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Abstract 
 

Measuring camera system performance and associating 
it directly to image quality is very relevant, whether 
images are aimed for viewing, or as input to machine 
learning and automated recognition algorithms. The 
Modulation Transfer Function (MTF) is a well-
established measure for evaluating this performance. 
This study proposes a novel methodology for measuring 
system MTFs directly from natural scenes, by adapting 
the standardized Slanted Edge Method (ISO 12233). The 
method involves edge detection techniques, to select and 
extract suitable step edges from pictorial images. The 
scene MTF aims to account for camera non-linear scene 
dependent processes.  This measure is more relevant to 
image quality modelling than the traditionally measured 
MTFs. Preliminary research results indicate that the 
proposed method can provide reliable MTFs, following 
the trends of the ISO 12233. Further development and 
validation are required before it is proposed as a 
universal camera measuring technique. 

 

 

1. Introduction 
Traditionally imaging system performance evaluation 

measures, such as the Modulation Transfer Function 

(MTF) (measure of signal transfer) and the Noise Power 
Spectrum (NPS) (measure of noise), are routinely taken 

from dedicated test charts, captured in controlled 

laboratory conditions. Extensive studies have been 

conducted to refine these measures that have resulted in 

International Standards publications, [1, 2]. Recent work 

[3, 4], has explored the concept of deriving MTFs from 

images of pictorial scenes, using the noise measuring 

method (see section 1.2). This opens up the possibility for 

scene dependent performance measures, suitable for 

evaluating non-linear imaging processes incorporated in 

modern camera systems. Current unpublished studies are 

pushing this a step further, through exploring scene 

dependent image quality metrics. These metrics rely on 

input parameters with a physical basis, such as scene 

dependent MTFs/NPSs. 

The aim of this paper is to introduce a novel 

methodology to measure capture MTFs directly from 

pictorial natural scenes, using the edge MTF method 

(section 1.2) and automatic edge extraction.  

Rapid development in processing power in recent 

years has led to the use of neural networks and other 

computational techniques to be sought as solutions to 

previously intractable computer vision applications, such 

as autonomous driving. And while early results are 

impressive, autonomous driving will arguably represent 

the first mass deployment of computer vision into a safety 

critical system which will eventually be used by millions 

of people on a daily basis. 

Computational image quality metrics, i.e. metrics that 

derive image quality based solely on image data resulting 

from captured/processed individual natural scenes, do an 

excellent job of providing guidance that correlates well 

with perceptual image quality and are impressive in their 

performance.  A drawback, however, is that they do not 

provide any engineering insight, as the metrics does not 

relate to any physical parameters of the imaging system 

itself. Engineering based quality metrics on the other 

hand use imaging system parameters but have the 

drawback of not taking into account individual scene 

information. By attempting to estimate MTFs directly 

from captured natural scenes, it is hoped that intelligent 

diagnostics, based on the physics of the imaging system 

as well as the individual scene properties will be 

facilitated, providing system architects with additional 

tools with which to improve overall reliability of vision 

systems. 

This paper will explore briefly the background of the 

Computational Image Quality Metrics (1.1) and Spatial 

Imaging Performance Measures (1.2), elaborating on 

how a performance measure derived from natural scenes 

may yield a more relevant input to image quality metrics, 

relevant to systems engineering. Subsequent sections will 

examine the proposed measurement framework (2), the 



parameters used (3) and present results from the 

preliminary studies (4, 5).  

1.1 Computational Image Quality Metrics 
Image quality modelling is studied by, and involves, a 

number of research areas: human cognition, visual  

psychophysics, computer vision, machine learning, 

signal/image processing and imaging systems 

engineering. Specialists have approached the 

development of image quality models from different 

perspectives and thus a broad spectrum of models/metrics 

has evolved, with various advantages and applications, 

[5]. Computational metrics have their origins in 

electronic engineering and computer vision research. 

