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Abstract 26 

The current study provides the first evidence of human lateralized navigation of a 27 

social space within a naturalistic environment. We employed a quantitative, 28 

observational approach and report on a detailed set of nearly 700 independent 29 

navigational routes from two separate child populations consisting of over 300 30 

typically developing children, aged five to fourteen years. The navigational path was 31 

considered across the sagittal plane (left, right) around three distinct target types 32 

(peer, adult and object). Both child populations expressed a significant bias for 33 

choosing a rightward navigational path around a human target (e.g. peer, adult) and no 34 

lateral preference for navigation around fixed, inanimate objects. A rightward 35 

navigational path provides an advantage for the left visual field and the right 36 

hemisphere, facilitating both the production and perception of social-emotion stimuli. 37 

The findings are consistent with evidence from studies of non-human animal species 38 

demonstrating that the social environment elicits predictable lateralized behavior, and 39 

support an early evolutionary delineation of functional processing by the two 40 

hemispheres.  41 

 42 
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1. Introduction 51 

 52 

A growing body of evidence across a range of animal species demonstrates a bias to 53 

keep conspecifics situated on their left side. A left eye bias to monitor conspecifics is 54 

widespread across a range of vertebrates including: fish (De Santi, et al., 2001; 55 

Sovrano et al., 2001), toads (Robins et al., 1998), lizards (Deckel, 1995; Hews and 56 

Worthington, 2001), pigeons (Nagy et al., 2010), chicks (Vallortigara, 1992; 57 

Vallortigara and Andrew, 1991) and beluga whales (Karenina et al., 2010), and may 58 

represent a common evolutionary behavioral manifestation reflective of a right 59 

hemisphere dominance for processing social stimuli and arousing situations (for a 60 

review, see Rosa Salva et al., 2012). The findings from these studies support a 61 

hypothesis that lateralized perceptual behaviors may have derived from an early 62 

delineation of a right hemisphere dominance for responding to unexpected and 63 

behaviorally relevant stimuli (e.g. predator) and a left hemisphere dominance for well 64 

learned sequences of actions (e.g. feeding) (MacNeilage et al., 2009; Rogers, 2000a; 65 

Rogers et al., 2013). This type of asymmetric behavioral activity might have an 66 

adaptive value, facilitating simple reflexive and automatic responses to increase the 67 

survival of individuals (Rutherford and Lindell, 2011). The appropriation of 68 

specialized processing to operate in parallel within the left and right hemispheres is 69 

thought to facilitate neural efficiency: allowing different functions to operate in 70 

parallel, decreasing the duplication of functioning across hemispheres and eliminating 71 

the initiation of simultaneous and incompatible responses (Rogers et al., 2004; 72 

Tommasi, 2009; Vallortigara and Rogers, 2005). 73 

 74 



Right hemisphere dominance patterns have been reported for face perception and 75 

social recognition in a range of animal species. For example, a left gaze bias for face 76 

perception (e.g. looking time of centrally presented faces) has been reported in: sheep 77 

(Peirce et al., 2000), dogs and rhesus monkeys (Guo et al., 2009), chimpanzees 78 

(Morris and Hopkins, 1993), and humans (behavioral study: Burt and Perret, 1997; 79 

neuro-imaging: Kanwisher et al., 1998). A left motor bias (right hemisphere 80 

dominance) has also been reported for the production of facial expressions in 81 

marmosets (Hook-Costigan and Rogers, 1998) macaques (Hauser, 1993), baboons 82 

(Wallez and Vauclair, 2011) and in chimpanzees (Fernández-Carriba et al., 2002), 83 

indicating that both the perception and production of emotions may be preferentially 84 

controlled by the right hemisphere.  85 

 86 

Nonhuman primates demonstrate an excellent animal model for understanding the 87 

evolutionary emergence of lateralized behaviors related to the social environment. 88 

There is little naturalistic evidence from field studies to align with those from other 89 

animal species discussed earlier. However, studies that consider spontaneous 90 

naturalistic, species-specific encounters in nonhuman primates have reported a left 91 

visual preference (right hemisphere dominance) during aggressive encounters in 92 

gelada baboons (Casperd and Dunbar, 1996) and in a zoo-housed group of mangabeys 93 

during spontaneous approach behaviors (Baraud et al., 2009), suggesting that 94 

rudimentary primitive avoidance behaviors controlled by the right hemisphere may 95 

have contributed to the emergence of negative emotions (Vallortigara and Rogers, 96 

2005; Vallortigara et al., 2011).  97 

 98 



Evidence from great ape studies has highlighted the importance of the social 99 

environment in modulating behavior during social interactions and situations 100 

involving increased arousal. High-ranking chimpanzees were approached significantly 101 

more frequently from their left visual hemifield suggesting the facilitation for the 102 

rapid identification of facial expressions and predictability of behaviors by the right 103 

hemisphere (Fernández-Carriba et al., 2002). Left biased motor asymmetries have 104 

also been associated with self-directed behaviours. For example, rehabilitated 105 

orangutans exhibited a significant group-level lateralized preference for left-handed 106 

scratching and for the fine manipulation of parts of the face (Rogers and Kaplan, 107 

1995), and while self-directed scratching showed no hand preference in chimpanzees, 108 

there was a significant bias for scratching on the left side of the body (Hopkins, 109 

2006). Forrester and colleagues (2011; 2012) noted an increase in left hand (right 110 

hemisphere) activity during the observation of naturalistic unimanual hand actions for 111 

self-directed behaviors and hand actions directed towards social partners compared 112 

with hand actions directed towards objects. In all cases, the authors postulated a right 113 

hemisphere dominant role in the processing of emotive and arousal-increasing stimuli.  114 

 115 

A recent study by Quaresmini et al. (2014) aligns most closely with the evolution of 116 

social lateralization studies that indicate a preference to keep conspecifics proximally 117 

situated with a left visual field advantage during spontaneous natural behaviors. 118 

