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Abstract

The main objective of this thesis is to develomhbust statistical model
by accounting the non-linear relationships betwheaspital admissions due to
lower respiratory (LR) disease and factors of ctenand pollution, and their
delayed effects on hospital admissions. This staldp evaluates whether the
model fits can be improved by considering the npedrity of the data, delayed
effect of the significant factors, and thus caltelldhreshold levels of the
significant climate and pollution factors for emengy LR hospital admissions.
For the first time three unique administrative data were merged: Hospital
Episode Statistics, Met office observational datacfimate factors, and data from
London Air Quality Network.

The results of the final GLM, showed that daily erature, rain, wind
speed, sun hours, relative humidity, and PM10 Saantly affected the LR
emergency hospital admissions. Then, we develodedstabuted lag non-linear
model (DLNM) model considering the significant cite and pollution factors.
Time and ‘day of the week’ was incorporated asdirterms in the final model.

Higher temperatures aroureR7°C a quicker effect of 0-2 days lag but
lower temperatures<{0°C) had delayed effects of 5-25 days lag. Humidity
showed a strong immediate effect (0-3 days) of ltve relative humidity at
around<40% and a moderate effect for higher humidig0%) with lag period
of 0-2 days. Higher PM10 arour70-pg/m has both shorter (0-3 days) and

longer lag effects (15-20 days) but the latter anestronger comparatively. A



1.1 Brief background

strong effect of wind speed arous®5 knots showed longer lag period of 8-15
days. There is a moderate effect for a shortemplagpd of 0-3 days for lower
wind speed (approximately 2 knots). We also natigtronger effect of sun hours
around=14 hours having a longer lag period of 15-20 day$ moderate effect
between 1-2 hours of 5-12 days lag. Similarly, brghmount of rain%30mm)
has stronger effects, especially for the shortgmola0-2 days and longer lag of 7-
10 days.

So far, very little research has been carried ouDbNM model in such
research area and setting. This PhD research wonllribute to the quantitative
assessment of delayed and non-linear lag effeatéiméte and pollutants for the
Greater London region. The methodology could ealsdyreplicated on other
disease categories and regions and not limitedRoatlmissions. The findings
may provide useful information for the developmand implementation of public
health policies to reduce and prevent the impactliohate change on health

problems.
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Chapter 1

Introduction

1.1  Brief background

The ecology and the environment of the world arangmng due to shifting
patterns of meteorological factors. This is obvidumm the most recent but
warmest decade (2002-2011) as a succession of #nmest decades: 2000s,
1990s, and 1980s. According to the World MeteoriclalgOffice, the 13 hottest
years have all occurred in the 15 years betweed 288 2011 (WMO 2011) and
among them 1998 is still the hottest and 2010és2f hottest years ever (WMO
2011). There is even a clear upward trend in tlodaill temperature anomalies
since pre-industrial times on the basis of yeaydar measurement. The apparent
warming of the climate system is inevitable. Theref there has been increasing
interest in the assessment of the relationshipsdsat climate change and health

outcomes.

Climate, weather, and climate change

Climate encompasses the statistics of temperatheemidity, atmospheric
pressure, wind, precipitation, atmospheric partodant and other meteorological
elemental measurements in a given period over Ipegods. According to

Intergovernmental Panel on Climate Change (IPCG¥ggry definition (IPCC
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2013),Climate in a narrow sense is usually defined as the "average weather”, or
more rigorously, as the statistical description in terms of the mean and variability

of relevant quantities over a period of time ranging from months to thousands or
millions of years. The classical period is 30 years, as defined by the World
Meteorological Organization (WMO). These quantities are most often surface
variables such as temperature, precipitation, and wind. Climate in a wider sense

is the state, including a statistical description, of the climate system. And Climate
change refersto a statistically significant variation in either the mean state of the
climate or in its variability, persisting for an extended period (typically decades
or longer). Thus it is measured in terms of years, decadesven centuries.
Scientists study climate to look for trends or egcbf variability and also to place
cycles or other phenomena into the bigger pictdiygogsible longer term or more
permanent climate changes. Since climate is chgmgipidly nowadays, climate
characteristics are sometimes recalculated everyedds. However, for special
purposes, other climatic time scales are also (B&PERE 2004). On the other
hand,the weather is the day-to-day state of the atmosphere, andhitst-term

(minutes to weeks) variation.

Factorsin climate change

Temperature is the most common and influential atenfactors impacting health

on the top of precipitation, wind speed, humidaymospheric pressure, EI Nino,
UV (ultraviolet) index / solar radiation, cloud @vand so on. Many studies have
been conducted on climate change and health relsgdads using temperature as
climate factor (Muggeo and Hajat 2009; Basu andig/2011; Pinto, Coelho et

al. 2011; Pudpong and Hajat 2011; Vardoulakis aedwvside 2012). Besides,
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levels of pollution are inclined to lead to healthzards during extreme climate
events (Rocklév and Forsberg 2009). Ozone levedstige matters, / total
suspended particulate (TSP), Nitrogen dioxide (NA@2jrbon monoxide (CO)
and Sulphur dioxide (SO2) are considered to hagtetamental link with climate
change and health. Vardoulakis and Heaviside (2@d@htioned that climate
change may result in earlier seasonal appearanmspiratory symptoms due to

longer duration of exposure to aeroallergens (pphengal spores, etc.).

Impacts on health

Scientific consensus confirms that the changefi@sda meteorological variables
are already adversely affecting health and suclecesff will be unevenly
distributed throughout the world (WHO 2008). Fostance, according to WHO, a
one-degree rise in temperature in Europe couldeass mortality by 1-4% and
86,000 extra deaths are projected every year, garemexpected rise in global
mean temperature of°3, by 2071-2100 (Menne, Apfel et al. 2008). The
frequency and severity of extreme weather evengg, (eeat waves, flooding and
cold winters) are also increasing as an indiret#céfof climate change. There
were high numbers of excess deaths associated thattEuropean heat wave
during August 2003. This number is approximateQ0P, for England & Wales
(Johnson, Kovats et al. 2004) and 15,000 for FrgRoeillet, Rey et al. 2006).
Heat-related mortality is projected to increasespie in the UK in the 21st
century, which is approximately 70% in the 202@0% in the 2050s, and 540%
in the 2080s, compared to the 2000s heat-relatedahty baseline of around
2,000 premature deaths (Vardoulakis and Heavisid&2R Various vectors,

water, food-borne diseases, and pathogens aretlgi@cindirectly related to
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changing behaviour of climate change. The incidenteexisting infectious
agents, such as Lyme disease transmitted by tiskiiely to increase in UK
(Vardoulakis and Heaviside 2012). The burden oéalg during extreme climate
events like floods, heat waves, and storms are taiooincrease because of the
associations of climate factors and the vector &ewmrne diseases (Parry,
Canziani et al. 2007). The river and coastal flasks are likely to increase in the
next decades due to climate change. All populatiaes at risk of the health
effects associated with flooding; however, poor@mmunities are at higher risk
of coastal flooding in the UK, while higher inconm@useholds tend to be at
higher risk of river flooding. According to the HP¢lealth Protection Agency)
report, such indirect impacts of climate changeehader consequences on
existing public health problems during certain @icas related to water
availability, nutrition, mental health and well-bgi displacement and migration,

and health equity (Vardoulakis and Heaviside 2012).

Vulnerable population group

Children, the elderly (especially those living dit own), individuals with pre-
existing illness, people living in overcrowded ateonodation and
socioeconomically deprived are the most at risk ttué¢heir frailty (Knowlton,
Rotkin-Ellman et al. 2009; Alonso, Achcar et al1@9Vardoulakis and Heaviside
2012). The health burdens of the UK may be amplifiy an aging population
due to climate change, particularly for those ®&1years of age, compared with
younger age groups. In the UK, the elderly arertfost vulnerable due to flood

and climate events.
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Challengesin climate change research

The scale of the impact of climate change variggiims of geographical latitude
and climate zone throughout the world. Overall, WKl be negatively affected
due to the changing climate and even in the UKSbeth East, London, the East
and West Midlands, the East of England and theS@rst appear to be more
vulnerable to current and future effects of hot thea(Vardoulakis and Heaviside
2012). According to CET (Central England Tempemtuthere is an increasing
trend in the temperature anomalies and a seriemh years since the late 1980s
with 2006 as the warmest year on record. Along witls, there have been
decreasing numbers of cool and increasing numbemaom days and night
between 1960 and 2010 (Vardoulakis and Heavisid2R®Rainfall has decreased
during the summer and increased during winter (UKQtends report).
Observations of the English Channel show risesxineme sea levels at all 16
sites studied (Haigh, Nicholls et al. 2011) andléwels of ultraviolet radiation is
also affected due to climate change.

The real cause of the climate change is still &ctopdebate though it is
admitted by the climate researchers that humarr@mlgenic activity since 1750
is one of the leading causes of the warming clinfgdgdoulakis and Heaviside).
Failure to respond now could be very costly in teraf disease, health care
expenditure, and lost productivity alongside ecmaly imbalance and
environmental degradation.

Identifying the nature of the relationships betwelea variations of the
climate factors and health is very challenging. Maoisthe past research works

considered this relationships as linear mainly bseaof the computational
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advantages of dealing a linear model. However ntesteidies revealed that health
or disease exposure generally shows a non-linea¥,U\ or even J shaped
relationships with the hazard (Braga, Zanobettlef002; Pattenden, Nikiforov
et al. 2003; Pauli and Rizzi 2008; Muggeo and Haja®9). Computationally,
such nonlinearities are also challenging but previtore efficient results.
Moreover, the issues of the delayed effect of soddenate change and related
lag structure of the climate factors and air paliis are crucial for the efficiency
of the modelling. Further elaborative discussionwnonlinearity & smoothing
techniques and lag structure & delayed effect carfdound in section 2.8 and
section 3.6 respectively

To deal with the problem, efficient modelling ofighrelationship is
critical. Unfortunately the full quantitative estte of the impact of climate
change is still not possible due to the lack ofial#é exposure-response
relationships especially in health. Moreover, theibified nature of climate and
weather made estimating the relationship with teelth status of a population
extremely complex. Historically this has limitedns® of the existing plans and
policies to face the rapid climate change. Theefar number of policies and
strategies may need to be revised and/or strenghender the present levels of

risk based on the precise scientific research.

1.2 Main aim of the Thesis

The overall aim of this research is to develop aisical model to precisely
identify and measure the impact of climate changehealth (such as daily

hospital admissions) by considering non-linear treteships between climate



1.3 Specific objectives

factors and hospital admission and delayed effesestion 3.6) of the selected

climate and pollution factors.

1.3  Specific objectives

» To identify the influential climate and pollutiomdtors in England that
may play a significant role in daily admissions.

» Feasibility of the HES for measuring the impacttwé climate change on
health.

= To illustrate the delayed effect of the significatitmate and pollution
variables on the hospital admissions.

= To check the efficiency of a proposed structure¢hef delayed effect (lag
structure) of the climate and pollution factorsmeasuring their impact of
hospital admissions.

= To evaluate the efficiency of the non-linear stat#d model developed
using the proposed lag structure of the selectedaté and pollution

factors.

1.4  Contributions to knowledge and research

A variety of methods now exist for assessing thpaats of climate change on
human health while different approaches for stuglyire effects of climate factors
and extreme climate events on health can resuhighly variable estimates
(Rocklov and Forsberg 2009). However, efficient miative estimates of the

impact of climate change on daily hospital admissiare still limited due to the
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lack of reliable disease exposure relationshipg diversified nature of climate
and weather made it extremely challenging too.

The lag effect of the factors and exposure are vancial and a
significant amount of climate change health studiesducted using various lag.
Despite the efforts no studies have suggested fameat structure of lag period
that can increase the efficiency of any statistnabdel for measuring the impact
of climate factors on health. The same argumens doe devising an efficient
threshold limit (section 3.6) for climate variablies any specific region. So far
thresholds were mainly estimated for temperaturd #@nis crucial that the
calculated threshold is precise and accurate.

This research allows a unique contribution addngssihe above
mentioned research gaps. We described the contnitsudf the thesis under two

sections: theoretical contributions and appliedicoations.

Applied contributions

= Classify the climate, and pollution factors thag¢ argnificant and should be
considered for any specific disease categories, (ewger respiratory disease)
for a specific region (e.g. Greater London, Engjand

= Calculate an efficient structure of the lag permfdclimate-diseases related
under the climate change context of the UK.

» |dentify the delayed effects of the climate factfaslower respiratory hospital
admissions. This will eventually lead towards aficeint threshold climate
for emergency hospital admissions of LR diseaseGireater London.
Moreover this will also lead towards an efficiergatth alert systems due to

sudden climate change.
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Theoretical contributions

= Development of an efficient statistical model cdesing the delayed effect of
the significant climate variables and measure tHative efficiency of that
model.

» Usefulness of B-Spline smoothing techniques in DLNIddel to cover all the
non-linearity beyond the boundary knots in the data thus improve the
model efficiency.

This research could enable senior decision makersadopt more
proactive and evidence-based methods in the dacis@king process, such as
future policies based on various climate varialleegholds (e.g. Temperature,

rain) which may assist them in finding efficientysaof delivering services.

1.5 Outline of the thesis

Figure 1 illustrates the flow of the remaining cteap and their relations. These
chapters, presented in sequence, are grouped opibstof literature reviews,

theoretical concepts, and contributions.

Chapter 2: Literature review

In this chapter, we present a systematic revielitexfature illustrating the nature
of the impact of climate change on health, reldterors, and research studies
with statistical modelling approaches related tonate change and health. The
scope of the thesis, namely, the idea of estimafingaccurate lag structure,
thresholds, and factors for developing the statstmodel emerged from this

chapter.



1.5 Qutline of the thesis

Chapter 3: Factorsin climate health research

This chapter describes the factors associated dlitate health research. This
covers meteorological factors (e.g. Temperaturelufants, demographic factors
(e.g., age, sex, and race), lag structure, qualityhe data, and geographical
factors (latitude, longitude). This chapter cancbasidered to be an extension of
the literature review chapter which later suppaidsin the selection of relevant

factors to include in our statistical models.

Chapter 4. Data sets used

We give a brief overview of the three data setsdusethe research: Hospital
Episodes Statistics (HES) data, climate data, afidtpn data. We also describe
the study population and coverage area, data mar@ade and data cleaning

process, linking administrative data sets and sselkated to missing values.

Chapter 5: Generalized linear modelling

This chapter describes the existing statistical regghes especially the
generalized linear modelling and its extension dealing the count data. We
illustrate a brief overview of the theoretical d@sttons of the GLM. In addition
to that, we describe the extensions of the GLMtlar count data and deployed
them to our data. Finally, we applied the GLM usthg climate and pollution
factors for selecting the significant factors ire tamergency lower respiratory

hospital admissions.

Chapter 6: Modelling with non-linearity and delayed effect of climate factors
In this chapter, we develop our model by considgtire non-linear relationships

between climate change and emergency hospital admss But before

10



1.5 Qutline of the thesis

proceeding to the final model, we describe some nsonly used smoothing
techniques and spline functions for non-linearisiadl modelling. We also
illustrate the Distributed lag non-linear modelliagd develop the final model

incorporating the delayed effect and non-lineasityhe relationships.

Chapter 2

Literature review on factors of climate, pollutiotiseases categories;
focusing current research on climate change, aldtigexisting methods

y

Essential factors in the

Systematic Review
(Contributions)

Descriptions of the 3 data

climate change healt
= : . sets and related data
T 0
3L research in public healt:’: management process
‘5 8 context
E S Chapter 6 \I’
=0 P Chapter 5

The final DLNM model
considering non-linearity
and delayed effect o
climate and pollution
factors

Theories related to GLM
and developing a series
GLM models

Datasets and
management

Chapter 7

Results of the proposed final model and model coimpas

Chapter 8
Conclusions and Future works

Contributions

Figure 1: Map of the chapters and their inter-dependency for this thesis

Chapter 7: Results of the final model

In this chapter, we describe and interpret the ltesaf the final model after
applying it to our datasets. We also compare tkalt® emerged from the GLM,
DLNM model, and the final DLNM model. We show thesults that how the final
model is providing a better fit to the data. Modemparisons have been done

using standard procedures.

11



1.6 Chapter summary

Chapter 8: Conclusions and further works
This chapter concludes the thesis and describe® sdnthe limitations of the
research. In addition to limitations, we also didscour future plan for extending
the model in various aspects of diseases and sosnar

The systematic literature reviews from chapter @ aharacteristics of
factors in chapter 3 form the basis of problem iidieation and research gap
concerning this research. We describe the datasessing values, and data
management process in Chapter 4. Chapter 5 desc¢hibetheory of generalized
linear model (GLM) and results from our data sétschapter 6, we develop a
DLNM model for our problem, followed by the resuitschapter 7. We finish this
thesis by illustrating the conclusions and futuks emerged from this work. In
general, the contribution of the thesis lies in flystematic review (chapters 2),
linking the three administrative datasets into piteform (chapter 4), devising
the significance climate factors other than oniypperature (chapter 5) and most

importantly, developing a delayed non-linear mgdbhpter 6 and 7).

1.6  Chapter summary

In this chapter, we provided a brief backgroundhaf crucial aspects of climate
change and its adverse impact on the environmeththaalth, along with the

objective of the thesis, contributions, and thesigh@utline. In the next chapter,
we present a detailed literature review illustrgtsome of the key issues and

factors associated with the impact of climate cleamg health.

12



Chapter 2

Literature review

2.1 Introduction

Climate change has become one of the main areassefrch concentration
because of its current and future impact on heah.a result, a significant
number of diversified research projects have bemredecently to deal with this
affliction. These studies differ according to theubject areas, objectives,
methodologies, population, and disease charagtsrisatitudes and climate zone.
In this chapter, we conduct a systematic reviewhefliterature on climate change
and its impact on health along with the emphasistatistical modelling adopted
in various studies.

Section 2.2 describes the search strategy andtiselexriteria of the
studies, followed by an overall nature of exposwsponse relationships of
climate change in section 2.3; climate and poltufiactors under this context are
highlighted subsequently in sections 2.4 and 2e6ti8ns 2.6 and 2.7 focus on the
sensitive disease categories and most vulnerablgec| of population due to
climate change. Finally, the statistical modellaqgproaches in studies of climate

change and health are described in section 2.8.



2.2 Search strategy and selection of articles

2.2  Search strategy and selection of articles

A literature review has been carried out with aegahquest for examining the
methodologies used, to assess the relationshipgeetclimate change and health
exposure (e.g., hospital admissions, diseases)ioWssved the guidelines of the
PRISMA statement for systematic reviews and metdyais (Moher, Liberati et
al. 2009). The literature search solely concendrate studies related to health,
health care, and disease epidemiology due to daimetange and the
methodologies adopted for this purpose, e.g. sitatisnodelling. In general the
following criteria were considered for inclusion:
= Studies examining the relationship between metegrcdl factors (e.g.
Temperature, rainfall) and morbidity or mortalitging hospital outcomes
or any health statistics data.
= Studies using any statistical modelling approachsated to climate
change and health.

= Studies focusing on populations vulnerable to dencange.

Studies without any statistical model, not relatechealth, health care,
disease, climate change or weather variationsjghéd before the year 2000, and
not written in English were excluded. We used ®leweb of knowledge (WOK),
an academic citation indexing and search servic®KWincludes various
databases, such as MEDLINE and Web of Science. rékiew focused on
relevant studies published in English since 200 Reywords used in the search
criteria are: climate change, weather, hospital iasions, disease, and health by

considering the inclusion criteria mentioned earli€he search was further

14



2.2 Search strategy and selection of articles

refined based on articles and reviews focused enstlbject areas like public

health, environmental occupational health, envirental sciences, health care
sciences, mathematics, demography, infectious skseacial sciences, and so on.
The articles which came out of the above procesee supplemented by other

related articles in the same area, collected puoslWydor research purposes.

[
-% Total No of articles: 314
= ISI web of knowledge: 234
= Other: 8(
%
- Excluded articles: 224
(2 ) 5 review articles
g P > 4 non-English
= S 20 duplicate articles
§ u_‘—j’ 67 not relevant to objectivep
A 113 irrelevant subject area
—__
= 15 other reasons
% A\ 4
% Number of articles reviewed 9(Q
=

Figure 2: Selection process for articles

We explored all the articles from abstract to casidn. The screening
and eligibility of the articles were based on thebjectives, statistical model,
assumptions, variables or factors used for meaguraiimate change,
measurements or outcomes used for health expodlisesise categories, study
region, time period, individuals studied, bias iamifations of the study and any

influential factors in the model. We found 314 tdas, 234 from ISI web of
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2.3 The nature of the exposure-response relationships

knowledge, and 80 from other sources like referermrel Google scholar. A total
of 90 articles met the inclusion criteria out o#3ditations Figure 2).

Thus the meteorological and pollution factors, dése categories as a
consequence of the climate change, the vulnenalofispecific populations, and
various geographical regions have been revieweéruhe climate change health
context along with a rigorous evaluation of thesérp statistical methodologies
that have been developed and applied for modefliegmpact of climate change
on health. This investigation has strengthened understanding of the field,
enabling us to identify the gaps and challengesoteptualise the bigger picture
of climate and healthcare research. The key firglimgd contributions to
knowledge of this systematic review can be sumradras follows:

» Factors in climate health research should be gpdoifegions and
diseases. A climate index has stronger statissigaificance with health
than same climate factors used separately.

» Elderly, children, and patients with respiratorgetises are the main
groups at risk.

* Non-linearity between climate change and disedsesld be considered
for model optimisation.

» Lag structures of the factors are very crucial anefficient climate

threshold can lead to an improved health aleresyst

2.3 The nature of the exposure-response relationships

The links between weather, climate, and healthstlldargely unexplored except

in recent studies describing their associations(Band Samet 2002; Kovats and

16



2.4 Climatic factors affecting health

Hajat 2008). Most of the observational epidemiologges not show any
straightforward linear associations among the amsd factors due to the
complex multifactorial exposure-response relatiggshamong various factors.
Climate change reveals an overall health hazargaisre and literature reviews
revealed that a population with a temperate ckng@inerally shows non-linear U,
V, N or even J shaped relationships with the hagardga, Zanobetti et al. 2002;

Pattenden, Nikiforov et al. 2003; Pauli and RiZ202; Muggeo and Hajat 2009).

2.4  Climatic factors affecting health

Temperature is the most common climate or weathetof in almost all the
studies. Apparent temperature, dew point temperatsga surface temperature,
temperature range, and diurnal/ambient temperadteealso useful as factors.
Besides temperature, wind speed and direction, ditynirainfall, atmospheric
pressure, UV (ultraviolet) index / solar radiati@gud cover, pressure, El Nino,
water vapour pressure have also been used in elilmedlth studiesT@ble 1).
Apparently, temperature related factors have beeastigated in almost all the
reviewed articles concentrating on climate heatearch (136 times out of 258)
followed by factors related to humidity (66 times)d wind (26 times)Table 1).
Bartzokas, Kassomenos et al. (2004) used irradjamater vapour pressure and
west-north & south-south wind component along witmperature, wind,
humidity, and atmospheric pressure. Nastos andavitis (2006) used UV index
along with temperature, wind speed, humidity, atrdaspheric pressure. Lam
(2007) used temperature, rainfall, relative hungidand UV index. Rainfall and

humidity have also been used by (Pinto, Coelhd.&t(d.1). Besides temperature
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2.4 Climatic factors affecting health

or temperature induced indexes, the use of allrathmate factors relevant to
disease, climate zone and objective of the researehcrucial to include in the

model for model optimisation.

Heat and cold waves

Heat wavescover a huge portion of climate studies becaudbeif catastrophic
and sudden impact on health (Huynen, Martens €2Qf)1; Diaz, Jordan et al.
2002; Schwartz, Samet et al. 2004; Le Tertre, Inefrat al. 2006; Medina-
Ramédn, Zanobetti et al. 2006; Argaud, Ferry eR@07; Tan, Zheng et al. 2007,
Hansen, Bi et al. 2008; Hansen, Bi et al. 2008;liRad Rizzi 2008; Knowlton,
Rotkin-Ellman et al. 2009; Tong, Ren et al. 201@&, Mu et al. 2011). They act as
a factor in driving adverse health episodes (Pandi Rizzi 2008), specifically for
heatstroke (Argaud, Ferry et al. 2007), mental rdisq morbidity and mortality
during summer, which are strongly associated wéhtlwaves (Medina-Ramon,
Zanobetti et al. 2006; Tan, Zheng et al. 2007; ldan8i et al. 2008; Hansen, Bi
et al. 2008).

The majority of deaths during heat waves appeaetdue to pre-existing
chronic diseases, especially cardiovascular disélkEseehin and Mirabelli
2001). The effects of high temperature during veates have shown different
patterns on hospitalisation (Kovats, Hajat et @04 compared to general
summer temperatures (Kovats, Hajat et al. 2004hMazzi, Accetta et al. 2009).
Climate induced risks are often much higher duhiegt waves. For example, the
heat wave in France during 2003 showed large exoessality (Le Tertre,
Lefranc et al. 2006). Unfortunately, there is &la€ standardised framework for

defining heat wavesbecause of their variations with respect to tloation, time,
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2.5 Pollution factorsin climate health research

subject area, aim, and objectives of the study.t Mesves need to be defined
locally and standardise geographically for any hgemeous population (Tong,
Ren et al. 2010). Contrary to heat wavesld spells have been givetittle

attention in climate health studies (Huynen, Masten al. 2001; Revich and
Shaposhnikov 2008; Ma, Xu et al. 2011). Howeveeythre also associated to

increase hospital admissions (Ma, Xu et al. 2011).

Climate index

Climate index calculated from two or more climaaetodrs is a recent practice in
climate health studies. Hartz, Golden et al. (20d2) Tong, Ren et al. (2010)
extracted aheat-index from temperature and relative humidity. An index of
apparent temperature was calculated by combining ambient temperatugt an
relative humidity (Green, Basu et al. 2010; Aleskam, Zauli Sajani et al. 2011;
Wichmann, Andersen et al. 2011Apparent temperature has also been
calculated using saturated vapour pressure, astabur pressure, dew point
temperature (Kovats, Hajat et al. 2004; Basu, Fetngl. 2008; Basu and Malig
2011). In general, by using the indexes, strongatistical significance with
health outcomes can be achieved than any singfeatdifactors. This is probably
because any combined impact of climate factorsis@ade exposure is relatively

stronger than the effect of any single factor.

