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Partner selection in sustainable supply chains: a fuzzy ensemble 

learning model

Abstract: With the increasing demands on businesses to operate more sustainably, 

firms must ensure that the performance of their whole supply chain in sustainability is 

optimized. As partner selection is critical to supply chain management, focal firms now 

need to select supply chain partners that can offer a high level of competence in 

sustainability. This paper proposes a novel multi-partner classification model for the 

partner qualification and classification process, combining ensemble learning 

technology and fuzzy set theory. The proposed model enables potential partners to be 

classified into one of four categories (strategic partner, preference partner, leverage 

partner and routine partner), thereby allowing distinctive partner management 

strategies to be applied for each category. The model provides for the simultaneous 

optimization of both efficiency in its use of multi-partner and multi-dimension 

evaluation data, and effectiveness in dealing with the vagueness and uncertainty of 

linguistic commentary data. Compared to more conventional methods, the proposed 

model has the advantage of offering a simple classification and a stable prediction 

performance. The practical efficacy of the model is illustrated by an application in a 

listed electronic equipment and instrument manufacturing company based in 

southeastern China.

Keywords: Partner selection; Sustainable supply chains; Ensemble learning; Fuzzy set 

theory; Machine learning

1. Introduction

Growing public pressures from regulations, policies, NGOs, customers, as well as 

competitors have all caused companies to pay more attention to sustainable 

performance and apply the concept of sustainable supply chains (SSCs) (Soleimani et 

al. 2017; Shafiq et al. 2017). Environmental and social dimension requirements have 

extended from a single firm to the whole supply chain (Zimmer et al. 2016). In other 

words, these requirements not only require companies themselves to balance social, 

economic and environmental performance, but also require their supply chain partners 
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to scrutinize their performance in energy efficiency, environmental protection, and 

corporate social responsibility (CSR) while pursuing economic objectives (Kannan 

2018; Banaeian et al. 2018; Awasthi and Omrani 2019). The performance of potential 

partners influences the performance of the whole supply chain in terms of purchasing 

(Yin et al. 2016; Kazemi et al. 2018), production (Gharaei et al. 2019a; 2019b), 

inventory (Gharaei et al. 2019c; 2019d), distribution (Hoseini Shekarabi et al. 2019), 

and logistics (Rabbani et al. 2018). Also, cooperation and trust between partners is 

crucial for supply chain design (Sarkar and Giri 2018; Hao et al. 2018) and planning 

(Duan et al. 2018). Therefore, partner selection has become a critical issue for 

complying with sustainable supply chain management (Govindan et al. 2015; Oelze 

2017). Considering how to evaluate and select appropriate partners is one of the most 

crucial challenges confronted by decision-makers in SSCs (Lima Junior et al. 2014; 

Rabbani et al. 2019). 

The full process of partner selection in SSCs includes: a) criteria formulation, b) partner 

qualification and classification, c) final selection, and d) selection feedback (Luo et al. 

2009; Wu and Barnes 2012; Zimmer et al. 2016). Most existing research in this field 

focuses on the third step (final selection). However, the quality of decision-making in 

final selection (on supply chain network design, lot-sizing coordination and other 

supply chain practices) has a significant relationship with the quality of previous 

decision-making steps. Partner qualification and classification is an indispensable 

prerequisite in the partner selection process (Wu and Barnes 2014). 

Ineffective or inappropriate partner qualification and classification decision-making 

can result in many CSR and environmental incidents among supply chains. A tragic 

example of this was the Bangladesh garment factory collapse in 2013, which killed 

thousands of workers (Fox 2013; Friedman 2015). UK fashion brand Primark also 

suffered manufacturing disruption and brand reputation damage because of its neglect 

of CSR and safety issues in the process of partner qualification and classification 

(Hendriksz 2017). Furthermore, several other fashion brands (for instance, Zara, H&M, 

and Forever 21) have also been questioned on environmental concerns and labor issues 

involving their supply chain partners according to the 2015 documentary “The True 

Cost” (Morgan 2015). 
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Therefore, this paper addresses this problem by proposing a novel multi-partner 

classification model for the partner qualification and classification process. Use of the 

model will enable potential partners to be classified into one of four categories 

(strategic partner, preference partner, leverage partner and routine partner), thereby 

allowing distinctive partner management strategies to be applied to each category.

Historically, companies have tended to only concentrate on economic criteria such as 

cost, quality and lead time when evaluating partners. This approach is now considered 

to be outdated and there is a need to also consider sustainability criteria, especially in 

social and environmental factors (Kannan et al. 2013). This research follows the triple 

bottom line (TBL) approach proposed by Elkington (1998) to consider criteria from the 

economic, environmental and social dimensions of sustainability during the partner 

qualification and classification process. Selecting appropriate partners under triple 

bottom line criteria requires an effective and efficient approach capable of analyzing 

both qualitative and quantitative data. Accordingly, this paper proposes a model to 

overcome the limitations of existing research for sustainable partner selection, 

especially in the qualification and classification phase, by combining fuzzy set theory 

(FST) and ensemble learning technology (ELT). 

ELT is well suited to this research problem and has shown excellent classification and 

prediction capability in financial, medical, social and other applications (Polikar 2006; 

Liang et al. 2018). Yet, ELT can only process deterministic and numerical data (Polikar 

2006), rather than vague and linguistic evaluation data. In contrast, FST can convert 

qualitative and vague linguistic criteria and data into numeric values very efficiently 

(Buyukozkan and Cifci, 2012), which ELT cannot. Triple bottom line systems naturally 

contain criteria, in which partner performances are expressed in terms of linguistic 

preference, with all their vagueness and uncertainty (Wu and Barnes 2012). Therefore, 

using these two methods in combination can make their respective advantages 

complementary to each other. As far as the authors are aware, such a combination has 

not previously been applied in partner selection problems. Incorporating FST into ELT 

enhances the ability to handle qualitative performance indicators while improving the 
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efficiency and effectiveness of the decision-making process of partner selection in 

SSCs.

The research aims to make both theoretical and practical contributions. From the 

theoretical aspect, firstly, the proposed model will be able to cope with the vagueness 

and uncertainty of the decision-making environment that is characteristic of partner 

selection in SSCs. Its use of will enable the vague and imprecise preferences of 

decision-makers to be captured effectively. Secondly, this is the first time that ensemble 

learning technology will be applied in partner selection for SSCs. In addition, by 

introducing FST, the proposed model will overcome the big weakness of the original 

ensemble learning model, namely that it can typically only handle numerical criteria 

and data. Thirdly, the combination of ELT and FST will enrich the categories of both 

qualitative and quantitative data used for inputting and so will widen the applicability 

of the model. Thereby, the proposed model will be capable of considering, 

systematically, not only quantitative but also qualitative criteria. 

From the practical aspect, firstly, the proposed model will have a considerable ability 

to handle large quantities of data, which is a fundamental requirement of partner 

selection decision-making, especially during the early stages of the process (Wu and 

Barnes, 2011). Secondly, the proposed model will offer the flexibility of expanding or 

deleting the number of evaluation criteria without having to revise all evaluation 

knowledge, as would be the case for AHP/ANP (Analytic Hierarchy Process/Analytic 

Network Process. Thirdly, it will be almost a ‘free-parameter’ algorithm. As will be 

shown in Section 4 and 5, the proposed model is able to achieve favorable prediction 

accuracy in default parameters, which will considerably decrease the complexity of 

decision-making. Last, but not least, ELT can operate under conditions of partially 

missing data. This can be vital for partner selection when some historical data is 

unavailable or when companies refuse to disclose information due to concerns about 

commercial confidentiality.

Following this Introduction, the paper is organized as follows. Section 2 provides a 

comprehensive literature review on evaluation criteria construction and partner 

selection models. Section 3 briefly introduces the concept of FST and ensemble 
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learning strategies and then proposes the fuzzy ensemble learning model. In Section 4, 

an illustrative application is provided to demonstrate the model in use. This concludes 

with a sensitivity analysis under various scenarios. Section 5 discusses the outcomes of 

the application of the model, and particularly considers managerial implications. The 

paper closes with section 6, which considers both the advantages and limitations of the 

proposed approach, and discusses future research opportunities. 

2. Literature review

2.1 Formulation of criteria for sustainable partner selection and classification

Partner selection in SSCs is a multi-criteria and multi-objective problem under 

conditions of both vagueness and uncertainty. The analysis of how to screen criteria 

has been widely discussed by both researchers and practitioners since the 1960s. Since 

that time, the original consideration of only economic criteria has developed to 

incorporate a concern for sustainability, particularly as exemplified by the triple bottom 

line perspective. In seminal work, Dickson (1966) concluded that quality, delivery and 

performance history were the three most important indicators used by practitioners 

from a list of 23 possible economic criteria. This list has subsequently been used 

extensively by scholars in constructing representative and comprehensive supplier 

evaluation criteria systems (Weber et al. 1991; Ho et al. 2010). 

