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Amir H. Alizadeh, Nikos K. Nomikos and Stefan van Dellen

The Impact of Conditional Moments on Risk 
Measurement in the Tanker Freight Market

Abstract

Tanker shipping provides the primary means of transportation for almost types of petroleum 

product traded globally. It is therefore essential to the energy supply chain to be able to 

correctly evaluate the structure and risk associated with freight rates in this market. This 

paper examines the concepts of conditional skewness and kurtosis in tanker freight rate. This 

is because, although the departure from normality of asset returns has been well documented, 

the relatively recent introduction of the concepts of conditional skewness and conditional 

kurtosis into the financial market literature, together with the unique shape of the supply 

curve in shipping markets, means that this has not been fully examined in the shipping 

literature. This is crucial given that a failure to take these structural characteristics into 

account could lead to market participants underestimating the probability of extreme and 

unfavourable events and therefore the consequent risk associated with market operations. 

Examining a sample of three types of tanker freight rate returns, we find that tanker freight 

rate returns exhibit conditional higher moments and that models that incorporate conditional 

skewness and kurtosis provide a more accurate value-at-risk measure and therefore a more 

accurate measure of the true risk faced by market participants.

Keywords: shipping, conditional skewness, conditional volatility, value-at-risk, GARCHSK

1. Introduction

Ever since the development of the Autoregressive Conditional Heteroskedasticity (ARCH) 

and Generalised Autoregressive Conditional Heteroskedasticity (GARCH) models (Engle, 

1982; Bollerslev, 1986), it has been widely established that the variance of financial price 

series, and therefore the inherent risk associated with financial assets, is time varying (Engle, 

1982; Bollerslev, 1986, Nelson, 1991). Given this, and the development of other approaches 

for measuring the conditional variance of financial assets, the Value-at-Risk (VaR) measure 

has been adopted by the Basel Committee, and consequently most regulators, as the standard 

method quantify market risk (Basel Committee on Banking Supervision, 2005), where this 

measures the maximum loss incurred at a given confidence level over a pre-specified time 

horizon. Consequently a vast stream of literature has looked at the performance of various 
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VaR methods in the conventional equity/bond markets (Beder, 1995; Brooks and Persand, 

2003; Kuester, et al, 2006) as well as the energy/commodity markets (Cabedo and Moya, 

2003; Giot and Laurent, 2003; among others), hedge fund markets (Giamouridis and Ntoula, 

2009) and even the shipping freight market1 (Angelidis and Skiadopoulos, 2008; Kavussanos 

and Dimitrakopoulos, 2011). This being said, the vast majority of these studies look at 

standard parametric approaches for estimating the VaR measure, which assume that returns 

follow a standard normal distribution. However, financial data has been established to be 

negatively skewed (Harvey and Siddique, 1999, 2000; Bekaert, et al, 1998) and exhibit 

excess kurtosis (Mandelbrot, 1963; Brooks, et al, 2005) and the need to incorporate skewness 

and kurtosis into models of price series has now become well established (Harvey and 

Siddique, 1999; Peiró, 1999; Brooks, et al, 2005). This has traditionally been accounted for 

by either using the Cornish-Fisher expansion technique (Cornish and Fisher, 1938; 

Christoffersen, 2012) to adjust the VaR measure or else by using a model that accommodates 

a skewed t-distribution to estimate the conditional variance (Angelidis and Skiadopoulos, 

2008).

The methods used to determine the VaR measure discussed in the literature above all assume 

that while the variance is time-varying, the levels of skewness and kurtosis in the price series 

remain static. This may be argued to be problematic in that Harvey and Siddique (1999, 

2000) and Chen, et al (2001) all argue that stock series exhibit conditional skewness, while 

Brooks, et al (2005) argues that equity and bond indices exhibit conditional kurtosis and 

Léon, et al (2005) argue that exchange rates exhibit both conditional skewness and 

conditional kurtosis. This is problematic in that it implies that the traditional approach for 

determining the VaR measure may routinely severely underestimate the size and likelihood of 

extreme negative events given that use static measures, and therefore underestimate the true 

risk faced by market participants. This was partially addressed by Bali, et al (2008), who 

investigated the role of conditional higher moments in the estimation of the conditional VaR 

measure for US stock indices. They used a Skewed Generalised t-distribution GARCH (SGT-

GARCH) model, which used the skewed generalised t-distribution (SGT), introduced by 

Theodossiou (1998), and the conditional density approach initiated by Hansen (1994) and 

extended by Jondeau and Rockinger (2003) to model the conditional high-order moment 

parameters of the SGT density function. Although this did take the conditional higher 

moments of the series into account, the parameters do not follow a GARCH process for either 

skewness or kurtosis, and they only looked at the case of the conditional VaR measure. We 

address these limitations by using the Generalised Autoregressive Conditional 

Heteroskedasticity with Skewness and Kurtosis (GARCHSK) model (Léon, et al, 2005) to 

1 The shipping freight markets are those markets where goods are transported by ship between points of loading 
and discharge..
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jointly estimate the conditional variance, skewness and kurtosis of the price series and then, 

in conjunction with the Cornish-Fisher expansion, use this to determine whether the 

consequent VaR measure provides a more accurate picture of the risk exposure of tanker 

market participants. We also compare the accuracy of the VaR measures estimated using this 

approach with those estimated using a standard GARCH approach and the RiskMetricsTM 

approach, most commonly used in financial markets, which is simply an adaption of the 

Exponentially Weight Moving Average model (Roberts, 1959), where  is constrained to a λ
specific value.

Tanker markets2 provide an interesting forum for this discussion in that they play a key role 

in the energy market supply chain and have a relatively unique interaction between the supply 

and demand functions, which indicates that the respective levels of skewness and kurtosis for 

these freight rates may be time-varying. Expanding on this notion, participants in the 

petroleum supply chain, such as producers, traders, refineries, distributors and tanker ship 

owners, all hire and operate these tankers for the purpose of the transportation of these 

commodities across the world. It is worth noting that in in 2015 alone, almost 37.5 million 

barrels of crude oil were transported by sea per day3 out of a total world trade of just over 

61.2 million barrels per day (BP, 2016), or 61% of total trade. This would imply that any 

cyclicality, volatility, or fluctuations in the international trade of petroleum and petroleum 

products would affect tanker freight rates, and thus the cost of transporting these commodities 

between production and consumption areas around the world. Within this trade, it is well 

documented that the demand for tanker ships, measured in tonne miles4, is relatively price 

inelastic and predominately a derived demand, determined by the seaborne trade in crude oil 

and petroleum products (Stopford, 2009). In contrast, the supply function is fixed in the 

short-term due to the fact that it can take over three years to build a vessel, hence there is a 

delay between the ordering and delivery of a new vessel, which gives it the characteristic 

convex shape, illustrated in FIGURE I. This is of interest in this paper since the shape of the 

supply function in the freight markets is such that when one is positioned at a relatively price 

elastic portion of the supply curve, say between points A and B in FIGURE I, the degree of 

skewness and excess kurtosis will be relatively low. This being said, as the price elasticity 

decreases, as short-term supply reaches its maximum level, and freight rates shoot up, as 

would be the case between points B and C in FIGURE I, so would the degree of skewness and 

excess kurtosis, resulting in an extremely fat-tailed, positively skewed distribution. This is 

essentially, the very definition of time-varying skewness and kurtosis, but this, to the best of 

