
Building Science Gateways for Analysing Molecular
Docking Results Using a Generic Framework
and Methodology

Damjan Temelkovski & Tamas Kiss & Gabor
Terstyanszky & Pamela Greenwell

Received: 13 May 2019 /Accepted: 22 June 2020
The Author(s) 2020

Abstract Molecular docking and virtual screening ex-
periments require large computational and data re-
sources and high-level user interfaces in the form of
science gateways. While science gateways supporting
such experiments are relatively common, there is a
clearly identified need to design and implement more
complex environments for further analysis of docking
results. This paper describes a generic framework and a
related methodology that supports the efficient develop-
ment of such environments. The framework is modular
enabling the reuse of already existing components. The
methodology, which proposes three techniques that the
development team can use, is agile and encourages
active participation of end-users. Based on the frame-
work and methodology, two prototype implementations
of science-gateway-based docking environments are
presented and evaluated. The first system recommends
a receptor-ligand pair for the next docking experiment,

and the second filters docking results based on ligand
properties.

Keywords Bioinformatics .Molecular docking .

Science gateway . Virtual screening . Distributed
computing infrastructure . Cloud computing

1 Introduction

Molecular docking (often simply “docking”) is a com-
putational simulation that models biochemical interac-
tions to predict where and how two molecules would
bind. A molecule is the smallest group of atoms that
retain uniform biochemical properties. This paper focus-
es on two types of molecules: ligands - small molecules
that can bind to other molecules, and receptors - large
molecules that cause a biological change in a cell when a
ligand is bound to them. Receptors are often proteins:
polypeptides responsible for most functional and struc-
tural features in living organisms, made of a sequence of
amino acids [1].

Large-scale docking simulations are used in areas
such as drug discovery where they can decrease the
amount of laboratory (wet-lab) experiments required to
obtain a molecule that is a candidate drug. Large-scale
docking of many ligands and one receptor is called
virtual screening (VS). A typical VS experiment com-
bines hundreds of thousands of docking simulations and
is very computationally demanding, requiring the use of
Distributed Computing Infrastructures (DCIs). Utilising
and accessing such computational resources add an

J Grid Computing
https://doi.org/10.1007/s10723-020-09529-9

D. Temelkovski (*) : T. Kiss :G. Terstyanszky :
P. Greenwell
University of Westminster, 115 New Cavendish Street,
London W1W 6UW, UK
e-mail: damjan.temelkovski@my.westminster.ac.uk

T. Kiss
e-mail: t.kiss@westminster.ac.uk

G. Terstyanszky
e-mail: g.terstyanszky@westminster.ac.uk

P. Greenwell
e-mail: p.greenwell@westminster.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-020-09529-9&domain=pdf
http://orcid.org/0000-0002-4499-0080

extra level of complexity to this task, making it increas-
ingly difficult for biomedical scientists. Science gate-
ways are widely used in this area to help bridge this gap.
However, there is still a need for more complex envi-
ronments that enable scientists to access a wide range of
computing, data and network resources for the further
analysis of docking results. These environments must
enable scenarios where intelligent support can be pro-
vided for more efficient analysis of results of large-scale
docking experiments.

This paper investigates such scenarios and proposes a
generic conceptual framework and a related methodol-
ogy that uses regular input from scientists to support the
development of complex science-gateway-based envi-
ronments for the storage, analysis and reuse of molecu-
lar docking results. Further introduction to this topic and
a detailed problem statement can also be found in our
previous work [2].

The proposed generic conceptual framework has
been developed considering requirements collected
from semi-structured interviews with biomedical scien-
tists and a literature review of 14 related projects, listed
in Section 2. From this generic framework, specific
architectures can be derived supporting various
molecular-docking-related analytical scenarios, as
shown in Section 3. A software development method-
ology which supports creating software systems that use
this framework is explained in Section 4. The method-
ology provides three techniques that can help the soft-
ware development team determine which specific ele-
ments can be used in a scenario. In Section 5, the
detailed design of two scenarios, based on the frame-
work and methodology are presented followed by their
implementation. This illustrates the utilisation of the
three suggested techniques, and the benefits provided
for the software developers, the primary beneficiaries.
Usability tests in Section 6 broadly examine benefits of
these implementations for the end-user, the biomedical
scientist. Finally, Section 7 concludes the paper and
outlines future work.

2 Related Work

The pioneering docking tool, called DOCK [3], was first
published in the 1980s and considered both ligands and
proteins as rigid molecules. One of its latest versions,
DOCK6 [4], considers the flexibility of molecules too.
Today there are over 50 available docking tools [5].

Proprietary docking tools such as GOLD [6] or FlexX
[7] are an option, but AutoDock [8] is reportedly the
most popular docking tool based on number of citations
[9]. An updated algorithm called AutoDock Vina [10] is
known to be faster and more accurate in certain cases
[11]. In order to conduct a VS simulation, the user can
write a custom script to run a docking tool multiple
times. Alternatively, a VS tool with a graphical user
interface (GUI) can also be used. For instance, Rac-
coon2 [12] is a desktop application for running VS
simulations using AutoDock Vina. It provides a server
connection manager for submitting jobs to a High-
Performance Computing (HPC) cluster directly from
the Raccoon2 GUI. Raccoon2 supports only clusters
with the Portable Batch System (PBS) or Sun Grid
Engine (SGE) schedulers.

While docking is used to estimate the binding affinity
between a ligand and receptor, structural alignment is
used to find similar receptors based on their structure
(the three-dimensional position of atoms). Receptors
can be compared by using their amino acid sequences
in what is known as sequence alignment, but to under-
stand its function or mechanisms of action, one needs to
compare their three-dimensional structure. Based on
available publications, it has been estimated that the
number of new structural alignment tools doubles every
5 years [13]. The number of available structural align-
ment tools is over 100 [13–15]. The first major structural
alignment tools started appearing in the 1990s with
examples such as DALI [16] and CE [17]. A more
recent tool that was top-ranked at the Critical Assess-
ment of protein Structure Prediction (CASP) competi-
tions CASP12 and CASP13, is RaptorX Structure
Alignment server which uses the standalone tool
DeepAlign [18].

Given the vast number of docking or structural align-
ment tools to choose from, a modular component-based
approach to developing software environments can be
beneficial. In such an approach, a component is imple-
mented using interfaces and a core unit. If the interfaces
are compatible, the core unit may be seamlessly re-
placed. Furthermore, instead of designing and coding
the environment from scratch, a component-based ap-
proach would focus on assembling and reusing compo-
nents. Component-based software environments can be
modelled using the standardised Component Diagram in
Unified Modeling Language (UML) 2 [19]. This en-
ables a high-level graphical model that documents the
details of the environment, such as the components,

D. Temelkovski et al.

their interfaces, and their interactions. Areas such as
systems engineering can benefit from domain-specific
modelling languages including sysML [20] or EAST-
ADL [21]. Other methods that can be used to model
component-based software environments rely on textual
representation of formulas known as formal languages.
Examples include the Vienna Definition Language
(VDL) [22], Alloy [23] or Z notation [24]. A state-
based formal language inspired by mathematical set
theory, Z notation allows grouping of formal rules in
“schemas” that can contain state variables while logical
and discrete mathematics expressions describe systems
using mathematical conventions.

