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Abstract 

Replication stress, a hallmark of pre-cancerous and cancerous lesions, is 

characterised by the slowing or stalling in replication fork progression and the 

consequent failure to preserve genomic stability. ZFP36L1, a member of the ZFP36 

family of CCCH tandem zinc finger (ZF) proteins, is an RNA-binding protein that plays 

a crucial role in the post-transcriptional regulation of gene expression underlying 

physiological processes and pathological diseases. Recent evidence has revealed 

that ZFP36L1, is significantly mutated or downregulated in certain human cancers, 

and exhibits tumour-suppressive properties across various cancer cell types. 

However, the precise molecular link between ZFP36L1 and cancer, particularly from 

the angle of genomic stability, remains poorly elucidated. Here, we report a novel role 

for ZFP36L1, characterised in human U2OS and U2OS H2B-GFP osteosarcoma cells, 

in suppressing replication stress-induced genomic instability. We found that, 

CRISPR/Cas9-mediated knockout of ZFP36L1 resulted in increased chromosome 

segregation defects including anaphase bridges, chromosome laggards and 

micronuclei formation, even in the absence of exogenous replication stress. Moreover, 

ZFP36L1-deficient cells exhibited an elevated accumulation of γH2AX, 53BP1 nuclear 

bodies (NBs) and RPA, which indicated an active role for ZFP36L1 in limiting 

replication stress-induced DNA damage. Furthermore, we demonstrated an 

unanticipated function for ZFP36L1 in potentially suppressing the expression of 

common fragile sites (CFSs) in response to replication stress, reflected by the 

increased mitotic CFS-characteristic chromosomal aberrations and MiDAS events at 

CFS loci observed in cells deficient in ZFP36L1. Finally, we also showed that a 

CRISPR/Cas9-mediated truncation in ZFP36L1, carrying a compromised lead-in 
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sequence to its first ZF-domain, resulted in increased replication stress-associated 

phenotypes, similar to that of a ZFP36L1-knockout. Taken together, our data reveal, 

for the first time, a role for ZFP36L1 in contributing to the protection of genomic 

integrity against replication stress. 
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1 Introduction 

The central dogma of molecular biology describes the basic framework by which 

genetic information is converted from DNA to RNA (mRNA), and from RNA into a 

functional protein, which ultimately dictates the function of living cells (Crick, 1970). 

This biological process, denoted as gene expression, is tightly regulated at every stage 

by a diverse range of cellular pathways and regulatory proteins that control the nature 

and amount of proteins expressed. RNA-binding proteins (RBPs) comprise a large 

class of more than 1,500 proteins that potently and ubiquitously control all aspects of 

mRNA biology, and are critical effectors of gene expression (reviewed in, Corley, 

Burns and Yeo, 2020). RBPs play crucial roles in regulating RNAs at the post-

transcriptional level, by binding to mRNA transcripts using their characteristic RNA 

binding domains (Gerstberger, Hafner and Tuschl, 2014). The ZFP36 family is one 

class of RBPs that tightly regulates mRNA stability as part of their post-transcriptional 

control function (Blackshear, 2002; Murphy, Baou and Jewell, 2009). The functional 

role of the ZFP36 family members has been widely implicated in a numerous range of 

physiological and pathological processes. Recently, various RBPs including, members 

of the ZFP36 family, have emerged as key players in the preservation of genomic 

integrity. Failure of these pathways contributes to the development of genomic 

instability, a hallmark of cancer (Hanahan and Weinberg, 2011).  
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1.1 RNA-binding Proteins 

Gene regulation control by transcriptional and post-transcriptional mechanisms is 

crucial to sustaining RNA processing at multiple levels including maturation, stability, 

transport, cellular localisation and translation efficiency. At a molecular level, these 

processes are mediated by the formation of large multimeric ribonucleoprotein (RNP) 

complexes coalesced by RNA-binding proteins (RBPs) (Gerstberger, Hafner and 

Tuschl, 2014). The dynamic formation of these mRNA-coated RBPs structures 

determines all aspects of RNA fate by regulating transcription, splicing, 5’ capping, 

polyadenylation, decay and in turn, protein turnover (Müller-Mcnicoll and Neugebauer, 

2013). Developments in cell biological research complemented by high-throughput 

genome-wide studies have uncovered diverse binding ranges of RBPs and revealed 

that RBPs could also act as scaffold proteins that recruit additional proteins to modify 

RNP composition in accordance with nascent mRNAs stage and locale (Keene, 2007; 

Änkö and Neugebauer, 2012; Ascano et al., 2012). By associating with different 

complexes, RBPs can therefore critically modulate gene expression in a spatial and 

temporal-based manner throughout the life-cycle of mRNA transcripts.   

 

It is estimated that out of the 20,000 mammalian protein-coding genes, over 1,500 

(7.5% of the proteome) have been curated as RBPs that encompass canonical RNA-

binding domains (RBDs) or characteristic domains with RNA-related functions 

(Gerstberger, Hafner and Tuschl, 2014). RBPs have been categorised into different 

families based on their evolutionarily conserved RNA-binding motifs that enable them 

to bind to RNAs in a sequence or structure-specific manner (Ray et al., 2009, 2013).  

A limited set of well-defined structural motifs have been reported to orchestrate this 

interaction and accommodate large structural diversity, allowing broader interactions 
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of these proteins. Among them are included, the RNA recognition motif (RRM), double-

stranded RNA binding motif (dsRBM), K-homology (KH) domain, cold-shock domain 

(CSD), DEAD-box helicase motif, RGG (Arg-Gly-Gly) box and Zinc Finger (ZF) domain 

(Figure 1.1) (Lunde, Moore and Varani, 2007). Through the use of these RNA-binding 

motifs, RBPs can interact with target mRNAs at 5’ and 3’ untranslated regions (UTRs) 

as well as coding and non-coding regions (Lunde, Moore and Varani, 2007).  

Furthermore, RBPs can embody combinations of multiple RBDs, conferring additional 

expansion and flexibility for mRNA interaction and specificity (Corcoran et al., 2011). 

In addition, RBDs from multiple proteins can cooperate through weak protein-protein 

interactions and define their RNA specificity (Glisovic et al., 2008). Interestingly, 

several candidate RBPs, particularly with zinc finger binding domains, have been 

shown to recognise both RNA and DNA through similar residues, but with different 

structural interactions formed on the nucleic acid template (Lu, Searles and Klug, 

2003). These observations suggested that in addition to mRNA binding, RBPs can, in 

certain circumstances, also exert DNA-binding activities, further emphasising their 

versatile nature.  
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Figure 1.1. Modular structure of RNA-binding proteins (RBPs). 
Representative examples of some of the most common RNA-binding domains (RBDs) 
present in various RBPs. RBDs mediate the interaction between RBPs and RNAs in a 
sequence-specific manner. The combination of different RBDs in a single RBP confers 
further expansion and flexibility for RBP-mRNA association and promotes a myriad of 
various regulatory events. Different domains are schematically illustrated in coloured boxes 
and include: KH (K-Homology) domain, orange; RNA-recognition motif (RRM, the most 
common RBD), green; RGG (Arginine-glycine-glycine) motif, yellow; CSD (Cold-Shock-
Domain), blue; Zinc Finger (ZF) domain of the CCHC type, pink; ZF of the CCCH type, red. 
Different RBPs conferring various RBDs are represented according to their aa (amino acid) 
length. Adapted from Pereira, Billaud and Almeida (2017).  
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1.2 RBPs in Controlling Key Physiological Processes 

Due to their abundance and diverse interactions, RBPs can exert a multitude of 

functional roles in the control of gene expression and other physiological processes. 

Thus, appropriate function of RBPs is vital for the coordination of these intricate 

dynamic complexes, and perturbation in their regulation has been implicated in a wide 

range of diseases and disorders (Gerstberger, Hafner and Tuschl, 2014). Due to their 

high expression in the brain, altered levels of RBPs that impact RNA metabolism in 

motor neurons have been frequently demonstrated to result in neurodegenerative and 

neuromuscular diseases (Lukong et al., 2008; Cooper, Wan and Dreyfuss, 2009). For 

example, mutations in heterogeneous nuclear RNPs (hnRNPs; hnRNPA2 and 

hnRNPA1) have been implicated in the degenerative disease amyotrophic lateral 

sclerosis (ALS) (Kim et al., 2013). Aberration in the splicing pattern of snRNP 

assembly factor survival motor neuron 1 (SMN1) was shown to be directly linked to 

muscular diseases such as myotonic dystrophy (Cooper, Wan and Dreyfuss, 2009). 

Additionally, modifications in splicing patterns have been revealed to disrupt 

cardiomyocyte function. For example, suppressed levels of several splicing factors 

such as SRSF4 and SRSF5 were found to be correlated with high levels of ejection 

fraction (EF), the volumetric fraction of blood ejected from the heart chambers in each 

contraction, which could precede heart dysfunction (De Bruin et al., 2017). Moreover, 

the importance of RBPs in immune cell development and function has also been well-

described (reviewed in, Turner and Hodson, 2012; Newman, McHugh and Turner, 

2016; Díaz-Muñoz and Turner, 2018).  To name a few, the RBP ELVAL1 (also known 

as HuR) facilitates B-cell antibody response and T-cell development in the bone 

marrow and thymus, respectively (Papadaki et al., 2009; Diaz-Muñoz et al., 2015). 

Loss of function in selected members of the hnRNP and SRSF RBP family was 
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revealed to be associated with significant deficiencies in haematopoiesis and 

myelodysplastic syndromes (Komeno et al., 2015; Fang et al., 2017). Furthermore, 

RBPs have also been shown to majorly contribute to pleiotropic functions (Van 

Nostrand et al., 2017) as well as autoimmune and inflammatory-related diseases 

(reviewed in, Newman, McHugh and Turner, 2016). Lastly, but importantly, RBPs are 

currently emerging as fundamental players in the development and progression of 

tumourigenesis (reviewed in, Pereira, Billaud and Almeida, 2017). Indeed, aberrant 

expression of several RBPs has been widely detected in a variety of cancers including 

breast, prostate and colorectal cancer (Kechavarzi and Janga, 2014). Since their 

function is associated with a plethora of mRNA targets and various biological 

processes, RBPs can therefore impact all aspects of cancer development and 

progression including, but not limited to, sustained cell growth and proliferation, 

evasion of apoptosis, stimulating invasion and metastasis and evading immune 

surveillance (reviewed in, Pereira, Billaud and Almeida, 2017).  

 

The abundance of RBPs and their scaffolding ability to form a vast intricate network of 

interactions between targeted mRNAs and proteins provide them with an exquisite 

capacity to mediate a myriad of biological processes. This incredible functional 

repertoire reflects the significance of furthering our understanding of the global 

regulatory network governed by RBPs. Despite the increasing data collected on RBPs, 

many questions, particularly concerning their molecular roles in human disease, 

remain to be answered.  
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1.3 The ZFP36 Family of RBPs  

The 12-O-tetradecanoylphorbol-13-acetate (TPA) inducible sequence 11 (TIS11) 

family of proteins consist of four RBPs which tightly regulate mRNA stability as part of 

their post-transcriptional control function (reviewed in, Murphy, Baou and Jewell, 

2009). These include ZFP36 (TIS11, TTP, Nup475, GOS24), ZFP36L1 (Tis11b, 

Berg36, ERF-1, BRF-1), and ZFP36L2 (Tis11d, ERF-2, BRF-2) (Table 1) (reviewed 

in, Blackshear, 2002; Murphy, Baou and Jewell, 2009). A fourth family member, 

ZFP36L3, has been identified in mouse placenta and yolk sac but not in human 

placenta or other human tissues (Blackshear et al., 2005). ZFP36 homologues have 

also been described in drosophila and yeast (Ma et al., 1994; Ma and Herschman, 

1995). The ZFP36 family of proteins display a high level of conservation across 

species with direct orthologues reported in all vertebrates with the single exception of 

birds, which appeared to lack a sequence that corresponded to ZFP36 (Lai et al., 

2013; Blackshear and Perera, 2014).  

1.3.1 Identification of Human ZFP36 Family Members 

Located on chromosome 19q13.1, the prototype Tristetrapolin (TTP) encoded by the 

ZFP36 (zinc finger protein 36) gene in humans was originally described as an 

immediate early-response gene induced by tumour-promoting phorbolesters (TPA) 

and by growth factors; insulin and serum, in fibroblasts and other cell types (DuBois 

et al., 1990; Lai, Stumpo and Blackshear, 1990; Ma and Herschman, 1991). Its 

function remained ambiguous until a study on a ZFP36 knockout (KO) mouse model 

was conducted (Carballo et al., 1996).  ZFP36-deficient mice were found to exhibit 

severe inflammatory syndromes characterised by myeloid hyperplasia, erosive 

arthritis and autoimmunity, caused by excess tumour necrosis factor (TNF)  (Carballo 

et al., 1996). Further ZFP36-KO mice-based studies subsequently showed ZFP36 
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deficiency to be associated with increased levels of macrophage-derived TNF mRNA 

and protein in response to lipopolysaccharide treatment (Carballo et al., 1997). 

Elevated TNF mRNA and protein levels were later found to result as a consequence 

of increased TNF mRNA stability, and ZFP36 was revealed to directly bind to TNF 

mRNA and promote mRNA destabilisation (Carballo, Lai and Blackshear, 1998).  

The second member of the human ZFP36 family, zinc finger protein 36-like 1 

(ZFP36L1) is located on chromosome 14q24.1 (Pospisilova et al., 2007).  ZFP36L1 

was initially isolated from chronic lymphocytic leukaemia (CLL) B cells that were 

stimulated by TPA to undergo plasmacytoid differentiation, from human cDNA 

libraries, and was described to function as an early-response gene to stimulated B 

cells (Murphy and Norton, 1990; Bustin et al., 1994; Ning et al., 1996). As for the third 

member, human zinc finger protein 36-like 2 (ZFP36L2) is positioned on chromosome 

2 p22.3-p21. ZFP36L2 was first identified in murine cells also as an early-response 

gene and was later isolated from cDNA libraries probed with the mouse ZFP36L2 

mRNA (Varnum et al., 1991; Nie et al., 1995; Maclean, McKay and Bustin, 1998).  

 

Table 1. The ZFP36 family of RBPs. 

Gene Other Names Chr. Location Size (kDa) 

ZFP36 TIS11, TTP, Nup475, GOS24 19q13.1 34 

ZFP36L1 Tis11b, Berg36, ERF-1, BRF-1 14q24.1 36.3 

ZFP36L2 Tis11d, ERF-2, BRF-2 2p22.3-p21 51 
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Sequence analysis of each of the ZFP36 members displays minimal variation between 

human individuals, with the majority of polymorphisms identified in the promoter, intron 

and 3’ untranslated regions (UTR) (Blackshear et al., 2003). Initial work had detected 

thirteen polymorphisms in the protein-coding regions of all members of the ZFP36 

genes, and six of these led to amino acid changes (Blackshear et al., 2003). A single 

nucleotide polymorphism (SNP) in ZFP36L1 was found to generate a dinucleotide 

substitution that prevented complete splicing within the protein-coding region of 

ZFP36L1 (Blackshear et al., 2003). Although this had resulted in a 50% decrease in 

ZFP36L1 mRNA expression in lymphoblasts, most of these gene variants’ functional 

implications are not yet known (Blackshear et al., 2003). Further studies identified 

additional polymorphisms in the protein-coding domain of ZFP36, whereby a single 

SNP (C to T modification), was found to be associated with rheumatoid arthritis in 

African-Americans (Carrick et al., 2006). Another gene polymorphism (A>G; ZFP36*2) 

detected in ZFP36, was shown to be significantly associated with poor prognosis of 

breast cancer in Caucasian patients (Upadhyay et al., 2013). Further, a C/T SNP in 

ZFP36L1 was also linked to multiple sclerosis (Gourraud et al., 2012).  

 

Human ZFP36, ZFP36L1 and ZFP36L2 are all widely expressed across normal tissue 

types. Comparative analysis of quantitated endogenous mRNA levels of the human 

ZFP36 family members showed all three members to be differentially expressed in a 

variety of human tissues (Figure 1.2) (Carrick and Blackshear, 2007). ZFP36 (TTP) 

and its variants were reported to be expressed at low levels in testicles, stomach, liver 

and spleen, with higher levels detected in ovary, bladder, lung and cervical tissues 

(Carrick and Blackshear, 2007). Further, mRNA levels were also found to vary in 

expression between the three individual members in specific tissue types. For 
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example, ZFP36 transcript was expressed in lower levels in the thymus compared to 

the higher levels expressed by ZFP36L1 and ZFP36L2 mRNA transcripts. The highest 

level of ZFP36 transcript was found in cervical tissue, while ZFP36L1 and ZFP36L2 

transcripts exhibited the highest levels in the lung and thymus, respectively (Carrick 

and Blackshear, 2007). Interestingly, immunoblot analysis from our laboratory has 

also showed differential expression of ZFP36L1 protein across human cancer cell 

lines.  Indeed, we observed ZFP36L1 protein to be least expressed in cervical cancer 

cells (HeLa) compared to its moderate and high expression in breast (MCF-7) and 

osteosarcoma (U2OS) human cancer cell lines, respectively (conducted by Dr 

Kalpana Surendranath (2016), University of Westminster; unpublished data). 

 

 

Figure 1.2. Expression levels of mRNA transcripts of members of the ZFP36 family of 
RBPs extracted from normal human tissues.  
Level of mRNA transcripts was measured using Real-time PCR of cDNAs from the indicated 
human tissues samples. Expression of mRNA transcripts varies amongst individual 
members of the ZFP36 family of RBPs, and is presented in ascending order. Figure is 
adapted from Carrick and Blackshear (2007). TTP: ZFP36.  
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1.3.2 Structure of the ZFP36 Family Members 

A defining characteristic shared between members of the ZFP36 family proteins is the 

presence of two putative tandem zinc finger (ZF) domains, consisting of a 64-amino 

acid sequence, which has been established as the structural motif that mediates direct 

binding to mRNA transcripts (Figure 1.3) (Lai, Kennington and Blackshear, 2002; 

Blackshear et al., 2003; Brewer et al., 2004). All three members of the ZFP36 family 

contain two highly-conserved tandemly repeated ZF domains of the CCCH class, 

characterised by strict internal spacing between the cysteines and histidines in the 

zinc-binding residues (CX8CX5CX3H; X represents variable amino acid) that are 

preceded by a (R/K) YKTEL motif and connected by an 18- amino acid residue linker 

(Figure 1.4) (Lai et al., 2000). The binding of ZFP36 proteins to their target mRNA 

transcripts stringently relies on the integrity of the CCCH residues of the two ZF 

domains, which correspond to the critical function of these RBPs (Lai et al., 2000). In 

this regard, a single-point mutation of any of the eight cysteines or histidines 

responsible for coordinating the zinc ions in either of the two ZFDs completely 

abrogates RNA binding (Lai et al., 2000). This was initially described in ZFP36, where 

a single mutation (cysteine to arginine) in any of the ZFDs completely attenuated 

ZFP36 binding to the mRNA transcript of tumour necrosis-alpha (TNF-α), a major 

target of ZFP36 (Lai et al., 1999). More recent studies reported similar effects in 

ZFP36L1 and ZFP36L2 in which mutations in the ZF domains appeared to negatively 

affect the proteins destabilising activity on its mRNA targets (Iwanaga et al., 2011; Suk 

et al., 2018).  
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Figure 1.3. Schematic representation of the zinc finger domains of members of the 
ZFP36 family.  
All three members of the ZFP36 family of RBPs contain two putative zinc finger domains that 
mediate ZFP36 family-binding to mRNA transcripts. (A) The ZF domains of the CCCH class, 
consists of 64 amino acids with cysteines and histidines residues (red) contributing to the co-
ordination of the Zn 2+ ions in each ZF. Schematic adapted from Brewer et al. (2004). (B) 3D 
amino acid structure of ZFP36L1 showing the highly conserved ZFD 1 and 2 (blue) with its 
lead-in RYKTEL and KYKTEL sequences indicated.  Adapted from Swiss Model Repository; 
A0A024R658.  
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The ZF-binding domains shared amongst these proteins share a high sequence 

identity; ZFP36L1 and ZFP36L2 ZF domains are 91% identical, while ZFP36L1 ZF 

domain is 71% identical to that of ZFP36 (Figure 1.4) (Morgan, Deveau and Massi, 

2015). Thus, the structures within the motifs are preserved between the ZFP36 family 

members and the surface residues involved in interactions with other molecules 

contribute to individual variability. In addition to the shared tandem ZF binding-

domains, ZFP36 proteins also have other characteristics in common; leucine-rich 

nuclear export sequences, which allow shuttling of the proteins out of the nucleus; 

subject to post-translational modification via high levels of phosphorylation; and similar 

mechanisms in their post-transcriptional control of target mRNA stability (Carrick and 

Blackshear, 2007). Although these proteins encompass key differences in their cell 

and tissue-specific regulated expression pattern or interactions with different proteins, 

ZFP36 and its two related proteins may sometimes overlap in their functions due to 

these similarities (Carrick and Blackshear, 2007). 
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Figure 1.4. Structural similarities in the zinc finger binding domains of the ZFP36 
family.  
Amino acid sequence of the highly-conserved tandem ZF domains of the CCCH-class of 
each of the ZFP36 family members. The ZF domains are characterised by highly strict 
internal spacing between the cysteines and histidines in the zinc binding residues, that are 
preceded by a (R/K) YKTEL motif and connected by an 18- amino acid residue linker. The 
ZFP36 ZF domain shares a 71% sequence identity with that of ZFP36L1, while ZFP36L1 
ZF domain sequence is 91% identical to that of ZFP36L2. Schematic adapted from Ciais, 
Cherradi and Feige (2013).  

 

1.3.3 The ZFP36 Family in Post-transcriptional Gene Regulation 

Post-transcriptional control of mRNA stability is vital for the regulation of gene 

expression and protein turnover. Using their ZF structural motifs, the ZFP36 family of 

RBPs bind to cis-acting Adenine-Uridine rich elements (ARE) in the 3’ untranslated 

regions (UTR) of sets of mRNAs and subsequently mediate mRNA decay (reviewed 

in, Murphy, Baou and Jewell, 2009; Baou, Norton and Murphy, 2011). This preference 

of ARE-binding was first described from work that showed the prototype ZFP36 to 

prevent TNF-α production from macrophages via mRNA degradation by direct binding 

to the ARE region in TNF-α transcript (Carballo, Lai and Blackshear, 1998). Later 

studies found that the optimal nonameric consensus sequence required for mRNA 

binding by the ZFs is; UUAUUUAUU, though a few variations of this RNA sequence 
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can also allow strong affinity binding (Worthington et al., 2002; Blackshear et al., 2003; 

Brewer et al., 2004; Lai, Carrick and Blackshear, 2005).  

The significance of these ARE regions in the 3’ UTR of certain mRNAs is apparent in 

their prevalence, which is currently estimated to occur in up to 10% of the human 

transcriptome (Bakheet, Williams and Khabar, 2006). Following their interaction with 

AREs, ZFP36 proteins mediate their effect on mRNA degradation first by promoting 

mRNA deadenylation (poly-A shortening) through the recruitment of mRNA decay 

enzyme complexes (reviewed in, Murphy, Baou and Jewell, 2009; Khabar, 2017). 

Although the precise molecular mechanisms with respect to how these proteins 

interact with the deadenylase machinery are not yet fully understood, several 

transacting elements involved in this process have been reported (Lai, Kennington 

and Blackshear, 2003; Fenger-Grøn et al., 2005; Lykke-Andersen and Wagner, 2005).  

ZFP36 and ZFP36L1 were shown to associate with the Ccr4/Caf1/Not deadenylase 

(CCR4-NOT) complex and recruit decapping enzymes (hDcp1 and hDcp2), 5’-3’ 

exonuclease (hXrn1) and exosome element (hRrp4) through the N-terminal domain, 

and this interaction results in the decay of mRNA targets (Lykke-Andersen and 

Wagner, 2005).  The interaction of ZFP36 with hDcp1 and XRN1 was also consistently 

shown in a separate study (Hau et al., 2007). ZFP36-dependent deadenylation was 

also described to occur through the activity of PolyA specific ribonuclease (PARN) 

complex in an indirect manner (Chen et al., 2001). In this study, ZFP36 was shown to 

recruit a multicomponent exosome complex with 3’-5’ exonuclease activity to promote 

mRNA degradation in ARE-containing poly-deadenylated mRNAs (Chen et al., 2001). 

Exosome components involved in this process were also reported and included hRrp4, 

hRrp40, hRrp41 hRrp43, hRrp46, hCsl4 and hMtr3 (Chen et al., 2001). In a simplified 

outline, the ZFP36 family of proteins are proposed to mediate their destabilising effect 
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on mRNAs firstly through deadenylation directly or indirectly by recruiting NOT1 or 

PARN, respectively. Deadenylated-mRNAs can then take the route of 3’- 5’ or 5’- 3’ 

decay pathway facilitated by exonuclease activity via exosome or XRN1 recruitment, 

respectively (Figure 1.5). Altogether, the ZFP36 family of proteins serve as a molecular 

link between ARE-containing targeted mRNAs and decay pathways, implicating their 

importance in post-transcriptional gene regulation.  
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Figure 1.5. Schematic on the mechanism of post-transcriptional ARE-mRNA decay 
mediated by the ZFP36 family. 
ZFP36 protein binds to AU-rich sequence in the 3’-UTR of targeted mRNA transcripts and 
triggers mRNA deadenylation through the recruitment of deadenylases directly (CCR4-NOT 
complex) or indirectly (PARN). Deadenylated mRNA transcripts can be degraded via the 
recruitment of a multiprotein exosome complex that facilitates 3’ to 5’ mRNA decay. 
Alternatively, deadenylated mRNA transcripts can undergo decapping, catalysed by 
decapping enzymes such as Dcp1 and Dcp2, which promotes 5’ to 3’ mRNA decay catalysed 
by XRN1 exonuclease. ORF, Open Reading Frame. Figure adapted from Murphy, Baou and 
Jewell (2009).  
 

1.3.4 Post-translational Regulation of ZFP36 Proteins Via Phosphorylation 

Post-translational control through phosphorylation of the ZFP36 family members is a 

crucial feature that enables these proteins to function as mRNA decay factors. Multiple 

studies have demonstrated that this post-translational modification can affect various 
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aspects of their RBP function (reviewed in, Brooks and Blackshear, 2013). A critical 

factor in which phosphorylation regulates the activity of the ZFP36 family members is 

through a multifunctional protein complex (14-3-3) that consists of a set of functionally 

diverse adaptor proteins that interact with other partner proteins containing 

phosphorylated residues, facilitating changes to RBP expression, function and 

localisation (reviewed in, Mackintosh, 2004). ZFP36 activity was shown to be 

controlled by phosphorylation on a number of residues including two conserved serine 

residues (Ser52 and Ser178 in mouse and Ser60 and Ser180 in human) by p38-

MAPK2-activated protein kinase 2 (MK2) (Chrestensen et al., 2004). Upon 

phosphorylation, these serine residues act as substrates and recruit 14-3-3 adaptor 

proteins that bind to ZFP36 and inhibits its mRNA decay destabilising effects 

(Chrestensen et al., 2004; Stoecklin et al., 2004). In fact, phosphorylation of ZFP36 by 

p38-MK2 was also shown to impair its mRNA decay function by preventing the 

recruitment of CCR4-NOT deadenylase complex (Figure 1.6) (Clement et al., 2011). 

Based on these findings, binding of the 14-3-3 protein complex to ZFP36 was 

postulated to impair deadenylation by inhibiting the recruitment of deadenylase 

(Clement et al., 2011). ZFP36 was also identified as a downstream target of 

phosphorylation by a number of other major signalling pathways such as ERK MAPK, 

GSK3β, JNK, PKA, PKB/AKT, and PKC pathways (Carballo et al., 2001; Mahtani et 

al., 2001; Cao, Dzineku and Blackshear, 2003; Cao, 2004; Chrestensen et al., 2004; 

Cao, Deterding and Blackshear, 2007).  

Moreover, several phosphorylation sites located within the conserved sequence 

regions in ZFP36L1 and ZFP36L2 have also been reported (Appendix A) (reviewed 

in, Cao, Deterding and Blackshear, 2007).  Accordingly, ZFP36L1 was revealed to be 

phosphorylated by MK2 and protein kinase B (PKB/AKT) signalling pathways 
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(Schmidlin et al., 2004; Benjamin et al., 2006; Maitra et al., 2008). ZFP36L1 was 

demonstrated to undergo phosphorylation by the MK2 pathway at serine residues, 

Ser54, Ser92 and Ser203 and at an unidentified site at the C-terminus, which 

subsequently resulted in the inhibition of its mRNA decay activity (Maitra et al., 2008).  

However, this did not appear to affect the ability of ZFP36L1 to bind to mRNA-AREs 

and recruit mRNA decay enzymes (Maitra et al., 2008). Additionally, phosphorylation 

of ZFP36L1 at Ser92 was shown to be mediated by the protein kinase B (PKB/AKT) 

pathway which resulted in ZFP36L1 binding to the 14-3-3 protein complex and 

impairment of ZFP36L1 mRNA decay activity on one of its ARE-containing mRNA 

targets (IL-3), also without affecting it’s ARE-binding activity (Schmidlin et al., 2004). 

In cooperation with Ser92, another regulatory site at Ser203 of ZFP36L1 was 

additionally reported to be phosphorylated by the PKB pathway, which abrogated 

mRNA degradation (Benjamin et al., 2006). Further, the C-terminal regions of 

ZFP36L1 and ZFP36L2 were reported to be directly phosphorylated by p90 ribosomal 

S6 kinase, a kinase downstream of MAPK/ERK pathway, which prevented the 

recruitment of the CCR4-NOT-deadenylase complex and inhibited the proteins 

destabilizing activity on low-density lipoprotein receptor (LDLR) target mRNA (Adachi 

et al., 2014). 

While the signal-dependent activation of the p38-MAPK pathway inhibits ZFP36 

family-mediated mRNA decay, the serine-threonine phosphatase, PP2A, was shown 

to contrastingly facilitate the de-phosphorylation of ZFP36 (Sun et al., 2007). In turn, 

this activity permits ZFP36 to resume its function in targeting mRNA transcripts for 

degradation and limiting mRNA expression levels (Figure 1.6) (Sun et al., 2007). Thus, 

post-translational modification of the ZFP36 proteins through phosphorylation can 
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greatly impact their RBP function at multiple levels, indicating the significance of such 

processes.  

 

 

Figure 1.6. Phosphorylation of ZFP36 family members impairs mRNA degradation 
through the inhibition of deadenylase recruitment.  
Phosphorylation of ZFP36 at Serine (Ser) residues by p38-MAPK2-activated protein kinase 2 
(MK2) triggers the recruitment of the 14-3-3 protein complex. 14-3-3 adaptor proteins bind to 
ZFP36 and prevent the downstream recruitment of CCR4-NOT complex deadenylase, 
inhibiting ZFP36-mediated mRNA decay. In contrast, PP2A phosphatase promotes de-
phosphorylation of ZFP36, allowing it to resume its regulatory role in post-transcriptional 
mRNA destabilisation. 
 
 
1.3.5 Subcellular Localisation of the ZFP36 Family Members 

All three members of the ZFP36 family contain a nuclear localisation signal and 

nuclear export sequences between the two tandem ZF domains and N-terminus 

(ZFP36) or C-terminal (ZFP36L1 and ZFP36L2), respectively, which enable them to 
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shuttle between the nucleus and the cytoplasm (Phillips, Ramos and Blackshear, 

2002). Initial studies had identified ZFP36 as a nuclear protein in fibroblasts and that 

its nuclear export to the cytosol was stimulated by serum and other mitogen factors 

(DuBois et al., 1990; Taylor et al., 1995; Taylor et al., 1996). Later studies with 

contrasting observations then demonstrated ZFP36’s subcellular localisation to be in 

the cytosol in multiple cell types including, macrophages and leukocytes, and defined 

ZFP36 as an almost exclusively cytoplasmic protein (Carballo, Lai and Blackshear, 

1998; Brooks et al., 2002; Fairhurst et al., 2003). However, parallel work described 

ZFP36 to encompass nucleocytoplasmic shuttling properties as it was detected in the 

nucleus as well as in the cytoplasm of COS-7 cells (Murata et al., 2002). This nuclear 

export activity of ZFP36 was also found to be mediated by CRM1 (nuclear export 

receptor) and was dependent on a Leucine-rich N-terminal region that appeared to 

serve as an LMB-sensitive nuclear export signal (NES) (Murata et al., 2002; Phillips, 

Ramos and Blackshear, 2002). Thus, this indicated that ZFP36 could shuttle between 

the nucleus and cytoplasm under certain circumstances (Figure 1.7). 

Nucleocytoplasmic shuttling by a CRM1-facilitated and NES-dependent pathway was 

also consistently shown in ZFP36L1 and ZFP36L2 (Phillips, Ramos and Blackshear, 

2002). Unpublished observations from our laboratory also indicated ZFP36L1 to 

exhibit differential localisation patterns in various human cancer cell types.  

Nucleocytoplasmic shutting of the ZFP36 family members is extensively regulated 

through phosphorylation of specific conserved serine residues within ZFP36 proteins 

(reviewed in, Clark and Dean, 2016). 

 

Further, increasing evidence has suggested ZFP36 to target the Nuclear Kappa B 

(NF-κB) signalling pathway and consequently alter its downstream cytokine 
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expression in an ARE-mediated decay-independent manner (Liang et al., 2009; 

Schichl et al., 2009). Intriguingly, ZFP36 was shown to inhibit NF-κB signalling at the 

transcriptional co-repressor level through the recruitment of HDAC1 and HDAC3 to 

the NF-κB p65 subunit (Liang et al., 2009), resulting in the suppression of NF-κB /p65 

nuclear import by a mechanism that is yet to be determined (Schichl et al., 2009). 

Accordingly, these findings suggested a possible function for ZFP36 in the nucleus.  