Generally, the mechanics of computational image quality 

models rely on image data, after capture, and most often 

before display (with exception of a number of fidelity 

models which account for the display and viewing 

conditions) [6]. Also, (but not routinely) these models 

rely on input parameters that relate to human visual 

system characteristics, and/or cognition.  They can be 

divided broadly into three categories, depending on 

whether information is available from an original image. 

Full-reference models have access to a reference image 

as well as test images. The most prominent are the 

methods that consider the sensitivity of the human visual 

system to structural and/or color information [7, 8]. 

Reduced reference models have access to a reduced set of 

features from the reference image [9, 10, 11]. No-

reference models use information only from the test 

images with most successful approaches using natural 

scene statistics [10, 12]. The appropriateness of each of 

these methods depends on the application.   

Despite the success of some advanced computational 

image quality models in predicting visual quality, often 

with excellent accuracy, computational models in general 

do not consider the physics, design, engineering and 

performance characteristics of the imaging systems for 

capture and/or display of digital images [5]. This implies 

that, in such metrics, the perceived image quality is not 

considered as a function of the relevant imaging system. 

As a result, systematic changes in metric input parameters 

do not directly relate to changes in imaging system 

characteristics, making such metrics less relevant to 

system design and engineering. 

On the other hand, engineering based 

quality/performance metrics, employ imaging system 

parameters as model parameters [1, 2, 13], but fail to 

account for the varied characteristics of the captured 

natural scenes. Input parameters in engineering type of 

quality models are typically measures (spatial, color, 

noise, etc.) taken from carefully designed test charts, 

captured/measured under strict laboratory conditions. 

An example of such a spatial model is the Acutance 

metric, ! , proposed by the IEEE standard for Camera 

Phone Image Quality [14]. 
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Equation 1 

where ( is the spatial frequency, $%& is the imaging 

system performance measure (in this case the ISO 12233 

Spatial Frequency Response (SFR) [1]), * is the MTF 

for the medium in which the image is being viewed, i.e. a 

display or print, and +$%  is the Contrast Sensitivity 
Function, a visual sensitivity model [15]. Amongst other 

image quality models that employ the MTF as an input 

parameter are the SQRI [16], EPIC [17]. 

Models of the human visual system and cognition may, 

or may not be accounted for, depending on the 

complexity of the metric. Quality predictions are as a 

result system dependent, which is desirable by engineers, 

but scene content independent.  Yet, the most advanced 

algorithms (e.g. de-noising [18, 19], sharpening [20, 21]) 

incorporated in commercial camera systems are non-

linear, scene content aware; hence the introduction of the 

dead leaves MTF (based upon the noise MTF method, 

section 1.2) – an attempt to measure MTFs from a test 

chart that has a frequency spectrum resembling that of a 

natural scene  [22]. 

An image quality framework, employing imaging 

system performance measures taken directly from natural 

scenes, thus avoiding test charts and accounting for scene 

content, has been recently proposed [5]. The same 

authors have been involved in implementing parts of the 

framework by measuring NPSs (noise) and MTFs (signal 

transfer) from captured images of natural scenes [4], but 

not directly from live scenes.  

In this paper, we propose a method for deriving live 

capture system MTFs from captured natural scenes, using 

selected edge extraction and processing.  The advantages 

of this approach are numerous: MTFs can be derived 

from cameras installed in real environments, for example 

CCTV or automotive. These measures would be 

representative of the capturing system performance as 

well as the system and scene content interactions. 

Importantly, scene dependent MTFs are expected to be 

more suitable input parameters to engineering image 

quality metrics, eliminating the weakness of such models 

of being generic and thus providing better correlations 

with observer quality scores. Research carried out in our 

labs indicates the potential merits of replacing traditional 

MTF and NPS measures in engineering image quality 

metrics with scene dependent versions of them [4, 5].  