In the last decade, many academics have extended the set of evaluation criteria to 

include green characteristics. Kuo et al. (2010) identified six dimensions, including 

certification requirement and the restriction of hazardous substances, within the 

environment category when extending partner selection criteria beyond the classic cost, 

delivery and quality categories. Additionally, Hsu et al. (2013) assigned 13 carbon 

management indicators to 3 dimensions on the basis of a literature review and presented 

the DEMATEL (Decision-Making Trial and Evaluation Laboratory) approach to 

identify the most influential indicators in carbon management within green supply 

chains. Based on the framework of strategic alignment, application, process and context, 

Jenssen and de Boer (2019) review 39 representative publications on green supplier 

selection from 1997 to 2017. One of the interesting findings in their research is that life 
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cycle assessment-based criteria are the mostly commonly applied awarding criteria in 

supplier selection process. 

More recently, greater emphasis has been placed on social and sustainability criteria for 

the whole supply chain. Accordingly, evaluation criteria for potential partners have 

been extended beyond the original economic indicators to encompass both 

environmental and social criteria (Awasthi et al. 2018), to include such factors as 

environmental management systems (Banaeian et al. 2018; Govindan et al. 2015), 

corporate social responsibility (Ho et al. 2010; Feng et al. 2017) and stakeholder 

engagement (Kannan 2018; Tseng et al. 2018). Pierre et al. (2019) and Bai et al. (2019) 

both recognized the importance of green design within supply chain network practices 

and the application of innovative technologies and devices. In short, there is a benefit 

to partner selection decision-makers in SSCs in being able to construct their own 

customized set of evaluation criteria in accordance with their specific decision-making 

environment. 

2.2 Decision models for partner selection and classification

Following the structure of Kannan et al. (2013), it is possible to summarize and divide 

the existing partner selection multi-criteria decision making (MCDM) models into two 

broad groupings (shown as Figure 1). 

[Take in Figure 1 about here.]

2.2.1 Single MCDM models for partner selection and classification

(1) Conceptual models  The conceptual model is a representation of a system, made 

of the composition of concepts. Ehrgott et al. (2011) tested how pressure from 

customers, officials and employees determines supplier selection. Pedraza-Acosta et al. 

(2016) concluded that different competences are needed in selected partners as the 

product life cycle advances from product innovation, to product adoption to large-scale 

production. Kannan (2018) provided a decision support system based on critical success 

factors that incorporated the consideration of stakeholders into sustainable supplier 

selection. Keivanpour and Kadi (2017) presented an end-of-life complex product model 

formed of four essential aspects, namely operational, tactical, strategic and 
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sustainability. Sayyadi and Awasthi (2018a) presented a simulation-based optimisation 

model to determine the key factors in designing sustainable transportation services. 

Shafiq et al. (2017), Delbufalo (2017) and Chen et al. (2017) have all advanced the 

understanding of sustainable supply chain performance by highlighting the possibility 

of all parties in a supply chain obtaining significant returns, without any single party 

sacrificing their own single profitability, by developing relationships based on long-

term cooperation, rather than hostility. 

(2) Mathematical models  Mathematical models are descriptions of a system using 

mathematical concepts and language (Giri and Bardhan 2014; Shah et al. 2018). For 

example, Karaer et al. (2017) modelled the wholesale price premium and cost sharing 

as effect factors and developed insights into the optimal application strategies under 

single and competitive situations. Nematollahi et al. (2017) used mathematical 

experimentation to compare decentralized, centralized and collaborative models in the 

trade-off between order quantity and CSR investment. In short, these mathematical 

models have the advantage of enabling problems to be understood in terms of numerical 

outputs. They also enable the effects of different concepts to be directly studied. 

However, the disadvantage of these mathematical models is that the process of 

modelling necessarily simplifies real-world, partial variables in order to overcome the 

complexity of modelling and to lower computation cost (Nematollahi et al. 2017). 

Furthermore, this type of model tends to focus on pure methodology analysis, based on 

hypothetical examples, and so may miss the managerial implications. Greater use of 

real case study examples should be able to make any proposed method more reliable 

and convincing (Tsao 2015; Giri and Masanta 2018). 

(3) Multi-objective programming models  Multi-objective programming offers a 

capable and effective approach to simultaneously balancing the conflicting 

requirements associated with resource constraints (Gharaei et al. 2019a). It has been 

widely adopted in the field of supply chain management research, particularly to 

address the challenges associated with increased globalization, where it is important to 

trade-off the demands of customers, the profitability of companies and the 

environmental pressures from government legislators (Sgarbossa and Russo 2017). 

Nurjanni et al. (2017) developed a multi-objective model that enables the optimization 
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of both supply chain total cost and total CO2 emission, whilst maximizing service level 

and customer satisfaction. Govindan et al. (2017) provide a multi-objective model to 

minimize carbon emissions and the overall cost of supply chain activities, whilst 

maximizing the performance of all members of the supply chain. Yu et al. (2018) 

consider both economic and environmental criteria in order to facilitate a trade-off 

between carbon emissions, total supply chain profit and green factors. How to find and 

explain the optimal solutions is the key for the above multi-objective programming 

models. Under operational and disruption risks, Vahidi et al. (2018) construct a bi-

objective mixed programming model for sustainable supplier selection and order 

allocation. Yet, if the proposed model could incorporate the quantity discounts and 

inventory control issues, it would be closer to the complex business practice for 

sustainable supplier selection and order allocation. 

(4) Fuzzy set theory models  Galo et al. (2018) propose a hesitant fuzzy group 

decision model for supplier categorization based on the application of ELECTRE TRI. 

The application of FST in the proposed model can capture the uncertainty of judgments 

due to the possible lack of complete information and the qualitative nature of some 

criteria. Khan et al. (2018) apply fuzzy Shannon entropy to formulate the sustainability 

criteria while using fuzzy-inference system to evaluate and select potential sustainable 

suppliers. Yet, one of limitations of the above research is that the finding is sensitive to 

the assumptions of a single evaluation framework. Liu et al. (2019) develop a three 

stage multi-criteria decision-making approach to select sustainable suppliers under 

fuzzy environment. Their proposed model can effectively identify both advantages and 

disadvantages of the performance of potential suppliers. However, the subjectivity of 

expert selection and data interpretation is one of the main limitations of any FST related 

models. 

(5) Grey system and rough set models  Bai and Sarkis (2010) proposed a grey 

system and rough number theory based multi-stage approach for partner selection. The 

application of rough set theory allows distillation of a larger set of suppliers into a 

smaller set of preferred suppliers under an uncertainty decision-making environment. 

More recently, Badi and Ballem (2018) integrated rough number theory with BWM, in 

which rough-BWM could determine intervals of expert evaluations without additional 



-10-

information. To treat uncertainties and imprecisions in MCDM process, Chatterjee et 

al. (2018) incorporated DEMATEL and AHP method in the rough context to determine 

evaluation criteria weights, and finally to evaluate the potential suppliers’ green 

performance.

2.2.2 Integrated MCDM models for partner selection and classification

(1) DEA integrated models  DEA (Data Envelopment Analysis) is a non-parametric 

method used in operations research and economics for the estimation of performance 

and resource utilization efficiency (Emrouznejad and Yang, 2018). Kuo et al. (2010) 

proposed a green supplier selection model that integrates ANN (Artificial Neural 

Network) and DEA to evaluate the green performance of supply partners. The proposed 

model overcomes traditional DEA limitations of data accuracy and the number of 

decision-making units constraint. To rank sustainable suppliers and select benchmarks, 

Shabanpour et al. (2017) proposed a decision-making model by combining goal 

programming and DEA. They applied a robust CCR (Charnes-Cooper-Rhodes) 

inefficiency model for ranking the potential sustainable suppliers. Thus, the uncertainty 

of goals can be considered by running robust optimization technique. 

(2) AHP/ANP integrated models  Analytic network process (ANP) and analytic 

hierarchy process (AHP) have been applied in multi-criteria decision analysis in partner 

selection in the past few years in order to identify decision-makers’ preferences through 

split pairwise comparisons (Lima Junior et al. 2014; Sayyadi and Awasthi 2018b). 

Shaw et al. (2012) also combined fuzzy AHP and multi-objective programming in a 

model that simultaneously considers classic partner evaluation criteria such as cost, 

lead time and carbon emission. Like Shaw et al. (2012), Ahmadi et al. (2017) combined 

so-called improved grey relational analysis (IGRA) into AHP approach. They firstly 

used AHP to calculate the selected criteria weights in sustainable partner evaluation. 