In conjunction with component-based approaches,
environments that use molecular docking simulations
are often developed as scientific workflows. Scientific
workflow management systems enable users to run
simulations on DCIs without any low-level program-
ming, by merely specifying a workflow graph (where
each node contains an executable, input, and output
ports, and can be connected to other workflow nodes),
and utilising built-in connectors to various DCIs. Scien-
tific workflow engines that have been used for bioinfor-
matics simulations such as VS include Kepler [25],
Nextflow [26], Taverna [27], and WS-PGRADE/gUSE
[28]. Workflows can be created graphically by drawing
the nodes and edges, or textually by writing workflow
description code. A workflow can be reused as a node in
another workflow, i.e. it can be a sub-workflow.

Existing environments for VS can be divided into VS
pipelines which contain a set of scripts or tools to be
used in a particular order, and workflow-based docking
systems which automate the preparation, execution, and
analysis of docking experiments using scientific
workflows.

In a specific example [29], a pipeline has been used
to explore the off-target activity of the drug Nelfinavir
using reverse docking (many receptors, one ligand) as
well as rescoring (reanalysis of top scored ligands using
molecular mechanics methods). Other drug discovery
pipelines composed of docking and rescoring, such as
[30], have been run on HPC clusters. Clusters have also
been used to run VS pipelines composed of a set of Perl
scripts in [31, 32]. In the former, top-ranking results of
the docking are stored in the file system, while the latter
includes a MySQL database for storing input and output
files. Clusters are also used as part of the web solution in
[33]. Cloud computing has also been used for docking
simulations in [34], where a small desktop application

has been developed to submit jobs on the cloud. Glaab
[35] provides a review of current open-source programs
that can be used in a VS pipeline, split into different
elements, along with a rudimentary Docker container
where selected tools are deployed.

One example of a scientific workflow is WS-
PGRADE and the gUSE services [36–38] which have
been used to run docking experiments using various
DCIs, such as clouds [39], grids [40] or HPC clusters
[41]. In the latter example, interviews with one expert
biochemist have been conducted to gather user require-
ments and implement a docking gateway. In all three
examples, the results of the workflows are stored as part
of the workflow management system, without additional
metadata. On the other hand, in [42], a specific XML-
based format has been created in order to store metadata
about the execution, input, and output from three different
molecular simulation domains, including docking. The
workflows themselves can be stored in workflow repos-
itories, such as myExperiment [43], or SHIWA [44].

Additionally, there are many similar systems that
implement bioinformatic simulations that are different
from docking. In one example [45], a pipeline featuring
multiple bioinformatic steps including prediction of a
template ligand that would bind to a target receptor and
searching for similar ligands is presented. This pipeline
includes additional steps to combine and rank the results
of the ligand similarity. Several other examples create
portal-based systems for related analysis. For instance, a
large system with 19 domains, including receptor-
receptor docking (which is different from receptor-
ligand docking) [46]. Smaller scale portals focus on
one domain, such as [47], which focuses on molecular
dynamics. Finally, many portals for bioinformatics use
workflow-based technologies, such as the proteomics
data analysis portal shown in [48].

As shown in Table 1, some of the systems listed
above do not store the simulation results and are mainly
useful to provide the results directly to the user [35, 45].
Others store the results, but do not provide any addi-
tional analysis methods [33, 34, 36, 46, 47]. The re-
maining examples [29–32, 40, 42, 48] support addition-
al analysis of the user’s own simulation results only, and
do not provide the functionality to analyse results pro-
duced by other users.

In this paper, we have gathered the specific types of
components used in these 14 existing systems, as well as
novel systems proposed through a series of interviews
with five domain experts, in order to create a generic

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

conceptual framework for systems that store docking
results and provide additional analysis methods. The
aim was to formalise and speed up the development of
such environments. To the best of our knowledge, when
developing the systems shown in this section, software
engineers used general software development method-
ologies which do not allow systematic analysis and
reuse of existing building blocks. The methodology
presented in this paper provides a formal manner of
selecting components and determining whether they
can be reused or whether a new component is suitable
for the intended purpose.

3 Generic Framework for the Analysis of Molecular
Docking Results

The aim of the presented research was to identify po-
tential similarities in the work of biomedical scientists
working with molecular docking experiments, and to
investigate whether a generic framework for such appli-
cation scenarios can be defined. The assumption was
that based on this generic framework the development
of specific science-gateway-based environments

supporting various molecular docking scenarios and
the analysis of results can be formalized and speeded up.

In order to identify typical user requirements, several
interviews with five scientists from different back-
grounds and with various degrees of experience with
molecular docking simulations were conducted. This
number of London-based interviewees was useful in
producing several conclusions. The interviews aimed
at identifying requirements of the scientists when
performing molecular docking experiments and speci-
fying scenarios that are not supported by currently
available science gateways for molecular docking.
These scenarios typically represent software systems
that make a decision based on the docking results,
mimicking the steps that a scientist needs to take after
obtaining the results. Some representative and identified
scenarios are listed below:

Scenario 1. Suggest a receptor-ligand pair that should
be used in the next molecular docking,
based on receptor similarity and previous
results.

Scenario 2. Filter docking results suitable for wet-lab
experiments, based on ligand properties.

Scenario 3. Find off-target drugs, based on deducing if
the estimated binding is at an active site of
the receptor.

Scenario 4. Enable verification of the docking meth-
odology and learning from previous
docking for novice users.

Scenario 5. Compare results from different molecular
docking tools.

Based on the conceptual similarities of these scenar-
ios and an extended review of literature including the 14
papers referenced in Section 2, a generic framework has
been designed. The design focuses on the similar ele-
ments in the scenarios and includes the following ele-
ment types (Fig. 1):

Molecular Docking Environment (MDE) All scenarios
include an environment where the molecular docking
simulation is executed. It could be as simple as running
a single simulation from the command line on a local
computer, to more complex such as executing a virtual
screening experiment on a DCI. The MDE includes the
software tool used for the docking itself, it may be
connected to a DCI, or include a high-level user
interface.

Table 1 Related existing environments for VS divided according
to type, whether they provide storage for simulation results, and
whether they enable additional analysis of the results

Related system Type Stores
simulation
results

Additional
analysis

Xie et al. [29] VS pipeline Y Y

Zhang et al. [30] VS pipeline Y Y

DOVIS 2.0 [31] VS pipeline Y Y

D’Ursi et al. [32] VS pipeline Y Y

HADDOCK 2.2
[33]

VS pipeline Y

Kiss et al. [34] VS pipeline Y

Glaab [35] VS pipeline

Farkas et al. [36] Workflow-based Y

Kiss et al. [40] Workflow-based Y Y

Jaghoori et al.
[41]

Workflow-based Y

MoSGrid [42] Workflow-based Y Y

Roy et al. [45] Docking-equivalent

WeNMR [46] Docking-equivalent Y

GridMACS [47] Docking-equivalent Y

Kunszt et al. [48] Docking-equivalent Y Y

D. Temelkovski et al.

Molecular Docking Results Repository (MDRR) After
the execution of the molecular docking, the results and
the input files need to be stored because previous
docking results are useful for various scenarios. The
repository shall also store information about the final
decision made in the scenario.

Additional Tool (AT) The results which have been
stored in the MDRR are then processed by an AT. This
is a generic element that describes a tool which takes
data from the MDRR as input and conducts a calcula-
tion. ATs can refer back to other data stored in the
MDRR, communicate with other ATs, or use data stored
in an Additional Data Source.

Additional Data Source (ADS) An ADS, such as an
external database, shall contain data that is relevant for
the final decision but is not docking result data or data
referring to a docking simulation.

Decision Maker (DM) All the information processed
from the different ATs and the ADSs would be passed
to a DM. This element groups and analyses the per-
formed calculations in order to make a decision.