2.5 Pollution factors in climate health research

Variations in pollutant levels are found to reltdehealth hazards during extreme
climate events (Rocklév and Forsberg 2009). Althotigere is a debate as to

whether pollutants should be included in climatseegch, many studies have
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2.6 Disease categories due to climate change

focused on using pollution variables due to theiawoidable link with health

(Table 2). Ozone levels and various particle msttare the two dominant
measures in current research appearing 57 andn#és tirespectively in our
literature review (Table 2). Bhaskaran, Hajat et(2010) used these two factors
for chronic bronchitis and influenza. Ozone hasnbesed for chronic bronchitis
and heart disease and acute myocardial infarcdogina pectoris, pneumonia,
diarrheal disease / dehydration by Green, Basul.ef2@10). Besides ozone,
Nitrogen monoxide (NO) has been linked with measyurchronic obstructive

pulmonary disease (COPD) (Liang et al., 2009), itlitoxide (NOx) with

respiratory and cardiovascular diseases (Diazadoetial. 2002) and black smoke

for the same two diseases (Bartzokas, Kassomerabsa&t04).

2.6 Disease categories due to climate change

According to IPCC (2007), the association betwdenate change and health is
either direct, e.g. cardiovascular effects of exweweather or indirect i.e., via
pathogens, allergens or vectors (e.g. Vector anérarne diseases, mould and
pollens). Such associations disclose the possilafiburden of disease to increase
due to extreme climatic events, e.g. heat waveedf, cyclone, and storms IPCC
(2007).

The literature review revealed specific diseasas déine found to be more
frequent and influential in climate health reseaacil vary depending on time,
place, age, and socioeconomic conditions of theulatipn. Table 1 (climate-
disease) and able 2 (pollution-disease) showed the cross tabulationliséase

categories by climate and pollution factors thavehdeen considered in the
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2.6 Disease categories due to climate change

literature review. InTable 1 (climate related disease), respiratory (24 timasy
cardiovascular diseases (23 times) are the two rmmhi disease categories
followed by COPD (7 times) and diabetes (5 timé&3dher prominent disease
categories in Table 1 are: COPD (7 times), diabei( times), asthma,
pneumonia, & atrial fibrillation (4 times each). hable 2 (pollution related
disease), cardiovascular (37 times), respiratorseates (31 times) are the
dominant followed by COPD (13 times), and stroketi(®es). The rest of the
highly frequent diseases in this table in descepdirder are: asthma (8 times),
cardiac disease (7 times), cerebrovascular diggasmes), and 5 times each for
diseases in renal system, and kidney & congestagt tiailure. It is interesting to
see the increased amount of research conductedtbma and pollution factors

associated with climate changeable 2).

Other diseasesin climate change studies

Dengue is more frequent in tropical countries wharefall and humidity play an
important role (Pinto, Coelho et al. 2011). Tempe® rainfall, relative humidity
and UV index for fever, gastroenteritis and asthrage been considered by Lam
(2007). Skin disease has been explored by Mentzakdas Delfino (2010) in
relation to factors such as temperature, relativenitdity, and atmospheric
pressure. The climate factor El Nifio has been densd by Ebi, Exuzides et al.
(2004) for stroke, congestive heart failure, acoy@cardial infarction, and angina
pectoris. Ferrari et al. 2011 used UV index, claoder, boundary layer height
along with temperature, wind speed, and humidityni@asuring their impact on
COPD. Malignant neoplasm was considered by Huyisartens et al. (2001)

using temperature. Digestive diseases were exanbpéternandez-Raga, Tomas
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2.6 Disease categories due to climate change

et al. (2010) using temperature, relative humidapd atmospheric pressure.
Dementia was examined by Hansen, Bi et al. (2008%¥idering temperature as a
factor. Green, Basu et al. (2010) has used app&angerature as climate factor
for measuring its impact on chronic bronchitis mpdiysema, intestinal infectious
diseases, and acute renal failure. Kawasaki diskasebeen considered by
Checkley, Guzman-Cottrill et al. (2009) for tempara and rainfall. Alonso,

Achcar et al. (2010) also considered coronary ischi@ diseases adjusting
temperature, humidity, and atmospheric pressurenpeeature and relative
humidity have been adjusted for influenza by BhemkaHajat et al. (2010). Pauli
and Rizzi (2006) used UV index for measuring thepmal admissions due to
non-accidental causes. UV index (Keatinge and Qiswal 2001; Chang, Zhou et
al. 2010), cloud cover (Chang, Zhou et al. 2016y boundary layer height (Ebi
and McGregor 2008) are also used for measuring alitgrtas an impact of

climate change. Mortality data are very good intticaf the impact of the climate
change (Table 1 and Table 2), and temperature etative humidity are

predominantly used in such climate research studespared to any other

factors.

Indirect measurements of health outcomes

In addition to disease morbidity and mortality, inredt measurements of health
outcomes as a result of climate change are verylpaoand normally used by
adopting various health and administrative ternogms. For instance,
emergency call data (Bassil, Cole et al. 2009; Ha@Golden et al. 2012),
emergency hospital admissions / room visits / eerary dispatches (Kovats,

Hajat et al. 2004; Argaud, Ferry et al. 2007; Lad@2, Knowlton, Rotkin-Ellman
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et al. 2009; Liang, Liu et al. 2009; Wang, Barrettal. 2009; Khalaj, Lloyd et al.
2010; Tong, Wang et al. 2010; Alessandrini, Zaalja8i et al. 2011; Wichmann,
Andersen et al. 2011), emergency ambulance datin€lpand Sheridan 2006;
Ferrari, Exner et al. 2012), and hospital dischargeitpatient visits / hospital
admission data / Hospital Episode Statistics (Kevidgjat et al. 2004; Rudge and
Gilchrist 2005; Hansen, Bi et al. 2008; Hansen, dBial. 2008; Checkley,

Guzman-Cottrill et al. 2009; Pudpong and Hajat 2@&Ling, Chen et al. 2011).

2.7 Vulnerable population and region

The impact of a changing climate can vary due t® Wariations in human
susceptibilities, socioeconomic factors, and pdpada acclimatization to
prevailing conditions and other adaptive measukdderly and people with
cardiovascular & respiratory diseases, mentallyp#lople under medications and
with diabetes have been identified as dispropoatiely vulnerable to changing
climate (Kaiser, Rubin et al. 2001; McGeehin andratdelli 2001; Medina-
Ramédn, Zanobetti et al. 2006). People with cerpsynchological or behavioural
characteristics are also very sensitive in suahasdns. Athletes, children, and
outdoor workers may likely be affected by heat lstralue to being outdoors
longer and exerting themselves, even though theyfiarand healthy (Hartz,
Golden et al. 2012).

Age is one of the most influential factors and oldeeople are
significantly at higher health risk due to globdhmate change (Huynen, Martens
et al. 2001; McGeehin and Mirabelli 2001; Rudge &ilthrist 2005; Medina-

Ramodn, Zanobetti et al. 2006; Pauli and Rizzi 20R8yich and Shaposhnikov
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2.7 Vulnerable population and region

2008; Knowlton, Rotkin-Ellman et al. 2009; MuggendaHajat 2009; Alonso,
Achcar et al. 2010; Khalaj, Lloyd et al. 2010; Podg and Hajat 2011).
According to Knowlton, Rotkin-Ellman et al. (200@eople aged 65 or over and
children (0-4 years) represent the highest riskugrdue to their frailty to heat-
related causes. Higher sweating thresholds incrdeseisk of life threatening
consequences when body temperatures rise (McGeatdnMirabelli 2001).
Therefore, special attention is required for théedlyy and children under the
changing climate (Tam, Wong et al. 2009). Howesgetection of an appropriate
age group for such analysis depends on diseasgocgt¢he aims, and objectives
of the research, and availability of quality dafa.date, various age groups have
been considered in climate health research andi$fe most commonly used
(Huynen, Martens et al. 2001; Schwartz, Samet.e2G04; Rudge and Gilchrist
2005; Medina-Ramon, Zanobetti et al. 2006; Kolbddtaet al. 2007; Hansen, Bi
et al. 2008; Hansen, Bi et al. 2008; Qian, He eP@08; Tam, Wong et al. 2009;
Vaneckova, Beggs et al. 2010; Pudpong and Hajal)2®everal other elderly
age groups have also been considered. For exanfieyears (Diaz, Jordan et al.
2002; Khalaj, Lloyd et al. 2010), 65-74 years (Didardan et al. 2002), >= 50
(Keatinge and Donaldson 2001; Basu and Malig 204255 (Fouillet, Rey et al.
2007), >=75 (Pauli and Rizzi 2006; Pauli and RE@08; Pauli and Rizzi 2008),
50-69 and >=70 (Ebi, Exuzides et al. 2004), 75BdaSkaran, Hajat et al. 2010).
On the contrary, very few studies have focused luildren (<5 years, Kovats,

Hajat et al. (2004) and <6 years, (Lam 2007).

24
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Table 1: Frequency of diseases categories / mortality exbssth meteorological factors in literature review

Climate Factors Related To Temperature Facto:/s\/irr(]aéated « Relative
_ Factors Sea Rainf|Humidity Atmospher
Dlsease_ _ Temp Apparent |Dew Point Surface Wind _Win(_JI all /_ i Pressure
Categories / Mortality | Temp. Temp. Temp Speed Direction Humidity Total
Respiratory disease 16 4 1 5 1 1 12 5 24
Cardlovascglar / Circulatory 18 3 1 4 1 1 13 4 23
disease
Cerebrovascular disease 1 1 1 1 2 3
Asthma 2 2 1 1 2 4
COPD 6 2 2 4 1 7
Heart disease 1 1 1 1
Cardiac arrest 2 1 1 1 2
Diseases _related to renal syster 3 1 1 2 3
kidney, ureter
Diabetes 4 2 1 3 1 5
Dehydration 3 1 1 1 2
Mental disorders / Schizophrenia 3 1 1 1 1 3
Heat stroke / stroke 6 1 1 1 2 3
Congestive Heart Failure 2 1 1 1 1 1 3
Cardiac disease 2 1 1
Atrial fibrillation 1 1 4 4
Acute myo_card|al |nf§1rct|on, 4 1 1 1 1
Angina pectoris
Pneumonia 3 1 3 1 4
D|arrhoe§1I d|§easg/ Dehydrat|o 2 1 1 1 1 3
/ Intestinal infectious disease
Described as Non-incidental 2 1 > > > 1 8
Causes
Heat-related emergencies 1 1 1 1 2
Mortality 21 2 3 1 3 10 2 16
Total 103 23 6 4 22 4 14 66 16
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2.7 Vulnerable population and region

Table 2: Frequency of diseases categories / mortality exbssth pollution factors in literature review.

Climate
Factors Particulate matter: (e.g.PM;o| Nitrogen Carbon o
Disease O(éor;e or PM, s or both) / Total dioxide monoxide SUIprEgr()dZ;OX'de Total
Categories 3 suspended particulate (TSP) (NOy) (CO)
Mortality
Respiratory disease 11 10 7 3 31
Cardlovascylar / 11 9 9 3 5 37
Circulatory disease
Cereb.rovascular 2 2 > 1 7
disease
Asthma 3 2 2 1 8
COPD 4 3 3 1 2 13
Cardiac arrest 1 1 1 3
Diseases in renal 2 2 1 5
system and kidney
Diabetes 2 1 1 4
Dehydration 1 1 1 3
Mental disorders /
Schizophrenia ! ! 1 3
Heat stroke / stroke 3 2 2 2 9
Conges.tlve Heart > 1 1 1 5
Failure
Cardiac disease 2 2 2 1 7
Atrial fibrillation 1 1 1 3
Mortality 11 12 4 2 5 34
Total 57 49 38 8 20
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2.8 Modelling approaches in climate change health resezh

The review aimed to focus on the various statikticaodelling and

methodological approaches used in recent studmsédrthe sphere of health care
and disease epidemiology. A variety of modellingprapches have been
discovered in various climate change health sedting general, most of the
studies involve health exposure as responses (Bsgase outcomes, morbidity,

hospital admissions) and climate variables as estay variables.

Generalized linear model (GLM)

The GLM is found to be very useful and frequentbed in this context (Sung,
Chen et al. 2011; Ferrari, Exner et al. 2012). Andard GLM for normal
responses is a multiple regression model in whehdispersion parameter is the
error variance (Chandler 2005; Bhaskaran, Hajatlet2010). Recently the
generalized additive model (GAM) has become on@fmain statistical models
under the climate change and health framework @uig&dwards et al. 2002).
This is because of its nature as a semi-paranettension of GLM and ability to
deal with non-linear and non-monotonic relationshighalaj, Lloyd et al. (2010)
and Medina-Ramén, Zanobetti et al. (2006) usedstagiregression model to
determine the health impacts of extreme heat eveladz, Golden et al. (2012)
used a multivariate analysis using stepwise regnege examine seasonality and
identify the statistically significant relationskipof selected mortality and
meteorological variables. A generalized estimatugiation has been used by
Wang, Barnett et al. (2009) to investigate the ioctpaf heat and cold on

emergency stroke admissions. All are special cak€4.M.
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Models with count data

Poisson regressions under the GLM and GAM have heed in various climate
change health research studies. Basu, Feng eR@08); Alessandrini, Zauli
Sajani et al. (2011); Basu and Malig (2011); Vatedkis and Heaviside (); Liang,
Liu et al. (2009); Kovats, Hajat et al. (2004); &tajArmstrong et al. (2005);
Fouillet, Rey et al. (2007) used Poisson regressiih a log link function in
either generalized linear model or generalized taddimodel (GAM) for
exploring the relationship between daily emergeaaybulance dispatches and
apparent temperature, accounting for over disperaizd autocorrelation in the
model. Generalized negative binomial regressiomé@¢iova, Beggs et al. 2010;
Pudpong and Hajat 2011), time series zero-inflR@dson regression model with
classification and regression tree (CART) (Hu, Mensgn et al. 2010) are also
applied in climate change research. Poisson ragressodel with a log link has
been used frequently because of the nature ofeifonse variables are counts or
rate of disease outcomes (Tam, Wong et al. 20089. link is also useful with

other modelling practices (e.g., GLM, GAM) (Qiare Ht al. 2008).

Exploratory data analysis

Evaluating an exploratory data analysis beforenfittany statistical model is a
common practice including the area of climate clearmgd health. Test of
hypothesis like t-test, 2 sideg?-Test or Fisher exact test has been used for
measuring the baseline characteristics of the spaghulations by Argaud, Ferry
et al. (2007). Ma, Xu et al. (2011) used rate gt estimate the impact of the
heat wave and the cold spell on hospital admissiRate ratios were also used by

Knowlton, Rotkin-Ellman et al. (2009) to investigahighly susceptible age or
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race groups to hospitalisations and emergency ttepat (ED) visits during the
2006 California heat wave. Nastos and Matzarak30§? used Pearson Chi-
Square TestyR) to examine the relationship between meteorodgiarameter

and General Practitioner (GP) consultations asxploeatory analysis.

Case-crossover designs

Case-crossover design to analyse climate healthigatlso available along with
case only study design (Medina-Ramaon, Zanobetl.e2006). This is equivalent
to a matched case-control study where the casessabieir own control. In such
case the time-independent factors (e.g., ageraeg) are unable to confound the
observed associations. Kolb, Radon et al. (200&d us time-stratified case-
crossover design considering temperature, presswmidity, and adjusting
pollutants to determine the associations betweeathee and daily elderly
mortality due to congestive heart failure. The tistetified approach removes
biases from unwanted trends in the mortality tiredes and leads to unbiased
estimates of effect for case-control days seleetegdin specific time windows
(Kolb, Radon et al. 2007). Thus it controls fomisle and seasonal patterns in the
dependent and independent variables (Tong, Waral. &010). Time-stratified
case-crossover design has also been adopted by,GBasu et al. (2010);
Wichmann, Andersen et al. (2011); Ostro, Rauch.gP810);Tong, Wang et al.

(2010).

Data reductions techniques
Statistical data reduction techniques are commuoséd for selecting variables or

reducing the data dimension in this area. Prinageahponent analysis was used
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by Pinto, Coelho et al. (2011) and Fernandez-Ragaas et al. (2010) for

selecting climate factors (e.g., temperature, alinffiumidity).

Time series models

Time series analysis became one of the key statisipproaches in the climate
change researches. Kaiser, Le Tertre et al. (208&0 advanced time series
analysis methods with Poisson regression and peadlegression spline to re-
examine the effects of 1995 Chicago heat wave ®wcaake, cause-specific
mortality, and mortality displacement. Lam (2007sed the ARIMA
(Autoregressive integrated moving average) timeesemodel to measure the
association between climate factors and childhdiess. Alessandrini et al.
(2011) used GAM and time series analysis technigfeme other recent studies
that applied time series modelling approaches isdbntext are: Chang, Zhou et
al. (2010); Basu and Malig (2011); Pudpong and Hgga11); Hartz, Golden et
al. (2012); Rocklév and Forsberg (2009); Tong, R¢ral. (2010); Le Tertre,
Lefranc et al. (2006); Bhaskaran, Hajat et al. B0 Kovats, Hajat et al. (2004).
Time is also an important factor for statisticaldathng like survival analysis or

multivariate Cox proportional hazard model (Argakdrry et al. 2007).

Models based on Bayesian approach

A Bayesian approach has been exposed recentlyriougaclimate change health
research with some promising results. Alonso, Acletal. (2010) used a Poisson
regression model where the inferences of intereste hbeen obtained using
Bayesian methods and the posterior summaries vid®Gimulation methods.
The objective of the study was to verify whethamelte covariates affect the

daily hospitalisation and identify susceptible ggeups.
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Data structure and dependent variable

The data structures of most of the studies areidimiensional data frequently
involved measuring the relationships of climateng®over time. Thus nearly all
the studies in our literature review used pandbagitudinal data (e.g. (Ferrari,
Exner et al. (2012), Fernandez-Raga, Tomas e2@l.0), Hajat, Armstrong et al.
(2005), Hu, Mengersen et al. (2010), Kalkstein Braglis (2005), Kovats, Hajat et
al. (2004), Muggeo and Hajat (2009), Pattendenifttitv et al. (2003), Pauli and
Rizzi (2008), Pudpong and Hajat (2011), Schwarem& et al. (2004), (Tam,
Wong et al. 2009), Huynen, Martens et al. (20019n&ldson, Keatinge et al.
(2003))). Besides panel data, time series data, (@ygBasu, Feng et al. (2008),
Basu and Malig (2011), Bhaskaran, Hajat et al. (Q0Braga, Zanobetti et al.
(2002), Curriero, Heiner et al. (2002), Diaz, Garef al. (2005), Hajat, Armstrong
et al. (2005)) and case-cross over data (e.g.,dily,KRadon et al. (2007), Nastos
and Matzarakis (2006)) are also found to be usedlimate change health
researches.

The dependent variables of these studies in tleeatitre reviews are
mainly surrounds among the rate of deaths or mgrtalumber of counts of
hospital admissions (inpatient hospital admissi@mergency admissions), GP
admissions, morbidity, or disease outcome due tp specific disease with
respect to the change in climate factors. Thus miote dependent variables are
in the form of rate of change or count with respEgberiod of time (e.g. daily or
monthly) and for the same reason Poisson regressienone of the most

commonly used methods found in the literature nesiéplease see the “Models
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with count data” at section 2.8). More informatiabout the dependent variable

can be also found in section 2.6.

Soatial statistics

Spatial statistics in recent years have receivedsiderable attention. For
example, Vaneckova, Beggs et al. (2010) used GLbhalwith spatial scan
statistics and spatial regression to analyse tbgrgehical patterns of heat-related
mortality within the metropolitan area of Sydneyoliey and Sheridan (2006)
applied a spatial and temporal analysis using Gaatgcal Information Systems
(GIS) to analyse the relationship of extreme hagt Wine ambulance calls for the
city of Toronto, Canada. GIS and geospatial metheese also used by Green,
Basu et al. (2010). Davis, Knappenberger et al0420explored the spatial
patterns of climate—mortality seasonality in mai# cities. Hartz, Golden et al.
(2012) used Pearson’s correlations and Moran’sdexnto calculate spatial
autocorrelation and thus analyse spatial patterheat-related-dispatches. Bassil,
Cole et al. (2009) used geospatial methods to mepéercentage of heat-related
calls (911 medical dispatched data) in each Torongghbourhood to
demonstrate the potential applications of 911 naddicspatch data due to heat-

related illness (HRI), in the summer in Toronto.

Climate threshold

The threshold calculation for any specific climatactors especially for
temperature for specific heat wave, region, andthexposure (e.g., disease) is a
very useful practice. This is also important fotedmining a better health alert
system. We observed some interesting studies megswsuch threshold

temperature as an effect of heat waves. Hansemt Bi. (2008) analysed the
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effect of heat waves and temperature on mentattel#orders and mortality.
They also calculated related threshold temperatpying Poisson regression
accounting for over dispersion and ‘hockey stickéthod. Beside threshold,
extremely hot and cold days were defined using 988 and f' percentile,
respectively (Medina-Ramon, Zanobetti et al. 2008)rcentiles have been also

used by Liang, Liu et al. (2009).

Non-linear models and smoothing
Non-linear relationships of climate and disease oeype are eminent and
practically most of them show U- or V-shaped relaships (Muggeo and Hajat
2009). In all the non-linear modelling approachesious types of spline and
smoothing techniques are found to be used for mmegsyprecise trends and
estimates. For instance, in a multi-lag segmenpeelcéwise linear) approach,
Muggeo and Hajat (2009) used GAM with smooth teffitted by low-rank
penalised splines (B-splines). Spline functionsase used in some other studies
by Tong, Ren et al. (2010); Le Tertre, Lefrancle(2006); Le Tertre, Lefranc et
al. (2006). The smooth and invertible linearizimk [function is available both in
GLM and GAM models for transforming the expectasiari the response variable
to the linear predictors. Pudpong and Hajat (2@Ed smooth functions of time
(b-splines for date) with six degrees of freedor) (@er year were chosen to
control for long-term trends and seasonality.

Generalized Additive Model (GAM) is also found te bery useful in
various studies: Pauli and Rizzi (2008); Pauli &mzi (2006); Tam, Wong et al.
(2009); Pauli and Rizzi (2008); Nastos and MatziardR006); Rocklév and

Forsberg (2009); Tong, Ren et al. (2010); Le Teltedranc et al. (2006). Qian,
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He et al. (2008) allowed over dispersion using guligslihood in generalized
additive models (GAM).

Distributed lag approach and multi-lag segmentestietiing approach
are found to be efficient for dealing with such Aimear relationships. The latter
approach is preferred for considerations of noadity and the delayed impact of

any climate or pollution factors on health (Muggew Hajat 2009).

Limitations and challenges in modelling

While different approaches to studying the effeftan extreme climate event or
climate change on health can result in highly \deaestimates (Rocklév and
Forsberg 2009), each of these approaches has tlonda collectively they
provide information regarding the impacts and care gnsight into possible
future directions and policies.

Most climate change health research studies hawn lexploring
retrospectively rather than prospectively for fetwcenarios. A huge portion of
the studies has been found to be based on crossrsganethodologies in spite
of their limited power to demonstrate the causadbyween an exposure variable
and the outcome (Lam 2007).

The lag period of climate variables seem to varystudies and it is
fundamental to optimize the length of the lag pe#rfor a particular disease,
season and country. Any climate change should tak® account regional
differences (Braga, Zanobetti et al. 2002). Anofksue identified in the review is
the insufficient duration of the studies to demaatstthe trends and seasonality of

the results (Lam 2007).
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The ability to make generalisations of existing Imogiologies is very
limited because of the variations of climate expestelationship across time,
region, and populations. Since areas within certmiondaries may have more
homogeneous environmental, epidemiologic and deapdgc characteristics,
most of the climate studies are limited to specifegions and populations
(Fouillet, Rey et al. 2007; Liang, Liu et al. 2009u, Mengersen et al. 2010;
Tong, Ren et al. 2010; Tong, Wang et al. 2010;dgrExner et al. 2012; Hartz,
Golden et al. 2012). Thus research which is notufadn based could sometimes
become confined to generalise the results in ajiorss (Lam 2007). This
introduces uncertainty regarding how to extrapofaben one location or time
period to another, given the different populati@madgraphics, climate, baseline
health status, levels of air pollution, etc.

Measuring the predictive power of the models isntbuo be very
occasional and limited. Many methodologies are dbtm have weak predictive
performance as they are state specific and vansa@ommunities (Chang, Zhou
et al. 2010). All these factors make the develogneérstatistical modelling and
methodologies more complicated. However, any simgtaglel cannot deal and
capture the full scenario of climate change andtlhesmultaneously. Therefore,
research should focus more on precise locally basedelling approaches with
all the influential factors in predictive mannerfigh are essential to improve
proactive health measures (Knowlton, Rotkin-Ellnedral. 2009; Tam, Wong et

al. 2009).
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An efficient health alert system

An efficient health alert system based on a prenis¢hodology to prevent the
risk of morbidity and (or) mortality has been a ltdvage and an earnest quest for
researchers to take necessary precautions (McGaatiiirabelli 2001; Dolney
and Sheridan 2006; Fouillet, Rey et al. 2007; T&reng et al. 2007). A proper
heat mitigation plan for the vulnerable communigyn @lso play an important role
in this respect (Dolney and Sheridan 2006). Thigpasticularly important for

elderly people (Revich and Shaposhnikov 2008).

Conclusion
The diversified nature of climate and its vast aggmns with the environment
and health has made climate health research chaitpand complex. Therefore,
any recommendations to key policy makers shouldgiven with caution. A
general preparedness should be adopted in all mesinrrespective of the
scenarios and outcomes. Community-wide climate g@haplans, improved
warning systems, better management for facingnipact of climate change are
important. Increasing the awareness of people bycathg them through
community based support and knowledge can playah nale in improving their
adaptive capacity. Better social networking, mar®rmative radio, television
and media can be helpful to raise awareness okevaiite lifestyles and increase
the adaptive capacity of the population due toctienging environment.