 

Notably, the nuclear accumulation of ZFP36L1 in cervical cancer cells (HeLa) was 

recently reported to be regulated in a cell cycle-dependent manner, a process that was 

shown to be essentially controlled by a serine-rich cluster within the C-terminus of the 

ZFP36L1 protein (Matsuura et al., 2020). In particular, ZFP36L1 protein accumulation 

in the nucleus was prominent in G1/S-phase in HeLa cells, while it was greatly 

eliminated in S-phase cells and practically disappeared from the nucleus in G2-phase 

arrested cells (Matsuura et al., 2020). This fluctuation pattern interestingly indicated 

that ZFP36L1 probably encompasses specific nuclear physiological roles that are 

distinct from its cytoplasmic function, and provided novel clues to the mechanism 

controlling this nuclear accumulation (Matsuura et al., 2020). Prior to this study, 

however, nuclear to cytoplasmic translocation of the ZFP36 family members in murine 

cells has been shown to be modulated through the phosphorylation of Ser52 and 

Ser178 (Ser60 and Ser186 in human) by the p38-MAPK pathway using both, 14-3-3-

dependent and independent mechanisms, to maintain protein localisation in the 

cytoplasm (Johnson et al., 2002; Brook et al., 2006). Moreover, unpublished 

observations from our laboratory have also suggested ZFP36L1 to potentially 

incorporate nuclear functions in certain human cancer cell lines. Indeed, isolated 
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chromatin fractions from U2OS, HeLa and HCTT16 cells revealed ZFP36L1 to be 

bound to the chromatin.  

Lastly, ZFP36 family members can also localise to granular cytoplasmic structures 

known as stress granules (SGs) and processing bodies (P-bodies) (Kedersha and 

Anderson, 2002; Stoecklin et al., 2004; Kedersha et al., 2005). Environmental stresses 

such as heat shock, glucose deprivation and other stresses stimulate mRNA 

translation arrest, resulting in the accretion of SGs and P-bodies containing 

untranslated mRNA transcripts and stalled translational pre-initiation complexes 

(Anderson and Kedersha, 2002). SGs are cytoplasmic aggregates comprised of 

components of the translation machinery and are suggested to be formed through the 

accumulation of translationally repressed messenger RNAs, and are associated with 

RNA translational silencing and storage (reviewed in, Decker and Parker, 2012; 

Protter and Parker, 2016; Khong et al., 2017).  In contrast, P-bodies are distinct 

cytoplasmic sites of mRNA turnover and harbour several components of mRNA decay 

machinery, including the CCR4-NOT complex (Hubstenberger et al., 2017; Youn et 

al., 2018). These two cytoplasmic structures are dynamically connected and can 

sometimes transiently interact with one another (reviewed in, Decker and Parker, 

2012). 

 

Under conditions of stress, ZFP36 and ZFP36L1 have been shown to localise to SGs 

to bind and sequester ARE-containing mRNAs, and deliver these targeted mRNAs to 

P-bodies for mRNA degradation (Kedersha et al., 2005). This suggested that the 

dynamic interaction between SGs and P-bodies relies on the ZFP36 family members 

where they play an active role in tethering SGs to P-bodies (Franks and Lykke-

Andersen, 2007). In P-bodies on the other hand, ZFP36 for example, associates with 
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decapping enzymes including Dcp1 and Dcp2, and XRN1 exonuclease to stimulate 

5’-3’ exonuclease decay of the targeted ARE-containing mRNAs (Figure 1.7) (Fenger-

Grøn et al., 2005; Hau et al., 2007). Furthermore, localisation of ZFP36 to SGs is post-

translationally directed by the MK2 pathway in a 14-3-3 protein complex formation-

dependent manner (Stoecklin et al., 2004). Indeed, MK2 phosphorylation of ZFP36 

specifically at Ser52 and Ser178, was demonstrated to promote the assembly of MK2-

14-3-3 complexes, which resulted in the exclusion of ZFP36 from SGs (Kedersha et 

al., 2005). This was in contrast to the observation in P-bodies, where ZFP36 was found 

to localise these cytoplasmic structures irrespective of its phosphorylation status 

(Kedersha et al., 2005).  

 

 

Figure 1.7. The ZFP36 family exhibit nuclear-cytoplasmic shutting properties.  
The ZFP36 family of proteins can shuttle between the nucleus and the cytoplasm to perform 
post-transcriptional regulatory functions on targeted mRNA transcripts. Nuclear export activity 
of ZFP36L1, for example, is mediated in a CRM1-dependent manner. After the deadenylation 
of mRNA transcripts, AU-rich mRNA undergoes 5’ to 3’ or 3’ to 5’ decay. ZFP36 proteins can 
also localise to processing bodies (P-bodies, blue) and stress granules (SGs, yellow) under 
stressed conditions, which are dynamically connected, and promote 5’-3’ mRNA decay and 
translational arrest, respectively. Adapted from Ciais, Cherradi and Feige (2013).  
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1.3.6 Physiological Roles and mRNA Targets  

The post-transcriptional regulatory function of the human ZFP36 family of proteins in 

controlling the stability of ARE-bearing mRNAs is a crucial process required for the 

control of gene expression, and has been implicated in numerous physiological and 

pathological processes. Each of the three members of the ZFP36 family contains an 

extensive repertoire of distinct targeted mRNAs that may sometimes overlap with the 

other member-specific mRNA targets and are also cell type-specific (reviewed in, 

Murphy, Baou and Jewell, 2009). To date, ZFP36 is the best characterised of the 

ZFP36 protein family. The physiological role of ZFP36 was initially studied by Carballo 

et al. (1998) using a ZFP36-deficient mouse model. ZFP36-knockout mice displayed 

elevated macrophage-derived TNF-α mRNA production levels and therefore, 

increased TNF-α mRNA stability, as previously mentioned (Carballo, Lai and 

Blackshear, 1998). Since this initial finding, ZFP36 family members have been 

described to bind ARE-containing mRNAs present in several mediators of immunity, 

inflammation, apoptosis, proliferation, and cancer-related hallmarks (reviewed in, 

Sanduja et al., 2012; Guo et al., 2017; Saini, Chen and Patial, 2020). 

 

ZFP36 proteins can regulate the mRNA stability of various cytokines including several 

types of interleukins (IL); IL-2, IL-3, IL-6 and IL-10, IL-12 and IL-17 (Stoecklin et al., 

2000, 2001, 2008; Ogilvie et al., 2005; Jalonen et al., 2006; Lee et al., 2012). Other 

reported mRNA targets include granulocyte macrophage colony-stimulating factor 

(GM-CSF), vascular endothelial growth factor (VEGF), and cyclooxygenase 2 (COX-

2) (Carballo, Lai and Blackshear, 2000; Boutaud et al., 2003; Essafi-Benkhadir et al., 

2007). ZFP36 also mediates mRNA decay of IL-10 via deadenylation and destabilises 

GM-CSF mRNA through poly-A shortening (Lai et al., 1999; Tudor et al., 2009). ZFP36 
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proteins are also involved in the regulation of key transcription factors and cell cycle 

regulators such as BLIMP1, STAT5b, c-Myc and Cyclin D1 mRNA (Marderosian et al., 

2006; Vignudelli et al., 2010; Nasir et al., 2012). Strikingly, ZFP36 protein members 

can negatively regulate their own expression by binding to the 3’ UTR regions of their 

own ARE-containing mRNA (Brooks, Connolly and Rigby, 2004; Lin et al., 2007). 

Further, ZFP36 and ZFP36L1 have been shown to interact with BCL2 mRNA and 

promote mRNA degradation, resulting in apoptosis (Zekavati et al., 2014; Park et al., 

2015). Additionally, ZFP36 can also induce apoptosis through the destabilisation of 

TNF-α mRNA transcripts (Johnson, Geha and Blackwell, 2000; Johnson and 

Blackwell, 2002).  

 

All three members of the ZFP36 family are widely expressed throughout the early 

stages of lymphocyte development and exert their regulatory functions on several 

cyclins and cyclin-dependent kinases (CDKs), controlling mRNA expression at distinct 

stages of B and T-cell development (reviewed in, Galloway and Turner, 2017). The 

regulatory function of ZFP36L1 and ZFP36L2 was linked to the maintenance of cell 

quiescence in the critical stages of developing B lymphocytes (Galloway et al., 2016). 

ZFP36L1 and ZFP36L2 were shown to repress cell cycle regulators such as CyclinD1 

and Cyclin D3, modulating key recombination processes in developing B cells 

(Galloway et al., 2016). ZFP36L1 was also demonstrated to regulate the 

differentiation, appropriate localisation, and survival of B cells in the mouse BCL1 cell 

line via the destabilisation of the transcription factor, BLIMP1 mRNA (Nasir et al., 

2012). Moreover, an indispensable role for ZFP36L1 as a regulator for the proper 

localisation and survival of marginal zone (MZ) B cells was also reported (Newman et 

al., 2017). In this study, ZFP36L1 was found to post-transcriptionally control the 
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expression of transcription factors KLF2 and IRF8, which promote the follicular B-cell 

phenotype (Newman et al., 2017). Furthermore, it was also shown that loss of 

ZFP36L1 and ZFP36L2 results in perturbed thymic development and T-cell leukaemia 

in murine cells, indicating an active role for ZFP36L1 and ZFP36L2 in the prevention 

of malignant transformation (Hodson et al., 2010). More recently, ZFP36L1 was 

reported to promote potent antiviral activity against influenza A virus (IAV) infection via 

cytoplasmic mRNA binding to non-structural protein 1 (NS1), a protein known to 

enhance viral replication (Lin et al., 2020). Accordingly, knockdown of ZFP36L1 was 

found to be associated with a significant increase in IAV replication. In addition, 

overexpression of ZFP36L1 was described to translationally repress several IAV 

mRNA transcripts including hemagglutinin (HA), protein matrix (M1) and NS1, and 

reduce IAV replication (Lin et al., 2020). Interestingly, in the same study, a mutation of 

the ZFs of ZFP36L1 was also shown to restrict NS1 mRNA binding and therefore, 

reduce antiviral activity exerted by ZFP36L1 (Lin et al., 2020). 

 

Owing to their ability to bind to a vast diversity of ARE-containing mRNA transcripts, 

ZFP36 family members’ can concurrently mediate rapid mRNA decay on numerous 

tumour-related genes and cancer-related cytokines and thus, can extensively 

participate in regulatory networks for tumour suppression  (reviewed in, Park, Lee and 

Kang, 2018). To name a few, several mRNA-encoding oncogenes including BCL2, 

MYC, NOTCH1 and COX-2 have been reported as direct targets for the ZFP36 family 

of RBPs (Sawaoka et al., 2003; Hodson et al., 2010; Rounbehler et al., 2012; Zekavati 

et al., 2014). Moreover, ZFP36 family members have been shown to inhibit malignant 

proliferation by suppressing the expression of genes associated with cell cycle 

progression and proliferation. Among these targets include, mRNA transcripts 
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encoding for oncogenic drivers Cyclin B1 and Cyclin D1; whose overexpression is 

linked with chronic tumour progression, E2F1; a key contributor to proper cell cycle 

transition and PIM-1; a facilitator of cell cycle progression (Diehl, 2002; Yuan et al., 

2006; Mahat et al., 2012). Further, ZFP36 family members can also directly bind to 

mRNA-encoding tumour suppressor genes. For example, ZFP36 was evidenced to 

directly bind to the mRNA of the putative tumour suppressor, LATS2, whose function 

is associated with the control of the cell cycle, and promote its mRNA degradation in 

lung cancer cells (Lee et al., 2010). The ZFP36 family of proteins’ physiological roles 

and the consequences associated with their dysregulation in tumourigenesis have 

been extensively studied and will be discussed in more detail in subsequent sections 

of this report.   

 

1.3.7 The ZFP36 Family in Inflammatory Disease 

As previously mentioned, the ZFP36 family members can impact the stability of a large 

repertoire of mRNA targets and are involved in numerous physiological processes. As 

such, dysregulation of their expression can cause changes in the levels of specific 

mRNAs, which is consequently associated with several established diseases including 

immune-related disorders and cancer (reviewed in, Sanduja et al., 2012; Guo et al., 

2017). As demonstrated in the knockout mouse model, ZFP36 was initially found to 

function as a crucial post-transcriptional regulator of TNF-α and other pro-

inflammatory cytokines, and abrogation of its expression can impact the onset and 

severity of several inflammatory diseases such as myeloid hyperplasia, rheumatoid 

arthritis (RA), dermatitis and systemic lupus erythematosus (SLE) (Carballo et al., 

1996; Carballo, Lai and Blackshear, 1998). Following this study, loss of ZFP36 

expression was evidenced to be linked with elevated levels of GM-CSF transcripts 
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from bone marrow stromal cells, which reinforced the key role of ZFP36 in 

physiologically regulating the inflammatory response (Carballo, Lai and Blackshear, 

2000). TNF-α and GM-CSF transcripts were also identified as mRNA targets for 

ZFP36L1 and ZFP36L2 (Lai et al., 2000; Lai and Blackshear, 2001). Moreover, 

although the ZFP36 family members share similar RNA-binding specificities and 

encompass overlapping mRNA targets, the consequential phenotypes associated with 

loss of individual expression can differ between the three protein variants. For 

example, while loss of ZFP36 is functionally linked with pro-inflammatory effects in 

murine cells, disruption of ZFP36L1 was shown to be embryonically lethal due to 

defective placental development during gestation (Stumpo et al., 2004), and was 

associated with intraembryonic and extraembryonic vascular abnormalities and heart 

defects (Bell et al., 2006). On the other hand, disruption of ZFP36L2 was associated 

with defective haematopoiesis and resulted in complete female infertility (Stumpo et 

al., 2009).  

 

Since these initial studies, the function of the ZFP36 family of proteins has been 

connected to the regulation of a diverse range of inflammatory and anti-inflammatory 

factors such as TNFs, interleukins (ILs) and interferons (IFNs) that play key roles in 

the immune response (reviewed in, Guo et al., 2017). In addition to the modulation of 

TNF-α transcript, ZFP36 has also been functionally connected to IL-6, IL-17, and IFNγ 

(Ogilvie et al., 2009; Zhao et al., 2011; Lee et al., 2012). More recently, the regulatory 

role of ZFP36L1 was shown to be functionally linked to the protection against 

osteoarthritis (OA), demonstrated in OA chondrocytes and OA cartilage of humans 

and mice (Son et al., 2019). Although the overexpression of ZFP36L1 did not appear 

to exert a protective role against OA pathogenesis, silencing of ZFP36L1 was 
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associated with a significant increase in the mRNA expression of two heat shock 

proteins (HSP70 family members), which resulted in the prevention of chondrocyte 

apoptosis and hence, protection against OA pathogenesis (Son et al., 2019). Thus, 

these crucial studies signified the involvement of the ZFP36 family members in the 

direct regulation of immune-related processes and that aberration of their expression 

results in enhanced inflammation. 

 

1.3.8 The Role of ZFP36 Family Members in Cancer 

Over the past decade, the ZFP36 family of RBPs have emerged as crucial regulators 

of several cancer-related hallmarks, and alterations in their expression/activity have 

been described to be affiliated with multiple cancer types (reviewed in, Saini, Chen 

and Patial, 2020). Mechanistically, these RBPs regulate the development and 

progression of cancer at three levels; at the posttranscriptional level, transcriptional 

level and at the translation level (Wang et al., 2016). Several studies have particularly 

reported a loss of ZFP36 family of RBP expression in multiple types of human cancers 

including breast, cervical, prostate and colorectal cancers (reviewed in, Guo et al., 

2017). Loss of ZFP36 family members’ expression was found to be functionally linked 

to inflammation-mediated cancer, dysregulation of the cell cycle, cancer cell 

proliferation, apoptosis, angiogenesis and metastasis (Table 2) (reviewed in, Wang et 

al., 2016; Guo et al., 2017; Saini, Chen and Patial, 2020). 
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Table 2. Examples of reported cancer hallmark-related mRNA targets of the ZFP36 
family. Compiled and adapted from (Khabar, 2017; Park, Lee and Kang, 2018). 

Gene mRNA target Cancer Hallmark Reference 

ZFP36, ZFP36L1, 

ZFP36L2 TNF-α 

Angiogenesis, 

Invasion, 

Metastasis 

(Carballo, Lai and 

Blackshear, 1998; 

Lai et al., 2000). 

ZFP36, ZFP36L1, 

ZFP36L2 

GM-CSF Angiogenesis (Carballo, Lai and 

Blackshear, 2000; 

Lai and Blackshear, 

2001). 

ZFP36 PD-L1 Evading Immunity (Guo et al., 2018) 

ZFP36 IL-33 Invasion and 

Metastasis 

(Deng et al., 2016) 

ZFP36 PIM-1, PIM-2 Invasion (Selmi et al., 2012) 

ZFP36, ZFP36L1 VEGF Angiogenesis (Ciais et al., 2004; 

Essafi-Benkhadir et 

al., 2007) 

ZFP36 IL-8 Proliferation (Bourcier et al., 

2011) 

ZFP36 COX-2 Anti-apoptosis (Young et al., 2009) 

ZFP36, ZFP36L1 IL-3 Angiogenesis (Stoecklin et al., 

2003) 

ZFP36 IL-6 Proliferation (Wei et al., 2016) 

ZFP36 MMP2, MMP9 Invasion (Van Tubergen et 

al., 2013) 

ZFP36, ZFP36L1, 

ZFP36L2 

Cyclin D1 Proliferation (Al-Khalaf et al., 

2011; Suk et al., 

2018) 
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ZFP36, ZFP36L1 E2F1 Migration (Lee, Lee and Leem, 

2014; Loh et al., 

2020) 

ZFP36 IL-10 Evading Immunity (Stoecklin et al., 

2008) 

ZFP36 IL-16 Invasion, 

Metastasis 

(Milke et al., 2013) 

    

ZFP36 IL-17 Pro-inflammatory (Yang et al., 2014; 

Qian et al., 2017) 

ZFP36 MYC Proliferation, Anti-

apoptosis 

(Pandiri et al., 2016) 

ZFP36 SnaI1 Metastasis (Montorsi et al., 

2016) 

ZFP36 Twist 1 Metastasis (Montorsi et al., 

2016) 

ZFP36 Cyclin B1 Proliferation (Mukherjee et al., 

2014) 

ZFP36 c-Jun Proliferation (Marderosian et al., 

2006) 

ZFP36L1 HIF1A Angiogenesis (Chen et al., 2015) 

ZFP36L1 BCL-2 Anti-apoptosis (Zekavati et al., 

2014) 

ZFP36, ZFP36L1 cIAP2 Anti-apoptosis (Lee et al., 2005; 

Kim et al., 2010) 

                  (Continued)  
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Numerous studies have reported that persistent inflammation plays a vital and 

complex role in promoting carcinogenesis, and many tumours are known to originate 

at tissue sites undergoing chronic inflammation (reviewed in, Kundu and Surh, 2008; 

Mantovani et al., 2008; Crusz and Balkwill, 2015). The complex network of cancer-

mediated inflammation is generally attributed to the presence of dysregulated pro-

inflammatory factors and subsequent aberration in gene expression, both of which 

consequently drive the tumour microenvironment (Grivennikov, Greten and Karin, 

2010). Since the ZFP36 family of proteins are well-established post-transcriptional 

mediators of many pro-inflammatory and anti-inflammatory cytokines and 

chemokines, dysregulation of these RBPs is tightly connected to the development and 

progression of inflammation-associated cancer (Anderson, 2010). This is mainly due 

to the many downstream targets of the ZFP36 family, that encode for key factors that 

play crucial roles in inflammation and tumourigenesis. For instance, ZFP36 was 

demonstrated to play a potent tumour suppressive role in a v-H-ras-dependent 

manner in a mast cell tumour model by suppressing interleukin-3 (IL-3) mRNA levels 

(Stoecklin et al., 2003). In this tumour model, cells exhibited elevated levels of IL-3 as 

part of an oncogenic autocrine loop, and ZFP36 expression was found to interfere with 

this loop, delaying tumour progression by enhancing mRNA decay of IL-3 (Stoecklin 

et al., 2003). Another example of a cancer-related inflammatory downstream target of 

ZFP36 is IL-17, a cytokine that is usually elevated in chronic inflammatory diseases 

and is associated with cancer progression (Yang et al., 2014; Qian et al., 2017). ZFP36 

was evidenced to directly bind to IL-17 mRNA and facilitate the destabilisation of its 

transcripts (Lee et al., 2012). Further pro-tumourigenic inflammatory mediators of the 

ZFP36 family have also been identified and include IL-6, IL-8 and COX-2 (reviewed 

in, Sanduja et al., 2012).  
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Dysregulation of the cell cycle and sustenance of chronic proliferative signalling are 

two essential features of cancer cells. As previously mentioned, the regulatory role of 

the ZFP36 family is physiologically connected to several critical cell cycle regulators 

that are specifically involved in cell cycle progression and cellular proliferation such as 

cyclin B1, cyclin D1, E2F1 and PIM-1 (Diehl, 2002; Yuan et al., 2006; Mahat et al., 

2012). ZFP36 has also been shown to modulate mRNA levels of c-Myc, an oncogene 

that regulates cellular proliferation and differentiation and one that is commonly 

dysregulated in human cancers (Marderosian et al., 2006). Moreover, ZFP36 was 

reported to inhibit cellular proliferation in breast cancer cells by suppressing the 

expression of the proto-oncogene c-Jun, an established accelerator of the cell cycle 

(Xu et al., 2015). By selectively blocking the NF-kB pathway, ZFP36 was found to 

inhibit c-Jun expression at the transcriptional level, resulting in an increased 

expression of Wee1, which subsequently caused cell cycle arrest at the S-phase (Xu 

et al., 2015). Furthermore, ZFP36L1 was demonstrated to promote 

monocyte/macrophage differentiation by repressing mRNA levels of cyclin-dependent 

kinase 6 (CDK6) (Chen et al., 2015). Consequently, ZFP36L1 expression was 

significantly decreased in acute myeloid leukaemia (AML) patients (Chen et al., 2015). 

In a recent study, ZFP36L1 was found to serve as a safeguard against aberrant cell 

cycle progression by regulating the expression of key oncogenic transcripts; HIF1A, 

CCND1, and E2F1, in bladder and breast cancer cell lines (Loh et al., 2020). Lastly, 

forced expression of ZFP36L1 and ZFP36L2 was evidenced to inhibit cellular 

proliferation, mediated by downregulation in cyclin-D expression, in human colorectal 

cancer cell lines (Suk et al., 2018). Collectively, these studies indicated that the ZFP36 

family of proteins could function as potential potent tumour suppressors by 
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destabilising mRNA transcripts whose over-expression is associated with tumour 

malignancy.  

 

One of the hallmarks of cancer cells involves their ability to evade apoptosis or resist 

cell death (Hanahan and Weinberg, 2011). Due to the presence of many ARE-

containing mRNAs encoding for gene products that allow cancer cells to evade 

programmed cell death, the ZFP36 family members can modulate tumour cell 

apoptosis through several downstream effectors. Indeed, overexpression of the 

ZFP36 protein family has been shown to induce apoptosis in multiple cell lines 

including HeLa (human cervical cancer cells), U2OS (osteosarcoma cells), SAOS2 

(sarcoma osteogenic), 3T3 (mouse fibroblast cells) and B-lymphoma cells through 

direct regulation of mRNA targets (Johnson, Geha and Blackwell, 2000; Johnson and 

Blackwell, 2002; Baou et al., 2009). Moreover, ZFP36L1 was demonstrated to exert a 

pro-apoptotic function in Ramos Burkitt B lymphoma cells as well as in B-chronic 

lymphocytic leukaemia cells (Ning et al., 1996; Zekavati et al., 2014). ZFP36 can also, 

synergistically with TNF-α, sensitise cells to TNF-induced apoptosis in 3T3 cells 

(Johnson and Blackwell, 2002). More recently, ZFP36 was revealed to sensitise head 

and neck squamous cell carcinoma cell lines to cisplatin-induced apoptosis, by 

deregulating the expression of BCL-2 mRNA (Park et al., 2015). This was similarly 

shown for ZFP36L1, except that it was found to induce apoptosis by inhibiting mRNA 

expression of apoptotic protein-2 (CIAP2), in response to cisplatin treatment (Lee et 

al., 2005). Therefore, loss of members of ZFP36 expression can facilitate resistance 

to cell death and enhance tumour progression.  
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Consistent with their tumour suppressive role, members of the ZFP36 family have 

been implicated as key repressors of a subset of mRNA transcripts involved in 

angiogenesis and metastasis (reviewed in, Saini, Chen and Patial, 2020). Tumour 

cells require a continuous supply of oxygen and nutrients from blood vessels to 

support their development and growth (Neufeld et al., 1999). One of the critical 

modulators of tumour angiogenesis and vasculogenesis is vascular endothelial growth 

factor (VEGF) (Neufeld et al., 1999). Importantly, ZFP36 and ZFP36L1 have both been 

shown to post-transcriptionally destabilise VEGF mRNA transcripts or inhibit VEGF 

translation and hence, suppress tumour progression (Ciais et al., 2004; Bell et al., 

2006; Essafi-Benkhadir et al., 2007). Another critical regulator of angiogenesis whose 

mRNA levels is mediated by ZFP36 is cyclooxygenase 2 (COX-2); a facilitator of the 

production of VEGF and BCL2 (Boutaud et al., 2003; Gately and Li, 2004). 

Functionally, reduced expression of ZFP36 was found to be directly correlated to 

increased expression of COX-2 and VEGF in human colon cancer cells (Cha et al., 

2011). Further, potent factors associated with tumour angiogenesis such as hypoxia-

inducible factor 1 (HIF-1), IL-6, IL-1α and IL-8 are additionally controlled by members 

of the ZFP36 family (Planel et al., 2010; Chang and Hla, 2011; Griseri and Pagès, 

2014).  

 

Further, deficiency in the expression of the ZFP36 proteins also contributes to cancer 

invasion and metastasis. A compendium of studies has identified several mRNA 

targets involved in cancer malignancy that are regulated by this family of RBPs 

(reviewed in, Park, Lee and Kang, 2018). In addition to VEGF, COX-2 and IL-6 

transcripts, members of ZFP36 proteins were revealed to destabilise ARE-containing 

mRNAs of MMP-1 (matrix metalloproteinase), MMP-2, MMP-9, and invasive factor 
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uPA (urokinase plasminogen activator), which functionally correlate with cancer 

metastasis (Al-Souhibani et al., 2010; Al-Ahmadi et al., 2013; Van Tubergen et al., 

2013). Based on gene expression profiles from 80 patient samples, reduced ZFP36 

expression was detected in metastatic tumours relative to primary tumours, which 

suggested that loss of ZFP36 can contribute to epithelial-mesenchymal transition 

(EMT) (Montorsi et al., 2016).  In line with these findings, ZFP36 was reported to 

repress EMT progression through mRNA degradation of EMT marker genes including 

snail1 (zinc finger protein snail 1) and twist1 (twist-related protein 1) (Yoon et al., 

2016). Recently, ZFP36L1 was found to be significantly downregulated in breast 

cancer cells and was associated with reduced mRNA levels of EMT markers (Rataj et 

al., 2019). In another study, ZFP36L2 expression was interestingly shown to be 

regulated by the metastatic suppressor gene, NME1, in melanoma and thyroid 

carcinoma cell lines (McCorkle et al., 2014). In a double conditional knockout-based 

study, mice that were depleted of ZFP36L1 and ZFP36L2 were observed to mature 

with a perturbation in thymic development, which in turn resulted in the development 

of T-cell acute lymphoblastic leukaemia (T-ALL) (Hodson et al., 2010).  This phenotype 

was directly associated with ZFP36L1 and ZFP36L2 post-transcriptional regulatory 

role on the oncogenic transcription factor, NOTCH1, which suggested a role for 

ZFP36L1 and ZFP36L2 in the prevention of malignant transformation (Hodson et al., 

2010). In the same study, ZFP36L1 was further shown to negatively regulate cell cycle 

progression, by targeting mRNA targets encoding for crucial cell cycle genes, during 

murine lymphocyte development (Hodson et al., 2010). Consistently, loss of ZFP36L1 

function can facilitate cell cycle progression in tumourigenesis in various cancer cell 

types (Suk et al., 2018; Loh et al., 2020).  A summary of the various cancer-related 

mRNAs by which the ZFP36 family of proteins regulate is illustrated in Figure 1.8.  
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Figure 1.8. Schematic illustration of various cancer-related targeted mRNA transcripts 
regulated by the ZFP36 family.  
Members of the ZFP36 family (yellow) regulate several mRNA transcripts (red) that are 
involved in carcinogenesis, at multiple stages during the process of tumourigenesis. The 
targeted mRNA transcripts encode for key proteins involved in tumour growth, angiogenesis, 
epithelial-mesenchymal transition (EMT) and metastasis. Dysregulation of ZFP36 proteins 
promotes tumourigenesis and drives tumour progression. Adapted from Saini, Chen and 
Sonika (2020).  
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In addition to the observations on its post-transcriptional regulatory role of key cell 

cycle and oncogenic-encoding mRNA targets (reviewed in, Khabar, 2017; Saini, Chen 

and Patial, 2020), recent systematic analysis of AU-rich element expression in cancers 

has also shed light on ZFP36L1’s potential role as a tumour suppressor in human 

cancers, supported by the finding that ZFP36L1 expression was observed to be 

mutated or down-regulated in various cancer cell types compared to normal cells (Hitti 

et al., 2016). A recent landmark study that conducted whole-genome and exome 

sequencing of breast cancer patient genomes has identified ZFP36L1 as a novel 

cancer driver gene in breast cancer (Nik-Zainal et al., 2016). This was consistently 

observed in a Capture-HiC-based study that annotated breast cancer risk loci to 

identify breast cancer-related driver genes, whereby ZFP36L1 was identified as one 

of the putative target genes associated with breast cancer (Baxter et al., 2018). 

ZFP36L1 was further identified as a novel cancer candidate gene in other cancer cell 

types due to the observation of its significant mutated expression in certain tumours 

(Martincorena et al., 2017; Priestley et al., 2019). In addition, a genome-scale 

CRISPR/Cas9 screen-based study had also importantly listed ZFP36L1 among one 

of the prioritized candidates/targets for future cancer therapeutics (Behan et al., 2019).  

 

1.4 Replication stress-induced Genomic Instability 

Genomic instability (GIN) is a common feature observed in most cancers and can 

result as a consequence of various molecular incidents such as chromosomal 

instability, micro and mini-satellite instability and DNA mutations (reviewed in, Negrini, 

Gorgoulis and Halazonetis, 2010). Chromosomal instability (CIN), a phenomenon 

denoted by changes in chromosome number and structure, is the most common form 

of genomic instability in human cancers. Micro and mini-satellite instability (MIN), 



 40 

characterised by repetitive-DNA expansions or contractions within microsatellite 

sequences, is caused by erroneous DNA synthesis, defective mismatch repair (MMR) 

or base excision repair (BER) (Fishel et al., 1993; Leach et al., 1993).  Dysregulated 

MMR and BER can also lead to increased mutations such as base substitutions, 

micro-deletions and micro-insertions (Al-Tassan et al., 2002). Furthermore, 

dysfunctional mitotic checkpoints and telomere abrasion have also been proposed to 

induce genomic instability in cancer (Artandi et al., 2000; Kops, Weaver and 

Cleveland, 2005). Defects in mitotic checkpoints, which guard cells against 

chromosome mis-segregation during anaphase, drives CIN phenotypes and facilitates 

cancer development (Michel et al., 2001; Jeganathan et al., 2007; Ritchie et al., 2009). 

Finally, telomere erosion can also lead to GIN (Artandi et al., 2000). In healthy cells, 

telomeres protect chromosome ends from deleterious processing and unscheduled 

DNA recombination and repair (reviewed in, Blasco, 2005). Dysregulation of this 

process, however, can cause CIN thereby driving tumourigenesis (Artandi et al., 2000; 

Rudolph et al., 2001; Davoli, Denchi and de Lange, 2010). Despite the fact that such 

forms of instability can be detrimental for cells, these processes also simultaneously 

drive molecular evolution through genetic variation. Accordingly, genomic instability 

can also contribute to the generation of genetic variability within developmental 

processes, such as immunoglobulin (Ig) diversification (Maizels, 2005). Nonetheless, 

genomic instability in humans is typically affiliated with cellular pathologies and is a 

hallmark of tumour development and progression (Hanahan and Weinberg, 2011). 

The efficient and faithful transmission of genetic material in every cell division is a 

critical determinant of genomic stability and cancer predisposition in human tissues, 

reflecting that our genomes are most vulnerable during DNA replication (Tomasetti 

and Vogelstein, 2015). Coordination of DNA replication with cell cycle progression, 
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DNA-damage sensing and DNA-repair pathways preserve genomic stability during cell 

divisions, preventing DNA mutations and rearrangements (reviewed in, Aguilera and 

Gómez-González, 2008). Perturbations in DNA replication dynamics such as 

replication stress, have emerged as a major source of genomic instability and are often 

increased in the initial stages of carcinogenesis (Gorgoulis et al., 2005; Shen and Ro, 

2006). Despite the wide range of proteins and pathways linked to GIN, a shared 

characteristic between them is their association with replication stress (Gorgoulis et 

al., 2005). Indeed, replication stress has been suggested to be a prevalent source of 

DNA damage generally caused by oncogene activation or tumour suppressor 

inactivation, and contributes to GIN in most human cancers (Macheret and 

Halazonetis, 2015).  

 

1.4.1 DNA Replication and Associated Inhibitors  

DNA replication is a process by which the genome is duplicated prior to cell division. 