1.2 Modulation Transfer Function  
The MTF, and the comparable SFR, is a well-

established performance measure for optical and camera 

systems [23]. It provides imaging performance 

information in terms of sharpness and resolution, by 

quantifying the change in signal modulation from input 



to output, with respect to spatial frequency. MTF has its 

basis in Linear System Theory; in one-dimension it is 

defined as the modulus of the Fourier Transform of the 

system’s Line Spread Function (LSF), LSF(x): 
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Equation 2 

The LSF is a measure of signal spread caused mainly 

by lens diffraction, optics, and image processing. It is the 

first derivative of the Edge Spread Function (ESF) i.e. the 

1D intensity profile of a capture of a ‘perfect edge’, that 

is, an edge with spatial frequency content constant and 

equal to 1.0 over the system’s bandwidth. 

Capture system MTFs are measured using three 

different methods: sine-waves, edges, and noise [23]. For 

each method a variety of implementations have been 

proposed that tackle problems associated with discrete, 

often non-linear systems. All methods and 

implementations rely on capturing relevant test charts 

with specific features, under strict laboratory conditions. 

A variation of the edge technique is proposed in ISO 

12233 specifically for digital imaging systems – the 

slanted edge SFR. It employs slanted edge charts, as seen 

in Figure 1, including a number of slanted ‘perfect edges’ 

designed to avoid aliasing in the measurements. This 

method has been universally accepted as a reliable 

approach to estimate the MTF of discrete imaging 

systems, being developed and improved over the last two 

decades. Briefly, the following steps are involved in the 

slanted edge SFR measurement [1, 24, 25]: 

1. A chart, including at least one grayscale ‘perfect’ 

step edge (Figure 1) is photographed, with the edge 

captured at a tilted angle. 

2. Pre-processing includes image linearization with 

respect to input luminance and edge selection as the 

Region of Interest (ROI). 

3. Each row across the edge spread is an estimate of the 

system ESF. Super-sampling and averaging of the 

ESFs form the re-quantized (super-sampled) ESF. 

4. The super-sampled ESF is differentiated and 

windowed to obtain a super-sampled LSF. 

5. The normalized modulus of the Discrete Fourier 

Transform (DFT) returns the system SFR up to 4x 

the Nyquist limit (Equation 2). 

 

2. Framework 
The proposed framework aims to substitute the 

captured edge test chart in the standard ISO 12233 slanted 

edge method with any suitable captured scene (any 

suitable image) for deriving the given capturing system 

MTF directly from this scene. The basis of the edge MTF 

method, as discussed previously, is the use of a ‘perfect 

edge’ input to the ISO 12233 algorithm, specifically an 

edge with a step profile. We have developed a framework 

for automated detection, isolation and treatment of 

specific edges from any given natural scene. These 

selected and treated edges then become the input to the 

ISO 12233 algorithm (stages 1, 2), whilst stages 3-5 

follow as before. 

The detection of the edges is the first process applied 

in the framework, shown in Figure 2.  We have 

considered here two edge detection methods, the first 

being the Canny approach [26], and the second a matched 

filter [27, 28]. 

Canny edge detection does not explicitly target step 

edges but instead detects changes in gradients [26]. 

Therefore, some parameter tuning and logic is needed to 

isolate the specific input profile required in the ROI. For 

example, a gradient is examined for each flagged edge to 

ensure there is only a single edge (no double edges). All 

relevant parameters are discussed in Section 3. The 

matched filter uses a convolution kernel to target specific 

step edge profiles [28]. Consequently, the ROI 

parameters are not as numerous as compared to Canny 

detection, although still required to ensure isolated step 

edges with the desired features.  

If there are less than three ROIs selected, the image is 

not considered suitable for deriving a representative mean 

MTF for that scene. The process is repeated for all images 

to obtain a representative performance measure for the 

given system. 

The mean MTF is taken for each image in the database, 

and compared to the mean ISO 12233 measurements, 

averaged across the target edges from the entire field of 

view. Theoretically, the maximum MTF in the database 

should be near the optimum performance of the imaging 

system, derived from a perfect edge. Therefore, it should 

approximate the standard ISO 12233 measurement.  