Although models are useful in conceptualising theasnic process, more
accurate statistical models could achieve a betirceptual representation of an
interrelated complex system of climate change aedlth. No model can

completely simulate real life. But such limited angal studies are the
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foundation on which modelling parameters are deatexththat act as pathways
for future research. No doubt that there is alwag@n for improvement, as we
progress in time and gain experience to achievetterbunderstanding of this
phenomenon. The impact of climate change on huneaitth has long been a
matter of public health and represents a uniquereifit environmental risk factor
that will cut across multiple sectors on which hanh@alth depends. Therefore, a
multidisciplinary approach among health scientistbmatologists, biologists,
ecologists and so on is required to face the amgdéleFurther research is needed
to devise and identify the most appropriate siatikapproach for both reliability

and extrapolative power.

2.9 Chapter summary

In this chapter, we presented an overview of ttexdture led by a structured
search and selection strategy for the sources tdlem. We first unveiled
exposure-response relations in health care underclimate change context
followed by the meteorological, pollution and emvimental factors along with
the related disease categories that are considetéds research arena. The most
susceptible group of people and specific countaed places were reviewed.
Most of the studies have dealt with populationseimperate regions which need
to expand to other regions around the world. Tlaissical modelling, related
objectives and important results point out the difed characteristics of the
study along with the pros and cons of the existimgfhods and approaches. The
results of the studies reviewed do not cover thela/hange of climate change and

its impact. Our focus was given to recent work thas focused on disease
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outcome and/or hospital admissions. However, itbktaus to gain a sound
insight into the issues related to statistical rodttogies developed so far,
examining the impact of climate on health in tlespect.

We separated and extended this chapter to the mexspecify the
important factors that are important in modellimgl dence should be considered.
Thus the next chapter discusses about the impoftanibrs that need to be

considered in research related to the impact ofatk change on health.
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Chapter 3

Factors In climate health research

3.1 Introduction

The boundless influence of climate change on egoéogl environment is also a
multifactorial influence on health. However, thdiraty of the factors related to
climate, environmental, pollution and health expesuis crucial and failure to
properly select these factors may produce conilictiesults (Knowlton, Rotkin-
Ellman et al. 2009). More information and researshneeded surrounding
variable selection related to climate and healtt@dehin and Mirabelli 2001).
Thus it is imperative to concentrate on the sedectif factors for developing any
precise model or methodology. In this chapter, weu$ on the fundamental
factors that need to be considered in modelling.

Section 3.2 indicates the important meteorologiaelors that need to be
inspected in climate change health research. Tine s@sight for pollution factors
is given in section 3.3, followed by socio-econoraied demographic factors in
section 3.4; latitude and regional factors in sectB.5. We describe the lag
structure and climate threshold in section 3.6saeality of climate change in
section 3.7, and conclude the chapter by highightither important factors that

need to be acknowledged in modelling (section 3.8).



3.2 Climate or meteorological factors

3.2 Climate or meteorological factors

In the literature review (chapter 2), we came ax@me meteorological factors
that should be treated as fundamental for devefp@iny reliable model to
measure and predict the impact of climate chandeaith care. Nonetheless, the
inclusion of any meteorological variables depend the data availability,
objective of the study, time, region, disease aaieg, socioeconomic,
demographic factors and so on.

The relationships between temperature and diseasdbe main focus of
most of the current research (Pauli and Rizzi 2@0®) it is also evident in our
literature review. In addition to temperature, othefluential climate factors
should be considered in climate research irrespgeabdf climate zone, time,
region, and objective of the studies are: appaemperature, temperature index,

climate index, wind speed, humidity, rainfall, ppese etc. (Table 1).

3.3 Pollution and environmental factors

Pollutants showed significant influences on heaiticlimate change research.
Although there is some argument about the inclusibmpollution factors, the
literature review proved their importance in mouhgjlthe climate health research
along with meteorological factors for certain dseaategoriesT@ble 2). Thus,
pollution factors such as ozonesf(Oparticulate matters (PMor PM, s), Nitrogen
dioxide (NO2), and Carbon monoxide (CO) should besaered along with

climate factors (Table 2).
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3.4  Socioeconomic and demographic factors

Socioeconomic factors, urban living, housing chimastics, including limited
access to air conditioning are found to influenealth (McGeehin and Mirabelli
2001; O'Neill, Zanobetti et al. 2005; Dolney anceftan 2006; Tan, Zheng et al.
2007; Kovats and Hajat 2008; Pauli and Rizzi 20Q&n, He et al. 2008; Tam,
Wong et al. 2009; Ostro, Rauch et al. 2010; PudongHajat 2011). Along with
socioeconomic factors, social network, access tdia&arious communities, and
so on are also important factors for modelling elienchange (McGeehin and
Mirabelli 2001; Kovats and Hajat 2008). In additimnage, race, and ethnicity are
found to be a factor, particularly for the blackpptation (McGeehin and
Mirabelli 2001; Basu and Samet 2002; Medina-Raniemobetti et al. 2006;
Kaiser, Le Tertre et al. 2007; Knowlton, Rotkin+&dn et al. 2009). This could be

due to differences in lifestyle, food habit alonighasocioeconomic conditions.

3.5 Latitude and regional factors

The changes in meteorological variables are alrestiyersely affecting health
and environment with different scale and rate imows climate zones (WHO
2008). The articles in the review have focused anous geographical regions,
highlighting the effects of different latitudes agldnate zone. The results of these
studies are compatible to respective location dmuesdcioeconomic factors,
lifestyle, and cultural factors which vary in angesific climate zone. We have
tabulated the most frequent countries that haveecaonoss in our review (Table

3).
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Table 3: Number of articles in various countries in theiegv

Most Frequent countries in Number of articles in
the review the review
United States 14
Australia 7
United Kingdom 5
Italy S
China 4
Brazil 3
Greece 3
France 3
Canada 2
Taiwan 2

The articles from the USA are more diversified @amms of diseases,
climate, and socioeconomic factors, along with meéthogies, compared to
others. All four articles from China focused maiolly temperature or heat wave
using various periods of lag and studied the efbecelderly people. The number
of articles from the United Kingdom is very limitedd like China almost all have
focused only on the impact of temperature. Theeeadso some articles in the
review from other countries including Denmark, @hilThailand, Russia,
Bulgaria, Netherland, Germany, Sweden, India, $ioga, Spain, and Taiwan

represents the global interest surrounding thisareh area.

3.6 Lag structure and climate threshold

Lag structures

The time between the day of disease onset (or figytand meteorological
exposure is generally termed as the lag period engersen et al. 2010). The
lag effect is important in climate research assingceptibility rate of a population

varies according to disease and geographical amed, exhibits different lag
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structures of climate variables depending on tlesae of the year (Pudpong and
Hajat 2011). Hospital admissions predominantly oeeithin a few days after the
exposure of high temperature (Schwartz, Samet .eP@4; Fernandez-Raga,
Tomas et al. 2010). The effects of low temperatapgsear approximately 10-days
after the weather changes, and only after 1 ory® flar high temperature. Diaz,
Garcia et al. (2005) and Kolb, Radon et al. (200und an association of hot
weather up to 0 to 3 days and cold weather stadftey 2 days. Apparently the
hot weather has a very quick reaction on healthpaoed to cold weather (Braga,
Zanobetti et al. 2002; Pattenden, Nikiforov et2003; Hajat, Armstrong et al.
2005; Nastos and Matzarakis 2006; Muggeo and H4)@8; Tam, Wong et al.
2009; Bhaskaran, Hajat et al. 2010). Thus varigped of lag period have been
used by researchers depending on the nature chs#gisseasons, and research
characteristics, and to date there is no cleardstaised general form and
duration of lag structure and period yet.

The most common form of lag measurement is the pmaaming average
and cumulative average (Kovats, Hajat et al. 2B3&5u, Feng et al. 2008; Basu
and Malig 2011). For this reason, we need to bdi@kpbout the lag structure
and duration for efficient results. Some exampleshe lag structure we came
across include: 0-1, 2-7, 8-14, 15-21, 22-28 d®jsmtkaran, Hajat et al. 2010) ,
0-1 to 0-5 days lag (Tam, Wong et al. 2009), 0-d @13 days lag (Pudpong and
Hajat 2011), 0-8 weeks, 0-1 weeks, and 0-4 weeks fengersen et al. 2010), 1-
7 days (Ferrari, Exner et al. 2012). It is impottao investigate the most

appropriate structure of the lag periods in clintegalth research.
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Non-linearity in lag period and climate threshold

Population with a temperate climate generally showrslinear U, V, N or even J
shaped relationships (Braga, Zanobetti et al. 200#tenden, Nikiforov et al.
2003; Pauli and Rizzi 2008; Muggeo and Hajat 20@@d the optimum
temperature value(s) corresponding to the lowestt @d the U-, V- or J- shaped
exposure-disease relationship curve yielded theomppity for calculating the
threshold in climate change health research (Qurriéleiner et al. 2002).
Threshold temperature denotes that mortality/morbidity rates are smabeghis
temperature and those levels will increase if teengerature increases or
decreases from this point (Kalkstein and Davis 208ce the related exposure-
response relationship is non-linear, the cold (lowan optimum temperature)
effects and hot (higher than optimum temperaturécts were usually
investigated separately. The threshold or optimemmpierature varies according to
population, place and disease or ‘cause of degtr' example, in the Netherlands
between 1979 and 1997, the optimum value was’C6fbr total mortality,
cardiovascular mortality, respiratory mortality antbrtality among those >65
years, whereas for mortality due to malignant naspl and mortality in the
younger age group, the optimum value was %5.5nd 14.8C, respectively

(Huynen, Martens et al. 2001).

Methods used for climate threshold

Several methods are available in the literaturgetect the threshold temperature.
Kalkstein and Davis (2005) calculated the thresht#chperature using the

smallest total sum of squares, while Donaldson tikga et al. (2003) calculated

it by computing the mean daily mortality over a ganof 3C at successive
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0.11°C intervals for each year of the data. Recentlypatiing curves were
plotted to generate the temperature point at wtitod minimum mortality
occurred (El-Zein, Tewtel-Salem et al. 2004). Petites (e.g. 99 or 90" of
temperature have also been used as the thresmojgtatures in a meta-analysis
(Anderson and Bell 2009). Muggeo developed a setgdeapproximation to
compute the threshold temperature which has beepoped in several studies
(Muggeo 2003; Michelozzi, Kirchmayer et al. 200&hother way to divide hot
and cold periods was according to the four seasdmrese data were analysed for
spring, summer, autumn and winter separately (Basl Samet 2002; Carson,
Hajat et al. 2006). A more robust and precise nttheeds to be developed for
calculating the climate and pollutant thresholddpecific disease categories.

In general the outcome or event variable of thdistuthat considered the
delayed effect or calculating threshold in reseasthted to climate change and
health are disease outcome or mortality. Such skseatcomes are in the form of
hospital admissions, GP visits and so on and nityri@le described as death due
to certain disease or non-accidental death. Fomplaa mortality has been
considered as event variable by several studieqlkiynen, Martens et al. 2001,
Braga, Zanobetti et al. 2002; Curriero, Heinerle2@02; Donaldson, Keatinge et
al. 2003; Pattenden, Nikiforov et al. 2003; Diazarca et al. 2005; Hajat,
Armstrong et al. 2005; Kalkstein and Davis 2005{lK&adon et al. 2007; Basu,
Feng et al. 2008; Muggeo and Hajat 2009; Tam, Wetngl. 2009; Fernandez-
Raga, Tomas et al. 2010; Basu and Malig 2011). Ainttrem some studies
worked on mortality due to specific disease liked@asascular mortalities (Tam,

Wong et al. 2009), cardiovascular, respiratory, diggstive diseases (Fernandez-
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Raga, Tomas et al. 2010) and so on. There alsdest(elg. Bhaskaran, Hajat et
al. (2010), Ferrari, Exner et al. (2012), Hu, Measgea et al. (2010), Kovats, Hajat
et al. (2004), Nastos and Matzarakis (2006), RPandi Rizzi (2008), Pudpong and
Hajat (2011), Schwartz, Samet et al. (2004)) thatswlered hospital or GP
admissions or morbidity as outcome event and censitidelayed effect or (and)
threshold calculation. More information can on &went variables can be found

in section 2.6.

3.7 Seasonality

Climate variability is the oscillation around thg&esage climate, for various
diseases. Therefore, seasonality has become onleeofmost frequently used
terminologies in the climate change health researbke first detectable changes
in human health may well be alterations in the gaplical range (latitude and
altitude) and seasonality of certain vector-bomfedtious diseases (McMichael,
Haines et al. 1996). A change in the frequency iatehsity of heat waves and
cold spells would affect seasonal patterns of nadiyoand mortality (McMichael,
Haines et al. 1996). The amplitude of seasonahidity is generally larger than
that of the diurnal cycle at high latitudes and Kenaat low latitudes. Many
studies considered seasonality in measuring tloéutidions of climate and disease
frequencies. The winter dominance of mortality islely recognised throughout
the US and in many other mid-latitude countries #xperience some climate
seasonality (Davis, Knappenberger et al. 2004). ddses of cardiovascular and
respiratory mortality are found to have more seakwariations than others and

their seasonal component so dominate the long-sggmal that it is even evident
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3.8 Other factors

in plots of daily data (Davis, Knappenberger e2@D4). Davis, Knappenberger et
al. (2004) explored how mortality seasonality haanged over time. The future
net mortality changes might arise under differegisenal patterns of climate
change. Considering all these facts, seasonaldyldibe treated as a fundamental
factor in modelling the impact of climate changehmalth. However, seasonality
of the impact of climate needs to ensure that e climate factors (e.g.,

temperature, rainfall) were similar enough to asslinearity within each stratum

(Basu and Samet 2002).

3.8 Other factors

Time unit measurement

The correct parameterisation and the time unit §dayeeks, months) for
measuring the disease exposures are crucial imtdirhealth studies. The mean is
commonly used for temperature even combined witlerotactors (Pudpong and
Hajat 2011). Other parameterisations have also hes, such as a 3-hour
maximum apparent temperature and 5-days cumulatreeage of the apparent
temperature (Wichmann, Andersen et al. 2011), }0+rdaving average of the
mean temperature, cumulative variable for maximemperature (Fouillet, Rey
et al. 2007). Thus studies concluded using varigpss of time spans (e.g., days,
weeks, months, and so on). Similar to the lag sirec the time unit of
explanatory variables also depend on the naturechadacteristics of disease,

population, seasons, place, data availability,@njdctive of the study.
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3.8 Other factors

Heat wave

The definition of “heat wave” varies in many stuglend it is both imperative and
challenging to standardise the definition baseaamect parameters for specific
regions (Pauli and Rizzi 2008; Revich and Shapdsim2008; Tong, Wang et al.
2010; Ma, Xu et al. 2011). This will help to undard its impact on health and
develop appropriate public health interventiontegees to prevent and mitigate
the impact of climate change following heat wavBsassil, Cole et al. 2009;
Pudpong and Hajat 2011). However heat waves haae thefined loosely in most
of the studies (Kovats and Hajat 2008) and thustiegall results of any research
study using heat wave depend on its definition {uny Martens et al. 2001)
along with the reference period of climate heakltsearch (Knowlton, Rotkin-

Ellman et al. 2009; Ma, Xu et al. 2011). This iscatrue for “cold-wave.”

Quality of data

The lack of good quality data for meteorologicaitfes and pollutants is one of
the main difficulties faced by researchers (Barémykkassomenos et al. 2004;
Medina-Ramon, Zanobetti et al. 2006; Qian, He et28i08; Mentzakis and
Delfino 2010). Missing data are also common aloriy wisclassification (Kolb,
Radon et al. 2007; Pudpong and Hajat 2011), measunteerrors (Qian, He et al.
2008) and lack of personal health care data dysmtent confidentiality, which
challenges the precision of results (Pauli and iRI298; Sung, Chen et al. 2011).
For these reasons, current studies are conducti&diimited use of climate and
pollution variables. These may have produced meliakie results if they had
considered all the important factors related tocHjoe diseases (Bartzokas,

Kassomenos et al. 2004); the same argument idraklsdor health outcomes and
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disease exposure. Therefore, the quality of datarusial in climate health

research and more efforts are needed to improwe abpect (McGeehin and
Mirabelli 2001). Moreover, daily mortality and mdadidy data by diseases are
required as weather conditions typically vary ordaly basis. One possible
surrogate for morbidity is the use of ambulatorydioal care. However, data such
as number of emergency calls and number of ambeldigpatches often have
lots of problems with regard to their accuracy amanpleteness (Dolney and
Sheridan 2006; Alessandrini, Zauli Sajani et all0 Again data need to be
standardised with time and locality to improve ¢fuality and precision of climate

research (McGeehin and Mirabelli 2001).

Use of hospital admissions data

Hospital admissions data are one of the main iflerdi of disease exposure:
morbidity and mortality. Lots of studies aimed teasure the relationships of
climate and environmental factors with health hdzarsing hospital outcomes of
different forms and in most cases significant reteghips have been exposed
following a sudden change in climate (Bartzokassd6anenos et al. 2004; Pauli
and Rizzi 2006; Pauli and Rizzi 2008; Pauli andzRRO0S8; Liang, Liu et al.
2009; Rocklév and Forsberg 2009; Wang, Barnetl.e2G09; Alonso, Achcar et
al. 2010; Green, Basu et al. 2010; Hu, Mengerseh. 2010; Khalaj, Lloyd et al.
2010; Ostro, Rauch et al. 2010; Tong, Ren et d026errari, Exner et al. 2012,
Hartz, Golden et al. 2012). However, the use ofreggte hospital admissions
data limits the amount of individual-level informaat (Liang, Liu et al. 2009;
Wang, Barnett et al. 2009; Green, Basu et al. 26iL0;Mengersen et al. 2010)

and in some countries it only covers the peoplén wiedical insurance which
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brings about the possibility of selection bias (Pagy and Hajat 2011). Along
with this, a huge amount of information is missinghospital data, for instance
data concerning people who are treated in geneealtipes (GP) or outpatient
clinics which do not result in hospital admissidata can also vary between
hospitals and physicians due to recording of dmsediagnosis, classification,
admission criteria, and treatment procedure. Hemds,important to treat these
inconsistencies in hospital data and standardisemthbased on unique
geographical information and other measurementsutait avoid biases in the

results.

3.9 Chapter summary

This chapter focuses on the factors and issuesntbedl to be considered for
developing any model. It is acting as a connechietween literature review and
thoughts for developing a model. We started wittate and pollution variables
followed by socioeconomic and demographic factdrag structure, climate
threshold, seasonality, and other important iskiaee been discussed. In the next
chapter, we summarise the datasets used in this,tineissing values, and data

management.
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Chapter 4

Data sets used

4.1 Introduction

This chapter aims to describe the data sets ust iresearch. We also described
the study population and coverage area, data marage& cleaning, linking
administrative data sets, and issues related tamiksing values. We begin by
describing the population covered in the study entisn 4.2, followed by the
variables of the Hospital Episode Statistics (HE!S9,core data of this research in
section 4.3. We highlight the source and varialaésted to climate in section 4.4.
Section 4.5 covers the data related to the airityu@dollution data) and section
4.6 describes the process and challenges for tinkih the data sets. Finally,
section 4.7 illustrates data management regardimg rhissing values and

aggregations of the data.

4.2  Study population and catchment area
This research covered the population of Greatedbaras study population. We
considered all age groups for the period 1 Jan2@@p — 31 December 2009. The

main reasons for choosing this:



4.3 Hospital episode statistics

a) Greater London is the highest density populated areEngland (ONS
2012). For this reason, we have more hospital adoms for Greater
London compared to other places in England. Thigery important if
we want to concentrate to any specific diseaseyoaye

b)  Greater London is more diverse in terms of popoiatiharacteristics and
ethnicity.

c) Air pollution is a big concern for Greater Londar the same reason in
(). Thus we will have more opportunity to examthe compounded
impact of air pollutants and climate change.

d) We will have the opportunity to use the spatiatisti@al approach and
compare Greater London with the other big metroaoliarea in the

future (e.g., Greater Manchester).

4.3 Hospital episode statistics

HES' is a data warehouse containing details of all adimns, outpatient

appointments and A&E attendances at NHS hospmaingland. Along with the

admission statistics, it contains all the admiaiste details of all patients. This
data are collected during a patient's time in Habkpind are submitted to allow
hospitals to be paid for the care they deliver. HEe®a are designed to enable
secondary use, that is used for non-clinical pugppsf this administrative data.
HES processes over 125 million admitted patientpatient and accident and

emergency records each year (HES 2013).

! http://www.hscic.gov.uk/hes
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4.3 Hospital episode statistics

HES was originally conceived in 1987 following apog&t on the
collection and use of hospital activity informatipablished by a steering group
chaired by Dame Edith Kérner (1921-2000) (HES 201djially, data for HES
publications were collected annually from providebmissions. After a number
of years, the frequency of collections increaseduarterly to allow analysis and
investigation (these were not published) and al femnual publication was
released at the end of the year. HES data are ntected monthly (HES 2013).
It is a record-based system that covers all NHStdrin England, including acute
hospitals, primary care trusts, and mental healists. HES information is stored
as a large collection of separate records - onedoh period of care - in a secure
data warehouse. In our research, we have used hiaHdnt data for the greater
London area for 10 years (2000-2009). We used thisodes of the hospital
admissions for our study, not spell. A spell redaie the whole hospital stay of a
patient, from admission to discharge. For complatiepts the spell may contain
many episodes of care under different consultaiis.created a database in the

university server using the flat files of HES inpat data.

Variables and factorsin HES

HES inpatient or admitted patient data consistifieent sections followed by
respective subsections. The main sections of tpatient data are: admissions,
augmented/critical care period, clinical, dischargeepisodes and spells,
geographical, health care resource groups, mageorganisation, patient, patient
pathway, period of care, practitioner, psychigtrsdcioeconomic and system.
The name variables and factors from HES inpatienhave used in our research

are listed inTable 4.
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4.4 Meteorological data

Table 4: Selected variables from HES inpatient data

HES inpatient variables HES inpatient variables

Administrative category of theHospital provider spell number
patient

Patient age at the end of episode Primary diagnosis
Patient age at the start of episode Episode order
Ethnic category of the patient Current electoraldva
HES generated patient identifietocal authority district
(hesid)

Postcode district of patient'<sovernment office region of residence
residence

Sex of patient County of residence

Method of admission of the patient Government effiegion of treatment
Source of admission of the patient Regional oftiteesidence

Bed days within the year of the

patient

4.4  Meteorological data

We collected the Met office observational statiatadsets for meteorological
factors from the stations at Heathrow airport amtddon St. James Park. In both
cases, we used the data set for the period 2008-200

The Met Office is the UK’s national weather seryieend deals with
weather predictions, forecast, climate change aedther science research. We
used the Met office observational data sets froendation at Heathrow airport
and St. James Park, London for collecting dailyeobational data for temperature
(maximum, minimum and mean), daily total rainfatiean wind speed, daily sun
hours, radiation, relative humidity, daily meangsare.

Temperature is the main important meteorologicatdiabecause of its
quick and detrimental role in the environment arghlth (Fernandez-Raga,

Tomas et al. 2010; Khalaj, Lloyd et al. 2010; ToRgn et al. 2010; Ferrari, Exner

2 http://www.metoffice.gov.uk
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4.5 AIR quality data

et al. 2012). Thus almost all the research stuaies scientific articles based on
health, environment, and climate change have ceraidtemperature (mean,
maximum or minimum). However, other climate factdilse humidity, wind
speed, rainfall showed relationships on some dése&posures (section 2.6). For
this reason, we considered these variables to chieeik impact on hospital

admissions besides temperaturalfle 5).

Table 5: Variables related to meteorological and pollutants

Variables related to

Meteorological variables (Units) Pollutions (Units)

Daily maxirrE(l)J(r:r; Temperature Dail)(/h%ﬂrrlsgmours Ozone (ug/f)
Daily mean TemperaturéQ) Da(iE/Jrlzgir?]t)ion PM2.5 (ug/m)
Daily mlnlm(lég Temperature ﬁjrlz J%I/a(t(%()e PM10 (ug/n)
Daily Total Rainfall (mm) | D2 (rr']‘s:/rr‘n‘t’)r)essure
Daily mean Wind speed (knots) * PM: particulate matte

4.5 AIR quality data

Air pollution is assumed to have a significant rilesome disease exposures that
compound the effect of climate change on health r{lvblealth Organisation
(WHO) 2006). For this research we have used Londthid Quality Network
(LAQN)?,

The LAQN is a group of air quality monitoring stats in the 33 London
Boroughs, Essex, Kent, and Surrey. Each borougtsftime monitoring within its

own area, with the exception of eight sites in Lamdwhich are funded by the

3 www.londonair.org.uk
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4.6 Linking the three data sets

Department of Environmental, Food, and Rural Afgibefra) and are affiliated
with the Automatic Urban Rural Network (AURN). ThéQN was formed in
1993 to coordinate and improve air pollution in Hon and operated & managed
by the Environmental Research Group (ERG) at Kigpdlege London. QA/QC
audits are carried out by the National Physicaldratory (NPL). Each borough

funds air quality monitoring in its own area.

Pollutants

There are various types of pollutants that areectd#ld under the LAQN project.
These are: Particulate matters (PM10, PM2.5), Oziteogen Die Oxide (N§),
Nitrogen Oxide (NO), Sulphur Die Oxide (99Qand so on. All these pollutant
factors are ratified after collecting from diffetéppes of local stations.

For our study we have used Ozone and PMHbIe 5. According to the
literature review, these are the most signifiaantpollutant on health and since
our catchment area (Greater London) do not hawat aflindustries we didn’t
consider Sulphur dioxide for the study. We did oee PM2.5 as air pollutants
because of insufficient PM 2.5 observations or hogssing values in LAQN

during the study period.