The replication machinery, known as the replisome, is a massive complex that consists 

of a network of specialised proteins that ensure precise and efficient replication of DNA 

during each cell cycle (Leman and Noguchi, 2013). In summary, the double-stranded 

DNA (dsDNA) molecule is unwound by DNA helicases, producing a replication fork 

with two single-stranded DNA (ssDNA) templates. Subsequently, DNA polymerases 

synthesise new DNA strands complementary to each parental template. This 

replication process generates two daughter DNA copies in a semiconservative fashion 

whereby one strand is formed from the original DNA helix, while the second is the 

nascent antiparallel strand (Meselson and Stahl, 1958). Due to the antiparallel nature 

of the DNA double helix, replication takes place in opposing orientations between the 

two daughter strands. Despite this, however, all DNA polymerases synthesise DNA 
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with 5’ to 3’ directionality (Hübscher, Nasheuer and Syväoja, 2000). DNA polymerase 

ε (epsilon) synthesises the leading strand in a continuous fashion (Pursell et al., 2007), 

whereas the opposite template (lagging) strand is synthesised in fragmented stretches 

of 100 to 200 bases in length, known as Okazaki fragments, by DNA polymerase δ 

(delta) (Okazaki et al., 1968; Nick McElhinny et al., 2008). On the other hand, DNA 

polymerase α (alpha) synthesises RNA-DNA hybrid primers at replication origins and 

is responsible for the initiation of replication on both, the leading and lagging strands 

(Hübscher, Nasheuer and Syväoja, 2000). 

 

Eukaryotic DNA replication is a tightly controlled process essentially composed of two 

distinct stages: origin licensing and initiation. In the licensing stage, the multiprotein 

pre-replication complex (pre-RC) site is recognised, and during origin initiation, DNA 

synthesis is instigated (Fragkos et al., 2015). To ensure that DNA replication takes 

place only once per cell cycle, cells rely on a series of tightly regulated steps that begin 

with the assembly of the origin recognition complex (ORC) at the replication origin 

(Shen et al., 2012). In the G1-phase of the cell cycle, DNA replication factor 1 (CDT1) 

and cell division cycle protein 6 (CDC6) then assemble at the replication origin and 

recruit the replicative helicase minichromosome maintenance complex 2–7 (MCM2–

7) (Cook, Chasse and Nevins, 2004). This leads to the formation of the pre-RC that 

licenses replication initiation in the subsequent S-phase (Figure 1.9) (reviewed in, 

Gaillard, García-Muse and Aguilera, 2015). Upon initiation of replication, CDT1 and 

CDC6 unbind from the pre-RC, thus preventing re-replication (Blow and Dutta, 2005; 

Fujita, 2006; Arias and Walter, 2007; Hook, Lin and Dutta, 2007). Although eukaryotic 

chromosomes contain thousands of licensed origins, only a small number of them are 
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fired (activated) in the S-phase, with the remaining origins preserved as a backup in 

case of replication failure (Blow, Ge and Jackson, 2011).  

Replication initiation is activated at the onset of the S-phase through the concerted 

action of cyclin-dependent kinases (CDKs) and DBF4- dependent kinase (DDK/CDC7) 

(Sheu and Stillman, 2006, 2010). The assembly of CDK and DDK results in the 

phosphorylation of the pre-RC, which then allows the recruitment of the CDC45 and 

the GINS protein complex (Fragkos et al., 2015). In turn, this instigates the formation 

of the pre-initiation complex (pre-IC) and activates the replication helicase (CMG) 

complex (Moyer, Lewis and Botchan, 2006; Aparicio et al., 2009). Subsequently, the 

CMG complex unwinds the DNA duplex, forming a replication bubble, and generates 

two divergent replication forks (Figure 1.9) (Ilves et al., 2010; Costa et al., 2011). 

Finally, CDKs prevent re-replication by inhibiting MCM-7 recruitment until the following 

cycle, and the S-phase checkpoints safeguard cell cycle progression to maintain the 

genomic integrity of the replication fork (Pacek and Walter, 2004).  
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Figure 1.9. Schematic overview of the first steps of DNA replication initiation.  
Upon binding to the Origin Replication Complex (ORC), DNA replication factor 1 
(CDT1) and cell division cycle protein 6 (CDC6) are assembled. CTD1 and CDC6 in 
turn recruit the replicative helicase minichromosome maintenance complex 2–7 
(MCM2–7), forming the pre-replication complex (Pre-RC) which prevents re-
replication. This triggers the recruitment of other various replication-related proteins 
including GINS complex, CDC45, Treslin, RECQL4, TOPBP1 and MCM10, that form 
the pre-initiation complex (Pre-IC) that unwind the duplex DNA to initiate replication.  
 
 
Due to the complexity and several necessities of replication, many extrinsic and 

intrinsic factors constantly challenge the integrity of the replicating DNA and in turn, 

sensitise cells to replication stress.  Some of these intrinsic factors include secondary 

DNA structures, limitation of essential replication components and the occurrence of 

transcription-replication collisions (reviewed in, Zeman and Cimprich, 2014). As for 

extrinsic sources of replication stress, examples include; all wavelengths of UV, IR 

and chemical compounds that are commonly used in laboratory-based research to 

induce replication stress (Vesela et al., 2017). Some of these chemical replication 

stress-inducers interfere with DNA replication by inhibiting replicative polymerases 
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(aphidicolin), directly interacting with DNA (cisplatin), resulting in DNA crosslinks and 

chemically inhibiting deoxyribonucleotide triphosphate metabolism (hydroxyurea) 

(Vesela et al., 2017). Importantly, since replication stress is a potent inducer of 

genomic instability, in vitro cell-based research involving models of induced replication 

stress provides a rich source of knowledge about the undergoing mechanisms and 

interactions that occur during these processes.  

 
1.4.2 The Replication Stress Response 

The faithful transmission of genetic information requires an accurate and efficient 

replication of the genetic material in every cell division, and is a critical determinant of 

genomic stability. Although cells have adopted specialised pathways to maintain this 

accuracy, DNA replication is incessantly challenged by both, endogenous and 

exogenous agents that induce DNA damage, which impede the accurate replication 

of the DNA. This phenomenon, known as replication stress, is characterised by the 

stalling or slowing of replication fork progression and/or DNA synthesis, and is the 

main cause or source of genomic instability (reviewed in, Zeman and Cimprich, 2014). 

Replication stress can arise from several different sources including but not limited to; 

ionizing radiation, DNA lesions, nucleotide pool shortage, difficult-to-replicate genomic 

loci, transcription-replication conflicts, oncogene-induced stress, unscheduled DNA 

structures (cruciforms, R-loops, DNA repeats, hairpins, G-quadruplexes) and the 

expression of genomic regions that are particularly vulnerable to replication stress, 

known as common fragile sites (CFSs) (reviewed in, Zeman and Cimprich, 2014).  

 

Replication stress is typically associated with the formation of long stretches of single-

stranded DNA (ssDNA) bound by replicative protein A (RPA). The accumulation of 
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ssDNA frequently occurs as a result of the uncoupling of replicative helicase from DNA 

polymerases during replication fork stalling (Pacek and Walter, 2004).  This orientation 

of RPA-coated ssDNA next to the newly synthesised dsDNA typically represents a 

primer-template junction (Byun et al., 2005). This structure serves as a signalling 

platform for the activation of the replication stress response, initiated by the 

recruitment of the conserved protein kinase, Ataxia telangiectasia and Rad3-related 

(ATR) through its cofactor, ATRIP (ATR-interacting protein) (Zou and Elledge, 2003; 

MacDougall et al., 2007; Nam and Cortez, 2011). Upon activation, ATR 

phosphorylates its primary kinase substrate downstream target, CHK1, at Serine-317 

and Serine-345 (reviewed in, López-Contreras and Fernandez-Capetillo, 2010).  

Additionally, ATR phosphorylates the histone variant, H2AX, at Serine-319 (γH2AX) 

at its C-terminal early on in the response (reviewed in, Kotsantis, Petermann and 

Boulton, 2018). 

 

Activation of the ATR-CHK1 pathway essentially results in two key outcomes: 

inhibition of cell cycle progression and suppression of origin firing at new replication 

sites (late origins) (reviewed in, Labib and De Piccoli, 2011; Nam and Cortez, 2011). 

In addition, ATR-CHK1 activity promotes the stabilisation and restart of stalled 

replication forks (Trenz et al., 2006). This is mainly achieved by ATR-licensed firing of 

the preserved dormant origins which eventually rescue DNA synthesis at the stalled 

forks. These events collectively limit the pre-mature entry of un-replicated DNA into 

mitosis and provide additional time for the faithful completion of DNA replication within 

replication sites experiencing stress (Woodward et al., 2006; Ge, Jackson and Blow, 

2007). If left unresolved, however, sustained replication stress can induce replication 

fork collapse or breakage, resulting in replication stress-associated DNA double-
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stranded breaks (DSBs) at the stalled fork (reviewed in, Cortez, 2019). In this case, 

the ensuing DSBs lead to the activation of two other DNA damage response kinases, 

ATM and DNA-PK (section 1.4.3). 

 

1.4.3 The DNA Damage Response 

The conversion of ssDNA to replication stress-associated DSBs at stalled forks poses 

a serious threat to genomic stability (reviewed in, Ciccia and Elledge, 2010). In fact, 

DSBs are believed to be one of the most detrimental and mutagenic forms of DNA 

lesions as they lack a template strand that can be used for DNA repair (reviewed in, 

Helleday et al., 2007). If left unrepaired, DSBs can consequentially drive chromosomal 

aberrations, which may trigger cell death or carcinogenesis (Varga and Aplan, 2005; 

Scott and Pandita, 2006; Liu et al., 2017). To counteract these deleterious threats of 

DSBs, eukaryotic cells have evolved an intricate series of sophisticated mechanisms 

that sense and respond to DSBs to safeguard the genomic integrity of the cell 

(reviewed in, Trenz et al., 2006). 

The DNA damage response (DDR) is a series of signal transduction events that 

orchestrates the cellular response to DNA damage and mediates its repair through 

several downstream effectors (reviewed in, Giglia-Mari, Zotter and Vermeulen, 2011). 

The DDR is primarily mediated by three kinases, ATR, ATM (ataxia telangiectasia-

mutated) and DNA PKs (protein kinases). The replication stress response is mainly 

controlled by ATR, while ATM and DNA-PK mostly respond to DSBs and contribute to 

ATR kinase activation under specific conditions (Jazayeri et al., 2006; Buisson et al., 

2015; Saldivar, Cortez and Cimprich, 2017). Much of the current understanding of the 

DDR, however, is based on studies on ATM and ATR activity. These DNA damage 

checkpoint kinases (ATR and ATM) are crucial components as they act as transducers 
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that signal for checkpoint activation and activate DNA repair pathways. This activity is 

essential as it triggers cell cycle arrest in the S-phase, allowing additional time for 

repair, which prevents the transmission of faulty DNA to the daughter cells (reviewed 

in, Ciccia and Elledge, 2010) (Figure 1.10).  

 

 

 

Figure 1.10. Schematic of the basic framework of the DDR signalling pathway.  
The DDR signalling pathway is composed of signal sensors, transducers and effectors. 
Proteins that serve as sensors, recognise DNA regions that are inflicted with DNA damage or 
replication stress. This leads to the activation of signal transducers, ATR and ATM kinases, 
and their downstream kinases. In turn, ATR/ATM activation triggers the activation of their 
downstream substrates (effectors). These effectors mediate a diverse range of cellular 
processes involved in the preservation of genomic integrity. Adapted from Maréchal and Zhou 
(2013). 
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In response to DSBs, ATM is directly recruited by the DSB-sensor protein complex 

MRE11–RAD50–NBS1 (MRN) at the site of DNA damage (Lee and Paull, 2005).  MRN 

is one of the first factors recruited to DSB sites and is essential for the rapid localisation 

of ATM to DSBs (Uziel et al., 2003; Lee and Paull, 2005). ATM kinase activity initially 

induces cell cycle arrest through the activation of the tumour suppressor, p53, and 

phosphorylation of checkpoint kinase 2 (CHK2) at threonine 68 (Kastan et al., 1992; 

Matsuoka et al., 2000; Melchionna et al., 2000). CHK2 in turn, phosphorylates the 

CDK activator CDC25, which suppresses CDK2 activity, thus inhibiting G1/S transition 

(Falck et al., 2002).   

 

On the other hand, ATR activation is driven by the presence of stalled replication forks 

and resected DSBs (reviewed in, Cimprich and Cortez, 2008). The persistence of 

ssDNA-bound by RPA stimulates the recruitment of ATR kinase via co-localisation of 

ATRIP, along with RAD17–RFC and RAD9–RAD1– HUS1 (9-1-1) (Zou and Elledge, 

2003). TOPBP1 also interacts with the 9-1-1 complex and triggers the activity of the 

ATR-ATRIP complex (Kumagai et al., 2006). Recently, Ewings tumour-related antigen 

1 (ETAA1) was also identified as a novel RPA-binding protein that stimulates ATR 

kinase activity in response to replication stress and DNA damage (Bass et al., 2016; 

Feng et al., 2016; Haahr et al., 2016). The TIMELESS/TIPIN complex then triggers 

Claspin binding to RPA, which activates the ATR-downstream substrate, CHK1 (Chini 

and Chen, 2003; Liu et al., 2006). In turn, CHK1 phosphorylates CDC25A/C CDK 

activators that inhibit cell cycle progression at S, G2 or G2-M phase (Boutros, Lobjois 

and Ducommun, 2007). Additionally, CHK1 phosphorylates CDK antagonist WEE1, 

which causes G2-phase delay (Beck et al., 2012). A schematic overview of the 

replication stress response driven by ATR is depicted in (Figure 1.11). 
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Figure 1.11. The replication stress-induced DNA damage response (DDR). 
The persistence of ssDNA-bound by RPA stimulates the recruitment of the ATR kinase 
through the co-localisation of ATRIP, RAD17–RFC and the 9-1-1 (RAD9–RAD1– HUS1) 
complex. TOPBP1 and ETAA1 can also contribute to ATR activation. Subsequently, the 
TIMELESS complex triggers Claspin binding to RPA, which activates the ATR-downstream 
substrate, CHK1. CHK1 activation leads to the phosphorylation of CDC25A/C CDK activators 
and CDK antagonist, WEE1, that induce cell cycle arrest. ATR-induced CHK1 activation 
functions to limit the pre-mature entry of un-replicated DNA into mitosis and provide additional 
time for the cell to complete DNA replication prior to the next cell cycle.  

 

While ATM and ATR encompass distinct DNA-damage specificities, a crosstalk 

between these kinases has also been described to occur (reviewed in, Maréchal and 

Zou, 2013). For instance, ATM was evidenced to phosphorylate CHK1 in response to 

ionising radiation (IR) (Gatei et al., 2003). On the other hand, CHK2 activation 
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stimulated by a replication stress-inducing DNA-crosslinking agent (cisplatin), was 

shown to be triggered in an ATR-dependent manner (Pabla et al., 2008). Following 

checkpoint activation, ATM, ATR, and DNA-PK stimulate a cascade of DDR events on 

the DNA damaged chromatin. The most prominent event in this process is the rapid 

phosphorylation of the histone variant H2AX (γH2AX) by ATM kinase activity on the 

chromatin flanking DSBs (Falck, Coates and Jackson, 2005).  Although γH2AX is not 

required for ATM-dependent phosphorylation of p53 and CHK2, it is essential for the 

recruitment of numerous DNA repair proteins and chromatin-remodelling complexes 

to DSBs (Rogakou et al., 1998; Burma et al., 2001).  Indeed, γH2AX foci co-localise 

with DDR-associated proteins and serve as docking stations for the recruitment of 

downstream DDR effectors such as MDC1 (mediator of DNA damage checkpoint 

protein 1) and the E3 ubiquitin ligase RNF8 (Stucki et al., 2005; Kolas et al., 2007; 

Mailand et al., 2007). Finally, RNF8 and RNF168 signal the recruitment of further ATM-

associated mediators including p53-binding protein 1 (53BP1) and breast cancer gene 

1 (BRCA1), which promote DSB repair via NHEJ and HR, respectively (Doil et al., 

2009; Stewart et al., 2009). 

 

1.4.4 The Pathways of DSB repair  

The repair of DSBs is mainly mediated by two distinct pathways; the error-prone non-

homologous end joining (NHEJ) and the high-fidelity homologous recombination (HR) 

(Cahill, Connor and Carney, 2006; Wyman and Kanaar, 2006). Mechanistically, the 

HR pathway uses a homologous sister chromatid to synthesise and repair the 

damaged strands on the DNA, while the NHEJ repair pathway directly ligates the DSB 

site with minimal sequence homology between the broken ends (Helleday et al., 2007). 

The choice of DSB repair pathway is primarily determined by the nature of the DNA 
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break and by the phase of the cell cycle (Chapman, Taylor and Boulton, 2012). Since 

HR requires a sister chromatid, it is restricted to the S and G2-phase, while NHEJ 

repairs DSBs throughout all phases of the cell cycle (Helleday et al., 2007). Moreover, 

DSB repair fate by NHEJ and HR is antagonistically regulated by the tumour 

suppressors 53BP1 and BRCA1, respectively, in a DSB-repair independent manner 

(Chapman, Taylor and Boulton, 2012). In the G1-phase, 53BP1 caps 5’ overhangs of 

the DSB ends and directs for NHEJ repair  (Bunting et al., 2010). During the S/G2-

phase, BRCA1 promotes the removal of 53BP1 to allow DSB end resection (Daley 

and Sung, 2014).  

 

Classical NHEJ (C-NHEJ) is an error-prone DSB repair mechanism that directly re-

joins broken DNA ends in a template-independent fashion (Figure 1.12) (Rodgers and 

McVey, 2016). In this repair pathway, the DSB ends are initially bound by the 

Ku70/Ku80 heterodimer, which subsequently signals the recruitment and activation of 

DNA-dependent protein kinase catalytic subunits (DNA-PKcs) (Uematsu et al., 2007). 

DNA-PKcs maintain close proximity of DSB ends and if necessary, recruit end-

processing factors such as Artemis endonuclease to create compatible ends (Povirk 

et al., 2007). Following end modification, the DNA ends are finally ligated by a complex 

consisting of DNA ligase IV, X-ray cross-complementation group 4 (XRCC4) and 

XRCC4 like factor (XLF) (Ahnesorg, Smith and Jackson, 2006; Gu et al., 2007). 

Moreover, due to its error-prone trait, NHEJ can often result in frame-shift mutations 

and a potential premature stop codon, which can consequently cause gene 

inactivation.  Due to this nature, however, NHEJ has been widely harnessed for the 

mediation of gene knockouts by a number of genome-editing technologies such as the 

CRISPR/Cas9 gene-editing system (reviewed in, Daley and Sung, 2014). Indeed, 
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NHEJ constitutes the principle means by which CRISPR/Cas9-introduced DSBs are 

repaired in the absence of a repair template (Ran et al., 2013) (discussed further in 

Chapter 3).  
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Figure 1.12. Classical Non-homologous end join binding (C-NHEJ) of DSB repair.  
During C-NHEJ, the DSB is sensed by the Ku70/Ku80 heterodimer. DSB recognition then 
signals for the recruitment and activation of DNA PKcs to maintain close proximity of the DSB 
ends. The DSB ends are then processed by multiple factors including Artemis endonuclease 
to create compatible ends. Finally, the DNA ends are ligated by DNA Ligase 4 (LIG4), XRCC4 
and XLF.  
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In contrast to NHEJ, homology-directed repair uses a sister chromatid template to 

accurately re-synthesise damaged DNA in an error-free manner (Figure 1.13). The 

HR-mediated repair pathway begins with 5’-3’ resection of the DSB ends to generate 

3’ ssDNA (Heyer, Ehmsen and Liu, 2010). This initial resection process is facilitated 

by the Mre11–RAD50–NBS1/XRS2 (MRN) complex in conjunction with CtBP-

interacting protein (CtIP) nuclease (Limbo et al., 2007; Sartori et al., 2007). Extensive 

end resection is then further catalysed by EXO1 and DNA2 nucleases along with BLM 

helicase (Mimitou and Symington, 2009). The produced ssDNA is rapidly bound by 

RPA to eliminate secondary structure formation and protect against further 

degradation (Chen, Lisby and Symington, 2013). Subsequently, BRCA2 and Rad51 

recombinase paralogues mediate the loading of Rad51 recombinase in the place of 

RPA, to form a nucleoprotein filament with the 3’ ssDNA (Moynahan, Pierce and Jasin, 

2001; Tarsounas, Davies and West, 2004; Yang et al., 2005). Nucleoprotein filament 

formation triggers the search and invasion for a complementary sequence on the 

dsDNA sister chromatid to restore the damaged DNA end on the ssDNA strand (Sung 

and Robberson, 1995; Baumann, Benson and West, 1996). This results in the 

displacement of one of the strands, leading to the formation of a displacement loop 

(D-loop) structure, which encompasses the 3’ end of the invading ssDNA newly 

annealed to the homologous template (Maher, Branagan and Morrical, 2011). The 

invading 3’ end is then extended by DNA polymerase using the homologous template 

for DNA synthesis. This HR mechanism is known as recombination-dependent 

replication (RDR) and is a fundamental pathway of all HR-mediated repair of DSBs 

(Haber, 1999).  
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Figure 1.13. DSB repair by Homologous Recombination (HR). 
HR is initiated by a resection process mediated by the MRN complex. Extensive resection is 
then further carried out by EXO1 and DNA2 nucleases along with BLM helicase. The resulting 
ssDNA is then rapidly bound by RPA to protect against degradation. Subsequently, BRCA2 
and RAD51 paralogs mediate loading of RAD51 within the 3’ ssDNA in the place of RPA. 
Lastly, the produced D-loop structure is resolved by RAD51 and the DSBs are re-joined.   
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1.5 RBPs in the Maintenance of Genomic Stability 

Accumulating evidence has revealed novel functions for RBPs, with newly identified 

key roles in the coordination and maintenance of genome integrity (reviewed in, 

Dutertre et al., 2014). In addition to allowing selective expression of DDR and DNA 

repair encoding mRNAs in response to DNA damage using their mRNA regulatory 

role, certain RBPs have been found to directly bind to DNA damaged sites and interact 

with various DNA repair proteins (reviewed in, Nishida et al., 2017). Interestingly, 

several studies have also described RBPs to be post-translationally modified by DDR 

proteins, altering their DDR-related mRNA target expression and subcellular 

localisation, in response to DNA damage (reviewed in, Paulsen et al., 2009; 

Montecucco and Biamonti, 2013; Dutertre and Vagner, 2017). Moreover, pivotal roles 

for RBPs in the prevention of R-loop (DNA: RNA hybrid) formation, a primary source 

of replication stress, have also been reported (reviewed in, Santos-Pereira and 

Aguilera, 2015). Accordingly, RBPs are emerging as crucial factors that protect cells 

against genomic instability with unexpected biological roles in the DDR and in DNA 

repair.  

 

1.5.1 RBP Regulation of DDR-related mRNA Targets 

In response to DNA damage, certain RBPs have been evidenced to be crucial for the 

expression of DDR genes via their post-transcriptional regulatory function on targeted 

mRNAs. Human-Antigen R (HuR), an RBP that binds to AU-rich elements on 3’ UTRs 

on mRNAs and increases mRNA stability, was found to directly bind on 3’ UTR regions 

on p53 mRNAs and enhance p53 expression (Mazan-Mamczarz et al., 2003). In this 

study, HuR and the tumour suppressor p53 levels were shown to be specifically 

increased in response to ultraviolet (UV) irradiation, which indicated a protective role 
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of HuR against DNA damage (Mazan-Mamczarz et al., 2003). Regulation of p53 

expression was consistently found to be controlled by other RBPs including PTB and 

RNPC1 (Grover, Sarothi Ray and Das, 2008; Zhang et al., 2011). Additionally, HuR 

was reported to be associated with the expression of various critical cell cycle 

modulators such as, Cyclin D1 and Cyclin E1, as well as with the tumour suppressor 

and HR-related mediator, BRCA1 (Saunus et al., 2008; Caldon and Musgrove, 2010). 

Moreover, HuR modulates levels of mRNAs that encode for key DDR-related proteins, 

proliferation-associated proteins and apoptosis such as 53BP1, MDM2, and p21 and 

K-Ras in response to IR-induced damage (Wang et al., 2000; Masuda et al., 2011; 

Mazan-Mamczarz et al., 2011). Importantly, ATM-dependent CHK2 activation was 

shown to influence HuR phosphorylation and activity in response to DNA damage 

(Masuda et al., 2011). In particular, CHK2 activation triggered the disassociation of 

HuR from virtually all of its mRNA targets after IR-induced DNA damage for cell 

survival in colorectal carcinoma cells (Masuda et al., 2011). More recently, HuR was 

described to post-transcriptionally regulate the mRNA expression of ARID1A, a 

tumour suppressor that interacts with TP53 and prevents genomic instability, in breast 

cancer cells (Andrade et al., 2019). Furthermore, the Ewing Sarcoma (EWS) protein 

is another multifunctional RBP with established roles in transcription and RNA 

processing, that has been implicated in the DDR. EWS’s alternative splicing function 

was shown to be associated with mRNA-encoding DNA repair and genotoxic stress 

signals genes including ABL1, CHK2, MDM2 and MAP4K2 in response to IR-induced 

DNA damage (Paronetto, Miñana and Valcárcel, 2011). Consistent with its functional 

role in the DDR, EWS depletion was found to sensitise cells to DNA damage and 

reduce cell viability and proliferation (Paronetto, Miñana and Valcárcel, 2011).  
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1.5.2 Direct Roles of RBPs in the DDR 

In addition to their regulatory roles in the selective expression of DDR-related mRNAs 

in response to DNA damage, RBPs have been reported to be directly involved in the 

DDR (reviewed in, Kai, 2016). A study that conducted genome-wide siRNA-based 

screens has identified the RBP RBMX (also known as hnRNP G), a heterogeneous 

nuclear ribonucleoprotein that associates with the spliceosome, as a DDR-associated 

protein that is functionally essential for resistance against DNA damage (Adamson et 

al., 2012). RBMX accumulated at DNA lesion sites in a poly(ADP-ribose) polymerase 

1 (PARP1)-dependent manner and enhanced HR-mediated repair by ensuring proper 

expression of BRCA2 (Adamson et al., 2012). In a separate study, RBMX was also 

demonstrated to contribute to DSB repair by increasing the fidelity of DNA end joining, 

by binding and protecting DNA ends from nuclease-induced degradation (Shin et al., 

2007). 

 

Other members of the hnRNP family of RBPs have also been shown to be directly 

involved in DNA repair. For example, hnRNP C was identified as a crucial regulator of 

BRCA1 and BRCA2 expression and a contributor to HR-related DNA repair (Anantha 

et al., 2013). Indeed, hnRNP C deficiency was found to be associated with reduced 

HR activity, defective S-phase cell cycle progression, and downregulation of BRCA1, 

BRCA2 and Rad51 HR-related proteins (Anantha et al., 2013). Further, hnRNP U-like 

proteins 1 and 2 (hnRNPUL 1 and hnRNPUL 2) were identified as binding partners for 

the HR-related MRN DSB-sensor complex, in which they triggered DNA-end resection 

in response to DSB formation (Polo et al., 2012). Intriguingly, this activity was shown 

to stimulate BLM helicase recruitment to DSBs, which is mediated by MRN and CtIP 

(Polo et al., 2012). In another study, HnRNPUL 1 activity was additionally shown to 
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localise to DSB sites in a PARP-1-dependent manner, and has been implicated in the 

regulation of PARP-1 mRNA as part of the DDR and DNA repair (Hong et al., 2013). 

Further, the fused in sarcoma/translocated in liposarcoma (FUS) RBP, is another 

multifunctional member of the hnRNP family whose activity is associated with PARP-

1 polymerase, that has been identified as a component of the DDR (Mastrocola et al., 

2013; Rulten et al., 2014). In response to laser-induced DSBs, FUS RBP was 

evidenced to be immediately recruited to DNA damaged sites in a PAR-1 dependent-

manner, contributing to HR and NHEJ-mediated repair to preserve genomic integrity 

(Mastrocola et al., 2013). Consistent with this finding, FUS was further shown to 

directly bind to PARP-1 in vitro, which allows its re-localisation to oxidative damaged 

sites as part of its response to UVA laser-induced DNA damage (Rulten et al., 2014).  

 

Concomitant with its RNA processing function, the Y-box binding protein (YB-1) is an 

RNA and DNA-binding protein that interacts with several factors in the DNA duplex 

and repair system, and is directly involved with specific types of DNA damage (Ise et 

al., 1999; Gaudreault, Guay and Lebel, 2004). For instance, YB-1 has been shown to 

contribute to the separation of DNA strands containing stress-induced structures, an 

activity that is specifically increased towards cisplatin-induced stressed and 

mismatched DNA (Gaudreault, Guay and Lebel, 2004). In addition to its strand 

separation function, YB-1 can additionally regulate several DNA repair proteins 

including Ku80, DNA polymerase δ and MSH2 (Mut S Homolog 2) in vitro (Gaudreault, 

Guay and Lebel, 2004). More recently, the functional role of YB-1 was demonstrated 

to be directly associated with the DNA mismatch repair (MMR) process (Chang et al., 

2014). DNA MMR is a conserved system that detects and repairs erroneous DNA 

mutations such as base substitutions, deletions and insertions to ensure genomic 
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integrity (Li, 2008). YB-1 was shown to exert a regulatory role on MutSα binding activity 

through MMR-related factors which directly impacted mismatch repair activity (Chang 

et al., 2014).  

 

Finally, the functional role of the RBP with ubiquitin ligase activity, PRP19, has also 

been implicated in the DDR. Using a proteomic screen for ssDNA-RPA binding 

proteins, PRP19 was identified as a sensor of DNA damage that directly binds to and 

ubiquitinates RPA, assisting in the recruitment of downstream DDR proteins (Maréchal 

et al., 2014). Accordingly, PRP19 was found to localise to DNA damaged sites and 

promotes the recruitment of ATRIP in response to DNA damage (Maréchal et al., 

2014). Importantly, PRP19 deficiency was shown to compromise the activation of 

ATRIP and replication fork integrity, which emphasised its intricate role in the 

maintenance of genomic stability (Maréchal et al., 2014). PRP19 activity in supporting 

the ATR response is specifically attributed to CDC5L, a member of the PRP19 

complex, which is essential for ATR downstream signalling (Zhang et al., 2009).  

 

1.5.3 Post-translational Modification of RBPs in Response to DNA Damage  

A critical aspect of DDR signalling is the post-translational regulation of DDR-

associated proteins by the major upstream signalling kinases (Matsuoka et al., 2007). 

Importantly, phosphoproteomic screens have identified some RBPs to be directly 

phosphorylated by DDR sensors such as ATM, ATR and DNA-PK as well as by other 

downstream kinases (CHK1, CHK2) upon DNA damage (Figure 1.14)  (Bennetzen et 

al., 2010; Bensimon et al., 2010; Blasius et al., 2011). These DNA damage-dependent 

post-translational modifications regulate RBP activity and ensure genomic integrity. 

For example, IR-induced DNA damage triggers ATM-dependent phosphorylation of 



 62 

hnRNP K and stabilises the RBP’s function as a p53 transcriptional cofactor (Moumen 

et al., 2013). Moreover, DNA damage-dependent RBP phosphorylation can also 

impact their mRNA binding activity. For instance, the ATM kinase was found to alter 

the dynamic association of the HuR RBP with its mRNA targets in response to IR-

induced DNA damage (Mazan-Mamczarz et al., 2011). Similarly, HuR-mRNA binding 

was shown to be additionally modulated in a CHK2-dependent manner (Masuda et al., 

2011).  

 

In addition to phosphorylation, RBP activity can also be modulated by other post-

translational modifications in a DNA damage-dependent manner. PAR polymerase is 

a nuclear enzyme that signals for the recruitment of DDR-related proteins by 

catalysing the addition of ADP-ribose elements to DNA, and is a key factor in DSB 

repair (Caron et al., 2019). Importantly, the recruitment of certain RBPs to DSB sites 

relies on PAR and PARP activity as previously described (Adamson et al., 2012; Hong 

et al., 2013; Mastrocola et al., 2013; Rulten et al., 2014). Lastly, large-scale proteomic 

analysis has revealed that various RBPs are increasingly acetylated upon DNA 

damage (Beli et al., 2012). However, acetylation of the RBP, SRSF2, was found to 

decrease its activity in response to cisplatin-induced DNA damage (Edmond et al., 

2011). These findings collectively suggested that RBPs may occupy a branch in the 

DDR signalling network and can be modulated by the DDR transducers in response 

to DNA damage.   
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Figure 1.14. Post-translational modification of RBPs in response to DNA Damage.  
Upon DNA damage, various RBPs undergo post-translational modifications including 
parylation, phosphorylation and acetylation. RBPs such as RBMX, hnRNPUL 1 and FUS 
function in a PAR/PARP-dependent manner and contribute to DNA repair. hnRNP K is 
phosphorylated by ATM, which in turn modulates its p53 co-factor function. Acetylation of 
RBPs including SRSF2 alter its mRNA processing activity. These DNA damage-dependent 
post-translational modifications regulate RBP activity and ensure genomic integrity.  

 

Along with post-translational modifications, DNA damage can also induce subcellular 

re-localisation of some RBPs which may potentially alter their functional activities. As 

previously mentioned, DDR activation induces the re-localisation of hnRNP C and 
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RBMX to DNA damaged sites to promote DNA repair and facilitate the expression of 

DDR-related mRNAs (Adamson et al., 2012; Hong et al., 2013). Moreover, DNA 

damage-dependent intranuclear re-localisation has also been reported in some RBPs 

such as members of the Serine-Arginine (SR) family and EWS (Dutertre et al., 2010; 

Sakashita and Endo, 2010; Paronetto, Miñana and Valcárcel, 2011). Additionally, the 

splicing factor RBP, Sam68, was demonstrated to re-localise from the nucleoplasm to 

nuclear stress granules upon DNA damage, which altered its splicing activities on 

certain targeted mRNAs (Busà, Geremia and Sette, 2010). Furthermore, several 

RBPs have been reported to shuttle from the nucleus to the cytoplasm in response to 

cellular stress including, DNA damage, to further promote their RNA processing 

activities (Cammas et al., 2008). For example, the PTB RBP translocates from the 

nucleus to the cytoplasm to facilitate p53 mRNA translation in a DNA damage-

dependent manner (Grover, Sarothi Ray and Das, 2008). Similarly, DNA damage-

induced nuclear export of HuR was shown to modulate its mRNA processing function 

(Kim, Abdelmohsen and Gorospe, 2010).  