Then, IGRA was introduced to handle the interval number and uncertainty in the 

evaluation stage. The final integrated model was verified in an application to the Iranian 

telecom industry. AHP/ANP approaches enable complex situations to be simplified 

using repeated pairwise comparisons. This is effective, but not efficient as it cannot 
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handle more than approximately fifteen criteria due to the exponential increase in 

comparison iterations.

(3) TOPSIS integrated models  TOPSIS (Technique for Order of Preference by 

Similarity to Ideal Solution) is a multi-criteria decision analysis method, originally 

developed by Hwang and Yoon (1981). Chen (2011) applied the TOPSIS model in 

constructing a two-stage method for partner selection. Stage one uses SWOT analysis 

to identify the company’s competitive strategy, which is then used to derive a 

framework for evaluation criteria. Then, stage two applies DEA to reduce potential 

suppliers to a smaller number, which are ranked using a multi-attribute decision-making 

approach. Govindan et al. (2013) applied FST to the process of weighting criteria in 

interpreting the preferences and vagueness of decision-makers based on triple-bottom- 

line principles. The final supplier order was calculated by using a fuzzy TOPSIS model. 

Through their applications to realistic problems, both Chen (2011) and Govindan et al. 

(2013) were able to demonstrate the capability of TOPSIS approaches in the ranking 

stage of their models as part of a series of partner selection procedures. More recently, 

Li et al. (2019) develop an extended TOPSIS method for sustainable supplier selection. 

Their model has noteworthy advantages in manipulating uncertainty of randomness and 

handling interpersonal uncertainty. 

(4) DEMATEL integrated model  The decision-making trial and evaluation 

laboratory (DEMATEL) method has been seen as one of the most appropriate methods 

to analyze the importance and causal relationships among different criteria. Hsu et al. 

(2013) applied DEMATEL to obtain the most significant indicator, as an information 

system in carbon management. Regarding the importance and relationships among 

criteria, Zhou et al. (2018) combined DEMATEL and VIKOR (VlseKriterijumska 

Optimizacija I Kompromisno Resenje) techniques to choose the best candidates for 

small-and-medium enterprises. Liu et al. (2018) applied a modification of DEMATEL 

and the single valued neutrosophic number (SVNN) to ranking alternative 

transportation providers. Both Zhou et al. (2018) and Liu et al. (2018) integrated 

DEMATEL with fuzzy set theory to deal with the incompleted and uncertain 

information and simplified the decision making process.
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(5) Machine learning  Machine learning is a field of computer science that uses 

statistical techniques to give computer systems the ability to ‘learn’, which is driven by 

the data instead of strictly static program instructions (Samuel 1959). Machine learning, 

which includes a list of distinct algorithms, is regarded as a powerful solution in many 

scientific research fields (Polikar 2006). Based on radial basis function artificial neural 

network, Luo et al. (2009) proposed an information-processing model which helps 

overcome the difficulties inherent in evaluating a large number of potential suppliers in 

agile supplier selection. However, their proposed model can only process quantitative 

criteria. To address this disadvantage, Wu and Barnes (2014) developed a fuzzy 

intelligent approach for partner selection in agile supply chains by combining FST with 

radial basis function artificial neural network. Both these two pioneering pieces of 

research above set an interesting direction for the application of machine learning 

methodology in the field of partner selection, but the effect of ensemble learning is 

better than the worst single classifier result (Dietterich 2000; Fernandez-Arias et al. 

2018). 

ELT is something of a current research hotspot in machine learning and has already 

been applied successfully in many fields. The essential idea of ELT is to maximize 

performance through combining a number of different models into the integrated 

application, with each component having different learning characteristics (Kuncheva 

2004). Tsai et al. (2011) combined both homogeneous and heterogeneous classifiers to 

predict stock returns concerning prediction accuracy and Type I & II error. 

Holimchayachotikul et al. (2014) initiated an integrated intelligent algorithm and 

machine learning model to enhance the value of the whole supply chain. They also 

introduced new value-creation concepts from a collaborative perspective. Geng et al. 

(2015), Zhao et al. (2017), Fernandez-Arias et al. (2018), and Halteh et al. (2018) all 

applied machine learning technology to financial distress prediction, achieving 

comparable or better performances than other methods, thereby demonstrating the 

capability of ensemble learning in dealing with multi-criteria decision problems. 

2.3 Summary of literature review

Partner selection is one of the most importance aspects of SSC Management because 

of its contribution to the sustainability profile of an organization (Bai and Sarkis 2010; 
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Ahmadi et al. 2017). Previously, different models have been proposed to deal with this 

vital problem. Table 1 offers a representative summary of models and algorithms that 

have been applied in the field of partner selection in recent literature. The distinctive 

features of each is outlined and compared to the model proposed in this paper. From 

the above detailed literature review and the comparisons of representative models in 

Table 1, we can conclude that there have been some good achievements in partner 

selection in SSCs in recent years, but some important research gaps remain to be 

addressed by further research. 

[Take in Table 1 about here.]

In summary, the following four main research gaps can be identified in the existing 

literature: 

1) Most of current research focuses only on the final selection stage of partner 

selection in SSCs (Zimmer et al. 2016). However, to a large extent, the decision-

making quality of final selection depends on the prior decision-making phases (Wu 

and Barnes 2011). In addition, although Kraljic’s matrix (1983) has been widely 

applied in purchasing and supplier management but it is a qualitative framework 

in nature, which restricts its veracity and objectivity. Therefore, more attention 

needs to be paid to the early stages of partner selection process. Specifically, in the 

qualification and classification phase, it would be beneficial to extend the 

practicability of, and enhance the objectivity of the Kraljic matrix. This presents 

an interesting research gap.

2) Most existing research has been predicated on conditions of certain and precise 

information (Shafiq et al. 2017; Sgarbossa and Russo 2017; Soleimani et al. 2017). 

However, decision-making in partner selection in SSCs, especially in the 

qualification and classification stage, is subject to much vagueness and uncertainty 

(Wu and Barnes 2011). As such, decision-making models and methods need to be 

able to cope under such conditions. At the same time, in actual business practice, a 

fundamental requirement of decision-making during this specific stage of partner 

selection process is that decision-making models and methods should have the 

ability to handle large quantities of data. However, most of existing approaches 
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cannot handle large quantities of data within a decision-making environment of 

vagueness and uncertainty. 

3) Although ensemble learning technology has been widely applied in many research 

areas and has proved its worth (Polikar 2006; Barsacchi et al. 2017), it has not 

previously been applied in partner selection. It seems to offer great opportunities 

to improve the efficiency of such decision-making. Yet, ELT also has its own 

shortcomings when handling the vagueness of qualitative criteria and evaluation. 

Therefore, how to enhance its strong points and to overcome its weakness in the 

field of partner selection is an urgent research gap for further research.

4) Most existing models and methods have little flexibility in changing the number of 

quantitative and qualitative evaluation criteria without having to revise all 

evaluation knowledge. How to build in the flexibility of expanding or deleting the 

number of evaluation criteria without having to revise both quantitative and 

qualitative evaluation results is a very important research gap for further research.

To bridge these gaps, this research proposes a fuzzy ensemble learning model which 

combines FST and ELT for partner selection in SSCs. On the one hand, FST has been 

shown to be effective in coping with the vagueness and uncertainty inherent in 

expressions of decision-makers’ preferences (Zadeh 1983; Buyukozkan and Cifci 2011; 

Govindan et al. 2017), which makes it ideal to deal with the type of qualitative 

indicators that are usually captured in linguistic terms (Soleimani et al. 2017; Ahmadi 

et al. 2017). On the other hand, machine learning technology, which has been 

successfully applied to the field of financial distress prediction (Halteh et al. 2018; 

Geng et al. 2015; Zhao et al. 2017), typically focuses on deterministic and numerical 

criteria but not qualitative criteria. In the proposed model, the fuzzy inference system 

(FIS) has been applied to transform linguistic preferences into numerical evaluations. 

Thus, with the help of FIS in evaluating the vagueness, ELT can process both 

qualitative and quantitative indicators. This means that the proposed fuzzy ensemble 

learning model can consider all the triple-bottom line principles in sustainable partner 

selection, simultaneously and effectively.
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3. Fuzzy ensemble learning model for partner selection in SSCs

In this section, a fuzzy ensemble learning model for partner selection in SSCs is 

proposed to classify potential partners. It corresponds to the second phase of Wu and 

Barnes’ (2012) four-phase partner selection framework.

The flowchart for the proposed model is shown in Figure 2. It comprises four stages:

Stage 1: Preparation for Partner Evaluation and Selection, in which an evaluation 

panel is established and a set of customized evaluation criteria are developed. 