2 Tanker markets are where liquid cargo, predominately petroleum products are transported by tanker vessels.
3 This data was obtained from Clarksons Shipping Intelligence Network, a database of shipping information 
maintained by Clarksons Research Services Ltd. (see https://sin.clarksons.net/).
4 One should note that a tonne mile is defined as the transportation of one tonne of cargo over one nautical mile.

https://sin.clarksons.net/
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FIGURE I: THE SHORT-RUN MARKET EQUILIBRIUM FOR TANKER SHIPPING SERIVES

Source: Stopford (2009)

This figure outlines the interaction between the demand and supply functions for tanker shipping services. 
Within this trade, it is well documented that the demand for tanker ship is relatively price inelastic and 
predominately a derived demand, determined by the seaborne trade in crude oil and petroleum products 
(Stopford, 2009). In contrast, the supply function is fixed in the short-term due to the fact that it can take over 
three years to build a vessel, hence there is a delay between the ordering and delivery of a new vessel, which 
gives it this characteristic convex shape.

the authors’ knowledge, has never been examined within this market or any real asset 

literature.

This study’s contribution to the literature is therefore four-fold: 1) It introduces the concepts 

of conditional skewness and conditional kurtosis to the shipping and real asset literature by 

testing the hypothesis that tanker freight rates display these conditional higher moments; 2) 

We further extend the extant literature by implementing a VaR framework to examine the 

risk implications of these conditional higher moments; 3) We use a Generalised 

Autoregressive Conditional Heteroskedasticity with Skewness and Kurtosis (GARCHSK) 

model to jointly estimate the conditional variance, skewness and kurtosis of the price series 
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and then, in conjunction with the Cornish-Fisher expansion, use this to determine whether the 

consequent VaR measure provides a more accurate picture of the risk exposure of tanker 

market participants; and 4) We compare the accuracy of the VaR measures estimated using 

the GARCHSK model with those estimated using the GARCH model and the RiskMetricsTM 

approach.

The remainder of this study is organised as follows: Section 2 outlines the methodology used, 

while Section 3 provides a description of the data use, Section 4 discusses the empirical 

findings, and Section 5 concludes.

2. Methodology

Having outlined the theoretical foundations of the hypothesis, above, we now outline the 

methodology that will used to test the validity of this hypothesis and determine whether 

incorporating conditional higher moments provides a more accurate VaR measure. We begin 

by examining the models that will be used to determine the conditional moments used in the 

calculation of the VaR measure, following which we define the VaR measure and highlight 

how this is calculated before outlining how we test both the statistical and economic accuracy 

of these VaR measures.

2.1 Volatility Measures

It has been widely established that the variance of financial price series, and therefore the 

inherent risk associated with financial assets, is time varying (Engle, 1982; Bollerslev, 1986, 

Nelson, 1991). In order to address this, traditional VaR approaches have used either the 

RiskMetricsTM approach, which is essential a modified version of the Exponentially 

Weighted Moving Average model (Roberts, 1959), or a standard GARCH model (Bollerslev, 

1986). However, Harvey and Siddique (1999, 2000), Chen, et al (2001), Brooks, et al. 

(2005), Léon, et al (2005) and  Bali, et al (2008) all argue that financial data series exhibit 

conditional higher moments. We concur with this argument given that the relatively unique 

interaction between the supply and demand functions in the tanker markets indicates that the 

respective levels of skewness and kurtosis for these freight rates may be time-varying. With 

this in mind, we therefore propose the use of the GARCHSK model (Léon, et al, 2005), 

which enables the joint estimation of the conditional variance, conditional skewness and 

conditional kurtosis of the data series.

We begin with the Exponentially Weighted Moving Average model, where:

     σ2
t = (1 - λ)ε2

t + λσ 2
t - 1 (1)

In Expression ,  denotes the current conditional variance;  denotes the previous (1) σ2
t ε2

t
volatility reflecting the squared news about the return;  denotes the previous forecasted σ 2

t - 1
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conditional variance; and  denotes the rate of decay of past shocks to the series. In the λ
RiskMetricsTM approach,  is constrained to a specific value, corresponding to the respective λ
frequency of the data, where we set , which is an average of the standard values λ = 0.95
given for daily and monthly data.

Having estimated the conditional variance above, we then obtain alternative measures of the 

conditional variance using the GARCH  model, where:(1,1)
     σ2

t = β0 + β1ε2
t + β2σ 2

t - 1 (2)

In Expression , In Expression ,  denotes the current conditional variance;  denotes (2) (3) σ2
t ε2

t

the previous volatility reflecting the squared news about the return and , where εt = zt σ2
t zt

;  denotes the previous forecasted conditional variance, and  ~iid N(0,1) σ 2
t - 1 β1 + β2

measures the rate of decay of past shocks to the series; and  denotes the weighted average β0
of the constant long-run variance. This is subject to the constraints that , which β1 + β2 < 1
would otherwise imply explosive variance, and .β1,β2 ≥ 0

The final method used to estimate the conditional variance is the GARCHSK model, where:

     σ2
t = β0 + β1ε2

t + β2σ 2
t - 1 (3)

     st = γ0 + γ1ε3
t + γ2st - 1 (4)

     kt = δ0 + δ1ε4
t + δ2kt - 1 (5)

In Expression ,  denotes the current conditional variance;  denotes the previous (3) σ2
t ε2

t

volatility reflecting the squared news about the return and , where εt = zt σ2
t zt~iid N

;  denotes the previous forecasted conditional variance, and  measures the (0,1) σ 2
t - 1 β1 + β2

rate of decay of past shocks to the series; and  denotes the weighted average of the β0
constant long-run variance. This is subject to the constraints that , which β0 + β1 + β2 = 1
would otherwise imply explosive variance, and . In Expression , denotes the β1,β2 ≥ 0 (4) st
current conditional skewness;  denotes the previous skewness reflecting the cubed news ε3

t
about the return;  denotes the previous forecasted conditional skewness; and  denotes st - 1 γ0
the weighted average of the constant long-run skewness. Finally, in Expression , (5) kt
denotes the current conditional kurtosis;  denotes the previous kurtosis reflecting the news ε4

t
about the return;  denotes the previous forecasted conditional kurtosis; and  denotes kt - 1 δ0
the weighted average of the constant long-run kurtosis. This model has the advantage over 

the RiskMetricsTM and GARCH models in that it also allows for the joint estimation of the 

conditional higher moments.
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2.2 The Value-at-Risk Measure

Having calculated the conditional variance and conditional higher moments using the 

RiskMetricsTM, GARCH  and GARCHSK models , we then estimate the respective (1,1)
VaR measures. The VaR measure is traditional defined as the maximum potential currency 

loss that will only be exceeded a given percent, i.e. %, of the time over the forecast (1 - α)
horizon, where:

VaR α
t + i = σt + i × Φ - 1

α
     (6)

In Expression ,  denotes the  VaR measure at forecast period , where (6) VaR α
t + i (1 - α)% i

 and  is the forecast horizon; denotes the conditional standard deviation i = 1,…,M M σt + i 
of the series, calculated using the models discussed below, at forecast period , where i

 and  is the forecast horizon; and  denotes the inverse of the cumulative i = 1,…,M M Φ - 1
α

density function of the standard normal distribution, where  denotes the coverage rate, α
which is set at 1% in this study, and  in the case of long and short positions, Φ - 1

α =± 2.326
respectively.