4.6 Linking the three data sets

Linking all three data sets was very important &nding some suitable linking
factors or variables for all three datasets wadlemging. This was mainly
because our HES dataset does not contain thedsttpde of the patient (being
sensitive). We thus used the HES variaigiero (indicates the regional office of

residence) to identify the patients from Greatendan. Theresro contains the
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4.7 Data management and cleaning

code for the regional office in which the patiemtetl immediately before
admission. It is derived from the patient's posé&cwodthe fieldhomeadd(or home
address). We linked the climate variables and tikigants in the greater London

area matching the date of admission easto from the HES inpatient dataset.
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Figure 3: Greater London Air Quality Network

4.7 Data management and cleaning

We found some issues related to the data in Hdsppésode statistics. We
cleaned few cases for the invalid date of birth H)®@ecorded as ‘1582-10-15’
(15 October 1582) in the raw data. These are thescahere the data provider has
entered an invalid code into a date field (othantbne which can be re-derived),

i.e. a collection of characters that cannot be geised as a date by the HES
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4.7 Data management and cleaning

database software) the date 15th October 1582 fitbie date on the Julian
calendar) will be substituted. This serves as dication that the field cannot be
used.

There were 1,055,355 rows (episodes) in the rawa fat the Greater
London the period 2000-2009 including all diseasasegories, admissions
methods, and age groups. Among them there were93d@Bs@rgency admissions
due to lower respiratory diseases in greater Lontthen10 year period (2000-
2009). We choose chronic lower respiratory disd#SB-10, J40-J47), because
this is most climates effected disease categorgrobd in the literature review.
This is our main disease exposure data file forstndy. We then count the daily
number of chronic lower respiratory diseases adomssand link with relevant

climate and air pollutants variables.

Data aggregation and missing values

The Met Office observational data were used asrtagbdhe climate information.
In Greater London we have two main weather statibogdon Heathrow and
London St. James’s Park. The Heathrow weatherostdtllRG: 5077E 1767N,
altitude: 25 metres, Latitude: 51:48N, Longitud@:45W) is more important than
St. James Park (NRG: 5298E 1801N, altitude: 5 maetkatitude: 51:50 N,
Longitude: 00:13 W) because of the coverage of areh attributesTable 6).
Therefore, we mainly used Heathrow and St. Jamds $Rations to incorporate
the missing values of Heathrow. For example, thatktew station has 2 missing
values for Rainfall, 629 missing values for Wineeg, 1 case for Relative Value,
1 case for mean pressure, 79 for daily radiatiore UWged theAIRGENE

algorithm for dealing these missing values (BhaskaHajat et al. 2010).
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4.7 Data management and cleaning

Table 6: Properties of the weather stations used

Greater London Weather Stations from Met Office
. , R.
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AIRGENE algorithm
The AIRGENE algorithm is an improved formula to leei@ missing values on the
aggregate level. The general idea is as follows:

A missing value on dai/from monitorj is replaced by the period average
of monitorj plus a standardised value of dagver all monitors multiplied by the
period standard deviation of monifor(See the supplemental materials of

Bhaskaran, Hajat et al. (2010)). This can be writte follows:

n xij - x.j
Jj=1 Sj
Where, Z; =
n
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4.7 Data management and cleaning

In this manner we achieve estimates that consideonly differences in mean
values, but also differences in variability betwewonitors. If all monitors are

missing for one day, the averages from the dayrbefnd after will be taken.

Ozone missing for Kensington and Chels
Mean imputed by the values of Kensington
and Chelsea, Wandsworth and Brent

PM 10 missing for
Sutton. Mean
imputed by the,

values of Kingston

upon Thames and
Croydor

Figure 4: Dealing with the missing values in air quality alat

Mean imputation

We used the mean imputation method for replaciegnissing values for the air
pollutants (Ozone and PM 10) in the London Air QyaNetwork data. Mean
imputation is popular in this area because of @spgutational aspects. There are
too many missing values in the LAQN network for tAM 2.5 for the study
period to make good representative data. For thdysperiod, there are 10

Boroughs (Hammersmith and Fulham, Lambeth, Islingt®Merton, Bromley,
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Havering, Barking and Dagenham, Waltham Forest&aHarrow), which have
missing values for Ozone and 3 Boroughs (Mertontto8u Bromley) have
missing values for PM 10. For these cases we uUseddlues from the nearest
Boroughs and the average of those Boroughs (mepatation) for dealing with
the missing values. For example, Ozone missingegalf Hammersmith and
Fulham, we used the average of the 3 nearest Bosokgnsington and Chelsea,
Wands worth and Brent. For PM10 missing valuesuifd®, we used the average

of the 2 nearest available Boroughs: Kingston upleames and Croydon.

4.8 Chapter summary

Here we describe the data sets used for this sede also summarised the
study population, factors of the three data sethaspital admissions, climate,
and pollution. Furthermore, we described the dgtaegations and the techniques
used for tackling missing values. The following ptea represents the theories

related to Generalized linear model and relatedult®sin our context.
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Chapter 5

Generalized linear modelling

5.1 Introduction

In this chapter, we summarise various statisticaldetls and their properties
related to this research. We begin by reviewing dkeeralized linear models
(GLM) (section 5.2). Here, we illustrate the thesrof GLM and their relations to
our research. Next, we describe GLM modelling withunt data (extension of
GLM) in section 5.3, followed by some special cim@iances using count data. In
section 5.4, we mention about other modelling apgines that are also useful in
climate change health research but not directbteel to our work. In section 5.5,
we describe some GLM modelling approaches using trhperature. Then we
illustrate in section 5.6, how multiple climate apdllution factors can improve

the model performance.

5.2 Theory of Generalized linear model

5.2.1 The model

A linear model is a statistical model that can biten

yVi = XLIB + €;, eilfd N(0,0'z) (51)



5.2 Theory of Generalized linear model

Where y;is a response variable and follows independentlg aentically
distributed from the exponential family of distriimn, X is a model matrix with
elements usually depending on some predictor Viasalexplanatory variables or

covariatesX;’s), €;'s are random variableg. is a vector of unknown parameters.

Exponential family of distributions includes distntions such as Poisson,
Gaussian (normal), binomial and gamma. A featureerponential family
distributions is that their shape is largely deiesd by their mean,
u; (E(y;) =u;). GLMs are usually written in terms thk function, g (the
inverse of a smooth monotonic functjo@as follows

glu) = XiB, v idep, EXponential family distribution,  (5.2)

5.2.2 The exponential family of distributions
The response variablg in GLM can have any distribution of thexponential
family. A distribution belongs to the exponential famdy distributions if its

probability density function, or probability massttion, can be written as

fo(y) = exp [{y0 —b(0)}/a($) + c(y, )], (5.3)

whereb, a andc are arbitrary functiongp an arbitrary ‘scale’ parameter, a@ds
known as the ‘canonical parameter’ of the distiiut
For example, it is easy to see that the normatribligton is a member of the

exponential family since

(5.4)
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5.2 Theory of Generalized linear model

—y2 4 2yp — u?
= expl 4 2;;“ s —log(aVZn)l

3 yu—u/2 y
- e g2 202

2

log(am)l

which is of exponential form, withd = pu,b(0) = 972 = ”72 a(p) = ¢ =

o?and c(¢,y) = y?2/2(¢) —log(/p2r) = —%— log(aV2nm).
Similar breakdown for other members of the expaaefamily of distributions
(e.g., Poisson, Bionomial, Gamma, and Inverse Ganiss possible and can be
found on page 61 of Wood (2006).

The log likelihood of), given a particular y, is simplyog[fs(y)]

considered as a function &éfand can be given as

1(6) = {y6 —b(6)}/a(¢) +c(y, ¢) (5.5)

Based on the log likelihood function above, we dawise the general expressions
for the mean and variance of exponential familyrdigtions in terms ofa, b
and¢. The mean of the response variable in GLM caniengas

ui = E(Y) =b'(6) (5.6)

i.e. the mean, of any exponential family randomialde, is given by the first
derivative ofb w.r.t. 8, where the form ob depends on the particular distribution.
This equation is the key to linking the model paggens,S of a GLM to the
canonical parameters of the exponential family.allGLM, the parameterg

determine the mean of the response variable, aad.6, they thereby determine
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5.2 Theory of Generalized linear model

the canonical parameter for each response obsemv&imilarly, the variance of

the response variable in GLM can be given as

var(Y) = b"(6)a(¢p) (5.7)

Herea could in principle be any function ¢f. Interested readers can go through
Wood (2006) and other basic GLM references to fir@lmathematics for getting
the form of mean and variance for GLM.

In equation (5.7), if¢ is known, normally there is no difficulty in
handling any form ofa in GLM. However, for unknowgp, it might be difficult to
work, unless we can write(¢) = ¢/w, where wa known constant. The
expressiona(¢) = ¢/w allows the possibility of unequal variances in mede
based on the normal distribution, but in most casés simply 1. Hence we now
have

var(Y) = b"(0)p/w (5.8)

In is often convenient to considear(Y ) as a function oft = E(Y), and since
uand @ are linked via (5.6), we can always define a vamafunctionV (u) =

b"(6)/w, such thaVar(Y) = V(x)¢.

5.2.3 The canonical link functions

The link function provides the relationship betwdbe linear predictor and the
mean of the distribution function and thus linkserth in one equation. The
canonical linkg, for a distribution is the link function such thafu;) = 6;, where
0; is the canonical parameter of the distributionr Esample, for Poisson
distribution the canonical link is the log functi¢(ee

Table 7 for other examples).
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5.2 Theory of Generalized linear model

Table 7: Common distributions and canonical link functions

Distribution Support of Typical Uses Link Link Function
Distribution Name
Normal Real: Linear-response | Identity XB=u
(=00, +0) data
Exponential Real: Exponential- Inverse Xp=—-u?
Gamma (—o0,+00) response data,
scale parameters
Inverse Real: (0, +o0) Inverse | XB = —u~?
Gaussian Squared
Poisson integer: Count of| Log XpB = In(u)
[0, +0) occurrences  in
fixed amount of
time/space
Bernoulli Integer:[0,1] | Outcome of
single yes/nd
occurrence
Binomial Integer:[0,N] | Count of # of
"yes" occurrences
out of N yes/ng
occurrences Logit Xp
Categorical K-vector  of Outcome of :1n< H )
integer:[0, 1], | single K-way 1—u
where exactly occurrence
one element
in the vector
has the value
1
Multinomial K-vector of| Count of

integer:[0, N]

occurrences 0
different types 1

K) out of N
total K-way

occurrences

The main advantages of the canonical link functiares y; stays within

the range of the response variable and provide® snathematical advantages in

performing the likelihood maximisation. The canaiitink function has many

practical uses. For example, for a GLM with aniicggt term and canonical link,
the residuals will sum to zero. Another one is ategorical data analysis using

log linear models; it provides a means of ensuring,the specification of the
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5.2 Theory of Generalized linear model

model, that totals which were built into the desajra study can be preserved in

any model.

5.2.4 Fitting Generalized linear model
In GLM we have an n-vector of independent respore@ablesy; wherey; =

E(Y;), andg(u;) = X;B . SinceY; are mutually independent, the likelihoodsois

L) = [ a0 (5.9)

and hence the log-likelihood gfis

1(B) = Z log [fa,(¥)]

(5.10)
1) = Z{yl ~ 50D}/ a(®) + (@, D,

where the dependence of the right hand sidg @mthrough the dependence of the
6;on B. The functionsa, b and ¢ may vary withi. But ® is assumed to be the
same for all. It suffices to consider only cases where we céatew;(¢) = ¢/

w;, Wherew; is a known constant (usually 1), in which case

We can maximise the above equation by differemggltiw.r.t. each element ¢,

setting the resulting expressions to zero and isglior 5 Wood (2006). Thus

1 n
%" 52 (y ‘g, ~ 1@ 0ﬁ;> ©12
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5.2 Theory of Generalized linear model

The equations to solve f@rare

o 0 — 1) 0w _ .
Ve o5 0 ) &13)

However, these equations are exactly the equati@aisvould have to be solved
in order to findB by non-linear weighted least squares, if the wsigliu;) were
known in advance and were independentgofin this case the least squares

objective would be

3 o (0 — 1)?
S_; VQn) 519

whereu; depends non-linearly gf, but the weight¥ (u;) are treated as fixed. To

find the least squares estimates involves sol\,§1§Q= 0 V j, but this system of
]

equations is easily seen to be (5.12), wherVipg) terms are treated as fixed.
This correspondence suggests a fitting methodatiehe following two steps to
convergence

I Given the currenti; estimates, evaluate thg fi;) values

. Find a value ofs which reduces

(i — )
s V(ay)
(the dependence of is throughu, but notf;). Let this improved parameter
vector be denotefl, and use it to updafe
At convergence? must satisfy (5.12).To implement this method weche

to be able to find the required improved paramesators at step 2. To do this,

just replacey; by its first order Taylor expansion aroyig so that
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5.2 Theory of Generalized linear model

. ou; A
Vi— M=y — - a—l(ﬁj—ﬁj)
7 B

With exact equality af = B (derivatives evaluated at currgf)t Now, writing
the linear predictor ag = X;8

Opi _ du; Omi _ Xy
ap; dm; 9B g'w

Hence
— V(&) .
=y (9" yi = g'@dus = Xif + Xif) (5.15)
: PACRAT
i Z ol =D (5.16)

wherez; = g’'(3)(y; — A4) + X, andw; = g'(4;)"?V(4;)™*. But (5.15) is
just a weighted linear least squares problem, wischasily minimized w.r.t8
using standard least squares methods, makingyittedid an improveg3. The
final expression of can be written as:
B=XWX)1X'Wz

Hence we arrive at the following GLM fitting algthrm. Iterate the following to
convergence. . .

I Given the currentj and fi estimates, calculatpseudodata z and

weightsw, as defined above.

i. Minimize ¥; w;(z; — X;£)? w.r.t. 8 to obtain an improved estimate

ii. Evaluate a new linear predictor estimate= X and new fitted

valuesil; = g~ ().
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5.2 Theory of Generalized linear model

The iteration can be started by settiig= y (with modification to avoid
e.g.log(0)). The method is known aKeratively Re-weighted Least Squares
(IRLS). McCullagh and Nelder (1989) prove that thlgorithm is equivalent to

Fisher scoring and leads to maximum likelihoodnestes.

5.2.5 The sampling distribution of 8
The maximum Likelihood Estimatig is

B~N(B,77Y) (5.17)

where? is the ‘information matrix’, with elements= E(al /ap; dl /9p; ).
First define vectoru such thap; = dl /9B;. Then7 = E(uu”) andy; can be

written as follows

n
w - ol 10Xy (yi — )
T oLV (u)g ()

If we define diagonal matrices andV, whereG;; = g'(4;) and V;; = V(y;), then
this last result becomes

u=XT"G"Vy—pn)/o
Hence,

XTG WIE[(Y — W(Y — wTVv-1G~1X
CDZ

E(uul) =

_XTGTVTIVWIGTIX
B D

= XTWX/®P
Since E[(Y — (Y —w)T] = Vd andW = V-1G2

So we end up with
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5.2 Theory of Generalized linear model

BANB, (XTWX)T'®) (5.18)
For distributions with known scale parameter this result can be used directly to
find confidence intervals for the parameters, btiteé scale parameter is unknown

(e.g. for the normal distribution), then it mustdsimated, and intervals must be

based on an appropriate t distribution.

5.2.6 Calculation of confidence interval
Let 7 = (XTWX) "1, the estimated covariance matrix{¢ is known to be 1
in some cases). Le’l;;ibe the square root of thigh diagonal element dfy, that is
the estimated standard error @f Using the standard theory for normally
distributed estimators, the confidence interval@ocan be given as below:
i. A 100(1—-a)% CI for B; when¢ is known (e.g., Poisson or Binomial
cases) is
Bi £ to(1—a/2)6y,
Wheret, (1 — a/2) is thel — a/2 critical point of a standard normal
distribution.
i. A100(1 - a)% ClI for B; wheng is unknown (e.g., Gaussian or Gamma
cases) is
Bi + th_gimp (1 — a/2)6p,
Wheret, (1 — a/2) is thel — a/2 critical point of at; distribution.
For the normal response and identity link caseh) besults are only approximate,

since they are based on (5.11), which is only apprate.
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5.2 Theory of Generalized linear model

5.2.7 Model selection

Likelihood ratio test
A likelihood ratio test is a statistical test foraking a decision between two
hypotheses based on the value of the likelihodd (generally denoted kY). In
statistics the likelihood ratio test is a statistitest used to compare the fit of two
models, one of which is the null model (let's sayd®l 1 inTable 14) is a special
case of the alternative model (say model Table 14). The test is based on the
likelihood ratio, which expresses how many timegeriikely the data are under
one model than the other. The likelihood ratio, taen be used to compute a
p-value, or compared to a critical value to decidetler to reject the null model
(Model 1) in favour of the alternative model (Mo@3!

Each of the two competing models, the null model #re alternative
model, is separately fitted to the data and thelila@dihood recorded. The test

statistic Q) is twice the difference in these log-likelihoods:

D= —2] ( likelihood for null model )
N n likelihood for alternative model

= —2In(likelihood for null model)
+ 2 In(likelihood for alternative model)

The model with more parameters will always fiteddt as well (have an
equal or greater log-likelihood). Whether it fitgrsficantly better and should
thus be preferred is determined by deriving thebabdity or p-value of the
difference D. Where the null hypothesis represargpecial case of the alternative
hypothesis, the probability distribution of thettstatistic is approximately a chi-

squared distribution with degrees of freedom etpalf2 — df1. Symbols dfl and
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5.2 Theory of Generalized linear model

df2 represent the number of free parameters of lmddeand 2, the null model,
and the alternative model, respectively. The tequires nested models, that is:
models in which the more complex one can be transfd into the simpler model

by imposing a set of constraints on the parameters.

AIC for GLM

Model selection by direct comparison of likelihoosisffers from the problem
that, if redundant parameters are added to a ¢amedel, the likelihood almost
always increases (and never decreases), becausexiit@e parameters let the
model get closer to the data, even though that ordgns ‘modelling the noise’
component of the data. As in the linear model calses, problem would be
alleviated if we were somehow able to choose moaielthe basis of their ability
to fit the mean of the data, rather than the datg;. In a GLM context, a
reasonable approach would be to choose betweenlsnodethe basis of their
ability to maximizel( 8, u), rather thard( 3, y), but to do so we have to be able to
estimatd ( 8, u). The required estimator can be written as beléwr €alculation
please see section 2.1.4 of (Wood 2006).

_ 1 A
1B = k=5 [VW(z=XB)||" +n/2 - tr(a)
~ l(ﬁ;y) —tr(4) +n/2

(5.19)

whereA = X(XTWX)~1XTW and hence tr (A) 3, the number of (identifiable)
model parameters.

Hence, when choosing between models, we would ehedschever
model had the highest value Hff) — p, which is equivalent to choosing the

model with the lowest value of Akaike’s Informati@miterion (Akaike 1973),
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5.2 Theory of Generalized linear model

AIC = 2[-1(B) +p] (5.20)

The foregoing argument assumes thas known. If it is not then an estimate,
will be needed in order to evaluate the AIC, anc assult the penalty termin

the AIC will becomep + 1.

BIC for GLM
In statistics, the Bayesian information criteridl@) or Schwarz criterion is a
criterion for model selection among a finite sethaddels. It is based, in part, on
the likelihood function and it is closely relatexdthe Akaike information criterion
(AIC). When fitting models, it is possible to inese the likelihood by adding
parameters, but doing so may result in over fittlBgth BIC and AIC resolve this
problem by introducing a penalty term for the numdieparameters in the model;
the penalty term is larger in BIC than in AIC.
The formula for the BIC is:
—2InL +kIn(n)

Where k is the number of parameters to be estimhtisdthe maximized value of
the likelihood function of the model. The BIC workader the assumption that
the model errors or disturbances are independemtty identically distributed
according to a normal distribution and the derwxatof the log likelihood with
respect to the true variance is zero.

Given any two estimated models, the model with lowadue of BIC is
the one to be preferred. Unexplained variationhim dependent variable and the
number of explanatory variables increases the vafuBIC. Hence, lower BIC

implies either fewer explanatory variables, betigror both. The BIC generally
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5.2 Theory of Generalized linear model

penalizes free parameters more strongly than dbes Akaike information
criterion, though it depends on the size of n aldtive magnitude of n and k. It
is important to keep in mind that the BIC can beduso compare estimated
models only when the numerical values of the dependariable are identical for
all estimates being compared. The models being aocedpneed not be nested,
unlike the case when models are being compared asirt or the likelihood ratio

test.
5.2.8 Model comparison

By hypothesis testing
For GLM consider testing
Ho: g(1) = XoBo
against
Hy:g(w) = X41By
Let 1(B,) andl(B,) be the maximized log-likelihoods of the two modéd, is

true then in the large sample limit,

2[1(B1) = UBo)] ~ X31_po (5.21)

wherep; is the number of (identifiable) parametefs) (in modeli. If the null
hypothesis is false, then model 1 will tend to havesubstantially higher
likelihood than model 0, so that twice the differerin log likelihoods would be
too large for consistency with the relevastdistribution.

The approximate result (5.22) is only directly uséff the log likelihoods

of the models concerned can be calculated. In #se of GLMs estimated by

75



5.2 Theory of Generalized linear model

Iteratively Re-weighted Least Squares (IRLS), this is only the case if the scale
parameter$ is known. Hence the result can be used directhih Woisson and
binomial models, but not with the normal (for treeme normal distribution and
identity link), gamma, or inverse Gaussian distiiims, where the scale

parameter is not known.

By deviance
In GLM practically it is useful to have a quant(tgterpreted like residual sum of
squares in ordinary linear modelling). This is edlteviance and is defined as
D = 2[U(fmax) — U]
= 201 yi(8i - 8) - b(8) + b(3))] (5.22)
i=1

where [(Bnmq,) indicates the maximized log-likelihood of the satad model
(model with one parameter per data poit@?max) is the highest value that the
log- likelihood could possibly have, given the dadad is evaluated by simply
setting /i =y and evaluating the log-likelihood.and 8 denote the maximum
likelihood estimates of canonical parameters, far $aturated model and model
of interest, respectively.
The scaled deviance does not depend on scale paraane defined as,
b*=Dj/e, (5.23)

For Binomial and Poisson distributiond & 1), the deviance and scaled deviance
are the same, but this is not the case more géndBglthe generalized likelihood

ratio test result (5.21), we might expect that,thE model is correct, then

approximately

* __ 2,2
D™= o (5.24)
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5.2 Theory of Generalized linear model

in the large sample limit. Given the definitionddviance, it is easy to see that the
log likelihood ratio statistic in (5.21) can be egpressed aB; — D; . So under
Hy

Dg — D5 ~ X3, _po (5.25)

(in the large sample limit), whem®; is the deviance of the modelwhich has
p; identifiable parameters. But again, this is onlgfukif the scale parameter is

known so thaD* can be calculated.

Model comparison with unknown ¢
UnderH,, we have the approximate results
D§ — D ~ xp,_p, andD] ~ xi_p
And if Dy — Dy andDj are treated as asymptotically independent, thisiesphat

_ (Dg — D1)/(p1 — Po) - F
Di“ /(n— pl) P1—Po, NP1’ (5.26)

in the large sample limit. The useful propertyfofis that it can be calculated
without knowing®, which can be cancelled from the top and bottorthefratio

yielding, undeiH,, the approximate result that

F= (Do — D1)/(p1 — po) ~F
- Di/(n—p) PLmPor Py (5.27)

The advantage of this result is that it can be dsedhypothesis testing
based model comparison, whénis unknown. The disadvantages are the dubious
distributional assumption fdy; , and the independence approximation, on which

it is based.
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5.2 Theory of Generalized linear model

5.2.9 ¢ and Pearson's statistic

As we have seen, the MLEs of the paramefersan be obtained without knowing
the scale parameteab, but, in those cases in which this parameter isxank, it
must usually be estimated. The approximate reSu4j provides one obvious
estimator. The expected value of;a,, random variable ia — p, so equating the
observed; = D/® to its approximate expected value and re-arrangwegget

®p =D/(n—p) (5.28)

The Pearson statistic is defined as

B o (v — )?
X =2 VG (5.29)

i=1
Clearly X% /® would be the sum of squares of a set of zero magihyariance,
random variables, having — p degrees of freedom, suggesting that if the model
is adequate then approximatly/® ~ )(Tzl_p. Setting the observed Pearson
statistic to its expected value, and re-arrangyrejds

@ =X?%/(n—p) (5.30)
It is straightforward to show that

l1=n
A N\2
X2 = wi(a - Xify) (5.31)
i=1

wherew; andz; are IRLS weights and pseudo data, evaluated aecgence.

5.2.10 Residuals and model checking

It is always necessary to check that the model sneetssumptions well enough

that the results are likely to be valid, beforengsthe distributional results for
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5.2 Theory of Generalized linear model

inference. For ordinary linear models, the modeécking is based on the
examination of the residuals that contain all théormation of data and not
explained by the systematic part of the model.

For GLM, examination of residuals is also crucialt lchallenging
because we need to standardise the residuals. & neason for not simply
examining the raw residuals; (= y; — ;) is the difficulty of checking the
validity of the assumed mean variance relationsfom the raw residuals. For
example, in Poisson model the variance of the vedsdshould increase in direct
proportion to the size of the fitted valugs). However, from the raw residuals
plotted against fitted values, we can judge whether residual variability is
increasing in proportion to the mean than the sguwaot or the square of the
mean (for example). For this reason, GLM residaaés usually standardised so
that, if the model assumptions are correct, thedstadised residuals should have
approximately equal variance, and behave (as foasible) like residuals from

an ordinary linear model.

Pearson residuals:
The Pearson residuals are calculated by dividiegréw residuals by a quantity

proportional to their standard deviation from thte#l model. It is defined as

p Vi~
l

K v (i) '

(5.32)

This should have approximately zero mean and veeiait, if the model is
correct. If plotted against the fitted values, oy aovariates (whether to include in

the model or not), these residuals should not ajs@ny trend in mean or
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5.2 Theory of Generalized linear model

variance. This is called "Pearson residuals' becafigshe fact that the sum of

squares of the Pearson residuals gives the Pestegistic.