Observational focal sampling of spontaneous social behaviors in a family group of 119 

western lowland gorillas (Gorilla gorilla gorilla) and in a colony of captive zoo-living 120 

chimpanzees (Pan troglodytes), revealed group-level biases in both gorillas and 121 

chimpanzees (trend) for keeping conspecifics proximally situated to the left side of 122 

the focal individual compared with the right side. The authors suggest that lateral 123 



positioning is likely to reflect a right hemisphere specialization for a heightened state 124 

of arousal associated with the detection of faces and facial expressions. These studies 125 

support the evolutionary perspective that the right hemisphere retains dominant 126 

control for behaviors associated with individual recognition, decoding other’s 127 

intentions, and navigating the social hierarchical system (for a review, see Rosa Salva, 128 

et al., 2012). Moreover, findings from these studies suggest that the social 129 

environment may have been a critical pressure in aligning population behavior for 130 

predator defense and for cooperation (Ghirlanda et al., 2009; Ghirlanda and 131 

Vallortigara, 2004; Vallortigara and Rogers, 2005).  132 

 133 

The study of human emotion processing has a long history in the literature, dominated 134 

by two prevailing theories of cerebral lateralization. The right hemisphere hypothesis 135 

(e.g. Borod et al., 1998; Campbell, 1982) proposes that the right hemisphere is solely 136 

responsible for the processing of emotion. Alternatively, the valence hypothesis (e.g. 137 

Davidson, 1995) purports that both the right and the left hemispheres are involved in 138 

affect processing, such that the left hemisphere is dominant for positive affect and the 139 

right hemisphere is dominant for negative affect. Although animal studies do not 140 

contradict the right hemisphere theory from an evolutionary perspective, evidence 141 

from non-human animal approach/avoidance behaviors tend to be more parsimonious 142 

with the valence theory. For example, birds (Franklin III and Lima, 2001; Koboroff et 143 

al., 2008; Rogers, 2000b), lizards (in the laboratory: Bonati et al., 2013; in the wild: 144 

Martín et al., 2010), and toads (Lippolis et al., 2002), have all been shown to manifest 145 

a left eye preference for well-learned sequences of actions (e.g. predator monitoring), 146 

but conversely, they demonstrate a rightward preference for responding to urgent 147 

situations (e.g. escaping from the dangerous stimulus). Additionally, in great apes, a 148 



recent eye preference study found a left visual field /right hemisphere advantage for 149 

negative stimuli and right visual field/left hemisphere advantage for positive stimuli 150 

for viewing pictures (Braccini et al., 2012).  151 

 152 

In humans, the valence theory model has gained some support from laboratory 153 

investigations. For example, the right hemisphere demonstrated greater activation 154 

than the left hemisphere in the region of the superior temporal sulcus associated with 155 

the processing of an approaching stranger with directed mutual gaze (Pelphrey et al., 156 

2004). Additionally, right-handed people have been shown to respond more quickly to 157 

unexpected stimuli with their left hand compared with their right hand (e.g. Fox et al., 158 

2006 reference). And, nonverbal, emotional vocalizations (e.g. cries and shouts) have 159 

demonstrated a right-hemisphere activation dominance in contrast to emotionally 160 

neutral vocalizations, which were biased to the left hemisphere (for a review see, 161 

Scott et al., 2009). Moreover, studies of brain damaged individuals suggest that 162 

people who incur left hemisphere trauma are more likely to become depressed than 163 

those who incur injury to the right hemisphere (e.g. MacHale et al., 1998). One theory 164 

is that the right hemisphere possesses a sensitive attentional system that responds 165 

selectively for novel and dangerous stimuli in the environment (for a review see Fox 166 

et al., 2006). 167 

 168 

Social laterality has been little studied in the naturalistic behaviours of humans. The 169 

data that exists in this area suggest that mothers and fathers prefer to position their 170 

offspring on left side of their bodies (Nakamichi and Takeda, 1995; Scola and 171 

Vauclair, 2010a; Vauclair and Scola, 2009). While it is not proven that left arm 172 

cradling is associated with cerebral lateralization for the perception of emotion, the 173 



physical positioning is thought to enable social-emotional feedback stimuli (e.g. gaze, 174 

facial expression) to maintain a direct route to the right hemisphere (for a review, see 175 

Scola and Vauclair, 2010b). This interpretation gains support from a study that 176 

indicated that children who were held with a left arm preference demonstrated a 177 

typical left visual field (right hemisphere) bias for faces on chimeric face tests, 178 

whereas individuals who were held with a right-arm lacked a visual field bias 179 

(Vervloed, et al., 2011). The ramification of hemispheric bilateralization for social-180 

emotional processing has yet to be explored within the scope of cognitive 181 

development.  182 

 183 

The influence of the social environment on lateralized behaviors has now been 184 

investigated across a wide variety of animal species. New evidence suggests that the 185 

social environment elicits lateralized motor behavior. Currently, there is a paucity of 186 

data relating to how humans navigate their environmental space, and investigations 187 

that consider the naturalistic context of the individual are rare. The current study 188 

provides the first report of lateralized social behaviors elicited by two populations of 189 

human children during naturalistic play. Extending upon human and animal studies of 190 

social laterality, this study observed the natural and spontaneous lateral navigational 191 

routes of children around adults, peers and objects in order to consider cerebral 192 

lateralization and lateralized motor action within the social environment. 193 

 194 

2. Methods 195 

 196 

2.1 Participants 197 

 198 



All of the participants were observed unobtrusively in a naturalistic environment 199 

using an opportunity sampling method. Data relating to gender, age and handedness 200 

were not recorded. Only children were included in the study because it limits the 201 

influence of learnt social and cultural conventions. The procedures for this study 202 

involving human participants were in accordance with ethical standards of the 203 

responsible committee on human experimentation (institutional and national) and with 204 

the spirit of the Helsinki Declaration of 1975, as revised in 2000. 205 

 206 

2.1.1 Participants C-Population 207 

 208 

C-Population consisted of 101 individuals. Individuals were observed within a public 209 

play area, which contained equipment suitable for children up to a maximum of 210 

fourteen years of age.  211 

 212 

2.1.2 Participants M-Population 213 

 214 

M-Population consisted of approximately 200 children aged between four and eleven 215 

years. Individuals were observed within a school playground, (St Catherine’s Primary 216 

School, Kent) which contained equipment suitable for children school children aged 217 

between 5-11 years.  218 

 219 

2.2 Data capture  220 

 221 

The study considered the observed naturalistic play behaviours of two separate 222 

populations of children (C-Population and M-Population) at different sites on 223 



different dates and independently coded by two different raters (C and M). Data for 224 