The fact that VaR estimation technique highlighted in Expression  is based on the (6)
assumption of a standard normal distribution is problematic. This is because financial data 

has been established to be negatively skewed (Harvey and Siddique, 1999, 2000; Bekaert, et 

al, 1998) and exhibit excess kurtosis (Mandelbrot, 1963; Brooks, et al, 2005) and the need to 

incorporate skewness and kurtosis into models of price series has now become well 

established (Harvey and Siddique, 1999; Peiró, 1999; Brooks, et al, 2005). Furthermore, 

Harvey and Siddique (1999, 2000), Chen, et al (2001), Brooks, et al. (2005), Léon, et al 

(2005) and  Bali, et al (2008) all argue that financial data series exhibit conditional higher 

moments. We concur with this argument given that the relatively unique interaction between 

the supply and demand functions in the tanker markets indicates that the respective levels of 

skewness and kurtosis for these freight rates may be time-varying.

We follow Christoffersen (2012) and address this issue by applying the Cornish-Fisher 

expansion (Cornish and Fisher, 1938) to obtain a new density function when estimating the 

corresponding VaR measures using the GARCHSK model, hence:

VaR α
t + i = σt + i × CF - 1

α
     (7)

where:
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CF - 1
α = Φ - 1

α + [si
6][{Φ - 1

α }2 - 1] + [ ki
24][{Φ - 1

α }3 - 3Φ - 1
α ]

- [ s2
i

36[2{Φ - 1
α }3 - 5Φ - 1

α ]] (8)

In Expressions  and ,  denotes the new density function obtained using the (7) (8) CF - 1
α

Cornish-Fisher expansion,  and  denotes the conditional skewness and kurtosis at forecast si ki
period , respectively; and  denotes the inverse of the cumulative density function for the i Φ - 1

α
standard normal distribution, and  denotes the coverage rateα

2.3 Tests of Statistical and Economic Accuracy

Having calculated the VaR measure using the techniques above it is crucial to note that any 

chosen VaR methodology needs to be back-tested (Basel Committee on Banking Supervision, 

2005). There are two main approaches to this back-testing process: 1) the statistical approach, 

and 2) the economic approach. This study employs both approaches which we outline below.

Before going any further, we need to establish what is meant by a violation of the VaR 

measure. A violation, commonly referred to as a hit, occurs when the observed returns 

exceeds the stated VaR measure for a given observation, within the forecast horizon. In the 

case of a long position, i.e. tanker operators in this study, the hit sequence would be:

It + i = {1 if VaR α
t + i > rt + i

0 if VaR α
t + i < rt + i

     (9)
In the case of a short position, i.e. tanker charterers in this study, the hit sequence would be:

It + i = {1 if VaR α
t + i < rt + i

0 if VaR α
t + i > rt + i

   (10)
In Expressions  and   and  denote the VaR measure and the return (or (9) (10) VaR α

t + i rt + i
standardised return) at forecast point , respectively; and  denotes the hit sequence at i It + i
forecast point , where 1 and 0 denote violations and non-violations, respectively. One can i
therefore construct a sequence of hits, denoted  where  demotes the forecast {It + i} M

i = 1 M
horizon, for the entire forecast horizon, thus indicating where past violations occurred, where 

this hit sequence will be utilised in the statistical tests that follow. One should note that, 

ideally, the fraction of these hits relative to the forecast horizon, commonly known as the hit 

ratio, should be equal to the proposed coverage rate, for example a 1% coverage rate the hit 

ratio should be 1%.
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Beginning with the statistical approach to back-testing, Christoffersen (2012) and Angelidis 

& Skiadopoulos (2008) outline three main tests to ensure the statistical accuracy of the VaR 

measure estimates, namely the unconditional coverage, independence and conditional 

coverage tests. The first of these, i.e. the unconditional coverage test (Kupiec, 1998), tests the 

null hypothesis that the hit ratio is equal to the desired coverage ratio:

LRUC = 2ln[(1 -
M1
M )

M0

× (M1
M )

M1] - 2ln[(1 - α)M0 × αM1]~χ 2
(1) (11)

In Expression ,  denotes the likelihood ratio test statistic for the unconditional (11) LRUC
coverage test;  and  denote the number of non-hits and hits over the forecast horizon, M0 M1
where  denotes the forecast horizon; and  denotes the desired coverage rate. Essentially, M α
this tests whether the techniques used to estimate the VaR measure over or underestimates the 

‘true’ but unobservable VaR measure, and therefore the actual risk exposure. However, there 

is a disadvantage to this test in that, although it tests for the extent by which the VaR measure 

estimate differs statistically from the ‘true’ value, this estimate could still be dependent over 

time, hence large losses could follow directly after each other. 

This issue of time-dependence is addressed by the second of the statistical tests, i.e. the 

independence test, which tests the null hypothesis that the VaR measure hit sequence is 

independently distributed, where:

LRIN
= 2ln[(1 - π0,1)M0,0 × (π0,1)M0,1 × (1 - π1,1)M1,0 × (π1,1)M1,1] - ln
[(1 - π0)(M0,0 + M1,0) × (π0)(M0,1 + M1,1)]~χ 2

(1)
(12)

In Expression ,  denotes the likelihood ratio test statistic for the independence  test; (12) LRIN
 and  for non-hits and hits, respectively;  denotes the number of i,j = 0 i,j = 1 Mi,j

observations where  follows ; and  are the corresponding probabilities. This j i πi,j = Mi,j ∑Mi,j
test therefore establishes whether losses in excess of the estimated VaR measure are followed 

by other extreme losses, which would mean that an increase in the concurrent risk exposure. 

This being said, it does not enable one to determine whether the VaR measure over-estimates 

or under-estimates the ‘true’ but unobservable VaR measure, and thus the actual risk 

exposure.

The final statistical test, ie the conditional coverage test, addresses both of these 

shortcomings in that it tests the null hypothesis that hits are independently distributed and the 

average number of hits is not significantly different from the coverage ratio, where:

   LRCC = LRUC + LRIN~LRUC~χ 2
(2)

(13)
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In Expression , ,  and  denotes the likelihood ratio test statistics for the (13) LRCC LRUC LRIN
conditional coverage, unconditional coverage and independence tests, respectively.

