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Abstract—Major research efforts have been recently made
to develop resource orchestration solutions to flexibly link edge
nodes with centralised cloud resources so as to maximise the
efficiency with which such a continuum of resources can be
accessed by users. In this context, we consider the case of Big
Data analytics in which total task completion time reductions
can be achieved by routing tasks initially to edge servers and
subsequently to cloud resources. We demonstrate that the task
complexity of the computational jobs, the Wide Area Network
(WAN) speed and the potential overload of edge servers (as
reflected by CPU workloads) are crucial for achieving total
task completion time reductions by offloading from edge to
cloud resources. The edge-cloud orchestrators are situated in
the edge nodes and, therefore, require continuous access to
the parameters of WAN speeds (and their fluctuations), edge
server CPU workload and the task complexities in Big Data
analytics requirements to make accurate edge-to-cloud offloading
decisions. With favourable values for these three parameters,
large reductions in completion times can result from transfer
of large-scale data from edge nodes to cloud resources, which
can reduce the completion times by up to 97% and meet client
deadlines for computational tasks with responsive and agile
solutions.

Keywords—Application-level orchestration, Cloud-to-Edge con-
tinuum, Big Data analytics, WLAN, WAN, Computational complex-
ity, Server workload

I. INTRODUCTION

THE relatively close proximity of Edge Computing nodes
to users in comparison with the distance to consolidated

data centres in Cloud Computing has generated considerable
recent interest in understanding how Internet of Things (IoT)
devices could benefit from accessing edge servers rather than
relying solely on cloud resources to process data [1]–[8].

With Big Data applications, however, the advantages of
using edge nodes for computation are less clear. The relatively
small computing resources of edge nodes compare negatively
with the much greater cloud resources [9], [10]; on the
other hand, data transmission times to may be prohibitively
lengthy to those superior cloud computing resources while job

queuing and other delays may also adversely affect total task
completion times.

In this paper, we directly analyse task completion time ad-
vantages when Big Data requests are alternately processed by
edge nodes or by transfer from edge nodes to cloud resources
(Figure 1). We focus on calculations of absolute times for data
transmission and computation to identify the conditions for
shorter total task completions using the alternatives of edge-
only and edge-to-cloud modes (Figure 1).

Furthermore, we consider parameters of data transmission
speeds, task computational complexity and edge server over-
load (as measured by CPU workload) and analyse how time
advantages of using cloud resources for Big Data applications
can be eroded or negated. Additionally, we are also exploring
the complexity of the interactions of these parameters with
numerical simulations of the practical scenarios where large
data sets are processed off-site is represented by Figure 1.

II. RELATED WORK AND CONTRIBUTIONS

EdgeCloudSim simulator tool has been proposed as a
means of supporting experimentation and finding optimal
solutions for tasks when both sets of resources are avail-
able [9], [10]. Using EdgeCloudSim, an edge-cloud orches-
tration decision maker could handle up to 250 individual edge
devices such as mobile phones with only short queuing delays;
however, no clear advantage of using cloud resources for task
completion times was demonstrated [9]. Handling up to 750
devices was considered in [10] but the focus was on task
failures and network delays rather than on task completion
times.

Other studies have modelled edge-cloud interactions for
specific use-cases on cloud servers, has been proposed. An
edge-cloud computing system to detect non-mask wearers in
urban settings, using the relatively poor computing resources
of edge servers to reduce operating demands on cloud servers
has been proposed in [11]. A sequential use of, firstly, edge
servers and, subsequently, cloud resources is considered to
be beneficial for healthcare diagnostics in [12]. For Big Data



applications, a model was proposed in which decision makers
were introduced into both the edge servers and cloud resources
to manage traffic from smartphones, laptops and tablet com-
puters as well as sensors in IoT in [13]; again, the focus
of this study was on minimising latency in how the system
responded to requests from end users in [13].Any form of
data migration from edge nodes to cloud resources potentially
introduces latencies and delays and this has been a concern
for modelling studies.