C-Population were collected between March and April in 2013, while data for M-225 

Population were collected between the January and February 2014.  226 

 227 

Children were observed during naturalistic play for the assessment of navigational 228 

behaviours within the social environment. C-Population data were recorded over 3 229 

visits for an average of 60 minutes visit, equalling a total of approximately 180 230 

minutes and 340 events. M-Population data were recorded over 7 visits for an average 231 

of 25 minutes per visit equalling a total of 175 minutes and 348 events.  232 

 233 

2.3 Data Coding 234 

 235 

Two independent raters recorded observational data (C, M). Only information 236 

specifically related to lateral direction on a sagittal plane was recorded. A pen and 237 

paper recording method was adopted using a preformatted spread-sheet indicating 238 

variables to be recorded. The lateral path (left, right) that the observed child chose to 239 

navigate around stationary target (peer, adult, object) on order to reach a position 240 

accessible by a clear path on both sides and of approximately equal distance achieved 241 

by a left or right path was noted (Figure 1). 242 

 243 

Figure 1. 244 

 245 

- Insert Figure 1 -  246 

 247 



Figure 1 illustrates the two possible navigational paths (left, right) of the observed 248 

child around a target (in this case a peer). A left or right navigational path inherently 249 

dictates the side of the body that will be presented to the individual around which the 250 

observed child navigates. In this case, a left navigational path presents the right side 251 

of the body and right visual field to the peer. A right navigational path presents the 252 

left side of the body and the left visual field to the peer.  253 

 254 

Navigation around both peers and adults was considered. Additionally, a control 255 

condition was employed utilizing fixed, inanimate objects (e.g. large rubbish bin) in 256 

order to create the following 2x3 factor design: navigate left (adult), navigate left 257 

(peer), navigate left (object), navigate right (adult), navigate right (peer), navigate 258 

right (object). To control for confounding factors, each navigational path of an 259 

observed child began at a neutral point (approximately equidistant left or right from 260 

the desired location), and proceeded around (left or right) one of the target categories 261 

(adult, peer, object). The observed child and the target (peer, adult) were required to 262 

have directed gaze. If the observed child was navigating around a peer or adult that 263 

was facing away (gaze averted or obscured), the trial was excluded. Additionally, if a 264 

child began navigation from an ambiguous position (i.e. not equidistant from the 265 

desired goal location), the event was excluded from the analysis. Each navigational 266 

path was equal to one frequency point. In line with Quaresmini et al. (2014), to ensure 267 

that the relative presence of the social partner was influencing the positioning of the 268 

focal subject, we adopted an approximate distance of less than 3 m or less between the 269 

child being observed and the social partners. 270 

 271 



Data collection method varied slightly between the two populations of children. For 272 

C-Population, a focal sampling approach was employed. Each focal follow lasted two 273 

minutes in duration. Data were included to the dataset if two minutes of continuous 274 

observation was completed. Stationery object targets consisted of a tree, a rubbish bin 275 

and an ornamental rock and remained consistent across all data collection visits. 276 

These objects were fixed at the entry point of the playground and required lateral 277 

navigation to access the playground equipment. These fixed items were chosen 278 

because they presented equal opportunity for navigation around both sides. 279 

 280 

M-Population data collection consisted of an opportunity sampling of an entire school 281 

population. Each data point was collected based around a stationery target (adult, 282 

peer, object) used as a reference location. It was necessary that animate targets 283 

remained stationery throughout the observed child’s navigational path to their desired 284 

location. Stationery object target was a rubbish bin. This object and its location 285 

remained consistent throughout all seven data collection visits. The bin was located at 286 

the intersection of two discrete segments of the playground, such that it was 287 

circumnavigated by the majority of the children during any given play session.  288 

 289 

2.4 Data Analysis 290 

 291 

A laterality index (LI), binomial tests, z-scores approximations of the binomial scores 292 

and a chi-square test were performed to assess population-level lateral biases. 293 

Additionally, peer and adult frequencies were collapsed within and between the two 294 

populations in order to consider the influence of animate and inanimate targets (e.g. 295 

Forrester et al. 2011; 2012; 2013). LI scores were calculated using the formula [LI = 296 



(R-L)/(R+L)], with R and L being the frequency counts for right and left navigational 297 

path frequency counts. LI values vary on a continuum between -1.0 and +1.0, where 298 

the sign indicates the direction of hand preference. When R=L, then LI is zero. 299 

Positive values reflect a right navigational path preference while negative values 300 

reflect a left navigational path preference. The absolute value depicts the strength of 301 

hand preference. The directional strength of navigational path for each population was 302 

calculated using z-scores such that a population were left navigational path biased 303 

when z ≤ -1.96, right navigational path biased when z ≥ 1.96 and ambi-preferent for 304 

path direction when -1.96 < z < 1.96. All statistical tests were two-tailed (alpha < .05). 305 

 306 

3. Results 307 

 308 

Raw frequencies, binomial approximations of z-scores for each population and HI 309 

scores are presented in Table 1 by population (M Population, C Population and 310 

populations combined). Factors are displayed by target condition (peer, adult, object) 311 

and side (left, right). 312 

 313 

Table 1 demonstrates raw frequencies, binomial approximations of z-scores and HI 314 

scores of unimanual lateralized hand actions.  315 

 316 

- Insert Table 1 -  317 

 318 

Because the binomial tests indicated that children navigated around both peers and 319 

adults with a significant bias of presenting their left side, in both populations, these 320 

two levels were collapsed for further statistical tests. A 2x2 chi-square test was 321 



conducted on each population to consider target (human, object) and side (left, right). 322 

The M-Population revealed a significant interaction between target and side such that 323 

the children were biased towards a rightward navigational path around a peer, where 324 

as navigation around an object did not elicit a lateral bias 
2
(1, N = 101) = 5.27, p = 325 