The flow of data through the different element types
is shown by the numbers in Fig. 1. A more detailed view
of the framework consisting of a detailed diagram, a
textual description of elements and interfaces, and a

formal description using Z notation, has been devel-
oped. The framework aims to provide a formalised
way to derive specific scenarios, independent from the
software engineering details of the implementation. The
detailed diagram representing the framework in Figure 2
is a generic model, showing all generic element types
and all possible types of interfaces between them. It is
based on the UML Component Diagram with element
types drawn as components and the types of interfaces
as the typical provided and required interface connec-
tions. Additionally, it features arrows pointing towards
the direction of the flow of data in a particular interface.

The framework features 13 types of interfaces. Each
of these interfaces have been identified and described
with a textual description. Representative examples are
provided here. For example:Interface 3: MDE→
MDRR, provided by the MDE: allows the MDE to send
docking results and additional data.

Interface 4: MDRR → MDE, provided by the
MDRR: allows the MDRR to send analysis results to
the MDE.

Following this, each element and each interface
have been described formally using Z notation. A
representative example of the formal description is
presented here, describing the MDE and its inter-
faces (Fig. 3 and 4). Please note that the complete
description of the generic framework, including

Fig. 1 Basic diagram of the framework - arrows show possible
dataflow connections between element types. A user uploads input
to the MDE (1) and docking data may be sent to the MDRR (2)
which sends this or previous docking data to ATs (3). An ATmay
communicate with other ATs (4) or look up data in an ADS (5). An

ATmay supply its calculation results to the MDRR for storage (6)
and to the DM (7). The MDRRmay receive data from an ADS (8)
and the DM may use data from the MDRR (9) or an ADS (10).
The decision can be passed back to theMDRR for storage (11) and
finally to the MDE (12) which provides visualisation (13)

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

both the textual description and the Z notation can
be found at [49].

The docking process expressed by the MDE needs a
ligand, receptor, and optionally configuration (config)
files as input, and provides a docking result file as
output. The Z notation (Fig. 3) shows that, depending
on the presence of a config file, the functions
dockingWithoutConfig() or dockingWithConfig() will
generate the docking result. They describe that for every
non-empty ligand×receptor pair, there exists a docking
result.

Figure 4 models the MDE and interfaces 1, 2, and 3.
This schema explains that the ligand, receptor, and
config files are expected as input, while the docking
results as well as information about the date are pro-
duced as output. The lower part of Fig. 4 describes the
interface that enables users to view results, as long as
they exist.

The generic framework presented in this section was
described using the basic diagram, the detailed diagram,
the textual description and the Z notation. It will be
shown in Section 5 that this generic framework can be

Fig. 2 Detailed diagram of the
generic framework showing the
location of needed interfaces.
UML notation used as follows:
rectangle with component symbol
signifies “component”, small
square - interaction “port”, stick
with full white circle - “provided
interface”, stick with black
crescent - “required interface”,
arrows show dataflow direction

Fig. 3 Abstract formal description of MDE using Z notation. The
core computation maps the input pair LIGAND-RECEPTOR or
triple LIGAND-RECEPTOR-CONFIG into the docking RESULT
i n t h e f u n c t i o n s d o c k i n gW i t h o u t C o n f i g () a n d
dockingWithConfig() respectively. LIGAND, RECEPTOR,

CONFIG, and RESULT have been defined as Z free types which
describe the docking input/output files as sets of characters. Com-
mon mathematical symbols include: partial injective function (),
input variable (suffix?), and output variable (suffix!)

D. Temelkovski et al.

used to derive and design specific application scenarios
in a systematic and reusable way.

4 Methodology for Developing Environments
for Analysis of Molecular Docking Results

The methodology complements the framework described
in the previous section by explaining how this framework
can be used during development. It clearly states the
required roles (Life Scientist, Bioinformatician, Modeller,
Software Developer, IT Infrastructure Administrator) and
the specific deliverables (Diagram, Textual Description,
Formal Description, Coding) for which these roles need to
collaborate. The methodology is based on the seven prin-
ciples identified by Cockburn [50]. A version of
Cockburn’s role-deliverable-milestone diagram has been
created to represent the methodology (Fig. 5). In this type
of diagram each role is drawn in a separate box along with
a list of all deliverables that are related to that role. On top
of the diagram all the milestones are listed. This provides a
concise way for a person who has been given a role to
view which milestone of which deliverable (s)he is re-
quired to work on. Reading the diagram vertically shows
which roles need towork together to complete amilestone.

Figure 5 illustrates that the Modeller, Life Scientist
and Bioinformatician shall collaborate when creating
the diagram and textual description of the scenario.
Furthermore, the Modeller must collaborate with the
Bioinformatician and the Software Developer when cre-
ating the formal description. Key components of this

diagram, extensions to Cockburn's original diagram, are
the dotted lines which show that the process is agile.
This extension has been included to emphasise the need
for a methodology that enables refinement and focuses
on feedback from different roles. For instance, in the
section where the Life Scientist works on the textual
description (milestone M4 - M5), the dotted line shows
that (s)he may revisit and alter the diagram if necessary.
A key feature of this diagram is that it shows what role is
needed for each deliverable and at which stage of the
project. For instance, it shows that the Life Scientist is
not required to produce the Formal Description. It also
shows that during the coding, the Bioinformatician and
Modeller may need to review the Formal Description.
Finally, it shows that during the coding, the Modeller
should work with the Software Developer to achieve
milestone M11, while the Life Scientist and
Bioinformatician should work with the Software Devel-
oper to achieve milestone M13. The asterisk (*) indi-
cates that a similar but more detailed lower-level dia-
gram of the coding has been developed (not presented in
this paper but available in [49]).

Besides the above diagram, the methodology also
provides three techniques, based on the framework pre-
sented in Section 3. They can be used iteratively by the
software development team during milestones M1-M9
because the diagram, textual, and formal descriptions
are used in the techniques.

Technique 1. The basic diagram of the entire scenario
can be used to determine whether the
scenario fits the framework.

Technique 2. The abstract (diagrammatic, textual, and
formal) description of an element can be
used to determine whether there is a
similar element, already implemented
using the framework, that can be reused.

Technique 3. The abstract (diagrammatic, textual, and
formal) description of a candidate tool
can be used to determine whether this
tool can be applied as an element in a
scenario, by comparing it to the abstract
description of a generic element type.
This technique can be used if, using the
framework, there is no already imple-
mented element that can be reused, but
there is an existing tool that has been
implemented outside the framework
(here called: candidate tool).

Fig. 4 Interface 1 described with Z notation using the input
variables ligands?, receptors?, config?. Interfaces 2 and 3 de-
scribed using the output variables results! and date!, with the
condition that the results cannot be empty. LIGANDS defined as
a set of LIGAND, RECEPTORS as a set of RECEPTOR, RE-
SULTS as a set of RESULT. DATE defined as a set of characters
describing a calendar date. Z symbols include Ξ to indicate no
change of state

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

The application of these techniques will be illustrated
in Section 5 when demonstrating and evaluating the
utilisation and effectiveness of the framework and the
methodology.