 

3. Parameters 
The input parameters of the ISO 12233 algorithm are 

given in Table 1. The recommended dimensions of the 

ROI (which typically is manually selected) are no smaller 

than 64 pixels width by of 80-500 pixels height. 

Variations in the edge angle (5 degrees commonly) result 

Figure 1: ISO 12233 SFR Test Chart 



in some variation in the measured MTF [29, 30, 31], the 

extent of which differs between studies; the acceptable 

edge angle range is not currently stated in the standard. 

The angle has to be smaller than 45 degrees, whereas the 

tolerable limit is around 30 degrees [29]. The contrast of 

the input step edge should be relatively low, below 10:1, 

the standard recommends it to be 4:1. 

The initial parameters for our framework are listed in 

Table 1. Note, there are no edge contrast restrictions, and 

for a ROI to be valid there needs to be a minimum of 15 

edge detection points within the area. 

The selected ROI for these initial tests has a width of 

27 pixels,  58% smaller than the recommended 64 [29, 

32] to allow for a maximum amount of step edges to be 

selected from the images. The trade-off is the precision in 

the measurements. To test this precision, simulated edges 

were used ranging in ROI width, from 7 pixels to over 

700 pixels, whilst the ROI height has been changed to 

maintain the same aspect ratio. Figure 3 shows the Mean 
Absolute Error (MAE) in the MTF measurement from the 

optimum. The green ‘X’ indicates the recommended 

minimum 64 pixel width ROI, and the red ‘X’ the ROI 

width used here, of 27 pixels. The test indicated a very 

small MAE (of only 0.0059) for the selected study ROI. 

Further study is required to determine if this level of 

MAE is significant in the MTF measurement. In addition, 

studies on the effects of edge angle should be conducted 

to determine whether the angle range used in these initial 

studies is within the MTF measurement error limits.  

4. The Effects of Image Noise  

4.1   Methodology 
To study the effects of noise on our proposed method, 

an artificial test image was created with a series of 

vertical edges, at angles ranging from 2.5 to 42.5 degrees. 

A hyperbolic tangent function was used to represent the 

step edge profiles.   

Varying amounts of white Gaussian noise (signal 

Parameter  ISO 12233 Set As 
ROI Size >64 x 80-500 

pixels 

27x41pixels  

Angle <45 deg. 2.5-42.5 deg. 

Contrast <10:1,  

4:1 recommended  

No contrast limit  

Num. of 
edge points 
in ROI 

n/a 15 

Table 1: Program ROI Parameters 

Figure 3: The variation caused by Region of Interest size. 

Figure 2: Framework Flowchart 



independent) was added to the test image, resulting in 

signal-to-noise ratios (SNR), 5:1 (14dB), 10:1 (20dB), 

20:1 (26dB), 40:1 (32dB), 50:1 (34dB). 27x41 pixel crops 

of the edges at these various noise levels are shown in 

Figure 4.  

These six versions of the test image were put through 

the framework in Figure 1, and the responses were 

analyzed when using the Canny and the matched filtering 

edge detection techniques. 

4.2  Results  
This study resulted in two main observations. The first 

is that the matched filter is not a suitable method for 

detecting noisy edges. It only detected edges at SNR 40:1 

(low noise). However, by lowering the threshold of the 

matched, it appears that edges at the higher noise levels 

can be in fact detected, but at the expense of measurement 

accuracy. In contrast the Canny filter detected all edges 

at all noise levels, down to SNR 5:1 (high noise). 

An issue with the current version of the framework is 

in the stage where specific step edge parameters are 

applied to the ROIs. Specifically, the stage where the 

gradient is taken to determine whether there is a step edge 

within the ROI, as mentioned in Section 3. At high noise 

levels, the noise level surpasses the floor noise set within 

the algorithm. As a result, more than one positive or 

negative gradients are found, therefore the algorithm 

doesn’t validate this as a usable edge. 