.022. Likewise, the C-Population revealed a significant interaction between target and 326 

side such that the children were biased towards a rightward navigational path around a 327 

peer, where as navigation around an object did not elicit a lateral bias 
 2

(1, N = 200) 328 

= 11.7, p = .001 (Figure 2). 329 

 330 

Figure 2.  331 

 332 

- Insert Figure 2 -  333 

 334 

Figure 2 demonstrates the total frequencies by each population for target type (human, 335 

object) and navigation path (left, right).  336 

 337 

Since both populations resulted in a significant bias for children choosing a right path 338 

to navigate human targets, a further chi-square test was conducted on the pooled data 339 

from both populations to demonstrate the robustness of the pattern, 
 2

(1, N = 301) = 340 

20.22, p < .000 (Figure 3). 341 

 342 

Figure 3. 343 

 344 

- Insert Figure 3 - 345 

 346 



Figure 3 illustrates the total frequencies by the combined population for target type 347 

(human, object) and navigation path (left, right).  348 

 349 

4. Discussion 350 

 351 

The present study considered the lateral navigational paths of children within a 352 

naturalistic setting to align with investigations of social lateralization in observational 353 

animal studies. Two populations of children were assessed by different observers at 354 

different locations, and at different times. Analyses revealed that both populations 355 

expressed a significant population-level bias for choosing a rightward navigational 356 

path around a human compared with a leftward navigational path. Additionally, 357 

neither population expressed a significant bias for a lateral preference when 358 

navigating around an object. These findings are to be considered in light of 359 

evolutionary theories for cerebral lateralization.  360 

 361 

A bias for a right navigational path inherently implies that the navigating child is 362 

presenting the stationary target with the left side of the body. This social positing 363 

could impact upon both the production and perception of emotion processing. In the 364 

first instance, a bias to keep conspecifics on the left side inherently provides an 365 

advantage for viewing social stimuli with the left visual field. The left visual field 366 

would provide the most efficient route to the right hemisphere for processing identity, 367 

intention and angry or fearful facial expressions. This is consistent with animal 368 

studies that have demonstrated a left eye/right hemisphere preference bias for to 369 

monitoring familiar versus unfamiliar conspecifics (domestic chick: Deng and Rogers, 370 

2002; Vallortigara and Andrew, 1991; Vallortigara et al., 2001; fish: Brown et al., 371 



2007; Sovrano, 2004; chimpanzees and gorillas: Quaresmini et al. 2014). 372 

Additionally, a bias of the left visual field/right hemisphere has been reported in 373 

recognizing faces and facial expressions in both apes (Morris and Hopkins, 1993) and 374 

humans (De Renzi et al., 1994; Kanwisher et al., 1998). Within this context, exposing 375 

the left side of the body to conspecifics might be advantageous during novel or urgent 376 

situations to execute physical behaviors for protection and locomotion escape 377 

behaviors. In the second instance, the left side of the face in non-human primates has 378 

been reported to display emotive expression both earlier and more intensely than the 379 

right side of the face (Fernández-Carriba et al., 2002; Hauser, 1993; Hook-Costigan 380 

and Rogers, 1998). This lateral positioning may reflect a strategy to clearly display 381 

arousal status in order to inhibit extreme aggressive behavioral responses (Baraud et 382 

al., 2009).  383 

 384 

Although approaching and withdrawing beahviours are well documented across 385 

animal species (Davidson et al., 1990; Quaranta et al., 2007; Siniscalchi et al., 2013), 386 

little is still known about how this behavior manifests in modern humans. Modern 387 

humans represent an animal species with an extremely complex social system. Many 388 

of our conscious motor actions related to approaching individuals are shaped and 389 

influenced by culture and social convention (e.g. hand shakes, kissing, etc.). However, 390 

our automatic motor actions may still represent evolutionary primitive patterns of 391 

behavior that are underpinned by cerebral specialization of the two hemispheres. 392 

Moreover, the display of these population-level lateralized behaviours (e.g. bias for 393 

keeping conspecifics in the left visual field) may be rooted in social species and 394 

facilitates the social communication and the prediction of social responses (Ghirlanda 395 

and Vallortigara, 2004; Vallortigara and Rogers, 2005). 396 



 397 

Studies of cerebral lateralization indicate that the dominant functions are not solely 398 

processed by a single hemisphere. For example, studies of processing social stimuli 399 

also indicate small contributions from the left hemisphere: Meng et al., 2012), 400 

monkeys (Broad et al., 2000; Guo et al., 2009; Hamilton and Vermeire, 1988; Pinsk et 401 

al., 2005), dogs (Guo et al., 2009), and sheep (Peirce et al., 2000; Peirce and Kendrik, 402 

2002). Therefore, there are limitations to the extent with which we can attribute a 403 

single function to a single hemisphere. Additionally, more detailed studies on 404 

lateralized motor biases are necessary at the individual level to shed further light on 405 

the association between cerebral lateralization of function and contralateral motor 406 

action. Nevertheless, evidence from a wide range of animal species of hemispheric 407 

dominance for specific functions has proven to be an informative behavioral marker 408 

of brain organization (e.g. MacNeilage et al. 2009).  409 

 410 

Understanding how individuals navigate social networks may shed light on how and 411 

which environmental pressures helped to shape modern human social behavior. 412 

Specifically, the environment may have been a critical pressure in aligning population 413 

behavior for social actions requiring cooperation (Ghirlanda et al., 2009; Ghirlanda 414 

and Vallortigara, 2004; Vallortigara and Rogers, 2005). Additionally, future studies 415 

may consider the evaluation of the cognitive abilities of individuals with lateralized 416 

social navigation behaviors compared with individuals who do not express lateralized 417 

social navigation behaviors. It has been reported that stronger lateral motor 418 

dominance (e.g. handedness) correlates with the successful hemispheric specialization 419 

for language (Toga and Thompson, 2003). The present findings suggest that the 420 

environment elicits predictable behavior for social navigation that facilitates both the 421 



production and perception of social-emotion stimuli in typically developing children. 422 

Therefore, the identification of individuals lacking lateralized social navigations 423 

behaviors may allow for the early targeting of individuals with cognitive delays 424 

and/or disorders.  425 
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Abstract 26 

The current study provides the first evidence of human lateralized navigation of a 27 

social space within a naturalistic environment. We employed a quantitative, 28 

observational approach and report on a detailed set of nearly 700 independent 29 

navigational routes from two separate child populations consisting of over 300 30 

typically developing children, aged five to fourteen years. The navigational path was 31 

considered across the sagittal plane (left, right) around three distinct target types 32 