Deviance residuals

The distribution of the Pearson residuals can b @symmetric around zero in
practice. Thaleviance residuals are often preferable in this respect. The deviance
in the deviance residuals plays much the same role for GLMs that the redidua
sum of squares plays for ordinary linear modelgee@d for an ordinary linear
model the deviance is the residual sum of squamnethe ordinary linear model
case, the deviance is calculated from the sumeobtjuared residuals. That is the
residuals are the square roots of the componentthefdeviance with the
appropriate sign attached. So,df indicates the component of the deviance
contributed by thé th datum, we have

n
i=1

b= Z d; (5.33)

and from the concept of the ordinary linear model,can define

& = sign(y; — A /d;. (5.34)
The sum of squares of thedeviance residuals gives the deviance. Now if the

deviance were calculated for a model where allpdyr@meters were known, then
(5.24) would becomed*~ y2, and this might suggest that for a single datum
d;/a%~ x%, implying that e~ N(0,02). Thus from the equation (5.24), we
might expect the deviance residuals to behave $ometike N(0,52) random
variables, for a well-fitting model, especiallygases for which (5.24) is expected

to be a reasonable approximation.
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Residual plots

We can use various residual plots by using stamskddresiduals to find the

evidence that the model assumptions are not metnidin useful plots are:

. Standardised residuals against fitted values. Adtrim the mean of the
residuals violates the independence assumption adteh implies that
something is wrong with the model from the mearthef response (e.g.,
perhaps a missing dependence, or the wrong linktifum. A trend in the
variability of the residuals is diagnostic of a Ilplem with the assumed
mean variance relationship, i.e. with the assuraegdanse distribution.

. Standardised residuals against all potential ptediariables (selected or
omitted from the model). Trends in the mean of ié&duals can be very
useful for pinpointing missing dependencies of thean response on
predictors.

. Normal QQ plots can be useful for highlighting deshs with the
distributional assumptions, in cases where theoresp distribution can be
well approximated by a normal distribution (withpappriate non-constant
variance). For example Poisson residuals for aoresp to a fairly high
mean fall into this category.

. Plots of standardised residuals against leveraf@déntial observations) are
useful for highlighting single points that have ery high influence on the
model fitting. Leverage is a measure of how infliEna data point could
be, based on the distance of its predictor var&ablem the predictors of

other data.
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All plots are useful for spotting potential outBe(points which do not fit well
with the pattern of the rest of the data) and desspecial attention. They also
check whether the model is erroneous, or the migdebdt expressing something

important about the system that the data relate to.

5.2.11 Quasi-Likelihood
We observed that in GLM the distribution of thepmsse variable follows any
distribution from the exponential family and thenef it is better to base models
on any particular distribution if there are goodisens to suppose that the
response follows that distribution. But in manyesashe nature of the response
distribution is not known very precisely and ibisly possible to specify what the
relationship between the variance of the respoFiée; ) and its mean should be.
The question is whether it is possible to develdgVi& theory for fitting and
inference, starting from the position of specifyimyply the mean-variance
relationship.

The concept ofQuasi-likelihood approach is adequate in such situation.
For an observatiop;, of a random variable with meap;), and known variance

V (u;), the log quasi likelihood fou; giveny; is defined as:

K
yi—Z

2L 4y (5.35)
J ¢V (z)

qi(w) =
The key feature of this function is that it shamesny important properties of the
log likelihood!l;, corresponding to a single observation, but ordyguires
knowledge of the variand@’) rather than the full distribution &f. The log quasi

likelihood for the mean vectop, of all the response data, or any parameter vector
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defining u (assuming that the data are observations of inmkpe# random

variables) can be given as:

aw = ) ) (5.36)
i=1

The key properties @f is that, for the purpose of the inference of GLMs,
it behaves in a very similar manner to the loglidaod, but only requires the
knowledge of the variance function to define it.t&lthat the quasi-likelihood of

the saturated model is zero, so the quasi deviaiha&sLM is simply

Dy = —2q ()¢ (5.37)

The calculation of residuals and scale parametso ahrries over from the
likelihood to the quasi-likelihood without havingyachange than the replacement
of [ byq.

The practical use of the quasi-likelihood approaeluires that the
integral in (5.35) be evaluated, and it is possibtenost practical useful forms of
V' (MacCullagh and Nelder 1989). One of the most comrhis approach is to
provide the means of modelling count data thahaoee variable than the Poisson
or binomial distributions (with their fixed scaleagameters). Such ‘over-
dispersed’ data are very common in the environnhema health setting and it is
called Over-dispersion. Another practical use is for modelling data witimaan
variance relationship for which there is no obvi@xponential distribution: for

example continuous data where variance is expéctbd proportional to mean.
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5.2.12 QAIC and QBIC
In modelling ecological data, over dispersion ist&jcommon and needs to be
included in the model selection procedure. In aicglpGeneralized Poisson

model, the Quasi-AlIC or QAIC can be defined as,

L
QAIC = + 2k

A

And the corresponding bias corrected version cagiven as,

arc, = 22k 4 gy 4 2KUeH D)
QAlc, = ¢ n—k—1
_onicy. PR+ D
=0 n—-k—1

Here,L is the log likelihoodn™ is the total number of counts (since Poisson case)
or effective sample sizé, is the parameter for quasi-likelihood or multiplive
factor that represents extra variability due toralispersionk is the total number

of parameters in the model, which also incladdypically, ¢ take the value 1
which indicates that there is no over dispersion.eAtimator of is the deviance
divided by its degrees of freedom.

Under the same notation the QBIC can be defined as,

QBIC = + k log(n®)

¢
QAIC and QBIC both have the same interpretatioks AIC and BIC. Smaller

values indicate better model fit.

5.3 Models with count data

Modelling disease count as response variable mvawn task with most data in

the environmental, health, and social settings.thigr reason, regression models
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with count data are also common in climate heaearch settings. Regression
modelling with count data is mainly described undlee context of Poisson
regression.

A Poisson regression model is a special case ofs#meralized Linear
model (determined in equation (5.1)). In such case, consider GLM as
regression models for the mean only (as specifieqdhl)) instead of viewing
them as models for the full likelihood. Howevere ttiassical Poisson regression
model for count data is often limited due to ovepdrsion and/or an excess
number of zeros in the data sets. The quasi Poissatel, the negative binomial
(NB) models have been developed to deal with oiselsion. The Hurdle
model and the Zero inflated Poisson can deal vighsituation with excess zeros.

However, all these models still belong to the GLisiwily.

5.3.1 Poisson model
The simplest distribution used for modelling codata is the Poisson distribution.
A random variable Y is said to have a Poissonibigtion with parametet with
integer valuesy=0, 1, 2, 3, ..... with probability

e HhuY

y!
foru >0

Pr{Yy =y} =

(5.38)

This is a special case of the GLM framework for do@int data. The canonical
link is g(u) =log(w) resulting in a log-linear relationship between meand

linear predictor.
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5.3.2 Dealing with over-dispersion

Quasi-Poisson model

One way of dealing with over-dispersion is to use mean regression function
and the variance function from the Poisson GLM tmtleave the dispersion
parameterp unrestricted. Thusp is not assumed to be fixed at 1 but is estimated
from the data. This strategy leads to the samdicmeft estimates as the standard
Poisson model but the inference is adjusted for-digpersion. Consequently,
guasi-Poisson models adopt the estimating functiew of the Poisson model

and do not correspond to models with fully spedifigelihoods.

Negative binomial model
A second way of modelling over-dispersed count dattb assume a negative
binomial (NB) distribution fory;|x; which can arise as a gamma mixture of

Poisson distributions. One parameterization gbitdability density function is

_Ty+6) w-6°
S T(O) -yl (u+0)vte

fQ;un6)
with meanu and shape paramet®r I'(-) is the gamma function. For every

fixed 8, this is of type (5.2) and thus another speciakaaf GLM framework. It

2
also hasp = 1 but the variance functioni(x) = u + %.
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5.3.3 Dealing with excess zeros

Hurdle model

In addition to the over - dispersion, many empirimaunt data sets exhibit more
zero observations than would be allowed for by Blagsson model. One model
class capable of capturing both properties is tliedld model. They are two-
component models: A truncated count component, ascRoisson, geometric or
negative binomial, is employed for positive courded a hurdle component
model zeroes versus larger counts. In the latiénerea binomial model or a
censored count distribution can be employed. Morenélly, the Hurdle model
combines a count data mod€l...(y; x, B) (that is left truncated at= 1) and
zero hurdle modelf,..,(0; z,¥) (right censored at=1). Hence the Hurdle

model density can be expressed as

fhurdle (y; xr Zl ,Br )/)

fzero(0; 2, ), ify=0
- {(1 - (fZerO(O; z, ]/))) *feount (s X, B)/ (1 - (fcount(y; X, ,B))) ) ify >0

(5.39)

The model parameterg,y and potentially one or two additional dispersion
parametersd (if fe.ountOF fzero OF bOth are negative binomial densities) are
estimated by ML, where the specification of theellkood has the advantage that

the count and the hurdle components can be maxihsigparately.
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Zero-inflated model
Zero-inflated models are another model class capaibtiealing with excess zero
counts. They are two-component mixture models cambia point mass at zero
with a count distribution such as Poisson, geometrinegative binomial. Thus,
there are two sources of zeros: zeros may come boiin the point mass and
from the count component. For modelling the unolesrstate (zero versus.
count), a binary model is used: in the simplesecasly with an intercept but
potentially containing regressors.

Thus the, zero-inflated densify,,ins () iS @ mixture of a point mass at

zerolyp(y) and a count distributiof}.y,: (v; x, 8). The probability of observing

a zero count is inflated with probability= f,.,,(0; z,y), i.e.

fzeroinfl(y; X,z P, Y)

= fzero(0;2,7) .1y (y) + (1 — frero(0; 2, V)) Seount (V; x, B)

(5.40)

Where I(.) is the indicator function and the unobserved pbdlga 7 of
belonging to the point mass component is modelld binomial generalized

linear model (GLM)r = g~1(z"y). And the regression equation for the mean is

w=m.0+ (1—m).exp(x!B) (5.41)

using canonical log link. Here; is the vector of regressors in the zero-inflation
model andx; are the regressors in the count component. The detl of

parameterg, y can estimate by using maximum likelihood method.
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5.4  Other useful modelling approaches

There is also some other modelling approaches hhaée been used often in
environmental and health research settings suchatdi health research. For
example, Generalized additive model, Time serieslaiing, Spatio-temporal
Modelling Approach, Geospatial method, Case-cromsa@tudy approaches are

some important approaches among them

5.5 GLM results using temperature

We describe here some results from preliminaryesteging only the temperature.

The results are summarised in the following thrde sections.

5.5.1 Temperature variations with COPD

An approach to exploring the effect of weather vaations on chronic disease
incidence rate and potential changes in future hetdd systems (Islam,

Chaussalet et al. 2010). (Please see the refefendetails).

Many COPD sufferers have their symptoms deteriodateng colder weather;
this often leads to an increase in hospital admissand capacity shortages. In
this section, we explore the association betweerP[@0Oncidence rates and
monthly maximum, minimum, mean temperature, andthigriotal ruin by using
data for April 1997 to March 2004 for the regiomdtand North (the data sets
used in the thesis were not acquired during thme)i We develop a statistical

model (zero-inflated Poisson regression model) tasuare the significance of
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5.55.5.1 Temperature variations with COPD

meteorological variables on COPD admission cou@B{10, J40-J44, and J47).
Zero-inflated Poisson distribution is useful if tHata shows over dispersion or
have a higher incidence of zero counts than is ardefor the Poisson

distribution. Another way of dealing the same ditwais to use Zero-inflated

negative binomial model.

Three datasets have been used, namely the natiwmsgdital Episodes
Statistics (HES) data set, the observational daanthly maximum, minimum,
mean temperature and rain) from the Met Office amd-year population for a
number of years from the Office for National Stats UK . We also collected
the mid-year population for a number of years frdm Office for National
Statistics, UK. All these data sets were from AA®I97 to March 2004 for the
region: England North.

We calculated the person-days of follow up for COBBd COPD
incidence rate (per 100 person-days) (O'Loughliabitille et al. 1993). The
percentage of COPD admissions for each month weslated by using mid-year
population for respective years. We found Januag leebruary had the highest
COPD incidence rateT@ble 8). We plotted the trends of COPD incidence rate
through the trends of maximum temp, mean temp, mim temp. For each
month, we also calculated the correlation betweemperature (maximum, mean,
and minimum), rain along with the test results tbhe significance of their
correlation and put them in a correlation matrixr [Example, the correlation
matrix in Table 9 and Figure 5-a shows that the temperature is moderately
positively correlated and the rain is moderatelgatvely correlated to COPD

incidence rates. However, none of the correlatisissatistically significant.
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5.55.5.1 Temperature variations with COPD

Table 8: Mean monthly incidence rates

Months | Incidence rate
January 7.15
February 7.51
March 6.75
April 6.96
May 6.68
June 7.0
July 6.65
August 6.93
September 6.65
October 6.58
November 6.81
December 5.97

Table 9: Correlation matrix for July

COPD Inc Max Min Mean .
Rain
rate Temp. Temp. Temp.
COPD Inc -

rate 1.00 0.82 0.68 @
Max Temp. 0.82 1.00 0.86 0.98 -0.54
Min Temp. 0.68 0.86 1.00 0.95 -0.46
Mean Temp. 0.80 0.98 0.94 1.00 -0.54
Rain -0.69 -0.54 -0.46 -0.54 1.00
P-Value 0.02 0.09 0.03 0.08

For model fitting we select a random sample of 5@ggatient COPD
admissions from the HES dataset, (England Nortk)dal the year 2003-04. The
mean and variance of COPD admission counts ar8@0a 0.041, respectively.
From the histogram of COPD admission couliigre 5-b), we notice a huge

proportion of zeros, and as a result, we used #re-Ihflated Poisson regression

model (section 5.3.3).
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5.55.5.1 Temperature variations with COPD

Trends of COPD Incidence Rate
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Figure 5: a) Trends of COPD incidence rate, maximum tempegatmean
temperature, and total rain for July; b) Histograin€COPD counts

Table 10: Model fitting results

Estimate Std. Error Z value Pr(>|z|)
Intercept 0.296 0.575 0.515 0.607
Max. Temp. 0.719 1.08 0.663 0.507
Min. Temp. 0.859 1.079 0.797 0.426
Mean Temp. -1.574 2.156 -0.73 0.465
Rain -0.005 0.003 -1.71 0.087

The use of Zero-inflated Poisson regression mockeiadly improved the
model fit. We perform the Vuong test (test statste -10.22 and p-value <
0.0000), which suggests that the zero-inflated rhobdas a significant
improvement over Poisson model. However none ofpiteglictor variables are
found to be statistically significant for the CORDBmissions count with respect to
maximum temperature, minimum temperature, mean eestyre and total rain.
This could be due to the measurement of the daé&h (eonsidered monthly rather
than days), the crudeness of the climate data,reis@onsidering the non-linear

behaviour of the climate-disease relationships.
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5.55.5.2 Temperature disparity with COPD readmissions

5.5.2 Temperature disparity with COPD readmissions

The impact of temperature disparity on emergency radmissions and patient

flows (Islam, Chaussalet et al. 2011). (Please seeefaeence for details).

Here we explored the impact of temperature vamation COPD hospital
readmissions by developing a Frailty model. Thestimmeasured as the “number
of days” (difference between previous discharge d@atd current admission date)
and the corresponding event as COPD readmission.inéstigated whether
there is any relationship of such rehospitalisatione for COPD due to the
variability in daily temperature (maximum, minimumgan) adjusted for gender
and age. To highlight the regional heterogeneityormgnthe time of COPD
readmissions, we included a random effect termltffyjan the Cox Proportional
Hazard model and fit the frailty model. Here, thex&proportional part is
guantifying the significance of the explanatoryiahles (age, gender, various lags
of daily temperatures) and frailty term is measyrithe regional (Spatial)
heterogeneity in this process.

We used two datasets, namely HES (for the COPDitabgpisode; ICD-
10 codes J40-J44) and temperature (maximum, miniamoimean) from the Met
Office. The data were collected for 25 local auities (seven are from London,
six from Cumbria, five from Somerset, and severmfrdVest Sussex) for the
financial year of 1997 to 2003. We also calculdsegs of temperatures (from lag
1 to lag 5) and 5 days moving averages and exp@ahembving averages starting

from the day of admission to see the effect ofauagilag values.
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5.55.5.2 Temperature disparity with COPD readmissions

The initial number of COPD admission in the selé@8& local authority
areas for the period of study was 39980. We clahtise data for the admissions
where discharge date was ‘NULL’ or episode was thet last of the spell or
admissions with unfinished episode or a discharigetwindicates that the patient
is still in the hospital or discharge date is nadikable or babies with less than one
year. All these above-mentioned events are not aflytiexclusive and all
together they covered 7458 cases. We selectedatien{s with more than one
admission during the period for model fitting. Wadh20496 admissions of this
type. To calculate the COPD readmission casesubeast the discharge date of
a COPD admission from the corresponding next adomsdate for any specific
patient.

The hazard function in the Gamma shared frailty ehatepends on an
unobservable random variable (frailty) which actgltiplicatively on the hazard.
The univariate and multivariate Cox proportionalzéma model and shared
gamma-frailty model used to model the readmissimre tfor each of the COPD
patients adjusted for temperature (maximum, minimen@an), age and gender.

We calculated the hazard ratios (HR) and 95% cenfid intervals for
each covariate. Using the Wald statistic (0.001200=1.21), we found that the
frailty indicating heterogeneity among the selectednties and/or Boroughs is
not significant. Interesting to see that all theatales were significant in the non-
adjusted model but only age, gender, and exponeni@ving average of
maximum and mean temperature are significant adgisor all the variables

considered.
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5.55.5.2 Temperature disparity with COPD readmissions

The frailty parameter, describing the heterogeneitgelected Boroughs
and counties is statistically non-significant, sesfing that there is no variability
in terms of risk of readmission among selected ttieenThe hazard function for
the readmission of COPD patients is illustratechwait'bathtub shapeHgure 6-
a). Patients that are readmitted on the same ddjsoharge have the highest risk
of readmission, where the risk gradually decreageso 100 days. We notice a
stable risk of readmission for patients readmitietiveen 100 to 820 days after

discharge and dramatically increase afterwardanfHigure 6-b, we can see that

men are slightly more susceptible for COPD readiavissompared to women.

Table 11: Hazard ratio of readmissions for selected varmble

Cox model Shared Gamma Frailty models
. Univariate Multivariate Univariate Multivariate
Covariate(s)
model model model model
HR(CI), p HR(CI),p HR(CI),p HR(CI),p
Start Age 0.99 (0.99-1.00)| 0.99 (0.99-1.00)] 1(0.99-1.00), | 1(0.99-1.00),
<0000* <0000* <0000* <0000*
Sex 0.91(0.88-0.94),| 0.91(0.88-0.94)] 0.91(0.88-0.94),| 0.91(0.88-0.94),
<0000* <0000* <0000* <0000*
Maximum Temp 1.01 (1.00- 1.01), 1.27(0.92-1.76)1.01 ( 1.00- 1.01)|,1.27(0.93-1.73),
<.0000* .15 <.0000* .13
M. A. of Max [1.01 ( 1.01-1.01 1.12(0.87-1.43)/1.01 ( 1.00 - 1.01 1.11(0.85-1.45)|
Temp ),<.0000* 37 ) <.0000* 45
Exp. Mov. Max | 1.01 (1.00- 1.01), 0.69(0.48-1.00), 1.01 ( 1.00- 1.01), 0.69(0.50-0.96),
Temp. <.0000* .04* <.0000* .03*
Minimum Temp 1.01 (1.00- 1.01), 1.26(0.91-1.74) 1.01 ( 1.00- 1.01)|, 1.26(0.92-1.72),
<.0000* 17 <.0000* .15
M. A. of Min | 1.01(1.00-1.01), 1.08(0.84- |1.01 (1.00-1.01), 1.06(0.82-1.39)|
Temp <.0000* 1.38),.57 <.0000* .64
Exp. Mov. Min |1.01 ( 1.00- 1.01) 1.01 ( 1.00- 1.01), 0.74(0.53-1.03),
pTemp_ <0000%  [0-74(0.51-1.06), 17" 2 500+ 07
Mean Temp 1.01 (1.00- 1.01), 0.63(0.33-1.20), 1.01 ( 1.00- 1.01)|, 0.63(0.34-1.16),
<.0000* .16 <.0000* .14
M. A. of Mean | 1.01 (1.00- 1.01), 0.81(0.50-1.33), 1.01 ( 1.00- 1.01)
Temp <.0000* 41 <.0000* 0.83(0.49-1.41), 45
Exp. Mov. Mean| 1.01 ( 1.00- 1.01), 2.02(0.98-4.17) 1.01 ( 1.00- 1.01),  2.02(1.05-
Temp. <.0000* .05* <.0000* 3.88),.04*
Frailty
0, (S.E.0) 0.00121(0. 001
* =Significant
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Figure 6: From Left: a) Baseline hazard function for readnais of COPD with
95%; b) Probability of readmission according te &&rata 2 = female and strata
1 =male)

This paper showed us the evidence of the importah@®nsidering the
effect of the lag period in the climate researchlthestudy. We also knew that
changes in the readmission due to temperaturecarggnificant because of small
changes in the areas and COPD readmission is nmgmédicant in men than

women.

5.5.3 Temperature variations with asthma admissions

Exploring the effect of temperature variations on wuplanned hospital
admissions for asthma(lslam, Chaussalet et al. 2011). (Please seeefeeence

for details).

Asthma is one of the most effected disease outahmeo climate change and air

pollutions (AsthmaUK 2013). The objective of theudst is to explore the

relationship of temperature varies with the admissiof asthma based on 25 local
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5.55.5.3 Temperature variations with asthma admissions

authorities (seven are from London, six from Cumpfive from Somerset, and
seven from West Sussex) for the year 1998-2003.

Similar dataset was utilised as in case study 2p@ixfor asthma related
admissions. We calculated lags of temperaturesn(leg 1 to lag 5) and 5 days
moving averages and exponential moving averageasingtafrom the day of
admission to see the effect of various lag valWs. also considered the lag
values for each of these temperatures (e.g., l#pg12, and lag 5) and calculate 5

days moving and exponential moving averages frarddy of admissions.

Histogram of Asthma counts

Asthma Morbidity rate by Temperature for 2003
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Figure 7: (From left) a) Trends of asthma morbidity rate amemaximum, and

minimum temperature for 2003, b) Frequency of astlaimission counts

We standardised the morbidity rate of unplannedis&ions for selected
disease (e.g., asthma) for the whole region (allo2al authorities) by adopting
the respective population estimates (mid-year amnr) for each of the years
(1998 -2003). For each of the years, we exploredttbnds of the calculated
monthly morbidity rate with temperatures to find efimer there are any

temperature trends and asthma counts. The Poisgpession model and Zero-
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5.55.5.3 Temperature variations with asthma admissions

Inflated Poisson regression model has been usetiigblight whether the
relationship between temperature variations andtspital admission counts are
significant for asthma (See section 5.3). We atsdude the above mentioned
temperature lags and moving & exponential to exantime significance on

asthma unplanned admissions counts.

Table 12: Zero-inflation model coefficients (binomial withdit link)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.40257 0.20041 2.009 0.0446 **
Max. Temp 2.09332 0.89672 2334 0.0196 *
Max Temp lagl| _ -0.02608 0.89424 20.029 0.9767
Max Temp lag2| 172513 0.89346 1.931 0.0535 1
Max Temp lag5| _-0.35056 0.89043 -0.394 0.6938
Max T:\;gp Mov.| 1 22064 0.65805 -1.855 0.0636 *
Max Tvrgp BXp-| 51968 0.70869 0.733 0.4634
Min Temp 210971 0.89136 2367 0.0179 **
Min Temp lagl | -0.03758 0.8901 20.042 0.9663
Min Temp lag2 1.75986 0.89507 1.966 0.0493 *
Min Temp lags | -0.37711 0.89075 -0.423 0.672
Min T;’\Tgp Mov.l" 108175 |  0.65628 1572 0.1159
Min T;\r/gp Bxp-| 034071 0.71473 0.477 0.6336
Mean Temp | -4.18968 1.77874 -2.355 0.0185 *
Mean Temp lagl 0.12809 1.77985 0.072 0.9426
Mean Temp lag? _-3.50336 1.7876 1.96 0.0500 *
Mean Temp lagg 0.72919 1.77873 0.41 0.6818
Mean Temp | 5 59317 1.2831 1.787 0.0739 *
Mov. Avg
Mean Temp | 97565 |  1.29276 10.755 0.4504
Exp. Avg
"= 0.05, *=0.1

From exploratory data analysis we found clear tan@s to increase the
trends of asthma morbidity rate with lower temperes and vice versa (e.g.,

Figure 7). In terms of months the morbidity rate is highewards the end of
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autumn and the start of winter. Thus it is showigl@tionships in trends between
the temperatures (monthly mean, maximum and minijramd morbidity rate for
asthma

From the results of the Zero-inflated Poisson regjm model Table 12
we found that maximum temperature, minimum tempeeatand mean
temperature on the day of admissions are signilicaaffecting number of
unplanned asthma admissions at 5% level of sigmfie. Same results revealed
for minimum temperature of 2 days lag. From thaultesf likelihood ratio test
(chi-squared value 56.49), we found that the oVenaldel is significant (p-value
< 0.05). We also performed the Vuong test (tesissitzs = -38.7 and p-value < 0),
which suggests that the zero-inflated model hagrifeant improvement over
Poisson model.

In summary, asthma is more significant to lower gemature or during
winter and there is some lag effect on asthma kalspounts due to temperature
variations. Such results also remind us the impegaof lags in climate health

research.

5.6 GLM results using climate and pollution factors

In this section we started by some exploratory datalysis to describe the
relationships of all the climate and pollution farst followed by (in subsections)
developing a series of Generalized Linear Modetsthen select best model and

significant climate and pollutions factors.

99



5.65.6.1 Relationships of the factors

5.6.1 Relationships of the factors

Numerical and graphical data analysis was carrigdto summarise the main
characteristics of the dataset. The objective wasstertain the distribution of the
variables, relationships between the variables, #melr trends over time.
Furthermore, the analysis could also assist us daidthg the variables for
inclusion, smoothing the unusual trends, correspandag structure, and lag
period.