There are several possible solutions being investigated 

currently, including pre-evaluating the noise floor for 

each individual image, as well as using a variable noise 

reduction filter prior to taking the ROI gradient. There are 

advantages, and disadvantages of each of these that need 

to be considered.  A disadvantage to these solutions may 

include allowing a ROI with more than one edge to pass 

through the system, if the second edge is below the noise 

floor. For the current tests, the parameter that restricts the 

noise floor was removed.  

 The second observation is on the variation introduced 

into the MTF measurement with the introduction of noise. 

A study conducted by Williams [29],  showed that, for a 

64x128 pixel ROI, a good MTF measurement can be 

obtained from an edge with a SNR down to 20:1. The 

results shown in Figures 5 and 6 agree with this finding, 

however the use of the smaller ROI introduced slightly 

more variation in the higher frequencies. Within the same 

study, Williams showed that by having the height of the 

ROI at 128 pixels, but using a narrower width of 18 

pixels, the accuracy of the MTFs taken from targets with 

SNRs below 20:1 improved. In addition to this, by 

blurring either side of the ROI edge, without touching the 

edge spread, i.e. tail filtering, also helps to reduce the 

effects of image noise on the measured MTF [33].  

5. Framework implementation 
5.1   Methodology  

Implementation of the proposed framework was 

achieved using two small image datasets.  

The first consisted of 50 images, all captured with a 

Nikon D800 DSLR and a Nikkor 24-70mm f/2.8G lens, 

set to 24mm focal length at aperture f/4. It is important to 

note that, the pixel size of the imaging sensor, the lens 

optics, lens focus, and lens aperture setting are the main 

Figure 4: Table of the SNRs and a Chart Crop 

 

Figure 6: The variation introduced by noise when using 

the Canny detection 

Figure 5: The variation introduced by noise when using 

the matched filter detection 



factors affecting the camera MTF, thus in a meaningful 

performance study these need to be kept constant. All 

images in this dataset were TIFF files, converted from 

RAW, with sharpening and noise reduction turned off to 

minimize the amount of non-linear processing and saved 

in Adobe RGB color space.  

The second dataset consisted of 87 images, captured 

with an Apple iPhone7. All images were JPEG files, 

directly outputted from the smartphone, saved in a variety 

of color spaces, but assumed here to be sRGB when the 

image data were linearized. 

The images in both datasets were chosen so that they 

had a fair amount of well-lit edges, although the actual 

scene contents varied considerably. The majority of 

images consisted of urban and architectural contents; 

some rural and forest images were included too. Figures 

7 and 8 show two examples from both databases. 

It should be noted that for accurate measurement of the 

imaging systems’ performance, more varied, larger 

datasets should be considered, but for the initial testing 

the employed datasets were deemed as sufficient. 

  

5.2   Individual image MTF measurements 
The MTF performance for both imaging systems were 

measured using the ISO 12233 methodology. The ROI 

size was set to the same size as for our algorithm for a 

direct comparison. The target edge contrast was 4:1 and 

a 5 degree angle (± 3 degrees). The ROIs were detected 

using two methods: i) manual selection, ii) through the 

proposed algorithm. The manually selected measurement 

is considered as the systems’ ground truth. 

In Figures 9 and 10, the blue dashed curves correspond 

to mean MTFs, measured from the ISO test chart and by 

manually selecting the edges across the entire field of 

view. The green dashed curves indicate the same mean 

MTFs, when edges are detected using our algorithm. The 

orange dashed curves correspond to a single MTF 

measured from the chart at the center of the field of view 

(highest preforming area for a imaging system). Finally, 

the red dashed curve is the mean MTF for that particular 

MTF scene, or system envelope.  

In Figure 9 the envelope of MTF curves is shown for 

the four example images (Figures 7 and 8). The edges for 

these curves were detected using the matched filter, 

although the same observations are made when using the 

Canny edge detector. 

When comparing green and blue curves, we notice 

only a negligible variation between them, indicating that 

manually selected and automatically detected/processed 

edges deliver the same measurement, thus suggesting that 

the algorithm performs satisfactorily with the test chart. 