(peer, adult and object). Both child populations expressed a significant bias for 33 

choosing a rightward navigational path around a human target (e.g. peer, adult) and no 34 

lateral preference for navigation around fixed, inanimate objects. A rightward 35 

navigational path provides an advantage for the left visual field and the right 36 

hemisphere, facilitating both the production and perception of social-emotion stimuli. 37 

The findings are consistent with evidence from studies of non-human animal species 38 

demonstrating that the social environment elicits predictable lateralized behavior, and 39 

support an early evolutionary delineation of functional processing by the two 40 

hemispheres.  41 

 42 
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 50 



1. Introduction 51 

 52 

A growing body of evidence across a range of animal species demonstrates a bias to 53 

keep conspecifics situated on their left side. A left eye bias to monitor conspecifics is 54 

widespread across a range of vertebrates including: fish (De Santi, et al., 2001; 55 

Sovrano et al., 2001), toads (Robins et al., 1998), lizards (Deckel, 1995; Hews and 56 

Worthington, 2001), pigeons (Nagy et al., 2010), chicks (Vallortigara, 1992; 57 

Vallortigara and Andrew, 1991) and beluga whales (Karenina et al., 2010), and may 58 

represent a common evolutionary behavioral manifestation reflective of a right 59 

hemisphere dominance for processing social stimuli and arousing situations (for a 60 

review, see Rosa Salva et al., 2012). The findings from these studies support a 61 

hypothesis that lateralized perceptual behaviors may have derived from an early 62 

delineation of a right hemisphere dominance for responding to unexpected and 63 

behaviorally relevant stimuli (e.g. predator) and a left hemisphere dominance for well 64 

learned sequences of actions (e.g. feeding) (MacNeilage et al., 2009; Rogers, 2000a; 65 

Rogers et al., 2013). This type of asymmetric behavioral activity might have an 66 

adaptive value, facilitating simple reflexive and automatic responses to increase the 67 

survival of individuals (Rutherford and Lindell, 2011). The appropriation of 68 

specialized processing to operate in parallel within the left and right hemispheres is 69 

thought to facilitate neural efficiency: allowing different functions to operate in 70 

parallel, decreasing the duplication of functioning across hemispheres and eliminating 71 

the initiation of simultaneous and incompatible responses (Rogers et al., 2004; 72 

Tommasi, 2009; Vallortigara and Rogers, 2005). 73 

 74 



Right hemisphere dominance patterns have been reported for face perception and 75 

social recognition in a range of animal species. For example, a left gaze bias for face 76 

perception (e.g. looking time of centrally presented faces) has been reported in: sheep 77 

(Peirce et al., 2000), dogs and rhesus monkeys (Guo et al., 2009), chimpanzees 78 

(Morris and Hopkins, 1993), and humans (behavioral study: Burt and Perret, 1997; 79 

neuro-imaging: Kanwisher et al., 1998). A left motor bias (right hemisphere 80 

dominance) has also been reported for the production of facial expressions in 81 

marmosets (Hook-Costigan and Rogers, 1998) macaques (Hauser, 1993), baboons 82 

(Wallez and Vauclair, 2011) and in chimpanzees (Fernández-Carriba et al., 2002), 83 

indicating that both the perception and production of emotions may be preferentially 84 

controlled by the right hemisphere.  85 

 86 

Nonhuman primates demonstrate an excellent animal model for understanding the 87 

evolutionary emergence of lateralized behaviors related to the social environment. 88 

There is little naturalistic evidence from field studies to align with those from other 89 

animal species discussed earlier. However, studies that consider spontaneous 90 

naturalistic, species-specific encounters in nonhuman primates have reported a left 91 

visual preference (right hemisphere dominance) during aggressive encounters in 92 

gelada baboons (Casperd and Dunbar, 1996) and in a zoo-housed group of mangabeys 93 

during spontaneous approach behaviors (Baraud et al., 2009), suggesting that 94 

rudimentary primitive avoidance behaviors controlled by the right hemisphere may 95 

have contributed to the emergence of negative emotions (Vallortigara and Rogers, 96 

2005; Vallortigara et al., 2011).  97 

 98 



Evidence from great ape studies has highlighted the importance of the social 99 

environment in modulating behavior during social interactions and situations 100 

involving increased arousal. High-ranking chimpanzees were approached significantly 101 

more frequently from their left visual hemifield suggesting the facilitation for the 102 

rapid identification of facial expressions and predictability of behaviors by the right 103 

hemisphere (Fernández-Carriba et al., 2002). Left biased motor asymmetries have 104 

also been associated with self-directed behaviours. For example, rehabilitated 105 

orangutans exhibited a significant group-level lateralized preference for left-handed 106 

scratching and for the fine manipulation of parts of the face (Rogers and Kaplan, 107 

1995), and while self-directed scratching showed no hand preference in chimpanzees, 108 

there was a significant bias for scratching on the left side of the body (Hopkins, 109 

2006). Forrester and colleagues (2011; 2012) noted an increase in left hand (right 110 

hemisphere) activity during the observation of naturalistic unimanual hand actions for 111 

self-directed behaviors and hand actions directed towards social partners compared 112 

with hand actions directed towards objects. In all cases, the authors postulated a right 113 

hemisphere dominant role in the processing of emotive and arousal-increasing stimuli.  114 

 115 

A recent study by Quaresmini et al. (2014) aligns most closely with the evolution of 116 

social lateralization studies that indicate a preference to keep conspecifics proximally 117 

situated with a left visual field advantage during spontaneous natural behaviors. 118 

Observational focal sampling of spontaneous social behaviors in a family group of 119 

western lowland gorillas (Gorilla gorilla gorilla) and in a colony of captive zoo-living 120 

chimpanzees (Pan troglodytes), revealed group-level biases in both gorillas and 121 

chimpanzees (trend) for keeping conspecifics proximally situated to the left side of 122 

the focal individual compared with the right side. The authors suggest that lateral 123 



positioning is likely to reflect a right hemisphere specialization for a heightened state 124 

of arousal associated with the detection of faces and facial expressions. These studies 125 

support the evolutionary perspective that the right hemisphere retains dominant 126 

control for behaviors associated with individual recognition, decoding other’s 127 

intentions, and navigating the social hierarchical system (for a review, see Rosa Salva, 128 

et al., 2012). Moreover, findings from these studies suggest that the social 129 

environment may have been a critical pressure in aligning population behavior for 130 

predator defense and for cooperation (Ghirlanda et al., 2009; Ghirlanda and 131 

Vallortigara, 2004; Vallortigara and Rogers, 2005).  132 

 133 

The study of human emotion processing has a long history in the literature, dominated 134 

by two prevailing theories of cerebral lateralization. The right hemisphere hypothesis 135 