 

1.5.4 The Functional Roles of RBPs in R-loop Stability  

R-loops are three-stranded nucleic acid structures that form during transcription, when 

the newly transcribed RNA hybridises with one of the DNA templates, leaving the 

second non-template/hybridised DNA template displaced as ssDNA (Thomas, White 

and Davis, 1976). This arrangement of the DNA:RNA hybrid in conjunction with the 

associated non-hybridised exposed ssDNA forms the R-loop structure. While short (8-

bp) DNA:RNA hybrids normally form during transcription and replication, R-loops are 

distinct to these short structures and span a length of 100-500 base-pairs (reviewed 

in, Santos-Pereira and Aguilera, 2015). The transient formation of R-loops is 
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functionally relevant to several physiological processes including transcriptional 

termination, mitochondrial DNA replication, chromatin modifications, regulation of 

gene expression and telomere dynamics (Lee and Clayton, 1998; Skourti-Stathaki, 

Proudfoot and Gromak, 2011; Santos-Pereira and Aguilera, 2015). However, stable 

(unscheduled) R-loops can also represent a major source of endogenous DNA 

damage, posing a threat to genomic stability. Therefore, it is essential that cells resolve 

or prevent stable R-loop formation to mitigate their deleterious effects and maintain 

genomic stability. Remarkably, eukaryotic cells have developed multiple pathways to 

resolve and prevent R-loop formation, some of which are partially attributed to the 

activity of certain RBPs (Bhatia et al., 2014, 2017; Santos-Pereira and Aguilera, 2015; 

Crossley, Bocek and Cimprich, 2019). 

 

Certain RBPs have been proposed to suppress the formation of R-loop structures and 

subsequent DNA damage by coating the newly transcribed RNA, that in turn, would 

inhibit its hybridisation with the transcribed DNA template (Figure 1.15) (reviewed in, 

Santos-Pereira and Aguilera, 2015). For example, the prototype of the SR family of 

RBPs, SRSF1, was shown to be recruited to nascent RNA transcripts by RNA 

polymerase II, which in turn prevented the formation of R-loops (Li and Manley, 2005). 

Notably, depletion of SRSF1 was associated with a hyper-mutagenic cellular 

phenotype induced by an R-loop accumulation, which was subsequently converted to 

DSBs by transcription-coupled nucleotide excision repair factors (Li and Manley, 2005; 

Sollier et al., 2014). This R-loop suppression activity was consistently shown in two 

other SR-related proteins, SRSF2 and SRSF3, further supporting the role of SR 

proteins in the maintenance of genomic stability via R-loop suppression activity (Li and 

Manley, 2005). Additionally, Topoisomerase 1 (TOP1) has been suggested to 
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functionally cooperate with SR-related proteins for the proper resolution of R-loop 

formation through the interaction of TOP1-associated proteins with SR proteins (Pilch 

et al., 2001; Andersen et al., 2002; Tuduri et al., 2009). Moreover, the TREX/TREX-2 

(TRanscription-Export) complex has also been implicated in the suppression of R-loop 

formation (Strässer et al., 2002; Bhatia et al., 2014) This activity was shown to be 

achieved through the complexes’ functional role in packaging nascent RNAs with 

several RBPs (Strässer et al., 2002). Indeed, mutations in THO-encoding components 

(HRP1 and THO2) were shown to elicit a transcription-related hyper-mutagenic 

phenotype in yeast (Aguilera and Klein, 1990; Piruat and Aguilera, 1998). This 

THO/TREX transcription-associated genomic instability was later found to be 

attributed to the accumulation of R-loops (Huertas and Aguilera, 2003). Furthermore, 

the hnRNP RBP was also shown to inhibit the stabilisation of R-loop structures 

(Santos-Pereira et al., 2013), corroborating that transcription-associated mRNA 

processing significantly contributes to preserving genomic integrity.  
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Figure 1.15. RBPs contribute to the prevention of R-loop structure formation. 
Certain RBPs including SRSF1, THO/TREX and hnRNP D, suppress the formation of R-loop 
structures by coating the newly transcribed RNA. This in turn inhibits its hybridisation with the 
transcribed DNA template and prevents the formation of R-loops and subsequent DNA 
damage.  
 

Undoubtedly, all these studies have indicated that RBPs are emerging as crucial 

safeguards and coordinators of genomic integrity. Importantly, these studies imply that 

the multifaceted nature of RBPs may be linked with further unexpected physiological 

processes in DNA damage sensing, the DDR and DNA repair. Therefore, in an 

emerging RNA world, investigating the links between RBPs and DDR-related 

pathways may elucidate their potential role in the maintenance of genomic stability, 

opening windows for the development of future cancer-targeted therapies.   
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1.6 The Emerging Role of the ZFP36 Family of RBPs in the 

Maintenance of Genomic Stability  

Similar to other discussed RBPs, members of the ZFP36 family have also been 

suggested to be potentially critical for the preservation of genomic integrity. For 

instance, the functional role of ZFP36L1 and ZFP36L2 was demonstrated to be directly 

associated with limiting cell cycle and DNA damage response signalling, by controlling 

mRNA transcripts encoding for proteins involved in DDR signalling pathways (Vogel 

et al., 2016). Intriguingly, DCKO mice lacking ZFP36L1 and ZFP36L2 resulted in 

elevated levels of the DSB marker, γH2AX, as well as increased levels of ATM/ATR 

DDR-related signalling substrates in thymocytes (Vogel et al., 2016). Notably, gene-

set enrichment analysis of mRNA transcripts that were significantly increased in 

ZFP36L1 and ZFP36L2-depleted murine cells included key DDR-encoding mRNAs 

such as the ATR kinase (Galloway et al., 2016). In fact, expression of ZFP36L1 and 

ZFP36L2 was found to be essential to ensure the genomic integrity during the 

development of B lymphocytes (Galloway et al., 2016). Moreover, ZFP36L2 was 

identified as a cell cycle-regulated protein that contributes to the maintenance of 

genomic stability, by inhibiting cell cycle progression at the S-phase in response to 

cisplatin-induced replication stress (Noguchi et al., 2018). Indeed, ZFP36L2-depleted 

cells were further sensitised to replication stress effects and resulted in defective cell 

viability due to cisplatin-induced DNA damage (Noguchi et al., 2018). More recently, 

ZFP36 was interestingly shown to regulate the replication stress response through the 

post-transcriptional control of mRNA levels of Claspin, an adaptor of ATR-mediated 

CHK1 activation (Lee et al., 2020). In this study, ZFP36-deficient cells compromised 

the phosphorylation and activation of CHK1 and exhibited increased CHK1-defective 

replication cellular phenotypes including DNA DSBs, structural chromosomal 
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aberrations and stalled replication forks in response to cisplatin and hydroxyurea-

induced replication stress (Lee et al., 2020). Additionally, ZFP36 was interestingly 

found to be essential for replication fork and chromosomal stability even in the 

absence of exogenous DNA damage, by mechanistically regulating Claspin mRNA 

stability (Lee et al., 2020).  

 

Together with the recent identification of ZFP36L1 as a novel cancer driver gene, this 

compendium of landmark studies has now definitely indicated that ZFP36L1 

expression and function may significantly impact the development and progression of 

human cancers, and that it may potentially encompass protective properties agaisnt 

genomic instability. Consistent with the emerging role of certain RBPs in the 

preservation of genomic integrity, ZFP36L1’s multifaceted functional nature indicates 

the potential of this protein to be intricately connected to the maintenance of genomic 

stability, a vital pre-requisite for the suppression of carcinogenesis. However, the 

molecular mechanisms underlying this link between ZFP36L1 and cancer, particularly 

from the angle of genomic stability, remains unclear. Thus, the functional 

characterisation of ZFP36L1 in the preservation of genomic integrity may elucidate 

some of these underlying mechanisms and open new avenues that may enhance our 

understanding of cancer aetiology.   
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1.7 Study Aims  

In line with the emerging roles in its preservation of genomic integrity along with its 

novel tumour-suppressive properties, we intended to explore whether ZFP36L1 may 

potentially be involved in the maintenance of genomic stability. Therefore, the 

objective of this work was to investigate the unexplored link between the multifaceted 

RBP, ZFP36L1, and the suppression of replication stress-induced genomic instability. 

Given the human osteosarcoma (U2OS) cell line is a well-characterised cellular model 

with intact (no mutations) in DNA repair pathway-related genes, and has been widely-

accepted as a suitable system used for replication stress-based studies (Lukas et al., 

2011; Minocherhomji et al., 2015; Chan et al., 2018), we sought study the role of 

ZFP36L1 in relevance to genomic stability in U2OS cells. Firstly, we aimed to generate 

cellular models by which ZFP36L1 expression was ablated using the CRISPR/Cas9 

gene-editing technology (addressed in Chapter 3). Secondly, we sought to investigate 

the molecular consequences associated with loss of ZFP36L1 on chromosomal 

stability, using the generated CRISPR/Cas9-mediated cellular models of ZFP36L1 

(addressed in Chapter 4). Thirdly, by using the CRISPR/Cas9-mediated cellular 

models, we aimed to determine whether the loss of ZFP36L1 was affiliated with 

increased replication stress induced-DNA damage markers (addressed in Chapter 5). 

Finally, we intended to explore a possible link between ZFP36L1 and the suppression 

of CFS expression. Along this line, we sought to characterise the effect of ZFP36L1 

deficiency on CFS stability using the generated CRISPR/Cas9-directed cellular 

models (addressed in Chapter 6).  
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2 Materials and Methods 

2.1 CRISPR gRNA Cloning into pSpCas9(BB)-2A-Puro (PX459) 

Plasmid  

2.1.1 Target Selection for gRNA Design 

The ZFP36L1 gene is located on the antisense strand of chromosome 14. The first 

300 base-pairs of exon 2 was selected as the target region for gRNA design (Ensembl 

transcript ID: ENST00000439696.2; Ensembl Genome Browser). Using an online 

CRISPR gRNA design tool, (https://zlab.bio/guide-design-resources), established by 

Dr Feng Zhang’s laboratory, 3 suitable 20 bp gRNA sequences with the highest on-

target binding score were selected. Selected gRNA sequences are listed in Table 3.  

 

Table 3. Selected gRNA sequences. 

gRNA On-target score Sequence On-target locus PAM 

1 93 CAGCTCCGTCTTGTAGCGGC Ch14: -68790409 TGG 

2 90 TGTCTCGCGAGCTCAGAGCG Ch14: -68790302 GGG 

3 89 GTCTCGCGAGCTCAGAGCGG Ch14: -68790301 GGG 

 

 

2.1.2 gRNA design and oligo annealing 

To prepare the selected gRNA constructs for cloning into pSpCas9(BB)-2A-Puro 

(PX459) plasmid (Addgene, #62988; Appendix B), BbsI overhangs (CACC) that 

correspond to pSpCas9(BB) BbsI restriction enzyme sites were appended to the 5’-3’ 

top strand followed by an extra Guanine (G) nucleotide as the first preference base of 

the U6 promoter on each of the selected gRNA oligos. Reverse complementary 

sequences to the gRNA sequences were added and the gRNA oligos were 
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synthesised by Eurofins (Table 4). Oligo phosphorylation and annealing was 

conducted as previously described in methods by Ran et al. (2013). In brief, 1 µl of 

each of the gRNA forward and reverse oligos (100µM) were added to 1 µl of 10x T4 

DNA ligase buffer (NEB, #B0202S), 1 µl of T4 Polynucleotide Kinase Enzyme (NEB, 

#M0201S) and 6 µl RNase-free water (ThermoFisher Scientific, #AM9906). The 

samples were  gently mixed and incubated at 95 ̊ C for 5 min and the temperature was 

then allowed to ramp down to 25˚C at room temprature (RT). Phosphorylated and 

annealed oligos were then diluted at a 1:100 ratio (oligo: RNase-free H2O) for ligation. 

 

Table 4. Modified gRNA oligos. 

gRNA gRNA oligo sequence PAM Supplier 

1 5‘ CACCG  CAGCTCCGTCTTGTAGCGGC 3’ 

3’           C GTCGAGGCAGAACATCGCCG CAAA 5’  TGG Eurofins 

2 5‘ CACCG TGTCTCGCGAGCTCAGAGCG 3’ 

3’           C ACAGAGCGCTCGAGTCTCGC CAAA 5’ GGG Eurofins 

3 

 

5‘ CACCG GTCTCGCGAGCTCAGAGCGG 3’ 

3’           C CAGAGCGCTCGAGTCTCGCC CAAA 5’ GGG Eurofins 

 

2.1.3 Restriction digestion of pSpCas9(BB)-2A-Puro (PX459) plasmid 

pSpCas9(BB)-2A-Puro (PX459) plasmid was digested as previously described in 

CRISPR protocol (gRNA cloning) by Addgene, with modifications. In summary, 80 µl 

(10 µg) of pSpCas9(BB) was mixed with 10 µl of 10x CutSmart Buffer (NEB, 

#B7204S), 5 µl of BbsI enzyme (NEB, #R0539S) and 5 µl of RNase-free water. The 

sample was then incubated at 37 ˚C for 2 hrs and BbsI enzyme was heat inactivated 
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at 65 ˚C for 10 min. Afterwards, BbsI digested pSpCas9(BB) samples were run on a 

0.7% agarose gel at 100V for 30 minutes and DNA fragments from the gel were 

purified using the Qiagen Gel Extraction kit (cat# 28706) according to the 

manufacturer’s instructions. To dephosphorylate the 5’ and 3’ ends of BbsI digested 

pSpCas9(BB), 56 µl (4 µg) of BbsI digested vector DNA was mixed with 8 µl of 10x 

CutSmart Buffer (NEB), 4 µl Shrimp Alkaline Phosphatase Enzyme (SAP) (NEB, 

#M0371S) and 12 µl RNase-free water (ThermoFisher Scientific). Samples were then 

incubated at 37 ˚C for 30 min, and SAP was then heat inactivated at 65 ˚C for 5 min. 

Afterwards, samples were purified using Qiaquick PCR purification Kit (Cat# 28104) 

as per the manufacturer’s instructions.  

 

2.1.4 Cloning gRNAs into pSpCas9(BB)-2A-Puro (PX459) plasmid vector 

For gRNA oligo delivery into pSpCas9(BB) plasmid (ampicillin resistant), a ligation 

reaction mixture was first set up for each of the annealed paired gRNA oligos and BbsI 

digested pSpCas9(BB) samples using the following: 4 µl of BbsI digested 

pSpCas9(BB) and 4 µl of 1:100 diluted gRNA oligos were mixed with 2 µl T4 DNA 

ligase buffer (NEB, #B0202S), 2 µl T4 DNA ligase enzyme (NEB, #M0202S) and 8 µl 

of RNase-free water. The samples were then incubated in a water bath set at 16 ˚C in 

a cold room overnight (O/N). The following day, T4 DNA ligase enzyme was heat 

inactivated at 65 ˚C for 5 min. Subsequently, the ligated mixtures were transformed 

into Subcloning Efficiency DH5α Competent cells (ThermoFisher Scientific, Cat# 

18265017) according to the manufacturer’s instructions. In brief, 5 µl of the overnight 

ligation reaction mixture was gently mixed with 50 µl of DH5α competent cells and 

incubated on ice for 30 min. Cells were then subjected to heat-shock for 20 secs in a 

42 ˚C water bath, placed on ice for 2 min and briefly spun down. 950 µl of pre-warmed 
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S.O.C medium (ThermoFisher Scientific, #15544034) was then added to each tube 

and the samples were incubated at 37 ˚C in a shaker for 1 hr. Subsequently, 300 µl 

of the transformation mix was then spread on pre-warmed agar plates containing 

100µg/ml of ampicillin (Sigma-Aldrich, Cat# 108352001) and incubated at 37 ˚C O/N.  

 

2.1.5 PCR screen for bacterial colonies harbouring sgRNA-pSpCas9(BB) 

To verify for the accurate gRNA oligo construct insertion in pSpCas9(BB) plasmid, 

several transformed discrete bacterial colonies grown on the agar plates containing 

ampicillin were initially screened through colony PCR for analysis. Forward primer 

corresponding to the U6 promoter in pSpCas9(BB) plasmid and reverse 

complementary primers for corresponding gRNAs were designed and synthesised by 

Eurofins as summarised in Table 5. Using a sterile pipette tip, half of each of the 

selected bacterial colonies were picked and prepared for colony PCR. PCR was 

performed using Taq DNA Polymerase PCR Buffer (10x) (ThermoFisher Scientific, 

#18067017) in accordance with the manufacturer’s instructions, with modifications. A 

20 μl reaction was prepared on ice for each picked bacterial colony containing the 

following components: 2 μl of Taq DNA Polymerase PCR Buffer (10x), 0.5 μl of dNTP 

(10mM) (ThermoFisher Scientific, #R0192), 0.5 μl of U6 forward primer (10μM), 0.5 μl 

gRNA reverse primer (10μM), 0.125 μl of Taq DNA Polymerase (ThermoFisher 

Scientific, #10342020) and 16.375 μl of RNase-free water. PCR was then carried out 

in a Biorad Mini thermocycler using the following conditions: 

i. 95 ˚C for 5 min (Initial denaturation) 

ii. 25 cycles of: 

a. 95 ˚C for 1 min (Denaturation) 

b. 50 ˚C for 30 secs (Annealing) 
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c. 72 ˚C for 20 secs (Extension) 

iii. 72 ˚C for 5 min (Final extension) 

 

Following PCR, amplified DNA samples were run on a 2% agarose gel at 100V for 1 

hr (1 kb DNA Ladder, NEB #3232) and an image was captured using a UVIdoc gel 

documentation system.  

 

Table 5. Primer sequences used for colony PCR screens. 

Name Target Sequence Supplier 

U6 Promoter Fw U6 Promoter GAGGGCCTATTTCCCATGATTCC Eurofins 

Guide1 Rev gRNA 1 GCCGCTACAAGACGG Eurofins 

Guide2 Rev gRNA 2 CGCTCTGAGCTCGCG Eurofins 

Guide3 Rev gRNA 3 CCGCTCTGAGCTCGC Eurofins 

 

2.1.6 Sequence validation of pSpCas9(BB)-sgRNA constructs  

Following colony PCR, colonies that showed DNA amplicons running at the expected 

amplicon length of approximately 260 bps were selected for plasmid-miniprep. Using 

a sterile pipette tip, bacterial colonies were inoculated from each plate into a 5 mL of 

LB medium (ThermoFisher Scientific, #12780052) with 100µg/ml ampicillin and the 

cultured cells were incubated in a shaker at 37 ˚C O/N. The following day, cultured 

cells were harvested by centrifugation at 5000 rpm for 30 min and the DNA was 

purified using the Qiagen PCR Purification Kit (#28104) according to the 

manufacturer’s instructions. Potential gRNA containing-pSpCas9(BB) plasmids were 

then Sanger sequenced from the U6 promoter using the U6 forward primer by 

Genewiz, UK. DNA Sequencing results were aligned with the pSpCas9(BB) plasmid 
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backbone (Addgene) to check for the 20 bp insertion of the gRNAs between the U6 

promoter and sgRNA scaffold.  

2.1.7 gRNA-containing pSpCas9(BB) plasmid amplification by Midiprep 

Sequence verified gRNA-cloned into pSpCas9(BB) plasmid DNA was transformed in 

Subcloning Efficiency DH5α Competent cells (ThermoFisher Scientific, Cat# 

18265017) according to the manufacturer’s instructions and method described in 

section 2.1.4 with modifications. In summary, 2 µl of gRNA-expressed pSpCas9(BB) 

DNA was transformed in 50 µl of Subcloning Efficiency Competent cells and 30 µl of 

the transformation mixture was spread on agar plates containing ampicillin. Using a 

sterile pipette tip, a single isolated colony from each plate was inoculated into 5 mL of 

LB medium with 100 µg/ml of ampicillin and cultured cells were incubated in a shaker 

at 37 ˚C O/N. The next day, 1 mL of each culture was added to 150 mL of LB medium 

with ampicillin and again incubated at 37 ˚C O/N. gRNA-expressed pSpCas9(BB) 

plasmid DNA was then isolated using a Qiagen Midi Kit (#12243) according to the 

manufacturer’s instructions.   

 

2.2 Cell line Manipulation and Generation 

2.2.1 Cell lines and culture conditions 

Cell lines used in this study were adherent and grown as monolayers at 37˚C with 5% 

CO2 at saturated humidity in T25 and T75 flasks (Nunc). Human Osteosarcoma U-2 

OS (American Type Culture Collection, HTB-96™) and U-2OS H2B-GFP (kindly 

shared by Dr Kanagaraj Radhakrishnan, The Francis Crick Institute) were grown in 

Dulbecco’s Modified Eagle’s Medium (DMEM; ThermoFisher Scientific, #11995065) 

supplemented with 10% Fetal Bovine Serum (FBS; Sigma-Aldrich, #F-9665) and 1% 

Penicillin-Streptomycin (P/S) antibiotic (ThermoFisher Scientific, #11548876). U2OS 
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was initially derived and characterised by Ponten and Saksela (1964) and does not 

contain mutations in genes related to DNA repair (https://www.atcc.org/products/htb-

96). U-2OS H2B-GFP cell line was generated from the WT U2OS cell line used in the 

study (ATCC HTB-96™) and was only modified to constitutively express H2B-GFP, by 

Dr Kanagaraj Radhakrishnan at The Francis Crick Institute. Cells were sub-cultured 

at 70-80% confluence. For cell disassociation, cells were washed with phosphate 

buffered saline (PBS; ThermoFisher Scientific, #10010023) and incubated with 0.05% 

Trypsin-EDTA (ThermoFisher Scientific, #25300054) at 37˚C for 5 min. To neutralise 

trypsinisation, fresh DMEM media containing FBS serum was added to the detached 

cells. Cell viability was assessed with 0.4% Trypan Blue Solution (ThermoFisher 

Scientific, #15250061) and the cell concentration was determined using a standard 

haemocytometer. Images of U-2 OS were captured using a Leitz Wilovert inverted 

microscope and Zeiss Axiovert S100 for U-2 OS H2B-GFP cells.  

 

2.2.2 Delivery of gRNA-expressed pSpCas9(BB) plasmid into U2OS cell lines  

U2-OS and U-2 OS H2B-GFP cells (0.3 x 105) were grown on 6-well plates in an P/S-

free DMEM medium to reach a confluency of 40-50% at the day of transfection. Cells 

were individually transfected with the three-designed gRNA-expressed pSpCas9(BB) 

plasmids, using LipofectamineTM 3000 (ThermoFisher Scientific, #L3000-001) 

according to the manufacturer’s instructions. Succinctly, 5 μl of Lipofectamine reagent 

was added to 125 μl of Opti-MEM reduced serum media (ThermoFisher Scientific, # 

A4124801).  This solution was mixed with 250 μl of Opti-MEM reduced serum media, 10 

μl of P3000 transfection reagent and 5 μg of gRNA-expressed pSpCas9(BB) plasmid, 

incubated for 10 min at RT and then added to the cells. Both U2OS cell lines were also 

individually transfected with pSpCas9(BB)-only plasmid (empty vector) and one 
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without pSpCas9(BB) (-DNA) conditions as negative controls using the same methods 

described above. 24 hrs post-transfection, the media was replaced with DMEM media 

containing P/S and incubated at 37˚C for 4 hrs prior to puromycin selection. For the 

generation of U2OS ZFP36L1 K/O, cells were transfected using the same conditions 

described but with a 48 hrs incubation with the transfection reagents (U2OS ZFP36L1 

K/O cell line was generated in collaboration with doctoral researcher, Ahmed Sidali, 

Genome Engineering Laboratory, University of Westminster).  

 

2.2.3 Puromycin selection of transfected cell lines  

Antibiotic selection for cells transfected with gRNA-expressed pSpCas9(BB) plasmid 

(puromycin resistant) was started off with 1 µg/ml of puromycin (Fisher Scientific, 

#A11138-03) and the cells were incubated at 37˚C for 24 hrs. The following day, 

puromycin-treated cells were harvested and seeded in 10-cm dishes. Puromycin 

concentration was increased to 2 µg/ml and incubated at 37˚C for 24 hrs. For the 

generation of U2OS ZFP36L1 K/O, cells were straightaway selected with 2 µg/ml of 

puromycin and were allowed to be grown till they reached 70% confluency.  

 

2.2.4 Clonal isolation and expansion  

Upon the observation of discrete single-cell colonies on the 10-cm dishes, (of which 

survived puromycin selection), dishes were replenished with fresh DMEM media and 

the cells were allowed to be grown into individual colonies until the colony size reached 

a minimum of 200 cells/colony. Discrete cell colonies were isolated from the dishes 

using cloning cylinders (Sigma-Aldrich, #C1059-1EA). Using sterile forceps, cloning 

cylinders were placed around the allocated colony and cells were disassociated with 

15 µl of 0.05% Trypsin-EDTA then incubated at RT for 3 min. Trypsinised cells were 
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then neutralised with 50 µl of DMEM media containing FBS, gently mixed and cells 

were then transferred to a 96-well plate. At 70% confluency (~ 1 week), monoclones 

from the 96-well plates were harvested, seeded in a 24-well plate and were allowed to 

be grown until the cells reached 70% confluency (~ 1 week). At the desired confluency 

in the 24-well plate, monoclonal cells were harvested and expanded in a 6-well plate. 

For the generation of U2OS ZFP36L1 K/O, cells were harvested from 6-well plates 

and cultured at a seeding density of 0.9 cells/100 μl in a 96-well plate for clonal 

isolation using limiting dilution methods described by ThermoFisher Scientific. A 

summary of the main experimental design described in sections 2.2.2, 2.2.3 and 2.2.4 

is demonstrated as a schematic in Figure 2.1. 

 

Figure 2.1. Experimental workflow of CRISPR-mediated genome-editing in U2OS cells. 
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U2OS and U2OS H2B-GFP cells were grown and transfected with sgRNA-expressed 
pSpCas9(BB). Transfected cells were harvested, plated on 10-cm dishes and selected with 2 
µg/ml of puromycin. Discrete single cell colonies were isolated using cloning cylinders or by 
limiting dilution to obtain single-cell colonies. Single-cell colonies were then expanded and 
screened for ZFP36L1-targeted genomic mutations/indels using Sanger or Ampliseq-based 
NGS DNA sequencing.  
 
  
2.3 Screening and Validation of ZFP36L1-targeted Monoclones 

2.3.1 Genomic DNA isolation 

To screen for DNA mutations/indels within the targeted region (exon 2) in ZFP36L1 in 

U2OS cells, genomic DNA was first isolated using the Qiagen QiaAmp DNA mini kit 

(#51304) according to the manufacturer’s instructions, with modifications. In summary, 

cells were harvested, washed with PBS and re-suspended in 200 µl of PBS. Cells 

were then gently mixed with 20 µl of proteinase K and 4 µl of RNase A (Qiagen, 

#19101) and incubated at RT for 5 min. Next, 200 µl of Buffer AL was added to the 

cells, mixed by vortexing for 15 secs and incubated at 56˚C for 10 min. After a brief 

spin of the samples, 200 µl of molecular-grade ethanol (Sigma-Aldrich, #E7023) was 

added, mixed again and vortexed for 15 secs, and briefly spun. Samples were then 

transferred to QIAmp Mini spin columns and centrifuged at 14,000 rpm for 1 min. 

Afterwards, spin columns were placed in fresh collection tubes (this was done in every 

step after centrifugation until DNA elution), 500 µl of AW1 Buffer was added and the 

samples were centrifuged at 8000 rpm for 1 min. Samples were then mixed with 500 

µl of AW2 Buffer and spun at 14,000 rpm for 3 min. Lastly, 80 µl of RNase-free water 

was added to the spin columns, incubated at RT for 5 min and the DNA was eluted in 

a fresh tube by centrifugation at 8000 rpm for 1 min. To assess the quality of genomic 

DNA, samples’ purity was analysed using a Nanodrop (ND-1000, ThermoFisher, UK) 

and run on a 1% agarose gel for 45 min at 100 V, and an image was captured using 

a UVIdoc gel documentation system.  
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2.3.2 PCR genotyping screen of ZFP36L1-targeted monoclones 

To check for variations within the targeted region in ZFP36L1, position 40-489 of the 

nucleotide sequence in exon 2 in ZFP36L1 was PCR amplified from monoclonal 

genomic DNA for analysis. Forward and reverse complementary primers for the 

corresponding positions were designed and synthesised as described in Table 6. A 

50 μl reaction was prepared for PCR using the following composition:  5 µl of 10x Taq 

Polymerase Buffer, 1 µl of dNTPs (10mM), 1 µl of 10 µM forward primer, 1 µl of 10 µM 

reverse primer, 5 µl (200 ng) of genomic DNA, 0.25 µl of Taq DNA Polymerase and 

36.75 µl of RNase-free water. PCR was then carried out in a Biorad Mini thermocycler 

using the following conditions: 

i. 95 ˚C for 5 min (Initial denaturation) 

ii. 30 cycles of: 

a. 95 ˚C for 1 min (Denaturation) 

b. 50 ˚C for 30 secs (Annealing) 

c. 72 ˚C for 20 secs (Extension) 

iii. 72 ˚C for 5 min (Final extension) 

 

After PCR, DNA amplicons were run on a 2% agarose gel at 100V for 45 min (100 bp 

DNA Ladder, NEB #3231) and PCR samples were DNA purified using the Qiaquick 

PCR purification kit (#28104) according to the manufacturer’s instructions. 

 

Table 6. Primer sequences used for screening ZFP36L1 clones.   

Name Target Sequence Supplier 

40Fw Exon 2; Bp #40 CTGCTGGACAGAAAGGCAGT Eurofins 

489Rev   Exon 2; Bp #489 ATCCACAACGCTGAAGAGCGC Eurofins 
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2.3.3 Immunoblotting  
Cells were harvested and re-suspended in RIPA buffer [50 mM Tris-HCl, (pH 8.0), 150 

mM NaCl, 0.1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 

sulphate (SDS), 1 mM sodium orthovanadate, 1 mM NaF and protease inhibitors 

cocktail tablet (EDTA-free; Roche, #1183617001)] and sonicated for 15 seconds to 

complete cell lysis. Cellular debris was isolated from soluble fraction by centrifugation 

at 16,000 g for 20 min at 4 ˚C. Relative protein concentrations were measured using 

a spectrophotometer. Equal amounts of protein were subjected to a 10% SDS-PAGE 

Nupage gel (Invitrogen, #NP0301) at 50V for 5 min then at 150V for 70 min, with 

MOPS running buffer (Invitrogen, #NP0001) using the XCell Sure Lock Mini-Cell 

System (ThermoFisher Scientific, #EI001).  Separated proteins were transferred to a 

Hybond-P PVDF membrane (Merck, #IPVH00010) in a wet tank blotting system 

(BioRad) with Transfer Buffer [25 mM Tris, 190 mM Glycine and 20% Methanol] for 90 

minutes at 100V at 4 ˚C (cold room). The membrane was then stained with Ponceau 

S (Sigma, #P3504) to check for protein transfer quality then washed twice with TBS-

T [20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.1% (v/v) Tween-20]. Subsequently, the 

membrane was blocked with 5% non-fat dry milk in TBS-T for 1 hr. The membrane 

was then incubated with appropriate primary antibody in 5% non-fat dry milk /TBS-T 

at 4 ˚C (cold room) O/N. The next day, the membrane was then washed four times 

with TBS-T and incubated with appropriate horseradish peroxidase-coupled (HRP) 

secondary antibody in 5% non-fat dry milk /TBS-T for 1 hr at RT. Following secondary 

antibody incubation, the membrane was washed four times with TBS-T and bands 

were detected by WesternSure chemiluminescence reagent (LI-COR) and imaged 

using a UVP BioSpectrum imaging system. Primary and Secondary antibodies used 

for immunoblots are summarised in Table 7.  
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Table 7. Primary and secondary antibodies used for immunoblots.  

Target Name Host Dilution Supplier 

BRF1/BRF2 (for the detection of 

ZFP36L1/ZFP36L2) Rabbit 1:1000 Cell Signaling (2119) 

MCM-7 (Minichromosome 

Maintenance Complex 

Component 7; loading control) 

 

Mouse 1:1000 Santa Cruz (sc-9966) 

Anti-Rabbit-HRP (secondary 

antibody) 

Goat 1:5000 ThermoFisher Scientific (31460) 

Anti-Mouse-HRP (secondary 

antibody) 

Goat 1:2000 ThermoFisher Scientific (32430) 

 

2.3.4 Sequence analysis of ZFP36L1 monoclonal lines 

PCR products of wild-type ZFP36L1 and mutants/variants (ZFP36L1 K/O and 

ZFP36L1 N-terminal deletion 2) were prepared as described in section 2.3.2 and 

Sanger sequenced using the 40-Forward primer. Wild-type ZFP36L1 and mutants, 

ZFP36L1 N-terminal deletion 1 (U2OS) and ZFP36L1 K/O (U2OS H2B-GFP), were 

prepared for Ampliseq-EZ-based Next-Generation sequencing according to the 

Amplicon-EZ service instructions provided by Genewiz (https://www.genewiz.com/en-

GB/). Sequencing data for all cell lines was generated by Genewiz, U.K. Analysis of 

CRISPR/Cas9-mediated genome edited sequenced samples was conducted using 

Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) for Sanger sequenced 

data, and CRISPRresso (https://crispresso.pinellolab.partners.org) for samples 

subjected to Ampliseq-NGS. Sequencing data of ZFP36L1 wild-type and ZFP36L1-

mutant clonal lines was submitted and successfully processed by NCBI 

(https://www.ncbi.nlm.nih.gov/sra). SRA reference: PRJNA663781.  
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2.4 Functional Characterisation of ZFP36L1-edited Cell lines 

2.4.1 Growth curve analysis 

U2OS and U2OS H2B-GFP cells were grown on 6-cm dishes at a seeding density of 

50,000 cells/dish (day 0). Cell concentration was determined every 24 hr over a period 

of five days. Cell counts were made in triplicate on each day using a haemocytometer.  