In recent years, considerable research effort has been given
to devising orchestration solutions for multi-layered edge-
cloud (or cloud-to-edge) environments [14]. The most recent of
these is MiCADO-Edge, which has a wider range of attributes
than previous solutions, and which has been evaluated in
video processing and secure healthcare data analysis applica-
tions [14].

A. Contributions

In this paper, we propose a computational offloading model
wherein we seek to minimise the completion time of all jobs
in a multi-user multi-Edge-Cloud set-up minimise the total
task completion time for large datasets in either edge or edge-
cloud scenarios (Figure 1). The contributions of this paper are
twofold:

• A mathematical model is proposed, which is suitable
for distributed deployment at the edge-cloud network,
and that uses local knowledge to handle each in-
dividual task to investigate better solutions for job
allocations in Edge or Cloud servers.

• Different link speeds are investigated to determine
whether or not to offload each job, and selection
mechanisms for edge servers to which jobs are initial
offloaded are proposed and evaluated.

The remainder of the text is organised as follows. Section
II states the problem formulation and the methodology used.
Section III presents quantitative outcomes from data simula-
tions with ranges of data transmission speeds, computational
complexities and edge server CPU workloads. Section IV
draws conclusions and outlines possible future work in this
field.

III. PROBLEM FORMULATION

We consider the scenario where a service provider orches-
trates transfer of data files from edge servers to cloud servers
for time-limited processing and when a time advantage for
processing exists by such edge-to-cloud data transfer. A typical
multi-edge server network with a set of tasks, each with a given
number of job requests, is shown in Fig. 1.

Let Je be the set of jobs on edge server (ES) e, and E be
the set of edge servers in the network. Let uj,c be a binary

Table I: Notations used in the paper.

Symbol Definition

De
j the data size of a job j on the Edge server

e

λe the application complexity on the ES e in
bits/instructions

αe The computing capability of ES i in instruc-
tions/sec

βc The computing capability of Cloud c in
instructions/sec

T ES
e Total computational time to execute job j

on ES e in sec

Ti,c,j Transmission time of offloading job j from
edge server i to cloud c in sec

TC
c Total computational time to execute jobs on

Cloud c in sec

Π Proportion of data size reduction after pro-
cessing on Cloud c

ηc the application complexity on a cloud c in
bits per seconds.

Te,c Transmission time of offloading job j from
edge server e to cloud c in sec

γDL Downlink speed to e and c in bits/second

γUL Uplink speed to c and e in bits/second

T Total The total completion time to process jobs j

N The number of links to cloud c

C The cloud c in the network

E The set of edge ES servers in the network

Je The set of jobs on edge server e

variable that models the offloading decision of a job j on the
cloud c. Mathematically, this is modelled as follows:

uj,c =

{
1 job j offloaded to cloud c
0 compute locally on an edge server

Let L ⊆ N×C be the set of links that connect edge servers
to the cloud. Let N be the number of links to cloud c and let
C be the cloud c in the network.

A. Edge Server Computational Time

Let De
j be the data size of a job j on the Edge server e. Let

λe be the complexity of the application that is being executed
on the ES e. The authors of [15] used a similar approach to
determine the job completion time on edge nodes. Thus, we
used a comparable method to calculate the processing time of
edge servers. Let αe be the on-board processor speed of ES



(in instructions per second). The total local computational time
T ES
e is defined as follows:

T ES
e =

∑
j∈Je

De
j (1−

∑
e∈E uj,c)

αeλe
(1)

Note that the maximum value that the inner summation
can take is 1 and that is when a job j is offloaded to cloud
c, otherwise the summation is zero. Following two constraints
ensure that a job is solved by the edge-cloud system.