5 Evaluation of the Framework and Methodology
Using Selected Scenarios

The evaluation of the framework and the methodology
was divided into two phases. In the first phase, it was
proven that the framework is generic enough to support
at least the five identified scenarios and the 14 related
solutions investigated in Section 2. In order to verify
this, a basic diagram, similar to the ones presented in

Fig. 6 in case of Scenario 1 and Fig. 10 in case of
Scenario 2, has been derived from the basic diagram of
the generic framework (Fig. 1) for each of the 19 (5
scenarios + 14 related work) test cases. As these dia-
grams are based on the basic diagram of the generic
framework and utilise some or all of its element types, it
is reasonable to say that all five scenarios and 14 solu-
tions identified from the literature fit the framework. It is
also noted that, in this step, Technique 1 from the
methodology was applied to identify whether the sce-
narios fit the framework.

In the second phase, in order to demonstrate how the
framework and the methodology support implementing
molecular docking science gateways, we developed an
implementation of Scenarios 1 and 2 following the

Fig. 5 Role-deliverable-milestone diagram of the proposedmeth-
odology. Roles on left, deliverables for each role in grey, mile-
stones shown at top (M1: Diagram start; M2: Diagram ready for
review; M3: Diagram ready; M4: Textual description start; M5:
Textual description ready for review; M6: Textual description

ready; M7: Formal description start; M8: Formal description ready
for review; M9: Formal description ready; M10: Software devel-
opment start; M11: Software developed; M12: Software installed/
deployed; M13: Software tested)

D. Temelkovski et al.

methodology and utilising its three techniques. In the
remaining part of this section these implementations are
detailed highlighting the utilisation of the framework
and the methodology. Extracts of the diagrammatic
descriptions are presented here, while the complete ver-
sion of these descriptions together with the developed
code is available at [49].

5.1 Design and Implementation of Scenario 1

In Scenario 1 the intended system is required to assist
the scientist by searching for good previous docking
results that have used a receptor similar to the currently
used one. Based on this similarity the system shall
suggest a new receptor-ligand pair that would be an
interesting candidate for a future docking run. The
docking results and receptor data stored in the MDRR
could have been produced by the same scientist or other
scientists in the past. Scientists may have used different
MDEs to insert docking results and receptor data in the
MDRR.

As a first step, the basic diagram of the scenario (Fig.
6) has been developed by replacing the building blocks
of the generic framework (Fig. 1) with functional ele-
ments supporting this particular scenario. In this step,
Technique 1 of the methodology has been applied to
assess which components of the generic framework are
required and what their desired functionality is to im-
plement the scenario. If such diagram can be derived,
then the scenario fits the framework. Please note that at

this stage we are not concerned about the actual imple-
mentation of the elements only about their desired
functionality.

Scenario 1 requires anMDE that supports docking or
large-scale VS experiments. The MDRR must store at
least the docking results and data on the receptor used.
Three ATs can be utilised in this scenario. An AT to
calculate similarities between the structure of receptors
known as structural alignment (AT1), an AT to assess
whether the structural alignment result shows that the
two receptors are similar (AT2), and an AT to assess a
docking result and categorise it as good (AT3). Finally,
a DM is needed to summarise the analysis and suggest
which receptor-ligand pair to dock next. When com-
pared to the basic diagram of the generic framework
on Fig. 1, we can state that an ADS is not required in this
scenario. However, all other components of the frame-
work have been utilised and mapped to desired and
appropriate functional elements. The flow of data is
shown in Fig. 6.

Based on the detailed diagram of the generic frame-
work and the basic diagram of the scenario, a detailed
diagram of each scenario can be derived, followed by
textual and formal descriptions of these scenarios. At
this stage, the functional elements of the basic diagram
are replaced by either existing already implemented
components or by custom components that need to be
implemented. This process is conducted iteratively,
utilising Techniques 2 or 3 of the methodology in order
to determine whether an already implemented tool can

Fig. 6 Basic diagram of Scenario
1. User conducts docking (1) and
results may be sent to the MDRR
(2). The MDRR sends receptor
pairs to AT1 (3) which calculates
receptor similarities and sends
results to AT2 for assessment (4).
AT2 sends feedback to the
MDRR (5) and the DM (6). Past
docking results of similar
receptors are assessed by AT3 (7)
and only good results are sent to
the DM (8). The DM combines
results from ATs, suggests a
receptor-ligand pair to dock in the
future, and sends it for storage in
the MDRR (9), which sends it to
the MDE (10) and the user (11)

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

be reused. Technique 2 requires a library of abstract
descriptions of already implemented elements, which

did not exist prior to the design and implementation of
Scenario 1. Section 5.2 shows how this technique can be
used for Scenario 2, while the following paragraphs
show the use of Technique 3.

In Scenario 1, any existing docking tool can be used
as MDE, if it fits the description of element type MDE.
One candidate can be the cloud-enabled version of
Raccoon2, described in detail in our previous paper
[51]. In this solution, WS-PGRADE/gUSE was inte-
grated with Raccoon2 to support large-scale experi-
ments on heterogeneous cloud computing resources.
To determine whether the extended version of Rac-
coon2 can be used, following Technique 3, a diagram-
matic (Fig. 7), textual, and formal (Fig. 8) description of
the tool and its interfaces shall be created. The detailed
diagram of Raccoon2 in Fig. 7 can be derived from the
detailed diagram of the generic element type MDE (top
left in Fig. 2). The core computation that is required
(conduct docking/VS simulations) is achieved by the
Raccoon2 solution. It is evident that the defined types
of interfaces already exist as part of this solution
(marked in black in Fig. 7), but there is a need to further
extend Raccoon2 to include additional interfaces, for
example to facilitate communication with the MDRR
(red in Fig. 7).

The textual description can be derived from the tex-
tual description of the generic interfaces shown in
Section 3 and it includes the interfaces presented in
Fig. 7. Examples of the additional (red) interfaces re-
quired include:

Fig. 7 Extract of the detailed diagram of Scenario 1. Based on the
type of input/output interface 1 is broken down into 1a-e, while
interface 3 into 3a-c. Data from 1a-c is used as input to the
subcomponent responsible for VS, Raccoon2 gUSE. Data from
1d (AutoDock Vina threshold), and 1e (DeepAlign threshold) is
forwarded

Fig. 8 Extract of the formal
description of Scenario 1. A
specific MDE which uses
Raccoon2 and the function
dockingWithConfig() whose main
formula reads: for each non-
empty ligand l and receptor r
received, there exists a non-empty
config c and docking result res,
such that dockingWithConfig(l, r,
c) = res

D. Temelkovski et al.

3a-c. Raccoon2→MDRR, Raccoon2 needs to pro-
vide an interface to the docking results which
may be sent to the MDRR, and the receptor and
user-provided thresholds which shall be sent to
the MDRR.

4. MDRR → Raccoon2, Raccoon2 requires an inter-
face to receive suggested ligand for next docking
from MDRR.

Similarly, a formal description can be used to deduce
whether Raccoon2 can be applied as an element in
Scenario 1. A manual comparison of the formal de-
scriptions which are written using Z notation is needed.
If the formal description of the candidate tool can be
derived from the formal description of the generic ele-
ment type, then this candidate tool can be applied as an
element. Otherwise, it cannot. Figure 8 shows that the
descriptionofRaccoon2usingZnotationisderivedfromthe
description of the generic element typeMDE using Z nota-
tion (Figs. 3 and 4). The definition of dockingWithConfig is
used because docking with Raccoon2 always requires a
config file. Analogously to the Docking and
MolecularDockingEnvironment schemas of Figs. 3 and 4,
theschemaDocking_AutoDockVinacanbe includedwithin
the schemaMolecularDockingEnvironment_Raccoon2.

