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Abstract 

We aimed to unravel the mechanisms connecting adiposity to type 2 diabetes. We employed 
MR-Clust to cluster independent genetic variants associated with body fat percentage (388 
variants) and BMI (540 variants) based on their impact on type 2 diabetes. We identified five 
clusters of adiposity-increasing alleles associated with higher type 2 diabetes risk (unfavorable 
adiposity) and three clusters associated with lower risk (favorable adiposity). We then 
characterized each cluster based on various biomarkers, metabolites and Magnetic Resonance 
Imaging-based measures of fat distribution and muscle quality. Analyzing the metabolic 
signatures of these clusters revealed two primary mechanisms connecting higher adiposity to 
reduced type 2 diabetes risk. The first involves higher adiposity in subcutaneous tissues 
(abdomen and thigh), lower liver fat, improved insulin sensitivity, and decreased risk of 
cardiometabolic diseases and diabetes complications. The second mechanism is characterized 
by increased body size, enhanced muscle quality, with no impact on cardiometabolic outcomes. 
Furthermore, our findings unveil diverse mechanisms linking higher adiposity to higher disease 
risk, such as cholesterol pathways or inflammation. These results reinforce the existence of 
adiposity-related mechanisms that may act as protective factors against type 2 diabetes and its 
complications, especially when accompanied by reduced ectopic liver fat.

Article Highlights

• The relationship between excess adiposity and type 2 diabetes is complex.

• Can genetic subtypes of adiposity reveal distinct pathways linking adiposity with type 
2 diabetes?

• Higher adiposity increases type 2 diabetes risk via different mechanisms (e.g. 
cholesterol pathways or inflammation) but decreases risk via other mechanisms (lower 
liver fat and improved insulin sensitivity, or increased body size and enhanced muscle 
quality).

• These insights could improve precision medicine for type 2 diabetes via treating 
adiposity.
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Introduction

The strong link between excess weight (adiposity) and type 2 diabetes emphasizes weight 

management's crucial role in prevention and treatment (1). However, the complex nature of 

type 2 diabetes and adiposity, influenced by genetics and lifestyle, poses challenges. This 

complexity leads to variations in insulin resistance, production, and fat accumulation in ectopic 

places (liver, skeletal muscles and pancreas) (2), making tailored weight management for 

diabetes challenging (3,4). While weight loss benefits glycemic control and health, responses 

vary among individuals (5,6), underscoring the need for personalized interventions. 

Individuals with the same overall adiposity also have different risks of developing 

cardiometabolic disease (7,8). Reporting adiposity using surrogates like BMI has limitations in 

distinguishing fat and lean mass or accounting for variations in fat distribution, for example 

between the metabolically benign subcutaneous fat or more metabolically harmful visceral fat, 

and across different ethnicities (9,10). The current strategy for managing obesity in individuals 

with type 2 diabetes relies on using crude cut-offs for BMI and metabolic measures such as 

HbA1c or blood pressure. There is a need to create a reliable subtype classification system that 

accounts for the underlying causal factors that connect adiposity and type 2 diabetes to allow 

more accurate predictions of the benefits of intentional weight loss.

Research on adiposity subtype classification has primarily focused on metabolically healthy 

obesity, a condition with multiple definitions where individuals with obesity may not 

immediately exhibit metabolic dysfunction (11,12). Other approaches have involved 

behavioral traits, BMI, HbA1c, cardiometabolic traits and machine-learning techniques 

(13,14). However, these studies often relied on traits secondary to obesity or diabetes, 
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introducing potential confounding from correlated factors and limiting their biological or 

clinical significance. In contrast, approaches that integrate genetic data allow clustering based 

on risk factors present at birth and unaffected by treatment, distinct from clinical biomarkers. 

In our previous work, we combined genetics with machine learning to identify two adiposity 

phenotypes with opposing effects on type 2 diabetes risk (15). Yet, including metabolic 

biomarkers, like liver-specific enzymes, in our model might introduce circular arguments, 

potentially biasing findings toward specific aspects, such as variants influencing liver fat.

In this study, we hypothesized that distinct biological pathways link higher adiposity with type 

2 diabetes risk. We first selected variants associated with measures of adiposity. We next 

employed MR-Clust (16) to categorize adiposity variants based on their causal links to type 2 

diabetes. MR-Clust groups variants with similar effect estimates, operating on the premise that 

an exposure (e.g., adiposity) can impact an outcome (e.g., type 2 diabetes) through diverse 

causal mechanisms with varying degrees. MR-Clust includes a provision to address potential 

spurious clusters by classifying variants with uncertain causal effect estimates into either 'null' 

or 'junk' clusters. This methodology has been previously applied to cluster IGF-1 associated 

variants based on their causal associations with type 2 diabetes (17). We then used different 

biomarkers, including metabolites, lipids, insulin sensitivity and secretion measures, and 

inflammatory cytokines to characterize metabolic signatures of each cluster. To further 

investigate the difference between clusters, we quantified the genetic effect of each cluster on 

body composition and adipose tissue distribution measured using magnetic resonance imaging 

(MRI). Finally, we estimated the causal effect of higher adiposity through each cluster on 

different diseases, including those common in people with type 2 diabetes, using Mendelian 

Randomization. 
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Research Design and Methods

Study design

Figure S1 summarizes our study design. To identify distinct causal pathways that link 

adiposity to type 2 diabetes, we first used independent genetic variants associated with two 

measures of adiposity – body fat percentage (BFP) and BMI. Although BMI does not represent 

adiposity accurately (9), it is by far the most commonly utilized metric to categorize people 

with obesity, therefore it is a useful measure to compare with body fat percentage (BFP). 