 

2.4.2 Immunofluorescence 

Cells were grown on glass coverslips at a seeding density of 100,000 cells/well in a 6-

well plate and individually treated with three concentrations [0.1 µM, 0.2 µM, 0.4 µM] 

of aphidicolin (Sigma-Aldrich #A0781; IC50: 5 µM) for 24 hrs to induce mild replication 

stress. Cells were then washed once with PBS and fixed using PTEMF buffer [20 mM 

PIPES (pH 6.8), 10 mM EGTA, 0.2% Triton X-100, 1mM MgCl2 and 4% Formaldehyde 

(ThermoFisher, #28906)] for 10 minutes at RT. After fixation, cells were washed once 

with PBS and permeabilised in 0.2% with Triton X-100 (Sigma-Aldrich #T8787) 

containing PBS for 5 mins at RT. Cells were then washed three times with PBS and 

incubated with 5mg/ml of BSA/PBS (Sigma-Aldrich, #A9647) with Glycine (20mM) for 

15 mins at RT. Next, cells were washed with PBS three times and blocked with BSA/PBS 

(5mg/ml) for 15 mins. Afterwards, cells were incubated with appropriate primary antibody 

diluted in BSA/PBS (5mg/ml) overnight at 4 ˚C. The next day, cells were washed four 

times with PBS and incubated with the appropriate secondary antibody diluted in 

BSA/PBS (Sigma, 5mg/ml) in the dark for 1 hr at 37 ˚C. After incubation, cells were 

washed four times with PBS, dried and mounted on microscopic slides with Prolong 

Gold Antifade Mounting Medium containing DAPI (ThermoFisher Scientific, #P36935). 

Primary and secondary antibodies used for IF staining are summarised in Table 8. 

Slides were analysed using an upright fluorescent microscope (Olympus BX41) 
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equipped with an Elite Micropix camera (Micropix Ltd). Images were acquired at 100x 

using Cytocam software Version 2.0 (Micropix).  

 

Table 8. Primary and secondary antibodies used for immunofluorescence. 

Name Host Dilution Supplier 

53BP1 Mouse 1:500 Merck (MAB3802) 

Cyclin A Rabbit 1:500 JG Laboratory 

RPA32/RPA2 Mouse 1:200 Abcam (ab2175) 

Phospo-yH2AX (Ser139) Rabbit 1:500 Cell Signaling (2577) 

PICH Rabbit 1:200 Cell Signaling (D4G8) 

FANCD2 Rabbit  1:500  Novus (NB-100-182) 

Alexa Fluor 488 anti-Rabbit IgG Goat 1:500 ThermoFisher Scientific 

(A11034) 

Alexa Fluor 568 anti-Mouse IgG Donkey 1:500 ThermoFisher Scientific 

(A-10037) 

Alexa Fluor 555 anti-Rabbit IgG  Donkey 1:500 ThermoFisher Scientific 

(A32794) 

 

 

2.4.3 Micronucleus formation assay 

Cells were grown on Poly-D-Lysine-coated coverslips (Corning, #354086) in 12-well 

plates and individually treated with three concentrations [0.1 µM, 0.2 µM, 0.4 µM] of 

aphidicolin for 24 hrs. Cell culture medium was supplemented 16 hrs before fixation 

with 2 mg/ml of Cytochalasin B (Sigma-Aldrich, #C6762) to block cells in cytokinesis. 

Cells were fixed with PTEMF buffer [20 mM PIPES (pH 6.8), 10 mM EGTA, 0.2% Triton 

X-100, 1mM MgCl2 and 4% Formaldehyde] for 10 minutes at RT, stained with 
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appropriate antibodies using immunofluorescence (IF) methods as previously 

described, and mounted on microscopic slides with Prolong Gold Antifade mounting 

medium containing DAPI. Images were acquired and analysed as described in section 

2.4.2. For quantification, only DAPI-stained binucleated cells were counted, and 

distinct micronuclei in the vicinity of these cells were considered as positive. 300 

binucleated cells were scored for each condition per experiment.  

 

2.4.4 Analysis of chromosome segregation 

In the same experiment of micronucleus formation (section 2.4.3), chromosome 

segregation in anaphase cells was examined. Mis-segregated chromosomes including 

DAPI-positive bulky bridges and lagging chromosomes were quantified. 50 anaphase 

cells were scored for each condition in each experiment.  

 

2.4.5 Metaphase spreads preparation 

Cells were grown in 10-cm dishes and individually treated with three concentrations 

[0.1 µM, 0.2 µM, 0.4 µM] of aphidicolin for 24 hrs. Cells were then treated with 0.2 µg/ml 

of Colcemid (ThermoFisher Scientific, #15212012) to enrich for mitotic cells for 90 mins 

and collected by mitotic shake-off. Mitotic cells were collected and placed in a 15 mL 

Falcon tube. The remaining adherent cells were trypsinised, added to the mitotic cells-

containing medium and centrifuged at 1000 rpm for 10 min. The supernatant was 

removed and the cells were washed with PBS. Afterwards, 5 mL of pre-warmed 75 mM 

KCL hypotonic buffer (ThermoFisher Scientific, #10575-082) was added and the cells 

were incubated at 37 ˚C for 15 min. Five drops of freshly prepared fixative (3:1 

methanol: acetic acid) (Sigma Aldrich, #179957, #A6283, respectively) was then 

added to the cell suspension, mixed by inversion followed by centrifugation at 1000 
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rpm for 10 min. After the removal of the supernatant, cells were fixed with 5 mL of 

fixative in a drop-wise manner over a vortex, incubated for 15 min and the cells were 

pelleted by centrifugation again. Fixing steps were then repeated three times with 

freshly prepared fixative each time in the same manner. After fixation, the pellet was 

re-suspended in 300 μl of fresh fixative and the cells were dropped onto slides pre-

soaked in cold dH2O and left to dry O/N. For staining, metaphase spreads were 

incubated with freshly prepared Giemsa (ThermoFisher Scientific, 10092-013) [7% 

Giemsa, 500 mM PIPES and Milli-Q H2O] for 15 min and washed three times with dH2O 

prior to mounting. Dried slides were then mounted with DPX mounting medium (Fisher 

Scientific, #D/5319/05). Metaphase spreads were viewed with a Zeiss Axioskop 2 

upright microscope equipped with an Elite Micropix camera (Micropix Ltd). Images 

were acquired at 100x using Cytocam software version 2.0 (Micropix). 

 

2.4.6 5-ethynyl-2'-deoxyuridine (EdU) labelling in mitotic cells  

Asynchronous U2OS cells growing on Poly-D-Lysine-coated coverslips in 6-well 

plates were synchronised to late G2-phase of the cell cycle by incubation with 9 µM of 

RO-3306 (Sigma-Aldrich, cat# SML-0569) in addition with 0.2 µM of APH treatment 

for 16 hrs at 37˚C. Cells were then washed three times with PBS and replenished with 

fresh DMEM medium containing 20 µM EdU ((ThermoFisher Scientific, cat# C10638)  

and incubated at 37˚C for 35 min. Following EdU incubation, cells were washed with 

PBS and fixed with PTEMF buffer [20 mM PIPES (pH 6.8), 10 mM EGTA, 0.2% Triton 

X-100, 1mM MgCl2 and 4% Formaldehyde] for 10 min at RT. Cells were then processed 

using the Click-iT Alexa Fluor 555 Cell Proliferation Kit (ThermoFisher Scientific, cat# 

C10638) according to the manufacturer’s instructions with modifications. In brief, a 

500 µL of Click-iT Plus reaction cocktail was prepared containing the following 
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components: 430 µL of 1x Click-iT reaction buffer, 20 µL of CuSO4, 1.2 µL of Alexa 

Fluor azide, and 50 µL of 10x of Click-iT EdU buffer additive. Cells fixed on coverslips 

were then incubated with the prepared Click-iT Plus reaction cocktail for 50 min at RT. 

Subsequently, cells were washed with 3% BSA/0.5%Triton in PBS three times for 5 

min each. Afterwards, cells were processed for immunofluorescence for the labelling 

of anti-FANCD2 using methods described in section 2.4.2. Images were captured 

using an upright fluorescent microscope (Olympus BX41) equipped with an Elite 

Micropix camera (Micropix Ltd). Images were acquired at 100x using Cytocam 

software version 2.0 (Micropix).  

 

 

2.5 Statistical Analysis  

Statistical analysis was performed using Graphpad Prism 8 software (GraphPad). 

Student or Mann-whitney t-test were used to analyse significant difference between 

samples. Statistical details of experiments including number of events quantified, 

standard deviation, standard error of the mean, and statistical significance, are 

reported in the figures and figure legends. P values ³ 0.05 was considered not 

significant. Levels of statistical significance are designated as follows: *, p < 0.05; **, 

p < 0.01; ***, p < 0.001; ****, p < 0.0001.   
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3 CRISPR/Cas9-mediated Generation of ZFP36L1-

knockout and ZFP36L1-mutant Cell lines 

3.1 Introduction 

The development of efficient and reliable methods to genetically engineer biological 

systems has tremendously enhanced our ability to elucidate the impact of genetics on 

human disease. Historically, gene modification relied on chemical and UV-based 

approaches that were exploited to induce random DNA mutations (reviewed in, Bose, 

2016). Although these techniques have contributed to crucial discoveries, they have 

been hampered by various factors, including their adverse mutagenic impact, time 

consumption and laborious nature. These limitations, however, were resolved by the 

advent of the current genome-editing technologies; zinc finger nucleases (ZFNs), 

transcription activator-like effector nucleases (TALENs) and the CRISPR-Cas 

nucleases, due to their ability to generate a DSB in the sequence of interest (Wood et 

al., 2011; Cho et al., 2013; Cong et al., 2013; Mali et al., 2013). ZFNs and TALENs-

based technologies use a strategy of tethering engineered sequence-specific DNA-

binding domains to a DNA cleavage endonuclease module to induce a DSB at 

targeted genomic sites (Carroll, 2011; Hockemeyer et al., 2011). By contrast, the 

endonuclease component of the CRISPR/Cas system, Cas, is guided by short RNAs 

(gRNAs) via Watson-Crick base pairing with the targeted sequence (Garneau et al., 

2010; Jinek et al., 2012). Though the use of ZFNs and TALENs have profoundly 

contributed to the advancement of biological research, these technologies progress is 

often hampered by their limited applicability to complex genomes, editing efficiency 

and ease of customisation (reviewed in, Ran et al., 2013). These disadvantages, 

however, were circumvented with the recently discovered CRISPR/Cas nuclease 
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system that provides a simple and efficient alternative genetic tool to ZFNs and 

TALENs for the production of specific genetic modifications.   

 

The CRISPR/Cas, clustered regularly interspaced short palindromic repeats/CRISPR 

associated proteins, is a naturally occurring system that has been adapted and 

engineered to function as a genome-editing tool and one that has revolutionised the 

field of synthetic biology. Originally discovered as an integral component of the 

adaptive immune system of numerous archaea and bacteria, the CRISPR/Cas system 

is an array consisting of short (20-40bp) repetitive DNA sequences (repeats) that are 

regularly interspaced by non-repetitive DNA sequences (spacers) (Grissa, Vergnaud 

and Pourcel, 2007). Further studies on bacterial genome sequences revealed that the 

CRISPR/Cas system plays a significant role in combatting foreign genetic materials 

including viruses by RNA interference (Barrangou et al., 2007; Jinek et al., 2012). 

Research conducted on CRISPR-Cas systems has provided researchers with insights 

into understanding the Cas protein endonuclease function and how through sgRNA 

modification, the Cas endonuclease can be exploited to facilitate cleavage at sites of 

interest (Jinek et al., 2012, 2013; Koike-Yusa et al., 2014; Shalem et al., 2014; Wang 

et al., 2014). The availability of synthesised Cas enzymes and the ability to design the 

sgRNA component enabled the use of CRISPR/Cas as a genome-editing tool. As a 

result, CRISPR-Cas systems have paved the way for an efficient, innovative, cost-

effective technique to edit, modify and engineer DNA in various cell types and 

organisms including bacterial, mammalian, and human cells (reviewed in, Ratner, 

Sampson and Weiss, 2016).  
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Out of the three types of CRISPR/Cas systems (I, II, and III) that have been classified 

primarily based on cas gene phylogeny, the Type II CRISPR/Cas system, derived from 

the adaptive immune system of the bacterium Streptococcus pyogenes (Sp), is one 

the best characterised systems to date (Deltcheva et al., 2011; Makarova et al., 2011; 

Jinek et al., 2012; Fonfara et al., 2014; Nishimasu et al., 2014). Due to its requirement 

of only a single and relatively stable Cas protein (Cas9), the Type II CRISPR/Cas9 

system has been established as a useful and efficient tool for genome engineering 

applications (Cong et al., 2013; Wu et al., 2014).  

 

Similar to ZFNs and TALENs, the Cas9 endonuclease facilitates gene-editing by 

generating a DSB at a specific targeted genomic site. The Type II CRISPR/Cas9 gene-

editing system is essentially comprised of two components . The first is a short sgRNA 

guide sequence that is specifically designed to target a complementary 20 base-pair 

site upstream of a 5’ NGG sequence (also known as the proto-spacer adjacent motif 

or PAM) within the genomic site (Sternberg and Doudna, 2015). The second is the 

Cas9 endonuclease that directs the generation of a DSB within the targeted site upon 

recognising the PAM sequence adjacent to the sgRNA (Figure 3.1) (Sternberg and 

Doudna, 2015). Upon cleavage of the genomic locus by the Cas9 protein, the DSB 

site is then resolved by the cell’s endogenous repair machinery through NHEJ or HR, 

depending on the cell cycle stage and the presence of a repair DNA template  (Wyman 

and Kanaar, 2006). In the absence of a repair DNA template, DSBs are typically 

resolved via the error-prone NHEJ repair pathway, which often results in mutations in 

the form of insertions or deletions (indels) (reviewed in, Daley and Sung, 2014). 

Accordingly, NHEJ can be harnessed to facilitate gene knockouts or disruptions, as 

mutations occurring within a targeted coding-exon often leads to the disruption of the 
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open reading frame (ORF), resulting in the inactivation of the targeted gene (Ran et 

al., 2013).  

 

 

Figure 3.1. Schematic of the mechanism underlying the Type II Streptococcus 
pyogenes-derived CRISPR/Cas9 system. 
The sgRNA oligo is designed to target a 20 base-pair site bearing sequence-complementarity 
that is adjacent to a 3-bp 5’ ‘NGG’ PAM sequence. Upon recognition, the Cas9 endonuclease 
creates a DSB at the targeted genomic locus near the PAM (NGG) sequence. The resulting 
DSB can be repaired by the error-prone NHEJ or HDR (in the presence of a DNA repair 
template) repair pathways (not shown). Adapted from Ceasar et al. (2016).  
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3.2 Cloning of gRNA oligos into pSpCas9(BB)-2A-Puro Plasmid  

To investigate the unexplored role of ZFP36L1 in the suppression of replication stress-

induced genomic instability, we first aimed to utilise the CRISPR/Cas9-mediated gene-

editing system to functionally disable ZFP36L1 in human cancer cells. In this report, 

we provide methodological details adapted from Ran et al. (2013), which were used 

to generate ZFP36L1-mutant and ZFP36L1-knockout cellular models in U2OS and 

U2OS H2B-GFP human osteosarcoma cell lines as tools of study. Firstly, to determine 

a suitable target site for gene-editing using the Type II S. pyogenes-derived 

CRISPR/Cas9 system, we analysed the genomic architecture of the human gene 

ZFP36L1, and chose exon 2 as the target region, as it corresponds to more than 90% 

of the coding region of the gene (www.ensemble.org; CCDS9791). With a base-pair 

length of 960, exon 2 comprises the coding region for the ZFDs and the highly-

conserved lead-in sequences (R/KYKTEL) to the two ZFDs that constitute the 

ZFP36L1 gene, both of which play a crucial role in the mRNA binding function of 

ZFP36L1 (Figure 3.2A). In particular, we selected the first 300 base-pairs of exon 2 

on ZFP36L1 for gRNA oligo design. We anticipated that targeting the early region 

within exon 2 will increase the likelihood of generating indels early in the coding 

sequence, which will potentially disrupt the ORF and ultimately result in a knockout of 

a functional full-length protein. Using Dr Feng Zhang’s CRISPR design software 

(https://zlab.bio/guide-design-resources), we selected three generated gRNA oligo 

sequences with the highest score of on-target binding (details described in section 

2.1.1) to maximise the likelihood of knocking-out our chosen target gene with minimal 

off-target activity (Figure 3.2B).     
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Figure 3.2. Architecture of ZFP36L1 gene and gRNA targeted genomic sequences. 
(A) Schematic illustration of the human ZFP36L1 gene locus on Chromosome 14: q24.1. The 
human ZFP36L1 gene consists of two exons (red boxes). The protein-coding region (mainly 
encoded by exon 2), encompassing the two putative zing finger motifs (orange) that are 
essential for ZFP36L1 RBP function, was selected for CRISPR/Cas9-mediated gene-editing. 
(B) 20 base-pair sequences preceded by an NGG PAM sequence (blue) targeted by the 
selected gRNA oligos (1, 2 and 3) on exon 2 of ZFP36L1.  
 

To generate sgRNA expressed-pSpCas9(BB) plasmids, we set out to clone the 

selected gRNA constructs into the sgRNA scaffold of pSpCas9(BB) plasmid vector. It 

is important to note that we designed the gRNA oligos to include BbsI overhangs and 

an extra Guanine nucleotide in compatibility with pSpCas9 (BB) BbsI sites and U6 

promoter respectively, to achieve ‘scarless’ cloning. To this extent, digestion of 

pSpCas9 (BB) with BbsI restriction enzyme would allow the replacement of the 

corresponding restriction sites with the annealed oligos. Following gRNA annealing 

and pSpCas9 (BB) digestion, we successfully ligated the paired gRNA oligos into the 

pSpCas9 (BB) vector and transformed the ligation mixture in DH5α competent cells. 

A schematic illustration of the methodological steps taken is depicted in Figure 3.3. 
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Figure 3.3. Schematic for gRNA design and scarless cloning into pSpCas9(BB).  
BbsI overhangs, -CACC-, and an extra Guanine nucleotide (in purple) as a preference for the 
BbsI sites and U6 promoter on pSpCas9(BB), respectively, were added to the 20-nucleotide 
selected gRNA sequences (e.g. gRNA 3) for ligation into the pair of BbsI restriction sites in 
pSpCas9(BB)-2A-Puro plasmid. Digestion of pSpCas9(BB)-2A-Puro with BbsI restriction 
enzyme allows the replacement (red arrows) of BbsI sites with the annealed guide oligos.  
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3.3 Validation of gRNA oligo expression in pSpCas9(BB) Plasmid 

We then sought to determine the presence of accurate gRNA oligo insertion in the 

pSpCas9(BB) plasmid by performing colony PCR on over thirty discrete transformed 

bacterial colonies for analysis. Using forward and reverse primers in correspondence 

to the U6 promoter and gRNAs respectively, we expected to detect a DNA amplicon 

length of 260 bps (vector backbone of pSpCas9 (BB) and gRNA constructs). PCR 

analysis revealed that all of the selected transformed bacterial colonies had potentially 

harboured the pSpCas9 (BB)-2A-Puro vector with their respective gRNA oligos. DNA 

amplicons produced a DNA fragment size of approximately 260 bps, in alignment with 

the DNA marker and positive control, as shown in Figure 3.4.   

 

 

Figure 3.4. Gel electrophoresis of colony PCR screen of gRNA oligos ligated in 
pSpCas9(BB)-2A-Puro plasmid.  
2% agarose gel of colony PCR products amplified from the U6 promoter to oligo constructs. 
PCR amplicons of (A) pSpCas9(BB)-gRNA 1 (Lane 2-10) and pSpCas9(BB)-gRNA 2 (Lane 
11-19), (B) pSpCas9(BB)-gRNA 2 (Lane 2-8) and (C) pSpCas9(BB)-gRNA 3 (Lane 2-8), are 
shown. PCR amplicons produced an expected DNA fragment of approximately 260 bps. Lane 
M, 1 kb DNA Ladder. Lane +C; Positive control; a previously cloned and sequence verified 
sgRNA-expressed pSpCas9(BB)-2A-Puro plasmid.  



 97 

 

According to the colony PCR analysis, we noted that all pSpCas9(BB) plasmids 

appeared to harbour the gRNA constructs. To corroborate our results, 15 suspected 

positive clones (5 for each designed gRNA) were Sanger sequenced to confirm gRNA 

oligo insertion in pSpCas9(BB) plasmid and positioned in the accurate orientation. As 

predicted, Sanger sequencing revealed that the majority (14/15) of the clones 

screened, carried the gRNA construct and that it was correctly oriented between the 

U6 Promoter and the remainder of the sgRNA scaffold in the pSpCas9(BB) plasmid 

(Figure 3.5).  
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Figure 3.5. Sequence validation of sgRNA-expressed pSpCas9(BB)-2A-Puro plasmid. 
(A-C) Representative Sanger sequencing chromatograms of (A) gRNA 1, (B) gRNA 2 and (C) 
gRNA 3 oligos successfully ligated in pSpCas9(BB) vector. (D) Representative DNA sequence 
of gRNA-expressed pSpCas9(BB)-2A-Puro vector (e.g. gRNA 3) accurately inserted and 
positioned between the U6 Promoter and the remainder of the pSpCas9(BB)-2A-Puro sgRNA 
scaffold. 
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3.4 Cell Line Manipulation and Generation 

In attempts to ablate the protein function of ZFP36L1, we employed CRISPR/Cas9-

directed gene-editing in U2OS and U2OS H2B-GFP osteosarcoma cells using the 

verified sgRNA-expressed pSpCas9(BB) plasmids. U2OS cells were transfected with 

pSpCas9 (BB) plasmid expressing SpCas9 and the CRISPR gRNA insert targeting 

ZFP36L1. To increase our success rate in generating a ZFP36L1 knockout and/or 

variants, we individually transfected each U2OS cell line with the three sgRNA-

expressed pspCas9 (BB) plasmids for target cleavage. Transfection conditions also 

comprised of transfection controls including untreated/untransfected cells (no DNA/-

pSpCas9(BB)-2A-Puro) and an empty vector (pSpCas9(BB)-only-2A-Puro) as 

negative controls, to check for cell health and for any effect of the vector on the 

targeted-gene expression of the cells, respectively. Importantly, pSpCas9(BB)-2A-

Puro plasmid contains a puromycin resistant gene, which allows for the isolation of 

individual cells that have been transfected with the plasmid by puromycin treatment. 

Accordingly, post-transfection, U2OS cells were subsequently treated with 2 µg/ml of 

puromycin to aid in the selection of transfected cells. The next day, we observed 

discrete single-cell growth with 2-4 cells/colony post-puromycin treatment. Single-cell 

derived colonies were then allowed to grow to sufficient quantity (minimum number of 

200 cells/colony) to aid for their isolation. Potential monoclones were then isolated 

from the dishes and expanded for analysis. The experimental workflow in the 

generation of CRISPR/Cas9-mediated targeting of ZFP36L1 described above, and 

examples of puromycin-selected U2OS and U2OS H2B-GFP cells are shown in Figure 

3.6A and Figure 3.6B, respectively.  
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Figure 3.6. Experimental workflow of CRISPR/Cas9-mediated gene-editing of ZFP36L1 
in U2OS and U2OS H2B-GFP cells.  
(A) Experimental design for the generation of CRISPR/Cas9-directed ZFP36L1-mutant clones 
in U2OS and U2OS H2B-GFP cells. Following in-silico gRNA design and synthesis, gRNAs 
were cloned in pSpCas9 (BB)-2A-Puro plasmid and transfected into U2OS cells. Transfected 
cells were then selected with 2 µg/ml of puromycin and single-cell colonies were isolated and 
expanded for verification via DNA sequencing and western blot analysis.  
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3.5   Screening for On-target Mutations/Indels 

Following single-cell clonal expansion, we sought to examine whether the generated 

U2OS monoclones contained indels or mutations within the targeted region (exon 2) 

of ZFP36L1. To this extent, we initially assessed the targeted DNA region for 

(micro)deletions by PCR amplification for analysis. The genomic DNA was first 

extracted from the monoclones and primers, both of which were designed to anneal 

outside of the targeted region, for base-pair positions 40 (Fw) to 489 (Rev) on exon 2 

of the ZFP36L1 gene, were used for PCR amplification. With an expected amplicon 

length of approximately 450 bps, we assessed the size (bp) of a total of 30 screened 

monoclones and observed an amplicon size smaller than 450 bps in three of U2OS 

monoclones in comparison to U2OS wild-type (WT) (Figure 3.7). In particular, one of 

the monoclones appeared to encompass an amplicon size of approximately 430 bps 

(Figure 3.7, Lane 3. Generated in collaboration with Ahmed Sidali, Genome 

Engineering Laboratory) and two of the monoclones produced an amplicon size of 

approximately 350 bps (Figure 3.7, Lane 4 and 5). 

 

 

Figure 3.7. Genomic PCR products of ZFP36L1-targeted region in U2OS cells.   
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2% agarose gel of PCR amplified region from position 40-489 on exon 2 of the ZFP36L1 gene 
in U2OS monoclones. Genomic PCR resulted in DNA amplicons with a size of approximately 
450 bps in the WT (Lane 2) with shorter (approximately 430, 350, 350 bps) fragments 
produced in the mutants (Lane 3-5, respectively) in U2OS cells. Lane M, 100 bp DNA Ladder. 
 
 
Subsequently, the suspected PCR amplicons/clones were examined for targeted-

homozygous or heterozygous mutations via Sanger or Ampliseq EZ-based Next 

Generation sequencing (NGS) analysis, respectively. As shown in Figure 3.8B, DNA 

sequence of U2OS clone ΔZFP36L1, derived from gRNA 3-transfected cells, 

contained a 17-bp deletion within the targeted region (exon 2) of the ZFP36L1 gene. 

Likewise, transfection of U2OS cells with gRNA 3, resulted in two additional clones in 

U2OS, ΔZFP36L1-ND1 and ΔZFP36L1-ND2 (ND; N-terminal deletion). Ampliseq EZ-

based NGS analysis showed that mutations in the heterozygous ΔZFP36L1-ND1 

clone, consisted of a combination of deletions, insertions and substitutions near the 

N-terminal region of ZFP36L1. In this particular clone, 59.56% of the reads consisted 

of 108-bp deletion and 34.74% contained an insertion (Guanine), while only 2.45% 

and 0.57% of the reads consisted of a 117-bp deletion and substitutions, respectively 

(Figure 3.8C, Appendix C, C-1). As for the homozygous ΔZFP36L1-ND2 clone, a 108-

bp deletion was detected, precisely 3 bps upstream of the PAM sequence, as shown 

by Sanger sequence analysis (Figure 3.8D).  
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Figure 3.8. DNA sequence analysis of CRISPR/Cas9-mediated ZFP36L1 mutants in 
U2OS cells.  
(A) Schematic illustration of the human ZFP36L1 gene locus located on Chromosome 14 
q24.1. 20 base-pair gRNAs genomic target regions on exon 2 and the protospacer-adjacent 
motif (PAM) sequences coloured in purple (gRNA 2) and green (gRNA 3) are indicated. (B-D) 
Genomic DNA analysis of the PCR amplified region (450 bps) encompassing the targeted 
region within exon 2 of ZFP36L1 in U2OS cells. (B) Sequence alignment of ZFP36L1 wild-
type (WT) and ΔZFP36L1 with a 17 bp deletion detected (dashed lines). SgRNA PAM 
sequence (green) and the Cas9 expected cleavage site (orange arrow) are indicated. (C) 
Next-Generation Sequencing (NGS) analysis of targeted region in ZFP36L1, derived from 
U2OS cells. Sequence alignment of wild-type ZFP36L1 (WT) and ZFP36L1-N-terminal 
Deletion 1 (ΔZFP36L1-ND1). Detected nucleotide deletions (dashed lines), insertions 
(emboldened in pink) and substitutions (emboldened in black) are indicated. (D) Sequence 
alignment of ZFP36L1 wild-type (WT) and ZFP36L1-N-terminal Deletion 2 (ΔZFP36L1-ND2) 
with a 108 bp deletion detected (dashed lines). 
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Interestingly, analysis of the predicted amino acid translation of the DNA sequences 

of the ZFP36L1-mutants in U2OS cell lines suggested that the carried mutations in the 

three ZFP36L1-targeted clones gave rise to a disruption in the ORF of ZFP36L1 

(Figure 3.9). Specifically, the 17-bp deletion detected in the ΔZFP36L1 clone 

appeared to introduce an out-of-frame mutation that significantly disrupted the ORF of 

ZFP36L1, causing a premature stop codon downstream of the deletion, indicating a 

possible no-protein product (Figure 3.9A). Moreover, in addition to the in-frame 108 

and 117-bp deletion that occurred in ΔZFP36L1-ND1 which led to a predicted 35 and 

39-amino acid deletion, respectively, the resulting 1-bp (Guanine) insertion in 

ΔZFP36L1-ND1 also appeared to cause an out-of-frame mutation, causing a total 

disruption in the ORF and a premature stop codon downstream of the insertion (Figure 

3.9B). Thus, we expected the ΔZFP36L1-ND1 cell line to produce either a truncated 

or a non-functional protein product of ZFP36L1. As for the predicted amino acid 

translation of the ΔZFP36L1-ND2 cell line, the detected 108-bp deletion appeared to 

produce an in-frame mutation with a resulting 35-amino acid deletion, which 

suggested a truncated protein product of ZFP36L1 (Figure 3.9C). Importantly, the 36-

amino acid deletion that occurred in both ΔZFP36L1-ND1 and ΔZFP36L1-ND2 cell 

lines, as a result of the 108-bp deletion, included the deletion of the first amino acid 

(Arginine (R)) of the highly-conserved lead-in sequence (RYKTEL) to the first zinc 

finger binding domain of ZFP36L1.  
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Figure 3.9. Predicted amino acid translation of open reading frames identified in 
ZFP36L1-mutants in U2OS cells.  
(A-C) Translation of detected mutations within the ORF of ZFP36L1 (left) along with 
corresponding schematic of amino-acid architecture (right) of (A) ΔZFP36L1, (B) ΔZFP36L1-
ND1 and (C) ΔZFP36L1-ND2 compared to the WT are shown. Amino acids emboldened in 
black in ΔZFP36L1 denote amino-acid sequence matching with WT ZFP36L1. Red asterisk 
represents a premature stop codon.  
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To investigate whether the detected mutations in ZFP36L1 translated into an ablation 

in protein expression, an immunoblot on ZFP36L1 mutants was conducted. Whole-

cell protein extracts were prepared, and a primary antibody that detects both, ZFP36L1 

and ZFP36L2 was used, along with an antibody that detects MCM7 protein which was 

used as a loading control. Western blot analysis of the homozygous mutant, 

ΔZFP36L1, showed a full-length knockout of ZFP36L1 (ΔL1) from the parental U2OS 

WT cell line with a complete absence/knockout of ZFP36L1 protein expression 

observed in comparison to WT and empty vector (pSpCas9(BB)-only) (Figure 3.10A, 

Appendix C, C-2). On the other hand, mutations in ΔZFP36L1-ND1 (ΔL1-ND1) and 

ΔZFP36L1-ND2 (ΔL1-ND2) derived from U2OS cells translated into truncated variants 

of ZFP36L1 protein. In particular, ΔL1-ND1 appeared to have a lower ZFP36L1 

expression than the WT, while ΔZFP36L1-ND2 produced a higher level of truncated 

ZFP36L1 protein expression (Figure 3.10A and B). Importantly, ZFP36L2 expression 

in all cell lines remained unchanged, supporting the specificity of CRISPR/Cas9-

mediated gene-editing given DNA sequence similarity between ZFP36L1 and 

ZFP36L2. Taken together, these results validate the optimised methodological 

approach that we used to generate truncated and knockout variants of ZFP36L1, and 

indicate that disruption of ZFP36L1 using the CRISPR/Cas9 system in U2OS cell lines 

is possible.  
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Figure 3.10. Western blot analysis of ZFP36L1 from whole-cell extracts of U2OS cells. 
(A) Protein expression of wild-type (WT), ZFP36L1 knockout (ΔL1) and truncated ZFP36L1 
(ΔL1-ND1) derived from U2OS cells, using the indicated antibodies. (B) Protein expression of 
wild-type (WT) and truncated ZFP36L1 2 (ΔL1-ND2) extracted from U2OS cells, using the 
indicated antibodies. ΔL1-ND cells expressed a shorter (truncated) protein of ZFP36L1 
compared to ZFP36L1 WT. ZFP36L2 and MCM7 were used as loading controls. 
 

Using the same approach, we were also successful in generating a ZFP36L1-

knockout (ΔL1) in U2OS H2B-GFP cells, a cellular model that can be used for the 

visualisation of chromosome dynamics and the study of various types of nuclear-

related processes (Kanda, Sullivan and Wahl, 1998; Yamamoto et al., 2004). 

Ampliseq EZ-based NGS analysis revealed that the heterozygous gRNA 2-derived 

ΔZFP36L1 clone consisted of multiple mutations, including deletions and insertions 

(Figure 3.11A and B). Specifically, an out-of-frame insertion (Adenine) was detected 

in 44.78% of the reads, a 41-bp deletion in 27.94% and 25.06% of the reads consisted 

of a 17-bp deletion, all within the SpCas9 cleavage site, causing premature stop 

codons in the corresponding ORFs within ZFP36L1 as shown in the predicted amino-

acid analysis (Figure 3.11D). Thus, we expected a full-length knockout of ZFP36L1. 