Stage 2: Establishment of the Fuzzy Inference System, in which the judgments of 

decision-makers are collected and quantified. 

Stage 3: Constructing the Base Learners, in which base learners are trained with 

combined qualitative and quantitative data. 

Stage 4: Application of the Fuzzy Ensemble Learning Model, in which the most 

appropriate ensemble strategy and settings are identified in order to exploit 

the efficiency and effectiveness of the proposed model. 

[Take in Figure 2 about here.]

3.1 Preparation for partner evaluation and selection

The purpose of this stage is to develop customized evaluation criteria, based on the 

characteristics of the specific industry under consideration. The model adopts the 

systematic criteria construction methodology proposed by Wu and Barnes (2010; 2016). 

This divides the complex processes into three sub-stages: (1) General Hierarchy 

Criteria construction, (2) Specific Hierarchy Criteria construction, and (3) Optimization 

Hierarchy Criteria construction. The three-stage model combines both Dempster-

Shafer belief acceptability theory and particle swarm optimization technique, which 

enables optimization of both efficiency in its use of limited resources during the criteria 

formulation process, and effectiveness in its consideration of the inter-dependence of 

quantitative and qualitative criteria, to be achieved simultaneously. In this research, the 

three-stage model incorporates the triple bottom line principle. At this point, partners 
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who cannot satisfy minimum requirements, such as environmental protection laws and 

production technology standards, will be excluded from further consideration. 

It is important to apply distinct partner management strategies according to the 

characteristics of different types of partners (Wu and Barnes 2016; 2018). Kraljic’s 

(1983) matrix is one of the most used models to help decision-makers in prioritizing 

purchase activities and managing relationships with partners. It identifies two variables, 

supply risk and impact on financial results, as the determining factors for categorizing 

all procurement relationships, namely, strategic partner, leverage partner, preference 

partner and routine partner. By using this classic matrix, decision-makers of SSCs can 

manage their potential partners more easily and effectively.

[Take in Figure 3 about here.]

3.2 Establishment of Fuzzy Inference System

In the process of evaluating performance against qualitative indicators, decision-

makers use linguistic terms instead of precise numbers, in accordance with the 

vagueness and uncertainty which is characteristic of human reasoning (Wu and Barnes, 

2014). If such subjectivity is totally ignored, even where precise numbers can be easily 

obtained, it would damage the effectiveness of decision-making. FST is a way of 

manipulating data by providing mathematical strengths to resolve the uncertainty 

associated with the human reasoning and judging processes (Kannan et al. 2013). It has 

been widely used by researchers to describe and collect the subjective and vague terms 

used when evaluating qualitative indicators (Buyukozkan and Cifci 2012; Govindan et 

al. 2017). 

Fuzzy Inference System (FIS) is based on FST. It takes as its inputs the evaluation data 

on partners’ performance given in linguistic term and, by simulating the human 

reasoning, processes them with the aim of eliminating the obscurity of qualitative 

information. There are two classic FIS rules, namely Mamdani and TSK (Takagi-

Sugeno-Kang). Compared with the outputting crisp number in TSK, the number of ‘if 

– then’ rules of Mamdani’s is less than TSK’s. In addition, Mamdani has advantage on 

global semantic definition which can clearly separate the set of possible fuzzy number 
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(Kroi et al. 2007). All above features promise the Mamdani’s FIS achieving a delicate 

balance between interpretability and accuracy. Therefore, this research follows the 

four-step Mamdani’s FIS as follows: 

Sub-step 1: Fuzzify decision-makers’ preference. In this research, the linear 

triangular function is chosen to describe and collect the judgments of decision-makers. 

There are two main reasons for this choice. Firstly, the triangular function can handle 

most fuzzy inference situations and achieve satisficed results. Secondly, it is convenient 

for decision-makers to use and manipulate in subsequent data processing. A triangular 

fuzzy number can be shown as (a, b, c); the equation and graphic being shown 

respectively as follows:

                    (1)fA(x) =  {  0,  x < a,  x > c 
x - a
b - a,a ≤ x ≤ b
c - x
c - b,b ≤ x ≤ c

In this study, five linguistic terms are regarded as control molds for describing proper 

linguistic variable. Table 2 defines the linguistic variables and fuzzy numbers, and 

Figure 4 demonstrates the setting of fuzzy set with five-level linguistic variables.

[Take in Table 2 about here.]

[Take in Figure 4 about here.]

Sub-step 2: Develop knowledge base. It is worth mentioning that Mamdani’s method 

is capable and easily applied when the number of variables is small. Otherwise, as the 

number of variables in the antecedent or premise increases linearly, the total rules 

would increase exponentially. Table 3 shows the ‘if-then’ rules applied in the 

illustrative application section as an example. Specifically, the ‘Cases’ column in this 

table stands for the number of repeated rules due to the ignorance of the decision-

makers’ evaluation orders.

[Take in Table 3 about here.]

Sub-step 3: Configure inference engine. At this sub-step, the members of the 

evaluation panel discuss and construct their own customized fuzzy rules. And then, 
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according to the fuzzy rules set (shown in Table 3 as an example), Figure 5 depicts the 

surface of the fuzzy reasoning processing rules based on forward chaining theory, 

which starts with known facts and then asserts new facts.

[Take in Figure 5 about here.]

Sub-step 4: Defuzzify input variables. 

According to Mamdani and Assilian (1999) and Wu and Barnes (2014), the 

defuzzification is considered as a ‘tuning’ process. There are five basic methods for the 

defuzzying process. In general, COA (centroid of area), MOM (mean of max) and BOA 

(bisector of area) methods have advantages in modifying the judgment bias compared 

with SOM (smallest of max) and LOM (largest of max) methods. Furthermore, 

comparing with MOM and BOA, COA has higher capacity in overcoming the effect 

from extreme values, and then can aggregate a moderate output crisp number 

(Famuyiwa et al. 2008). Therefore, COA is the most widely used one (Amindoust et al. 

2012) and is adopted as the defuzzification method in corresponding steps. The equation 

of COA is shown as follows.

                          (2)xCOA =
∑n

i = 1xi × μi(xi)

∑n
i = 1μi(xi)

Through the processing of fuzzy inference system, linguistic data is transformed into 

quantitative data. 

3.3 Construction of base learners

By normalizing original quantitative data, a meta evaluation data set which consists of 

qualitative knowledge and quantitative information is ready for further application. 

Based on the meta evaluation data set, the next step is to construct base learners through 

cross-validation. Cross-validation is regarded as a model validation technique for 

assessing the statistical analysis generalized by an independent dataset and flagging the 

model complexity, so-called overfitting. And it is commonly used to train Tier 1 

classifiers, in which the training set is randomly divided into T blocks. Each one is 

trained according to the remaining (T-1) blocks and is tested in the T block (the block 

data is not used for training). The whole cross-validation process is repeated a total of 
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T times because each single subset is exactly retained as the validation data for testing 

the model. Then the final estimation can be produced through averaging those models 

(Wolpert 1992). 

At present, Wu et al. (2008) summarizes the top ten data mining algorithms. The 

supervised learning includes CART (Classification and regression tree) decision tree, 

SVM (Supporting vector machine), KNN (k-nearest neighbor), MLP (Multilayer 

perceptron), and Naïve Bayes All five of these algorithms will be tested through cross-

validation respectively and demonstrate the distinct performances between models, 

which are the fundamentals of ELT. This is because ELT aims to mutually complement 

individual base learners which are characterized with diversity and different accuracy. 

Theoretically, the base learners’ performances results in the performance of the ELT 

model (Wozniak et al. 2014).

3.4 Application of the Fuzzy Ensemble Learning Model

The diversity among base-learners’ construct is the cornerstone of ELT, in which each 

classifier is expected to be as unique as possible, especially in respect of incorrect 

prediction or classification (Lior 2010). Based on the number of classifier types, the 

ensemble strategies could be divided into two clusters: one being homogeneous 

(Bagging and Boosting) ensemble models and the other heterogeneous (Stacking) 

ensemble models. `

(1) Bagging, which gains its name from bootstrap aggregating, is also known as the 

self-help method. It is a re-sampling method in order to get the distribution of statistics 

and the confidence interval (Quinlan 1996). When the ensemble learning performs in 

Bagging mode, several sampled weak classifiers are constructed through re-sampling 

the raw data of potential partner performances. This means taking a bootstrapped 

replica subset by randomly drawing a certain number of partners from the original 

dataset after determining the specified iterations, which ensures the difference between 

those classifiers and regarded as the basis of ensemble learning. Figure 6(a) shows the 

procedures of Bagging algorithms.
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[Take in Figure 6 about here.]