Using Technique 3, similarly to the process detailed
above in case of the MDE, we have determined that the
existing structural alignment tool DeepAlign can be
used as the element AT1. We have also concluded that
there is a need to develop custom-made tools to be used
as AT2, AT3, DM, and MDDR. Additionally, as spec-
ified in the methodology, life scientists from the Uni-
versity of Westminster (UoW) took part in the develop-
ment process, e.g. when deciding the molecular proper-
ties stored in the MDRR.

Based on the design considerations illustrated
above, we can implement Scenario 1. The diagram-
matic, formal, and textual abstract description of the
elements, as well as the use of the three techniques,
show which specific tools can be used in an imple-
mentation. The framework and methodology are in-
dependent of the programming language or database
technology applied. In our example, Python, and the
micro web-framework Bottle [52] were used to imple-
ment basic RESTful APIs for every element. The
Python module PyBel [53] was used to calculate mo-
lecular properties of ligands and receptors and they
were stored in a MongoDB database as part of the

MDRR. One of the reasons for choosing MongoDB
was its schema-less design which enables using a
single collection to store different formats of data from
the MDE or the ATs.

Figure 9 shows the architecture of this implemen-
tation of Scenario 1. The solid lines represent the
communication between servers through HTTP,
while the dashed lines represent communication be-
tween different objects within one server (e.g. AT1
–>AT2). In this implementation, theMDRR receives
the output from the MDE as an HTTP request (1) and
stores it. Then, all unique receptors in the database
are sent to the AT:DeepAlign along with the target
receptor that was used in the MDE and the user-input
DeepAlign threshold value (2). DeepAlign is run to
find similarities between the target receptor and each
additional receptor it received. The results are sent to
AT:AssessDeepAlign (3) which selects the similar
receptors by comparing the results of DeepAlign to
the user-input threshold and returns it to the DM (4)
which forwards them to the MDRR (7).

In the next step, the MDRR sends previous docking
results that have used a similar receptor to the
AT:AssessDocking, along with the user-input AutoDock
Vina affinity threshold (5). The AT:AssessDocking se-
lects a docking result with affinity lower than this thresh-
old, labels it a good docking result, and returns it to the
DM (6). The DM combines these two lists and returns a
list, sorted firstly based on the DeepAlign result value
then on the affinity, to the MDRR (7) which presents the
results to the MDE (8).

5.2 Design and Implementation of Scenario 2

The design of Scenario 1 illustrated how Tech-
niques 1 and 3 can be applied. To illustrate how
Technique 2 works, the design and implementation
of Scenario 2 is presented here. In Scenario 2, the
user runs a VS experiment, then ligands of good
docking results are filtered based on a property
available in an external ADS. The result is a sub-
list of ligands that are more likely to produce useful
laboratory results.

A basic diagram of Scenario 2 (Fig. 10) can be
derived from the basic diagram of the framework, sim-
ilarly to the process explained in Section 5.1. Thus, we
can conclude that Scenario 2 fits the framework (Tech-
nique 1). To provide a more precise analysis, the de-
tailed diagram for each element and their interfaces can

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

be determined. A list of the interfaces and a formal
description were generated iteratively to confirm that
the selected existing elements can be used in Scenario
2 prior to starting the coding step. The design of Sce-
nario 2 used both Technique 2 and Technique 3 but this
section only focuses on segments that are different from
the design of Scenario 1, and comments on the added
value of implementing Scenario 2.

The MDE from Scenario 1 can be reused with the
only difference that instead of a DeepAlign threshold,
the user now inputs a molecular property name and
threshold. When drawing the detailed diagram of the
needed MDE, it becomes evident that most of the inter-
faces are the same, and the core computation (the
docking) is the same as in the detailed diagram of
Raccoon2 used for Scenario 1. The conclusion is that

Fig. 9 Architecture of implementation of Scenario 1. Grey rect-
angles signify HTTP servers; white blocks signify elements. In this
implementation, the MDRR contains a MongoDB database which

is deployed on a database server, while AT: DeepAlign and AT:
AssessDeepAlign are deployed on the same server

Fig. 10 Basic diagram of
Scenario 2. User conducts
docking (1) and results are sent to
the MDRR (2). TheMDRR sends
docking results to AT1 which
assesses whether the docking is
good and returns feedback to the
MDRR (3) and the DM (4). The
DM combines this with data
about ligand properties from the
ADS (5), sends a decision to the
MDRR (6) which stores it and
sends it to the MDE (7), which
visualises it for the user (8)

D. Temelkovski et al.

the abstract description of Raccoon2 is similar enough
for it to be used as an MDE in Scenario 2. The fact that
the element can be reused is determined by searching a
library of abstract descriptions of already implemented
elements (Technique 2). This library contains only one
MDE, but the same method of drawing the detailed
diagram and comparing the interfaces and the core
computation, can be used to search a larger library.
When writing the formal description of the needed
MDE we noticed that the Z notation is practically the
same as the only Z notation of an MDE currently in the
library. Manually comparing the formal description of
the required element and the element in the library led to
the decision that the MDE in the library can be reused in
Scenario 2.

Technique 2 can also be used to determine which tool
can be applied as AT to assess docking in Scenario 2.
There is a library of three already implemented ATs
from Scenario 1. Their diagrammatic abstract descrip-
tions are shown in Fig. 11b, c, and d. When the AT
required in Scenario 2 (Fig. 11a) is compared to
AT:DeepAlign (Fig. 11b), there is a clear difference in
the interfaces. AT:DeepAlign needs to send the results
and a user-provided threshold to another AT for assess-
ment. Whereas the required AT assesses docking results
and sends them to an MDRR for storage, and a DM for
summarising. When compared to AT:AssessDeepAlign
(Fig. 11c), there are more similarities in the interfaces.
The difference is that AT:AssessDeepAlign requires
input from another AT, whereas the required AT needs
input from anMDRR. However, there is a big difference
in the core computation. While AT:AssessDeepAlign

filters structural alignment results, the required AT
needs to filter docking results. Finally, when comparing
the required ATwith AT:AssessDocking (Fig. 11d), it is
clear that the interfaces are the same (requires input from
MDRR, provides results to MDRR and DM), and the
core computation is the same (assess docking results).
Therefore, AT:AssessDocking can be reused as a build-
ing block of Scenario 2.

Additionally, Scenario 2 demonstrates how a new
element type can be introduced. As it was noted before,
in Scenario 1 there was no ADS. Following Technique 3,
we determined that PubChem [54], a repository that con-
tains data about various properties of chemical com-
pounds, can be used as ADS in Scenario 2. Data stored
in PubChem can be accessed programmatically through
the Power User Gateway (PUG) REST API. Thus, this
existing interface can be used to obtain the needed value
for the molecular property of the ligands, and PubChem
can be used as an ADS. Finally, it can be noted that the
DM is an element that is typically specific to each scenar-
io, due to the inherent difference in the core computation.

This section illustrated the use of Techniques 1, 2,
and 3. Technique 1 uses the basic diagram, while Tech-
niques 2 and 3 use the diagrammatic, textual, and formal
description of elements. In the design of Scenario 2, we
only show the use of the diagrammatic description, but
the textual and formal descriptions can be used
analogously.