This was confirmed by immunoblot analysis, which consistently showed ZFP36L1 

expression to be completely knocked out compared to the WT (Figure 3.11E).  
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Figure 3.11. Characterisation of CRISPR/Cas9-mediated ZFP36L1 knockout in U2OS 
H2B-GFP cells.  
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(A) Schematic illustration of the human ZFP36L1 gene locus located on Chromosome 14 
q24.1. 20 base-pair gRNAs genomic target regions in exon 2 and the protospacer-adjacent 
motif (PAM) sequences coloured in purple (gRNA 2) and green (gRNA 3) are indicated. (B) 
Sequence analysis of targeted region in exon 2 of ZFP36L1 derived from U2OS H2B-GFP 
cells. Nucleotide deletions (dashed lines) and insertions (emboldened in pink) are indicated. 
(C) 2% agarose gel of PCR amplicons derived from U2OS H2B-GFP cells showed a DNA 
fragment of approximately 450 bps in the WT (Lane 2) and a similar band size observed in the 
mutant (Lane 3). Lane M, 100 bp DNA Ladder. (D) Predicted amino acid translation of three 
reading frames identified in ZFP36L1 knockout (ΔZFP36L1) in U2OS H2B-GFP cells. 
Translation of detected genomic 1 bp insertion (top), 17 bp deletion (middle) and 41 bp 
deletion (bottom) are shown. Amino acids emboldened in black in ΔZFP36L1 denote 
sequence matching with WT ZFP36L1. Red asterisk represents a premature stop codon. (E) 
Western blot analysis of ZFP36L1 from whole-cell extracts derived from U2OS H2B-GFP wild-
type (WT) and ZFP36L1 knockout (ΔL1). ZFP36L2 and MCM7 were used as loading controls. 
(F) Representative image of ΔZFP36L1 U2OS H2B-GFP cells. Scale bar, 10 µm.  
 

3.6 CRISPR/Cas9-mediated deletion of ZFP36L1 in U2OS Cells 

Compromises Cell Growth 

A fundamental trait of cancer cells involves their aberrant cell growth (Hanahan and 

Weinberg, 2011). One of the cellular phenotypes that has been shown to be 

compromised by the absence of ZFP36L1 is the rate at which cells proliferate (Suk et 

al., 2018). In particular, transient shRNA-mediated knockdown of ZFP36L1 was 

previously shown to increase cell number in human colorectal cancer cell lines 

(HCT116) and was also associated with increased cell viability (Suk et al., 2018). To 

investigate the impact of ZFP36L1 deficiency on the growth rate of U2OS cells, we 

performed a growth curve analysis on ΔL1 and ΔL1-ND cell lines along with their 

respective wild-type (WT) control cells over a period of five days. WT U2OS cells 

typically grow at an average doubling time of approximately 29 hours. Interestingly, 

we observed U2OS cells to exhibit a slower growth rate in the absence of ZFP36L1 

compared to the WT cells. As shown in Figure 3.12A and B, a distinct and significant 

growth difference among the ΔL1 knockout clones compared to the WT was apparent. 

Similarly, U2OS cells with a truncated/mutant variant of ZFP36L1 (ΔL1-ND1 and ΔL1-
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ND2) were also observed to grow significantly slower relative to the WT (Figure 3.12C 

and D). Thus, this suggested that ZFP36L1 may potentially play a critical role in the 

normal cell growth of human bone cancer cells. 

 

 

 

Figure 3.12. Loss of ZFP36L1 results in a slower growth rate in U2OS cells. 
(A and B) Growth curve analysis of WT and ZFP36L1 knockout (ΔL1) derived from (A) U2OS 
and (B) U2OS H2B-GFP cells. (C and D) Growth curve analysis of WT and ZFP36L1-mutants; 
(C) ΔL1-ND1 and (D) ΔL1-ND2, made in U2OS cells. Growth curve analysis was performed 
over a period of 5 days. Data are means of triplicate values obtained from three independent 
experiments. Error bars represent standard deviation (SD). p values were calculated using an 
unpaired two-tailed t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 



 111 

3.7 Discussion 

It has become increasingly evident that CRISPR/Cas9-directed gene-editing has 

revolutionised research on the human genome, and facilitated our ability to elucidate 

the phenotypic consequences associated with the loss of function of a single-gene 

product on pathological diseases. The CRISPR/Cas9 system is essentially composed 

of a gRNA that directs the Cas9 endonuclease to generate a DSB at a target-specific 

sequence. Due to its simplicity, improved precision and high editing-efficiency, this 

gene-editing tool has gained wide recognition amongst other gene-editing approaches 

(reviewed in, Rodríguez-Rodríguez et al., 2019). In this report, we present an 

optimised CRISPR/Cas9-directed method for generating a U2OS cellular model by 

which ZFP36L1 is functionally disabled and compromised/truncated. We used a 

plasmid-based Sp-derived-CRISPR/Cas9 methodological approach adapted from 

Ran et al. (2013) CRISPR-based methods. In particular, the all-in-one pSpCas9(BB)-

2A-Puro plasmid vector that we used for gRNA expression and delivery contained a 

Cas9 endonuclease expression cassette and a sgRNA scaffold tailored for gRNA 

cloning using BbsI restriction enzyme. Importantly, pSpCas9(BB)-2A-Puro also 

consists of an ampicillin and puromycin resistant gene that aided in the selection of 

transformed bacterial and transfected mammalian cells, respectively.  

 

The first step of a CRISPR-based method involves the design of a gRNA, which bears 

sequence-complementarity to the targeted genomic site. Given exon 2 encodes for 

the main protein-coding region of ZFP36L1, we selected an early region within the 

coding sequence that contains the ORF for gRNA design, to maximise the probability 

of generating frame-shift mutations that disrupt gene function (Figure 3.2). Moreover, 

It has been recommended that at least two separate gRNAs are designed to ensure 
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editing of the target site (Ran et al., 2013). Therefore, we designed and synthesised 

three gRNAs with the highest computationally predicted on-target binding scores, to 

target distinct genomic sites within the protein-coding region of ZFP36L1 (Figure 3.2). 

Indeed, while transfection with gRNA 2 and gRNA3-expressing pSpCas9(BB) 

plasmids resulted in the disruption of ZFP36L1 (U2OS; ΔL1, ΔL1-ND1 and ΔL1-ND2 

and U2OS H2B-GFP; ΔL1), gRNA 1-expressing plasmids failed to eliminate ZFP36L1 

expression (data not shown) (Figure 3.10). Altogether, these observations validate our 

optimised method used in the construction, selection and delivery of the sgRNA-

expressing pSpCas9(BB) plasmids in U2OS and U2OS H2B-GFP cells.  

 

Our genomic analysis of the targeted region within ZFP36L1 in U2OS and U2OS H2B-

GFP cells confirmed successful editing of ZFP36L1, as evidenced by the random 

CRISPR-induced mutations within exon 2 of ZFP36L1 (Figure 3.8). It is important to 

note that in the event where the CRISPR-induced lesion was found to be heterozygous 

when subjected to Sanger sequencing (the presence of overlapping bases visualised 

on a chromatogram or non-specific/uninterpretable data), the DNA fragments were 

analysed via Ampliseq-based NGS (reviewed in, Giuliano et al., 2019). Among the 

four ZFP36L1-mutant clones, ΔL1 and ΔL1-ND2 (U2OS) were identified as 

homozygous clones, and ΔL1-ND1 (U2OS) and ΔL1 (U2OS H2B-GFP) showed a 

heterozygous genotype. This merely reflected the diverse and random nature of 

mutations that can take place via NHEJ-mediated repair upon Cas9 cleavage. 

Interestingly, however, some of the deletions generated by gRNA 3 were identical 

between different clones. For example, ΔL1-ND1 and ΔL1-ND2 clones both harboured 

a 108-bp deletion within the same region of the targeted site (Figure 3.8C and D), 

supporting the emerging view that CRISPR-induced mutations, in some 
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circumstances, can result in a non-random repair outcome and produce similar indel 

patterns (Chakrabarti et al., 2019).  

 

Our western blot analysis confirmed that our gene-editing approach was successful in 

the generation of a knockout as well as a truncated variant of ZFP36L1 in U2OS cells. 

The complete absence of ZFP36L1 protein expression in both ΔL1 (knockout) clones 

can be explained by the resulting frame-shift mutations and premature stop codons, 

which completely disrupted the ORF, as shown in the predicted amino acid analysis 

of the clones (Figure 3.9A, Figure 3.11D). On the other hand, the generated mutations 

within ΔL1-ND1 and ΔL1-ND2 produced a truncated form of ZFP36L1. Truncated 

ZFP36L1 expression between these two clones differed from one another in that ΔL1-

ND1 expression was lower compared to full-length WT ZFP36L1, while ΔL1-ND2 

showed a higher level of truncated ZFP36L1 expression. This difference can be 

partially explained by the distinct mutations that occurred within the clones, whereby 

multiple types of mutations including an out-of-frame mutation had occurred within 

ΔL1-ND1’s ORF, compared to the single 108-bp deletion detected in ΔL1-ND2, which 

may have resulted in differential protein conformational and expression changes. 

Nonetheless, the increased level of ZFP36L1 protein expression in ΔL1-ND2 remains 

to be investigated in further studies.  

 

In line with previous findings on ZFP36L1 modulation of cellular proliferation, we 

observed a significant reduction in the growth rate of U2OS cells in the context of 

ZFP36L1 deficiency. This finding was in contrast to ZFP36L1’s effect in human 

colorectal cancer cell lines (HCT116), whereby shRNA-mediated knockdown of 

ZFP36L1 was associated with increased cellular viability and cell number (Suk et al., 
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2018). This may reflect that ZFP36L1 encompasses a cell type-specific function in 

relation to cell proliferation. 
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4 Loss of ZFP36L1 Leads to Replication Stress-induced 

Chromosomal Instability 

4.1 Introduction 

Chromosomal instability (CIN) is a hallmark of cancer that is denoted by an increased 

rate of numerical and structural chromosomal changes, and is the most prominent 

form of genomic instability in most human cancers (reviewed in, Negrini, Gorgoulis 

and Halazonetis, 2010; Sansregret, Vanhaesebroeck and Swanton, 2018). A common 

cause of CIN is the occurrence of mitotic dysfunctions that consequently lead to whole 

chromosome mis-segregation during cell division (reviewed in, Bakhoum et al., 2014). 

In addition to dysregulation of the mitotic apparatus, unequal chromosome 

segregation has also been shown to be caused by unresolved DNA structures that 

form as a repercussion of replication stress, which have escaped checkpoint activation 

and persisted into mitosis (Chan et al., 2009; Naim and Rosselli, 2009; Burrell et al., 

2013). If not resolved in a safe and timely manner, these replication stress-induced 

DNA defects can impede faithful chromosome segregation, and are commonly 

manifested into segregation errors such as anaphase bridges, chromosome laggards 

and micronuclei (Chan et al., 2009; Naim and Rosselli, 2009; Burrell et al., 2013).  

Anaphase bridges are a type of chromosome segregation defect characterised by 

DNA strings connecting two segregating chromosomes during anaphase (Chan et al., 

2009). Anaphase bridges can arise as chromatin bridges (also known as bulky 

anaphase bridges) and can be detected with conventional DNA ligands such as 4,6-

diamidino-2-phenylindole (DAPI) dye (Nielsen et al., 2015). In contrast, Ultra-fine 

bridges (UFBs) are a form of fine DNA linkage structures that are histone-free, and 

are undetectable with DAPI (DAPI-negative) (Fernández-Casañas and Chan, 2018). 
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Instead, UFBs have been shown to be coated by several nuclear factors including 

Bloom’s syndrome helicase (BLM) and the DNA translocase, Plk1-interacting 

checkpoint helicase (PICH), both of which can be visualised by immunofluorescence-

based methods (Baumann et al., 2007; Chan, North and Hickson, 2007). Although the 

exact function of PICH on UFBs is not completely understood, it is thought that PICH 

localises to UFBs to suppress DNA bridge formation and additionally contributes to 

BLM recruitment that, together with other nuclear factors, promote the resolution and 

processing of UFBs (Hengeveld et al., 2015). Importantly, UFBs are considered to 

constitute the last resort employed by cells to ensure proper chromosome segregation 

(reviewed in, Fernandez-Vidal, Vignard and Mirey, 2017).   

Another frequent consequence of replicative stressed DNA that persists into mitosis 

is the formation of extra-nuclear bodies known as Howell-Jolly bodies or micronuclei 

(Xu et al., 2011). These small nuclear fragments are considered as hallmarks of 

genomic instability that mainly originate from mis-attached chromosomes or chromatid 

fragments that failed to incorporate into the nuclei of the daughter cells (Fenech et al., 

2011). These mis-attached chromosome fragments often manifest as lagging 

chromosomes (also known as chromosome laggards) during anaphase, and represent 

a chromosome segregation error (reviewed in, Wilhelm et al., 2019).  

In line with the emerging roles of ZFP36L1 in the maintenance of genome stability, we 

sought to investigate whether the loss of ZFP36L1 was associated with increased 

replication stress-induced chromosomal instability, given CIN is the predominant form 

of genomic instability in most human cancers and is majorly driven by replication 

stress. Accordingly, we utilised the CRISPR/Cas9-generated ZFP36L1 knockout and 

ZFP36L1 truncated cellular models derived from U2OS and U2OS H2B-GFP cell lines, 
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as genetic tools, to examine the link between ZFP36L1 and chromosomal stability. 

More specifically, we assessed whether the loss of ZFP36L1 was affiliated with an 

increased number of chromosome segregation defects including chromosome 

laggards, anaphase bridges and micronuclei. To induce replication stress, we applied 

low doses (0.1 µM, 0.2 µM and 0.4µM) of the replicative DNA polymerase inhibitor, 

aphidicolin (APH), a chemical compound commonly used for replication stress-related 

studies (Vesela et al., 2017). Mechanistically, APH interferes with DNA replication by 

inhibiting DNA polymerases, alpha (α), epsilon (ε) and delta (δ), and mimics replication 

stress conditions that naturally occur in cells (Vesela et al., 2017).  
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4.2 ZFP36L1 Facilitates Faithful Chromosome Segregation 

Unresolved DNA structures that form as a consequence of replication stress are often 

associated with mitotic defects leading to incomplete chromosome segregation, and 

are commonly manifested as lagging chromosomes or DNA bulky bridges (Chan et 

al., 2009; Naim and Rosselli, 2009; Burrell et al., 2013). To assess the impact of 

ZFP36L1 deficiency with regard to chromosome segregation, we first measured the 

frequency of chromosome mis-segregation markers in U2OS wild-type (WT) and 

ΔZFP36L1 cells under mild replication stress conditions induced by low doses of APH. 

Accordingly, we examined the proportion of cells that segregated their chromosomes 

without visible segregation defects, with lagging chromosome fragments or DNA bulky 

bridges. Interestingly, deletion of ZFP36L1 was found to significantly increase the 

frequency of lagging chromosomes in anaphase cells compared to the WT in an APH 

dose-dependent manner (Figure 4.1). Untreated cells deficient in ZFP36L1 displayed 

approximately a 14% increase (p < 0.05) in chromosome laggards, and even a 

significantly higher frequency of chromosome laggard formation across all three doses 

of APH-induced mild replication stress (Figure 4.1A and B). Our quantification 

specifically suggested ZFP36L1 deficiency to result in the highest chromosome 

laggard formation in ΔL1-U2OS cells when treated with 0.4 µM (>24%, p < 0.01), with 

almost 50% of the scored cells displaying chromosome laggards compared to the WT 

(Figure 4.1B). This finding was consistently observed in ΔL1-U2OS H2B-GFP cells 

with the highest significant increase in chromosome laggards detected at 0.1 µM of 

APH (p < 0.001) (Figure 4.1E and F). Intriguingly, an increase in chromosome 

laggards was also observed in the context of a ZFP36L1 truncation, even in the 

absence of APH treatment (untreated ΔL1-ND1, p < 0.01; untreated ΔL1-ND2, p < 

0.05) (Figure 4.1C and D, Appendix D; D.1). 
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Figure 4.1. Loss of ZFP36L1 results in increased chromosome laggard formation.  
(A) Representative images of lagging chromosomes scored in wild-type (WT) and ZFP36L1 
knockout (ΔL1) U2OS cells. (B-D) Quantifications of the frequency of anaphase cells with 
lagging chromosomes in untreated and APH-treated (B) ΔL1, (C) ΔL1-ND1 and (D) ΔL1-ND2 
U2OS cells. (E) Representative images of lagging chromosomes scored in wild-type (WT) and 
ZFP36L1 knockout (ΔL1) U2OS H2B-GFP cells. (F) Quantification of the frequency of 
anaphase cells with lagging chromosomes in untreated and APH-treated ΔL1 U2OS H2B-GFP 
cells. White arrows indicate chromosome laggards. Scale bar, 10 µm. Data are means of three 
independent experiments with a total of 50 anaphase cells analysed per condition for each 
experiment. Error bars represent S.E.M. p values were calculated using unpaired t-test; ns, 
not significant, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Similarly, we also found an elevated frequency of DAPI-positive anaphase bridges in 

ZFP36L1-deficient and ZFP36L1-truncated U2OS cells compared to the WT (Figure 

4.2). This significant increase was consistently detected across all four of ΔZFP36L1 

clones and was strikingly high in untreated ZFP36L1-truncated cell lines (ΔL1-ND1 

and ΔL1-ND2), given ZFP36L1 protein in these clones is only partially compromised 

(Figure 4.2C and D, Appendix D; D.2). Indeed, ΔL1-ND1 and ΔL1-ND2 cells displayed 

a relatively distinct phenotype where a highly significant increase (>12%; p < 0.001, 

>16%; p < 0.001, respectively) in anaphase bridge formation compared to the WT was 

observed in the absence of mild replication stress. Taken together, these results 

indicate that a partial or complete knockout of ZFP36L1 in U2OS results in increased 

susceptibility of anaphase cells to the formation of chromosome laggards and DNA 

bulky bridges, both of which are morphological hallmarks of chromosome mis-

segregation.  
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Figure 4.2. Loss of ZFP36L1 induces the formation of DNA bulky bridges. 
(A) Representative images of DAPI-positive anaphase bridges scored in wild-type (WT) and 
ZFP36L1 knockout (ΔL1) U2OS cells. (B-D) Quantifications of the frequency of anaphase cells 
with DAPI-positive bulky bridges in untreated and APH-treated (B) ΔL1, (C) ΔL1-ND1 and (D) 
ΔL1-ND2 U2OS cells. (E) Representative images of H2B-GFP and DAPI-positive anaphase 
bridges scored in wild-type (WT) and ZFP36L1 knockout (ΔL1) U2OS H2B-GFP cells. White 
arrowheads indicate bulky bridges. Scale bar, 10 µm. (F) Quantification of the frequency of 
DAPI-positive anaphase bridges in untreated and APH-treated ΔL1 U2OS H2B-GFP cells. 
Data are means of three independent experiments with a total of 50 anaphase cells analysed 
per condition in each experiment. Error bars represent S.E.M. p values were calculated using 
a unpaired t-test, ns, not significant, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.  
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4.3 Mitotic Defects in ZFP36L1-deficient Cells are Mediated by the 

Formation of UFBs 

A more recent form of a DNA-bridging structure that arises as a result of unresolved 

replication stress-induced DNA entanglements carried into mitosis, are the so-called 

ultra-fine bridges (UFBs) (reviewed in, Tiwari, Jones and Chan, 2018). In contrast to 

DNA bulky bridges, UFBs cannot be stained by conventional DNA dyes (e.g. DAPI), 

but instead can be detected using immunofluorescence-based methods. Given our 

findings suggested ZFP36L1 to limit chromosome instability, we hypothesised that its 

deficiency may exacerbate replication stress in U2OS cells and impact UFB formation, 

a common outcome of replication stress. Therefore, we evaluated the effect of 

ZFP36L1 deficiency on the frequency of UFB formation through immunofluorescence 

staining of a UFB-binding protein; PICH. Consistent with previous results, 

immunofluorescence analysis revealed that the proportion of cells with PICH-positive 

UFBs was significantly increased in ΔZFP36L1 knockout clone compared to the WT, 

in both, the absence and presence of APH-induced replication stress (Figure 4.3A and 

B). In particular, a 10-14% increase of PICH-positive UFBs was detected in ΔL1 cells 

when treated with 0.2 µM of APH and a 12-16% increase at 0.4 µM APH treatment 

compared to the WT (p < 0.01, p < 0.001), respectively (Figure 4.3B). This observation 

was also consistent in cells expressing a truncated variant of ZFP36L1 (ΔL1-ND 1 and 

ΔL1-ND 2) in that they displayed a significantly greater level of UFB formation relative 

to the WT in an APH dose-dependent manner (Figure 4.3C and D, respectively; 

Appendix, D.3). Together, these observations support our findings that the elevated 

segregation errors resulting from ZFP36L1-deficiency and ZFP36L1-truncation are 

highly likely caused by aggravated replication stress which resulted in an exacerbation 

in chromosome-disjunction, posing a threat to the cells’ genomic stability.  
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Figure 4.3. Loss of ZFP36L1 induces PICH-positive UFB formation. 
(A) Representative images of PICH-UFBs (red) scored in wild-type (WT) and ZFP36L1 
knockout (ΔL1) U2OS cells. White arrowheads indicate PICH-UFBs. Scale bar, 10 µm. (B-D) 
Quantifications of the frequency of anaphase cells positive for PICH decorated-UFBs in (B) 
ΔL1, (C) ΔL1-ND1 and (D) ΔL1-ND2 U2OS cells. Data are means of three independent 
experiments with a total of 50 anaphase cells analysed per condition in each experiment. Error 
bars represent S.E.M. p values were calculated using an unpaired t-test, ns, not significant, *, 
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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4.4 Loss of ZFP36L1 Increases Micronuclei Formation 

Replication stress can drive intrinsic genomic instability and is affiliated with abnormal 

chromosome segregation in cancerous and pre-cancerous lesions (Burrell et al., 

2013). Based on our earlier chromosome mis-segregation analysis, we sought to 

characterise further impacts of ZFP36L1 deficiency on chromosome segregation. 

Since micronuclei are frequently formed as a consequence of the presence of mis-

attached chromosomes, we speculated that a deletion of ZFP36L1 might be 

associated with increased micronuclei formation. To block cells in cytokinesis, we 

used cytochalasin-B for the appropriate analysis of micronuclei formation in 

binucleated cells (Figure 4.4A) (Fenech et al., 2011). Strikingly, the frequency of cells 

with micronuclei was significantly increased across all four ZFP36L1-mutant U2OS 

cell lines, in both, non-treated and APH-treated conditions compared to the WT and 

empty vector (pSpCas9(BB)-2A-Puro-only) cells (Figure 4.4B, C and E, Appendix E). 

Treatment with 0.2 µM of APH in ΔL1-U2OS and ΔL1-U2OS H2B-GFP cells was found 

to result in a significant increase in micronuclei formation (>12.22%, p < 0.01; >9.22%, 

p < 0.01), respectively, while for ΔL1-ND1 cells a highly significant increase was 

observed at 0.4 µM of APH (>8.89%, p < 0.05) compared to WT. Interestingly, we 

observed ΔL1-ND2 cells to exhibit a greater significant increase in micronuclei when 

treated with 0.1 and 0.2 µM of APH (>10.89%, p < 0.01; >14.11%, p < 0.001, 

respectively) compared to ΔL1-ND1 cells (>6.88%, p < 0.05; >6.89%, p < 0.05, 

respectively), relative to the WT, a phenotype more similar to ZFP36L1 knockout (ΔL1) 

than ZFP36L1-truncated (ΔL1-ND1) cells. Collectively, these data build a strong case 

supporting the proposed role for ZFP36L1 in limiting replication stress-induced CIN.   
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Figure 4.4. Loss of ZFP36L1 induces micronuclei formation in U2OS cells.   
(A) Experimental workflow for the analysis of micronuclei. Cells were treated with APH for 24 
h and supplemented with 2 mg/ml of cytochalasin-B 16 h before fixation. (B) Representative 
images of cytochalasin-B induced binucleated cells with micronuclei scored in wild-type (WT) 
and ZFP36L1 knockout (ΔL1) U2OS cells. (C) Quantification of the frequency of micronuclei 
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scored in untreated and APH-treated WT and ΔL1 (left), ΔL1-ND1 (middle) and ΔL1-ND2 
(right) U2OS cells. (D) Representative images of cytochalasin-B induced binucleated cells 
with micronuclei scored in wild-type (WT) and ZFP36L1 knockout (ΔL1) U2OS H2B-GFP cells 
with H2B-GFP staining the nuclei. (E) Quantification of the frequency of micronuclei in 
untreated and APH-treated wild-type (WT) and ΔL1 U2OS H2B-GFP cells. White arrows 
indicate micronuclei. Scale bar, 10 µm. Data are means of three independent experiments 
with a total of 300 binucleated cells analysed per condition in each experiment. Error bars 
represent SD. p values were calculated using an unpaired t-test, *, p < 0.05; **, p < 0.01; ***, 
p < 0.001; ****, p < 0.0001. 
 

4.5 Discussion 

Chromosome stability is a hallmark of genomic stability that critically relies on faithful 

chromosome segregation between the sister chromatids during anaphase 

(Sansregret, Vanhaesebroeck and Swanton, 2018). While defects in the mitotic 

machinery can cause chromosome mis-segregation, recent studies have indicated 

that replication stress also acts as a driving force of chromosomal instability and lead 

to segregation errors (Ichijima et al., 2010; Burrell et al., 2013). Although growing 

evidence has shed light on the emerging role of ZFP36L1 in curbing genomic 

instability, the molecular base of this association remains unclear. In this report, we 

have identified a novel role for ZFP36L1, characterised in human U2OS and U2OS 

H2B-GFP cancer cells, in that it suppresses replication stress-induced chromosome 

mis-segregation. 

 

Unresolved DNA structures that form as a consequence of replication stress often lead 

to the formation of chromosome laggards and micronuclei (Wilhelm et al., 2019). To 

date, there is little evidence that has functionally linked RBPs with chromosome 

segregation. Conversely, the cold-inducible RBP (CIRBP) was recently shown to 

promote DSB repair and genomic stability, whereby CIRBP depletion was associated 

with HR and NHEJ impairment as well as increased micronuclei formation (Chen et 

al., 2018). Here, we demonstrate, for the first time, that these segregation error 
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phenotypes occur in cells deficient for the RBP, ZFP36L1. Indeed, ZFP36L1-knockout 

cells exhibited elevated levels of micronucleus formation, a morphological hallmark of 

genomic instability, even in the absence of APH-induced replication stress (Figure 

4.4). This effect was further exacerbated under conditions of mild replication stress in 

an APH dose-dependent manner, which indicated ZFP36L1 to potentially play a 

critical role in preserving chromosomal stability. Consistent with the notion that 

micronuclei typically form as an outcome of chromosome laggards that failed to be 

incorporated within the daughter nuclei, ZFP36L1-deficient cells were significantly 

sensitised to the formation of chromosome laggards during anaphase, especially 

under mild replication stress (Figure 4.1). This explains the resulting micronuclei 

formation phenotype and suggests that ZFP36L1 is important for faithful chromosome 

segregation.  

 

To corroborate these phenotypes, we characterised further impacts of ZFP36L1 

deficiency on chromosome segregation in the context of DNA anaphase bridges, a 

well-established marker of a segregation error (reviewed in, Fernández-Casañas and 

Chan, 2018). Importantly, we found that loss of ZFP36L1 is associated with increased 

levels of anaphase DNA bulky bridges, a phenotype that was consistently observed to 

be significantly increased under conditions of mild replication stress (Figure 4.2). This 

observation further validated the link between ZFP36L1 and the preservation of 

chromosomal stability. Another striking finding in the current study was that ZFP36L1 

deficiency resulted in an elevated level of anaphase cells with PICH-positive UFBs, a 

signature of replication stress and/or DNA damage (Figure 4.3) (Chan et al., 2009). 

UFBs are typically decorated with the DNA translocase, PICH, and other nuclear 

factors that continue to attempt to resolve stressed DNA that persisted into mitosis, 
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and play key roles in UFB resolution before the end of anaphase (Nielsen et al., 2015). 

This result signified that loss of ZFP36L1 is strongly related to replication stress-

induced genomic instability, and suggested that the resulting exacerbated replication 

stress imposed by ZFP36L1-deficiency had potentially activated DNA repair 

mechanisms.  

 

Remarkably, all of the key phenotypic changes observed in ZFP36L1-knockout cells 

were also detected in cells expressing a truncated variant of ZFP36L1 (ΔL1-ND1 and 

ΔL1-ND 2 cells). This indicated that even a partial loss of function associated with a 

compromised ZF-domain of ZFP36L1 was sufficient to elicit a significant increase in 

chromosome mis-segregation events and lead to increased chromosomal instability. 

It is also noteworthy that ΔL1-ND1 and ΔL1-ND2 cell lines harbour a 35-aa deletion 

that includes the first amino acid (Arginine (R)) of the RYKTEL motif, which is critical 

for the ZF domain of ZFP36L1 (Lai et al., 2000). Although the protein-level 

conformational changes linked with these phenotypes remain to be investigated, we 

speculate that one of the possible reasons underlying these phenotypes, is due to the 

108-bp deletion in ΔL1-ND cells, that resulted in partial disruption of the first ZF-

domain of ZFP36L1. However, further studies will need to re-visit the reason(s) for 

these distinct phenotypes.  
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5 ZFP36L1 Suppresses Replication Stress-induced DNA 

Damage 

5.1 Introduction 

In response to replication stress, eukaryotic cells are devised to activate a specialised 

branch of the DDR, that orchestrates a series of events that detect, signal and repair 

DNA lesions (reviewed in, Jossen and Bermejo, 2013). The activation of the replication 

stress response is initially triggered by the generation of stretches of ssDNA that are 

typically bound with the ssDNA-binding protein, RPA, at damaged or stalled replication 

forks (Pacek and Walter, 2004). The persistence of ssDNA coated with RPA activates 

the ATR kinase pathway, which in turn signals for the phosphorylation of numerous 

downstream substrates (reviewed in, Zeman and Cimprich, 2014). This series of DDR 

events is central to delaying cell cycle progression and provides additional time for the 

cell to deploy lesion repair and faithfully complete DNA replication within replication-

stressed sites (Branzei and Foiani, 2009).  

 

Many of the methodological markers used as readouts of replication stress represent 

the activation of these replication stress-induced pathways such as the recruitment of 

RPA and γH2AX (Zeman and Cimprich, 2014). Concomitant with its ssDNA-binding 

function, RPA is an indispensable player in almost all aspects of DNA metabolism 

including DNA replication, DNA repair and DNA damage checkpoints (Zou et al., 

2006). In fact, the generated replication stress-induced ssDNA-RPA filaments serve 

as the primary platform required for the activation of the DDR (Zou and Elledge, 2003).  

RPA can additionally be phosphorylated in an ATR kinase-dependent manner at 

Serine 33, which in turn modulates its function specifically for DNA repair (Liu et al., 
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2012; Soniat et al., 2019). Owing to its numerous key roles in DNA metabolism, the 

detection of RPA foci via immunofluorescence is therefore considered a specific 

readout or sensor of replication stress (reviewed in, Maréchal and Zou, 2013; Zeman 

and Cimprich, 2014).  

 

Failure to restart replication fork progression can lead to fork collapse and result in the 

formation of DNA DSBs, which are considered to be among the most deleterious forms 

of DNA lesions (Karagiannis and El-Osta, 2004). One of the earliest cellular responses 

to DSB formation involves the rapid phosphorylation of the histone H2A variant, H2AX, 

at Serine-139 (γH2AX) at the C-terminus, and this is responsible for the initiation of 

DSB repair (Redon et al., 2002; Rothkamm and Löbrich, 2003). Phosphorylation of 

H2AX is a crucial step in the DDR as γH2AX serves as a docking station for the 

recruitment of numerous DDR-associated proteins and downstream DDR effectors 

(Falck, Coates and Jackson, 2005). Accordingly, the visualisation and quantification 

of γH2AX in the form of discrete nuclear foci via immunofluorescence-based assays 

has been established as a highly reliable and sensitive method for the measure of 

DNA damage/DSBs (Mah, El-Osta and Karagiannis, 2010). 

 

Another well-established indicator of replication stress-induced DNA DSBs is the 

formation of 53BP1 nuclear bodies (NBs) in the G1-phase of the nascent daughter 

cells, that typically form in the vicinity of DSBs or DNA lesions (reviewed in, 

Fernandez-Vidal, Vignard and Mirey, 2017). Originally described as a binding protein 

of the tumour suppressor, p53, 53BP1 is a key component of the DDR that plays 

numerous roles in DNA damage signalling and DNA repair (reviewed in, Mirza-

Aghazadeh-Attari et al., 2019). Interestingly, replication stress-induced DNA lesions 
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that have failed to be repaired at UFBs, which constitute the final chance to repair 

stressed genomic loci, have been shown to be frequently transmitted into the following 

G1-phase daughter cells, and manifest into nuclear bodies enriched with 53BP1 

(Harrigan et al., 2011; Lukas et al., 2011). These 53BP1-containing sites essentially 

represent replication stressed sites from the previous S-phase and are thought to 

promote DNA repair via NHEJ in the G1-phase or shield the inherited DNA lesions 

from further DNA erosion until the following S-phase, where they can be resolved by 

HR-mediated repair pathways (Harrigan et al., 2011; Lukas et al., 2011). Importantly, 

the formation of 53BP1 NBs in G1-phase cells has been demonstrated to be 

intrinsically associated with replication stress, supported by the observation of an 

increase of 53BP1 NBs in response to APH treatment (Harrigan et al., 2011; Lukas et 

al., 2011). Thus, the detection and quantification of G1-phase 53BP1 NBs, which are 

visible by immunofluorescence-based assays as large (> 1µm) nuclear foci, serve as 

a reliable marker of replication stress. 

 

Here, we investigated whether the exacerbated replication stress conditions exhibited 

by ZFP36L1-deficient cells were translated into DNA damage and thus, in the 

accumulation of DDR-related proteins. Accordingly, we further characterised the 

molecular consequences associated with loss of ZFP36L1, by specifically quantifying 

the changes in the level of DSB markers, γH2AX and 53BP1 NBs, as well as 

endogenous RPA levels. Consistent with our speculations, we provide novel evidence 

showing that loss of ZFP36L1 is additionally associated with replication stress-induced 

DNA damage, reflected by the observed increased levels of G1-phase 53BP1 NBs, 

γH2AX and RPA, which strongly suggested that ZFP36L1 serves as a genomic 

stability guardian against replication stress-induced DNA damage. 
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5.2 ZFP36L1 Limits Replication Stress-induced DSB Formation 

Unrestrained replication stress can cause the formation of DNA DSBs and drive 

genomic instability (Ciccia and Elledge, 2010). Based on our earlier observations, that 

ZFP36L1 contributes to the suppression of replication stress-induced chromosomal 

instability, we hypothesised that loss of ZFP36L1 might also be associated with 

replication fork collapse and hence, DNA damage in the form of DNA DSBs. To assess 

this possibility, we first analysed the levels of phosphorylated H2AX (γH2AX), a 

morphological marker of DNA DSBs, in the context of ZFP36L1 deficiency under mild 

replication stress. As shown in Figure 5.1A and B, immunofluorescence staining of 

γH2AX indicated that deletion of ZFP36L1 significantly increased the number of 

γH2AX foci compared to the WT control cells, consistent with the assumption that 

ZFP36L1 and ZFP36L2 limit DNA damage signalling (Vogel et al., 2016). Importantly, 

loss of full-length ZFP36L1 protein significantly elevated γH2AX foci levels in non-

treated and APH-treated cells (p < 0.0001; p < 0.0001, respectively) (Figure 5.1B). 