(e.g. Borod et al., 1998; Campbell, 1982) proposes that the right hemisphere is solely 136 

responsible for the processing of emotion. Alternatively, the valence hypothesis (e.g. 137 

Davidson, 1995) purports that both the right and the left hemispheres are involved in 138 

affect processing, such that the left hemisphere is dominant for positive affect and the 139 

right hemisphere is dominant for negative affect. Although animal studies do not 140 

contradict the right hemisphere theory from an evolutionary perspective, evidence 141 

from non-human animal approach/avoidance behaviors tend to be more parsimonious 142 

with the valence theory. For example, birds (Franklin III and Lima, 2001; Koboroff et 143 

al., 2008; Rogers, 2000b), lizards (in the laboratory: Bonati et al., 2013; in the wild: 144 

Martín et al., 2010), and toads (Lippolis et al., 2002), have all been shown to manifest 145 

a left eye preference for well-learned sequences of actions (e.g. predator monitoring), 146 

but conversely, they demonstrate a rightward preference for responding to urgent 147 

situations (e.g. escaping from the dangerous stimulus). Additionally, in great apes, a 148 



recent eye preference study found a left visual field /right hemisphere advantage for 149 

negative stimuli and right visual field/left hemisphere advantage for positive stimuli 150 

for viewing pictures (Braccini et al., 2012).  151 

 152 

In humans, the valence theory model has gained some support from laboratory 153 

investigations. For example, the right hemisphere demonstrated greater activation 154 

than the left hemisphere in the region of the superior temporal sulcus associated with 155 

the processing of an approaching stranger with directed mutual gaze (Pelphrey et al., 156 

2004). Additionally, right-handed people have been shown to respond more quickly to 157 

unexpected stimuli with their left hand compared with their right hand (e.g. Fox et al., 158 

2006 reference). And, nonverbal, emotional vocalizations (e.g. cries and shouts) have 159 

demonstrated a right-hemisphere activation dominance in contrast to emotionally 160 

neutral vocalizations, which were biased to the left hemisphere (for a review see, 161 

Scott et al., 2009). Moreover, studies of brain damaged individuals suggest that 162 

people who incur left hemisphere trauma are more likely to become depressed than 163 

those who incur injury to the right hemisphere (e.g. MacHale et al., 1998). One theory 164 

is that the right hemisphere possesses a sensitive attentional system that responds 165 

selectively for novel and dangerous stimuli in the environment (for a review see Fox 166 

et al., 2006). 167 

 168 

Social laterality has been little studied in the naturalistic behaviours of humans. The 169 

data that exists in this area suggest that mothers and fathers prefer to position their 170 

offspring on left side of their bodies (Nakamichi and Takeda, 1995; Scola and 171 

Vauclair, 2010a; Vauclair and Scola, 2009). While it is not proven that left arm 172 

cradling is associated with cerebral lateralization for the perception of emotion, the 173 



physical positioning is thought to enable social-emotional feedback stimuli (e.g. gaze, 174 

facial expression) to maintain a direct route to the right hemisphere (for a review, see 175 

Scola and Vauclair, 2010b). This interpretation gains support from a study that 176 

indicated that children who were held with a left arm preference demonstrated a 177 

typical left visual field (right hemisphere) bias for faces on chimeric face tests, 178 

whereas individuals who were held with a right-arm lacked a visual field bias 179 

(Vervloed, et al., 2011). The ramification of hemispheric bilateralization for social-180 

emotional processing has yet to be explored within the scope of cognitive 181 

development.  182 

 183 

The influence of the social environment on lateralized behaviors has now been 184 

investigated across a wide variety of animal species. New evidence suggests that the 185 

social environment elicits lateralized motor behavior. Currently, there is a paucity of 186 

data relating to how humans navigate their environmental space, and investigations 187 

that consider the naturalistic context of the individual are rare. The current study 188 

provides the first report of lateralized social behaviors elicited by two populations of 189 

human children during naturalistic play. Extending upon human and animal studies of 190 

social laterality, this study observed the natural and spontaneous lateral navigational 191 

routes of children around adults, peers and objects in order to consider cerebral 192 

lateralization and lateralized motor action within the social environment. 193 

 194 

2. Methods 195 

 196 

2.1 Participants 197 

 198 



All of the participants were observed unobtrusively in a naturalistic environment 199 

using an opportunity sampling method. Data relating to gender, age and handedness 200 

were not recorded. Only children were included in the study because it limits the 201 

influence of learnt social and cultural conventions. The procedures for this study 202 

involving human participants were in accordance with ethical standards of the 203 

responsible committee on human experimentation (institutional and national) and with 204 

the spirit of the Helsinki Declaration of 1975, as revised in 2000. 205 

 206 

2.1.1 Participants C-Population 207 

 208 

C-Population consisted of 101 individuals. Individuals were observed within a public 209 

play area, which contained equipment suitable for children up to a maximum of 210 

fourteen years of age.  211 

 212 

2.1.2 Participants M-Population 213 

 214 

M-Population consisted of approximately 200 children aged between four and eleven 215 

years. Individuals were observed within a school playground, (St Catherine’s Primary 216 

School, Kent) which contained equipment suitable for children school children aged 217 

between 5-11 years.  218 

 219 

2.2 Data capture  220 

 221 

The study considered the observed naturalistic play behaviours of two separate 222 

populations of children (C-Population and M-Population) at different sites on 223 



different dates and independently coded by two different raters (C and M). Data for 224 

C-Population were collected between March and April in 2013, while data for M-225 