Second, we clustered these genetic variants based on their effect on type 2 diabetes risk (18). 

Each cluster represents a different causal pathway from adiposity to type 2 diabetes risk. Third, 

we validated the effect of each cluster on type 2 diabetes risk using FinnGen (Data Freeze 8 

(19)) as an independent cohort. Fourth, to find the metabolic signature of each cluster, we 

calculated cluster-specific genetic risk score (GRS) effects on different biomarkers. Fifth, we 

calculated the causal effect of higher adiposity using Mendelian Randomization (MR) through 

each cluster on different diseases, including those prevalent in type 2 diabetes.

Identification of distinct causal pathways

To identify distinct causal pathways linking adiposity to type 2 diabetes, we employed MR-

Clust (16). This method calculates the Mendelian randomization estimate for each genetic 

variant as the ratio of the genetic association with the outcome (type 2 diabetes) divided by the 

genetic association with the exposure measure (adiposity) and seeks to find clusters of variants 

with similar estimates by maximizing the likelihood of a mixture of normal distributions. By 

convention, a genetic variant is only assigned to a cluster if the estimated probability of cluster 

membership is greater than 80%; if lower than this, then the variant is not assigned to any 

cluster. The motivation is that variants with similar Mendelian randomization estimates are 

likely to influence the outcome via similar mechanisms.
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Data source

We used published Genome-Wide Association Studies (GWAS) summary statistics from the 

largest and latest studies for traits of interest (anthropometric traits, clinical biomarkers, insulin 

sensitivity and secretion measures, metabolites and inflammatory markers and cytokines), 

focusing on European-specific data (table 1). For measures of adiposity, we accessed the 

GWAS of BFP from the IEU OpenGWAS project (20), where BFP had been estimated by 

impedance measurement in the UK Biobank (21), using the R package ieugwasr (n = 454,633).  

For BMI, we used the latest meta-analysis of the GIANT consortium and UK Biobank (n = 

806,834) (22). To determine adiposity variant clusters, we used European-specific data from 

the DIAMANTE type 2 diabetes GWAS (80154 cases vs. 853816 controls) (18).  For the 

second type 2 diabetes dataset and disease outcomes, we used data from FinnGen Data Freeze 

8 or 7 (19). 

Studies of MRI scans

The UK Biobank MRI abdominal protocol has previously been reported (23). We used the 

neck-to-knee Dixon MRI and single-slice multiecho MRI in the abdomen. Dedicated image 

processing using deep learning models trained on 100+ manually annotated structures, 

achieved DICE scores > 0.8 for each organ (24–27). Image-derived phenotypes (IDPs) from 

these segmentations include volume, and median proton density fat fraction (PDFF), which 

was calculated from the Phase Regularized Estimation using Smoothing and Constrained 

Optimization (PRESCO) method (28). Quality control involved evaluating univariate 

distributions and visually inspecting scans with extreme values. 

Table S1 summarizes the 15 IDPs used in this study including: subcutaneous adipose tissue 

(SAT) volumes (abdominal and thigh), visceral adipose tissue (VAT) volumes, internal fat and 
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thigh intermuscular adipose tissue volumes (corrected for muscle volume), iliopsoas and total 

muscle volumes (indexed to height2), and organ volumes (kidney, pancreas, liver and spleen). 

We computed VAT:ASAT ratio. We also obtained a measure of fat (PDFF) stored in the liver, 

pancreas and the paraspinal muscles (intramyocellular fat), from the single-slice multiecho 

acquisition. 

GWAS for the IDPs were performed using REGENIE version v3.1.1 (29). We included 

participants self-identified as 'White British' and clustering as such in PCA, excluding 

anomalies related to sex, heterozygosity, missingness, and genotype call rate (21). Sample sizes 

ranged from 28,587 to 37,589. Age, age2, sex, genotyping array, imaging center, and the first 

10 principal components of the genotype relatedness matrix were included. Phenotypes were 

inverse normal transformed. Imputed SNPs were filtered to MAF > 0.01 and INFO score > 0.9, 

leaving 9,788,243 SNPs included in the final association study. 