Bagging helps to reduce the error caused by random disturbance of the training data, 

but if the base classifier is stable, which means little sensitivity to the data, then the 

Bagging method has no room for improvement in the prediction effect, because the new 

training sample set does not include all the original samples (Kuncheva 2004). If 

disturbing the learning set can cause significant changes in predictor construction, then 

Bagging can improve accuracy (Breiman 1996).

(2) Boosting, includes a variety of algorithms, such as AdaBoost (Adaptive Boosting), 

Gradient Boosting, etc. Typically, AdaBoost is the representative one, whose procedure 

is demonstrated in Figure 6(b). Each of its three steps are briefly explained as follows:

Firstly, at the beginning of individual classifier training, each input training sample is 

given the same initial weight, and the first prediction function is trained with all the 

data set. The error of the prediction function is calculated, which determines the weight 

of the prediction function in the final prediction process. Secondly, in the next iteration, 

the weights of sample are then updated based on the error. If the potential partners are 

classified into wrong categories, the weight will increase. If the sample is correctly 

predicted, the weight will decrease. Through the change of weights, the training model 

of the next round can judge the incorrectly classified potential partners better. Lastly, a 

new independent prediction function would be trained in each round. The weight of the 

newly trained prediction classifier in the final prediction is calculated according to the 

error of classifier prediction in each iteration. In other words, the corresponding weight 

of sequential classifier is modified according to its accuracy. Iteration continues until 

the error is less than a certain target or reaches the preset maximum number of iterations. 

Therefore, Adaboost algorithms use a more democratic voting scheme than Bagging 

algorithms, in which those base learners receiving better performance in the process of 

training were given greater weight rather than an equal initial value. 

(3) Stacking. This is based on the differences among the model algorithms, and refers 

to the process of training a multi-level model consisting of distinct base learners 

designed for obtaining generalization. Stacking is different to Bagging or Boosting 
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ensemble methods, which are commonly based on majority voting, and are termed 

‘static’ as they lack a philosophy for combining classifiers with an emphasis on training 

protocol. Stacked generalization is a scheme for deducting the prediction variance and 

biases of the generalizers. The deduction proceeds via the training set which consists 

of the guesses of the previous level classifier and searching for the correct prediction 

(Kuncheva 2004; Polikar 2006). 

In Stacking ensemble learning, each training set is obtained through bootstrapped 

sampling on the entire training data set, which consists of whole partners’ information. 

A series of classification models are obtained, termed Tier 1 classifiers. Then, those 

classifiers and their outputs are used to train the Tier 2 classifier (Meta-classifier). One 

of the underlying ideas is that the training data has to classify partners into specific 

category correctly. For example, a classifier mistakenly learns a specific area in the 

feature space, so the erroneous classification will come from this area, but the Tier 2 

classifier may learn the correct classification based on other classifiers and modify 

misclassification. Some trainable ensemble strategies, including linear discrimination 

and machine learning algorithms, can be applied for combining classifiers. The 

Stacking steps are demonstrated in Figure 6(c).

In short, different training inputs, like Bagging and Boosting, are commonly used to 

ensure that base learners are distinguishable from each other (in order to ensure 

diversity). Unlike Bagging, which substantially uses a training subset, Boosting 

provides the same training, as changeable weights account for learner performance. 

However, Stacking generates sufficient differences from heterogeneous algorithms. 

Partner selection in SSCs is commonly confronted with vagueness and uncertainty in 

qualitative dimensions caused from human decision-makers’ preference, unpredicted 

variance and drastic bias in quantitative evaluation dimensions. Ensemble learning, as 

a meta-classifier, combines several weak learners; it has the ability to decrease variance 

(via Bagging), bias (via Boosting) and improve accuracy (via Stacking). Therefore, the 

three ensemble strategies of Bagging, Boosting and Stacking, plus majority voting as 

the benchmark, will be applied in practice in partner selection in SSCs to enable 

realistic managerial implications to be identified. 
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4. Illustrative application

In this section, the capability and operability of the proposed model is demonstrated by 

application in the case of a real company. Company X (a pseudonym) is a giant 

electronic equipment manufacturer, located in southeastern China. Company X not 

only provides equipment and instrumentation, but also technology solution planning, 

to enable customers and partners to accelerate their transition to a sustainable future. 

Over the past two decades, the company has adopted the mantra that: “Climate change 

can be overcome through innovation and collaboration” and has spared no effort in the 

pursuit of this aim. It strongly believes that sustainability in business is a core pillar for 

success. The traditional relationships between partners in a supply chain environment 

have been adversarial, with the dominant player, the focal firm, having most power and 

authority and grabbing most of the available profits. Recently, Company X has been 

prepared to re-evaluate its partners’ performance, using a vendor management strategy, 

based on Kraljic’s matrix (Figure 3). 

This section applies the fuzzy ensemble learning model to classify potential partners 

for Company X. This research uses MatLab® (from MATHWORK CO) as the platform 

for programming as it is both powerful and user-friendly. For instance, the defuzzifying 

mathematic calculation models are programmed and run by the Fuzzy Logic Toolbox 

within MatLab®. The reasons for choosing it as the programming environment are 

twofold. Firstly, MatLab® has been widely utilized by millions of users worldwide, 

from various backgrounds in engineering, science and economics, as their numerical 

computing environment. Secondly, it allows matrix manipulations, implementation of 

algorithms and ample machine learning applications. It also provides an interface with 

programs written in other languages. In short, it provides one of the most credible and 

compatible calculation environments for this research.

4.1 Preparation for partner evaluation and selection

To illustrate the proposed model effectiveness and efficiency, the formulation of 

evaluation criteria follows Wu and Barnes (2010; 2016)’s systematic methodology. The 

economic, social and environmental evaluation criteria set are shown in Tables 4, 5 and 

6, respectively. 
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[Take in Tables 4 to 6 about here.]

An evaluation panel of experts with rich experience in electronic equipment 

manufacturing industry of China was convened. It comprised experts with different 

backgrounds, including purchasing managers, production managers and academicswith 

expertise in partner selection in SSCs. Approximately 200 potential representative 

companies from the electronic equipment industry in China were identified as a pool of 

potential partners. 

For the quantitative criteria, relevant data was selected from the database provided by 

Wind Information Co. Ltd, which is one of the best information providers on listed 

companies in China. In consideration of space limitations, only the first 5 sample 

companies’ data are shown in Table 7. For the qualitative criteria, it was decided that 

the evaluation panel should use one of five-level linguistic terms, ‘Very Low’, ‘Low’, 

‘Average’, ‘High’ and ‘Very High’, to assess each company, based on their rich 

experience and knowledge. After determining the evaluation criteria set, all panel 

members’ preferences were captured in linguistic terms for maximum retention of the 

vagueness and uncertainty in human reasoning, as discussed in section 3.2. The original 

evaluations are partially shown in Table 8 (social criteria) and Table 9 (environmental 

criteria), due to space limitations.

[Take in Tables 7 to 9 about here.]

4.2 Establishment of Fuzzy Inference system

The next stage in the process is to establish the fuzzy inference system. With the help 

of the Fuzzy Logic Toolbox in MATLAB, ‘if-then’ rules are then constructed by the 

Graphical Users Interface edition. Ensemble learning consisting of base learners is also 

constructed in the same calculation platform, to ensure model compatibility and focus 

on model performance.

All the ‘if-then’ rules are listed in Table 3. As five membership functions and three 

input variables are considered for this model, the total number of rules sum to 125, 
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which represents an acceptable and moderate opinion on the selected criteria. The three 

decision-makers’ perception of partners’ performances were given the same weight. 

Therefore, the number of ‘if-then’ rules combination dropped to 60 rules only. It is 

worth mentioning that the rules must be verified through fuzzy engine surface, which 

is shown in Figure 4. From this, we can see that the combined output result increases 

with the increase of the inputs. 

4.3 Construction of base learners

It is necessary to normalize quantitative data first and then combine them with the 

transformed qualitative data. A Z-Score linear normalization procedure is applied for 

the whole economic dataset. The normalized results are partially presented in Table 10. 

The results of the defuzzification of the social and environmental evaluation are 

partially shown in Table 11.

[Take in Tables 10 and 11 about here.]

After integrating the qualitative and quantitative data, it is advisable to review data 

quality for both accuracy and completeness. As for accuracy, the numerical data derives 

from the Wind® database, which is collected from company annual reports. As for 

completeness, approximately 10 values are missing in different criteria. Yet, ELT has 

the capability to tolerate missing values. 

