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Abstract 

This paper provides empirical evidence for the US and Canadian yield curves using a one- and 

two-factor Generalised Vasicek model, using a data set comprised of daily panel data over the 

period between 2003 and 2011, which includes the recent global financial crisis. The two-factor 

model is found to have a good fit for both the US and Canadian yield curves. We also compare 

the forecasting performance of the term structure model with those from ARIMA, ARFIMA 

and Nelson-Siegel models. We find that for Canada the Nelson-Siegel model dominates, while 

for the US the ARFIMA model has a satisfactory performance. 
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1. Introduction 

The modelling of the term structure of interest rates is of great importance given its use in the 

fixed income markets and other areas of finance. One important approach in terms of estimating 

term structure models uses panel data and Kalman filtering methods, where examples of this 

include Jegadeesh and Pennacchi (1996), Geyer and Pichler (1999), Duan and Simonato 

(1999), De Jong (2000), Chen and Scott (2003), Chatterjee (2004), Driessen, et al. (2005) and 

O’Sullivan (2007). A general multi-factor Gaussian term structure model was developed by 

Babbs and Nowman (1999) and is a subclass of the general model outlined by Langetieg 

(1980). Babbs and Nowman (1999) derived the general bond price and estimated their model 

using US data and the Kalman filter approach and found that the model provided a good 

description of the yield curve. In a more recent application, Nowman (2010) demonstrated that 

the model provided a good description of UK and Euro yield curves. 

In this paper, we apply the Generalised Vasicek (GVT) model to the Canadian and US 

markets over the period 2000-2011, which includes the recent global financial crisis period. 

We first carry out a principal component analysis of the data, and then estimate one- and two-

factor versions of the model. We find evidence that the two-factor model provides a good 

description of the Canadian and US yield curves. We also carry out a test of the forecasting 

performance of the one- and two-factor models and compare the forecast results with from the 

Nelson and Siegel (2007) three-factor model. The Nelson-Siegel (hereafter, NS) model 

decomposes the term structure of interest rates into three factors, namely the level, slope and 

curvature factors. The NS three-factor model is popular among practitioners as it uses a flexible 

and smooth parametric function to replicate the term structure at any given time (Svensson, 

1995; Bank for International Settlements, 2005; Gurkaynak, et al., 2007; Christensen, et al., 

2011; Sekkel, 2011). Empirically, Diebold and Li (2006), De Pooter (2007) and Yu and Zivot 
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(2011) all should that NS class models provide a good fit the real term structure in terms of 

both the in-sample and out-of-sample dynamics. 

We also compare the forecasting performance of the above models with that for the 

ARIMA (Box and Jenkins, 1976) and ARFIMA (Granger and Joyeux, 1980; Granger, 1980, 

1981; Hosking, 1981) models, which have been developed for and applied in forecasting time 

series. We find that for Canada, the NS models dominate, while in the case of the US the 

ARFIMA model has a satisfactory performance. 

The remainder of this paper is organised as follows: Section 2 presents the methodologies 

for the GVT, as well as the state space model and the Kalman filter, and finally the NS, ARIMA 

and ARFIMA models. Section 3 presents the data, Section 4 reports and discusses the empirical 

results, and Section 5 presents the forecast results. Concluding remarks are provided in Section 

6. 

2. Methodology 

2.1 The Generalised Vasicek Model 

Babbs and Nowman (1999) assume that the spot interest rate (r) is given by 

     
1




 
J

j

j

r t t X t         (1) 

where   is the long-run average rate and    1 , , jX t X t  represent the current effect of J 

streams of economic ‘news’. Babbs and Nowman (1999) interpreted the ‘news’ streams as 

rumours in the financial markets and short- and long-term economic ‘news’, both of which 

affect the yield curve. Examples of economic ‘news’ may include ‘rumours’ of interest rate 

decisions from the Federal Open Market Committee as well as monthly and quarterly economic 

statistics news. The arrival of each type of ‘news’ is modelled by the innovations of Brownian 
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motions, which may be correlated, while the impact of a piece of ‘news’ dies away 

exponentially as the time since it was received increases. In equation form this is expressed as 

  j j j j jdX X dt c dW           (2) 

where each  and j jc  are mean reversion and diffusion coefficients, and 1, , JW W  are 

standard Brownian motions with correlations : , 1, ,jk j k J  . Equation (2) can equivalently 

be expressed as 

   
1

     
Q

j j j jq q

q

dX X dt dZ Q J 


          (3) 

where 1, , QZ Z  are independent standard Brownian motions and: 