The second approach to back-testing the VaR estimate focuses on the economic accuracy of 

the estimate. There are two key justifications for looking at the economic differences between 

models, the first of which is that it is often the case that more than VaR technique passes the 

statistical tests, hence it is beneficial to be able to differentiate between them on a different 

basis. The second rationale is that one of the most important criticisms of the VaR measure 

that one can only see that a hit has occurred, but one cannot be certain of these hits and 

therefore the magnitude of the potential loss. When performing the economic back-test, we 

implement different measures of the economic relevance of each technique, namely a loss 

function, in line with Lopez (1998) and Sarma, et al (2003), and the Modified Diebold-

Mariano (MDM) test (Harvey, et al, 1997). The loss function enables us to identify the size 

of the potential losses and therefore address the aforementioned criticism of the VaR 

measure. Having calculated the loss function, the Modified Diebold-Mariano tests then 

enables us to test whether there is a statistically significant difference between models and 

thus choose the model that best minimises the risk exposure of the interested party.

In order to generate the loss function, one first needs to calculate the expected shortfall, also 

known as the Conditional VaR, where this is defined as the average loss incurred in the case 

of a violation of the VaR. In the case of a long position, i.e. for tanker operators in this study, 

the expected shortfall would be:

ES α
t + i = E[ri|ri ≤ VaR α

t + i]
   (14)

In the case of a short position, i.e. for tanker charterers in this study, the expected shortfall 

would be:

ES α
t + i = E[ri|ri ≥ VaR α

t + i]
   (15)

In Expression  and ,  denotes the expected shortfall at forecast period , (14) (15) ES α
t + i i

where  and  is the forecast horizon;  denotes the actual return at forecast point i = 1,…,M M ri
;  denotes the  VaR measure at forecast period ; and  denotes the i VaR α

t + i (1 - α)% i α
coverage rate. Following this, we can then construct the loss function for the VaR measure, 

where:

LF = 1
M

M

∑
i = 1

(ri - ES α
t + i)2 (16)
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In Expression ,  denotes the loss function for the VaR measure;  denotes the (16) LF ES α
t + i

expected shortfall at forecast period , where  and  is the forecast horizon;  i i = 1,…,M M ri
denotes the actual return at forecast point ; and  denotes the coverage rate. When i α
calculating the loss function, it is important to note that in the case of a long position, i.e. for 

tanker operators in this study:

ri - ES α
t + i = min[(ri - ES α

t + i);0] = {ri - ES α
t + i if ES α

t + i ≥ ri
0 if ES α

t + i ≤ ri
   (17)

In the case of a short position, i.e. for tanker charterers in this study:

ri - ES α
t + i = min[(ri - ES α

t + i);0] = {ri - ES α
t + i if ES α

t + i ≤ ri
0 if ES α

t + i ≥ ri
   (18)

In Expressions  and ,  denotes the expected shortfall at forecast period , (17) (18) ES α
t + i i

where  and  is the forecast horizon;  denotes the actual return at forecast point i = 1,…,M M ri
; and  denotes the coverage rate. One can therefore state that loss function for the VaR i α

measure will be equal to the semi-variance of the variable, hence the loss function takes into 

account the magnitude of any returns that have exceeded the VaR measure and are greater 

than the expected shortfall. One would then define the best model, among the different 

options proposed above, as the model that minimises the loss function, provided that has 

passed all three of the statistical accuracy tests discussed above.

Having generated the loss function for each model and then selecting the best model based on 

this function, this process is then double-checked using the MDM test. This test is an 

improvement on the standard Diebold-Mariano test (Diebold and Mariano, 1995), in that the 

latter test has a tendency to commit too many type 1 errors, i.e. reject the null hypothesis 

when it is in fact true. This test compares forecasts from VaR models by evaluating a second 

respective loss function, where:

   g(e α
t + i) = ri - ES α

t + i

(19)
In Expression ,  denotes the loss function for the VaR measure at forecast (19) g(e α

t + i)
period , where  and  is the forecast horizon;  denotes the expected i i = 1,…,M M ES α

t + i
shortfall for the VaR measure at forecast period ;  denotes the actual return at forecast point i ri
; and  denotes the coverage rate. Following this, we then test the null hypothesis that i α E(di)

, where:= 0
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   di = g(e α
1,t + i) - g(e α

2,t + i)
(20)

In Expression ,  denotes the difference between the loss functions for each VaR (22) di
measure at forecast period , where  and  is the forecast horizon;  i i = 1,…,M M g(e α

1,t + i)
and  denote the loss functions for the 1st and 2nd VaR measures at forecast period , g(e α

2,t + i) i
respectively; and  denotes the coverage rate. This essentially tests whether the forecasts α
from the competing models are equally accurate. It is important to note that before one can 

calculate the average and variance for the differences between the loss functions, where:

d = 1
M

M

∑
i = 1

di (21)

In Expression ,  denotes the average difference between the loss functions for each (21) d
VaR measure; and  denotes the difference between the loss functions for each VaR measure di
at forecast period , where  and  is the forecast horizon. The variance for the i i = 1,…,M M
differences between the loss functions is then calculated as:

σ2
d = 1

M

M

∑
i = 1

(di - d)2 (22)

In Expression ,  denotes the variance of the difference between the loss functions for (22) σ2
d

each VaR measure;  denotes the average difference between the loss functions for each VaR d
measure; and  denotes the difference between the loss functions for each VaR measure at di
forecast period , where  and  is the forecast horizon. We then finally calculated i i = 1,…,M M
the MDM test statistic, where:

MDM = ( d
σ2

d)(M - 1
M )

1
2
~t(M - 1) (23)

In Expression ,   denotes the MDM test statistic;  denotes the variance of the (24) MDM σ2
d

difference between the loss functions for each VaR measure;  denotes the average d
difference between the loss functions for each VaR measure; and  denotes the forecast M
horizon.

3. Data

Having outlined the methodology used in the study, we now examine the characteristics of 

the data used to calculate the respective VaR measures. The data used in this study comprises 
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weekly spot freight rates for Very Large Crude Carrier (VLCC)5, Suezmax6 and Aframax7 

tanker vessels for the period between 13th January 1989 and 26th June 2009, thus comprising 

1,068 observations where all data was collected from Clarksons Shipping Intelligence 

Network. In order to enable ex-post forecasts to be made, the sample was then subdivided 

into an in-sample period, extending from 13th January 1989 to 26th September 2003 and 

comprising 768 observations, and an out-of-sample period, extending from 3rd October 2003 

and 26th June 2009 and comprising 299 observations.

TABLE I presentshe results of the standard descriptive statistics, unit root tests and Ljung-Box 

tests for conditional variance, skewness and kurtosis for the respective data series. The 

average returns are found to range from -2.22% per year for the VLCC tankers to -0.35% per 

year for the Aframax tankers, with the standard deviation, and consequently risk levels, range 

from 77.37% per year for the Aframax tankers and 84.50% per year for the VLCC tankers. 