∑
e∈E

uj,c ≤ 1 ∀ j ∈ J (2a)∑
j∈J

uj,c ≤ 1 ∀ c ∈ C (2b)

B. Cloud Computational Time

If a job j is offloaded to cloud c then there are three periods
of time that we need to consider: time for offloading, time for
processing a job on the Cloud server and time to send the
result back to the source. Let βc be the on-board processor
speed of cloud c (in instructions per second). Let λc denote
as the application complexity in bits per seconds. The total
processing time to compute offloaded jobs on a Cloud server
c is given as follows:

TC
c =

∑
j∈J D

e
jUj,c

βcλc
(3)

Let γUL be the up-link speed in bits/second. The following
equation gives the time required to transfer the job from edge
to the cloud:

Ti,c,j =

∑
j∈J Uj,cD

e
j

γUL (4)

Let Π cloud c. Let γDL be the downlink speed in
bits/second. The time required to transfer the processed data
from cloud to edge can be calculated as follows:

Tc,i,j =

∑
j∈J ΠDe

j

γDL (5)

Where eqs. 3, 4 and 5 can be represented as: Π be the
proportion of data size reduction after processing on Edge e,
γDL and γUL are the downlink and uplink speed, respectively.

T Total = max

max
e∈E
{T ES

e }︸ ︷︷ ︸
Edge Time

,max
c∈C

{
TC
c +

∑
e∈ES

Te,c

}
︸ ︷︷ ︸

edge-cloud maximum Time

 (6)

Workstations 

WLAN 
WLAN  

Edge Servers 

Cloud Datacenter 

Edge Server 2

WANWAN 

Edge Server 1

Figure 1: Model of edge computation and edge-to-cloud off-
loading for Big Data applications

There are two components in Equation 6: the first compo-
nent defines the edge computation time; the second component
defines the cloud server computational time which includes the
time for transmission and receiving.

The client can be and enterprise which uploads datasets
initially to an edge node where an assessment is made of
achievable time advantages to be gained by further transfer
to cloud resources. The edge network involves a Wireless
Local Area Network (WLAN) in and through which the
enterprise’s workstations transfer data to edge servers; beyond
the WLAN, edge to cloud transfer is performed by a Wide Area
Network (WAN) connecting the edge servers to physically
distant remote consolidated data centres which house cloud
resources.

Based on knowledge accessible to the edge resource con-
troller, the total task completion time (per GB of data) is
computed as the sum of sequential computed times [16]:

1) The time required to transfer data from enterprise’s
work stations the to the edge server(s);

2) The time required for processing by one or more edge
servers;

3) The time required to transfer data back from the edge
server(s) to the enterprise’s work stations; quantita-
tively, the returned data load is assumed to be 10%
of the data uploaded.

4) The time required to transfer from the edge node to
cloud resources.

5) The time required for processing in the cloud.
6) The time required to transfer data from the cloud to

the edge node.



Table II: Parameters used for numerical simulations

Entity Parameter Value Unit

ES αe 1.36× 1011 IPS

CS βc 2.72× 1012 IPS

App λ 0.0000529 - 0.00227 bpi

Network WAN 5-50 Mbps

WLAN 50 Mbps

The total time for task completion using the edge node is
the sum of (1), (2) and (3). The total task completion time
using edge-cloud-client transfer, i.e., uploaded data from the
enterprise’s work stations to the edge servers, onward to cloud
resources and finally returned (as fully processed results) to
the enterprise’s work stations is the sum of tasks (1), (4),
(5), 6), (3). If this sum is less than the sum of tasks (1),
(2), (3), the service provider may opt to use cloud resources;
if the client has imposed deadline times for data processing
(for example seconds per GB of data) in the Service Level
agreement reduced time using edge to cloud transfer may prove
beneficial.

An orchestration software that makes the offloading de-
cision is, therefore, assumed to be based in edge nodes and
can assess the times required for processes (1) – (6) from
knowledge of processor and data transfer times (per GB)
accessible in the edge node, cloud and client.

IV. NUMERICAL SIMULATIONS

Using the mathematical methodology described in Sec-
tion II, numerical simulations were performed to identify
the conditions under which task completion time advantages
could be gained by migrating tasks from edge nodes to cloud
resources. The set of parameters used in these simulations
is listed in Table II. These values and ranges were used to
investigate the influence of the three factors (data transfer
speed, computational complexity and edge server overload) on
potential task completion time advantages from edge-to-cloud
task transfer. The computational complexity values were taken
for nine scientific apps from [15]. The nine programs identified
were scientific programs of varying complexity suitable for
modelling Big Data analytics. The computational complexity
is an arithmetical means of converting bits (from bytes of data
size per file) to instructions for a computational program: di-
viding bits by bits per instruction (bpi). Using this process, bits
are converted into numbers of instructions [15]. With chosen
values of instructions per second as computing speeds [15], the
computation times for tasks can be calculated [15]–[17]. In
general, the smaller the bpi value of an application, the more
computationally complex is the task.