This increase in γH2AX foci formation was also observed in cells expressing a 

truncated variant of ZFP36L1 (Figure 5.1C, Appendix F, F.1). Indeed, ΔL1-ND1 cells 

displayed a significant elevation in the number of γH2AX foci in both, non-treated and 

APH-treated conditions (p < 0.0001; p < 0.0001, respectively) (Figure 5.1C). Together, 

these findings implied that ZFP36L1 limits replication stress-induced DNA damage in 

U2OS cells.  
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Figure 5.1. Deletion of ZFP36L1 induces DSBs in the form of γH2AX. 
(A) Representative images of untreated and APH-treated cells containing γH2AX foci scored 
in wild-type (WT) and ZFP36L1-knockout (ΔL1) U2OS cells. (B and C) Quantification of the 
frequency of γH2AX foci in WT and (B) ΔL1 and (C) ΔL1-ND1 U2OS cells. Scale bar, 10 µm. 
Data are means of three independent experiments with a total of 100 interphase cells analysed 
per condition in each experiment. Error bars represent S.E.M. p values were calculated using 
Mann-Whitney t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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5.3 Loss of ZFP36L1 Increases Micronuclei Positive for γH2AX 

It has been previously shown that characterisation of the DNA damage content in 

micronuclei can further demonstrate the association between these extra-nuclear 

bodies and intrinsic genomic instability in the form of replication stress (Terradas et 

al., 2009). Indeed, the formation of micronuclei labelled with DDR factors including the 

DNA DSB marker, γH2AX, was shown to display an additional consequence 

associated with nuclei afflicted with replication stress, specifically when induced with 

APH (Xu et al., 2011). To explore whether the resulting micronuclei associated with 

the loss of ZFP36L1 harboured DDR-related factors, we monitored foci formation of 

γH2AX using immunofluorescence-based methods (Figure 5.2A). Interestingly, across 

all ZFP36L1-knockout and ZFP36L1-truncated clones, we found that the frequency of 

micronuclei that stained positive for γH2AX was higher compared to the WT in non-

treated and as well as APH-treated conditions (Figure 5.2; Appendix F, F.2). This 

difference was found to be particularly significant in ΔL1, ΔL1-ND1 and ΔL1-ND2 cells 

when treated respectively with 0.1 µM of APH (>9.33%, p < 0.001; >6.77%, p < 0.01; 

>10.78%, p < 0.01, respectively) and at 0.4 µM of APH for ΔL1-U2OS H2B-GFP cells 

(>11.33%, p < 0.01) compared to the WT (Figure 5.2B-G). It is important to note, 

however, that the increase in the frequency of cells with γH2AX (+) micronuclei is also 

relative to the number of micronuclei formed in each cell line. Since the loss of 

ZFP36L1 was shown in our earlier findings to significantly increase the frequency of 

micronuclei formation compared to the WT, we expected to observe a greater rise in 

γH2AX (+) micronuclei in ZFP36L1-deficient cells. Nevertheless, this observation 

presented further evidence supporting an association between ZFP36L1 and the 

preservation of genomic stability against replication stress-induced DNA damage.   
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Figure 5.2. ZFP36L1 deficiency induces micronuclei positive for γH2AX.  
(A) Experimental workflow for the analysis of γH2AX(+)-micronuclei. U2OS cells were treated 
with APH for 24 h before addition of 2 mg/ml of cytochalasin-B for 16 h followed by fixation 
and immunofluorescence staining. (B) Representative images of cytochalasin-B induced 
binucleated cells with γH2AX (+) micronuclei scored in wild-type (WT) and ZFP36L1-knockout 
(ΔL1) U2OS cells. (C-E) Quantifications of the proportion of the total micronuclei (previously 
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quantified) positive for γH2AX (grey bars) in untreated and APH-treated in WT and (C) ΔL1, 
(D) ΔL1-ND1 and (E) ΔL1-ND2 U2OS cells. (F) Representative images of cytochalasin-B 
induced binucleated cells with γH2AX (+) micronuclei scored in WT and ΔL1 U2OS H2B-GFP 
cells. (G) Quantifications of the frequency of micronuclei positive for γH2AX in untreated and 
APH-treated WT and ΔL1 U2OS H2B-GFP cells. Dashed squares indicate γH2AX (+) 
micronuclei. Scale bar, 10 µm. Data are means of three independent experiments with a total 
of 300 binucleated cells analysed per condition in each experiment. Error bars represent SD. 
p values, shown for micronuclei positive γH2AX data, were calculated using an unpaired t-
test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
 

5.4 Deletion of ZFP36L1 Induces DSBs Sequestered into 53BP1 NBs  

It is well-established that 53BP1 localises to microscopically visible discrete 

bodies/foci at sites of DNA lesions and DSBs that are largely confined to G1-phase 

cells, as a surrogate of replication stress (Harrigan et al., 2011; Lukas et al., 2011). 

Because a large proportion of mitotic cells deficient in ZFP36L1 displayed 

chromosomal segregation defects (UFBs), we next analysed the levels of 53BP1-

positive nuclear bodies (NBs) in G1-phase cells to determine whether this 

chromosomal stress was transmitted to the daughter cells, as a marker of DNA DSBs. 

Therefore, we conducted immunofluorescence-based experiments on U2OS WT and 

ΔZFP36L1 cell lines using antibodies against 53BP1 and cyclin A as a marker of S/G2- 

phase. Remarkably, we found that ZFP36L1-deficient cells exhibited a significantly 

increased number of 53BP1-positive NBs relative to WT and empty vector 

(pSpCas9(BB)-2A-Puro-only) cells, even in the absence of exogenous DNA 

replication stress (Figure 5.3A; Appendix G, G.1, G.2, G.4). This effect was further 

aggravated under conditions of APH-induced mild replication stress, which particularly 

resulted in a 40% increase in ΔZFP36L1 cells showing more than three 53BP1-

positive NBs in G1-phase cells compared to WT control cells, when treated with 0.2 

µM of APH (Figure 5.3B). Furthermore, a similar pattern in the increase of 53BP1-

positive NBs in the context of an N-terminus deletion of ZFP36L1 was also detected. 

Indeed, we observed a 24% and 34% increase in ΔZFP36L1-ND1 and ΔZFP36L1-
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ND2 cells, respectively, that exhibited 53BP1-positive NBs relative to WT cells when 

treated with 0.2 µM of APH (Figure 5.3C and D; Appendix G, G.3, G.4). Overall, these 

data suggested that the replication stress-induced DSBs that resulted in response to 

ZFP36L1 deficiency persisted through mitosis, remained unrepaired, and were 

consequently transmitted into the G1-phase nuclei of daughter cells, shielded by 

53BP1 NBs that are known to prevent further DNA erosion and promote DNA repair. 

 

 

Figure 5.3. Loss of ZFP36L1 induces the accumulation of 53BP1 nuclear bodies (NBs).  
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(A) Representative images of untreated and APH-treated G1-phase cells (cyclin A-negative, 
green) containing 53BP1 nuclear bodies (NBs) (red) scored in wild-type (WT) and ZFP36L1-
knockout (ΔL1) U2OS cells. Scale bar, 10 µm. (B-D) Quantification of G1-phase-specific 
53BP1 NBs in untreated and APH-treated WT and (B) ΔL1, (C) ΔL1-ND1 and (D) ΔL1-ND 2 
U2OS cells. Percentage of G1 cells with >3 nuclear bodies is plotted. Data are means of three 
independent experiments with 200 cyclin A-negative cells analysed for each condition per 
experiment. Error bars show S.E.M. Statistical analysis of 53BP1 NB data is presented in 
Appendix G.  
 
 

5.5 ZFP36L1 Deficiency Triggers the Recruitment of RPA During G1-

phase and S/G2-phase  

Consistent with its importance in ssDNA binding, RPA is essential for a wide range of 

DNA transactions, including chromosomal DNA replication and almost all major types 

of DNA repair (Vassin et al., 2009). Due to its extensive involvement in the DNA 

damage response, we were prompted to monitor the assembly of nuclear RPA foci as 

a read-out of ssDNA and DNA repair in the context of ZFP36L1 deficiency. To this 

end, we quantified levels of endogenous RPA in S/G2-phase as well as in G1-phase 

of ZFP36L1-deficient and WT U2OS cells using an immunofluorescence-based 

approach. Strikingly, we found that a truncated variant (ΔL1-ND) as well as a full 

knockout (ΔL1) of ZFP36L1 not only elicited a significantly increased number of RPA 

foci in S/G2 but also in the G1-phase of cells, in both, the absence and presence of 

APH-induced mild replication stress (Figure 5.4A, Appendix H).  Indeed, 61% of ΔL1 

S/G2-phase cells were found to display more than 8 RPA foci compared to the 30% 

observed in WT when treated with 0.2 µM of APH (Figure 5.4B). This phenotype was 

similarly observed in ΔL1-ND S/G2-phase cells with approximately a 26% increase in 

RPA detected at 0.2 µM of APH compared to WT (Figure 5.4C, D). These observations 

further indicated that ZFP36L1 deficiency is associated with DNA damage, given RPA 

is a characteristic marker of ssDNA and a crucial hallmark of DNA repair.   
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Figure 5.4. RPA is recruited to G1 and S/G2 in response to loss of ZFP36L1.   
(A) Representative images of S/G2 (cyclin A-positive, green) and G1 (cyclin A-negative, 
green) phase cells containing RPA foci (red) scored in untreated and APH-treated wild-type 
(WT) and ZFP36L1-knockout (ΔL1) U2OS cells. Scale bar, 10 µm. (B-D) Quantification of 
RPA foci in WT and (B) ΔL1, (C) ΔL1-ND1 and (D) ΔL1-ND2 in S/G2-phase U2OS cells. 
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Percentage of S/G2-phase cells with >8 RPA foci is plotted. (E-G) Quantification of WT and 
(E) ΔL1, (F) ΔL1-ND1 and (G) ΔL1-ND2 in G1-phase U2OS cells. Percentage of G1-phase 
cells with >8 RPA foci is plotted. Data are means of three independent experiments with 150 
phase-specific cells analysed for each condition per experiment. Error bars show S.E.M. 
Statistical analysis of RPA data is presented in Appendix H.  
 

 

Furthermore, we were surprised to find RPA foci in abundancy in G1-phase cells in 

response to a loss of ZFP36L1 (Figure 5.4A), since there is only modest evidence on 

RPA’s involvement in G1-phase DNA resection (Barlow, Lisby and Rothstein, 2008; 

Averbeck et al., 2014; Biehs et al., 2017). Interestingly, however, our quantification 

revealed that even in the absence of exogenous replication stress, 24% of ΔL1 G1-

cells displayed more than 8 RPA-positive foci relative to the 1% shown in WT (Figure 

5.4E). ΔL1 cells were even further sensitised to RPA accumulation under conditions 

of replication stress where almost 50% of the G1-cells gave rise to more than 8 RPA-

positive foci compared to the 8% displayed by the WT. Consistently, an N-terminus 

truncated variant of ZFP36L1 (ΔL1-ND1 and ND2) was shown to elicit a similar 

phenotype in increased RPA accumulation in the G1-phase compared to WT (Figure 

5.4F, G). Thus, these observations indicate that replication stress-induced DNA 

damage caused by a disruption or a deletion of ZFP36L1 induces the recruitment of 

RPA for DNA repair, in both, S/G2 and G1-phase of the cell cycle, further reflecting 

ZFP36L1’s multifunctional role in limiting DNA damage across various stages of the 

cell cycle in U2OS cells.  
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5.6 Discussion 

Aberrant DNA replication and sustained replication stress can consequently induce 

replication fork breakage and DNA damage, and result in the formation of DNA DSBs, 

that require repair activity by the downstream effectors of DDR-associated 

transducers, ATM and ATR kinases (Ciccia and Elledge, 2010). In light of increasing 

studies indicating that certain RBPs are functionally linked to the DDR (reviewed in, 

Dutertre et al., 2014; Dutertre and Vagner, 2017; Nishida et al., 2017), we provide 

several lines of evidence supporting a novel role for the RBP, ZFP36L1, in protecting 

genomic stability against replication stress-induced DNA damage. Specifically, we 

delineate a novel association between ZFP36L1 and suppression of DNA DSB 

formation, especially under replication stress conditions, across various stages of the 

cell cycle in U2OS cells.    

 

Besides their role in post-transcriptional regulation of immune-related mRNA targets, 

members of the ZFP36 family of RBPs have previously been linked to conferring 

protection of genomic integrity against DNA damage (section 1.6). Here, we show that 

even in the absence of mild replication stress, ZFP36L1-deficient cells exhibit a 

dramatic increase in γH2AX foci formation as well as G1-phase 53BP1 NBs, which 

are both morphological hallmarks of DNA DSBs. These results provide new insight 

into corroborating the relationship between ZFP36L1 and the preservation of genomic 

integrity and suggest that the multifaceted nature of ZFP36L1 is also functionally linked 

to the suppression of replication stress-induced DNA DSBs. In agreement with our 

findings, double conditional knockout (DKCO) of ZFP36L1 and ZFP36L2 in murine 

thymocytes has been shown to be associated with increased levels of γH2AX 

signalling (Vogel et al., 2016). Similarly, a recent study by Lee et al. (2020) indicated 
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that ZFP36 limits the formation of 53BP1 NBs and γH2AX foci in response to HU and 

cisplatin-induced replication stress. Our findings agree with both of these observations 

and provide evidence demonstrating a critical role for ZFP36L1, specifically in 

protecting cells’ genomic stability against APH-induced replication stress.  

 

In addition to the elevated levels of 53BP1 NBs and γH2AX foci formation, we also 

show that in non-treated and APH-treated cells, loss of ZFP36L1 results in increased 

levels in RPA foci, in both, G1 and S/G2-phase of the cell cycle. Consistent with its 

ssDNA-binding function, RPA contributes to numerous DNA repair processes and is 

considered a specific DNA repair marker and a readout of replication stress (reviewed 

in, Maréchal and Zou, 2013; Zeman and Cimprich, 2014). Thus, collectively, these 

data further support the proposed role for ZFP36L1 in curbing DSB formation and 

suppressing replication stress-induced DNA damage. Importantly, all the presented 

phenotypes exhibited by ZFP36L1-deficient cells were also similarly demonstrated in 

cells expressing a truncated variant of ZFP36L1. Indeed, ΔL1-ND cells displayed 

elevated levels for γH2AX foci, 53BP1 NB formation and RPA foci, corroborating the 

notion that even a partial disruption of function linked to the ZF binding domain of 

ZFP36L1 is sufficient to elicit similar replication stress-associated phenotypes. 

Although the molecular mechanism underlying ZFP36L1’s functional role in preserving 

genomic integrity against replication stress-induced DNA damage is limited by the 

presented data, our findings provide important potential clues that contribute to the 

understanding of ZFP36L1’s role in maintaining genomic stability. Nevertheless, 

further research is required to establish the functional molecular base of this 

association.  
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6 Loss of ZFP36L1 Potentially Associated with CFS 

fragility  

6.1 Introduction 

Chromosomal fragile sites (FSs) are specific genomic loci or regions that are 

particularly vulnerable to replication stress-induced DSBs (Durkin and Glover, 2007). 

FSs are generally classified as rare or common based on their frequency in the 

population and pattern of inheritance (Durkin and Glover, 2007). Rare fragile sites are 

found in less than 5% of human individuals, segregate in a Mendelian manner and 

their instability is commonly caused by the expansion of nucleotide repeats (Kremer 

et al., 1991; Sutherland, Baker and Richards, 1998). On the other hand, common 

fragile sites (CFSs) are found in all human individuals, represent part of the normal 

chromosome structure and their instability is not associated with expansion of 

nucleotide repeats (Durkin and Glover, 2007). Instead, CFS instability or ‘expression’ 

is caused by replication stress conditions, and is strongly correlated with cancer 

(Yunis, 1984; Durkin and Glover, 2007). CFSs can be specifically induced by exposing 

cells to low doses of APH (Glover et al., 1984) and are often cytologically manifested 

as gaps, breaks or constrictions on metaphase chromosomes (Durkin and Glover, 

2007). Moreover, most CFSs are located within long genes, ranging from a length of 

several hundred kb to 4 Mb, and also within late-replication domains, which may 

consequently delay DNA replication (Becker et al., 2002; Smith et al., 2006; Durkin 

and Glover, 2007). Due to these characteristics, CFSs were characterised as part of 

difficult-to-replicate regions and therefore, completion of DNA replication at CFSs is 

often compromised before entry into mitosis (Letessier et al., 2011; Ozeri-Galai et al., 

2011). Further, the Fanconi anemia complementation group D2 (FANCD2), a protein 



 144 

involved in the repair of DNA DSBs, plays a critical role in the protection of CFS 

stability (Howlett et al., 2005; Madireddy et al., 2016) and was interestingly found to 

localise to several CFSs under replication stress conditions during mitosis (Chan et 

al., 2009; Naim and Rosselli, 2009). Accordingly, FANCD2 serves as a reliable marker 

of certain CFSs undergoing replication stress (Chan et al., 2009).  

 

Until recently, the conventional understanding of DNA replication was that it fully takes 

place during the S-phase of the cell cycle. However, this view has been recently 

challenged by the observation that some intrinsically difficult-to-replicate genomic 

regions, such as CFSs, are only completely replicated during the early stages of 

mitosis (Minocherhomji et al., 2015). This mitotic DNA synthesis occurring at CFSs 

loci, termed as ‘MiDAS’, was found to be particularly apparent in the presence of APH-

induced replication stress and is considered as a DNA-repair based pathway that 

assists cells to faithfully complete DNA replication at genomic regions such as CFSs 

(Minocherhomji et al., 2015; Bhowmick, Minocherhomji and Hickson, 2016). Thus, 

since increased MiDAS is strongly associated with CFS instability, CFS expression 

can be readily detected through the combinatorial use of DNA synthesis-labels with 

IF-based detection of FANCD2 (Minocherhomji et al., 2015). 

 

In this study, we report another unexpected role for ZFP36L1 in preserving CFS 

stability. We find that, in addition to replication stress-induced chromosomal instability 

and DSBs, ZFP36L1 deficiency also induces CFS expression in response to APH-

induced replication stress. We provide novel evidence showing that ZFP36L1 

deficiency is associated with increased characteristic chromosomal aberrations in the 

form of gaps, breaks and constrictions on metaphase chromosomes and increased 
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MiDAS events at CFSs in prometaphase cells, which suggested ZFP36L1 to play an 

active role in the suppression of CFS instability in response to replication stress.  

6.2 Loss of ZFP36L1 Results in Increased Chromosomal Fragility 

Impaired replication fork progression at CFSs is typically associated with DNA 

breakage/DSBs, which are commonly manifested into CFS-characteristic 

chromosome aberrations on metaphase chromosomes (Durkin and Glover, 2007). To 

explore the relationship between ZFP36L1 and CFS stability, we first investigated the 

effect of ZFP36L1 deficiency on the appearance of characteristic chromosomal 

aberrations on Giemsa-stained metaphase chromosome spreads from ΔL1 cells 

exposed to low doses of APH for 24 hrs (Figure 6.1A). In particular, we examined 

whether chromosomes appeared without visible structural changes or with chromatid 

breaks/gaps, constrictions or with chromosome breaks (Figure 6.1B-D). Notably, in 

response to treatment with a low dose of APH (0.2 µM), ZFP36L1-deficient cells 

appeared to trigger the expression of chromosome fragility, with about five or six 

chromosome aberrations detected compared to the two to three shown by the WT-

control U2OS cells (p < 0.0001) (Figure 6.1E). This effect was also shown to be 

consistent in U2OS H2B-GFP cells deficient in ZFP36L1, particularly when exposed 

to 0.2 µM of APH (p < 0.05) (Figure 6.1F). Intriguingly, this phenotype was also found 

in cells expressing a truncated variant of ZFP36L1 (ΔL1-ND1 and ND2), with a 

significant increase in characteristic chromosome aberrations observed compared to 

the WT control cells, in response to APH-induced replication stress (Figure 6.1G and 

H). Thus, given these characteristic chromosome aberrations are typically associated 

with CFS instability, these data suggested that ZFP36L1 plays a role in the 

suppression of CFS expression in response to mild replication stress.    
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Figure 6.1. Deletion of ZFP36L1 triggers chromosome fragility. 
(A) Examples of Giemsa-stained metaphase spreads with (right) and without (left)
chromosomal aberrations in U2OS cells. Colcemid (0.2 µg/ml) was added 1.5 hr before
collection of cells. Black arrows indicate chromosomal abnormalities. Images were captured
at 60x objective. Scale bar, 10 µm (B-D) Examples of chromosomal aberrations scored
including (B) Chromatid Breaks (Gaps), (C) Chromosome Breaks and (D) Constrictions. (E-
H) Quantification of the number of observed chromosomal aberrations in untreated and APH-
treated wild-type (WT) and ZFP36L1-mutants in (E, G and H) U2OS and (F) U2OS H2B-GFP
cells. Data are means of three independent experiments. Error bars represent S.E.M. p values
were calculated using the Mann-Whitney t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p
< 0.0001.
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6.3 ZFP36L1 Deficiency Linked with increased MiDAS at CFSs 

during Early Mitosis 

By measuring the incorporation of 5-ethynyl-2’-deoxyuridine (EdU) on pro-metaphase 

nuclei, we next investigated whether ZFP36L1 plays an active role in suppressing CFS 

instability, through analysis of MiDAS events in ZFP36L1-deficient and ZFP36L1-

truncated cells arrested at G2/M transition by CDK1 inhibition with RO-3306, in 

response to APH-induced replication stress (Figure 6.2A) (Minocherhomji et al., 2015). 

Notably, loss of ZFP36L1 appeared to result in a significant increase in the frequency 

of EdU foci in pro-metaphase nuclei in both non-treated and APH-treated cells (p < 

0.0001; p < 0.0001, respectively) (Figure 6.2B and C, Appendix I). Indeed, 13% of ΔL1 

pro-metaphase nuclei were observed to display more than three EdU foci compared 

to the 3% observed in WT in non-treated cells, while a 25% increase in EdU foci in 

ΔL1 was observed compared to the 6.5% detected in WT under APH-induced 

replication stress (Figure 6.2C). Moreover, we also assessed the impact of ZFP36L1 

deficiency on the number of FANCD2 foci (marker of stalled forks at CFSs) co-

localising with EdU foci in ΔL1 pro-metaphase cells (Minocherhomji et al., 2015). 

Strikingly, in response to APH-induced replication stress, ΔL1 cells appeared to exhibit 

a significant increase in the number of EdU-positive FANCD2 foci compared to the 

WT control cells (p < 0.001) (Figure 6.2D). Taken together, these results corroborated 

the proposed role for ZFP36L1 in suppressing CFS expression during conditions of 

replication stress.   
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Figure 6.2. ZFP36L1 suppresses replication stress-induced CFS expression.  
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(A) Experimental workflow for the analysis of EdU incorporation events in combination with IF 
staining for FANCD2 in pro-metaphase nuclei. Asynchronised U2OS cells were treated with 
RO-3306 and APH for 16 h and then released into mitosis prior to the detection of EdU and 
IF-staining for FANCD2. (B) Representative images for pro-metaphase nuclei containing EdU-
incorporation events and FANCD2 foci, scored in untreated and APH-treated wild-type (WT) 
and ZFP36L1 knockout (ΔL1) U2OS cells. Scale bar, 5 µm. (C) Quantification of EdU-
incorporation events in WT and ΔL1 U2OS cells. Percentage of pro-metaphase nuclei with >3 
Edu-incorporation events is plotted. Statistical analysis is presented in Appendix I (D) 
Quantification of EdU co-localised with FANCD2 foci in WT and ΔL1 U2OS cells. Data are 
means of two independent experiments with a total of 100 pro-metaphase nuclei quantified 
for each condition per experiment. Error bars represent S.E.M. p values were calculated using 
Mann-Whitney t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.  
 

6.4  Discussion 

CFSs are recognised as hotspots for genomic instability that are particularly 

susceptible to breakage upon replication stress conditions during mitosis, and whose 

expression/instability is commonly observed during the early stages of cancer 

development (Durkin and Glover, 2007; Glover, Wilson and Arlt, 2017). Growing 

evidence has accentuated the complexity associated with CFS expression, and 

multiple mechanisms are believed to be involved in the preservation of CFS stability 

(reviewed in, Glover et al., 2005). However, one definite trigger for CFS expression is 

the exposure of cells to mild replication stress, especially when induced by APH 

treatment (Glover et al., 1984). Here, we report novel evidence showing that, in 

addition to the suppression of replication stress-induced chromosomal instability and 

DSBs, ZFP36L1 may play a role in limiting CFS expression in response to replication 

stress.     

 

A characteristic trait of CFSs is that they preferentially form chromatid breaks/gaps, 

chromosome breaks and constrictions on metaphase chromosomes under conditions 

of APH-induced replication stress (Durkin and Glover, 2007). Although increasing 

evidence has highlighted the emerging role of the ZFP36 family of RBPs in the 

maintenance of genomic stability, the functional role of members of this RBP family 
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has not been previously linked to the preservation of CFS stability. Here, we 

demonstrate data showing distinctive phenotypes for CFS expression occurring in 

cells where ZFP36L1 expression is permanently abolished, for the first time in 

literature. Indeed, ZFP36L1-deficient cells displayed a significant increase in 

characteristic chromosome aberrations compared to the WT control cells in response 

to APH-induced replication stress (Figure 6.1). While previous research has shown 

ZFP36 to limit replication stress-induced chromosome aberrations (chromosome 

breaks and fusions) in response to cisplatin and HU treatment in A549 cells (Lee et 

al., 2020), our results demonstrate ZFP36L1 to potentially suppress chromosome 

aberrations that are particularly associated with CFS expression in response to APH 

treatment. Thus, the induction of CFS expression on metaphase chromosomes 

suggested that loss of ZFP36L1 may contribute to the protection of U2OS cells against 

CFS fragility.  

 

To substantiate these findings, we evaluated the frequency of MiDAS events at CFS 

loci, by measuring the levels of FANCD2 foci co-localising with EdU foci, in intact pro-

metaphase nuclei. The significant increase in EdU-positive foci as well as EdU-

positive foci co-localising with FANCD2 in ZFP36L1-deficient cells in response to APH 

treatment (Figure 6.2), indicated that loss of ZFP36L1 appears to compromise the 

completion of DNA replication at CFSs in response to replication stress. This 

corroborated our proposed role for ZFP36L1 in limiting CFS expression under 

conditions of replication stress and also implied that loss of ZFP36L1 might be linked 

with impaired replication dynamics at CFS loci (Maccaroni et al., 2020). Importantly, 

these findings provide a possible mechanism by which ZFP36L1 suppresses 

replication stress-induced genomic instability, given CFS expression is strongly 
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associated with chromosomal instability and is a common source of replication stress 

(reviewed in, Ma et al., 2012). Interestingly, however, since the fragility of certain CFSs 

has also been shown to be driven by the accumulation of R-loops under conditions of 

replication stress (Helmrich, Ballarino and Tora, 2011), it is therefore also possible that 

ZFP36L1 suppresses replication stress by limiting unscheduled R-loop formation 

(potential underlying mechanisms are discussed further in Chapter 7). Altogether, 

these data strongly suggest ZFP36L1 to be functionally linked to the protection of CFS 

stability.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 152 

7 General Discussion 

The faithful transmission of genetic information is a critical determinant of genomic 

stability and relies on the accurate and efficient replication of the genetic material 

during each cell division. Cells require the coordination of numerous factors to 

maintain this accuracy, of which their dysfunction can consequently cause stalling or 

slowing of replication fork progression, resulting in replication stress (reviewed in, 

Gaillard, García-Muse and Aguilera, 2015). Accumulating knowledge indicates a 

multifaceted nature of RBPs with newly identified roles linking them to the coordination 

and preservation of genomic integrity (Dutertre et al., 2014; Dutertre and Vagner, 

2017; Nishida et al., 2017). Recent studies have reported plausible evidence 

highlighting an emerging tumour-suppressive role for the RBP, ZFP36L1, supported 

by observations on its downregulated or mutated expression in various cancer cell 

types (Nik-Zainal et al., 2016; Martincorena et al., 2017; Baxter et al., 2018; Behan et 

al., 2019; Priestley et al., 2019) and post-transcriptional regulatory role of key cell cycle 

mRNA targets (Galloway et al., 2016; Suk et al., 2018; Martínez-Calle et al., 2019). 

Concurrently, increasing reports suggest that ZF-containing proteins, which constitute 

the most abundant proteins encoded by the human genome, are crucial for 

maintaining genomic stability (reviewed in, Vilas et al., 2018). Hereof, exploring the 

precise molecular association between ZFP36L1 and cancer progression in the 

context of genomic stability may elucidate this underlying link, opening a window for 

the potential development of novel cancer-targeted therapies. Therefore, in this study, 

we aimed to investigate the under-recognised role of ZFP36L1 in the preservation of 

genomic integrity.  
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ZFP36L1 was first identified as an immediate early-response gene stimulated by the 

activation of TPA-treated B lymphocytes (Murphy and Norton, 1990; Bustin et al., 

1994; Ning et al., 1996). Members of the ZFP36 family are multifunctional proteins that 

were described to tightly regulate ARE-rich-mRNA stability at the post-transcriptional 

level (Blackshear, 2002; Murphy, Baou and Jewell, 2009). In addition to their post-

transcriptional regulatory role in the development and function of the immune system, 

the ZFP36 family of proteins have also emerged as crucial regulators of various 

cancer-related hallmarks (section 1.3.8). Further, recent studies have also suggested 

that members of the ZFP36 family could also contribute to the maintenance of genomic 

stability. ZFP36L1 and ZFP36L2 concertedly ensure genomic integrity during B 

lymphocyte development (Galloway et al., 2016), and limit cell cycle DNA damage 

signalling in thymocytes (Vogel et al., 2016). ZFP36L2 inhibits cell cycle progression 

at the S-phase in response to cisplatin-induced replication stress, thus, contributing to 

the maintenance of genomic stability (Noguchi et al., 2018). Moreover, ZFP36 limits 

genomic instability by post-transcriptionally regulating mRNA levels of Claspin in 

response to cisplatin and HU-induced replication stress (Lee et al., 2020). In the 

present study, we demonstrate a novel role for the RBP ZFP36L1 in the suppression 

of replication stress-induced genomic instability in human osteosarcoma cells. We 

describe, for the first time, the generation of CRISPR/Cas9-mediated ZFP36L1-

knockout and ZFP36L1-truncated cancer cellular models, that can be used as 

valuable genetic tools to investigate the multifunctional role of ZFP36L1, and show 

that ZFP36L1 safeguards genomic integrity against chromosomal instability, DNA 

damage and CFS expression. Taken together, our data demonstrated here allowed 

us to present a schematic model that integrates the various replication stress-related 
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genomic instability phenotypes triggered by the loss of ZFP36L1 across various 

stages of the cell cycle (Figure 7.1).  

 

 

Figure 7.1. Comprehensive model depicting replication stress-related phenotypic 
consequences associated with ZFP36L1 deficiency in human osteosarcoma cells.   
 
 
Firstly, we employed the S. pyogenes-derived CRISPR/Cas9 gene-editing system and 

genetically engineered human cancer cellular models by which ZFP36L1 was 

functionally abolished in U2OS and U2OS H2B-GFP cells as well as a ZFP36L1-

truncation that was compromised in the lead-in sequence of its ZF-domain (Chapter 

3) (Ran et al., 2013). It is well-established that the CRISPR/Cas9 system is an efficient 

gene-editing tool which can be used to examine the phenotypic consequences 
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associated with the loss of function of a gene product in human disease (reviewed in, 

Adli, 2018). Our strategy involved the use of an all-in-one sgRNA-expressed-plasmid-

based delivery of the CRISPR/Cas9 system due to its simplified workflow in 

mammalian cell lines (reviewed in, Liu et al., 2017). In this case, we targeted exon 2 

of the ZFP36L1 gene which corresponds to more than 90% of the protein-coding 

region and includes the two highly-conserved zinc finger domains that are critical for 

ZFP36L1 function (Lai et al., 2000). Our genetic analysis of the targeted cells indicated 

successful CRISPR/Cas9-mediated editing within the targeted locus, Ch.14q24.1, of 

ZFP36L1. CRISPResso and Sanger sequencing analysis indicated that the four 

distinct clonal lines contained specific indels/mutations within the targeted Cas9-

cleavage site (Figure 3.8, Figure 3.11B). Immunoblot analysis confirmed the 

successful knockout of ZFP36L1 (ΔL1) in both, U2OS and U2OS H2B-GFP cell lines, 

which were characterised as a homozygous knockout and heterozygous knockout, 

respectively (Figure 3.10A, Figure 3.11E). The full-length knockout of ZFP36L1 in both 

U2OS clonal lines indicated that the specific edited region led to a disruption of the 

ORF, resulting in a frameshift mutation and a premature stop codon downstream of 

the targeted region, as evidenced by the analysis of the predicted amino acid 

sequence of the clones (Figure 3.9A, Figure 3.11D). 