All three tanker return series are positively skewed and leptokurtic and the Jarque-Bera test 

results (Jarque and Bera, 1980) indicate that all three tanker return series are not normally 

distributed. This provides preliminary evidence in support that freight rate returns may 

exhibit conditional higher moments. Moving onto the results of the Augmented Dickey-Fuller 

5 For the VLCC tanker, this corresponds to the transportation of crude oil on a 270,000 deadweight tonne 
(DWT) tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands).
6 For the Suezmax tanker, this corresponds to the transportation of crude oil on a 130,000 DWT tanker between 
Bonny (Nigeria) and Philadelphia (United States of America).
7 For the Aframax tanker, this corresponds to the transportation of crude oil on an 80,000 DWT tanker between 
Sullom Voe (United Kingdom) and Bayway (United States of America).
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TABLE I: CHARACTERISTICS OF THE TANKER FREIGHT RATE RETURNS

This table presents the descriptive statistics, unit root test results and Ljung-Box test results for the sample of weekly tanker freight rate 
returns between 13th January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 
270,000 deadweight tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); 
SZMX denotes the weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny 
(Nigeria) and Philadelphia (United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil 
on an 80,000 DWT Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America). Figures in parentheses 
correspond to the respective p-values.

Panel A presents the standard descriptive statistics, where the means and standard deviations are annualised figures.  denotes the test JB
statistic to the Jarque-Bera test for normality (Jarque and Bera, 1980), where the null hypothesis is that the data series follows a standard 
normal distribution.

Panel B presents the results from the Augmented Dickey-Fuller unit root test (Dickey and Fuller, 1981) and Phillips-Perron unit root tests 
(Phillips and Perron, 1988), where the null hypothesis for both these tests is that respective data series contains a unit root, i.e. is non-
stationary.

Panel C presents the results from the Ljung-Box tests (Ljung and Box, 1978) for conditional variance, conditional skewness and conditional 

kurtosis.  denotes the Ljung-Box statistical for the test of conditional variance at the 12th lag,  denotes the Ljung-Box statistical for the Q2 Q3

test of conditional skewness at the 12th lag, and  denotes the Ljung-Box statistical for the test of conditional kurtosis at the 12th lag.Q4

Panel A: Descriptive Statistics for the Tanker Freight Rate Returns
 VLCC SZMX AFMX

Observations 1,067 1,067 1,067

Mean -0.0220 -0.0061 -0.0035
Standard Deviation 0.8275 0.8450 0.7737

0.3136 0.5219 0.4825
Skewness

(0.0000) (0.0000) (0.0000)
8.4742 6.1804 8.2599

Kurtosis
(0.0000) (0.0000) (0.0000)

1349.7758 498.1428 1271.4249JB (0.0000) (0.0000) (0.0000)

Panel B: Unit Root Test Results for the Tanker Freight Rate Returns
 VLCC SZMX AFMX

-17.3909 -23.5310 -23.5432
Augmented Dickey-Fuller

(0.0000) (0.0000) (0.0000)
-31.0168 -35.2963 -37.6972

Phillips-Perron Test (0.0000) (0.0000) (0.0000)

Panel C: Ljung-Box Test Results for the Tanker Freight Rates
 VLCC SZMX AFMX

198.5400 144.5350 65.6150
Q2

(0.0000) (0.0000) (0.0000)
180.0870 42.9660 47.4400

Q4
(0.0000) (0.0000) (0.0000)
198.0810 33.5610 40.7600Q4
(0.0000) (0.0008) (0.0001)

(Dickey and Fuller, 1981) and the Phillips-Perron (Phillips and Perron, 1988) unit root tests, 

all three tanker returns series are found to be stationary. Finally, when examining the results 

of the Ljung-Box test statistics (Ljung and Box, 1978) we find significant evidence of 



The Impact of Conditional Moments on Risk Measurement in 
the Tanker Freight Market

Paper ID: 177

IAME 2017 Conference, June 27-30, Kyoto, Japan  15

significant conditional variance, skewness and kurtosis at the 12th lag, which gives a very 

strong indication that freight rate returns exhibit conditional higher moments.

4. Empirical Results

Having outlined the characteristics of the data above, we now examine whether tanker freight 

returns exhibit conditional higher moments and the impact of these on the respective VaR 

measures. We begin by estimating the GARCH  and GARCHSK, the results for which (1,1)
are presented in TABLE II. The results here indicate that there is strong evidence of 

conditional volatility in that the coefficients for the conditional variance in both the GARCH 

and GARCHSK models are significant, while the results from the GARCHSK model further 

support the hypothesis that tanker freight returns exhibit conditional higher moments8.

In order to examine the risk implications of these findings, we then estimated the respective 

VaR measures for the RiskMetricsTM, GARCH  and GARCHSK models, and compared (1,1)
these using the technqiues discussed in Section 2 above, the results for which are presented in 

TABLE III, for the tanker operators and TABLE IV, for the tanker charterers, respectively9. 

Beginning with the results in Table III, in the case of the VLCC tanker returns for tanker 

operators, the average VaR measures range between 0.385% for the RiskMetricsTM approach 

and 0.447% for GARCHSK model, where all three models pass the statistical tests, have the 

same expected shortfalls and loss functions, and the results from the respective MDM test 

indicate that we cannot reject the null hypothesis that there is no difference between the loss 

function for the respective approaches. We therefore conclude that we would be indifferent 

between the choice of model, although the fact that the GARCHSK model incorporates the 

conditional higher moments may make this most suitable. When examining the results for the 

Suezmax tanker returns for tanker operators, we find that the average VaR measures range 

between 0.299% for the GARCH model and 0.482% for the GARCHSK model, although 

none of the models pass all three statistical tests and we therefore conclude that none of these 

models is appropriate for the estimation of the VaR measure. Finally, the VaR measures for 

the Aframax tanker returns for tanker operators range between 0.236% for the GARCH 

model and 0.378% for the GARCHSK model, where the RiskMetricsTM approach and 

GARCHSK models pass the statistical tests, but the GARCHSK has the smaller loss function, 

which suggests that the GARCHSK model provides the superior VaR measure. This 

supported by the fact that we the MDM test results indicate can reject the null hypothesis that 

. Hence we conclude that the GARCHSK model appears to be provide superiorE(di) = 0

8 The results from likelihood ratio tests for nested models, not presented here for reasons of brevity but available 
upon request, suggest that the GARCHSK model outperforms the GARCH  model.(1,1)
9 The results from the respective Modified Diebold-Mariano tests (Harvey, et al, 1997) are not presented here 
for reasons of brevity but are available upon request.
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TABLE II: RESULTS FROM THE GARCH AND GARCHSK MODELS

This table presents the results from the models of conditional moments for the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America). Figures in parentheses correspond to the 
respective p-values. , and  denote the respective log-likelihoods, Akaike Information Criteria (Akaike, 1974) and Schwartz LL AIC SBIC
Bayesian Information Criteria (Schwartz, 1978), respectively. The results 

We present the results from he GARCH  model (Bollerslev, 1986), where(1,1)
                                                   σ2

t = β0 + β1ε2
t + β2σ 2

t - 1
(2)

In Expression ,  denotes the current conditional variance;  denotes the previous volatility reflecting the squared news about the (2) σ2
t ε2

t

return;  denotes the previous forecasted conditional variance;; and  denotes the weighted average of the constant long-run variance. σ 2
t - 1 ω