Based on the above design of Scenario 2, the code
can be implemented (source code available in [49]). In
the implementation of Scenario 2, similarly to the im-
plementation of Scenario 1, all components are

Fig. 11 Diagrammatic abstract descriptions of the required AT (a)
and the three elements already present in the library of abstract
descriptions (b, c, d). This diagram is used to determine whether

any already implemented elements can be reused – note the
similarities between interfaces and core computation between a
and d

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

accessible via a RESTful API developed using the Bot-
tle web framework (Fig. 12). The docking results are
sent from the MDE to the MDRR (1), which forwards
them to the AT:AssessDocking (2). Filtered good
docking results are returned to the DM (3) which for-
wards them to the MDRR (6). Then a ligand identifier,
known as SMILES code, is selected for each ligand that
was part of docking results that passed the filter. The
MDRR sends these ligand identifiers to the ADS (4)
which checks if a user-input ligand property is above or
below a threshold and returns the result to the DM (5).
Finally, the DM summarises the results and sends them
to the MDRR (6) which sends them to the MDE for
visualisation (7).

One of the aims of implementing Scenario 2 was to
show how an element that was created in an implementa-
tion that has utilised the framework andmethodology, can
be reused. Evidence for this are the elements MDE, the
AT:AssessDocking, and to some extent the MDRR,
which are reused with nearly no alterations. The minor
addition was the change of the user-input threshold values
required in the MDE, while the AT:AssessDocking was
reused without any code changes. Another aim was to
illustrate how an additional element such as ADS can be
included (since an ADS was not present in Scenario 1). It
is demonstrated in Scenario 2 that the external database
PubChem and its interfaces can be applied as ADS.

Therefore, the MDRR would need to be slightly altered
in order to facilitate the communication with PubChem.

6 Usability of Implementations that Utilise
the Framework

Using the framework and methodology provides bene-
fits for software developers by allowing them to deter-
mine the specific tools needed and reusing existing
elements in an efficient way, as shown in Section 5.
This is an alternative to acquiring the domain knowl-
edge to make this determination. Nevertheless, evidence
was still required to demonstrate that the designed and
implemented solutions are useful for the end-users, the
scientists. In order to prove that following such a me-
thodical approach does not produce cumbersome and
less usable systems, we have conducted several usability
tests. This section aims to describe the usability of
solutions implemented with the framework, but not to
quantify of the benefits for the end-user. Completing a
scenario using currently available tools directly (“with-
out” using the framework) was compared to completing
the scenario “with” the implementation that was based
on the framework. The results for Scenario 1, based on
the implementation described in Section 5.1, are pre-
sented in this paper. The focus of the usability tests was

Fig. 12 Architecture of implementation of Scenario 2. Grey rect-
angles signify HTTP servers; white blocks signify elements. In this
implementation, the MDRR contains a MongoDB database which

is deployed on a database server, the AT is deployed on a separate
server, while the ADS is deployed on an existing external server

D. Temelkovski et al.

the additional analysis provided as a result of the sce-
narios, and not the results of the docking simulations
themselves. The docking experiments used the
ribokinase of a protozoan parasite Trichomonas
vaginalis (TV) as a receptor, an adequate config file,
and a set of 10 ligands. The objective was to run this
docking experiment and then suggest a receptor-ligand
pair that should be used in the next molecular docking,
based on receptor similarity and previous docking re-
sults. The usability tests demonstrated that the experi-
ment can be successfully completed with the imple-
mented solution and that it provides significant benefits
to the scientists when compared to manual execution.

As a preparation for the tests, the MDRR needed to be
filled with relevant previous docking results. It was re-
quired that the previous docking results include at least
one receptor that is similar to our target receptor and has a
good docking stored in the MDRR. Therefore, a large
number of docking simulations were conducted using the
extended Raccoon2. The private OpenStack-based cloud
at the University of Westminster (UoW Cloud) was used
as the DCI to run the docking simulations. When choos-
ing which receptors to dock in order to fill the MDRR,
several a priori similar receptors to the TV ribokinase
were chosen. Structures of 7 receptors of same type
(ribokinase) from different species were downloaded
from the wwPDB [55]. To ensure that there is structural
alignment, DeepAlign was run between the TV
ribokinase and each of the 7 ribokinases resulting in a
high DeepScore value (between 975.47 and 1491.79).
Further 63 receptors were chosen from the RCSB “Mol-
ecule of the Month” series [56]. Therefore, a total of 70
receptors were used when prefilling the MDRR, 7 of
them (10%) a priori similar to the TV ribokinase, and
63 (90%) other receptors. Each receptor required its own
configuration file which was created within the GUI of
Raccoon2. Care was taken for the cuboid of the config
file to cover a part of the receptor, but further analysis for
biological relevance was not conducted. Finally, a large
number of ligands was needed. A total of 2,376 mole-
cules approved as drugs somewhere in the world was
obtained from ZINC [57] and made up our set of ligands.

These input files were used to fill the MDRR with
166,320 (70 × 2,376) docking results. For each receptor,
between 3 and 6 jobs were run on the UoW Cloud,
resulting in 393 jobs with mean execution time of 2h
23min 23s.

Following these preparations, Scenario 1 was com-
pleted first “without” using the implementation of

Section 5.1 but manually feeding results into the appro-
priate tools. This process was then compared to execut-
ing the same scenario “with” the implementation.

One observation is that the usability tests “with” the
implementation contain fewer manual steps than the
usability tests “without” the implementation (“with”
required 3, while “without” required 6 manual steps).
This is because most of the steps are automatised. There
is no need to locate files on the file system, or manually
read through web pages. The decrease of manual steps is
a major benefit in terms of usability.

Another benefit is the decrease of complexity of the
manual steps. Generally, the user needs to prepare the
docking or VS in Raccoon2, enter the required user-
provided inputs, and wait for the result of the scenario.
When completing the scenario “without” the implemen-
tation, the user would additionally need to complete
steps that may be considered complex for a biomedical
scientist, such as writing and running a small script that
would rename docking result files to contain the
DeepAlign result value in their name.

Furthermore, running the scenarios “without” the
implementation sometimes requires simple, but repeti-
tive manual steps such as uploading the structures of
receptors and reading the results of the structural align-
ment multiple times. Although not complex, these re-
petitive manual steps are very error-prone and time-
consuming. Using the implementations does not have
these problems.

7 Conclusion and Future Work

This paper presented a generic framework and a corre-
sponding methodology to implement complex science-
gateway-based environments for the execution of mo-
lecular docking experiments extended with the intelli-
gent analysis and utilisation of docking results. The
framework incorporates a diagrammatic, textual, and
formal description enabling a modular design and the
replacement and reuse of components. The methodolo-
gy involves multiple stakeholders and requires their
collaboration in an agile manner. It provides three tech-
niques that can be used to determine the specific ele-
ments that can be used in a scenario. Following the
framework and methodology, the implementations of
two scenarios were developed and presented.

The framework and methodology enable the system-
atic and efficient reuse of existing elements and

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

therefore formalise and potentially speed-up the devel-
opment process. Addi t ional ly, users of the
implementations, the biomedical scientists, will benefit
from implementing these types of scenarios using the
framework and methodology which produces usable
systems providing relevant results. The three techniques
that are part of the methodology require manual com-
parison between the diagrams, text, and formal descrip-
tions. As future work, we propose investigating whether
a software tool can be developed to conduct this com-
parison automatically.

Although the framework and methodology have
been created for systems that store and analyse docking
results, a similar approach can be used for other do-
mains. The compatibility and effectiveness of this ap-
proach in related domains in bioinformatics such as the
more computationally demanding molecular dynamics
simulations could also be investigated.