The WAN speeds indicated in Table II are mean speeds
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Figure 2: Effect of task computational complexity on total task
completion times at an edge node (WLAN 50 Mbps) or by
edge-to-cloud data transfer (WAN 5-50 Mbps).

throughout the time required for total task completion in either
edge-only or edge-cloud models. While WAN speeds might be
variable on short time scales, we have used mean values for
completion times which might exceed 300s at the lowest WAN
speed considered. When operational problems reduce WAN
speeds for extended periods, this could reduce the benefits of
edge-cloud transfer but would be automatically assessed as part
of the edge-cloud decision making process

A. Relations between computational complexity and WAN
speed

The results are summarised in Figure 2 for a WLAN of 50
Mbps. As the task complexity increases – using inverse bpi val-
ues to generate a left-to-right x-axis – the task completion time
lengthens, driven by the longer processing times required. At
the lowest computational complexity, cloud processing is only
faster at a WAN speed of 50 Mbps (Table III) . At the highest
four computational complexities, edge-to-cloud data transfer
is advantageous even at the lowest WAN speed (5 Mbps);
edge processing is between 1.4 and 4 times longer (the sum of
data transfers and computational processing times). With pro-
gressively lower computational complexities, edge processing
becomes competitive even with progressively increasing WAN
speeds and eventually is advantageous compared with edge-
to-cloud data transfer at all but the fastest considered WAN
speed (50 Mbps) (Table III).

Very similar results were obtained with WLAN speeds
across the range of 5 – 300 Mbps included in this study; in all
instances, edge-to-cloud data transfer was advantageous at a
WLAN of 50 Mbps. Thus, it can be observed that the WLAN
speed to the edge node is not an important parameter because



Table III: Effect of WAN speed and task complexity on total
task completion time

Task Com-
plexity
(bpi)

WAN
5 Mbps
Edge-
Cloud (%
of edge
time)

WAN
10 Mbps
Edge-
Cloud (%
of edge
time)

WAN
20 Mbps
Edge-
Cloud (%
of edge
time)

WAN
50 Mbps
Edge-
Cloud (%
of edge
time)

0.002270 495 271 159 92
0.001010 295 163 96 57
0.000953 283 156 93 54
0.000484 166 93 56 34
0.000286 106 60 37 23
0.000180 71 41 26 26
0.000108 46 27 18 18
0.000073 33 20 14 14
0.000053 25 16 11 11

client-to-edge transfer times are also incorporated into both
edge and edge-cloud hybrid processing. Moreover, decreasing
the data returned to 1% of that transmitted also had no effect on
the minimum WAN speeds required for shorter task completion
times by edge-to-cloud data transfer, although total completion
times decreased.

If a client sets a maximum acceptable time, this deadline
time is a function of both computational complexity and the
WAN speed. For example, a deadline time of <300 (s) per GB
for the most complex task would be met by all WAN speeds.
For a task with a lower complexity and with a deadline time
of <100 (s) per GB, a minimum WAN speed for redirection
to the cloud would be required to meet the requirements.

In general, the computationally simplest tasks benefit from
the “proximity” of Edge Computing – part of the vision of
moving away from distant consolidated cloud data centres.
With more complex apps, the superior computing power of
cloud resources become apparent. Formally, the decision-
making process for edge-to-cloud transfer is:

∑
T1 − T3 >

∑
T1, T3 − T6 (7)

In the inequality represented by equation (7), the left-hand
side represents the total task completion time using the edge
node only while the right-hand side represents the total task
completion time using edge-cloud transfer.

An orchestration mechanism would take the information
and redirect tasks from edge to cloud (or vice versa); in prac-
tice, variable WLAN and WAN speeds may occur - especially
the WLAN speed if the edge node becomes overloaded - and
decision making would need to be both flexible and responsive.