This is subject to the constraints that , which would otherwise imply explosive variance, and .ω + α + β = 1 α, β ≥ 0
We also present the results from the GARCHSK model (Léon, et al, 2005), where

                                                   σ2
t = β0 + β1ε2

t + β2σ 2
t - 1

(3)
                                                   st = γ0 + γ1ε3

t + γ2st - 1
(4)

                                                   kt = δ0 + δ1ε4
t + δ2kt - 1

(5)
In Expression ,  denotes the current conditional variance;  denotes the previous volatility reflecting the squared news about the (3) σ2

t ε2
t

return;  denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run variance. σ 2
t - 1 β0

In Expression , denotes the current conditional skewness;  denotes the previous skewness reflecting the cubed news about the return; (4) st ε3
t

 denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run skewness. Finally, st - 1 γ0

in Expression , denotes the current conditional skewness;  denotes the previous skewness reflecting the news about the return; and (5) kt ε4
t

 denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run skewness.kt - 1 δ0

VLCC SZMX AFMX
 GARCH GARCHSK GARCH GARCHSK GARCH GARCHSK

0.0001 0.0002 0.0000 0.0002 0.0013 0.0071β0 (0.0578) (0.0076) (0.1079) (0.0190) (0.0000) (0.0000)
0.0113 0.0750 0.0254 0.0939 0.0950 0.3791β1 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0932)
0.9410 0.9065 0.9741 0.8921 0.7943 0.0790β2 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1966)

0.0446 0.1757 0.0000γ0 (0.0095) (0.0000) (0.9998)
0.0071 0.0098 0.0001γ1 (0.0829) (0.0165) (0.5577)
0.7663 0.4410 0.9981γ2 (0.0000) (0.0002) (0.0000)

6.0433 4.0561 3.8799δ0 (0.0000) (0.0001) (0.0409)
0.0346 0.0074 0.0007δ1 (0.0000) (0.0000) (0.0024)
0.1574 0.7018 0.7594δ2 (0.0598) (0.0000) (0.0000)

LL 959.4873 1935.5977 887.3473 1902.3519 905.8818 1908.6952

AIC -1.7908 -3.6228 -1.6554 -3.5606 -1.6902 -3.5725
SBIC -1.7675 -3.6219 -1.6321 -3.5596 -1.6669 -3.5715
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VaR measures for tanker operators, indicating that the inclusion of conditional higher 

moments in the estimation process reduces the overall exposure of tanker operators.

TABLE III: VALUE-AT-RISK RESULTS FOR TANKER OPERATORS

This table presents the comparison of VaR measures for a long position on  the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America).  measures denotes the average Ave VaR
99% VaR measure for tanker operators;  denotes the percentage of violations of the VaR measure;  denotes the likelihood Hit Ratio LRUC
ratio statistics for the unconditional coverage test (Kupiec, 1998), where critical value is 0.0002;  denotes the likelihood ratio statistics LRIN
for the independence tests, where the critical value is 0.0002; and  denotes the likelihood ratio statics for the conditional coverage test, LRCC
where the critical value is 0.0201;  denotes the respective expected shortfall; and  denotes the respective loss function. Finally, for ease ES LF
of reference, the loss function figures have been multiplied by 10 4, respectively.

Panel A: VaR Results for the VLCC Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.385 0.67% 0.54 0.841 0.813 -0.433 0.149
GARCH -0.386 0.67% 0.54 0.841 0.813 -0.433 0.149
GARCHSK -0.447 0.67% 0.54 0.841 0.813 -0.433 0.149

Panel B: VaR Results for the SZMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.400 0.00% N / A N / A N / A N / A N / A
GARCH -0.299 2.68% 0.016 0.481 0.043 -0.282 0.484
GARCHSK -0.482 0.00% N / A N / A N / A N / A N / A

Panel C: VaR Results for the AFMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.336 0.33% 0.179 0.908 0.403 -0.278 0.975
GARCH -0.236 2.68% 0.016 0.481 0.043 -0.288 0.790
GARCHSK -0.378 0.33% 0.179 0.908 0.403 -0.351 0.155

Moving on to examine the results presented in TABLE IV, in the case of the VLCC tanker 

returns for tanker charters, the average VaR measures range between 0.385% for the 

RiskMetricsTM approach and 0.515% for the GARCHSK model, while the only model to pass 

the three statistical back-tests is the GARCHSK model. A similar patter can be found 

between the Suezmax and Aframax tanker returns for tanker charters, where the average VaR 

measures range between 0.2999% for the GARCH model and 0.561% for the GARCHSK 

model, in the case of the Suezmax tanker returns, and between 0.236% for the GARCH 

model and 0.418% for the GARCSK model, for the Aframax tanker returns. This being said, 

once again the only model to pass the three statistical back-tests is the GARCHSK model. 

Hence we find strong evidence that the GARCHSK model appears to be provide superior 

VaR measures for tanker charters, indicating that the inclusion of conditional higher moments 

in the estimation process reduces the overall exposure of tanker operators.
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We have therefore established that the unique interaction between the supply and demand 

functions in the tanker markets give rise to a situation where returns exhibit conditional 

higher moments. Following on from this, we find that, with the exception of the Suezmax
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TABLE IV: VALUE-AT-RISK RESULTS FOR TANKER CHARTERS

This table presents the comparison of VaR measures for a short position on  the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America).  measures denotes the average Ave VaR
99% VaR measure for tanker operators;  denotes the percentage of violations of the VaR measure;  denotes the likelihood Hit Ratio LRUC
ratio statistics for the unconditional coverage test (Kupiec, 1998), where critical value is 0.0002;  denotes the likelihood ratio statistics LRIN
for the independence tests, where the critical value is 0.0002; and  denotes the likelihood ratio statics for the conditional coverage test, LRCC
where the critical value is 0.0201;  denotes the respective expected shortfall; and  denotes the respective loss function. Finally, for ease ES LF
of reference, the loss function figures have been multiplied by 10 4, respectively.

Panel A: VaR Results for the VLCC Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.385 3.68% 0.000 0.052 0.000 0.502 16.664
GARCH 0.386 3.34% 0.001 0.034 0.001 0.530 14.484
GARCHSK 0.515 2.01% 0.124 0.592 0.265 0.645 7.487

Panel B: VaR Results for the SZMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.400 3.34% 0.001 0.382 0.004 0.560 5.591
GARCH 0.299 8.70% 0.000 0.023 0.000 0.392 18.697
GARCHSK 0.561 1.67% 0.287 0.651 0.512 0.702 1.249

Panel C: VaR Results for the AFMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.336 2.68% 0.016 0.189 0.023 0.544 13.519
GARCH 0.236 4.68% 0.000 0.224 0.000 0.444 20.234
GARCHSK 0.418 1.67% 0.287 0.651 0.512 0.680 6.676

tanker returns for tanker operators, the GARCHSK provides superior estimates of the VaR 

measure when compared to the more standard RiskMetricsTM and GARCH approaches. We 

therefore conclude that the failure to incorporate these conditional higher moments when 

estimating the VaR measure would lead to an underestimate of the ‘true’ VaR and therefore 

lead to market participants underestimating their true risk exposure.