Scatterplot matrixes with the climate and air p@lhis versus daily count
of lower respiratory diseases are plotted.Figure 8, the scatter plot matrix
shows the nature of the relationships of meteorokbgrariables and pollutants
with lower respiratory (LR) disease counts. Oneeolss Figure 8) that LR
disease count with climate variables and pollutaares non-linear. It is also
evident that some of the explanatory variables aagisun hours and Radiation
are linearly correlated which may suggest the er# of multicollinearity, and
as a result it may be possible that one or morthefvariables (e.g., sun hours,
radiation) may become redundant in the modellingsph

The second scatter plot matri¥igure 9) explains the relationships
among the variables more elaborately by showingstagstical distribution of the
variables and trends between the pairs of varialdiégure 9 also shows
histograms, kernel density overlays, absolute tatioms, and p-values, i.e.
asterisks (0.05, 0.01, and 0.001). For examplecave see that the correlations
between a pair of variables: Sun hours versus Radig = 0.82), Radiation
versus Humidity K = 0.78), and Sun Hours versus Humidity € 0.73) are very

high and significant at the 1 % level of significan From the histogram, we see
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5.65.6.1 Relationships of the factors

that almost all the variables are skewed or nomaabkvhich is also an indication
of the possibility of the over-disperse nature loé tdata. The kernel density
overlays (e.g., 31 column from left) for lower respiratory hospitatiraission
counts show non-linearity with all climate variabland pollutantsHigure 9).
From both scatter plot matrices, it is evident ttiet lower-respiratory hospital

admissions counts do not vary by seaséigufe 9 andTable 13.
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Scatterplot matrix
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Figure 8: Scatter plot matrix of the disease count, climvaables, and pollutants
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Scatterplot matrix2
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Figure 9: Scatter plot matrix of variables distribution,tbgrams, kernel density overlays, correlations, sigdificance

103
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Table 13: Mean seasonal temperature and admissions count

Seasons Average Temperature Admissions
Count
Summer 18.201 920
Autumn 12.460 910
Winter 5.867 903
Spring 10.766 920

5.6.2 Modelling with Generalized linear model (GLM)

We developed a generalized linear model (GLM) wiite climate and
pollution variables where ‘the daily lower respimat disease counts’ is the
response variable. Before developing a full GLM elpdve performed and
calculated the ANOVA, Akaike information criteriddIC) (section 5.2.7 and
5.2.12), and Bayesian Information Criteria (BICgdgon 5.2.7 and 5.2.12), to
justify the inclusion of all variables in the futhodel. We did not perform the

Likelihood Ratio (LR) test, since the family of tdestribution is quasi-Poisson.

Selection of variables
We started a GLM model with the meteorological &ble temperature since it is
the highest influential factor on health. We thewrluded each of the other
variables to form a new GLM, and used ANOVA, QAIGdaQBIC (Hastie and
Tibshirani 1990; Wood 2006) to check whether thelusion of that variable
actually significantly improves the model or not.

In statistics, the likelihood ratio test is a fttial test to compare the fit
of two models, one of which is the null model #etay model 1 ifable 14 is a
special case of the alternative model (say mode&r2). The test is based on the

likelihood ratio, which expresses how many timegerlikely the data under one
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5.65.6.2 Modelling with Generalized linear model (GLM)

model fits better than the other. The ANOVA canused to compute p-value,

or compare to a critical value to decide whetheeject the null model (Model 1)

in favour of the alternative model (Model 2).

Table 14: Model check and selection of variables

Models Model Form ANOVA for | QAIC QBIC Improv
model ed /
comparisons Signific
- Pr(>F) ant

(YES [/
No)
Modell Count¥emp 42925.04 | 42995.04
Model2 Count ~ Temp Rain 0.2208 42927.86] 43032.86 No
Model3 Count ~ Temp + Rain +3.065e-09 42741.16 | 42879.99 Yes
Wind rrx

Model4 Count ~ Temp + Rain #1.363e-15 42397.84 | 42568.09] Yes
Wind + Sunhours *rk

Model5 Count ~ Temp + Rain +5.664e-05 42319.75 | 42522.87| Yes
Wind + Sunhours A ***
Radiation

Model6 Count ~ Temp + Rain +8.917e-08 4217459 | 42409.71 Yes
Wind + Sunhours 4 ***
Radiation +Humidity

Model7 Count ~ Temp + Rain +0.5797 42183.77| 42452.52 No
wind + Sunhours +
Radiation + Humidity +
Pressure

Model8 Count ~ Temp + Rain +0.6938 42193.8 42496.2%5 No
wind + Sunhours +
Radiation + Humidity +
Pressure ©zone

Model9 Count ~ Temp + Rain +0.0129 * 42171.05| 42506.8%5 Yes
Wwind + Sunhours +
Radiation + Humidity +
Pressure + Ozone +
PM10

Modell0 | Model9 - Rain 0.002241 *+ 42211.11 42514.13o

Modelll | Model9 - Pressure 0.9456 42160.22 42462.X@s

Modell2 | Model9 - Ozone 0.79 42160.57 42462.69 Yes

Modell3 | Model9 - Radiation 0.2898 42166.34 | 42468.72 | Yes

Modell4 | Model9-Pressure- 0.6629 42147.14| 42382.2 Yes

Ozone-Radiation
Modell5 | Model9-Pressure- 0.5695 42155.51| 42424.23
Radiation

Statistically significant at 0.1 %(***), 1 %(**), B6(*), 10%()
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In Table 14 we can see that including Rain in model 1 dogsmprove
the model (though not statistically significant)owver, in model 10 removing
the variable rain from the full model does not ioy@ model 9 which is also
statistically significant according to ANOVA, AICnd BIC criterion (the lower
the better). Similarly we see that inclusion of tfaiables such as Wind Speed,
Sun hours, Radiation, Humidity, and PM10 signifttanmproves the model
results according to ANOVA, AIC, and BIC. On thé et hand, we can see from
ANOVA, AIC, and BIC results that Pressure and Ozaioenot improve the
model, i.e., statistically not significanT4ble 14). For Radiation, the inclusion
does significantly improve the model results, bué do multicollinearity(Table
15), we remove this variable from the final model. There, Model 13 Table

14) is the final model for the GLM analysis.

Checking multicollinearity

Multicollinearity means that some of the explanatovariables are not
independent but correlated. We can check for nuallinearity roughly by means
of the correlation matrix (e.gkigure 8, Figure 9). In such a matrix, when the
correlation coefficient between two explanatoryiailes is above 0.8, one needs
to be aware of possible collinearity. If the caaten coefficient is above 0.95, the
problem is really serious. These can be considaseadrule of thumb.

A diagnostic approach to check for multicollinearafter performing
regression analysis is to display the Varianceatidh factor (VIF). VIF is a
measure of how much the variance of the estimatgcession coefficieng; is
“inflated” by the existence of correlation amon@ thredictor variables in the

model. Computationally, the VIF fg; is defined as
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5.65.6.2 Modelling with Generalized linear model (GLM)

VIF (B;) = (5.42)

1— R}

L

Here R} is the coefficient of determination of the regiessequation. The
magnitude of the multicollinearity can be measut®d considering the size
of VIF(B)).

A VIF of 1 means that there is no correlation amtreg-th predictor and
the remaining predictor variables, and hence thimnee off; is not inflated at
all. The general rule of thumb is that VIFs excagdi4 warrants further
investigations, >5 indicates multicollinearity igh and exceeding 10 are signs of

serious multicollinearity requiring correction.

Table 15: Variation inflation factor: checking multicollinaty

: Multicollinearity
Variable Name VIF (Yes / No)

Temperature 2.040425 No
Rain 1.310265 No
Wind Speed 2.095844 No
Sun Hours 3.748400 No
Radiation 6.971240 Yes
Relative Humidity 3.405485 No
Pressure 1.487464 No
Ozone 2.848567 No
PM10 1.305991 No

From Table 15 we can see that the variable Radiation show Kigtemce of
multicollinearity in model 9 and thus we finallyleet model 13 judging by AIC

and BIC {Table 14).
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Table 16: Model fitting results

Coefficients Estimate | Std. Error| t value Pr(>[t])
Intercept 4.080189 | 0.5054349 8.073 9.26e-16 1**
Temperature -0.011875| 0.0009034 -13.145%< 2e-16 ***
Rain -0.0040931] 0.0013363| -3.063 0.00221 *
Wind Speed 0.0103255| 0.0016832 6.135 9.45e-10 t**
Sun Hours -0.0028628 0.0016581| -1.727 0.08433
Relative Humidity | 0.0042411| 0.0007459 5.686 1.40e-08 7**
Pressure 0.0000348| 0.0004806 0.072 0.94227
Ozone -0.0003191] 0.0004867| -0.656 0.51216
PM10 0.0018279| 0.0007151 2.556 0.01062|*

Statisticaflignificant at 0.1 %(***), 1 %(**), 5 %(*), 10%]

Model fitting results: (Model 13 in Table 14)

TheTable 16illustrates model fitting results, affgble 17 provides the odds and
corresponding confidence interval of the estimatasTable 16 we see that
Temperature, Wind Speed, Relative Humidityare highly significant a0.1%
level of significanced = .001). Rain, PM10, Sun Hoursare also significant at
1%, 5% and 10% level of significance respectivélyessure and Ozone are
found to be not significant on the lower respirgtdisease count. We observe that
Temperature, Rain,andSun Hours are negatively affecting daily disease count,
and Relative Humidity, Wind speed, and PM10 are showing positive
relationships.

Table 17 explains the results ofable 16 by calculating the odds
(exponentiation, since in Poisson we have log-lwfkihe estimates along with the
respective confidence interval of the odds. Forngda, Temperature is
significantly affecting Table 16 daily lower respiratory admissions counts and
from Table 17, we can see that thedds ratio corresponding tomean

temperature is 0.9881950 (95% CI: (0.9864468, 0.9899462)). Tingglies that if
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5.65.6.2 Modelling with Generalized linear model (GLM)

we fix all other variables (e.g., Rainfall, Humigit increasing mean temperature

by one unit will decrease daily LR emergency adioiss count by 0.011805.

Similarly, Wind Speed is significantly affecting Table 16 daily lower

respiratory admissions counts and frdrable 17, one observes that thadds

ratio corresponding tanean Wind Speedis 1.0103790 (95% CI: (1.0070513,

1.0137177)). This implies that holding all otherriables (e.g., Temperature,

Rainfall, and Humidity) as constant, increasing meand speed by 1 unit will

increase the daily emergency LR admissions cout®,0379.

Table 17: Odds and 95% confidence interval of the estimate

Coefficients Odds Confidence Interval of the estinta
2.5% 97.5%
Intercept 59.1566487 21.9672943 159.3054215
Temperature 0.9881950 0.9864468 0.9899462
Rain 0.9959153 0.9933102 0.9985271
Wind Speed 1.0103790 1.0070513 1.0137177
Sun Hours 0.9971413 0.9939061 1.0003870
Relative Humidity | 1.0042501 1.0027830 1.0057193
Pressure 1.0000348 0.9990933 1.0009772
Ozone 0.9996810 0.9987278 1.0006351
PM10 1.0018296 1.0004264 1.0032348

| calculated the Nagelkerke R-squared (Nagelke®@1} for the

final

model to check the goodness of fit. Nagelkerke &ased is a modification of the

Cox-Snell and ranges between 0 to 1. In our chsevalue of the Nagelkerke R-
squared is 0.5914073. This indicates that the mbdsla reasonable predicting
power in predicting the emergency lower respiratoogpital admissions given
the independent variables (climate and pollutiatdies). But we still have room
to improve the model. Nagelkerke R-squared is tebeteasurement to compare

between models rather than interpreting a speediage of a single model.

109



5.65.6.2 Modelling with Generalized linear model (GLM)

Model diagnostics

From the model diagnostic pldtigure 10), we can see that the model fit
the data reasonable well, and there is no inflaéntlue (plot of cook distance)
that may statistically change the results of thedeholn the Residual versus
Leverage plotKigure 10, and also see section 5.2.10) we can see thashhtio
the data points are in the non-influential zond {ow or high leverage) except 3
data points which is reasonable for a good modelnRhe cooks distance we can
see that the influence of these 3 data point iy senall (<0.02%). From the
residual versus fitted plot and the normal Q-Q pletcan also see that the model

fit the data reasonably wekigure 10).

Residuals vs Fitted Normal Q-Q
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Figure 10: Model diagnostic results from the GLM modelling

In summary, we conclude from the results from then&alized Linear
Model that theTemperature, Wind Speed, Relative Humidity, Rainfal, PM10,

Sun Hours significantly affects daily lower respiratory hotgpiadmissions. In
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5.7 Chapter summary

contrary,Pressureand Ozonedo not have any significant relationship with LR
emergency hospital admissions, and Radiation wasoved due to
multicollinearity. The diagnostic plots of the flnemmodel also reveal that the

model fits the data reasonably well.

5.7 Chapter summary

In this chapter, we illustrate the theoretical maokind of the GLM modelling
and developed some GLMs based on our problems atadsdts. We also verified
how considering more than one climate factor (tenamjpee) can improve the
model fitting results. We also selected the sigaiiit climate and pollution
variables for emergency lower respiratory hospaaimissions. In the next
chapter, we will demonstrate how considering tHays effect and non-linearity
of the data can improve the model fitting results.addition to this, we also

propose our final model.
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Chapter 6

Modelling the non-linearity and

delayed effect of climate factors

6.1 Introduction

In this chapter, we propose a new DLNM model comsd) the non-linear
relationships between climate and pollution factond their delayed effect on the
emergency hospital admissions for lower respiratlisgase. We also describe the
theoretical backgrounds and properties of the manbeler the context of our
problem. In section 6.2, we describe some commoséd smoothing techniques
and spline functions for dealing the non-lineanfydata. Section 6.3 illustrates
the general representations of the distributedriadelling. Here, we include the
basic layout of the model, delayed effect in thedel@nd concept of cross basis
which is related to the final model. The framewaikthe Distributed lag non-
linear model has also been described in this sectnally, we illustrate the

proposed final model in this section.

6.2 Smoothing techniques and splines

In this section, we highlight some useful smoothiteghniques and spline

functions. We describe it since the concept has laglepted later on for dealing



6.2 Smoothing techniques and splines

the non-linear nature of the factors of climate @otiutions. We describe only
those techniques that relate to this study. Foerotechniques, we suggest
interested readers go through the references @Hasti Tibshirani 1987; Buja,

Hastie et al. 1989; Hastie and Tibshirani 1990).

Smoother

A smoother is a tool for summarising the trend oésponse measureméhs a
function of one or more predictor measuremexy{sX,, ... ... ... X, (Hastie and
Tibshirani 1990). It is called ‘Smoother’ becaudeits less variability thaiy.
Because of its nonparametric nature, it is consii@s a tool fononparametric
regression. Smoothers can be broadly classified in linear amoh-lmear.
Examples of linear smoothers are: running meaws|liweighted running lines,
kernel smoothers, smoothing splines, bin smootlaerds the least square line. The
smoother matrix cannot be constructed for non-fiseaoother. Most of the linear
smoothers depend on a smoothing parameter andaifaaoriented technique such
as cross-validation is used to select this paramétey become non-linear
smoothers. Examples of non-linear smoothers arenimgn median, robust
smoother (“Lowess”) and cross-validated variableanspsmoothers (“Super

smoother”).

Running means

A running mean smoother produces a fitcgby averaging the data points in a
neighbourhoodV; aroundx;. The neighbourhoods that are commonly used are
symmetric neighbourhoods. Assuming, torbetween 0 and 1, th&bwn] is odd

([.] denoting the integer part), these consistwof] points, ([wn] — 1)/2 to the
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6.2 Smoothing techniques and splines

left and right ofx; plusx; itself. The numbew called the span and controls the
smoothness of the resultant estimate — larger spam$ to produce smoother

functions.

Running-line smoothers

A running-line smoother fits a line by least squaoethe data points in a
symmetric nearest neighbourhodg around each; (Buja, Hastie et al. 1989).
The estimated smooth at is the value of the fitted line af. This is done for
eachx;. The running-line smoother is considered to beiif@ovement over the
running mean because it reduces the biases neantlp@ints. Through the use of
updating formulas, a running-line smoother can bmpmuted with only0(n)
calculations (once the data are sorted). The rgpalme smoother often produces
quite jagged output. When used in an iterative @dace, it is often desirable to
re-smooth the final function. Alternatively, it calpe modified to produce
smoother output, at the cost of increased comuunsifie.g., adopting the locally-

weighted running lines below).

Kernel smoothers

A kernel smoother uses an explicitly defined sekootl weights, defined by the
kernel, to produce an estimate at each target (&lastie and Tibshirani 1990).
Usually a kernel smoother uses weight that decremsesmooth fashion as one
move away from the target point. Choice of kerreelrelatively unimportant

compared to the choice of the bandwidth. Kernel atimers show biases at the
end point which can be corrected by using the moprdines weighted by a

Gaussian kernel.
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6.2 Smoothing techniques and splines

Locally-weighted running line smoother

This smoother combines the strict local natureusining lines, and the smooth
weights of kernel smoothers, in a locally-weightadning-line smoother (Buja,
Hastie et al. 1989). The locally weighted smootlaespopular, since they enjoy
the best of both of nearest neighbourhood and syrnomeeighbourhood. Since
the weights have to be recomputed for each neighibbod, locally-weighted

running line smoothers requitgn?) computations (Hastie and Tibshirani 1990).

Regression splines

Regression spline is a projection method for fitisplines. It can be also
projected ontd: basis or B-splines placed at judiciously chosentkin the range
of x. Thus, it represents the fit as a piecewise patyaband the regions that
define the pieces are separated by a sequence obts knor
breakpointsy, &5, ... ... , &, (Buja, Hastie et al. 1989). The numlkeand positions
of the knots are all parameters of the procedure.

Regression splines are attractive because of thmpuiational properties
when the knots are given. Fixed knot cubic spliaes less appealing than
smoothing splines. Although the number of knots is usually considered to be
the smoothing parameter, one has also to deterthen@lacement of the knots.
Thus the difficulty of choosing the number and poaiof the knots is a drawback
of this approach. Another problem is that the simoess of the estimate cannot
be easily verified continuously as a function okiagle smoothing parameter

(Hastie and Tibshirani 1987).
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6.2 Smoothing techniques and splines

Quadratic and cubic spline bases

The simple regression splines are not suitable nimst applied smoothing
problems. It is overly restrictive to only estimagigecewise functions that are
linear between the knots during estimating moreitinear functional forms. The
solution is to combine piecewise regression fumstiaith polynomial regression
by representing each piecewise regression funa®ra piecewise polynomial
regression function.

Piecewise polynomials offer two advantages. Firgtiecewise
polynomials allow for non-linearity between the ko Second, piecewise
polynomial regression functions ensure that ths flerivatives are defined at the
knots, which guarantees that the spline estimallenai have sharp corners. It is
very simple to alter the regression splines and taacommodate piecewise
polynomials. In any simple model, we can estimaéegwise polynomial fits by
adding x? to the basis and squaring the results from thésfasctions. This
alteration forms a quadratic spline basis withnglg knot.

Typically, cubic spline bases are used insteaduaficptic bases to allow
for more flexibility in fitting peaks and valleys ithe data. A spline model with a
cubic basis and two knots cl1 and c2 forms fromfttiewing linear regression
model:

Y = a+ B1x + Box? + B3x3 + B, (x — ¢;)3
+ B(x—c))3 +¢ 6.1)
The spline estimate is again the predictions from hat matrix applied to the
outcome variable. To form the hat matrix, we musst iconstruct a model matrix

that contains the correct bases. For this exarttpgenodel will contain
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6.2 Smoothing techniques and splines

X, =x
X, = x?
X3 = x3 (6.2)

xg = (x — )3

xs = (x —c1)}
wherex represents the original predictor variable. Thedehanatrix will consist
of a constant and the above five variables. Wethisemodel matrix to form a hat
matrix that is applied to the outcome variable, #redpredictions from this model
serve as the spline estimate of the possibly nogali relationship between
andy. The number of parameters used to construct tHmesgstimate is
controlled by the number of knots. If there @&rdknots, with a cubic basis, the
function will requirek + 4 regression coefficients (including the intercept)e
cubic basis allows for flexible fits to non-linegribetween the knots and
eliminates any sharp corners in the resulting egemrThe latter is true since the
first derivative exists fofx — ¢;)3 and it follows that the first derivative will also
exist in any linear combination of the terms in &pn 6.2. For cubic regression

splines, there are a number of equivalent waysriie Whe basis.

Natural splines

While cubic splines are widely used, they are oéikered slightly to improve the
fit. One limitation of cubic splines is that theepewise functions are only fit
between each knot. For data that falls before ifs¢ knot and beyond the last
knot, we do not fit a piecewise function. Withoiis fto the boundary of the data,
it is possible for the spline fit to behave errallig around the limits of. Natural

cubic splines add two knots to the fit at the mimmand maximum values af
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6.2 Smoothing techniques and splines

and fit a linear function between the additionabtenat the boundary and the
interior knots. This constrains the spline fit te llmear before the first knot and
after the last knot. Such enforced linearity at Hmundaries avoids any wild
behaviour in the spline fit near the extremes @f dlata. Cubic splines may not
display erratic fits at the boundaries, but natsglines can improve the overall
spline fit should problems occur. Since little astl by using natural splines while
some gains in model fit are possible, natural cspiimes are generally preferred

to cubic splines.

B-splines

There is one further refinement that is also tyibycapplied to cubic splines. For
cubic splines (natural or otherwise), the columhX,athe model matrix, tend to
be highly correlated since each column is a transéd version ok, which can
induce considerable collinearity. The collineanityy result in a nearly singular
model matrix and imprecision in the spline fit. Asemedy, one can represent the
cubic spline (and any other polynomial basis) &spline basis. A:-knot cubic

B-spline basis can be represented as:

k
f() =) B (p 6.3)
i=1

Where the B-spline basis are defined as:

X — ¢ _
B0 = —— B ()
i+2+1 i (6 4)
C. — x .
+ 2~ p2l(x) i=1,..,k
Cit2+1 — Ci41
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6.3 Digtributed lag non-linear modelling approach

and

1 ifc; <x<c¢
-1 _ ) 1 = i+1
B () = {O, Otherwise. (6.5)

The B-spline basis function is, in essence, a fiegcaf each of the
piecewise functions. The idea is similar to rescpk set oiX variables by mean
subtraction to reduce collinearity. The rescalinghie B-spline basis reduces the
collinearity in the basis functions of the modeltrixa The resulting spline model
is more numerically stable than the cubic splineisTis especially true if one is
using a large number of knots and OLS is used théi spline model.

In our study, we used the B-spline basis functimnniost of the climate
and pollution factors. The main causes are: B-spbndata driven and it remains
like that after the boundary knots. This is noetfar natural spline basis, which
becomes linear beyond the boundary knots. ThusliBesprovides a more

flexible fit to any non-linear datasets.

6.3 Distributed lag non-linear modelling approach

6.3.1 Introduction

The basic purpose of any generalized linear modelegression model is to
define the relationship between predictors andaut; and estimate the related
effect. But sometimes the effect of a specific epe event is not limited to the
period when it is observed, but rather delayedimet This introduces the
problem of modelling the relationship between amposxre occurrence and a
sequence of future outcomes, specifying the didioh of the effects at different

times after the event (definéas). Ultimately, this step requires the definition of
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the additional lag dimension of an exposure—respoekationship, describing the
time structure of the effect. This situation occtrequently when assessing the
short-term effects of environmental stressors: isg#véme-series studies have
reported that the exposure to high levels of allugion or extreme temperatures
affect health for a period lasting some days afteoccurrence (Braga, Zanobetti
et al. 2001; Gasparrini, Armstrong et al. 2010)rtlkermore, the complexity
increases in the presence of so-called ‘harvestimg’ phenomenon that arises
when a stressor affects mainly a pool of frail wdiials, whose events are only
brought forward by a brief period of time by thdeet of exposure (Schwartz
2001; Gasparrini, Armstrong et al. 2010). For neodrrent outcomes, the
depletion of the pool following any extreme-evemvent) results in some
reduction of cases few days later, thereby reduthiegoverall long-term impact.
For both these reasons, the estimate of the effepends on the appropriate
specification of the lag dimension of the depengemefining models flexible
enough to represent simultaneously the exposungemss relationship and its
temporal structure.

Distributed lag models (DLM) played a significardle to deal with
delayed effects on health. The main advantageisftiethod is that it allows the
model to contain a detailed representation of thme-tourse of the exposure—
response relationship, which in turn provides anrede of the overall effect in
the presence of delayed contributions or harvestibile conventional DLMs
are suitable for describing the lag structure néédir effects, the distributed lag

non-linear models (DLNMs) serve to represent naedr relationships. The
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6.36.3.2 The basic model

DLNM can describe, in a flexible way, effects thatry simultaneously both

along the space of the predictor and in the lagedsion of its occurrence.

6.3.2 The basic model

Distributed lag non-linear models (DLNMs) represannodelling framework to
flexibly describe associations showing potentiabn-linear and delayed effects
in time series data. This methodology rests ord#faition of across basis, a bi-
dimensional functional space expressed by the awatibn of two sets of basis
functions, which specify the relationships in thenensions of predictors and

lags, respectively.

A general representation
A general model representation to describe the tweeies of outcomes

Y. witht = 1,2, ...,nis given by

J K
gy =a+ Z Sj (xejs B) + Z VieUtk (6.6)
j=1 k=1

whereu = E(Y ), g is a monotonic link function, and Y is assumedaitow the
exponential family of distribution (MacCullagh amtelder 1989; Dobson and
Barnett 2008).

The functionsS; denote smoothed relationships between the vasahle
and the linear predictor, defined by the parameeatorss;. S; might be also
specified through non-parametric methods basedemerglized additive models
(Hastie and Tibshirani 1990; Wood 2006). The vdesb, include other

predictors with linear effects specified by theatetl coefficienty,. The
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6.36.3.2 The basic model

outcomes; are commonly daily counts (in time series analyfesnvironmental
factors) and assumed to originate from over diggeRoisson distribution with a
canonical log-link. Usually these include a smaoktifiction of time to capture the
effect of confounders changing slowly over timepressed as seasonality or
long-time trends. Non-linear effects of meteorotadifactors such as temperature
and humidity are included as well. Categorical afales such as the days of the

week or age groups are modelled as factors.