B. Edge CPU workload

The effects of edge node congestion can be readily mod-
elled by increased edge server CPU workload. Following the
procedure of [9], the cloud servers are assigned zero CPU
workload and edge-to-cloud data transfer incurs negligible
server CPU workload.

At a parameter choice of a WLAN speed of 50 Mbps and
a WAN speed of 15 Mbps, tasks with high complexities use
edge-to-cloud data transfer for faster total processing (Fig-
ure 3). If the edge server CPU workload is then increased in the
range 10% to 65%, at an edge server CPU workload of 65%,
edge-to-cloud data transfer yields shorter total completion
times at all computational complexities, i.e., even with tasks
with the lowest complexities considered (Table IV).

Table IV: Effect of edge server CPU workload on task com-
pletion time (WLAN 50 Mbps, WAN 15 Mpbs)

Task Com-
plexity
(bpi)

Edge-
Cloud
CPU
10%(%
of edge
time)

Edge-
Cloud
CPU
20%(%
of edge
time)

Edge-
Cloud
CPU
50%(%
of edge
time)

Edge-
Cloud
CPU
65%(%
of edge
time)

0.002270 185 173 127 97
0.001010 109 100 68 50
0.000953 105 96 65 48
0.000484 62 56 37 26
0.000286 41 36 23 17
0.000180 28 25 16 11
0.000108 19 17 11 7
0.000073 14 13 8 6
0.000053 12 10 7 5

If the WAN speed is increased to 25 Mbps, only the least
complex tasks do not benefit from edge-to-cloud data transfer
(Figure 4); however, tasks of all computational complexities
are processed faster by edge-to-cloud data transfer at an edge
server CPU workload of 45% (Table V).

Conversely, at a much slower WAN speed of 5 Mbps,
only the most computationally complex tasks benefit from
edge-to-cloud data transfer (Figure 5); very high (88%) edge
server CPU workloads were found to be necessary for task
of all computational complexities to have shorter total task
completion times by edge-to-cloud data transfer (Table VI).

C. WAN propagation delay and job queuing

Our analysis assumes uninterrupted data transmission with
no delays or task queuing. With large quantities of data
for processing, edge-cloud transfer > 1200 (s) and cloud
processing times > 300 (s) for the tasks with the greatest
computational complexity render WAN propagation delays of
100 ms [9] as minor. Only if severe network congestion occurs



0 0.5 1 1.5 2

·104

0

200

400

600

800

1,000

1,200

Inverse Task Complexity ((ipb × ))

Ta
sk

C
om

pl
et

io
n

Ti
m

e
(s

pe
r

G
B

)

CPU 10%

CPU 20%

CPU 50%

CPU 65%

Edge-Cloud

Figure 3: Effect of edge server CPU workload on total task
completion times with a WLAN speed of 50 Mbps) and edge-
to-cloud data transfer (WAN) of 15 Mbps.

Table V: Effect of edge server CPU workload on task com-
pletion time (WLAN 50 Mbps, WAN 25 Mpbs)

Task Com-
plexity
(bpi)

Edge-
Cloud
CPU
10%(%
of edge
time)

Edge-
Cloud
CPU
20%(%
of edge
time)

Edge-
Cloud
CPU
50%(%
of edge
time)

Edge-
Cloud
CPU
65%(%
of edge
time)

0.002270 129 120 100 94
0.001010 77 70 56 52
0.000953 74 67 53 50
0.000484 44 40 31 29
0.000286 29 26 20 19
0.000180 21 18 14 13
0.000108 14 13 10 9
0.000073 11 10 8 7
0.000053 9 8 6 6

would WAN propagation from edge nodes be incompatible
with total task time reductions.

