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Introduction: This large case-control study explored the application of machine

learning models to identify risk factors for primary invasive incident breast cancer

(BC) in the Iranian population. This study serves as a bridge toward improved BC

prevention, early detection, and management through the identification of

modifiable and unmodifiable risk factors.

Methods: The dataset includes 1,009 cases and 1,009 controls, with comprehensive

data on lifestyle, health-behavior, reproductive and sociodemographic factors.

Different machine learning models, namely Random Forest (RF), Neural Networks

(NN), Bootstrap Aggregating Classification and Regression Trees (BaggedCART), and

Extreme Gradient Boosting Tree (XGBoost), were employed to analyze the data.

Results: The findings highlight the significance of a chest X-ray history, deliberate

weight loss, abortion history, and post-menopausal status as predictors. Factors

such as second-hand smoking, lower education, menarche age (>14), occupation

(employed), first delivery age (18-23), and breastfeeding duration (>42 months)

were also identified as important predictors in multiple models. The RF model

exhibited the highest Area Under the Curve (AUC) value of 0.9, as indicated by the

Receiver Operating Characteristic (ROC) curve. Following closely was the Bagged

CART model with an AUC of 0.89, while the XGBoost model achieved a slightly

lower AUC of 0.78. In contrast, the NN model demonstrated the lowest AUC of

0.74. On the other hand, the RFmodel achieved an accuracy of 83.9% and a Kappa

coefficient of 67.8% and the XGBoost, achieved a lower accuracy of 82.5% and a

lower Kappa coefficient of 0.6.

Conclusion: This study could be beneficial for targeted preventive measures

according to the main risk factors for BC among high-risk women.
KEYWORDS

breast cancer, machine learning, risk factor, random forest, neural networks, bootstrap
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1 Introduction

Breast cancer (BC) stands as the foremost cause of cancer-

related deaths among females and remains a significant global

health concern, with over 2.3 million new cases and 685,000

deaths solely in 2020 (1, 2). BC is anticipated to experience a

considerable increase in cases by 2030, driven by significant lifestyle

changes, as forecasted by the World Health Organization

(WHO) (3).

BC is a prevalent cancer among Iranian women, accounting for

nearly a third of all cancer occurrences (4) and it has been on an

upward trajectory in recent years, reaching an age-standardized rate

of prevalence of 47.1 per 100,000 Iranian women in 2018 (5). BC in

Iranian women typically manifests at an earlier age and follows a

more aggressive clinical course in comparison to Western

populations (6). The concerning attributes of BC in Iran

underscore the necessity for specific prevention and treatment

strategies that take the population’s lifestyle and demographic

characteristics into consideration.

While extensive research has been conducted to identify BC risk

factors and preventive measures (7–9) the complex and

multifactorial nature of BC necessitates innovative approaches for

a comprehensive analysis. In recent years, advancements in

machine learning (ML) techniques have showcased a promising

future across various medical fields, including cancer research.

ML is known as a branch of artificial intelligence (AI) that relies

upon a diverse set of statistical, optimization, and probabilistic

techniques, facilitating computers in gathering insights from

previous examples and identifying subtle patterns in complex

datasets (10). These techniques have demonstrated high potential

in identifying relevant factors and crafting personalized prevention

strategies for different types of cancer (11). Consequently, ML

models possess the capability to harness extensive datasets,

extract invaluable insights from intricate patterns, and facilitate

the identification of risk factors that may have been disregarded

through traditional statistical methodologies (12, 13).

The application of ML models in cancer research has shown

promising results in improving risk prediction, prognosis

estimation, and treatment selection (14). These models can

integrate diverse sets of data, including clinical, genetic, lifestyle,

and environmental factors, to generate accurate risk profiles for

individuals. By employing the power of ML algorithms, researchers

can analyze complex interactions among various risk factors and

identify high-risk individuals who can benefit the most from

tailored preventive interventions (15, 16).

While ML models have been successfully employed in BC

research globally (14), their application in the context of Iranian

population-specific risk factors and preventive measures remains

limited. Like numerous other nations, Iran exhibits distinct patterns

concerning the incidence rate among younger age groups, the
Abbreviations: BC, Breast cancer; ML, Machine learning; RF, Random Forest;

NN, Neural Networks; Bagged CART, Bootstrap Aggregating Classification and

Regression Trees; XGBoost, Extreme Gradient Boosting Tree; WHO, World

Health Organization.
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clinical attributes of this health issue, and the social and cultural

surroundings of individuals dealing with BC (17). Therefore,

exploring the application of ML models to identify risk factors

and preventive measures specific to the Iranian population can

provide valuable insights for tailored interventions and resource

allocation in terms of disease control and prevention.

