertices to pre- 
serve information on the original length. Finally redundant 
dimensions are removed using Principal Component Anal- 
ysis (PCA). Figure 3 shows an example for the weight dis- 
tribution in gesture space used to represent the normalised 
41-dimensional atomic components. 

The atomic components projected into gesture space 
form clusters, that can be approximate by a mixture 
of K Gaussian, defined by mixture coefficients W k ,  d- 
dimensional means pk and Covariances C k ,  with each mix- 
ture component corresponding to one atomic behaviour. 

K 

f ( z i l W K ,  O K )  = W k N ( Z i , p k ,  z k )  ( 1 )  
k l  

This allows us to equate the determination of the mixture 
components with the determination of the atomic compo- 
nents itself. There is a considerable amount of literature on 

the estimation of mixture parameter and standard Expec- 
tation Maximisation methods can be used to determine the 
values of c k ,  p k  and w k  for a known model order K .  There 
are no methods to determine the number K of parameter 
directly, however iterative procedures based on information 
criteria can be used as described in the next section. 

Figure 2: The Minimum Description Length MDL(k) calculated 
for each cluster configuration [lo < k < 451 of the atomic com- 
ponents, with global minimum determined for 23 cluster (left). 
Gesture Space segmented into 23 cluster: The Projection of the 
3 largest Principle Components of each atomic component (right). 

Figure 3: The weight distribution in gesture space used to repre- 
sent the normalised 41-dimensional atomic components. 95% of 
the original information is contained in the first 5 Principle Com- 
ponents. 

5. Extracting Atomic Components 
The problem of model order selection has been widely stud- 
ied in literature (see [4] for a review). Heuristic meth- 
ods have been proposed by Akaike [l], Schwarz [16] 
and Rissanen [ 141 [(AIC) A Information Criterion, (BIC) 
Bayesian Information Criterion, ,(MDL) Minimum Descrip- 
tion Length]. They are heuristic in the sense that they do 
not minimise an error function between an’ estimated and 
the true model order. Instead they define various informa- 
tion criteria that only depend on the unknown model order 
K ,  which is defined as minimising value for the respective 
criterion. One of the most popular criteria, the information 
criteria of Rissanen MDL is defined as 

MDL is obtained from information-theoretic considera- 
tions, and the model order is defined as the model that min- 
imises the description length, i.e. the model that encodes 
the vector of observations in the most efficient way [9]. 

159 



The first term -In[L(ZIWjy, O K ) ] ,  the maximised mix- 
ture likelihood of P(ZIWK, O K ) ,  measures the systems 
entropy and can be seen according to Shannon’s Informa- 
tion Theorem as a measure for the number of bits needed to 
encode the observations Z = [zl, z2, .... z ~ ] ,  with respect to 
the model parameter WK and OK 

N 

P(ZIWK, O K )  = f(ZilWK, O K )  (3) 
i=l 

The second term, $ M l n ( N )  measures the additional num- 
ber of bits needed to encode the model parameter and serves 
as penalty for models that are too complex. M describes the 
number of free parameter and is given for a Gaussian mix- 
ture by M = 2dK + ( K  - 1) for (K-1) adjustable weights 
due to the constraint W,+ = 1 and 2d parameter for d 
dimensional means and diagonal Covariance matrixes. 

The optimal number of clusters and therefore number of 
atomic components can be determined by applying the fol- 
lowing iterative procedure. 

Figure 5: Deictic gestures: ”pointing IC$” (top 2 rows), ”point- 
ing  rk’7r” (bottom 2 rows) 

1. For all K, {Kmin < K < K,,,} 
(a) Maximise the likelihood L(ZIWk, Ok)  using the 
k-means [8] or iterative EM [ 5 ] .  
(b) Calculate the value of MDL(k) according to 
Equ. (2) and Equ. (3). 

2. Select the model parameters { W k ,  Ok} for the min- 
imising value of MDL(k). 

6. Experiments 
To evaluate our approach, we recorded a participant per- 
forming 7 gestures in arbitrary order. The recording in- 
cluded deictic gestures such as ”pointing left” and ”point- 
ing right”, metaphoric gestures such as ”he bent a tree” and 
”there was a big explosion” and communicative gestures 
such ”waving high”, ”waving low” and ”please sit down”. 
Examples are shown in Figure 5, Figure 6 and Figure 7. 

Figure 4: Experiminetal Setup: The Polhemus tracker with sen- 
sors attached to the right hand and head (left). The recorded input 
sequence segmented into 668 atomic components (right). 

A continuous sequence of gestures was recorded in a 
Gestures were performed time window of 10 minutes. 