Genetic risk score analysis

To calculate genetic risk score effects, we extracted effect size estimates (beta) and its 

corresponding standard error (SE) for each variant from trait GWAS summary statistics. For 

missing variants, we obtained proxies (r2 ≥ 0.8) using the European reference panel from the 

1000 Genomes Project Phase 3 (1000G EUR). We aligned all effects for the adiposity 

increasing alleles. We performed a random-effect meta-analyses approach using the ‘rma’ 

function in the R package metafor to calculate the effect of each genetic risk score as previously 

described (30). To account for multiple testing, we used Benjamini-Hochberg–adjusted p-value 

< 0.05 to highlight significant associations. 
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Mendelian randomization (MR) analysis

To best estimate the causal effects of each cluster on disease outcomes, we performed MR 

analyses in R (version 4.2.2) using the TwoSampleMR package (31,32). The Inverse Variance 

Weighted method (IVW) was our main test. We used MR-Egger as a sensitivity analysis 

method to identify horizontal pleiotropy based on the Egger intercept. Additionally, we utilized 

weighted median, simple mode, and weighted mode (33). For missing variants, we calculated 

proxies (r2 ≥ 0.8) using the European reference panel from the 1000 Genomes Project Phase 3 

(1000G EUR). To account for multiple testing, we used a Benjamini-Hochberg–adjusted p-

value < 0.05 to highlight significant causal associations.

Pathway enrichment analysis

For each cluster, we first used the SNP2GENE function in FUMA (34) to identify expression 

quantitative trait loci (eQTL) using GTEx (35) v8 and default settings. Genes identified through 

SNP2GENE were input into the PANTHER v.17.0 tool for pathway enrichment analysis (36).

eQTL comparison in adipose and brain tissue

To compare the number of independent eQTLs within each cluster in subcutaneous adipose, 

visceral adipose and brain tissue, eQTLs were identified using FUMA and then clumped using 

the European reference panel from the 1000 Genomes Project Phase 3 (1000G EUR), using a 

moderate cut of r2 ≥ 0.1 within 10,000 kb windows. Data sources for tissues were MuTHER 

and GTEx v8. 
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Results

Clusters of adiposity genetic variants

The adiposity-increasing alleles had a considerable heterogeneous effect on type 2 diabetes risk 

(figure S2). There was also significant heterogeneity in causal effects from MR-IVW results 

among instruments for both BFP and BMI (Cochran's Q statistic p-value < 1e-150 and 1.29e-140, 

respectively), suggesting that distinct causal pathways exist between adiposity and type 2 

diabetes.

Using MR-Clust, we identified five clusters of BFP-increasing alleles representing five 

different causal pathways (figure 1A). Three clusters, comprising 7 variants in BFP-C1, 101 

in BFP-C2, and 14 in BFP-C3, indicated a positive causal effect on type 2 diabetes risk, 

aligning with 'unfavorable adiposity' (higher adiposity, adverse metabolic profile, higher 

disease risk (15); table S2). Conversely, two BFP clusters (BFP-C4 with 13 variants and BFP-

C5 with 9 variants) suggested a strong negative causal effect, consistent with 'favorable 

adiposity' (higher adiposity, favorable metabolic profile, lower disease risk (15)). Among BFP-

C1, BFP-C2 and BFP-C3, 2, 5, and 3 variants, respectively, were previously associated with 

unfavorable adiposity (15). Among BFP-C4 and BFP-C5, 4 variants in each cluster were 

previously associated with favorable adiposity (table 2) (15). The higher number of previously 

known favorable and unfavorable adiposity variants among BFP clusters is anticipated, as the 

earlier study exclusively utilized variants associated with BFP to identify these groups.

We also identified 3 clusters of BMI-increasing alleles (figure 1B). Two clusters (BMI-C1, 39 

variants; BMI-C2, 82 variants) indicated a positive causal effect on type 2 diabetes risk 

(consistent with unfavorable adiposity), while one cluster (BMI-C3, 8 variants) suggested a 
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negative causal effect (consistent with favorable adiposity; table S3).  Among BMI-C1 and 

BMI-C2, 1 and 2 variants respectively were previously associated with unfavorable adiposity 

(15). One variant in BMI-C3 was previously associated with favorable adiposity (table 2) (15). 

Correlated variants (r2 ≥ 0.8) were observed between BFP and BMI clusters, reflecting shared 

genetic architecture. Importantly, no correlation was noted between unfavorable and favorable 

adiposity clusters (table S6; figure S3).

We validated the causal effect of adiposity through these clusters on type 2 diabetes (in the 

unfavorable and favorable direction) using FinnGen (19) as an independent cohort. MR-IVW 

results against type 2 diabetes risk (odds ratios [95% confidence intervals]) were as follows: 

BFP-all 2.20 [1.89-2.56], BFP-C1 11.20 [6.90-18.21], BFP-C2 4.42 [3.72-5.25], BFP-C3 1.41 

[1.07-1.86], BFP-C4 0.29 [0.18-0.48] and BFP-C5 0.05 [0.030-0.080] per one standard 

deviation (SD) increase in BFP. For BMI, results were: BMI-all 2.35 [2.19-2.53], BMI-C1 4.23 

[3.53-5.07], BMI-C2 2.40 [2.13-2.71] and BMI-C3 0.47 [0.23-0.95] per 1-SD increase in BMI 

(table S5). The F-statistic (a representation of instrument strength for MR-IVW) was > 50 for 

all BFP and BMI clusters (table S7). 