By integrating data from diverse sources and leveraging

advanced ML algorithms, the complex etiology of BC is further

understood through the advancements made by this research. The

primary objective of this study was to investigate the potential of

different ML models in identifying risk factors associated with

primary invasive BC to develop more personalized preventive

measures within the Iranian population. We aimed at training

ML models that can accurately predict BC risk factors

among women.
2 Materials and methods

The present study introduces a comprehensive framework

comprising three distinct steps, as illustrated in Figure 1. The

initial phase delineates the construction of the database and

elucidates a series of meticulous operations performed to

preprocess the data, ensuring its suitability for subsequent

modeling endeavors. These operations encompass the integration

of disparate datasets, careful data cleansing, handling of missing

values, and variable selection processes for the subsequent

application of ML models.

The output of this preliminary phase serves as a pivotal input

for the subsequent two tiers of analysis. The second step involves

the application of four diverse ML algorithms aimed at generating

accurate predictions, which are subsequently evaluated using a

range of statistical indices and receiver operating characteristic

(ROC) curves. An ensemble approach is employed in the third

and final step, where both a linear and a non-linear meta-learner

algorithm forecast the anticipated outcomes.

Next, we conduct a comparative analysis between the results

obtained from the second and third steps to identify the most

optimal approach. In the subsequent sections, we provide a

complete and detailed explanation of these processes, enabling a

thorough understanding of the employed methodology. All data

analyses and modeling procedures were conducted utilizing

R4.2.1. programming.
2.1 Study population

Conducted at the Motahari Breast Clinic within Namazi

Hospital, falling within the affiliation of Shiraz University of

Medical Sciences in Iran, this large case-control study centered on

women diagnosed with primary invasive BC. The clinic serves as the

primary referral center for patients recently diagnosed with BC in

the Fars province, with over 80% of these patients’ receiving

treatment at this facility. The study included all eligible women

with confirmed diagnosis of BC during the study period.

Information about the study participants and methodology
frontiersin.org
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(including criteria for selecting cases and controls) has been detailed

elsewhere (18).

Briefly, a total of 1,073 women were invited to participate in the

study, of whom 64 were disqualified due to absent or insufficient

information on histopathological reports, leaving a final sample of

1,009 cases. Written informed consent was obtained from patients

who were literate, while verbal consent was obtained from illiterate

patients. The study protocol was approved by the ethical committee

of Shiraz University of Medical Sciences (no. 13748).
2.2 Case and control selection

In this case-control study, new patients with a confirmed

diagnosis of BC and were admitted to the oncology and

radiotherapy wards were included as incident cases. Between April

2014 and March 2017, control participants were chosen from among

female attendees who were not previously diagnosed with BC and

were visiting patients in different departments of the same hospital.

Women in the control group were considered cancer-free if they

verbally confirmed no current or history of cancer, without the need

for a confirmatory examination or test. A final total of 1009 control

participants were selected, frequency-matching to cases by age, using

5-year age-groups for matching (19).
2.3 Data collection

In a face-to-face context and within a timeframe of 2 to 8 weeks

from the diagnosis of BC, interviews were carried out with the

patients. Interviews took place in a private and quiet room in the

hospital, facilitated by a trained female nurse. The questionnaire
Frontiers in Oncology 03
included questions related to education, occupation, family history

of BC, smoking during adolescence and adulthood, history of oral

contraceptive use, history of chest X-ray, history of benign breast

disease, physical activity, body mass index (BMI), deliberate weight

loss after 18 years of age, age at first delivery, total number of

months of breastfeeding, history of miscarriage, menarche age,

regular menstrual cycles, menopausal status, and history of type 2

diabetes. This questionnaire’s reliability has been discussed

before (19).
2.4 Feature selection

In this research, we deliberately decided, after consulting with

knowledgeable professionals in the area, to exclude the use of

machine learning approaches for feature selection. This

conclusion is based on recognizing the need to conduct a

comprehensive examination and evaluation of all possible factors

instead of just depending on automated selection techniques

powered by ML algorithms.
2.5 Data description

Table 1 provides insights into the distribution of the study

variables among individuals without and with BC, highlighting

potential associations with the condition.

The provided table presents a comprehensive overview of various

factors and their distribution among the two groups. A thorough

analysis of the data reveals several noteworthy observations.

In terms of education, a relatively similar distribution is

observed in the two groups, with a predominant presence of
FIGURE 1

Architecture of the framework of this study. All data analysis and modeling procedures were conducted utilizing R4.2.1 programming.
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TABLE 1 Statistics of BC patients and individuals without cancer.

Factors
Control
(N=1009)

BC patients
(N=1009)

Total
(N=2018)

Education

Primary or illiterate 349 (35%) 348 (34%) 697 (35%)

Intermediate 206 (20%) 179 (18%) 385 (19%)

High school 264 (26%) 300 (30%) 564 (28%)

Academic 190 (19%) 182 (18%) 372 (18%)

Occupation

Housewife 780 (77%) 779 (77%) 1559 (77%)

Employed 229 (23%) 230 (23%) 459 (23%)

Family history of BC

No 867 (86%) 753 (75%) 1620 (80%)

Second relative 54 (5%) 84 (8%) 138 (7%)

First relative3 88 (9%) 172 (17%) 260 (13%)

Smoking

No 937 (93%) 860 (85%) 1797 (89%)

Yes 72 (7%) 149 (15%) 221 (11%)