Acknowledgements The research leading to these results has
received funding from the European Union’s Seventh Framework
Programme (FP7/2007–2013) under grant agreement No.608886
(CloudSME) and from the H2020 Programme under Grant Agree-
ment No.731574 (COLA). The authors would also like to ac-
knowledge funding from the University of Westminster Research
Studentship 2014.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Foreman, J.C., Johansen, T., Gibb, A.J.: Textbook of recep-
tor pharmacology. CRC press (2010)

2. D. Temelkovski, T. Kiss, and G. Terstyanszky, A generic
framework and methodology for implementing science gate-
ways for analysing molecular docking results. Proc. of 10th

IWSG 2018, Edinburgh, UK, 13–15 Jun, 2018, CEUR-WS.
org, online http://ceur-ws.org/Vol-2357/paper14.pdf

3. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., Ferrin,
T.E.: A geometric approach to macromolecule-ligand inter-
actions. J. Mol. Bio. 161(2), 269–288 (1982)

4. Allen, W.J., Balius, T.E., Mukherjee, S., Brozell, S.R.,
Moustakas, D.T., Lang, P.T., Case, D.A., Kuntz, I.D.,
Rizzo, R.C.: DOCK 6: impact of new features and current
docking performance. J. Comp. Chem. 36(15), 1132–1156
(2015)

5. Z. Vincent and D. Antoine, Click2Drug: directory of in
silico drug design tools, Sep 2017. Available at:
http://www.click2drug.org/index.html#Screening.
Accessed 21 Feb 2020

6. Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R.:
Development and validation of a genetic algorithm for flex-
ible docking. J. Mol. Bio. 267(3), 727–748 (1997)

7. Kramer, B., Rarey, M., Lengauer, T.: Evaluation of the
FlexX incremental construction algorithm for protein-
ligand docking. Proteins. 37(2), 228–241 (1999)

8. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F.,
Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and
AutoDockTools4: automated docking with selective recep-
tor flexibility, J. Comput. Chem. 30(16), 2785–2791 (2009)

9. Sousa, S.F., Fernandes, P.A., Ramos, M.J.: Protein-ligand
docking: current status and future challenges. Proteins. 65,
15–26 (Jul 2006)

10. O. Trott and A. J. Olson, AutoDock Vina: Improving the
speed and accuracy of docking with a new scoring function,
efficient optimization, and multithreading, J. Comp. Chem.,
pp. 455–461, 2009

11. M. W. Chang, C. Ayeni, S. Breuer, and B. E. Torbett,
Virtual screening for HIV protease inhibitors: A comparison
of AutoDock 4 and Vina, PLoS ONE, vol. 5, no. 8, p.
e11955, 2010

12. Forli, S., Huey, R., Pique, M.E., Sanner, M.F., Goodsell,
D.S., Olson, A.J.: Computational protein-ligand docking
and virtual drug screening with the AutoDock suite. Nature
Protocols. 11(5), 905 (2016)

13. Hasegawa, H., Holm, L.: Advances and pitfalls of protein
structural alignment. Curr. Opin. Struct. Biol. 19(3), 341–
348 (2009)

14. E. C.Meng, Online structure alignment resources, Apr 2005.
Available at: http://www.rbvi.ucsf.edu/home/meng/grpmt/
structalign.html. Accessed 21 Feb 2020

15. E. Martz, W. Decatur, and M. Wiederstein, Structural
A l i g nmen t Too l s , O c t 2 0 16 . Ava i l a b l e a t :
http://proteopedia.org/wiki/index.php/Structural_
alignment_tools. Accessed 21 Feb 2020

16. Holm, L., Sander, C.: Protein structure comparison by align-
ment of distance matrices. J. Mol. Bio. 233(1), 123–138
(1993)

17. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment
by incremental combinatorial extension (CE) of the optimal
path. Protein Eng. 11(9), 739–747 (1998)

18. Wang, S., Ma, J., Peng, J., Xu, J.: Protein structure alignment
beyond spatial proximity. Sci. Rep. 3, 1448 (2013)

19. Object Management Group, Unified Modeling Language
Version 2.5.1. Available at: ht tps: / /www.omg.
org/spec/UML/2.5.1 Accessed 21 Feb 2020

20. Object Management Group, The OMG Systems Modeling
Language Version 1.6. Available at: https://www.omg.
org/spec/SysML/1.6/ Accessed 21 Feb 2020

21. P. Cuenot, et al., The EAST-ADL architecture description
language for automotive embedded software, Chapter 11 in

D. Temelkovski et al.

https://doi.org/
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org
http://www.click2drug.org/index.html#Screening
http://www.rbvi.ucsf.edu/home/meng/grpmt/structalign.html
http://www.rbvi.ucsf.edu/home/meng/grpmt/structalign.html
http://proteopedia.org/wiki/index.php/Structural_alignment_tools
http://proteopedia.org/wiki/index.php/Structural_alignment_tools
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/UML/2.5.1
https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.6/

Model-Based Engineering of Embedded Real-Time Systems,
Ed. Holger Geise et al., pp. 297–388, 2010

22. J.S. Fitzgerald, P.G. Larsen, and M. Verhoef, Vienna devel-
opment method. Wiley Encyclopedia of Computer Science
and Engineering, pp.1–11, 2007

23. D. Jackson, Alloy: a lightweight object modelling notation.
ACM Transactions on software engineering and methodol-
ogy (TOSEM), 11(2), pp.256–290, 2002

24. Spivey, J.M.: The Z Notation: a Reference Manual, Tech.
Rep. Oriel College, Oxford (1998. Available at:
https://www.cse.buffalo.edu/LRG/CSE705/Papers/Z-Ref-
Manual.pdf). Accessed 21 Feb 2020

25. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger,
E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific
workflow management and the Kepler system.
Concurrency and Computation: Practice and Experience.
18(10), 1039–1065 (2006)

26. P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E.
Palumbo, and C. Notredame, Nextflow enables reproducible
computational workflows, Nature biotechnology, vol. 35,
no. 4, p. 316, 2017

27. Wolstencroft, K., Haines, R., Fellows, D., Williams, A.,
Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I.,
Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall,
F., Hardisty, A., Nieva de la Hidalga, A., Balcazar Vargas,
M.P., Sufi, S., Goble, C.: The Taverna workflow suite:
designing and executing workflows of web services on the
desktop, web or in the cloud. Nucleic Acids Res. 41(W1),
W557–W561 (2013)

28. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G.,
Balasko, A., Karoczkai, K., Marton, I.: WS-PGRADE/
gUSE generic DCI gateway framework for a large variety
of user communities. Journal of Grid Computing. 10(4),
601–630 (2012)

29. L. Xie, T. Evangelidis, L. Xie, and P. E. Bourne, Drug
discovery using chemical systems biology: Weak inhibition
of multiple kinases may contribute to the anti-cancer effect
of nelfinavir, PLoS Comput. Biology, vol. 7, no. 4, p.
e1002037, 2011

30. Zhang, X., Wong, S.E., Lightstone, F.C.: Toward fully
automated high performance computing drug discovery: a
massively parallel virtual screening pipeline for docking and
molecular mechanics/generalized born surface area
rescoring to improve enrichment. J. Chem. Inf. Model.
54(1), 324–337 (2014)

31. X. Jiang, K. Kumar, X. Hu, A. Wallqvist, and J. Reifman,
DOVIS 2.0: An efficient and easy to use parallel virtual
screening tool based on AutoDock 4.0, Chemistry Central
Journal, vol. 2, no. 1, p. 18, 2008

32. D'Ursi, P., Chiappori, F., Merelli, I., Cozzi, P., Rovida, E.,
Milanesi, L.: Virtual screening pipeline and ligand model-
ling for H5N1 neuraminidase. Biochem. and Biophys. Res.
Comm. 383(4), 445–449 (2009)