In this research, 10-fold cross-validation is done by partitioning the full dataset into 10 

random and independent sub-datasets, using one-fold to validate the algorithm 

performance and using the remaining subsets to train. One round of cross validation 

involves all the training and testing procedures and those processes are repeated 10 

times to make sure that each subset was certainly used for validation. The average 

cross-validation error is used as a key performance indicator. This cross-validation 

process is also done in MatLab to ensure compatibility.

Firstly, all the five base learners are used, MLP, SVM, CART, KNN and Naïve Bayes, 

which are the most popular supervised learning algorithms in pattern recognition and 
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classification identified by Wu et al. (2008). Table 12 lists the parameters for setting 

individual base learners.

[Take in Table 12 about here.]

In order to assess the performance of each single algorithm, this research constructs the 

evaluation metrics, the so-called confusion metrics, presented in Table 13, to define the 

accuracy in multi-class classification problems.

[Take in Table 13 about here.]

The accuracy can be calculated by the following equation:

Algorithm accuracy = (A11 + A22 + A33 + A44) / ∑Aij  (i = 1…4, j = 1…4)

Theoretically, the more satisfying outputs the single base learner performed, the higher 

the probability that the final combination could remedy single learner limitations. The 

test subsets are a randomly selected as a 20% sample of the whole dataset. Then, the 

cross-validation method was used for preventing model over-fitting and obtaining the 

average accuracy. The initial base learner results for all five algorithms are shown in 

Table 14.

[Take in Table 14 about here.]

Based on Table 14, the boxplots of each base learner performances are plotted in Figure 

7. The black lines on the top and bottom of the boxplot represent the inner boundary 

range from lower quartile minus 1.5 times interquartile to upper quartile plus 1.5 times 

interquartile, and red crosses represent the outliers. The tighter the boundary ranges, 

the more stable the base learner performances. For instance, the median and highest 

accuracy of MLP algorithms dominated other base learners, while its stability was less 

than SVM or Naïve Bayes. This information provides an intuitive perspective for 

comparing prediction performance of each base learner.

[Take in Figure 7 about here.]
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4.4 Application of the Fuzzy Ensemble learning Model

According to the statistical data of single classifiers, shown in Table 14 and Figure 7, 

we can see that all algorithm performances, except SVM, fluctuate within a certain 

range. This is caused by imbalanced class distribution. More specifically, it is too 

difficult for any single classifier to solve the decision-making problem perfectly, even 

when plenty of data is available. Therefore, a divide-and-conquer strategy is applied in 

ELT modeling. This study applies the re-sample method in the form of Bagging and 

Adaboost to achieve diversity in homogeneous classifier ensembles. For stacking, 

stacked heterogeneous classifiers provide inherent diversity. The settings for the 

Bagging, Boosting and Stacking parameters are listed in Table 15.

[Take in Table 15 about here.]

By using Bagging to achieve the base learner diversities for constructing homogeneous 

combiners, this research conducted 15 rounds of bootstrapped iterations of the training 

data to construct distinct base learners. In addition, each base learner has the same initial 

parameters. Individual classifiers use majority voting to obtain the final prediction 

results. In other words, each base learner has the same weight at the voting stage.

Similar to Bagging, Boosting achieves its diversity through re-sampling the dataset. 

This research ran 20 iterations in order to generate the most informative or the most 

confused training data for consecutive calculation procedures. Then the Adaboost and 

weighted majority voting were used to construct this boosting model. 

For Stacking, the research combined all five heterogeneous weak learners. Firstly, the 

training dataset was used to construct a single model and save the prediction results. 

Secondly, the first-level classifier results are used as input to train the meta classifier to 

bridge the gap between inputs and actual class labels. From previous literature, the 

ensemble strategies in the meta-classifier must be instance specific. The reason for 

selecting Naïve Bayes as the ensemble strategy in meta-classifier is twofold. On the 

one hand, Naïve Bayes algorithms could deduce the final result accounting for prior 

probability that is easily collected in the level-one stage (Rokach, 2010). On the other 
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hand, Naïve Bayes could trade certain acceptable accuracy off prediction stability when 

applying training data (shown in the Table 14). 

It should be noted that combination strategies, which provide the essential characters 

among three different ensemble learnings, must be compared with the benchmark from 

single classifier predictions. Since the purpose of this paper is to exploit and apply the 

ensemble learning method in partner classifications, the ensemble learning has a higher 

computational cost and more intricate procedures than single base learner. More 

detailed information about the algorithms can be seen in Polikar (2006). The prediction 

accuracy for various ensemble strategies is shown in Table 16.

[Take in Table 16 about here.]

According to the prediction accuracies in Table 16, all the ensemble learning models, 

except SVM, outperform the single classifier majority voting. Constructing classifier 

ensembles through the bagging strategy does not obtain better prediction accuracy than 

using the boosting strategy. Comparing homogeneous and heterogeneous classifiers 

ensembles, it is clear that heterogeneous classifier ensembles outperform homogeneous 

ones.

Above all, the proposed ensemble learning model achieves better performance than any 

single base learner in dealing with quantitative and qualitative data combined. The final 

best prediction accuracy reached 92.31% under the Boosting ensemble strategy (see 

Table 16.).

4.5 Sensitivity analysis

The purpose of sensitivity analysis is to evaluate the influence of base learners’ 

prediction accuracy and combination strategies. The ensemble learning consists of 

many distinct base learners and is directly related to its component performances. The 

individual learner performance can be affected by initial settings, so-called key 

parameters. For instance, when applying MLP to conduct partner classification, the 

structures of MLP, learning epochs (the number of training each item of whole dataset), 
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and the fold numbers of cross-validation should be well defined in advance (Tsai et al. 

2010). 

This research investigates the key parameters for each base learner, and then chooses 

the most influential one as the variable for analysis. For MLP algorithms, the number 

of ‘hidden layers’ (that transform inputs into those needed in the next layer) greatly 

affects the final prediction accuracy. Similar situations appear in CART, KNN and 

Naïve Bayes algorithms. Obviously, the SVM algorithms that are conducted on the 

modular toolbox called LibSVM, which is widely applied because of its stability, 

illustrate high tolerance on kernel function types (that transform original data in another 

dimension for maximizing the margin between classes of data). The key parameters of 

different learners are listed in Table 17. 

[Take in Table 17 about here.]

Figure 8 illustrates five graphics that show the volatility of results when applying the 

different base learners. From Figure 8, we can see that all five base learners have 

volatility under different parameter settings. Therefore, the process of parameter setting 

needs more attention for initializing the base learners. 

[Take in Figure 8 about here.]

After exploring the effect that the key parameters play on model performances, the best 

and worst scenarios are compared in Table 18. Figure 9 illustrates a comparison of 

different strategies within a certain classifier. Figures 10 and 11 show the results under 

default, worst and best parameter setting scenarios.

[Take in Table 18 about here.]

[Take in Figures 9 to 11 about here.]

As for effectiveness, all ensemble strategies whether Bagging, Boosting (see Figure 9) 

or Stacking (see Table 16) dominated the majority, which could be regarded as the 

benchmark for comparing the effect of different models. The best scenarios 
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undoubtedly exceeded the worst ones in accuracy (both Figure 10 and 11). Specifically, 

the accuracy of MLP algorithms under the default and worst settings are in the same 

position but both achieved acceptable prediction accuracy. As for Boosting, the 

accuracy under default scenarios showed little difference with the best one, thanks to 

the high parameter tolerance within ensemble learnings. In short, by combining 

different base learners with reasonable ensemble strategies, the proposed ensemble 

learning model is more effective and efficient than existing single learner models for 

the classification of potential partners of SSCs. 

5. Discussion

The proposed model has successfully incorporated the triple bottom line principle into 

decision-making for supply chain partner selection (Sarkis and Dhavale 2015). It does 

so by combining FST and ELT for partner qualification and classification decision-

making. Specifically, in the decision-making process of classifying potential partners, 

it enables both numerical data and natural linguistic variables, which represent 

decision-maker’s preferences, to be taken into consideration simultaneously. In 

addition, the model’s capability and effectiveness in considering a large number of 

potential partners under dozens of criteria was verified through the illustrative 

application in the case of the Chinese electrical equipment and instrument 

manufacturing industry. The decision-making outputs enabled managers to focus on 

suitable suppliers and prevented considerable time and resource being wasted. In 

respect of applicability, the results of the sensitivity analysis demonstrate that a single 

base learner is susceptible to the initial key parameter. However, the final ensemble 

outputs show no significant change in prediction accuracy even though all the base 

learners were under the worst situations. This important finding means that managers 

could set themselves free from complex classifier selecting and time-consuming 

parameter setting. In comparison with other existing partner selection classification 

models, for instance Luo et al. (2009) and Wu and Barnes (2014), the proposed model 

is more reliable and applicable in SSCs decision-making environments and could be 

automatically operated even if supply chain managers have little knowledge of ELT or 

FST.
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The application of the procedures of the model and the analysis of the results shown 

above enable some useful managerial implications to be drawn. On the one hand, from 

the suppliers’ perspective, one of the essential characteristics of the KNN model is to 

classify the closest neighboring companies into the same category. This feature clearly 

illustrates the clustering center of distinct labels and provide geometric insights into 

measuring the quantitative difference. At the same time, the CART model defines the 

significance of evaluation attribute in partner selection through the levels of node: the 

closer to root node, the more important role the indicator plays. As the upstream 

component of the whole SSC, supplier organizations should concentrate on those ‘root 

note’ attributes and improve their shortcomings with the help of other partners, and 

upstream corporations should prioritize their resources and attention on reducing the 

negative impacts during operational practices. On the other hand, from the buyers’ 

perspective, the clustering centers provided by the KNN algorithms can be regarded as 

a benchmark for buyers in the downstream supply chain to compare potential partners’ 

performance and classify them into a select group. Furthermore, ‘root node’ attributes 

in CART algorithm should be the focus for purchasing managers, who should 

continuously monitor these attributes of upstream suppliers. 