OCP use

Never 601 (60%) 537 (53%) 1138 (56%)

Ever 408 (40%) 472 (47%) 880 (44%)

Chest X-ray history

No 317 (31%) 356 (35%) 673 (33%)

Yes 692 (69%) 653 (65%) 1345 (67%)

History of benign breast disease

No 943 (93%) 869 (86%) 1812 (90%)

Yes 66 (7%) 140 (14%) 206 (10%)

Physical activity5

No 799 (79%) 815 (81%) 1614 (80%)

Yes 210 (21%) 194 (19%) 404 (20%)

BMI

<24.99 359 (36%) 310 (31%) 669 (33%)

25.00 to 29.99 489 (48%) 455 (45%) 944 (47%)

≥30.00 161 (16%) 244 (24%) 405 (20%)

Deliberate weight loss

No 643 (64%) 663 (66%) 1306 (65%)

Yes 366 (36%) 346 (34%) 712 (35%)

Age at first delivery (year)

<18 355 (35%) 246 (24%) 601 (30%)

18–23 284 (28%) 306 (30%) 590 (29%)

24–30 158 (16%) 170 (17%) 328 (16%)

(Continued)
F
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individuals with primary/illiterate or intermediate education. Both

groups exhibit comparable proportions in this regard.

Regarding employment, most individuals in both groups were

identified as housewives, constituting approximately 77% of the

total population. The remaining individuals were classified as

employed, comprising around 23%. This occupational

distribution is consistent across the two groups. Exploring the

family history of BC reveals a substantial distinction between the

groups. Among BC patients, there is a notably higher percentage

(17%) of individuals with a first relative affected by BC, compared to

the “control” group (9%). This disparity suggests a potential

association between familial history and the incidence of BC.

Considering smoking habits, there is an appreciable difference

between the groups, as the prevalence of smoking is higher among

the patients (15%) compared to the controls (7%). The use of oral

contraceptive pills (OCP) demonstrates a slight difference between

the two groups. BC patients exhibit a slightly higher proportion

(47%) of OCPs use, in contrast to the “control” group (40%).
Frontiers in Oncology 05
The presence of a history of benign breast disease presents a

noteworthy contrast between the two groups. Among BC patients, a

greater proportion (14%) had a history of benign breast conditions,

while a smaller percentage (7%) is observed in the control group.

This discrepancy suggests a potential link between prior benign

breast conditions and an increased susceptibility to BC.

The remaining factors in the table, including chest X-ray history,

physical activity, BMI, age at first delivery, breastfeeding duration,

history of miscarriage, menarche age, regular menstruation,

menopausal status, and type 2 diabetes, necessitate further scrutiny

and analysis to determine their potential implications for BC risk.
3 Machine learning methods

The Caret package’s grid search method (Kuhn, 2008) in R was

employed to optimize hyperparameters for all algorithms (RF, NN,

XGBoosting Tree, and bagged CART) within the training set. The
TABLE 1 Continued

Factors
Control
(N=1009)

BC patients
(N=1009)

Total
(N=2018)

≥31 131 (13%) 203 (20%) 334 (17%)

Nulliparous 81 (8%) 84 (8%) 165 (8%)

Breastfeeding (month)

0–5 184 (18%) 234 (23%) 418 (21%)

6–17 53 (5%) 86 (9%) 139 (7%)

18–29 128 (13%) 134 (13%) 262 (13%)

30–41 116 (11%) 108 (11%) 224 (11%)

≥42 528 (52%) 447 (44%) 975 (48%)

History of miscarriage

No 694 (69%) 661 (66%) 1355 (67%)

Yes 315 (31%) 348 (34%) 663 (33%)

Menarche age (year)

<12 138 (14%) 169 (17%) 307 (15%)

12–13 431 (43%) 407 (40%) 838 (42%)

≥14 440 (44%) 433 (43%) 873 (43%)

Regular menstruation

No 647 (64%) 612 (61%) 1259 (62%)

Yes 362 (36%) 397 (39%) 759 (38%)

Menopausal status6

Pre-menopausal 139 (14%) 124 (12%) 263 (13%)

Post-menopausal 868 (86%) 885 (88%) 1753 (87%)

Type 2 diabetes

No 942 (93%) 924 (92%) 1866 (92%)

Yes 67 (7%) 85 (8%) 152 (8%)
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parameter values for each applied ML algorithm are presented

in Table 1.
3.1 Random forest

RF is an ensemble learning method that uses decision trees to

predict classes in the case of classification or means for regression

within the individual trees (20). The algorithm constructs a multitude

of decision trees, and each tree is trained on a random subset of the

training data and a random subset of the features. This helps to

reduce overfitting by creating a diverse set of trees that are not highly

correlated with each other. Overfitting is further prevented by

randomly selecting a subset of features while constructing each tree.

This is controlled by the hyperparameter mtry, which determines the

number of variables randomly sampled at each split time. The

optimal value of mtry is determined by using a grid search method

(21) and was found to be 18 here with the Caret package.
3.2 Bagged cart

Bootstrap aggregating (bagging) is an ensemble meta-algorithm

designed to enhance the stability and accuracy of ML algorithms

using techniques such as classification and regression trees (CART).