The effect of clusters on adiposity-related traits 

To investigate differences in cluster metabolic signatures, we generated cluster-specific genetic 

risk scores and compared the effects of these scores on different adiposity-related traits. We 

included metabolic biomarkers, anthropometric traits, metabolites, and inflammatory cytokines 

(figures 2-4, table S4). 

The genetic risk scores for all BFP and BMI clusters were associated with higher adult BMI 

and leptin, regardless of their favorable or adverse metabolic effect. BMI clusters showed more 
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significant associations with higher adiposity from early life (birth weight, childhood obesity, 

childhood BMI) than BFP clusters. This could be explained by the fact that BMI reflects overall 

body size, while BFP, focused on the proportion of body weight composed of fat, may be more 

influenced by factors related to fat distribution and metabolic processes. Comparisons would 

be more readable if we had a GWAS for childhood body fat percentage. All the unfavorable 

adiposity clusters (BFP-C1, C2 and C3 and BMI-C1 and C2) were associated with an adverse 

metabolic profile (higher triglycerides, CRP, liver enzymes, insulin resistance and lower HDL-

C and sex-hormone binding globulin) while favorable adiposity clusters (BFP-C4 and C5 and 

BMI-C3) were associated with a favorable metabolic profile (figure 2).

Genetic risk scores for unfavorable adiposity clusters were associated with insulin resistance-

correlated amino acids (37) (with a weaker effect for BFP-C3 but directionally consistent), 

including phenylalanine, tyrosine, isoleucine, leucine and valine. There was also association 

with higher glycoprotein acetyls levels, suggesting these clusters affect inflammation (38),  and 

lower glutamine and glycine levels, which are metabolites linked to improved glucose 

regulation (37) (figure 3; table S5). 

Favorable adiposity clusters had a significant association with lower omega-3 levels, and 

higher omega-6 to omega-3 ratio, whereas unfavorable adiposity clusters had no association 

with omega-3 or omega-6 (figure 3). Although observational studies link high omega-6 to 

omega-3 ratios with obesity (39), evidence from randomized controlled trials and Mendelian 

randomization studies remains inconclusive regarding their causal effects on metabolic 

outcomes like type 2 diabetes, glucose metabolism, or cardiovascular disease (40,41). 

Inconsistencies in trial results may stem from factors like study duration, cooking methods, 

ethnicity, sample size, and fatty acid source.
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To further investigate the cluster-specific role of inflammation, as inflammation has been 

suggested as  a mechanism that increases type 2 diabetes risk in people with obesity (42), we 

used data on pro- and anti-inflammatory cytokines. Genetic risk scores for unfavorable 

adiposity clusters were associated with higher cytokine levels (TRAIL, TNF-b, IL-7, HGF, 

CCL2/MCP1 for BFP-C2, and IL-2, IL-5, IL-7, and HGF for BMI-C1). The favorable adiposity 

cluster BFP-C5 was associated with lower inflammatory cytokine levels (e.g., IL-12; figure 4; 

table S5).

The effect of clusters on MRI-derived measures of fat distribution and body composition 

We used precision MRI-derived measures of fat and body composition to investigate 

differences in fat distribution patterns of our adiposity clusters. Genetic risk scores for all 

clusters were associated with higher abdominal and thigh SAT. Unfavorable adiposity clusters 

were also associated with increased ectopic fat accumulation in pancreas, liver and paraspinal 

muscle, VAT, internal fat, and thigh intermuscular adipose tissue. They were also associated 

with higher muscle index and organ volume (kidney, liver, spleen), with some cluster specific 

effects (figure 5; table S5). 

Favorable adiposity clusters had unique and distinct patterns of association with MRI-derived 

measures. BFP-C4 was associated with higher paraspinal muscle PDFF and higher thigh 

intermuscular adipose tissue, but no association with liver PDFF, pancreas PDFF, VAT, muscle 

index measures or organ volume. BFP-C5 was associated with lower liver PDFF, lower VAT-

ASAT ratio, lower muscle index measures, and lower kidney and spleen volume. BMI-C3 was 

associated with higher muscle index and higher kidney and liver volume. These results were 

consistent in males and females.
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The causal effect of adiposity clusters on risk of type 2 diabetes-related disease outcomes