This research had two main objectives for decision-makers wishing to select suitable 

partners when considering sustainability requirements. The first is to construct a set of 

sustainable partner qualification and classification criteria, encompassing economic, 

social and environmental dimensions, considering both quantitative and qualitative 

criteria. The second is to enable distinctive partner management strategies to be applied 

in accordance with the different partner categories. For instance, once a supplier is 

deemed as a strategic partner, a long-term close cooperative relationship between buyer 

and supplier should be carefully built and maintained to enable buyers to concentrate 

on securing continuous and reliable supply. Such a relationship requires buyers and 

suppliers to work collaboratively, sharing demand and supply information to minimize 

supply interruption risk. In contrast, once a supplier has been identified as a non-critical 

and routine partner, buyers would build an arms-length formal relationship, applying a 

bid-by-bid policy, to reduce purchasing costs as much as possible. For a supplier 

classified as a preference partner, the most important issue for buyers to consider is 
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how to control and reduce supply risk. Thus, the information provided by the proposed 

model offers useful managerial guidance and insights for both buyers and suppliers. 

6. Conclusions 

With the increased customer consciousness of sustainability and greater pressures from 

outside stakeholders, supply chains are gradually giving greater importance to 

improving their performance against sustainability criteria (Govindan et al. 2013; 

Dubey et al. 2015). This paper has presented a model, based on fuzzy set theory and 

ensemble learning technology, which enables companies to make more informed 

decisions about partner selection in SSCs. The practical efficacy of the model is 

illustrated by an application in a listed electronic equipment and instrument 

manufacturing company based in southeastern China. 

The potential advantages of the proposed model can be summarized as follows: Firstly, 

the proposed model considers economic, environmental and social criteria 

simultaneously, thereby achieving a good balance between all triple bottom line criteria. 

This will benefit decision-making in partner selection, making it more sustainable. 

Secondly, the proposed model can consider the vagueness and uncertainty in the natural 

linguistic preferences given by decision-makers. On the one hand, this feature is a user-

friendly setting for decision-makers. It enhances both the effectiveness and the 

efficiency of the process of evaluation of potential partners. On the other hand, it is also 

beneficial for capturing the vagueness and uncertainty of information during the 

decision-making process. Thirdly, the proposed model overcomes the big weakness of 

the existing ensemble learning model, which can typically only handle numerical 

quantitative data. In other words, the combination of ELT and FST widens the 

applicability of the proposed model by using the inputs of both qualitative and 

quantitative criteria and data. Fourthly, the proposed model has the capability of 

handling large quantities of data. This is a fundamental requirement for the early stages 

of partner selection (Wu and Barnes, 2011). Fifthly, without having to revise all 

evaluation calculations, the proposed model has the flexibility to expand or reduce the 

number of evaluation criteria. More importantly, ELT can operate under conditions of 

partially missing data, which is vital for partner selection when some historical data is 
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unavailable or when companies refuse to disclose confidential information. Last, but 

not least, the proposed model can achieve favorable prediction accuracy with default 

parameters. This feature considerably decreases the complexity of decision-making.

There are also some limitations with the proposed model. Firstly, it requires rich and 

representative data for training base learners. This research acquired evaluation data 

from an open database, which only provides information from listed company reports. 

For potential partners not included in such databases, manual data collection and 

processing would be required. Secondly, the ensemble learning model has a higher 

calculation cost and more complex evaluation procedures than some other models. For 

instance, decision-makers need to train single learners and then combine those results 

using an appropriate ensemble strategy. Finally, although the proposed method is 

‘parameters free’, decision-makers still need to construct their own customized 

evaluation criteria in advance.

There are a number of potential avenues for future research. Firstly, as the proposed 

model applies the classic fuzzy inference system to deal with qualitative criteria, new 

fuzzy information transforming algorithms or concepts, such as the interval linguistic 

model or the trapezoidal fuzzy method, could be introduced. Secondly, scholars and 

managers could explore more classification and intelligent algorithms and add them 

into the pool of base learners. More trainable ensemble strategies could also be explored 

to further improve classification accuracy. Thirdly, the adaptability of the proposed 

model could be tested through its application in different companies, industries and 

countries beyond the Chinese electrical equipment manufacturing industry in which 

this research was conducted. Fourthly, as partner evaluation requires consistent 

monitoring and improvement, it would be beneficial to develop dynamic evaluation 

techniques suitable for use in rapidly changing environments. Finally, as there are many 

existing models and frameworks for final partner selection after the classification phase, 

the issue of how the proposed model might best be used in conjunction with these 

requires further research.
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Figures

Figure 1: A basic classification of partner selection models/methods (based on Kannan 

et al. 2013)
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Figure 2: Flowchart of the proposed model
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Figure 3: Category matrix for partner management (Kraljic 1983)

Figure 4: The triangular membership function
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Figure 5: Fuzzy reasoning surface

Figure 7: Boxplot of base learners' performance
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(a) Procedures of Bagging algorithms

(b) Procedures of AdaBoosting algorithms

(c) Procedures of Stacking algorithms

Figure 6: Procedures of ensemble learning algorithms
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(a) Multi-layer Perceptron

(b) SVM               (c) Classification & Regression Tree 

(d) KNN                       (e) Naïve Bayes

Figure 8: Comparison of base learners with respect to various model settings
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Figure 9: The accuracy of base learners with different strategies

Figure 10: The accuracy of base learners under different scenarios in Bagging strategy

Figure 11: The accuracy of base learners under different scenarios in Boosting strategy
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Tables

Table 1. The comparison of existing methods with the proposed one in partner selection

Publication Method
Types of 
criteria

Category of 
criteria

Premise Industry Features

Kuo et al. 
(2011)

DEA + 
ANN

Quantitative
Economic & 
Environmental

Precise & 
certain

Production
Design ANN-DEA hybrid model in consideration of traditional 
economic criteria and extended environmental indicators, and then 
test the capacity of discrimination and noise insensitivity.

Govindan et 
al. (2013)

TOPSIS + 
FST

Quantitative 
& Qualitative

Economic, 
Environmental & 
Social

Vague & 
uncertain

No specific
Identify fuzzy multi-criteria decision-making model based on triple 
bottom line, apply FST to modify experts' preference and use 
TOPSIS for final ranking.

Chen et al. 
(2017) 

Conceptual 
model

Quantitative Economic
Precise & 
certain

Retail
Give insight to the corporation value creation in supply chain by 
examine supplier-retailer model where each component maximizes 
its profit while promise mutual commitments.

Karaer et al. 
(2017)

Mathematics 
model

Quantitative Economic
Precise & 
certain

Chemical 
Study the effect of wholesale price premium or buyer-supplier cost 
sharing on the improvement of partners' environmental performance.

Nurjanni et 
al. (2017)

Multiple obj. 
programming

Quantitative
Economic & 
Environmental

Precise & 
certain

Production
Construct a closed-loop network to achieve a multi-objective 
optimization considering the environmental and financial issues.

Ahmadi et 
al. (2017)

AHP + FST
Quantitative 
& Qualitative

Economic & 
Environmental

Vague & 
uncertain

Telecom
Employ FST to handle with the vagueness and uncertainty in decision 
making, and AHP for accessing the indicator weights and apply grey 
relational analysis for partners ranking.

Halteh et al. 
(2018)

Machine 
learning

Quantitative Economic
Precise & 
certain

Finance
Propose three type decision tree algorithms to predict corporation 
financial stress and forecast the probability of bankrupt from an 18-
criteria set.