This involves generating multiple training sets through the process

of resampling the original dataset with replacement. Subsequently, a

model is trained on each of these newly created sets, leading to

improved performance (22). The final prediction is then made by

combining the predictions of all the generated models. Bagged

CART, a variation of decision tree algorithm, employes bagging to

reduce overfitting by randomly selecting a subset of features at each

split to construct each tree (23). The performance of bagged CART

depends on the values of hyperparameters such as the number of

trees (B), the number of variables randomly sampled at each split

time (mtry), and the minimum number of observations required to

split an internal node (minsplit). Optimal values of these

hyperparameters can be obtained through hyperparameter tuning.

The optimization process involved grid search, a method that

systematically explores all possible combinations of hyperparameters

within predefined ranges. The optimal values for hyperparameters

were obtained by comparing the cross-validation performance of the

hyperparameters mtry and minsplit control the complexity of each

tree, while the hyperparameter B controls the number of trees in the

ensemble. The optimal values of these hyperparameters depend on

the characteristics of the dataset and the specific problem at hand.

After the hyperparameter tuning was carried out, it was determined

that the optimal values were as follows: mtry = [tuned value], minsplit

= [tuned value], and B = [tuned value]. These tuned hyperparameter

values play a crucial role in significantly enhancing the performance

of Bagged CART, resulting in the creation of a MLmodel that is both

more accurate and robust. The optimization of hyperparameters

through grid search is a crucial step in developing effective ML

models, and it ensures that our model can generalize well to unseen

data and tackle real-world challenges effectively.
Frontiers in Oncology 06
3.3 Neural networks

Neural Networks (NN) have captured significant attention in

recent years due to their remarkable capacity to effectively address

intricate challenges spanning a wide range of domains. Inspired by

the structure of biological NN (24), this method employs a three-

layered feedforward network. The key innovation lies in the notion

of weights, which connects the hidden layers and facilitates learning

between the output and input layers (25). By leveraging these

weighted connections, NN excels at learning and adapting to

complex patterns, making them a powerful tool in modern ML

applications. One of the primary advantages of NN is their ability to

learn from data without being explicitly programmed. This is

achieved through a process known as backpropagation, where the

network adjusts its parameters to minimize the difference between

its predictions and the true outputs in the training data (26).

A multilayer perceptron (MLP) is a fully connected class of

feedforward artificial neural network. To optimize the MLP, three

hyperparameters were considered in this study: the number of

neurons in the hidden layer, the learning rate, and the activation

function. The number of neurons in the hidden layer determines

the complexity of the model, with a higher number of neurons

increasing model complexity (27). The learning rate governs the

step size within the gradient descent optimization algorithm

employed for training the network. Typically, a smaller learning

rate leads to improved convergence and accuracy, optimizing the

training process (28). The activation function applies a nonlinear

transformation to the output of each neuron to introduce

nonlinearity into the model (29).
3.4 Extreme gradient boosting tree

XGBoost is a popular gradient boosting algorithm that

constructs an ensemble of decision trees sequentially, with each

tree aiming to correct the errors of its predecessor (30). Among its

many variants, XGBoost stands out as it uses decision trees as the

base learner (31).

The primary objective of this study is to optimize the

hyperparameters specifically for XGBoost. These hyperparameters

encompass several key aspects, including the maximum depth of the

trees, the learning rate (eta), the minimum child weight, the

subsample ratio of columns when constructing each tree, and

the gamma parameter. The parameter known as gamma, which is

the focus here, holds significant importance in the context of this

study. It plays a central role in establishing the minimum loss

reduction required to initiate an additional partition on a leaf node,

shaping the decision-making process within the algorithm (32).

The mathematical formulas for the hyperparameters are

as follows:
- Maximum depth: The maximum depth of the decision trees,

denoted as max_depth. A higher depth allows the model to

capture more complex interactions but may also lead

to overfitting.
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https://doi.org/10.3389/fonc.2023.1276232
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Dianati-Nasab et al. 10.3389/fonc.2023.1276232

Fron
- Eta: The learning rate, denoted as eta, controls the step size

taken during the optimization process. A lower value results

in slower learning but may improve generalization.

- Minimum child weight: The minimum sum of instance

weight needed in a child, denoted as min_child_weight. It

controls the minimum number of instances required in

each leaf node, which helps prevent overfitting.

- Subsample: The subsample ratio of columns when

constructing each tree, denoted as subsample. A lower

value results in more conservative models.

- Gamma: The minimum loss reduction required to make a

further partition on a leaf node, denoted as gamma. A

higher value results in fewer spl i ts and more

conservative models.
Tuning these hyperparameters can lead to better performance

and prevent overfitting of the model. By carefully selecting the

optimal values for these parameters, XGBoost can achieve high

accuracy and better generalization in real-world applications. These

values are shown in Table 2.
4 Results

The results section of this study provides an in-depth analysis

and presentation of the findings derived from the conducted

analysis. The dataset will be subject to comprehensive

examination to uncover valuable insights and observations.