Basis functions

The relationship betweenandg(p) is represented bg(x), which is included in
the linear predictor of a generalized linear maaela sum of linear terms. This
can be done through the choice of a basis, a spatenctions havings is an
element (Wood 2006). The related basis functiomaprse a set of completely
known transformations of the original variable »atthgenerate a new set of
variables, termed basis variables. The complexityhe estimated relationship
depends on the type of basis and its dimension.

Several different basis functions have been useddéscribe the
potentially non-linear health effects of environranfactors, the choice
depending on the assumptions about the shape otkgonship, the degree of
approximation required by the specific purposes tlé investigation, and
interpretational issues.

Among completely parametric methods, the main awitypically rely
on functions describing smooth curves, such asnpoiyals or spline functions,
or on the use of a linear threshold parameterigaioockey-stick model),

represented by a truncated linear functf@n- k), which equals(x — k) when
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6.36.3.3 Delayed effects

x >k and 0 otherwise. In the hockey-stick model, tHeatfis likely to exist and
be linear only above or below a specific cut-ofippdthreshold). An extension of
this model assumes two distinct linear dependermédsw a first threshold and
above a second threshold, with a null effect imieen them (double threshold).

A general representation of the simple models destrabove is given by

s(xg; B) = ZtTﬁ (6.7)

with z;. as thetth row of then X V,, basis matriXZ, obtained by the application of
the basis functions to the original vector of expesx. Z can be then included in
the design matrix of the model in equation 6.6 ideo to estimate the related

unknown parametei® defining the shape of the relationship.

6.3.3 Delayed effects

A delayed (or lagged) effect occurs when for ametiseries analysis the outcome
in a specific time is determined by the level of firedictor in previous times, up

to a maximum lag for any given ordered series efimtor values . Therefore, the

presence of delayed effects requires taking intmaat the time dimension of the

relationship, specifying the additional virtual dinsion of the lags.

A very simple model to deal with delayed effectsigiders the moving
average of the predictor up to a certain lag, $peg a transformed predictor
which is the average of the values in that spedar period. Although simple,
this model is limited if the purpose is to assdss temporal structure of the

effects. The Distributed lag models (DLMs) addressese limitations. The main
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6.36.3.3 Delayed effects

advantage of this method is the possibility to depidetailed description of the

time-course of the relationship.

An additional dimension

In the presence of delayed effects, the outcomaegaten timet may be explained
in terms of past exposures— [, with [ as thdag, representing the period
elapsed between the exposure and the responsenpacatively simple approach
is to apply a transformation to the original veabiordered exposures deriving

then x (L + 1) matrixQ, such as

Qo= [Xe s eees Xppy e X T (6.8)

with L defining the maximum lag ang;. = x (the first column of Q). We can also
define[O, ... ... A L]" as vector of lags corresponding to the: 1 columns of

Q. This step specifies the additional lag dimensodnthe exposure—response
relationship. Ultimately, the aim of the modellifrgmework proposed here is to
simultaneously describe the dependency along twwoensions: the usual

predictor space and in the new lag dimension.

Distributed lag models

When a linear relationship is assumed, the delagiéelcts can be naturally
described by distributed lag models (DLM). This hoetology allows the effect
of a single exposure event to be distributed ovepexific period of time, using
several parameters to explain the contributionglifiérent lags. The simplest

formulation is an unconstrained DLM, specified bg tinclusion of a parameter
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6.36.3.3 Delayed effects

for each lag (Schwartz 2000). Unfortunately, thecmion of the estimates of the
effects of specific lags is often very poor, duethe high correlation between
exposures in adjacent days and the resulting eallity in the model (Gasparrini,
Armstrong et al. 2010).

To gain more precision in the estimate of the ifisted lag curve, it is
possible to impose some constraints, for exampsainagg a constant effect
within lag intervals (Gasparrini, Armstrong et 2D10), or describing a smooth
curve using continuous functions such as polynar(i@thwartz 2000) or splines
(Zanobetti, Wand et al. 2000). A simple model wiile moving average of the
exposures in the previous L days as a predictobeatonsidered as a special case
of a DLM. Using the development provided in sectt®.2 (basis functions) and
section 6.3.3 (an additional dimension), it is plassto formulate a simpler and
general definition of DLM, in which the shape oétdlistributed effects along lags

is specified by a proper basis. In matrix notation

S(xt;n) = th ’ Cn (69)

whereC is an(L + 1) x V; matrix of basis variables derived from the appiaa
of the specific basis functions to the lag veé¢toandn a vector of unknown
parameters. The addition of the supplementary démnenn equation 6.8 provides
a structure for the application of the basis ma@xn order to describe the effects
of lagged exposures. All the different DLMs desedkabove can be derived from
equation 6.9, by specifying the correspondent bamgix: C = 1 (a vector of

ones) for the moving average moddl,=1 (an identity matrix) for the
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6.36.3.4 Distributed lag non-linear models

unconstrained DLM, or C defined as a series of paryial or spline functions of
[ for DLMs describing the effect as a smoothed cualomg lags. From equation
6.9, we can define

W = QC (6.10)

with W the matrix of the/; transformed variables that are included in thegtes
matrix to allow estimation of the parametgrsThe interpretation of the estimated
parameterg) is aided by construction from them of the implieckar effects b at
each lag, following:

p=ci

V() =cv@cT

(6.11)

Here the choice of the basis to dertvean be considered as the application of a
constraint to the shape of the distributed lag ewtescribed bj.

Despite the specification of the basis functionseguation 6.9 being
slightly different to that in equation 6.6, i.e.ifg applied to the vectdrinstead
of the exposure series itself, their goal is conceptually similar to debe the
shape of the relationship, the former along disteld lags and the latter in the

space of.

6.3.4 Distributed lag non-linear models

The family of DLNM is achieved through the genesatiof a new model
framework for describing non-linear relationshipsethb in the space of the
predictor and along lags. A such model frameworkeldaon the concept of the

cross-basis.
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6.36.3.4 Distributed lag non-linear models

The concept of cross-basis

The algebraic notation of DLNMs can be quite compbecause of its three-

dimensional arrays. But the basic concept of asebasis on which the DLNMs

depend on is straightforward. The cross-basis eamhgined as a bi-dimensional
space of functions describing at the same timestiaoe of the relationship and
the distributed lag effects. Thus choosing a chess is based on two sets of
basis functions, which will be combined to genethtecross-basis functions. The
choice of the two sets of basis functions for esyghce is perfectly independent,
and should be based on a-priori assumptions or arorapromise between

complexity and generalizability. Linear, threshosdrata, polynomial or spline

functions can be used to define the relationstop@gthe space of predictor, while
unconstrained, strata, polynomial or spline fundican be applied to specify the

shape along lags.

The algebra of DLNM

To model the shape of the relationship describedvebwe need to apply
simultaneously the two transformations describedseaation 6.3.2 and section
6.3.3.

First, as in section 6.3.2, we choose a basig fordefine the dependency
in the space of the predictor, specifyidg Then we create the additional lag
dimension, as in section 6.3.3, for each one ofdieved basis variables af
stored in thez. This produces a x v, x (L + 1) arrayR, which represents the
lagged occurrences of each of the basis variableg. arhe construction is
symmetric, in the sense that the order of the tansformations can be reversed,

applying the basis functions directly to each calushthe matrixQ.
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Defining C, the matrix of basis variables for seen in sectod.4, a

DLNM can then be specified by

Ux Vi

g(u) = a+ ZZ Tg;; CrxMNjk = wim, (6.12)

j=1j=1

wherer; is the vector of lagged exposures for the tiniansformed through the
basis functiory. The vectow, is obtained by applying the,. v, vx -v cross-basis
functions tax; , similar to equation 6.10. We keep the same otddb emphasize
the fact that the DLM specified in equation 6.9aispecial case of the more
general DLNM in equation 6.12. To reach a compagnfila forw of a similar
form to equation 6.10, we need to present it aanadr product. Defining; ; as
the operator permuting the indexiesndj of an array and assuming a generic

i X jmatrixas d X j x 1 array, it follows that

A=(1"TQR)O(1®Ps(0)®1") (6.13)

with 1 indicating vectors of ones with appropriate dimens. The symbol®
and O represent the Kronecker and Hadamard productpectsely. The
nXx (v -v) X (L+1) array A is then re-arranged, summing along the third
dimension of lags to obtain the final matrix of ssebasis function$V. The
equation in equation 6.13 is a modified versionhef formula used to implement
smoothing on a multidimensional grid through tengmduct bases (Gasparrini,
Armstrong et al. 2010). The main difference in ¢hess-basis approach lies in the
dimensions considered in the model. While the pagimethod provides a

framework to describe a smooth surface in the spateo distinct variables, the
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6.36.3.4 Distributed lag non-linear models

DLNM expresses simultaneously the effects in thecepof a variable and in its

lag dimension.

Interpreting a DLNM

DLNM raise no more problems than any other genszdlilinear model, despite
its complex parameterization, estimation of aneérefce about the parameters. It
can be carried out with the common statistical veafé’'s after the cross-basis
variables have been specified. Nonetheless, widearterpretation of the simpler
DLM in equation 6.9 is straight forward, consistiimg reporting the estimated
linear effectsf in equation 6.10 for each lag, the results of aemmomplex
DLNM with smoothed non-linear dependencies are éraiml summarise.

One solution is to build a grid of predictions &ach lag and for suitable
values of exposure, using three-dimensional plmtsrovide an overall picture of
the effects varying along the two dimensions. Irdigoh, it is possible to
summarise the relationship at single predictoagrdalues, by cutting a "slice" of
the grid along specific values. These summariesesspa lag-specific association,
defined along the predictor space at a given ldgeyeor a predictor-specific
association, defined along the lag space at a gwedictor value, respectively.
Finally, an estimate of the overall cumulative &sstion can be computed by
summing all the contributions at different lags fech predictor value. The
associations are usually reported versus a referaatue of the predictor,
cantering the basis functions for this space tar tberresponding transformed
values (Gasparrini 2011)

Given a vectorc? of the m exposure values used for prediction ded t

resultantm x v, matrixZP, the correspondingn X v, x (L + 1) arrayRPcan be
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6.36.3.4 Distributed lag non-linear models

derived by repeating the matré® L + 1 times along the dimension of the lags.
The computation oRP? is slightly different than for the arraR used in the
estimation process in equation 6.12. In this chedriterest lies in the prediction
of the effects at each lag given an exposure, mthe temporal sequence of the
exposures themselves. The final arAgyfollows simply substituting j. with rt‘]?,
in equation 6.12 oR with R? in equation 6.13.

The prediction grid, expressed with thex (L + 1) matrix of predicted
effectsE and related matrix of associated standard eB#ts can be derived
using the vector of estimated coefficiefitscomputed from the model fitted

including the matrix of cross-basis functiois For each lag

(6.14)

and, giverV/ (7} ) the variance—covariance matrix of the estimateffiments

ejt = J diag(A"V (@)A") (6.15)
This grid is useful to compute the estimates ofdfiects by exposure at
lag L, or by lag at exposurg,, simply takinge,lp ande,xp. , respectively.
Finally, an estimate of the overall effect can benputed by summing all
the contributions at different lags. The veagr , and associated standard

errorses%, obtained summing the contributions at each |pgeify the effects of

exposure over the whole lag period. They are obthfrom

= WPH
eror = W1 (6.16)

and
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6.36.3.5 Thefinal Model

. R T
elsy = \/ diag (W”V('I)Af’z ) (6.17)

6.3.5 The final Model

We see from the section 6.3.4 that the Distributagl linear and non-linear
models are based on two basis function: a lag basiepresenting different lags
of the explanatory variables and cross-basis fanct(x;) for N-length series of
the explanatory variables= [x;,...,X;_;, .....,x,;]T. The definition ofs(x,)
first require the derivation of thg x (L + 1) matrix Q of the lagged exposure so
thatq,.= [x¢,..., X, .....,x,—,]T . This actually characterizes the new lag
dimension identified by the vectér= |0, ...... , 4,...,L], having L as the
maximum lag.

Now, choosing a first basis with dimensions to represent the
association along the new lag space, we can conggUte- 1) X v, basis matrix
C by applying the related functions£0A compact and general expression for the
lag-basis function(x;) for DLM is given by:

Vi

s(xgm) = Z qc, M= aqi - Cy =win (6.18)
j=1
Note that different models are specified with dife choices of the basis to
deriveC. Here, C, represents the lag specific contributions. Thelength
parameter vecton can be estimated from the equation 6.10.
The non-linear extension to the DLNMs requires ¢heice of a second
basis with dimensiorw, to model the relationship along the space of the

predictorx, obtaining theN X v, basis matrixZ (see equation 6.10) from the
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6.36.3.5 Thefinal Model

application of the related function to Applied together with the transformation
which defines the matrix of lagged expos@e@bove, this step produces a three-

dimensionalN x v, x (L + 1) arrayR.

Ux Vi

s(xe;m) = Z Z T Ckljk = Wi (6.19)

j=1j=1

To formulate with the cross-basis based on ourlproplet us consider
the lag period for different climate and pollutivariables. For example, if we
consider the variable daily mean temperature wigximum lag a€.=30, then the

first basis for temperature from equation 6.18 loamgiven as

V(L=
sCxm) = 51470 gF ey 6.20)
Where? = [0, ... ... , 30] andq..= [x¢,..., X¢—py v Xe—30]” . Similarly, we can

construct the first basis for other variables lidaly rain, wind speed, sun hours,
relative humidity, pressure, Ozone, and PM10. If eansider a non-linear
extension to DLNMs for daily mean temperature, pgagameterization of the

cross basis functios(x;) for DLNMs can be give as,

Vx=temp Vi(L=30)

s(xgm) = Z Z 15 CkMjx = win. (temp, L = 30)
j=1 k=1 (6.21)
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6.36.3.5 Thefinal Model

Expanding this procedure by considering all thenate and pollution factors, the

DLNM model can be defined as follows,

Ux=temp Vi(L=30) Vx=Rain YI(L=15)

s(xgm) = Z Z th;'.c.kfljk+ Z Z rtTj.C.knjk

j=1 k=1 j=1 k=1

Ux=Wind speed vl(L=20) Vx=Sun hours 1‘7l(L=20)

+ Z z rtTj. CxNjk + Z Z rtTj. Ck Njk

j=1 k=1 j=1 k=1

Vx:R.Humidity vl(L:ZO) Vx=Pressure Vl(L=10)

T T
+ Z Z Tt CxNjx + Z Z Ttj. Cr Mjk
j=1 k=1 j=1 k=1

Vx=0zone VI(L=30) Vx=pM10 YU(L=30)
+ z z TtTj. CxNjk + Z TtTj. CkMNjk
j=1 k=1 j=1 k=1
= wln.(temp, L = 30) + wln. (rain, L = 15)

+ win.(Wind Speed, L = 20) + wln.(Sun Hours, L = 20)

+ win. (R. Humidity, L = 20) + wln. (Pressure, L = 10)

+ w{n.(0zone, L = 30) + win.(PM10,L = 30)

(6.22)
From equation 6.10, in matrix notation this cambigten as
W = QC
These models may be fitted through common generhlimear model

technigues with the inclusion of cross-basis mai¥ixn the design matrix (see
equation 6.10 for elaborations). The vedof the estimated parameters of the
cross-basis function in (6.22) represents simutiagly non-linear and lagged
dependency, and its length, X v, is equal to the product of the dimensions of

the bases for two spaces. In completely parametndels as those described

133



6.4 Chapter summary

here, the dimensionality is directly associatechwite notion of the degrees of
freedom (df), related to the flexibility of the fotion and smoothness of the
estimated dependency.

The form of our final model also includes two mdetors in the
DLNMs model assuming some linear effects of thepoase variable: daily
emergency hospital admissions counts for lower irgspy disease. We add
natural cubic splines of time with 7 df to conttble secular trends and any
additional confounding by seasonally varying fastather than the selected
climate and pollution factors in the model. For geme type of confounding
factor due to any particular day of a week we idelli ‘day of the week’ (DOW)

in the model. So eventually our final model takesform as below:

s(xgn) = wln. (temp, L = 30) + wln. (rain, L = 15)
+ wln.(Wind Speed, L = 20) + wln.(Sun Hours, L = 20)
+ win.(R. Humidity, L = 20) + wln. (Pressure, L = 10)
+ wln.(0zone, L = 30) + win.(PM10,L = 30) + S,c(Time)
+ DOW
(6.23)
The interpretations of the final model in equatto23, the general form in section

6.3.4 can be followed. We interpret the resulttheffinal model in section 7.3.

6.4 Chapter summary

In this chapter, we developed the mathematical fofrthe new Distributed Lag

Non-linear model. This new model considers the inogarity in the climate and
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6.4 Chapter summary

pollution datasets and their delayed impact oretinergency hospital admissions
for lower respiratory disease counts. We proposedse a B-spline smoothing
technique to deal with the nonlinear relationshipghe following chapter, we are
going to apply this proposed DLNM model to our data, interpret the results,

compare the models and proceed to the conclusions.
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Chapter 7

Results of the final model

7.1 Introduction

In this chapter, we begin with exploratory data lgsia using the dataset
described in chapter 4. In this chapter, we apptied proposed final model in
section 6.3.5 of the previous chapter. We alsooperéd the model comparisons
based on the results from final model and the tesilthe final generalized linear
model in section 5.6.2. In section 7.2, we perfamgraphical exploratory data
analysis to visualise the pattern of the non-linedationships of the emergency
LR hospital admissions with climate and polluti@ctbrs. Section 7.3 illustrates
the results of the final DLNM model along with sntlliog techniques and
interpretations of the results. Finally, in sectibd, we compare the results of the
various models used throughout this research andfite of the proposed final

model regarding improving the results. The sectidhsummarises this chapter.

7.2 Exploratory data analysis

We calculated the daily mean emergency admissiontdor LR disease for the
study period (1 January 2000 - 31 December 2009) @marformed a visual
exploratory data analysis using all the climate aotution factors to compare

their trends with respect to the trends of LR eraray admissions. The results of



7.2 Exploratory data analysis

this exploratory data analysis will help us undamstthe nature of the non-linear
relationships of the climate and pollution factaigh emergency LR admissions.
In addition to that, it will also assist us decat®ut the spline function in the final

model.
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Figure 11: Trends of lower respiratory (LR) disease admissiocounts

Figures 11-20 illustrate the trends of the dailyameesmergency LR
hospital admissions count compared to the mearesatdi the selected climate
and pollution variables, and thus show the seaggrudlthe rate of change for the
admissions count with the rate of change of clinzete pollutants throughout the
year. InFigure 11, it is evident that December has the highest eemayg LR
hospital admissions compared to any other montbse bhat admissions increase
from the beginning of autumn (September to Novembbrterestingly, the
emergency LR admissions rate is lower during hgynpgerature (summer) and

higher during winterKigure 12). This could be because of the nature data
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7.2 Exploratory data analysis
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Figure 12: Trends of daily mean temp with LR admissions csunt
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Figure 13: Trends of rainfall with LR admissions counts

(disease categories and hospital admissions dadlapegiional effects of the north
latitude. Since we have considered lower respiyatiiseases, we have a huge
portion of asthma cases which increases due teaserof pollen in the air during

autumn (September-November). In addition to thisscanse of NHS
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7.2 Exploratory data analysis

administrative & logistic delay, it takes time tet@dmitted in the hospital and we
are also missing the primary outcomes of any sudtierate change since we are
not covering GP data (please see limitations of tthesis at section 8.4).
Moreover, because of the nature of the north kithistorically winter appear
more extremely than compared to summer.

No visible trend is apparent in the rate of changdrainfall (Figure
13).Wind Speed Kigure 14) shows an increasing trend at the beginning of
autumn (September-November) with increasing emesgeR admissions during
the same period. Like the case of temperature régvof daily sun hourg-{gure
15) and daily radiationKigure 16) showed a reciprocal trend in LR admissions

and vice versa.
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Figure 14: Trends of daily mean wind speed with LR admissiomts
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Trends of Sun Hours with Admissions
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Figure 15: Trends of daily sun hours with LR admissions ceunt
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Figure 16: Trends of daily radiation with LR admissions caunt
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Figure 17: Trends of mean relative humidity with LR admiss@ounts
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Figure 18: Trends of mean pressure with LR admissions counts
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Figure 19: Trends of daily ozone with LR admissions counts
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Figure 20: Trends of daily PM10 with LR admissions counts

After visual inspection of HumidityRigure 17) and PressureF{gure
18), no obvious trends are apparent with emergencyhbBpital admissions.
Similar can be said for Ozon€igure 19) and PM10 Figure 20), except Ozone
seems to be higher during spring (March -May). Heveall of these factors

show some spikes in their trends throughout the. yea
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7.3 Results of the final model

7.3 Results of the final model

We developed a Distributed Lag Non-linear Model ML), to fit the same
dataset with the same climate and pollutions végabsed in the exploratory data
analysis (section 7.2) and Generalized Linear M¢gksition 5.6).

The objectives of developing the DLNM model are:

» To justify the impact of Lag-period on the emergetmwer respiratory
(LR) disease,

» Decide on the precise the structure of the lagepefor different climate
and pollutant variables, capturing the non-lineature of the data by
introducing appropriate smoothing techniques.

* To check whether the DLNM fits the data better thlhea GLM model

presented above (section 5.6).

The analysis of the DLNM is based on the model. 85 fitted through a
generalized linear model, and by considering thacept of cross basis and one
basis. We considered the quasi-Poisson family en &M to deal the over
dispersed nature of the data. Along with the clematd pollution variables, we
also used a natural cubic spline @fne’ with 7 degrees of freedom per year
(roughly equivalent to a two month moving averagd)is will allow adequate
control for unmeasured confounders (for exampletme trends, seasonality,
health related behaviour, diet), while leaving ®ight information from which to
estimate the effects of climate and pollutants.nfrbe literature review, we
found ‘the day of the weekalso affects hospital admissionsSigure 21). Thus

we also include the ‘Day of the week’ as a variablthe model.
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Emergency LR Disease Admissions Count by Day
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Figure 21: Lower respiratory disease admissions counts byofitye week

The choice of lag period
In the basic formulation, the Distributed lag namehr model (DLM) is

fitted by the inclusion of a parameter for eachgkd) predictor occurrence
(Gasparrini 2011). An estimate of the overall nesomiation is given by
cumulating the single lag contributions upon theoleHag period, usually a-priori
defined (Schwartz 2000; Hajat, Armstrong et al. ®0@ccording to Gasparrini
(2011), this unconstrained version of DLNM does mojuire any assumptions of
the shape of the association along lags, and caesdly on the relationship
between the parameters. However, in order to defimere parsimonious model,
it is possible to specify some assumptions on kiage of the distributed effects,
applying some constraints. The simplest solutiotoigroup the lags in different
strata, while a more complex options to force theve along lags to follow a

specific smooth function, for example polynomiatsplines.

144



7.3 Results of the final model

Table 18: Choice of lag period, variable basis, and lagdasi

Variable Name Lag Period Basis for Variable Basis for Lag
(days)
Temperature 30 B-Spline with Natural Cubic Spline
P degree 3 and 5 df (ns) with degree 3
. B-Spline with Polynomial with degree
Rain 15 degree 3 and 3 df 5
. B-Spline with Polynomial with degree
Wind Speed 20 degree 3 and 5 df 3
B-Spline with :
Sun Hours 20 degree 3 and 5 df ns with degree 3
Relative B-Spline with :
Humidity 20 degree 2 and 3 df ns with degree 3
B-Spline with Polynomial with degree
Pressure 10 degree 3 and 3 df 4
Ozone 30 B-Spline with ns with degree 3
degree 3 and 10 df
B-Spline with .
PM10 30 degree 3 and 10 df ns with degree 3

df: degrees of freedom

In our research, the choice of the lag period dafde various climate and
pollution factors. We decided the lag period frohe tliterature review and
provided the maximum plausible days as lag forttedl variables Table 18 to
improve the precision of the DLNM model. For exaeplower temperature
normally shows longer impacts on disease outconam thigher temperature
(Hajat, Armstrong et al. 2005; Muggeo and Hajat20Bhaskaran, Hajat et al.
2010). Thus, we adopted a longer 30 days lag peniadde model, to cover both
the effect of high (summer) and low temperaturenern). In general, the choices
of the lag period and spline imable 18 are mainly motivated by several
methodological and substantive papers on time seaealyses in similar
applications (Armstrong 2006; Gasparrini, Armstroeg al. 2010; Gasparrini

2011).
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Smoothing techniques adopted

In our research, we used B-spline basis for allviheables used in the model
instead of natural splines (ns), since naturahsptends to have a linear pattern
before and after the boundary knots. So after barynénots, ns is completely
misleading if the data shows more non-linearity.comtrary, B-spline, is more
data driven and takes the form according to tha datwell. It also works well
after the boundary knots. We decided the lag pdrimd the literature review and
provided the maximum plausible days as lag fothadlvariablesTable 18. The
degree of the polynomial and degrees of freedonalfdhe variable basis and lag
basis are based on the results of exploratoryatsdysis (as illustrated in section
7.2); previous studies from the literature, an@ @glging by the AIC/BIC results
tested under various values of degrees of freedmmkifots) and degree of

polynomials.

Model fitting results
The results of the DLNM model fitting are not pdisito describe in a usual way
(for example,Table 16), simply because of the complexity of the moded &s

complicated non-linear nature.

Interpretations of DLNM results

DLNM can be interpreted by building a grid of preéins for each lag and for
suitable values of the predictor (e.g., TemperatRainfall, PM10), using three
dimensional plots to provide an overall picturetioé association varying along
the two dimensions (Gasparrini 2011). In additibms possible to summarise the
relationship at single predictor or lag valueschiting a “slice” of the grid along

specific values. These summaries express a lagfispegsociation, defined along

146



7.3 Results of the final model

the predictor space at a given lag value, or aigi@dspecific association,
defined along the lag space at a given predictarega respectively. Finally, an
estimate of the overall cumulative association barcomputed by summing all
the contribution at different lags for each predlictalue. The associations are
usually reported versus a reference value of tlegligior, centring the basis
functions for the space to their corresponding sfammed values. For our
analysis, we consider the reference values ardumddrresponding mean of each

of the predictor.
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Figure 22: 3D & Contour plot of RF;Oalong temperature and Jaggh ref. at
12°C

Figure 22 shows the overall depiction ofemperature on lower
respiratory diseases admissions. Here, it illussrat 3-D image and corresponding
contour plot of the relative risk (RR) along theandemperature (here 42 and

lags. The plot shows a very strong immediate efééc¢he higher temperature at
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around>27°C and lag period of 0-2 days. Higher temperatuse abems to have
an effect on emergency LR admissions at around51@8alys lag period. Lower
temperature (e.g.’G) seems to have a moderate effect at around g5 ldg
period.