 

In addition to the ZFP36L1-knockout cell lines, our methodological approach also 

successfully resulted in two additional clones; a heterozygous (ΔL1-ND1) and a 

homozygous (ΔL1-ND2) variant, both of which harboured a prominent mutation near 

the N-terminus domain of ZFP36L1 (Figure 3.8C and D). Although immunoblot 

analysis indicated that ZFP36L1 protein was still produced in these clones, protein 

expression was significantly truncated (Figure 3.10). We believe that this truncated 
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expression was mainly due to a 108-bp deletion (35-aa deletion) that was identically 

carried by both ΔL1-ND1 and ΔL1-ND2 clonal lines. It remains uncertain why there 

are differences in the expression level of truncated ZFP36L1 between these two clonal 

lines. Interestingly, the genotypic and phenotypic protein expression exhibited by ΔL1-

ND2 was observed to be identical to a third CRISPR/Cas-mediated truncated variant 

of ZFP36L1 (ΔL1-ND3, data not shown). We speculate, however, that since ZFP36L1 

expression is primarily controlled by post-translational modifications (reviewed in, 

Mackintosh, 2004), a possible cause for this differential phenotype could be due to the 

nature of the harboured CRISPR/Cas9-resulting amino acid deletions between the two 

clonal lines, which included differential deletions of identified phosphorylation sites in 

ZFP36L1, that in turn, may have consequently resulted in differential ZFP36L1 

expression. Nonetheless, further examinations are required to explain the phenotypic 

expression differences between these two clonal lines. Importantly, however, the 

resulting 35-aa deletion that had occurred within ΔL1-ND1 and ΔL1-ND2 included the 

first amino acid (Arginine (R)) of the RYKTEL aa motif, a lead-in sequence to the first 

ZF binding motif that is critical for the optimal activity of ZFP36L1 (Lai et al., 2013). 

Thus, the ZFP36L1-truncated cellular models provided our study with valuable tools 

to not only examine the cellular impact of having a partial expression of ZFP36L1 but 

also the effect of having a compromised RYKTEL motif on the functional activity of 

ZFP36L1 in relation to genomic stability.  

 

In line with mounting evidence on ZFP36L1’s regulatory role in cellular proliferation 

and cell cycle progression across various cancer cell types (section 1.3.8), we found 

CRISPR/Cas9-mediated knockout of ZFP36L1 to significantly reduce the growth rate 

consistently in both U2OS cell lines (Figure 3.12), suggesting that ZFP36L1 is possibly 
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associated with proliferative-related processes in human osteosarcoma cells and is 

required for the maintenance of cell growth. This finding challenges previous 

observations, whereby transient shRNA-mediated knockdown of ZFP36L1 was 

observed to increase cell number and cell viability in human colorectal cancer cells 

(Suk et al., 2018), and siRNA-mediated silencing of ZFP36L1 enhanced the 

proliferation of bladder cancer cells (Loh et al., 2020). Although this may reflect a cell 

type-specific function for ZFP36L1, our work distinctively shows a reduced-growth 

phenotype in cells permanently abolished in ZFP36L1 protein. However, further 

studies will be required to extend the analysis of the proliferative and cellular viability 

properties of osteosarcoma cancer cells in the context of ZFP36L1 deficiency. Given 

that we subsequently observed ZFP36L1 to suppress replication stress-induced 

genomic instability (Chapter 4, 5 and 6), which is typically associated with impaired 

replication fork progression (Zeman and Cimprich, 2014), we speculate that ZFP36L1-

knockout may have consequently impeded replication fork progression in response to 

elevated replication stress, slowing down cell cycle progression. One way to determine 

this in future work would be to measure DNA replication progression via DNA fiber 

analysis on ZFP36L1-knockout/variant clonal lines. Moreover, it is also possible that 

loss of ZFP36L1 may have altered the levels of its cell cycle-related mRNA targets. 

However, ZFP36L1’s association with progression of the cell cycle in the context of its 

mRNA targets is beyond the scope of this study. Nonetheless, it will be interesting to 

explore the cell cycle dynamics in response to the loss of ZFP36L1, especially under 

replication stress conditions, in future studies.   

 

Secondly, the potential role of ZFP36L1 in the preservation of genomic integrity 

(section 1.6), which is known to be predominantly jeopardised by chromosomal 
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instability (Negrini, Gorgoulis and Halazonetis, 2010; Sansregret, Vanhaesebroeck 

and Swanton, 2018), was investigated by assessing the phenotypic impact of 

ZFP36L1-deficiency on chromosome segregation (Chapter 4). Here, we show that 

even in the absence of exogenous DNA replication stress, loss of ZFP36L1 appears 

to compromise the faithful segregation of chromosomes during cell division. In 

particular, ZFP36L1-deficiency was associated with increased morphological 

chromosome mis-segregation hallmarks including, anaphase bridges (DNA bulky 

bridges and UFBs), lagging chromosomes and micronuclei (Figure 4.1, Figure 4.2, 

Figure 4.3, Figure 4.4). Notably, these segregation error phenotypes appeared to be 

further exacerbated under conditions of APH-induced mild replication stress. Thus, 

these observations implied that ZFP36L1 is required for the complete and efficient 

segregation of chromosomes during anaphase, especially under conditions of 

replication stress, which is ultimately required to preserve chromosomal stability.  

 

It has become increasingly evident that in addition to dysregulation of the mitotic 

machinery, unresolved DNA structures that form as a consequence of replication 

stress, may persist into mitosis, and cause the mis-segregation of chromosomes 

(Chan et al., 2009; Naim and Rosselli, 2009; Burrell et al., 2013). Although certain 

RBPs including ZFP36L1 have been reported to contribute to the regulation of the 

mitotic apparatus assembly (Kondo et al., 2018; Ito, Watanabe and Kitagawa, 2020), 

there are only a limited number of studies that have characterised their potential role 

in curbing replication stress or DNA damage-induced chromosome mis-segregation. 

In one recent study, however, CIRBP was identified as a critical contributor to the 

regulation of DNA DSB repair and genomic stability, whereby it was shown to 

accumulate to DNA damage sites in a PARP1-dependent manner (Chen et al., 2018). 
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In response to IR-induced DNA damage, CIRBP-depleted cells were associated with 

HR and NHEJ impairment as well as with increased micronuclei formation (Chen et 

al., 2018). Although we have not yet determined the exact pathways connected to 

ZFP36L1’s functional activity in preserving chromosomal stability, our work provides 

the first evidence that chromosome mis-segregation is directly associated with 

ZFP36L1-deficiency. Nevertheless, further work is required to unravel the precise 

pathways that ZFP36L1 relies on for this activity.   

 

Thirdly, considering that sustained replication stress can induce replication fork 

breakage and result in DSB formation (Ciccia and Elledge, 2010), we explored the 

potential of ZFP36L1 in suppressing replication stress-induced DNA damage (Chapter 

5). Consistent with recent studies highlighting the emerging roles of RBPs in limiting 

DNA damage, we report that ZFP36L1 appears to function not only to preserve 

chromosomal stability at mitosis but may also protect cells against replication stress-

induced DNA damage across various stages of the cell cycle of U2OS cells. 

Importantly, we demonstrate that ZFP36L1 may be linked with limiting DSB formation 

in the G1 and S-phase of the cell cycle, as evidenced by the increased accumulation 

of endogenous RPA, γH2AX and G1-phase 53BP1 NBs in the context of ZFP36L1 

deficiency, even in the absence of exogenous replication stress (Figure 5.1, Figure 

5.2, Figure 5.3, Figure 5.4).  

 

It is well-established that the ssDNA-binding protein, RPA, plays a vital role in various 

aspects of DNA metabolism, including the repair of DSBs during HR-related 

mechanisms, and is frequently used as a cytological marker for DNA damage/repair 

(reviewed in, Ruff et al., 2016). In this study, we show that ZFP36L1-deficient cells 
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exhibit a high frequency of endogenous RPA in both, the G1 and S-phase of the cell 

cycle (Figure 5.4), which indicated the presence of ssDNA or complex damaged DNA 

that required DNA resection in both cell cycle phases. Although previous research has 

shown that certain RBPs such as PRP19 accumulate at DNA damaged sites by 

directly interacting with RPA as part of the DDR (Maréchal et al., 2014), we understand 

that the mechanism underlying the accumulation of RPA in response to ZFP36L1 

deficiency is limited by the presented data and requires further investigation. 

Interestingly, however, unpublished observations from our laboratory have identified 

ZFP36L1 on chromatin fractions, inviting the possibility that ZFP36L1 may potentially 

directly interact with nuclear-associated factors under conditions of replication stress. 

The functional significance of this interaction, however, is yet to be determined, and 

studies are currently underway for the investigation of the specific molecular repair 

mechanisms associated with ZFP36L1 deficiency.  

 

Further, our studies reveal that even in the absence of exogenous replication stress, 

ZFP36L1-deficient cells lead to an increased accumulation of γH2AX (Figure 5.1), a 

hallmark of DSBs typically triggered as an initial response to DNA damage (Redon et 

al., 2002; Rothkamm and Löbrich, 2003). This finding supports our proposed role for 

ZFP36L1 in contributing to curbing sustained replication stress, that would have 

otherwise led to replication fork breakage and resulted in DNA damage. Moreover, 

these results agree with previous studies that demonstrated DCKO of ZFP36L1 and 

ZFP36L2 to conjointly result in increased DNA damage in the form of DSBs, evidenced 

by increased γH2AX formation, in mouse thymocytes (Vogel et al., 2016). Our work 

distinctly shows, however, that this genome destabilisation phenotype can occur 
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exclusively by ZFP36L1 deficiency, indicating that ZFP36L1 and ZFP36L2 do not 

always act in a redundant manner.  

 

As a result of impaired resolution of DNA replication defects during mitosis (i.e. at UFB 

structures in anaphase), unresolved DNA structures are often transmitted into DNA 

lesions sequestered in 53BP1 NBs in the G1-phase of the daughter cells (reviewed in, 

Fernandez-Vidal, Vignard and Mirey, 2017). 53BP1 NBs form as microscopically 

visible foci at DSB sites and have been shown to primarily originate as an outcome of 

APH-induced replication stress (Harrigan et al., 2011; Lukas et al., 2011). A striking 

consequence of ZFP36L1 deficiency was the elevated levels of 53BP1 NBs in the G1-

phase of the cells, observed even in the absence of APH (Figure 5.3). Thus, these 

findings collectively support our speculation that ZFP36L1 is intrinsically linked with 

suppressing replication stress-induced DSB formation and suggests DNA damage 

inflicted by ZFP36L1-deficiency persists through mitosis, which can have detrimental 

effects on genomic stability. In line with these findings, siRNA-mediated transient 

knockdown of ZFP36 was recently shown to be associated with increased DNA 

damage markers including, 53BP1 and γH2AX, in response to cisplatin and HU-

induced replication stress in A549 (lung carcinoma cells) (Lee et al., 2020). Although 

the experimental approach and underlying mechanism governing ZFP36 activity 

investigated (Lee et al., 2020) differs from our study, Lee et al. (2020) observations 

together with ours, support the emerging role of the ZFP36 family in the preservation 

of genomic integrity and suggests that ZFP36 protein members may govern distinct 

pathways in suppressing GIN.  
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Fourthly, since late replicating regions, such as CFSs, are particularly susceptible to 

APH-induced replication stress, we investigated whether the genomic instability-

associated phenotypes observed in ZFP36L1-deficient cells may also be linked 

increased levels of CFS fragility (Chapter 6). Here, we describe an unanticipated role 

for ZFP36L1, in potentially contributing to the suppression of CFS fragility under 

conditions of replication stress. Our results demonstrate, for the first time, ZFP36L1 to 

limit the formation of characteristic chromosomal aberrations as well as the number of 

MiDAS events occurring at CFSs during mitosis (Figure 6.1, Figure 6.2).  

 

CFSs, which are characteristically prone to DNA breakage, are preferentially affected 

by genomic instability upon replication stress and are particularly unstable during the 

early stages of cancer development (Durkin and Glover, 2007; Glover, Wilson and Arlt, 

2017). Hereof, elucidating some of the mechanisms underlying CFS instability will 

further advance our understanding of cancer aetiology and contribute to the 

development of cancer targeted-therapies. Our study has identified ZFP36L1 as a 

factor that may contribute to the suppression of CFS expression, supported by our 

observations of increased CFS-associated chromosomal aberrations, elevated 

MiDAS events and EdU-positive foci co-localising with FANCD2 at CFS loci during 

mitosis in cells deficient in ZFP36L1, in response to APH-induced replication stress in 

U2OS cells (Figure 6.1, Figure 6.2). These findings implied that ZFP36L1 may 

potentially protect against CFS instability and suppression of impediments that lead to 

impaired replication fork progression at CFS loci. In agreement with these data, we 

also observed an enrichment of DNA damage markers in genomic regions that lie 

within identified CFS loci in U2OS cells in the context of ZFP36L1 deficiency (in 

collaboration with Dr Kanagaraj Radhakrishnan, The Francis Crick Institute). Indeed, 
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chromatin immunoprecipitation (ChIP) combined with quantitative real-time PCR 

revealed that ZFP36L1-deficient cells exposed to APH-induced replication stress were 

associated with an enrichment of RPA, γH2AX and 53BP1 NBs within CFSs; FRA3B, 

FRA16D, FRA7H-1, FRA7H-2 loci (unpublished data). Taken together, these data 

strongly supported the notion that ZFP36L1 contributes to the protection of CFS 

stability against DNA breakage.  

 

Several CFSs such as FRA3B and FRA16D contain one or more tumour suppressor 

genes whose structure and function are commonly associated with chromosomal 

fragility. CFS-associated tumour suppressors such as FHIT and WWOX mapped on 

FRA3B and FRA16D, respectively, were shown to be frequently altered or deleted in 

many cancers types (reviewed in, Glover, Wilson and Arlt, 2017). Interestingly, the 

gene locus of ZFP36L1 has been mapped at CFS; FRA14C (commonly induced by 

APH) (Jang, Shen and McBride, 2014). Thus, since instability of CFSs and their 

associated genes are closely linked with the early stages of tumourigenesis, 

uncovering the roles that surround ZFP36L1 with such sites would be particularly 

interesting to unravel in future work, as it may reveal further links between this protein 

and human health and disease.   

  

Certain CFSs such as FRA3B and FRA16D positioned within genes larger than 800 

kb require more than one cell cycle to complete transcription (Helmrich, Ballarino and 

Tora, 2011). Increasing evidence has suggested that the instability of these CFSs is 

caused by inevitable collisions between the transcription machinery and the replication 

fork complex, likely caused by the formation of DNA:RNA hybrids (R-loops) (Helmrich, 

Ballarino and Tora, 2011). Since we observed ZFP36L1 deficiency to be associated 
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with increased CFS fragility at these sites, we speculate that the genome 

destabilisation phenotypes exhibited by ZFP36L1-deficient cells may be primarily 

caused by the formation of unscheduled R-loops. In agreement with this hypothesis, 

we observed loss of ZFP36L1 to increase the formation of DNA:RNA hybrids in 

response to APH-induced replication stress, suggesting ZFP36L1 limits R-loop 

accumulation (in collaboration with Dr Kanagaraj Radhakrishnan, The Francis Crick 

Institute; unpublished data). Importantly, the protective role of ZFP36L1 against R-

loop formation could provide a potential mechanism by which ZFP36L1 suppresses 

replication stress-induced genomic instability, given unscheduled R-loops represent a 

major source of replication stress and DNA damage, and are especially driven by the 

fragility of these CFSs. Thus, we propose that the genome destabilisation phenotypes 

exhibited by ZFP36L1-deficient cells, at least in part, are consequences of the 

accumulation of unstable R-loops. These data are in line with recent studies showing 

several RBPs to suppress R-loop structures’ formation and subsequent DNA damage 

effects (Bhatia et al., 2014, 2017; Santos-Pereira and Aguilera, 2015; Crossley, Bocek 

and Cimprich, 2019). However, future studies will be required to elucidate the precise 

mechanism by which ZFP36L1 preserves genomic integrity against R-loop instability.  

 

Finally, we further demonstrate that a mutant/truncated variant of ZFP36L1 carrying a 

compromised structure of the ZF-related RYKTEL motif, shown in CRISPR/Cas9-

generated ΔL1-ND1 and ΔL1-ND2 cellular models, increases replication stress 

phenotypes similar to that of complete ablation of ZFP36L1 (ZFP36L1-

deficient/knockout cells). Indeed, cells expressing a truncated variant of ZFP36L1 

were observed to result in elevated levels of chromosome mis-segregation, replication 

stress-induced DNA damage and CFS-associated chromosome aberrations 
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compared to the WT. Although ZFP36L1 protein was partially expressed in these 

cellular models, these data suggested that the truncated expression was sufficient to 

reduce ZFP36L1 function in preserving genomic stability against replication stress. 

Further, these results may also imply that deletion of Arginine (R) at the RYKTEL aa-

motif, a conserved lead-in sequence to the first ZF domain of ZFP36L1 (Lai et al., 

2000), potentially jeopardised the structural integrity of the encoded CCCH zinc finger 

domain (Lai, Kennington and Blackshear, 2002; Lai et al., 2003; Brewer et al., 2004). 

This is in line with previous research that has shown the RYKTEL aa lead-in sequence 

to be of importance for the ZFD and therefore, for the optimal function of the ZFP36 

family members (Lai et al., 2013). These data, therefore, may suggest that the 

intactness of RYKTEL structure is essential for ZFP36L1 functions in maintaining 

genomic stability. Consistent with our interpretation, previous research has highlighted 

the significance of the ZF-binding domains for the function of the ZFP36 family 

members. For example, a mutation in the ZF-binding domain of ZFP36 was shown to 

completely attenuate its post-transcriptional mRNA destabilisation function on its 

targeted TNF-α transcripts (Lai et al., 1999). Mutations within the ZF-domains of 

ZFP36 also resulted in increased proliferation of breast cancer cells (Al-Souhibani et 

al., 2010). In another study, defects in the ZF-domain of ZFP36L1 were shown to 

consequently ablate its mRNA binding function on Notch1 transcripts in T lymphocytic 

leukaemia cells (Hodson et al., 2010). More recently, ZF-mutated ZFP36L1 and 

ZFP36L2 were similarly described to jeopardise the proteins’ function in inhibiting 

cyclin D expression and proliferation in human colorectal cancer cells (Suk et al., 

2018). Although the precise cause for the replication stress phenotypes exhibited by 

ZFP36L1-truncated cells remains to be investigated, it is possible that the disruption 

of the RYKTEL aa-sequence compromised the stability of the ZFD, suggesting that 
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that the ZFDs are critical for the suppression of replication stress-induced genomic 

instability. Nonetheless, further studies will be required to elucidate the origin of the 

distinctive phenotypes displayed by ΔL1-ND1 and ΔL1-ND2 cells.   

8 Conclusions 

Collectively, our findings strongly suggest a novel role for ZFP36L1 in serving as a 

guardian of genomic stability with a crucial role in combatting endogenous replication 

stress. The increase in CIN hallmarks, accumulation of DSBs-indicative markers and 

elevation in CFS-associated characteristics in ZFP36L1-deficient and ZFP36L1-

truncated cells, in both, the absence and presence of APH-induced replication stress, 

provide compelling evidence that supports the direct involvement of ZFP36L1 in the 

preservation of genomic integrity against consequences related to replication stress. 

In line with recent observations underscoring the emerging role of the ZFP36 family of 

RBPs in curbing genomic instability, our work provides an extensive inventory of 

genome destabilisation phenotypes, which were previously unrecognised, associated 

with ZFP36L1-deficiency in U2OS cells. These data are consistent with recent 

observations suggesting a crosstalk between RBPs and genome stability, and further 

highlight a multifaceted nature for the RBP, ZFP36L1. Importantly, given the growing 

number of different cancers in which ZFP36L1 has been reported to be dysregulated, 

these findings illuminate the underlying molecular links with ZFP36L1 that may govern 

some of these processes, and suggests that ZFP36L1 may be an important genome 

stability-related regulator in many other cancer cell types. Although the exact means 

by which ZFP36L1 protects genomic integrity against replication stress remains to be 

determined, our results provide important clues to the mechanisms potentially involved 

in ZFP36L1’s inherent capacity to preserve genomic integrity. An important agenda 

for future research, currently focused on in our laboratory, involves a more in-depth 
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analysis of ZFP36L1’s role in limiting R-loop instability and other possible replication 

stress-causing factors, proteomic analysis and characterisation of the interactome of 

ZFP36L1 and characterisation of the protein in other cancer cell types. Thus, an array 

of follow up studies will be required to dissect the exact molecular mechanisms by 

which ZFP36L1 suppresses replication stress-induced genomic instability.  
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Appendices 

 

Appendix A- related to section 1.3.4.  

 

 

Figure A-1.  Phosphorylation sites identified in Human ZFP36L1. 
Full-length amino acid sequence of human ZFP36L1 (UniProtKB/Swiss-Prot: Q07352.1). 
Identified phosphorylation sites in human ZFP36L1 are emboldened in red and include S54, 
S92, T117, T155, Y169, S201, S203, S225, S227, S240, S291, S294, S298, Y305, S316, S318 and S334. CCCH 
residues in the tandem zinc finger motifs are emboldened in black and R/K(EKTEL) lead-in 
sequences to the ZFDs in ZFP36L1 are highlighted in pink. Adapted from Cao, Deterding and 
Blackshear (2007).  
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Appendix B- pSpCas9(BB)-2A-Puro (PX459) plasmid-related to Chapter 3.  

 

 

Figure B-1. Schematic representation of pSpCas9(BB)-2A-Puro (PX459) plasmid 
features. pSpCas9(BB)-2A-Puro (PX459) plasmid contains a Cas9-expression cassette and 
sgRNA scaffold. BbsI restriction sites near the sgRNA scaffold represent the region used for 
cloning the designed gRNA oligos. Selectable markers, ampicillin and puromycin, aided in the 
selection of transformed bacterial and transfected mammalian cells, respectively, due to the 
presence of an ampicillin and puromycin resistant gene in pSpCas9(BB)-2A-Puro (PX459) 
plasmid (AmpR, PuroR; light green). Image adapted from Addgene. pSpCas9(BB)-2A-Puro 
(PX459) plasmid was designed and engineered by Ran et al. (2013).  
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Appendix C-related to Figure 3.8 and Figure 3.10 

Appendix C-1 

 

Figure C-1. CRISPResso analysis of CRISPR/Cas9-generated ΔL1-ND1 clonal genotype. 
(A) Quantification and visualisation of the percentage of editing frequency, determined by the 
number of sequenced reads showing modified and unmodified alleles, in wild-type (WT; left) 
and ZFP36L1-N-Terminal Deletion 1 (ΔL1-ND1; right). (B) The percentage of sequenced 
reads with and without indels/mutations in WT (left) and ΔL1-ND1 (right). (C) Ampliseq-EZ-
NGS sequence alignment of the targeted region within ZFP36L1 in WT and ΔL1-ND1. 
Detected substitutions (emboldened in black), insertions (red box) deletions (dashed lines) 
are indicated.  
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Appendix C-2- related to Figure 3.10. 

 

 

Figure C-2. Western blot analysis of ZFP36L1 from whole-cell extracts of U2OS cells. 
Protein expression of wild-type (WT), WT-empty vector (pSpCas9(BB)-2A-Puro-only) (WT-
EV), truncated ZFP36L1 (ΔL1-ND1 and ΔL1-ND2) and ZFP36L1 knockout (ΔL1), derived from 
U2OS cells, using the indicated antibodies. ZFP36L2 and MCM7 were used as loading 
controls.  
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Appendix D- related to Figure 4.1 (D.1), 4.2 (D.2) and 4.3 (D.3).  

 

 

Figure D-1. Examples of lagging chromosomes, bulky bridges and UFBs in WT and 
ΔL1-ND U2OS Cells. 
Representative images of (D.1) lagging chromosomes, (D.2) bulky anaphase bridges and 
(D.3) UFBs in wild-type (WT), ΔL1-ND1 and ΔL1-ND2 U2OS cells. White arrows indicate 
chromosome segregation error. Scale bar, 10 µm.  
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Appendix E- related to Figure 4.4.  

 

 

Figure E-1. Micronuclei formation analysis of WT- empty vector (pSpCas9(BB)-2A-Puro-
only) (EV) and ZFP36L1 knockout (ΔL1) derived from U2OS cells.  
(A) Representative images of cytochalasin-B induced binucleated cells with micronuclei 
scored in WT-empty vector (pSpCas9(BB)-2A-Puro-only) (WT-EV) and ZFP36L1 knockout 
(ΔL1) in U2OS cells (B) Quantification of the frequency of micronuclei scored in untreated and 
APH-treated WT-empty vector (pSpCas9(BB)-only) (WT-EV) and ΔL1 U2OS cells. White 
arrows indicate micronuclei. Scale bar, 10 µm. Data are means of two independent 
experiments with a total of 300 binucleated cells analysed per condition in each experiment. 
Error bars represent SD. p values were calculated using an unpaired t-test, *, p < 0.05; **, p 
< 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Appendix F – related to Figure 5.1 (F.1) and 5.2 (F.2).  

 

 

Figure F-1. Examples of interphase cells with γH2AX-positive foci and γH2AX-positive 
micronuclei in WT and ΔL1-ND U2OS cells. 
(F.1) Examples of interphase cells with γH2AX-positive foci in untreated and APH-treated wild-
type (WT) and ΔL1-ND1 U2OS cells. (F.2) Representative images of cytochalasin-B induced 
binucleated cells with micronuclei positive for γH2AX scored in untreated and APH-treated WT 
and ΔL1-ND Cells. Dashed squares indicate γH2AX (+) micronuclei. Scale bar, 5 µm.  
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Appendix G – related to Figure 5.3. 

 

 

Figure G-1. 53BP1 NB analysis in WT-empty vector (pSpCas9(BB)-2A-Puro-only), 
examples of 53BP1 NB formation in ΔL1-ND cells and statistical analysis of 53BP1 NB 
formation in ΔL1 and ΔL1-ND U2OS cells. 
(G.1) Representative images of untreated and APH-treated G1-phase cells (cyclin A-negative, 
green) containing 53BP1 nuclear bodies (NBs) (red) scored in WT-empty vector 
(pSpCas9(BB)-2A-Puro-only) (WT-EV) and ZFP36L1-knockout (ΔL1) U2OS cells. (G.2) 
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Quantification of G1-phase 53BP1 NBs in untreated and APH-treated WT-empty vector 
(pSpCas9(BB)-2A-Puro-only) (WT-EV) and ΔL1 U2OS cells. (G.3) Representative images of 
untreated and APH-treated G1-phase cells (cyclin A-negative, green) containing 53BP1 
nuclear bodies (red) scored in WT and ΔL1-ND U2OS cells. (G.4) Quantification of G1-phase 
53BP1 NBs in untreated and APH-treated in WT and (left) ΔL1, (middle) ΔL1-ND1 and (right) 
ΔL1-ND2 U2OS cells with statistical analysis. Scale bar, 10 µm. Data are means of three 
independent experiments with 200 cyclin A-negative cells analysed for each condition per 
experiment. Error bars show S.E.M. p values were calculated using Mann-Whitney t-test, *, p 
< 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Appendix H – related to Figure 5.4.  

 

 

Figure H-1. Examples of S/G2 and G1-phase nuclei containing RPA in Wild-type (WT) 
and ZFP36L1-truncated (ΔL1-ND) U2OS cells and statistical analysis of RPA 
accumulation in ΔL1 and ΔL1-ND U2OS cells. 
(H.1) Representative images of S/G2 (cyclin A-positive, green) and G1-phase (cyclin A-
negative, green) cells containing RPA foci (red) scored in untreated and APH-treated wild-
type (WT) and ZFP36L1-truncated (ΔL1-ND) U2OS cells. Scale bar, 10 µm. (H.2-H.4) 
Quantification of RPA foci in WT and (H.2) ΔL1, (H.3) ΔL1-ND1 and (H.4) ΔL1-ND2 in S/G2-
phase U2OS cells. (H.5-H.7) Quantification of WT and (H.5) ΔL1, (H.6) ΔL1-ND1 and (H.7) 
ΔL1-ND2 in G1-phase U2OS cells. Data are means of three independent experiments with 
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150 phase-specific cells analysed for each condition per experiment. Error bars show S.E.M. 
p values were calculated using Mann-Whitney t-test, *, p < 0.05; **, p < 0.01; ***, p < 0.001; 
****, p < 0.0001. 
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Appendix I – related to Figure 6.2.  

 

 

Figure I-1. Statistical analysis of EdU-positive foci in WT and ΔL1 U2OS cells. 
Quantification of EdU-positive foci in WT and ΔL1 pro-metaphase U2OS cells. Data are means 
of two independent experiments with a total of 100 pro-metaphase nuclei quantified for each 
condition. Error bars represent S.E.M. p values were calculated using Mann-Whitney t-test, *, 
p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. 
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Glossary 

53BP1 – p53 binding protein 1 

aa – amino acid  

ALS – Amyotrophic lateral sclerosis 

AML – Acute myeloid leukaemia 

APH – Aphidicolin  

ARE – Adenine-uridine rich elements 

ARIDA1-A – AT-Rich Interaction Domain 1A 

ATM – Ataxia telangiectasia-mutated 

ATR – Ataxia telangiectasia and Rad3-related 

ATRIP – ATR-interacting protein 

BCL2 –  B-cell lymphoma 2 

BER – Base excision repair  

BLM – Bloom Syndrome RecQ Like Helicase 

bp – Base pair  

BRCA – Breast cancer gene 

Cas – CRISPR associated protein 

Cas9 – CRISPR associated protein 9 

CCR4-NOT – Ccr4/Caf1/Not deadenylase 

CDC – Cell division cycle  

CDKs – Cyclin-dependent kinases 

CFS – Common fragile site  

CHK – Checkpoint kinase  

CIN – Chromosomal instability  

CIRBP – Cold-inducible RBP 

COX – Cyclooxygenase 

CRISPR – Clustered regularly interspaced short palindromic repeats  

CTD1 – DNA replication factor 1 

DAPI – 4,6-diamidino-2-phenylindole 

DCKO – Double conditional knockout 

DDR – DNA damage response  

DMEM – Dulbecco’s modified Eagle medium  

DNA-PKcs – DNA-dependent protein kinase catalytic subunits 
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DSBs – Double-stranded breaks  

dsDNA – Double-stranded DNA 

EdU – 5-ethynyl-2’-deoxyuridine 

EMT – Epithelial-mesenchymal transition 

ETAA1 – Ewing’s tumour-related antigen 1 

EWS – Ewing Sarcoma 

EXO – Exonuclease  

FANCD2 – Fanconi anemia complementation group D2 

FSs –Fragile sites 

FUS – Fused in sarcoma/translocated in liposarcoma 

GIN – Genomic instability 

GM-CSF – Granulocyte macrophage colony-stimulating factor 

GFP – Green fluorescent protein  

gRNA – Guide RNA  

HIF1A – Hypoxia inducible factor 1 subunit alpha 

HnRNP – Heterogeneous nuclear RNPs 

HR – Homologous recombination  

HRP – Horseradish peroxidase  

HU – Hydroxyurea  

HuR – Human antigen R 

IAV – Influenza A virus  

IF – Immunofluorescence  

IFN – Interferon 

Ig – Immunoglobulin g 

IL – Interleukin  

IR – Ionizing radiation   

kDa – kilo Dalton(s) 

LATS2 – Large tumour suppressor kinase 2 

LDLR – Low-density lipoprotein receptor  

MCM2-7 – Minichromosome maintenance complex 2–7 

MDM2 – Mouse double minute 2 homolog 

mg – milligram 

MiDAS – Mitotic DNA synthesis 

MIN – Micro-satellite instability  
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MK2 – MAPK2-activated protein kinase 2 

MMP – Matrix metalloproteinase  

MMR – Mismatch repair  

MRN – MRE11–RAD50–NBS1 

MSH2 – Mut S Homolog 2 

MZ – Marginal zone  

NES – Nuclear export signal  

NF-κB – Nuclear Kappa B  

NHEJ – Non-homologous end joining 

NME1 – Nucleoside diphosphate kinase A 

NOTCH1 – Notch homologue 1 

NS1 – Non-structural protein 1  

OA – Osteoarthritis 

ORC – Origin recognition complex 

ORF – Open reading frame  

P-bodies – Processing bodies  

PARN – PolyA specific ribonuclease 

PARP – Poly(ADP-ribose) polymerase 

PBS – Phosphate buffered saline 

PCR – Polymerase chain reaction  

PICH – Plk1-interacting checkpoint helicase  

PIM-1 – Proto-oncogene serine/threonine-protein kinase 

PK – Protein Kinase  

PKB – Protein kinase B  

Pre-IC – Pre-initiation complex 

Pre-RC – Pre-replication complex 

PRP19 – Pre-mRNA-processing factor 19 

RA – Rheumatoid arthritis  

RBD – RNA-binding domains 

RBP – RNA-binding protein 

RNP – Ribonucleoprotein 

RPA – Replication protein A 

SGs – Stress granules 

shRNA – Short-hairpin RNA 
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siRNA – Short interfering RNA  

SLE – Systemic lupus erythematosus 

SMN1 – Survival motor neuron 1 

SNP – Single nucleotide polymorphism 

SR – Serine-arginine 

ssDNA – Single-stranded DNA 

TALENs – Transcription activator-like effector nucleases 

TIS11 – Tetradecanoylphorbol-13-acetate inducible sequence 11 

TNF – Tumour necrosis factor 

TOP1 – Topoisomerase 1 

TOPBP1 – DNA Topoisomerase II Binding Protein 1 

UFB – Ultra-fine bridge  

uPA – Urokinase plasminogen activator 

UTR –Untranslated region 

UV – Ultraviolet radiation  

VEGF – Vascular endothelial growth factor 

WT – Wild-type  

XLF – XRCC4 like factor 

XRCC4 – X-ray cross-complementation group 4 

YB-1 – Y-box binding protein 

ZF – Zinc Finger  

ZFNs – Zinc finger nucleases 

ZFP36 – Zinc finger protein 36 

ZFP36L1 – Zinc finger protein 36-like 1 

ZFP36L2 – Zinc finger protein 36-like 2 

α – Alpha  

γH2AX – phosphorylated histone H2AX 

δ – Delta  

ΔL1 – ZFP36L1 knockout  

ΔL1-ND – N-terminal deletion of ZFP36L1  

ε – Epsilon 

μL – microliter  

μM – micromolar 

μm –micrometre 
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