Meticulously exploring the dataset, characteristics, patterns,

trends, and relationships are identified.

The analysis involved a comprehensive evaluation of statistical

metrics and a meticulous assessment of the models’ predictive

capabilities. If the circumstances warrant, the integration of these
tiers in Oncology 07
models into an ensemble framework is explored, guided by both

linear and non-linear meta-learner algorithms.
4.1 Variable importance

In this analysis, the interaction among demographic, medical

history, and lifestyle factors linked to BC risk was explored using

four distinct ML models. The results provide valuable insights into

the varying degrees of significance exhibited by different factors.

To determine the feature importance, a well-established technique

called “permutation feature importance” was utilized. This

approach assesses the contribution of each predictor in the

models’ decision-making process. In a specific approach, the

values of each predictor were shuffled throughout the dataset,

and subsequently, the resulting reduction in performance metrics

of the models—such as accuracy or area under the receiver

operating characteristic curve (AUC-ROC)—was assessed. The

degree of decrease observed directly reflects the predictor’s

significance in influencing the model’s performance. Chest X-

ray history, Deliberate weight loss, abortion history, and post-

menopausal status ranked among the top five predictors in all

models. Moreover, secondhand smoking, education (high school),

menarche age (>14), occupation (employed), first delivery age (18-

23), and duration of breast-feeding (>42 months) were important

in at least two models.

Conversely, certain variables, such as OCP use and physical

activity, were identified as crucial only in one model, emphasizing

the significance of utilizing multiple models when predicting BC

risk. The rankings of particular predictors between models also

varied with education (high school) and OCP use demonstrating

divergent results.

The variable importance analysis emphasizes the importance of

selecting an appropriate ML model and utilizing multiple models to

ensure the robustness and generalizability of the predictive model.

These findings suggest that a combination of demographic, medical

history, and lifestyle factors should be considered when assessing

BC risk. This information can be leveraged to develop targeted

interventions to prevent and manage BC, contributing to the

ongoing efforts to improve the accuracy and effectiveness of BC

risk prediction models. These algorithms will be employed to

generate predictions, and their performance will be rigorously

evaluated using statistical indices and receiver operating

characteristic (ROC) curves.

Table 3 displays the importance of variables within the

ML models.
4.2 Prediction models

In this study, the prediction of outcomes using a dataset was

facilitated through the utilization of four distinct machine learning

algorithms. To establish a well-balanced representation, the dataset

underwent a randomized partition into training and testing sets,

maintaining an 80:20 ratio. Specifically, the training set,

encompassing 80% of the data, was employed for model training
TABLE 2 Parameter values of the four applied ML algorithms.

Algorithm Parameters Setting

RF mtry (Number of variables is randomly collected
to be sampled at each split time.)

18

Bagged
CART

ensemble size 25

Neural
Network

Hidden layer 1

Input layer 1

Output layer 1

Number of neurons 5

Extreme
Gradient
Boosting
Tree

Maximum depth 3

Eta 0.4

Gamma 0

Column sample by tree 0.6

Minimum child weight 1

Subsample 1
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purposes, while the remaining 20% constituted the test set, serving

as the evaluative benchmark to assess model performance.

To ensure the validity and reliability of our models, we included

the widely adopted technique known as ten-fold cross-validation.

This technique involved the systematic division of the training dataset

into ten subsets, each of which was subsequently utilized for model

training and evaluation in a carefully orchestrated manner. Through

this iterative process, the models were trained on nine subsets while

being meticulously evaluated on the remaining subset. By aggregating

the results across these iterations, a comprehensive and robust

estimation of the models’ predictive capabilities was derived.

Multiple measures were utilized to analyze each model’s

performance, Accuracy,

95% Accuracy Confidence Interval (CI), Kappa, Sensitivity, and

Specificity. The performance measures for the four ML methods are

reported in Table 4.
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The Accuracy evaluation computes the models’ ability to detect

instances related to the diagnosis of breast cancer. To achieve this,

we compute the proportion of accurately classified instances to all

occurrences, accounting for True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN). Where True

Positive (TP) is the number of correctly predicted positive

instances, True Negative (TN) is the number of correctly

predicted negative instances, False Positive (FP) is the number of

incorrectly predicted positive instances, and False Negative (FN) is

the number of incorrectly predicted negative instances.

Formula for calculating accuracy is as follows:

Accuracy =
(True Positive + True Negative)

(True Positive + False Positive  + True Negative + False Negative)

The RF and Bagged CART models achieved the highest

accuracy scores of 0.8389 and 0.8152, respectively. The
TABLE 3 Variable importance.