Rabbani et 
al. (2019)

FST + GDM Qualitative
Economic, 
Environmental & 
Social

Vague & 
uncertain

Manufacture
Introduce interval-valued fuzzy group decision-making model to 
process the linguistic preference from decision-makers, then evaluate 
the sustainability of potential suppliers

Proposed 
model 

ELT & FST
Quantitative 
& Qualitative

Economic, 
Environmental & 
Social

Vague & 
uncertain

Electrical
Design customized FST to remedy the vagueness and inherent 
subjective in human reasoning progress, extend typical quantities 
indicators to both qualitative and quantitative ones.
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Table 2: Linguistic variables and fuzzy number for evaluation indicator

Linguistic variable Triangular Fuzzy numbers

Very Low (0, 0, 25)

Low (0, 25, 50)

Average (25, 50, 75)

High (50, 75, 100)

Very High (75, 100, 100)
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Table 3: Rules for fuzzy inference system (based on Wu and Barnes 2014)

Input rules Output Cases

3 Very High Very High 1

3 High High 1

3 Average Average 1

3 Low Low 1

3 Very Low Very Low 1

2 Very High 1 High Very High 3

2 Very High 1 Average Very High 3

2 Very High 1 Low High 3

2 Very High 1 Very Low Average 3

2 High 1 Very High Very High 3

2 High 1 Average High 3

2 High 1 Low Average 3

2 High 1 Very Low Average 3

2 Average 1 Very High High 3

2 Average 1 High Average 3

2 Average 1 Low Low 3

2 Average 1 Very Low Low 3

2 Low 1 Very High Average 3

2 Low 1 High Average 3

2 Low 1 Average Low 3

2 Low 1 Very Low Very Low 3

2 Very Low 1 Very High Low 3

2 Very Low 1 High Low 3

2 Very Low 1 Average Very Low 3

2 Very Low 1 Low Very Low 3

1 Very High 1 High 1 Average High 6

1 Very High 1 High 1 Low High 6

1 Very High 1 High 1 Very Low Average 6

1 Very High 1 Average 1 Low Average 6

1 Very High 1 Average 1 Very Low Average 6

1 Very High 1 Low 1 Very Low Average 6

1 High 1 Average 1 Low Average 6

1 High 1 Average 1 Very Low Low 6

1 High 1 Low 1 Very Low Low 6

1 Average 1 Low 1 Very Low Low 6

Note: The total number of rules is 125.
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Table 4: Economic criteria set

Economic attributes Economic attributes Source

Liquidity Ratio Operating profit

Operating cash flow per share Net profit

Gross profit margin Net cash flow from operations

Return on equity Net cash flow from investing activities

Total net assert interest rate Net cash flow from financing activities

Total asset turnover rate (times) Net increase in cash and cash equivalents

Assets and liabilities (%) Total assets

Equity multiplier Total liabilities

Current assets/total assets (%) Total shareholders' equity

Current liabilities/liabilities total Current assets

Total operating costs Current liabilities

Liang et al. 
(2018); 
Geng et al 
(2015); 
Luo et al. 
(2009)
Bai and 
Sarkis (2010)
Wu and 
Barnes 
(2010)

Table 5: Social criteria set

Social attribute Source

Job opportunities Bai and Sarkis (2010); Yu et al. (2017)

Salary Bai and Sarkis (2010); Ghadimi et al. (2016)

Health & Safety Bai and Sarkis (2010); Azadnia et al. (2015)

Economic Welfare & Development Bai and Sarkis (2010); Govindan et al. (2013)

Stockholder right Rabbani et al. (2018) ; Awasthi and Omrani (2019)

Table 6: Environmental criteria set

Environmental attribute Source

Green design Kuo et al. (2010); Luthra et al. (2018) 

ISO Standards Bai and Sarkis (2010); Azadnia et al. (2015)

Energy consumption Luthra et al. (2017); Kafa et al. (2015)

Waste Govindan et al. (2013); Galo et al. (2018)

Polluting prevention Gharaei et al. (2019c); Kazemi et al. (2018)
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Table 7: Original data of potential partners

Company
Name

Liquidity
Ratio

Operating cash
flow per share 

(RMB)

Gross profit
margin

Return on
equity

Total net assert
interest rate

SHF 1.127 0.041 9.339 0.304 0.154

SKJ 1.078 0.489 6.398 9.740 4.053

SFZ 5.760 -0.056 11.924 2.228 1.772

DSD 1.115 -2.035 8.801 23.474 5.700

STM 1.104 1.371 20.849 5.718 3.145

…. … … … … …

Table 8: Decision-makers’ preference on social indicators.

Job opportunity SalaryCompany
Name E1 E2 E3 E1 E2 E3

SHF Low Very Low Low Very High High Very High

SKJ Low Low Low Very High Very High Very High

SFZ Average High Very High Very Low Low Average

DSD Very Low Low Low High Very High Very High

STM Very Low Low Low Average Very High Very High

…. … … … … … …

Table 9: Decision makes’ preference on environmental indicators

Green Design ISOCompany
Name E1 E2 E3 E1 E2 E3

SHF Average Low Average Average Low Average

SKJ High High High Very High Very High Very High

SFZ Very Low Low Average Average High Very High

DSD Low Average Average Low Average Average

STM Low High High Average Very High Very High

…. … … … … … …
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Table 10. Normalized evaluation data (partial)

Company 
Name

Liquidity 
Ratio

Operating cash 
flow per share

Gross profit 
margin

Return on 
equity

Total net assert 
interest rate

SHF 0.0231 0.3219 0.2830 0.5546 0.4850

SKJ 0.0222 0.3892 0.2492 0.6072 0.5248

SFZ 0.1155 0.3073 0.3127 0.5653 0.5015

DSD 0.0229 0.0100 0.2768 0.6837 0.5416

STM 0.0227 0.5217 0.4154 0.5848 0.5155

… … … … … …

Table 11: Defuzzification of qualitative indicators (social & environmental criteria)

Company Name Job opportunities Salary Green Design ISO

SHF 0.062 0.254 0.934 0.934

SKJ 0.254 0.504 0.934 0.934

SFZ 0.749 0.504 0.504 0.749

DSD 0.062 0.504 0.934 0.934

STM 0.062 0.254 0.934 0.934

…. … … … …

Table 12: The settings of base learners

Base learner Parameters

SVM Kernel function: RBF, other parameters set as Matlab default

CART MinLeafSize:1, other parameters set as Matlab default

KNN NumNeighbors:2, other parameters set as Matlab default

MLP Default setting in initial LIBSVM toolbox

Naïve Bayes Default setting in initial Matlab toolbox



-58-

Table 13: Confusion metrics for the model accuracy

Actual\Predicted
Strategic 
Supplier

Competitive 
Supplier

Influential 
Supplier

Common 
Supplier

Strategic partner A11 A12 A13 A14

Competitive partner A21 A22 A23 A24

Influential partner A31 A32 A33 A34

Common partner A41 A42 A43 A44

Table 14: The Accuracy of each base learners (Unit: %)

Name SVM CART KNN MLP Naïve Bayes

Minimum 53.85 82.05 79.49 76.92 76.92

Maximum 53.85 87.18 87.18 94.87 79.49

Average 53.85 84.97 83.59 89.23 77.44

St. D. 0.00 2.35 2.69 5.13 1.08

Table 15: The settings of ensemble machine learning models

Combination Strategy Parameters

Majority Voting 10-fold cross-validation

Bagging Bagging MLP/SVMCART/KNN/NB; Number of bootstraps: 15

Boosting Boosting MLP/SVMCART/KNN/NB; Number of iterations: 20

Stacking Base learner: MLP/SVMCART/KNN/NB; Meta learner: CART
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Table 16: The comparisons of accuracy with respect to different ensemble strategies 

(Unit: %)

Classifier Majority voting Bagging Boosting Stacking

SVM 53.85 53.85 53.85

CART 79.49 84.62 89.74

KNN 79.49 84.62 87.18

MLP 89.74 89.74 92.31

NB 79.49 79.49 79.49

89.74

Table 17: Key parameters for base learners

Base learner Key parameter Values

SVM Kernel function Line, Polynomial, RBF, Sigmoid

CART Minimum leaf size (1:1:15)

KNN Number of nearest neighbours (1:1:15)

MLP Number of hidden layers (2:2:30)

NB Prior probability 15 Groups rand prior 

Table 18: The comparisons of accuracy in different scenarios (Unit: %)

Classifier Bagging Boosting Stacking

SVM 53.85/53.85 53.85/53.85

CART 84.62/89.74 84.62/89.74

KNN 79.49/84.62 82.05/87.18

MLP 89.74/94.87 89.74/92.31

NB 74.36/82.05 76.92/79.49

87.18/92.31

Note: accuracy under worst setting/accuracy under best setting