Since the genetically predicted favorable and unfavorable adiposity clusters had distinct effects 

on different clinical and MRI biomarkers, we used two-sample Mendelian randomization (MR) 

to investigate differences in causal effect of each cluster on disease risk, including those related 

to type 2 diabetes (figure 6; table S5). We detected evidence of heterogeneity from MR 

estimates when we studied the effect of higher adiposity using all BFP and BMI variants (BFP-

all and BMI-all, table S5). However, there was no evidence of heterogeneity in the causal 

estimates when using each cluster. Unfavorable adiposity clusters BFP-C1, BFP-C2, BMI-C1 

and BMI-C2 were associated with higher disease risk, including diabetic nephropathy, 

retinopathy and neuropathy, hypertension, polycystic ovary syndrome, non-alcoholic fatty liver 

disease, ischemic heart disease, stroke, peripheral artery disease, atherosclerosis, heart failure, 

atrial fibrillation, chronic kidney disease, thrombotic events, aortic aneurysm, gout, 

osteoarthritis, gallstones, and asthma. BFP-C3 was only associated with higher risk of 

peripheral artery disease, atherosclerosis, and aortic aneurysm. We also observed some cluster 

specific effects among unfavorable adiposity clusters; for example, BFP-C2 and BMI-C2 were 

associated with higher psoriasis risk.

Among favorable adiposity clusters, BFP-C5 was associated with lower disease risk, including 

diabetic nephropathy, retinopathy and neuropathy, hypertension, non-alcoholic fatty liver 

disease, ischemic heart disease, stroke, peripheral artery disease, and atherosclerosis, but it was 

associated with higher risk of thrombotic events and osteoarthritis. BFP-C4 was associated 

with lower diabetic retinopathy risk and higher osteoarthritis risk, and BMI-C3 was associated 

with higher risk of osteoarthritis and gallstones. All results were directionally consistent with 

those from sensitivity tests (table S5).
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eQTL and pathway enrichment analysis 

To explore differences in tissue-specific gene expression for unfavorable and favorable 

adiposity variant clusters, we counted the number of independent eQTLs in brain and adipose 

(subcutaneous and visceral) tissue per cluster. When comparing the ratio of independent eQTLs 

in adipose to brain tissue, unfavorable adiposity clusters BFP-C2 and BMI-C2 were more 

enriched for eQTLs in the brain, and favorable adiposity clusters were more enriched in adipose 

tissue (table S8).

All clusters were enriched for different pathways (table S9). Notable pathways for unfavorable 

adiposity clusters comprised cytoskeletal regulation by Rho GTPase (BFP-C1); JAK/STAT 

signaling pathway (BFP-C2); Endothelin signaling pathway (BFP-C3); ubiquitin proteasome 

pathway (BMI-C1); and JAK/STAT signaling pathway (BFP-C2). For favorable adiposity 

clusters, the Alzheimer disease-amyloid secretase pathway was highlighted (BFP-C4). Of 

these, only BFP-C3 and BMI-C2 remained significant after correction for multiple testing 

(FDR<0.05). 
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Discussion

We performed clustered MR analyses to identify distinct causal mechanisms linking higher 

adiposity with type 2 diabetes risk. We identified evidence for multiple causal mechanisms by 

which adiposity influences type 2 diabetes risk. While most biological mechanisms associated 

with higher adiposity lead to increased type 2 diabetes risk (e.g. inflammation), there may also 

be some pathways associated with higher adiposity that lead to lower type 2 diabetes risk. 

These potentially protective mechanisms relate to lower liver fat and improved insulin 

sensitivity, or increased body size and enhanced muscle quality.

Association patterns common to all adiposity clusters 

Shared associations across adiposity clusters, irrespective of their favorable or unfavorable 

metabolic effect, suggest consequences of higher adiposity beyond metabolic impact. For 

example, association with higher leptin for all clusters was expected, as leptin is produced by 

adipose tissue. The associations with higher osteoarthritis risk are consistent with previous 

findings stating that the metabolic effect of adiposity might not be the primary driver of this 

condition. The higher thrombotic event risk is also in agreement with previous results 

confirming the causal role of non-metabolic components of higher adiposity, e.g., the 

mechanical effect of higher weight on blood flow in lower limbs (43).

The difference between unfavorable and favorable adiposity clusters

Overall, the unfavorable adiposity clusters were associated with an adverse metabolic profile 

encompassing higher insulin resistance and inflammatory markers, adverse liver profile, and 

increased ectopic fat deposition (liver, pancreas, paraspinal and thigh muscle). The favorable 

adiposity clusters were overall associated with a healthy metabolic profile, with an association 

pattern opposite to the unfavorable adiposity clusters.
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The association between unfavorable adiposity clusters and higher organ volume, especially 

the liver, could be due to increased ectopic fat.  No cluster showed an association with pancreas 

volume, suggesting limited power or a lack of involvement in adiposity-to-diabetes pathways. 

Although, pancreatic volume tends to decline in diabetes, suggesting volume changes in this 

organ are more difficult to contextualize. The overall associations with fat distribution were 

consistent with previous work, where unfavorable adiposity was associated with higher liver, 

pancreatic and visceral fat, and favorable adiposity was associated with lower liver fat and had 

no significant effect on pancreatic fat (15,43).

Recent findings show that intentional weight loss in type 2 diabetes reverses many associated 

amino acid changes (44). Therefore, the opposite effect of favorable and unfavorable adiposity 

clusters on amino acid levels previously associated with lower insulin sensitivity and higher 

insulin resistance and type 2 diabetes risk (37) could suggest these amino acids are not causal 

risk factors, but are biomarkers of  metabolically healthy or unhealthy adiposity.