Feature RF Bagged CART XGBoost NN

Chest X-ray history 99.78 91.46 63.47 60.05

Deliberate weight loss 98.07 99.66 86.93 –

Abortion history 97.90 93.78 – 38.48

Post-menopausal 96.36 92.52 87.60 30.44

Secondhand smoking 95.57 98.06 74.22 –

OCP use 95.20 63.15 100 100

Education 95.02 80.43 78.97 48.51

BMI (25-29.99) 94.68 91.90 55.42 28.71

Physical activity 86.02 90.99 81.18 47.69

Menarche age (12-13) 79.99 – – –

Menarche age (>14) 79.85 88.07 68.73 46.12

Occupation (employed) 77.30 85.52 58.59 –

First delivery Age (18-23) 74.56 73.33 55.43 –

Breast feeding duration (>42 months) 71.24 81.37 73.25 32.18

Education (intermediate) 65.55 65.44 – –

BMI (>30) 64.22 – 67.60 35.20

Education (academic) 59.41 61.43 76.44 48.51

Smoking 55.49 – 61.22 46.64

First delivery age (24-30) – 57.02 33.89 33.91

History of benign breast disease – – 79.21 41.78

Hysterectomy – – – 61.98

Family history of BC (first relative) – – 54.64 54.64

Breast feeding duration (6-17 months) – – – 91.30

Regular menstruation – – 59.50 –

Having diabetes – – – 27.47

BMI (>24.99) – – 28.71 –
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XGBoosting and NN models had relatively lower accuracy scores,

obtaining 0.7133 and 0.6635, respectively.

The 95% Accuracy CI for the RF, Bagged CART, XGBoost, and

NN models are (0.8002, 0.8726), (0.7748, 0.8511), (0.6675, 0.756),

and (0.6162, 0.7085), respectively. The overlapping intervals suggest

that there may not be statistically significant differences in the

performance between the models. However, further analysis and

consideration of other performance measures are necessary to make

more robust conclusions about the model’s performance.

Kappa, a measure of inter-rater agreement in the diagnosis of

breast cancer, the RF and Bagged CART models exhibited higher

Kappa values of 0.6776 and 0.6306, respectively, indicating a

substantial level of agreement beyond chance. Following widely

accepted interpretation guidelines (33), these values are considered

substantial. Conversely, the XGBoost and NN models displayed

lower Kappa values of 0.426 and 0.3275, respectively, suggesting a

moderate and slight level of agreement, respectively, which is

comparatively lower for these models.

Sensitivity, which measures the model’s ability to correctly

identify individuals with breast cancer, emphasizing the

significance of true positive predictions, was determined. The RF

model exhibited the highest sensitivity (0.8419), indicating its

effectiveness in identifying true positive cases. Specificity, on the

other hand, measures the model’s ability to correctly identify actual

negative instances. The Bagged CART model had the highest

specificity (0.8406), indicating its proficiency in identifying true

negative cases.

The RF and Bagged CART models demonstrated superior

performance in terms of accuracy, Kappa, sensitivity, and

specificity compared to the XGBoost and NN models. However,

the choice of the best model may ultimately depend on the specific

application and the relative importance of sensitivity and specificity

in the given context.

Finally, the evaluation of ROC/AUC revolves around the

discriminating ability of the models in diagnosing breast cancer.

The Receiver Operating Characteristic (ROC) curve serves as a

valuable visual tool to evaluate the classification models’

performance, depicting the balance between correctly identifying

positive cases and incorrectly classifying negative cases. The Area

Under the Curve (AUC) metric provides a comprehensive measure

of the models’ discriminative ability. Figure 2 represents the ROC

curves of the four ML models. In the context of the presented

results, it is noteworthy that the RF model showcased the highest

AUC value of 0.900, indicating its remarkable proficiency in

effectively distinguishing between the classes. Following closely,

the Bagged CART model demonstrated a commendable AUC of
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0.892. In contrast, the XGBoost model exhibited a relatively lower

AUC of 0.783, while the NN model displayed the lowest AUC of

0.741. These findings substantiate the superiority of the RF model in

accurately classifying the data, thereby establishing its significance

and prominence within the analytical assessment.
4.3 Ensemble models

Ensemble methodologies encompass learning strategies that

aim to create a robust and improved predictive model through

the integration of multiple learning algorithms (34). The integration

of weak learners in ensemble learning techniques can be achieved

through two approaches: homogeneous and heterogeneous

ensembles (35). Weak learners, recognized as base models within

the realm of ML, represent algorithms that outperform random

guesses with a noticeable yet moderate degree of effectiveness.

Ensemble learning reveals the principle of homogeneity, which is

embodied through the well-established methodologies of bagging

and boosting. These influential techniques are highly regarded for

their capability to aggregate multiple instances of similar weak

learners, resulting in homogeneous ensembles that possess

enhanced predictive capabilities. Conversely, heterogeneous

ensembles adopt a distinct and advanced strategy known as
FIGURE 2

The ROC curves of four ML algorithms. XGB, extreme gradient
boosting tree; RF, random forest; b-CART, bagged CART; NN,
neural networks.
TABLE 4 Performance measures of four ML models.