5. Summary and Conclusion

Since the first use of ARCH and GARCH models (Engle, 1982; Bollerslev, 1986), it has been 

well established that the variance of price series, and therefore the inherent risk associated 

with these assets, is time varying (Engle, 1982; Bollerslev, 1986, Nelson, 1991). Given this, 

and the development of other approaches for measuring the conditional variance of financial 

assets, the VaR measure has been adopted by the Basel Committee, and consequently most 

regulators, as the standard method quantify market risk (Basel Committee on Banking 

Supervision, 2005). Consequently a vast stream of literature has looked at the performance of 

various VaR methods in the both the financial and more recently the shipping markets. This 



The Impact of Conditional Moments on Risk Measurement in 
the Tanker Freight Market

Paper ID: 177

IAME 2017 Conference, June 27-30, Kyoto, Japan  20

being said, the vast majority of these studies look at standard parametric approaches for 

estimating the VaR measure, which assume that returns follow a standard normal distribution.

This being said, given that financial data series have been established to be negatively 

skewed (Harvey and Siddique, 1999, 2000; Bekaert, et al, 1998) and exhibit excess kurtosis 

(Mandelbrot, 1963; Brooks, et al, 2005), the need to incorporate skewness and kurtosis into 

models of price series has now become well established (Harvey and Siddique, 1999; Peiró, 

1999; Brooks, et al, 2005). This has traditionally been accounted for by either using the 

Cornish-Fisher expansion technique (Cornish and Fisher, 1938; Christoffersen, 2012) to 

adjust the VaR measure or else by using a model that accommodates a skewed t-distribution 

to estimate the conditional variance (Angelidis and Skiadopoulos, 2008). This may be argued 

to be problematic in that Harvey and Siddique (1999, 2000) and Chen, et al (2001) all argue 

that stock series exhibit conditional skewness, while Brooks, et al (2005) argues that equity 

and bond indices exhibit conditional kurtosis and Léon, et al (2005) argue that exchange rates 

exhibit both conditional skewness and conditional kurtosis. Therefore, the traditional 

approach for determining the VaR measure may routinely severely underestimate the size and 

likelihood of extreme negative events given that use static measures, and therefore 

underestimate the true risk faced by market participants.

Tanker markets provide an interesting forum for this discussion in that they play a key role in 

the energy market supply chain and have a relatively unique interaction between the supply 

and demand functions, which indicates that the respective levels of skewness and kurtosis for 

these freight rates may be time-varying. This paper therefore extends the work of Bali, et al 

(2008), who investigated the role of conditional higher moments in the estimation of the 

conditional VaR measure, by examining whether the VaR measure for tanker freight returns 

is best estimated using the GARCHSK model, which incorporates these higher moments.

We examined this question by calculating the respective VaR measures for three different 

types of tanker vessels, namely VLCC, Suezmax and Aframax tankers, using the respective 

tanker returns over the period between 3rd October 2003 and 26th June 2009. We found that 

the GARCHSK model produced superior VaR measures, relative to the GARCH and 

RiskMetricsTM approaches, for both operators and charters of VLCC and Aframax tankesr  as 

well as Suezmax tanker charters. We therefore concluded that the unique interaction between 

the supply and demand functions in the tanker markets give rise to a situation where returns 

exhibit conditional higher moments. Following on from this, we find that, with the exception 

of the Suezmax tanker returns for tanker operators, the GARCHSK provides superior 

estimates of the VaR measure when compared to the more standard RiskMetricsTM and 

GARCH approaches. We therefore conclude that the failure to incorporate these conditional 
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higher moments when estimating the VaR measure would lead to an underestimate of the 

‘true’ VaR and therefore lead to market participants underestimating their true risk exposure.
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FIGURE I: THE SHORT-RUN MARKET EQUILIBRIUM FOR TANKER SHIPPING SERIVES

This figure outlines the interaction between the demand and supply functions for tanker shipping 
services. Within this trade, it is well documented that the demand for tanker ship is relatively price 
inelastic and predominately a derived demand, determined by the seaborne trade in crude oil and 
petroleum products (Stopford, 2009). In contrast, the supply function is fixed in the short-term due to the 
fact that it can take over three years to build a vessel, hence there is a delay between the ordering and 
delivery of a new vessel, which gives it this characteristic convex shape.
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TABLE I: CHARACTERISTICS OF THE TANKER FREIGHT RATE RETURNS

This table presents the descriptive statistics, unit root test results and Ljung-Box test results for the sample of weekly tanker freight rate 
returns between 13th January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 
270,000 deadweight tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); 
SZMX denotes the weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny 
(Nigeria) and Philadelphia (United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil 
on an 80,000 DWT Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America). Figures in parentheses 
correspond to the respective p-values.

Panel A presents the standard descriptive statistics, where the means and standard deviations are annualised figures.  denotes the test JB
statistic to the Jarque-Bera test for normality (Jarque and Bera, 1980), where the null hypothesis is that the data series follows a standard 
normal distribution.

Panel B presents the results from the Augmented Dickey-Fuller unit root test (Dickey and Fuller, 1981) and Phillips-Perron unit root tests 
(Phillips and Perron, 1988), where the null hypothesis for both these tests is that respective data series contains a unit root, i.e. is non-
stationary.

Panel C presents the results from the Ljung-Box tests (Ljung and Box, 1978) for conditional variance, conditional skewness and conditional 

kurtosis.  denotes the Ljung-Box statistical for the test of conditional variance at the 12th lag,  denotes the Ljung-Box statistical for the Q2 Q3

test of conditional skewness at the 12th lag, and  denotes the Ljung-Box statistical for the test of conditional kurtosis at the 12th lag.Q4

Panel A: Descriptive Statistics for the Tanker Freight Rate Returns
 VLCC SZMX AFMX

Observations 1,067 1,067 1,067

Mean -0.0220 -0.0061 -0.0035
Standard Deviation 0.8275 0.8450 0.7737

0.3136 0.5219 0.4825
Skewness

(0.0000) (0.0000) (0.0000)
8.4742 6.1804 8.2599

Kurtosis
(0.0000) (0.0000) (0.0000)

1349.7758 498.1428 1271.4249JB (0.0000) (0.0000) (0.0000)

Panel B: Unit Root Test Results for the Tanker Freight Rate Returns
 VLCC SZMX AFMX

-17.3909 -23.5310 -23.5432
Augmented Dickey-Fuller

(0.0000) (0.0000) (0.0000)
-31.0168 -35.2963 -37.6972

Phillips-Perron Test (0.0000) (0.0000) (0.0000)

Panel C: Ljung-Box Test Results for the Tanker Freight Rates
 VLCC SZMX AFMX

198.5400 144.5350 65.6150
Q2

(0.0000) (0.0000) (0.0000)
180.0870 42.9660 47.4400

Q4
(0.0000) (0.0000) (0.0000)
198.0810 33.5610 40.7600Q4
(0.0000) (0.0008) (0.0001)
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TABLE II: RESULTS FROM THE GARCH AND GARCHSK MODELS