The slight variation (within MTF measurement error) is 

probably due to the number of edges being detected; the 

automated selection took all possible 27x41 pixel ROIs, 

whilst the manual selection took one ROI per chart edge.  

Analyzing the two example DSLR images, the MTF 

envelope for the D800 1 (Figure 9 (a)) is low, below the 

mean ISO 12233 MTF. Whilst the D800 2 (Figure 9 (b)) 

envelope surrounds the mean ISO 12233 curve and does 

not go beyond the maximum preforming ISO 12233 

measure, taken from the center of the field of view. 

This result from the D800 2 image is an exact 

representation of what is theoretically expected, as 

discussed in Section 2. When detecting edges from the 

scene, an edge that corresponds to a perfect edge input 

will produce the maximum performance MTF curve, 

measured using the ISO12233 algorithm. Other step 

edges, i.e. edges within the MTF envelope, have the 

potential to describe the system/scene interactions 

further, i.e., performance variations due to edge field of 

view location, depth of field and system scene 

dependency.  

System performance ranges across the field of view 

due to the optical characteristics of the lens, thus we 

expect a range of MTF performance curves from each 

scene. Looking at results from individual images, the 

D800 image 1 has ‘usable’ edges towards the corners of 

the field of view - the lowest performing areas of the 

system; this explains the low position of the measured 

MTF envelope. The D800 image 2 has ‘usable’ edges 

across the entire field of view, thus the envelope is 

broader, meaning that this image produces a more 

representative MTF measurement. 

Similar observations can be made with the smartphone 

imaging system, Figures 9 (c) and (d). Both images have 

edges at the center of the scene, but they are too small to 

be processed. The ‘usable’ edges are located toward the 

border of the frame. As a result, the MTF envelopes are 

Figure 7: Two example images from the DSLR Image Database 

Figure 8: Two example images from the Smartphone Camera 

Image Database 

D800 2 

iPhone7 2 

D800 1 

iPhone7 1 



low, below the mean ISO 12233 curves. In addition, for 

a very non-linear system, where scene dependent image 

processing and compression is applied, there are further 

observations to be made. 

The MTF curves have higher levels of noisy data. 

Thus, further parameters are needed to help reduce the 

selection of the corresponding edges. 

Also, it is clear there is sharpening being applied to 

some edges that give the higher MTF curves, identified 

by the lobe >1 in the low frequencies. This characteristic 

becomes less prominent for the the weaker edges.  

 

5.3   Mean System MTF measurements 
As seen from Figure 2, the next step in the framework 

is the collection of all the mean images’ MTFs to give a 

performance measure for the given imaging system 

database, as shown in Figure 10. 

Comparison of results from the Canny edge detection, 

with those of the matched filter showed that the MTF 

spread from both methods vary little – thus only result 

from the former are shown here. The Canny detector 

identified more images in both datasets than the matched 

filter (21% in the DSLR database, and 28% more in the 

smartphone database), but the results produced were 

slightly noisier.  

For both DSLR and Smartphone systems, the mean 

system MTFs derived from the image datasets are lower 

than those measured with the ISO method (from the 

target).  This is expected since all edges in the target are 

‘perfect’ whilst this is not true for the images.  

Further analysis is necessary to classify the image 

edges according to gradient, location within the depth of 

field, etc., for producing fully meaningful MTFs. 

 

6. Conclusions 
In summary, the proposed framework is an adaptation 

of the ISO 12233 Slanted-Edge MTF method: instead of 

using an image of a test chart taken in controlled 

conditions, suitable edges are derived from natural 

pictorial scenes. In this paper, both the Canny filter and a 

feature matched filter were used for this purpose of edge 

detection. 

Such an approach has many advantages; it can derive 

system performance in real life (instead of laboratory) 

conditions. Also, it can describe better the performance 

of non-linear, scene dependent camera processes. Thus, 

such a performance measure can be a more representative 

input parameter to engineering image quality models than 

traditional MTFs. i.e. it is not only system dependent, but 

also scene dependent. It is important to note that the effect 

of non-linear sharpening is a current issue with the edge 

MTF measure as a whole.  