Figure 23 (top graph), illustrates lag specific associatiaisdifferent
temperatures (-1, 0, 20, 29) ranging from lowerhigher temperatures, with
reference at Z. One observes that higher temperature has andiateesffect
on admissions and longer lag effects up to 2 dagslater on a longer effect of
10-15 days lag periodFigure 23, also depicts both associations along the
predictor range at lag 0 and lag 25 (left columngl associations along lag at
temperatures °C and 28C. The interpretation ofigure 24 is twofold: the top
curve represents the increase in risk in each dutlary following an increase of
10°C in a specific day (forward interpretation), omtiibutions of each past day
with the same temperature increase to the risk ispecific day (backward
interpretation). Note that initial increase in ridle to temperature is up to 5 days
lag period and then increase of longer days la@%fdays or over. We also
observe the overall cumulative association with08Clover 30 days of lag
(summing all the contributions up to maximum laggether with the 95%

confidence interval.
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Lag-Specific Associations at Different Temp., ref.11
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Figure 23: Lag-Specific association at different temperaand lags, ref 1%
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3D Graph of Humidity Effect
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Figure 25: 3D & Contour plot of RR along R.humidity and lagsth ref. at
75.8%

Figure 25 illustrates an overall relationship oélative humidity on

lower respiratory disease admissions. Both higmet lawer humidity show a
shorter lag period effect on the emergency LR asimis. The 3-D graph and
corresponding contour plot of the relative risk [Rong the relative Humidity
and lags compared with a reference value of 75.8k@ws a very strong
immediate effect of the lower relative humidityasbund 40% and a lag period of
0-3 days. Similarly, higher relative humidity (8086 more) also seems to have a
moderate effect on the admissions at short lagpgeri 0-2 days.
Figure 26 shows lag specific associations of different relhumidity

(45, 60, 85, and 95) % ranging from lower to higlvath reference at 75.8%. We
can see that both lower and higher relative humi@i5% and 95%, respectively)

have quicker effect on LR admissions and thus shtat periodsFigure 26 also
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depicts both associations along the predictor ramigéag 0 and lag 15 (left
column) and associations along lag at relative kityn45% and 95%.

The interpretation oFigure 27 is twofold: the first curve represents the
increase in risk in each future day following anre@ase of 20% relative humidity
in a specific day (forward interpretation), or adlmiitions of each past day with
the same relative humidity increase to the riskairspecific day (backward
interpretation). We can see the initial increaseisk due to relative humidity is
up to 3 days lag period. We also observe the dvewatulative association with a
20% increase of relative humidity over 10 days afi [(summing all the
contributions up to maximum lag), together with #%%6 confidence interval. We
can see that cumulative association of relativeilitynhas a longer term effect of

up to 10 days.
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Figure 26: Lag-specific association at different R.humidibddags, ref 75.8%
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7.3 Results of the final model

3D Graph of PM10 Effect
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7.3 Results of the final model

Association with a 10-unit increase in Mean PM10
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Figure 30: Specific and cumulative association of a 10 uritease in PM10.

The higherPM10 shows both longer and shorter lag effects on the
emergency LR hospital admissions. The 3-D graph @vdesponding contour
plot (Figure 28) of the relative risk (RR) along P&and lags compared with a
reference value of 28pghnillustrates a strong effect of higher PM10 arod
pg/nt or higher, and longer lag period of 15-20 daysalko shows some
immediate short-term effects of 0-3 days lag peridowever, the effect related to
the longer lag period of 15-20 days of 70-pug6n more PM10 is comparatively
solid (stronger).

Figure 29 (first) illustrates lag specific associations offetent PM10
values (10, 45, 60, and 70 pdjnmranging from lower to higher PM10, with
reference at 28-pugfinWe can see that higher PM10 (blue line) has werigk

effect on admissions up to 3 days lag and aftersviydger affects up to 15-20
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7.3 Results of the final model

days lag periodFigure 29 (second) also depicts both associations along the
predictor range at lag 10 and lag 25 (left coluran)l associations along lag at
PM10 20 and 70-pg/fnThe interpretation dfigure 30is twofold: the first curve
represents the increase in risk in each future fddgwing an increase of 10-
pg/nt PM10 in a specific day (forward interpretationy, amntributions of each
past day with the same PM10 increase to the ris& specific day (backward
interpretation). We also observe the overall cumwdaassociation with a 10-
pg/nt PM10 over 30 days of lag (summing all the contiitng up to maximum

lag), together with the 95% confidence interval.

3D Graph of Wind Effect

Contour Plot RR
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Figure 31: 3D & Contour plot of RR along wind speed and lagish ref. at 7.7
knots

The relative risk (RR) alongvind speed and lags compared with a
reference value of 7.7 knots, illustrates a strefigct of wind speed around 25

knots or higher, and longer lag period of 8-15 datsthe same time, it shows
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7.3 Results of the final model

moderate effect for a shorter lag period of 0-3 sd&yr lower wind speed
(approximately 2 knots). This is shown in the 3-agh and the corresponding
contour plot of wind speed Figure 31

Figure 32 (first) illustrates lag specific associations offetent Wind
Speed values (0.5, 4.5, 15.5, and 24.5) knots mgnigom lower to higher Wind
Speed, with reference at 7.7 knots. We can seeldkatr wind speed shows
moderate effect for shorter day’s lag of 0-3 daysHigher wind speed (blue line)
has delayed effect on admissions up to 8-12 daysHaure 32 (second) also
illustrates both associations along the predicnoge at lag 0 and lag 15 (la wind
speed) and associations along lag at Wind speeédaind 24.5 knots.

The interpretation oFigure 33 is twofold: the first curve represents the
increase in risk in each future day following acrease of 10 knots of Wind
Speed in a specific day (forward interpretatiom)contributions of each past day
with the same Wind Speed increase to the risk ispecific day (backward
interpretation). We also observe the overall cumivdaassociation with a 10-
knots over 20 days of lag (summing all the contitns up to maximum lag),

together with the 95% confidence interval.
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7.3 Results of the final model

Lag-specific Associations at Different Wind, Ref. 7.7
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Figure 32: Lag-Specific association at different wind speed kgs, ref 7.7 knots
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7.3 Results of the final model

The predictor and lag specific illustrations foe thelationships oun
hours can be found ifrigure 34 throughFigure 36. The 3D relationships of Sun
Hours and its lag with the emergency LR diseaseisgioms is described in
Figure 34, followed by lag-predictor specific relationshipsFigure 35 and the
specific and cumulative associations of the effgich 1-hour increase of Sun
Hours in admissions ifrigure 36. These results are based on considering the
reference sun hours as 4.4 hours. We can obsestrersger effect of sun hours
around 14 hours or more having a longer lag peoiotl>-20 days and moderate
effect between 1-2 hours of 5-12 days lag.

Similarly, we can also see the images of the mhatiips ofrain in 3-D
and Contour plots irFigure 37, Lag and predictor specific iRigure 38 and
finally the specific and cumulative associationR&in and admissions irigure
39. The reference value of rain is 8.8 mm. We cantlsaehigher amount of rain
of 30mm or more has a stronger effect on emergémtyhospital admissions,
especially for the shorter lag of 0-2 days and é&ntag of 7-10 days. The

summary of the results from the final model is diésd inTable 19
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7.3 Results of the final model

3D Graph of Sunhours Effect
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7.3 Results of the final model

Association with a 1 hour increase in Mean Sunhours
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Figure 36: Specific and cumulative association of a 1-hoarease in sun-hours.
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Figure 37: 3D & Contour plot of RR along rain and lags, wié. at 1.8 mm
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7.3 Results of the final model

Lag Specific Associations At Different Rain, Ref. 1.8
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7.4 Model comparison

Table 19 Climate threshold from the final model

High or Low _ Strong or
Factors _ Lag period
(daily average) moderate
High (=27°C) 0-2 days Strong
Temperature Low (<0°C) 5-25 days Moderate
Relative High (= 40%) 0-2 days Moderate
Humidity Low (< 40%) 0-3 days Strong
. High (=70-pg/m) 0-3 days Strong
PM10 _
High (=70-pg/m) 15-20 days Moderate
.. | High (=25 knots) 8-15 days Moderate
Wind Speed
Low (< 2 knots) 0-3 days Strong
High ((= 14 hours) 15-20 days Strong
Sun Hours-
Low (1-2 hours) 5-12 days Moderate
Rain™ High (=30mm) 0-2 days or 8-10 days Strong
ain
Low (20-25 mm) | 0-2 days or 8-10 days Moderare

Statistically significant at 0.1 %(***), 1 %(**), 86(*), 10%()

We also calculated similar type of relations fohest climate and
pollution variables but not describe here sincesigoificant relations were found

with emergency LR disease admission coun#ble 16).

7.4  Model comparison

We compared the models based on the modified AlkaikieBayesian information
criteria for models with over dispersed responssdf through quasi likelihood

(Hastie and Tibshirani 1990; Wood 2006), given by:

QAIC = —2L(0) + 2k

and QBIC = —2L(0) + log(n)dk

162

(6.22)



7.4 Model comparison

Where L is the log-likelihood of the fitted model with ganetersd and ¢ the
estimated overdispersion parameter, whergasand n are the number of
parameters and the number of observations, respBctiThe best model is

chosen that minimises the above criteria.

Table 20: Model comparison results

Model Nagelke | Improved
Models Model Form QAIC | QBIC | rke R- (YES/
Name
squared No)
Count ~ Temp +
Modell | "o ain + wind +
(Originall Sunhours +
yModel | [ g7 | GLM | 42166 42468 0.591407
13 of Y 34 | 712 3
Table 14 Pressure +
Ozone + PM10
Count ~ (All the
variables in the
Model2 | above model in| DLNM 33997 37991 0.967420 Yes
: .68 .16 9
cross-basis form
for DLNM)
Model 2 above
Model3 | + Time (natural | DLNM 31845| 36075| 0.983334 Ves
- 22 .62 5
smoothing)
Model 2 above
+ Time (natural
Model4 smoothing) + | DLNM 30318| 33933 0.989079 Yes
.68 .83 1
Day of the
week

From the model comparison results presentéelhivie 20, the Distributed
lag non-linear model with the variables: daily mdamp, daily mean rainfall,
daily wind speed, daily sun hours, daily relativartidity, daily pressure, daily
Ozone, daily PM10, time, and ‘day of the week’ gagehe best fit (lowest QAIC
and QBIC) for lower respiratory disease countdm&reater London for the year
2000-2009. All the models iifable 20 are compared based on the results of

modified Akaike information criteria (QAIC), mod&d Bayesian information
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7.5 Chapter summary

criteria (QBIC) and Nagelkerke R-squared. The Neagréle R-squared of the final
model (model 4 inTable 20 is 0.989079 which is a very good indication for
goodness of fit. This means that 98.91% of theatiam in the response variable
(emergency LR admissions counts) can be explaigatidoexplanatory variables
(the variables in the final model). The remaining% can be attributed to

unknown, inherent variability.

7.5 Chapter summary

In summary, we can conclude that the idea of gted Lag non-linear model,
i.e. considering both the current and delayed immdicthe predictors on the
response variable improves the fit of the data dtarally. For example, we found
that the final DLNM model gives the best resultsading to the Nagelkerke R-
squared measurement. And Temperature, Rain, Wieed&Bun Hours, Relative
Humidity, and PM10 have significant impact on lowesspiratory disease
admission count with some delayed effects (shaerlonger). Thus DLNM also
provides new insights about the coverage of thestagcture and lag period. For
example, one observes that higher temperature hasnmediate effect on

admissions during the summer, whereas in the wiptaiod, due to lower

temperature, it shows longer lag effects of up @ days. The next chapter

concludes the thesis and summarises our thougttscape for future works.
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Chapter 8

Conclusion and further works

8.1 Summary and conclusions

This thesis, for the first time, focused on theagled effect of both meteorological
and pollution variables on hospital admissions. Wensidered hospital
admissions for lower respiratory diseases sincditérature review revealed it as
the most climate affected disease category. Thidysis also specific in terms of
using Hospital Episode Statistics (HES) and Londain Quality Network
(LAQN) data for Greater London and linking themoime common platform. The
main motivation of this research has been the dgweént of statistical models to
capture delayed and non-linear effects of climatk @ollution variables.

Towards achieving the general and specific objestiof the thesis
(section 1.2 and 1.3), we first started a systemaview to explore the current
and recent studies and related gaps in the reseérdimate change and health.
The review illustrated some crucial concerns aseaech gaps in this area.

We linked three administrative data sets: HES, oretegical, and air
pollutants into one platform. We observed the tsswf some case studies
(Section 5.5). There we found that considering daiperature in the model is
not enough for better model fits and more climatetdrs along with their delayed

effects might provide better modelling results.deal with the research gaps and



input from the systematic review, we proceededt fioy employing the
generalized linear model to select the statisicalgnificant factors of climate
and pollutants on health exposures (section 5.6¢ GLM showed statistically
significant relationships of daily mean temperatuend speed, sun hours,
relative humidity, and pressure, and pollution ables: Ozone and PM10 on the
daily emergency lower respiratory hospital admissidHowever, judging by the
generalized R statistics the model fit was poor, even though thedel
diagnostics results were reasonable.

We performed an exploratory data analysis to chieeloverall trends and
seasonality of the climate and pollution varialfesction 5.6.1 and section 7.2).
Most of the variables seem to have non-linear icriahips with emergency LR
disease admissions counts. Quadratic and cubicldrerere apparent between
some of the factors and the admission counts irexipéoratory data analysis. To
capture the variations of such non-linear trends the assumed delayed impact
of the climate and pollution variables, we devetbpghe final DLNM model
(section 6.3.5) with the same variables that enteage significant in the GLM
(section 5.6). This new approach enabled us tdaaokimportant gap in research
related to non-linearity and the delayed effectlohate factors on health. All the
climate and pollution factors showed various detagéfects on LR emergency
hospital admissions and the B-Spline was the miastsfble smoothing function
(Table 18. From the results of the final moddlable 19andTable 20, we can
conclude that if we have days with high temperat(z€7°C), low relative

humidity (€ 40%), High Pm10 levelX70-pg/n?), low wind speed< 2 knots),
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and High rainfall £30mm), we can expect a significantly higher numbegr
emergency lower respiratory hospital admissiorthénnext 2/3 days.
In the following sections, we summarised the im@airtconclusions

resulted from this thesis, followed by future direns of this research.

8.1.1 Conclusion-1: A systematic review of impact of clirate

change

Temperature is the most influential climate factor amongst all the variables in
climate health studies. Index of climate factors in model fitting provides a better
estimate than modelling with same climate factor separately. The non-linear
relationships between climate and health, their delayed effect, and precise lag
structure should be considered in climate research for efficient modelling to
enable key decision makers develop a robust, reliable and an accurate health
alert system. Elderly and children are the highest vulnerable group due to climate

change.

In the systematic review, we explored papers phetisafter the year 2000 where
there main focus was on climate and pollutionsdiagtdisease categories, and
statistical methodologies applied in climate chaagd health. Temperature was
found to be the most influential climate factorsind/speed, humidity, rainfall,

and pollution factors like PM10, ozone were alsedus recent studies. They
showed compounded effects on a number of diseasernas. Index of climate

and pollution are very useful factors. An indexaxtors has a stronger statistical

significance on health than the same factors usedrately. Other factors have
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also been considered, such as socioeconomic andgiapiic factors, latitude-
longitude, seasonality, race, and culture. Theeespatial, and disease diversities
in the impacts of climate change and the factordimate health research should
be specific to regions and diseases. Elderly, mnldand patients of respiratory
and cardiovascular diseases are the main risk gralye to climate change.
COPD, asthma, stroke are also very frequent. Sortielea in the literature
review described the relationships between clinfat#ors and its impact on
health as non-linear, and argued for considering-lmearity for model
optimisation. Delayed effects in climate and patlat research have seen
considerable attention simply because of its immactmodel fit, and thus lag
period and thresholds need to be estimated acturatey structures of factors
are very crucial to capture both the delayed edfentd non-linearity, and an
efficient climate threshold can lead to an improvezhlth alert system. Higher
temperature tends to have quicker lag effect aocelversa.

Threshold need to be specific to climate zone aselade. The impact of
climate change is quite vast covering all sortsdidciplines like ecology,
mathematics economics, hydrology, and so on. Tlngs rhathematical and
statistical modelling approaches and related objestin different areas are quite
diverse. Unfortunately, the ability to make genisedlons of most of the existing
methodologies is very limited across time, regemd populations. There is a dire
need for reliable and accurate models to captwgaentipact of climate change on

health more precisely.
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8.1.2 Conclusion-2: Administrative data in climate change

research

So far there has never been an attempt to link the three data sets (HES, climate
data, LAQN pollution data) to evaluate the impact of climate change and

pollution on hospital admissions.

Now-a-days, administrative health care databasssakentral role in measuring
the exposures of health, disease, and thus evatuafihealthcare systems. Key
decision makers within public and private orgamnse have noticed that
priceless information are embedded in routinelyeodéd data, such as HES for
informed decision making purposes. Data aggregatmh linkage are important
steps towards improving the quality of care, expldisease epidemiology, and
monitor the system changes (Miriovsky, Shulman let2812) and (Barbieri,
Grieco et al. 2010).

We aggregated three administrative datasets bas#teadate of hospital
admissions and the first three characters of eatierd’s postcode. To the best of
our knowledge, this is the first time HES has blkeked to climate and pollution
factors in England. It has given us the opportutotyneasure the impact of both
climate variables and pollutants on hospital adimimss This gives us the
opportunity to measure the impact for a wide raofydisease categories, which
could further be investigated based on regionaktian, patient types, severity,
and many more. To deal with the missing valuehédata aggregation, we used
mean imputation (for pollution factors) and AIRGEN#gorithm (for climate

factors) for better representations of the origaeh.
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8.1.3 Conclusion-3: Results from Generalized linear model

Climate change showed a compound effect on hospital admissions. Besides
temperature other factors like humidity, wind speed, sun hours, rain, and Pm10
also have significant impact on the emergency lower respiratory hospital
admissions.
We developed the GLM model using the climate vaesib daily mean
temperature, wind speed, sun hours, relative hiynidnd pressure, and pollution
variables: Ozone and PM10. We used ANOVA, QAIC, @RlC to select the
variables in the final model and calculated thearare inflation factor for all the
variables to check for multicollinearity. As a résuadiation was removed from
the model. According to our results temperature@dwspeed, sun hours, relative
humidity, rainfall, and PM10 were statistically asgted with lower respiratory
emergency hospital admissions. Interestintgynperature, rain, andsun hours
showednegative relationships with the daily admissionantpwhereaselative
humidity, wind speed, and PM10 had a positive relationship. For example,
keeping all other variables (e.g., rainfall, huryijiifixed, a unit {C) increase in
the mean temperature will increase the daily enmengé&R admissions count by
0.9881950 (thus decrease since less than 1). Mdisant effects of the changes
in pressureandozonewere found on the emergency LR hospital admissions
The Nagelkerke R-squared for the final GLM mode0is914073. This
means that 59.14% variation of the lower respisatarspital admissions can be
explained by the considered explanatory variabtethé final GLM model. The
model diagnostics check (residual plots, secti@) Eesults showed that the final

GLM model fitted the data reasonably well.
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8.1.4 Conclusion-4: Results from the final DLNM

The performance of the model fits reveals a significant improvement after
considering the relationships between climate-pollution factors and health as
non-linear and existence of their delayed effects. Almost all the factors (related to
climate or pollution) showed their respective delayed effects and non-linearity on

the emergency hospital admissions.

We performed an exploratory data analysis to chiek overall trends and
seasonality of the climate and pollution variab/snost all the variables seem to
have non-linear relationships with emergency LR iadions counts. Most of the
variables had either a quadratic or cubic trench vdiaily emergency hospital
admissions. To capture the variations of such ot trends and the delayed
impact of the climate and pollution variables, veveloped the DLNM model by
using daily mean temperature, daily rain, wind spesun hours, relative
humidity, pressure, ozone, PM10 along with ‘timahd ‘day of the week’. To
smooth the non-linearity, we used the B-Spline dmag for most of the
variables because of its data driven charactesistiter the boundary knots. We
illustrated the delayed effect of respective faxtand lag period. For instance, for
days above 3T, we found a quicker but most eminent lag peribé-a days and
long term moderate effect of 0-15 days. Lower terajpees (BC or less) exposed
a mild lag period of 5-25 days. Both higher anddovwhumidity showed a strong
immediate effect or shorter lag period of 0-3 dastspnger for lower humidity.
Higher PM10 (70-pg/thor more) showed a strong effect of 15-20 daygkxipd

compared to the mean reference value of 28figlime relative risk (RR) along
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wind speed and lags compared with a reference \@lue7 knots, illustrates a
strong effect of wind speed around 25 knots ohéigand longer lag period of 8-
15 days. We noticed stronger effect of sun houwssrad 14 hours or more with a
lag period of 15-20 days, compared to the referesurehours of 4.4 hours. We
also observed that higher daily rainfall (e.g., 8wr more) has a stronger effect
on emergency LR hospital admissions, especiallytifershorter lag of 0-2 days

and longer lag of 7-10 days

8.2 Implications of the research findings

This research has tackled some of the researchidapsfied in the systematic
review of the literature. First of all, the outcomwiethe research may enhance our
understanding of the relationships between the gihgnclimate and disease
epidemiology. This will increase our level of colmasness about climate change
in scientific research and daily life, which willtimately influence our actions
towards human induced climate change.

The idea of considering all the significant climatgiables in addition to
temperature, their non-linearity, and delayed e¢$fexan be helpful for policy
makers. Hospital managers and commissioners coabsilly develop their
models to predict emergency admissions for a walwe of disease categories
and age group after a sudden change in climabee get a better predictive power
of the model. Thus, it can improve the understagdinfuture patient flow related
to climate change and help revise seasonal hospéadands. They can also
improve patient flow management and review poli¢ceesope with the changing

climate. For the same reason, it would be easyetecsthe most vulnerable
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population or disease groups due to climate champes will also give the
opportunity to maintain a proactive special caretti@se groups.

A better health alert system specifically for vubide and elderly people
is indispensable due to changing climate for bétéaith care management (IPCC
2007). However, almost all the health alert systames based on temperature.
Such system has thus become very fragile, sinca dlstors like humidity, wind
speed also has compounded impact on health anaksdi$equency. Based on the
non-linear model developed in this study, we cadoutate regional and disease
specific thresholds which can lead towards an iefiicand robust health alert

system.

8.3 Recommendations and future works
The final model in this study has been developedpecific disease admissions,
area, and time period. However, it can be appliad extended in various

directions irrespective of time, place, and people.

8.3.1 Disease specific climate threshold and lag periodoif

hospital admissions

This thesis provides the opportunity to calculate tclimate threshold for
emergency hospital admissions. It is very importanknow the threshold level
for various climate factors for different diseasgoomes. Such threshold will be
helpful for policymakers to regulate a “tolerabl@hount of climate change for

specific disease outcome. Literature review shohea tmost of the climate
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effected disease categories exposed to seasonalyl the climate zones and

population. Hospital admissions are also prone&sgnality.

8.3.2 Spatio-temporal modelling with disease specific lag

structure and climate threshold

Quantitative description of the space-time effeetween climate change and
health will enrich the practical implications fdret development of a better early
warning system. Spatio-temporal modelling is a paputechnique in
environmental sciences. Identifying spatial hot tspased on an efficient
threshold climate and temporal changes of the himfdswould be a crucial
advancement for determining the most vulnerableasa@nd population due to
climate change. This will eventually lead towardsligersified health warning
system, specific to homogeneous climate zone apdlgon. The study in this
thesis can also be extended towards a spatio-tainppproach based on lag
structure and threshold climate. We have acceséinmte data provided by the
met office for other regions, such as Greater Mastdr, Kent, West Sussex,

Devon, Dorset, Somerset, and Tyne & Wear.

8.3.3 Extending the DLNM-1

The distributed lag non-linear model developed hereased on the time series
design. Theoretically the concept can be extendeathier frameworks, such as
any family of distribution and link function withithe generalized linear model,

with extensions to the generalized additive modehodels based on generalized
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estimating equations. All these theoretical exmmsican be tested under the

context of climate change and health.

8.3.4 Extending the DLNM-2

The considerations of higher order interactionmtefe.g. temperature*PM10) is
important to further improvement of the DLNM mod#i. addition to this, it is
important to check how DLNM model deal with ser@altocorrelation between
different lags and possibilities of biases in thedel because of such serial
autocorrelations. Thus we wish to check the felsitaf improving the model by
incorporating higher order interactions terms amdimg exploratory variables
(e.g. climate or air pollution factors) and chegkpossible biasness due to serial

autocorrelations.

8.4 Limitations

The lack of quality data aggregated to appropt&tels linked to other sources is
one of the toughest challenges in climate changeareh not mention other
challenges such as missing data. Misclassificatmeasurement errors, and
sampling & non-sampling error of the data are alsry common in the applied
field (e.g., categorising the disease based oilGbe reporting errors).

Besides, data seem to have in various levels avtdlgmatic to aggregate
them in more specific and lower level. For examjpbepur cases we are using
patient level hospital admissions data and misiegower level GP data. So in
that sense, we are missing the very primary effectases due to changing

climate. Linking such different administrative dagets (e.g., HES, GP, and
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climate data) are very demanding but challengindetal with. This is also true if
we want to consider the variables related to s@cimemic and demographics of
climate vulnerable people in all stages.

Lack of connections between GP and hospital adorisdata means we
are missing the part of affected population thaited to GP but not critical
enough to admit to Hospitals. However, the goodssathat the commissioners
and policymakers have decided to link general pracinformation with

secondary care data in NHS England (Davies 2013&nafl 2013).
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