Considering tasks with low computational complexity,
however, the total tasks completion times using cloud resources
become < 5 (s) and any job queuing of this magnitude
becomes important, i.e., with < 5 (s) completion times. Total
queuing times in cloud computing environments of <1 (s) have
been claimed [18] and would not influence our findings. Only
in case of seriously impaired or badly functioning edge nodes,
networks and/or cloud servers would result that propagation
delays and job queuing become relevant factors.
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Figure 4: Effect of edge server CPU workload on total task
completion times with a WLAN speed of 50 Mbps) and edge-
to-cloud data transfer (WAN) of 5 Mbps.
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Figure 5: Effect of edge server CPU workload on total task
completion times with a WLAN speed of 50 Mbps) and edge-
to-cloud data transfer (WAN) of 25 Mbps.

V. CONCLUSIONS AND FUTURE WORK

Our results show that the problem of whether or not to
migrate data from edge nodes to cloud resources is soluble if
sufficient parametric data are available to the decision maker:
transfer speeds, processor speeds, task complexity and the
congestion status (CPU workload) of the edge node. Com-
putationally, the offload decision is taken when the total task
completion time is shorter when using cloud resources, i.e.,
equation (7).



Table VI: Effect of edge server CPU workload on task com-
pletion time (WLAN 50 Mbps, WAN 5 Mpbs)

Task Com-
plexity
(bpi)

Edge-
Cloud
CPU
60%(%
of edge
time)

Edge-
Cloud
CPU
70%(%
of edge
time)

Edge-
Cloud
CPU
80%(%
of edge
time)

Edge-
Cloud
CPU
88%(%
of edge
time)

0.002270 271 216 154 98
0.001010 140 109 75 46
0.000953 133 103 71 44
0.000484 73 56 38 23
0.000286 45 34 23 14
0.000180 29 22 15 9
0.000108 19 14 9 6
0.000073 13 10 7 4
0.000053 10 8 5 3

For the large data files required in Big Data applications,
edge nodes offer time advantages for processing within the
edge WLAN network for tasks of low computational com-
plexity because data transfer (especially at 5G speeds) is much
shorter than with WAN transfer to distant consolidated process-
ing centres. This conclusion is in line with the widely promoted
features of the various forms of Edge Computing [19]

As computational complexity increases, however, our anal-
ysis shows that edge-to-cloud data transfer becomes increas-
ingly attractive to reduce total task completion time and meet
any stipulated job deadline times. This requires edge-cloud
and cloud-edge data transfer times to be sufficiently short
not to introduce delays that would eliminate any advantages
of the much greater computational capacity (as reflected in
job processing times) of cloud resources. With high task
complexities and high WAN speeds, edge-cloud synergy can
result in total task completion times approaching 10% of those
required by processing in the edge node only (Table 3). The
magnitude of these time reductions would be a major factor
in efficient task processing in Big Data analysis.

Our analysis shows that the WAN speed is critical to
the decision-making process: slow WAN speeds (in the 5
Mbps range) render edge-cloud orchestration unsuccessful
in achieving shorter total task completion times for low-
complexity tasks while much faster WAN speeds can give
total task time reductions even with the tasks of the lowest
computational complexity. Any orchestration mechanism must
have full access to WAN speeds, especially in periods of WAN
speed reduction, when edge solutions may prove superior.

Conversely, our analysis shows that as the edge node
becomes congested, data transfer to the cloud for process-
ing becomes increasingly beneficial to achieve shorter task
completion times. Depending on the precise combination of
task complexity, WAN speed and edge server CPU workload,

total task completion times could be reached which were
considerably less than 10% of those required by processing
in the edge node only (Tables 4-6). Again, this increased
efficiency would be valuable for Big Data applications.

Edge-to-cloud data transfer is likely to be a functioning
mechanism to avoid service delays but this is critically de-
pendent on three factors: task complexity, WLAN speed and
WAN speed. While the task complexity is set by the client’s
requirements, network speeds and edge node congestion will
be expected to be variable and an efficient decision-making
system relies on full and continuous access to all relevant
parameters.

Future work will focus on applying the findings of this
paper in practice when developing an offloading strategy for an
edge-to-cloud orchestration solution. To achieve this, various
offloading policies will be developed for the MiCADO-Edge
orchestrator [14] to support various application scenarios on
multiple heterogeneous edge-cloud networks for automated
scalability and, subsequently, incorporating the price cost of
using an edge-cloud service for users of Big Data analytics.
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