Accuracy 95% Accuracy CI Kappa Sensitivity Specificity AUC

RF 0.8389 (0.8002,0.8726) 0.6776 0.8419 0.8357 0.900

Bagged CART 0.8152 (0.7748,0.8511) 0.6306 0.7907 0.8406 0.892

XGBoost 0.7133 (0.6675, 0.756) 0.426 0.7349 0.6908 0.783

NN 0.6635 (0.6162, 0.7085) 0.3275 0.6419 0.6860 0.741
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stacking, which involves integrating diverse weak learners.

Distinguished by its heterogeneity, stacking augments the

ensemble’s predictive capabilities by harnessing a synergistic

interplay of complementary algorithms (36).

In this study, the application of stacking ensemble learning for

predicting the intended outcome was undertaken, followed by a

comparison of the results with the best-performing machine

learning (ML) algorithm. In this research, the stacked

generalization, commonly referred to as stacking, algorithm was

employed. Initially, a variety of learning algorithms were utilized to

generate predictions, and subsequently, the outcomes were

integrated through the application of a combiner algorithm,

which represents an additional technique within the field of ML.

This integration process allowed for a comprehensive assessment of

the predictive performance.

Ensemble methods aim to enhance model performance by

combining diverse base models, characterized by low correlations

among them. In the evaluation of the association between these

models, the correlation coefficients span from -1 to 1. A value of -1

signifies a perfect negative correlation, while a value of 1 indicates a

perfect positive correlation. Nevertheless, within the framework of

ensemble methods, the ideal correlation value is 0, signifying an

absence of any relationship between the models. Table 5 displays

the correlation coefficients among the base models used in

ensemble learning.

The low correlation among base models is crucial as it indicates

that the models provide independent and distinct perspectives

which means they make different types of errors or predictions.

This diversity allows the ensemble model to capture a wider range

of patterns and insights, ultimately improving prediction accuracy.

In other words, this diversity is beneficial because when combined,

the ensemble can compensate for individual model weaknesses and

exploit the strengths of different models. By considering various

perspectives and incorporating different types of information, the

ensemble can produce more accurate and robust predictions than

any individual model alone. Conversely, high correlations between

base models can introduce redundancy and limit the ensemble’s

ability to incorporate diverse insights. By leveraging a diverse set of

base models with low correlations, ensemble methods offer a robust

and accurate approach to prediction and generalization in ML. The

collective wisdom of these models, integrated using a combiner

algorithm, allows the ensemble model to harness the strengths of

each base model and mitigate potential biases, leading to enhanced

predictive capabilities and generalization performance.

Ensemble models, such as those incorporating the Generalized

Linear Model and Boosted Classification Trees, provide a
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framework for combining the predictive abilities of multiple

models, thereby mitigating individual model weaknesses, and

capitalizing on their strengths. By blending diverse perspectives

and capturing a wider range of patterns, ensemble models can

potentially achieve higher accuracy and agreement than any

individual model alone.

Table 6 presents the performance metrics of the best-

performing previous model, RF, in comparison to two ensemble

models: Generalized Linear Model and Boosted Classification Trees.

These metrics provide insights into the models’ predictive

capabilities and agreement with actual outcomes.

Regarding Accuracy and Kappa, the RF model achieved an

accuracy of 83.89% and a Kappa coefficient of 67.76%. These results

indicate that the RF model yielded correct predictions with an

accuracy of 83.89% and demonstrated substantial agreement

beyond what would be expected by chance. The Generalized

Linear Model, when employed within the ensemble, achieved

slightly lower accuracy and Kappa coefficient of 83.00% and

66.00%, respectively. Similarly, the Boosted Classification Trees,

when incorporated in the ensemble, achieved a lower accuracy of

82.56% and lower Kappa coefficient of 0.65.

The RF model is known for its ability to handle complex

relationships and interactions between variables. It combines

multiple decision trees and aggregates their predictions to make

accurate predictions. The results of Table 6 indicate that the RF

model outperformed both the Generalized Linear Model and the

Boosted Classification Trees in terms of accuracy and agreement.

However, it is essential to acknowledge that ensemble models have

their own merits, offering the potential for improved performance

by incorporating diverse models so they can offer complementary

insights and diversify predictions, potentially enhancing

performance in specific contexts. Choosing the most suitable

model or ensemble approach depends on the specific

characteristics of the data and the objectives of the analysis.
5 Discussion

BC remains a significant public health concern globally, and

understanding the risk factors associated with the disease is crucial

for effective prevention and intervention strategies. This study

aimed to investigate BC risk factors among women in Iran’s Fars

province, contributing valuable insights to the understanding of

disease etiology and informing targeted approaches to BC

prevention and management. The rigorous methodology

employed in this study, including data collection from a
TABLE 5 Base models correlation.

XGBoost NN RF Bagged CART

XGBoost 1.00 0.31 0.46 0.19

NN 0.31 1.00 0.53 0.18

RF 0.46 0.53 1.00 0.60

Bagged CART 0.19 0.18 0.60 1.00
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representative sample size and the use of four ML algorithms,

ensures the reliability and robustness of the findings.