Differences between unfavorable adiposity clusters 

Differences among unfavorable adiposity clusters in associations with biomarkers suggest 

diverse mechanisms by which higher adiposity leads to adverse metabolic outcomes.  BFP-C1 

demonstrated a more unfavorable metabolic effect, with the strongest impact on type 2 diabetes 

risk, circulatory lipids, and surrogates of insulin resistance with no effect on inflammatory 

cytokines. Cytoskeletal regulation by Rho GTPase was highlighted for BFP-C1 for which there 

is emerging evidence to implicate a role in metabolic homeostasis by regulating glucose uptake 

into skeletal muscle and adipose tissue (45). This cluster also had more significant associations 

with measures of fat distribution and body composition in females.
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BFP-C2 and BMI-C2 were associated with cytokines and inflammatory markers, and were both 

enriched for pathways related to inflammation, suggesting that inflammation is strongly 

associated with the mechanisms these clusters may represent. Higher adiposity through these 

clusters was associated with higher risk of psoriasis, possibly through higher inflammation as 

an underlying mechanism. BFP-C3 was only associated with vascular outcomes including 

peripheral artery disease, atherosclerosis and aortic aneurysm aligning with the highlighted 

endothelin signaling pathway for this cluster. 

Differences between favorable adiposity clusters 

Similarly, the differences between favorable adiposity clusters associations with metabolic and 

imaging biomarkers suggest that there is more than one mechanism of adiposity leading to 

favorable metabolic outcomes. BFP-C5 was more protective against disease risk compared to 

BFP-C4 and BMI-C3. BFP-C5 was associated with higher insulin sensitivity and lower 

inflammatory marker levels, whilst BFP-C4 and BMI-C3 were not associated with these 

measures. 

The favorable adiposity clusters also had unique association patterns with measures of fat 

distribution and body composition. BFP-C5 was associated with lower liver PDFF whilst BFP-

C4 and BMI-C3 had no association with liver fat. BFP-C4 was associated with higher 

subcutaneous fat and paraspinal muscle PDFF but had no association with any other ectopic 

fat depot.  

BMI-C3 could represent an adiposity subtype associated with increased body size regardless 

of fat, as it was associated with higher measures of early life obesity, muscle index, kidney 
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volume, liver volume, but had no association with any ectopic fat measures. The favorable 

effect of BMI-C3 could be through increasing skeletal muscle mass, which has been associated 

with decreased type 2 diabetes risk potentially via increased insulin sensitivity, improved 

glucose metabolism or acting as a sink for glucose (46,47).

None of the favorable adiposity clusters were associated with pancreatic fat, though this is 

harder to measure accurately. This is consistent with result of the “twin-cycle” hypothesis, 

finding that liver fat is more likely to mediate glycemic control in type 2 diabetes than 

pancreatic fat (15,48).

Strengths and limitations

We leveraged a range of publicly available GWAS datasets to investigate the complexity 

between adiposity and type 2 diabetes risk. This research can be expanded as sample sizes and 

data accessibility improve. We also used gold standard measurements of MRI scans of sex-

specific fat and organ content within the UK Biobank to strengthen our analysis and consider 

sexual dimorphism in body fat distribution.

The GWAS datasets we chose were focused on European populations due to large sample size, 

potentially limiting the generalizability of our findings to people of other ethnicities and fat 

distributions (9). Nevertheless, we have shown that previously identified favorable and 

unfavorable adiposity clusters have a consistent effect across different ethnic groups (49). 

Second, the biological interpretation of our adiposity cluster variants will require further 

exploration, as most GWAS variants reside within non-coding regions and often exert their 

effects alongside correlated variants (50). Third, using genetic associations as a starting point 

may downplay the influence of environmental factors. This approach necessitates accurate 
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effect estimates, well-established genetic foundations for traits, and large sample sizes, hence 

why we selected the most current and expansive GWAS studies available. Fourth, in our 

clustering algorithm, we prioritized the minimization of false-positive findings. While this 

cautious approach bolsters reliability of our findings, it may leave certain associations 

unexplored if we overlooked variants that might belong to adiposity clusters. Finally, one key 

consideration is the strength and distinctiveness of the identified clusters. The interpretation of 

'distinct' clusters is contingent upon effect size ratios, and we recognize the need for a nuanced 

evaluation of their robustness. We acknowledge that the observed differences in associations 

with various traits among clusters may, in some instances, represent differences in magnitude 

rather than distinct mechanistic pathways. 

Conclusion

Using genetically predicted measures of adiposity and diverse traits, we found evidence for 

different underlying pathways and subtypes of higher adiposity with contrasting risks for type 

2 diabetes and related complications. These novel insights hold potential for advancing 

precision medicine strategies for type 2 diabetes and related conditions through targeted 

adiposity management.
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Table 1: All publicly available GWAS used. AA – African American, EAS – East Asian, 
EUR – European.