Population were collected between the January and February 2014.  226 

 227 

Children were observed during naturalistic play for the assessment of navigational 228 

behaviours within the social environment. C-Population data were recorded over 3 229 

visits for an average of 60 minutes visit, equalling a total of approximately 180 230 

minutes and 340 events. M-Population data were recorded over 7 visits for an average 231 

of 25 minutes per visit equalling a total of 175 minutes and 348 events.  232 

 233 

2.3 Data Coding 234 

 235 

Two independent raters recorded observational data (C, M). Only information 236 

specifically related to lateral direction on a sagittal plane was recorded. A pen and 237 

paper recording method was adopted using a preformatted spread-sheet indicating 238 

variables to be recorded. The lateral path (left, right) that the observed child chose to 239 

navigate around stationary target (peer, adult, object) on order to reach a position 240 

accessible by a clear path on both sides and of approximately equal distance achieved 241 

by a left or right path was noted (Figure 1). 242 

 243 

Figure 1. 244 

 245 

- Insert Figure 1 -  246 

 247 



Figure 1 illustrates the two possible navigational paths (left, right) of the observed 248 

child around a target (in this case a peer). A left or right navigational path inherently 249 

dictates the side of the body that will be presented to the individual around which the 250 

observed child navigates. In this case, a left navigational path presents the right side 251 

of the body and right visual field to the peer. A right navigational path presents the 252 

left side of the body and the left visual field to the peer.  253 

 254 

Navigation around both peers and adults was considered. Additionally, a control 255 

condition was employed utilizing fixed, inanimate objects (e.g. large rubbish bin) in 256 

order to create the following 2x3 factor design: navigate left (adult), navigate left 257 

(peer), navigate left (object), navigate right (adult), navigate right (peer), navigate 258 

right (object). To control for confounding factors, each navigational path of an 259 

observed child began at a neutral point (approximately equidistant left or right from 260 

the desired location), and proceeded around (left or right) one of the target categories 261 

(adult, peer, object). The observed child and the target (peer, adult) were required to 262 

have directed gaze. If the observed child was navigating around a peer or adult that 263 

was facing away (gaze averted or obscured), the trial was excluded. Additionally, if a 264 

child began navigation from an ambiguous position (i.e. not equidistant from the 265 

desired goal location), the event was excluded from the analysis. Each navigational 266 

path was equal to one frequency point. In line with Quaresmini et al. (2014), to ensure 267 

that the relative presence of the social partner was influencing the positioning of the 268 

focal subject, we adopted an approximate distance of less than 3 m or less between the 269 

child being observed and the social partners. 270 

 271 



Data collection method varied slightly between the two populations of children. For 272 

C-Population, a focal sampling approach was employed. Each focal follow lasted two 273 

minutes in duration. Data were included to the dataset if two minutes of continuous 274 

observation was completed. Stationery object targets consisted of a tree, a rubbish bin 275 

and an ornamental rock and remained consistent across all data collection visits. 276 

These objects were fixed at the entry point of the playground and required lateral 277 

navigation to access the playground equipment. These fixed items were chosen 278 

because they presented equal opportunity for navigation around both sides. 279 

 280 

M-Population data collection consisted of an opportunity sampling of an entire school 281 

population. Each data point was collected based around a stationery target (adult, 282 

peer, object) used as a reference location. It was necessary that animate targets 283 

remained stationery throughout the observed child’s navigational path to their desired 284 

location. Stationery object target was a rubbish bin. This object and its location 285 

remained consistent throughout all seven data collection visits. The bin was located at 286 

the intersection of two discrete segments of the playground, such that it was 287 

circumnavigated by the majority of the children during any given play session.  288 

 289 

2.4 Data Analysis 290 

 291 

A laterality index (LI), binomial tests, z-scores approximations of the binomial scores 292 

and a chi-square test were performed to assess population-level lateral biases. 293 

Additionally, peer and adult frequencies were collapsed within and between the two 294 

populations in order to consider the influence of animate and inanimate targets (e.g. 295 

Forrester et al. 2011; 2012; 2013). LI scores were calculated using the formula [LI = 296 



(R-L)/(R+L)], with R and L being the frequency counts for right and left navigational 297 

path frequency counts. LI values vary on a continuum between -1.0 and +1.0, where 298 

the sign indicates the direction of hand preference. When R=L, then LI is zero. 299 

Positive values reflect a right navigational path preference while negative values 300 

reflect a left navigational path preference. The absolute value depicts the strength of 301 

hand preference. The directional strength of navigational path for each population was 302 

calculated using z-scores such that a population were left navigational path biased 303 

when z ≤ -1.96, right navigational path biased when z ≥ 1.96 and ambi-preferent for 304 

path direction when -1.96 < z < 1.96. All statistical tests were two-tailed (alpha < .05). 305 

 306 

3. Results 307 

 308 

Raw frequencies, binomial approximations of z-scores for each population and HI 309 

scores are presented in Table 1 by population (M Population, C Population and 310 

populations combined). Factors are displayed by target condition (peer, adult, object) 311 

and side (left, right). 312 

 313 

Table 1 demonstrates raw frequencies, binomial approximations of z-scores and HI 314 

scores of unimanual lateralized hand actions.  315 

 316 

- Insert Table 1 -  317 

 318 

Because the binomial tests indicated that children navigated around both peers and 319 

adults with a significant bias of presenting their left side, in both populations, these 320 

two levels were collapsed for further statistical tests. A 2x2 chi-square test was 321 



conducted on each population to consider target (human, object) and side (left, right). 322 

The M-Population revealed a significant interaction between target and side such that 323 

the children were biased towards a rightward navigational path around a peer, where 324 

as navigation around an object did not elicit a lateral bias 
2
(1, N = 101) = 5.27, p = 325 

.022. Likewise, the C-Population revealed a significant interaction between target and 326 

side such that the children were biased towards a rightward navigational path around a 327 

peer, where as navigation around an object did not elicit a lateral bias 
 2

(1, N = 200) 328 

= 11.7, p = .001 (Figure 2). 329 

 330 

Figure 2.  331 

 332 

- Insert Figure 2 -  333 

 334 

Figure 2 demonstrates the total frequencies by each population for target type (human, 335 

object) and navigation path (left, right).  336 

 337 

Since both populations resulted in a significant bias for children choosing a right path 338 

to navigate human targets, a further chi-square test was conducted on the pooled data 339 

from both populations to demonstrate the robustness of the pattern, 
 2

(1, N = 301) = 340 

20.22, p < .000 (Figure 3). 341 

 342 

Figure 3. 343 

 344 

- Insert Figure 3 - 345 

 346 



Figure 3 illustrates the total frequencies by the combined population for target type 347 