The analysis of variable importance across the ML models

revealed variations in the rankings of risk factors, which

underscores the inherent complexity and heterogeneity of BC

etiology. However, in line with the existing body of literature

certain variables including chest X-ray history, deliberate weight

loss, and abortion history consistently emerged as influential across

all four algorithms, suggesting their potential significance as BC risk

factors (37–40). Additionally, variables such as post-menopausal

status, second-hand smoking, OCP use, and education (high

school) were consistently identified as significant risk factors by the

majority of the ML models echoing earlier investigations (8, 41–44).

In accordance with prior research findings, this study also

indicates the factors that do not display significant involvement in

the risk assessment of BC including occupation, physical activity,

BMI, age at first delivery, breastfeeding, history of miscarriage,

menarche age, regular menstruation, and menopausal status

(19, 45–51).

By combining the power of ML algorithms with comprehensive

risk factor assessment, significant strides can be made in mitigating

the burden of BC among women in both Iran and around the globe.

The ML models showcase robust performance metrics. Notably, RF

and Bagged CART stand out with their higher accuracy and Kappa

values, reinforcing their potential for accurate BC risk prediction.

However, the reasonable sensitivity and specificity values exhibited

by XGBoost and NN highlight their ability to identify both true

positive and true negative cases. With all ML models exhibiting

good discriminatory power, these findings emphasize the

effectiveness of ML algorithms in assessing BC risk.

This study significantly contributes to the expanding body of

research focused on identifying predictors of BC risk. The findings

underscore the importance of employing multiple ML models to

enhance the accuracy of BC risk prediction. Furthermore, the study

emphasizes the necessity of considering a wide array of risk factors

during model development. By incorporating these approaches, the

accuracy and effectiveness of risk prediction can be heightened,

ultimately alleviating the burden of BC among women in Iran.

Continued research advancements are crucial to further deepen our

understanding and develop targeted interventions for BC

prevention and management. Also, it is crucial to recognize that

the fight against BC is an ongoing battle. Continued research

advancements are vital for deepening our understanding of the

complex interplay between risk factors and BC etiology. Moreover,

these findings should be complemented with translational efforts to

ensure that evidence-based strategies are effectively disseminated

and implemented in clinical practice and public health policies.
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By integrating the insights from this study into comprehensive

risk prediction models, public health practitioners can enhance their

ability to identify individuals at high risk of developing BC, enabling

timely interventions and personalized prevention strategies.

This study is a significant step toward improving breast cancer

prevention, early detection, and management. Continued research

advancements and collaborative efforts are crucial to further deepen

our understanding, develop targeted interventions, and ultimately

reduce the burden of breast cancer on women’s health worldwide

following interventions on the (modifiable) risk actors.

Although our study has several strengths, including the

application of different methods, considering a vast variety of

potential confounders and risk factors, and a large sample size,

we would like to bring some limitations to the table. We collected

data from a reference hospital in the southern part of the country

but did not include data from other geographic areas of the country.

Hence, in future research, it might be significant to consider a

representative sample of different parts of the country to find any

discrepancies between different ethnic groups. To ensure that

ethnicity or other socio-demographic factors did not affect our

results, we adjusted the results for potential confounders in the

southern part of the country. Also, recruiting participants who

visited the biggest referral center in the southern part of Iran makes

the results generalizable to the city’s population.

Another limitation is recall bias from a case-control study,

which is a common bias in this study design. To address this

limitation, we could use some objective variables that participants

can remember. Another potential confounding factor is alcohol

consumption, which is not legal in our country, making it difficult

to determine its true impact. However, we expect minimal influence

on our results from alcohol consumption, as it is not prevalent in

our country.
6 Conclusion

BC is a complex disease with many different risk factors that

influence it, necessitating a thorough analysis. This study

underscores the application of ML models to identify significant

predictors of BC risk, thereby enhancing risk prediction accuracy.

Within the context of the study population, this research highlights

the pivotal role of demographic, medical history, and lifestyle

factors in evaluating BC risk among women. The study’s

outcomes indicated that a history of chest X-rays emerged as a

noteworthy risk factor for BC. Furthermore, the presence of a family

history of BC, smoking habits, and OCPs usage were identified as

substantial predictors. These findings suggest that interventions

targeting smoking cessation and promoting BC screening among

women with a familial BC history could yield effective outcomes in

reducing BC incidence.

Moreover, this research provides valuable insights into the

intricate interplay of metabolic and hormonal factors contributing

to BC development. The identification of deliberate weight loss,

abortion history, and post-menopausal status as significant

predictors underscores the significance of considering multiple

factors when assessing BC risk. By expanding the existing
TABLE 6 Performance comparison of RF model with other
ensemble models.

Accuracy Kappa

RF 83.89% 67.76%

Generalized Linear Model 83.00% 66.00%

Boosted Classification Trees 82.56% 65.12%
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knowledge base on BC risk factors, this study emphasizes the

utilization of advanced ML techniques to elucidate complex

interactions among various predictors. Subsequent studies can

leverage these findings to develop more precise and efficacious BC

risk prediction models, empowering clinicians, and patients to make

informed decisions regarding BC prevention and management.
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