Trait/disease PubMed ID Sample size 
(case/control 
for disease if 
available)

Ethnicity First author, 
journal, 
publication year

Cytokines and 
growth factors 

27989323, 
33491305

8293 EUR Ahola-Olli, A.V. et 
al, AJHG, 2017; 
Kalaoja, M et al, 
Obesity, 2021

Metabolites 35692035 115078 EUR Borges, C, M. et al, 
BMC Medicine, 
2022. Accessed via 
IEU OpenGWAS 
ID: met-d-*

Childhood obesity 31504550 24160 EUR Bradfield, J.P. et al, 
Human Molecular 
Genetics, 2019

Childhood BMI 26604143 35668 EUR Felix, J, F, et al, 
Human Molecular 
Genetics, 2016

HbA1c 34059833 281416 EUR Chen, J. et al, 
Nature Genetics, 
2021

Adiponectin 22479202 45891 (AA n = 
4,232, EAS n = 
1,776, EUR n = 
29,347)

AA, EAS, 
EUR

Dastani, Z. et al, 
PLoS Genetics, 
2012

HOMA-B, HOMA-
IR

20081858 46186 EUR Dupuis, J. et al, 
Nature Genetics, 
2010

HDL, LDL and non-
HDL cholesterol, 
Total cholesterol, 
Triglycerides

34887591, 
36575460, 
35931049

1320000 EUR Graham, S.E. et al, 
Nature, 2021; 
Kanoni, S. et al, 
Genome Biology, 
2022; Ramdas, S. 
et al, AJHG, 2022

Leptin 26833098 32161 EUR Kilpeläinen, T.O. 
et al, Nature 
Communications, 
2016

Fasting glucose, 
Fasting insulin

33558525 140595, 98210 EUR Lagou, V. et al, 
Nature 
Communications, 
2021

Type 2 Diabetes 35551307 80154/853816 EUR Mahajan, A. et al, 
Nature Genetics, 
2022
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Liver enzymes (ALP, 
ALT, GGT)

33972514 437438, 437267, 
437194

EUR Pazoki, R. et al, 
Nature 
Communications, 
2021

Disposition index, 
corrected insulin 
response, insulin at 
30 mins, incremental 
insulin at 30 mins

24699409 5318 EUR Prokopenko, I. et 
al, PLoS Genetics, 
2014

Adult BMI, waist-to-
hip ratio (female), 
waist-to-hip ratio 
(male)

30239722 806834, 379501, 
315284

EUR Pulit, S.L. et al, 
Human Molecular 
Genetics, 2019

Fasting proinsulin 21873549 27079 EUR Strawbridge, R.J. et 
al, Diabetes, 2011

Insulin sensitivity 
index

27416945 16753 EUR Walford, G.A. et al, 
Diabetes, 2016

Birth weight 31043758 298142 EUR Warrington, N.M. 
et al, Nature 
Genetics, 2019

Adult height 36224396 4080687 EUR Yengo, L. et al, 
Nature, 2022

Body fat percentage NA 454633 EUR Elsworth, B. 2018. 
Accessed via IEU 
OpenGWAS ID: 
ukb-b-8909

C-Reactive protein 30388399 204402 EUR Ligthart, S, AJHG, 
2018. Accessed via 
IEU OpenGWAS 
ID: ieu-b-35

Whole body fat-free 
mass

NA 454850 EUR Elsworth, B. 2018. 
Accessed via IEU 
OpenGWAS ID: 
ukb-b-13354

Sex hormone-
binding globulin 
(female)

NA 214989 EUR Richmond, R. 
2020. Accessed via 
IEU OpenGWAS 
ID: ieu-b-4870

Sex hormone-
binding globulin 
(male)

NA 185221 EUR Richmond, R. 
2020. Accessed via 
IEU OpenGWAS 
ID: ieu-b-4871

FinnGen Data 
Freeze 8 disease 
outcomes

342499

Type 2 diabetes 49114/283207
Diabetic retinopathy 8942/283545
Diabetic nephropathy 3676/283456
Diabetic neuropathy

36653562

2444/249480

EUR Kurki, M.I. et al, 
medRxiv, 2022
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Hypertension 81138/243756
Polycystic ovary 
syndrome

1196/181796

Non−alcoholic fatty 
liver disease

1908/340591

Ischemic heart 
disease

56730/285769

Stroke 34560/249480
Atherosclerosis 
(excl. cerebral, 
coronary and PAD)

13434/317899

Heart failure 23622/317939
Atrial fibrillation 40594/168000
Chronic kidney 
disease

7916/330300

Venous 
thromboembolism

17048/325451

Deep vein 
thrombosis

8077/295014

Pulmonary embolism 8170/333487
Aortic aneurysm 7603/317899
Gout 7461/221323
Osteoarthritis (knee) 39343/221323
Osteoarthritis (hip) 17536/324963 
Osteoporosis 6303/325717
Rheumatoid arthritis 11178/221323
Gallstones 32894/301383
Gastro−esophageal 
reflux disease

22867/292256

Depression 38225/299886
Psoriasis 8075/330975
Asthma 37253/187112
Intrahepatic liver and 
bile duct cancer

648/259583

Colorectal cancer 5458/259583
FinnGen Data 
Freeze 7 disease 
outcomes
Peripheral artery 
disease

11924/288638
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Table 2: Favorable adiposity variants identified by MR-Clust due to having a decreasing 
effect on type 2 diabetes risk. Variants not previously identified as favorable adiposity in 
previous work (15) are considered novel (Y).