33. G. Van Zundert, J. Rodrigues, M. Trellet, C. Schmitz, P.
Kastritis, E. Karaca, A. Melquiond, M. van Dijk, S. De
Vries, and A. Bonvin, The HADDOCK2. 2 web server:
user-friendly integrative modeling of biomolecular com-
plexes. J. Mol. Bio., vol. 428 no.4, pp.720–725, 2016

34. Kiss, T., Borsody, P., Terstyanszky, G., Winter, S.,
Greenwell, P., McEldowney, S., Heindl, H.: Large-scale
virtual screening experiments on windows azure-based

cloud resources. Concurrency and Computation: Practice
and Experience. 26(10), 1760–1770 (2014)

35. Glaab, E.: Building a virtual ligand screening pipeline using
free software: a survey. Brief. Bioinform. 17(2), 352–366
(2015)

36. Farkas, Z., Kacsuk, P., Hajnal, Á.: Enabling workflow-
oriented science gateways to access multi-cloud systems. J.
Grid Computing. 14(4), 619–640 (2016)

37. P. Kacsuk (ed.), Science Gateways for Distributed
Computing Infrastructures: Development Framework and
Exploitation by Scientific User Communities, Springer,
2014. pp. 301

38. P, Kacsuk, Z. Farkas, M. Kozlovszky, G. Herman, A.
Balasko, K. Karoczkai, I. Marton, WS-PGRADE/gUSE
Generic DCI Gateway Framework for a Large Variety of
User Communities, J. Grid Computing, vol. 10, no. 4, pp
601–630, 2012

39. Z. Farkas, P. Kacsuk, T. Kiss, P. Borsody, Á. Hajnal, Á.
Balaskó, and K. Karóczkai, Autodock gateway for molecu-
lar docking simulations in cloud systems, Cloud Computing
with E-science Applications, p. 300, 2015

40. Kiss, T., Greenwell, P., Heindl, H., Terstyanszky, G.,
Weingarten, N.: Parameter sweep workflows for modelling
carbohydrate recognition. J. Grid Computing. 8(4), 587–601
(2010)

41. Jaghoori, M., Altena, A.J., Bleijlevens, B., Ramezani, S.,
Font, J.L., Olabarriaga, S.D.: A multi-infrastructure gateway
for virtual drug screening. Concurrency and Computation:
Practice and Experience. 27(16), 4478–4490 (2015)

42. Krüger, J., Grunzke, R., Gesing, S., Breuers, S., Brinkmann,
A., de la Garza, L., Kohlbacher, O., Kruse, M., Nagel, W.E.,
Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Schärfe,
C., Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A.,
Herres-Pawlis, S.: The MoSGrid science gateway a com-
plete solution for molecular simulations. J. Chem. Theory
and Computation. 10(6), 2232–2245 (2014)

43. C.A. Goble, and D.C. De Roure, myExperiment: social
networking for workflow-using e-scientists. In Proceedings
of the 2nd workshop onWorkflows in support of large-scale
science (pp. 1–2). ACM, 2007

44. Terstyanszky, G., Kukla, T., Kiss, T., Kacsuk, P., Balasko,
A., Farkas, Z.: Enabling scientific workflow sharing through
coarse-grained interoperability. Future Generation
Computing Systems: The International Journal of Grid
Computing and eScience. 37, 46–59 (2014)

45. A. Roy, B. Srinivasan, and J. Skolnick, PoLi: A virtual
screening pipeline based on template pocket and ligand
similarity, J. Chem. Inf. Model., vol. 55, no. 8, pp. 1757–
1770, 2015

46. Wassenaar, T.A., Van Dijk, M., Loureiro-Ferreira, N., Van
Der Schot, G., DeVries, S.J., Schmitz, C., Van Der Zwan, J.,
Boelens, R., Giachetti, A., Ferella, L., et al.: WeNMR:
structural biology on the grid. J. Grid Computing. 10(4),
743–767 (2012)

47. E. Chia, M. S. Shamsir, Z. A. Hussein, and S. Z. M. Hashim,
GridMACS portal: A grid web portal for molecular dynam-
ics simulation using GROMACS, in Mathematical/
Analytical Modelling and Computer Simulation (AMS),
2010 Fourth Asia International Conference on, pp. 507–
512, IEEE, 2010

Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology

https://www.cse.buffalo.edu/LRG/CSE705/Papers/Z-Ref-Manual.pdf
https://www.cse.buffalo.edu/LRG/CSE705/Papers/Z-Ref-Manual.pdf

48. Kunszt, P., Blum, L., Hullár, B., Schmid, E., Srebniak, A.,
Wolski, W., Rinn, B., Elmer, F.-J., Ramakrishnan, C.,
Quandt, A., Malmström, L.: iPortal: the swiss grid proteo-
mics portal: requirements and new features based on expe-
rience and usability considerations. Concurrency and
Computation: Practice and Experience. 27(2), 433–445
(2015)

49. D. Temelkovski, Implementation of scenarios, source-code
onGitHub. Available at https://github.com/damjanmk/mdrr-
scenarios. Accessed 21 Feb 2020

50. A. Cockburn, Agile software development: The cooperative
game. Pearson Education, 2nd ed., 2006

51. Temelkovski, D., Kiss, T., Terstyanszky, G., Greenwell, P.:
Extending molecular docking desktop applications with
cloud computing support and analysis of results. Futur.
Gener. Comput. Syst. 97, 814–824 (2019)

52. M. Hellkamp, Bottle: Python Web Framework Bottle 0.13-
dev documentation, Jan 2019. Available at https://bottlepy.
org/docs/stable/. Accessed 21 Feb 2020

53. N. M. O'Boyle, C. Morley, and G. R. Hutchison, Pybel: A
Python wrapper for the OpenBabel cheminformatics toolkit,
Chemistry Central Journal, vol. 2, no. 1, p. 5, 2008

54. Kim, P., Thiessen, A., Bolton, E.E., Chen, J., Fu, G.,
Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A.,
et al.: PubChem substance and compound databases.
Nucleic Acids Res. 44(D1), D1202–D1213 (2015)

55. H. Berman, K. Henrick, and H. Nakamura, Announcing the
worldwide protein data bank, Nature Structural and
Molecular Biology, vol. 10, no. 12, p. 980, 2003

56. D. S. Goodsell, S. Dutta, C. Zardecki, M. Voigt, H. M.
Berman, and S. K. Burley, The RCSB PDB “molecule of
the month”: Inspiring a molecular view of biology, PLoS
Biology, vol. 13, no. 5, p. e1002140, 2015

57. Irwin, J.J., Shoichet, B.K.: ZINC - a free database of com-
mercially available compounds for virtual screening. J.
Chem. Inf. Model. 45(1), 177–182 (2005)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

D. Temelkovski et al.

https://github.com/damjanmk/mdrr-scenarios
https://github.com/damjanmk/mdrr-scenarios
https://bottlepy.org/docs/stable/
https://bottlepy.org/docs/stable/

	Building Science Gateways for Analysing Molecular Docking Results Using a Generic Framework and Methodology
	Abstract
	Introduction
	Related Work
	Generic Framework for the Analysis of Molecular Docking Results
	Methodology for Developing Environments for Analysis of Molecular Docking Results
	Evaluation of the Framework and Methodology Using Selected Scenarios
	Design and Implementation of Scenario 1
	Design and Implementation of Scenario 2

	Usability of Implementations that Utilise the Framework
	Conclusion and Future Work
	References