Figure 9: The MTF Envelopes, in a single edge orientation, for the four example images, where (a) and (b) from the 

Nikon D800 DSLR and (c) and (d) from the iPhone7 smartphone camera. 



A scene dependent camera performance measure, 

unlike a test chart that includes “perfect edges” (with 

known spatial frequency content), will not produce a 

constant measure for the system. Natural scenes contain 

edges with varying spatial frequency content. The MTF 

produced is a relative measure for that particular image 

input. It may not give the system’s maximum (true) 

performance, but will take into account other factors, 

such as focus, depth of field, edge location, non-linear 

processing etc. The long-term goal for this measure is to 

link scene content (using for example natural scene 

statistics) to derived MTFs, so that we end up with a 

consistent system performance measure.   

Preliminary studies indicated that the proposed method 

is promising. The MTF envelopes produced from the 

natural scenes are closely related to results produced by 

the ISO 12233 algorithm, as long as there is a near to 

‘perfect edges’ within in the scene. However, there are 

still many questions left unanswered and considerable 

work is still required to determine if such an approach is 

suitable for producing robust results. 

Between the two edge detection methods, the results 

indicate that there is little difference in the mean 

measured MTFs. There are advantages and disadvantages 

in both methods. 

The Canny edge detection is able to detect edges at 

high levels of image noise, picking up edges at lower than 

the currently minimum recommended SNRs [29]. The 

disadvantage of the Canny filter is that much further 

processing is needed to isolate suitable step edges. 

The feature matched filter has the advantage of 

flagging only the edges that matched the template. The 

normalized 2D cross-correlation method, used in this 

study, also gives some leniency, a threshold that allows 

slight variation around the detection template. The most 

prominent disadvantage of the matched filter is its 

inability to detect edges with noise levels below SNR 

40:1. A further disadvantage is that the templates used for 

the convolution kernels are essentially based on a 

simulated edge at various orientations. As a result, the 

edge profile may not necessarily be a match to the edge 

profiles within a specific image.  

The results from this initial study have shown that, 

from each scene, a number of MTFs can be produced. 

These are located below the ISO 12233 MTF, derived 

from a perfect edge on a test chart, measured from the 

center of the field of view, i.e. the maximum preforming 

MTF for a given system. This produced range of MTFs is 

due to three main factors: the edge location within the 

camera field of view; the position of the edge within the 

depth of field of the image; and the scene dependent 

image processing and compression. Further research is 

required to separate the effects of these three factors. 

Not all the ‘suitable’ edges within a scene are being 

used in measurements. Edges close to other edges and 

textures are excluded; the current ROI size is too large to 

isolate each one of them individually. But if a smaller 

ROI is used, error is introduced to the MTF measurement 

(Figure 3).  

Noise is currently an issue with the proposed method, 

due to the chosen smaller ROI than the recommended. 

The resulting error is pronounced in the higher 

frequencies. In addition, the ROI processing does not take 

into account high floor noise levels automatically, thus 

edges with SNRs below 20:1 are not currently selected, 

even if flagged by the Canny filter. 

Further studies will look into the ROI size, take into 

account the floor noise and investigate methods to help 

reduce the effects of noise, such as adding tail filtering, 

[29]. Future work should also consider other parameters 

relating to edge contrast. 

Further steps would include testing with more 

extensive image datasets, containing images with broader 

variations in scene contents. Through investigation of 

natural scene statistics, the resulting scene MTFs 

envelopes will be classified under scene types, allowing 

the formation of a scene dependent MTF measure. In 

addition, though linking ROIs with derived MTFs we 

intend to identify statistically the system MTF.  

We acknowledge NVIDIA Corporation with the 

donation of the Titan Xp GPU used for this research. 

Figure 10: The images’ mean MTF envelopes, in a single 

edge orientation, for each camera system database, detected 

using the Canny Edge Detection. 
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