Figure 6: Metaphoric gestures: ”he bent a tree” (top 2 rows), 
”there was a big explosion” (bottom 2 rows) 

roughly 20 times in random order. The gestures were 
recorded using a Polhemus tracker, an electromagnetic 
tracking device that is able to determine the 3D position 
of a small sensor relative to the center of a transmitter. The 
experimental set-up is shown Figure 4 (left). Two sensors 
were attached to the participant’s body, one to the head, 
used for reference and one to the right hand. The 3D po- 
sitions of both sensors were recorded with 5 frames per sec- 
ond and the relative difference projected onto a virtual im- 
age plane, thus creating a 2-dimensional observation trajec- 
tory containing the [z,y] position of the participant’s hand 
relative to the head. The recorded input sequence was auto- 
matically partitioned into 668 atomic components (see Fig- 
ure 4 (right)). 

All atomic components were transformed into ”Gesture 
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Figure 7: Communicative gestures: ”waving high” (top 2 rows), 
”waving low” (middle 2 rows) and ”please sit down” (bottom 2 
rows) 

Space”: each component was converted into a spline, inter- 
polated into 20 2D vertices and stored as 41-dimensional 
vector (20 2 0  vertices plus scale factor) and reduced to 5 
dimensions using PCA, still containing 95% of the original 
information (Figure 3). 

The resulting distribution was approximated by a mix- 
ture of Gaussian with [lo < k < 451 mixture components, 
determined using a standard k-means clustering algorithm. 
The Minimum Description Length MDL(k) was computed 
for each configuration and a global minimum was deter- 
mined for k = 23 mixtures (Figure 2 (left)). 

Figure 8, Figure 9 and Figure 10 show examples of ges- 
tures (leftmost columns) and their associated atomic com- 
ponents. The small number next to each component indi- 
cates the mixture identifier. The small squares at the end of 
each atomic component trajectory indicate the direction of 
the primitive movement and are there to aid visual under- 
standing of the components. 

Figure 8 shows two bi-phasic gestures, ”pointing left” 
and ”pointing right” . The leftmost column shows the com- 
plete movement of each of the two gestures: Away from the 
rest state into gesture space and back again, whereas the 
middle and right columns show the atomic components ex- 
tracted for each of the gestures. The middle column shows 
the atomic components (or primitive movements) into ges- 

ture space, and the right column shows the atomic compo- 
nents out of gesture space. 

Figure 8: Left column: Example trajectories of gestures point- 
ing right(top) and pointing left(bottom). Middle column: Corre- 
sponding atomic components into gesture space. Right column: 
Corresponding atomic components out of gesture space. 

Figure 9 shows examples for gestures that can be seg- 
mented into three atomic components. From top to bottom 
they are: “please sit down”, ”he bent a tree”and ”there 
was a big explosion” . The leftmost column shows the com- 
plete movement of each of the three gestures, whereas the 
remaining columns h o w  the extracted atomic components 
corresponding to each gesture. 

Some of the atomic components are shared by two or 
more gestures. The atomic component represented by the 
cluster identified as ”07” is shared by both ”please sit 
down” and ”there was a big explosion” gestures. Similarly 
the atomic component represented by the cluster identified 
as ”01” is shared by both ”pointing left” (Figure 8), and 
”there was a big explosion” gestures. Finally Figure 10 
shows examples of gestures ”waving high ” and ”waving 
low” , that can be segmented into four atomic components. 
The atomic component represented by the cluster identified 
as ”08” is shared by both ”he bent a tree” (Figure 9), and 
”waving high” gestures. 

In total we extracted 23 clusters. 18 clusters are asso- 
ciated with atomic components corresponding to primitive 
gesture movements. Each of these 18 clusters have a pop- 
ulation of 20-40 components each. The remaining 5 unas- 
signed clusters shown in Figure 11 can not directly be re- 
lated to any gestures. They have a population of 5-10 short 
atomic components and are the result of segmentation arte- 
facts. 

7. Summary and Conclusions 
We presented an approach to automatically segment and la- 
bel a continuous observation sequence into atomic compo- 
nents, using only contextual information derived from the 
observation sequence itself. We assumed that gestures can 
be viewed as a repetitive sequence of atomic components 
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Figure 9: Gestures that can be partitioned in three atomic compo- 
nents. Leftmost column: Example trajectories of gestures please 
sit down (top row), gestures he bent a tree (middle row) and there 
was a big explosion (bottom row). Remaining columns: Corre- 
sponding atomic components into and out of gesture space. 

Figure 10: Gestures that can be partitioned into four atomic 
components. Leftmost column: Example trajectories of gestures 
waving high (top) and waving low (bottom). Remaining columns: 
Corresponding atomic components into and out of gesture space. 

Figure 1 1 : The remaining 5 clusteres are based on segmentation 
artefacts 

that can be modelled in a gesture space by mixture of Gaus- 
sian. Mixture components were determined using a stan- 
dard k-means clustering algorithm and the number of com- 
ponents was automatically determined using the MDL crite- 
rion. Visual inspection suggests that the determined number 
is equal to the real number of underlying components. How- 
ever, a common criticism of k-means and related maximum 
likelihood methods is that they do not address the problem 
of noise and assign all input elements to one particular class. 
Therefore we will look into more 'loosely' defined methods 
able to model noise. In the future we will address the higher 
level structure controlling the temporal sequence and con- 
sequently will work on a model describing the sequence of 
atomic components. 
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