This table presents the results from the models of conditional moments for the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America). Figures in parentheses correspond to the 
respective p-values. , and  denote the respective log-likelihoods, Akaike Information Criteria (Akaike, 1974) and Schwartz LL AIC SBIC
Bayesian Information Criteria (Schwartz, 1978), respectively. The results 

We present the results from he GARCH  model (Bollerslev, 1986), where(1,1)
                                                   σ2

t = β0 + β1ε2
t + β2σ 2

t - 1
(2)

In Expression ,  denotes the current conditional variance;  denotes the previous volatility reflecting the squared news about the (2) σ2
t ε2

t

return;  denotes the previous forecasted conditional variance;; and  denotes the weighted average of the constant long-run variance. σ 2
t - 1 ω

This is subject to the constraints that , which would otherwise imply explosive variance, and .ω + α + β = 1 α, β ≥ 0
We also present the results from the GARCHSK model (Léon, et al, 2005), where

                                                   σ2
t = β0 + β1ε2

t + β2σ 2
t - 1

(3)

                                                   st = γ0 + γ1ε3
t + γ2st - 1

(4)

                                                   kt = δ0 + δ1ε4
t + δ2kt - 1

(5)
In Expression ,  denotes the current conditional variance;  denotes the previous volatility reflecting the squared news about the (3) σ2

t ε2
t

return;  denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run variance. σ 2
t - 1 β0

In Expression , denotes the current conditional skewness;  denotes the previous skewness reflecting the cubed news about the return; (4) st ε3
t

 denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run skewness. Finally, st - 1 γ0

in Expression , denotes the current conditional skewness;  denotes the previous skewness reflecting the news about the return; and (5) kt ε4
t

 denotes the previous forecasted conditional variance; and  denotes the weighted average of the constant long-run skewness.kt - 1 δ0

VLCC SZMX AFMX
 GARCH GARCHSK GARCH GARCHSK GARCH GARCHSK

0.0001 0.0002 0.0000 0.0002 0.0013 0.0071β0 (0.0578) (0.0076) (0.1079) (0.0190) (0.0000) (0.0000)
0.0113 0.0750 0.0254 0.0939 0.0950 0.3791β1 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0932)
0.9410 0.9065 0.9741 0.8921 0.7943 0.0790β2 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.1966)

0.0446 0.1757 0.0000γ0 (0.0095) (0.0000) (0.9998)
0.0071 0.0098 0.0001γ1 (0.0829) (0.0165) (0.5577)
0.7663 0.4410 0.9981γ2 (0.0000) (0.0002) (0.0000)

6.0433 4.0561 3.8799δ0 (0.0000) (0.0001) (0.0409)
0.0346 0.0074 0.0007δ1 (0.0000) (0.0000) (0.0024)
0.1574 0.7018 0.7594δ2 (0.0598) (0.0000) (0.0000)

LL 959.4873 1935.5977 887.3473 1902.3519 905.8818 1908.6952

AIC -1.7908 -3.6228 -1.6554 -3.5606 -1.6902 -3.5725
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SBIC -1.7675 -3.6219 -1.6321 -3.5596 -1.6669 -3.5715

TABLE III: VALUE-AT-RISK RESULTS FOR TANKER OPERATORS

This table presents the comparison of VaR measures for a long position on  the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America).  measures denotes the average Ave VaR
99% VaR measure for tanker operators;  denotes the percentage of violations of the VaR measure;  denotes the likelihood Hit Ratio LRUC
ratio statistics for the unconditional coverage test (Kupiec, 1998), where critical value is 0.0002;  denotes the likelihood ratio statistics LRIN
for the independence tests, where the critical value is 0.0002; and  denotes the likelihood ratio statics for the conditional coverage test, LRCC
where the critical value is 0.0201;  denotes the respective expected shortfall; and  denotes the respective loss function. Finally, for ease ES LF
of reference, the loss function figures have been multiplied by 10 4, respectively.

Panel A: VaR Results for the VLCC Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.385 0.67% 0.54 0.841 0.813 -0.433 0.149
GARCH -0.386 0.67% 0.54 0.841 0.813 -0.433 0.149
GARCHSK -0.447 0.67% 0.54 0.841 0.813 -0.433 0.149

Panel B: VaR Results for the SZMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.400 0.00% N / A N / A N / A N / A N / A
GARCH -0.299 2.68% 0.016 0.481 0.043 -0.282 0.484
GARCHSK -0.482 0.00% N / A N / A N / A N / A N / A

Panel C: VaR Results for the AFMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM -0.336 0.33% 0.179 0.908 0.403 -0.278 0.975
GARCH -0.236 2.68% 0.016 0.481 0.043 -0.288 0.790
GARCHSK -0.378 0.33% 0.179 0.908 0.403 -0.351 0.155
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TABLE IV: VALUE-AT-RISK RESULTS FOR TANKER CHARTERS

This table presents the comparison of VaR measures for a short position on  the sample of weekly tanker freight rate returns between 13th 
January 1989 and 26th June 2009. VLCC denotes the weekly freight rate returns for the transportation of crude oil on a 270,000 deadweight 
tonne (DWT) Very Large Crude Carrier tanker between Ras Tanura (Saudi Arabia) and Rotterdam (Netherlands); SZMX denotes the 
weekly freight rate returns for the transportation of crude oil on a 130,000 DWT Suezmax tanker between Bonny (Nigeria) and Philadelphia 
(United States of America); and AFMX denotes the weekly freight rate returns for the transportation of crude oil on an 80,000 DWT 
Aframax tanker between Sullom Voe (United Kingdom) and Bayway (United States of America).  measures denotes the average Ave VaR
99% VaR measure for tanker operators;  denotes the percentage of violations of the VaR measure;  denotes the likelihood Hit Ratio LRUC
ratio statistics for the unconditional coverage test (Kupiec, 1998), where critical value is 0.0002;  denotes the likelihood ratio statistics LRIN
for the independence tests, where the critical value is 0.0002; and  denotes the likelihood ratio statics for the conditional coverage test, LRCC
where the critical value is 0.0201;  denotes the respective expected shortfall; and  denotes the respective loss function. Finally, for ease ES LF
of reference, the loss function figures have been multiplied by 10 4, respectively.

Panel A: VaR Results for the VLCC Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.385 3.68% 0.000 0.052 0.000 0.502 16.664
GARCH 0.386 3.34% 0.001 0.034 0.001 0.530 14.484
GARCHSK 0.515 2.01% 0.124 0.592 0.265 0.645 7.487

Panel B: VaR Results for the SZMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.400 3.34% 0.001 0.382 0.004 0.560 5.591
GARCH 0.299 8.70% 0.000 0.023 0.000 0.392 18.697
GARCHSK 0.561 1.67% 0.287 0.651 0.512 0.702 1.249

Panel C: VaR Results for the AFMX Series
Ave VaR Hit Ratio LRUC LRIN LRCC ES LF

RiskMetricsTM 0.336 2.68% 0.016 0.189 0.023 0.544 13.519
GARCH 0.236 4.68% 0.000 0.224 0.000 0.444 20.234
GARCHSK 0.418 1.67% 0.287 0.651 0.512 0.680 6.676