(human, object) and navigation path (left, right).  348 

 349 

4. Discussion 350 

 351 

The present study considered the lateral navigational paths of children within a 352 

naturalistic setting to align with investigations of social lateralization in observational 353 

animal studies. Two populations of children were assessed by different observers at 354 

different locations, and at different times. Analyses revealed that both populations 355 

expressed a significant population-level bias for choosing a rightward navigational 356 

path around a human compared with a leftward navigational path. Additionally, 357 

neither population expressed a significant bias for a lateral preference when 358 

navigating around an object. These findings are to be considered in light of 359 

evolutionary theories for cerebral lateralization.  360 

 361 

A bias for a right navigational path inherently implies that the navigating child is 362 

presenting the stationary target with the left side of the body. This social positing 363 

could impact upon both the production and perception of emotion processing. In the 364 

first instance, a bias to keep conspecifics on the left side inherently provides an 365 

advantage for viewing social stimuli with the left visual field. The left visual field 366 

would provide the most efficient route to the right hemisphere for processing identity, 367 

intention and angry or fearful facial expressions. This is consistent with animal 368 

studies that have demonstrated a left eye/right hemisphere preference bias for to 369 

monitoring familiar versus unfamiliar conspecifics (domestic chick: Deng and Rogers, 370 

2002; Vallortigara and Andrew, 1991; Vallortigara et al., 2001; fish: Brown et al., 371 



2007; Sovrano, 2004; chimpanzees and gorillas: Quaresmini et al. 2014). 372 

Additionally, a bias of the left visual field/right hemisphere has been reported in 373 

recognizing faces and facial expressions in both apes (Morris and Hopkins, 1993) and 374 

humans (De Renzi et al., 1994; Kanwisher et al., 1998). Within this context, exposing 375 

the left side of the body to conspecifics might be advantageous during novel or urgent 376 

situations to execute physical behaviors for protection and locomotion escape 377 

behaviors. In the second instance, the left side of the face in non-human primates has 378 

been reported to display emotive expression both earlier and more intensely than the 379 

right side of the face (Fernández-Carriba et al., 2002; Hauser, 1993; Hook-Costigan 380 

and Rogers, 1998). This lateral positioning may reflect a strategy to clearly display 381 

arousal status in order to inhibit extreme aggressive behavioral responses (Baraud et 382 

al., 2009).  383 

 384 

Although approaching and withdrawing beahviours are well documented across 385 

animal species (Davidson et al., 1990; Quaranta et al., 2007; Siniscalchi et al., 2013), 386 

little is still known about how this behavior manifests in modern humans. Modern 387 

humans represent an animal species with an extremely complex social system. Many 388 

of our conscious motor actions related to approaching individuals are shaped and 389 

influenced by culture and social convention (e.g. hand shakes, kissing, etc.). However, 390 

our automatic motor actions may still represent evolutionary primitive patterns of 391 

behavior that are underpinned by cerebral specialization of the two hemispheres. 392 

Moreover, the display of these population-level lateralized behaviours (e.g. bias for 393 

keeping conspecifics in the left visual field) may be rooted in social species and 394 

facilitates the social communication and the prediction of social responses (Ghirlanda 395 

and Vallortigara, 2004; Vallortigara and Rogers, 2005). 396 



 397 

Studies of cerebral lateralization indicate that the dominant functions are not solely 398 

processed by a single hemisphere. For example, studies of processing social stimuli 399 

also indicate small contributions from the left hemisphere: Meng et al., 2012), 400 

monkeys (Broad et al., 2000; Guo et al., 2009; Hamilton and Vermeire, 1988; Pinsk et 401 

al., 2005), dogs (Guo et al., 2009), and sheep (Peirce et al., 2000; Peirce and Kendrik, 402 

2002). Therefore, there are limitations to the extent with which we can attribute a 403 

single function to a single hemisphere. Additionally, more detailed studies on 404 

lateralized motor biases are necessary at the individual level to shed further light on 405 

the association between cerebral lateralization of function and contralateral motor 406 

action. Nevertheless, evidence from a wide range of animal species of hemispheric 407 

dominance for specific functions has proven to be an informative behavioral marker 408 

of brain organization (e.g. MacNeilage et al. 2009).  409 

 410 

Understanding how individuals navigate social networks may shed light on how and 411 

which environmental pressures helped to shape modern human social behavior. 412 

Specifically, the environment may have been a critical pressure in aligning population 413 

behavior for social actions requiring cooperation (Ghirlanda et al., 2009; Ghirlanda 414 

and Vallortigara, 2004; Vallortigara and Rogers, 2005). Additionally, future studies 415 

may consider the evaluation of the cognitive abilities of individuals with lateralized 416 

social navigation behaviors compared with individuals who do not express lateralized 417 

social navigation behaviors. It has been reported that stronger lateral motor 418 

dominance (e.g. handedness) correlates with the successful hemispheric specialization 419 

for language (Toga and Thompson, 2003). The present findings suggest that the 420 

environment elicits predictable behavior for social navigation that facilitates both the 421 



production and perception of social-emotion stimuli in typically developing children. 422 

Therefore, the identification of individuals lacking lateralized social navigations 423 

behaviors may allow for the early targeting of individuals with cognitive delays 424 

and/or disorders.  425 
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Navigation Path C-Population M-Population Combined 

Left around peer  39 32 71 

Right around peer  122 65 187 

Laterality index .52 .34 .45 

z-score 6.46 3.25 7.16 

Binomial  p < .000* p = .001* p < .000* 

Left around an adult  32 36 68 

Right around an adult  77 58 135 

Laterality index .42 .23 .33 

z-score 4.21 2.17 4.63 

Binomial  p < .000* p = .029* p < .000* 

Left around an object  34 75 109 

Right around an object  38 82 120 

Laterality index 0.06 0.05 0.05 

z-score 0.35 0.48 0.66 

Binomial  p = .724, ns p = .632, ns p = .509, ns 

 
 
 
 
 
 
 
 
 
B = binomial approximation of z-score, z = z-score, LI = laterality index (* significant, p<.05, two-tailed) 
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