Chr:pos 
(b37)

rsid Adiposity-
increasing 
allele

Other 
allele

Cluster Novel? 
(Y/N)

Nearest 
gene

1:203527812 rs2802774 A C BFP_C4 N OPTC--[]--
ATP2B4

2:135597628 rs10496731 T G BFP_C4 Y ACMSD
3:123062657 rs9814758 T G BFP_C4 Y ADCY5
3:171833266 rs4894808 G C BFP_C4 Y FNDC3B
9:136929586 rs55924785 C T BFP_C4 Y BRD3
11:27487992 rs11030016 T C BFP_C4 Y LGR4
12:121709430 rs75412871 C T BFP_C4 Y CAMKK2
12:124409502 rs7133378 A G BFP_C4 N DNAH10
15:31689543 rs12441543 A G BFP_C4 N KLF13
18:2846812 rs11664106 T A BFP_C4 N SMCHD1--

[]--EMILIN2
19:34008600 rs33836 C T BFP_C4 Y PEPD
19:46182304 rs10423928 T A BFP_C4 Y GIPR
22:38599767 rs4820323 C G BFP_C4 Y MAFF/

PLA2G6
1:219744138 rs2785988 A C BFP_C5 Y []--

ZC3H11B
2:165528876 rs13389219 T C BFP_C5 N COBLL1
3:12393125 rs1801282 G C BFP_C5 Y PPARG
3:64718258 rs2371767 C G BFP_C5 Y ADAMTS9--

[]
4:89726283 rs2276936 A C BFP_C5 Y FAM13A
6:43757896 rs998584 C A BFP_C5 N VEGFA
6:127003464 rs853961 T G BFP_C5 Y CENPW--[]-

-RSPO3
7:130466854 rs972283 A G BFP_C5 N KLF14--[]--

MKLN1
7:150542711 rs6977416 G A BFP_C5 N AOC1
1:11284336 rs10779751 A G BMI_C3 Y MTOR
3:48085349 rs11919665 A T BMI_C3 Y MAP4
6:130384187 rs9375702 C T BMI_C3 Y L3MBTL3
7:93085722 rs2283006 A G BMI_C3 Y CALCR
12:122963550 rs12369179 C T BMI_C3 N ZCCHC8
14:91512339 rs1951455 C T BMI_C3 Y RPS6KA5
19:46180184 rs11672660 C T BMI_C3 Y GIPR
20:62691550 rs6512302 C G BMI_C3 Y TCEA2
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Figure legends

Figure 1. Scatter plots of the genetic associations with type 2 diabetes per additional adiposity-
increasing allele using (A) body fat percentage and (B) BMI. Each circle represents a genetic 
variant. Error bars represent 95% confidence intervals for the genetic associations. Colors 
represent the clusters and lines represent the estimated causal effect of each cluster on type 2 
diabetes through increasing adiposity. Only variants with a probability of >= 80% for belonging 
to one of the clusters are included in the plot and taken forward for further analysis. Variants 
with uncertain cluster membership are displayed as grey dots.

Figure 2. Genetic risk score effects on anthropometric and metabolic biomarkers. For easier 
comparison, the z-scores displayed are standardized for the number of variants per cluster. P 
values were corrected using the Benjamini-Hochberg procedure for each cluster. * indicates 
the result < the adjusted p value threshold 0.05

Figure 3. Genetic risk score effects on metabolites. For easier comparison, the z-scores 
displayed are standardized for the number of variants per cluster. P values were corrected using 
the Benjamini-Hochberg procedure for each cluster. * indicates the result < the adjusted p value 
threshold 0.05

Figure 4. Genetic risk score effects on inflammatory cytokines. For easier comparison, the z-
scores displayed are standardized for the number of variants per cluster. P values were 
corrected using the Benjamini-Hochberg procedure for each cluster. * indicates the result < the 
adjusted p value threshold 0.05

Figure 5. Genetic risk score effects on MRI-derived measures of fat distribution and body 
composition. For easier comparison, the z-scores displayed are standardized for the number of 
variants per cluster. P values were corrected using the Benjamini-Hochberg procedure for each 
cluster. * indicates the result < the adjusted p value threshold 0.05

Figure 6. The causal effects of higher adiposity through each cluster on risk of type 2 diabetes 
and its complications. For easier comparison, the z-scores displayed are standardized for the 
number of variants per cluster. P values were corrected using the Benjamini-Hochberg 
procedure for each cluster. * indicates the result < the adjusted p value threshold 0.05