1

Q

jq kq jk j k

q

c c  


          (4) 

In the case where the long run level   , the mean-reversion speeds ( j ), the diffusion 

coefficients ( jq ) and the market price of risk processes ( q ) are all constant, the key pricing 

formula for a pure discount bond was derived by Babbs and Nowman (1999) and is given by 

           
1

, exp
J

j j

j

B M t R w H X t   


   
      

   
     (5) 

with 

   

2

1 1 1 1

1

2

Q QJ J
jq jq

q

q j q jj j

R
 

 
    

 
     

 
 

          (6) 

and 
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     (7) 

where 

  M t             (8) 

and 

   
1 xe

H x
x


           (9) 

In the special case of a one-factor model, the bond pricing formula above reduces to the well-

known model developed by Vasicek (1977). 

2.2 Estimation Method for the Generalised Vasicek Model 

We begin by presenting the state space model formulation of the term structure model and 

Kalman filter. The theoretical yield curve is given by 

       
'

0 1, log , tR t t B t t A A X                        (10) 

where      0A R w     and    1 jA H    is a 1J   vector (where the superscript 

denotes transpose. The scalar  0A   and the vector  1A   are functions of the time to maturity 

  and the parameters of the model. We have N  observed interest rates at time kt , for 

1, 2, ,k n , which are denoted as  1 , ,k k NkR R R , where  log ,ik k i k iR B t t    . 

We assume that measurement errors in the interest rates are additive and normally 

distributed. The measurement equation is the given by 

         ;  k k k k k kR d Z X R d Z X                       (11) 
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where   contains the unknown parameters of the mode including the parameters from the 

distribution of the measurement errors. The 'i th  row of the matrices  1d N   and  Z N J  

are given by  0 ;A    and  
'

1 ;A t  , respectively. The error terms  k  are measurement 

errors to allow for noise in the sampling process of the data. Following Babbs and Nowman 

(1999), the measurement errors variances are assumed to be 1, , NH h h  along the diagonal. 

The transition equation is the exact discrete-time distribution of the state variables 

    1k k kX X                     (12) 

where    1J k kt t
e


  

  . The error term k  is normally distributed with 0kE      and 

 kCov V     , where for a definition of V  see Bergstrom (1984, Theorem 3). The 

measurement and transition equations represent the state space formulation of our model. The 

Kalman filter algorithm and the exactly likelihood function are now presented.  

Let 1
ˆ

k kX   and ˆ
kX  denote the optimal estimator (in a mean square error sense) of the 

unknown state vector kX  based on the available information (i.e. the observed interest rates) 

up to time 1  and k kt t , respectively. The optimal estimator is the condition mean of kX  in both 

cases, denoted  1kE    and  kE  , respectively. The prediction step is given by 

   1 1 1
ˆ ˆ

k k k k kX E X X                      (13) 

with the mean square error (MSE) matrix 

    
'

'

1 1 1 1 1
ˆ ˆ

k k k k k k k k k kE X X X X V    

        
  

             (14) 

In the update step, the addition information given by kR  is used to obtain a more precise 

estimator of kX  
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    ' 1

1 1
ˆ ˆ

k k k k k k k k kX E X X Z F v

                   (15) 

and 

  
  

 

'
' 1

1 1 1

1
1 ' 1

1

ˆ ˆ

    

k k k k k k k k k k k k k

k k

E X X X X Z F Z

Z H Z



  


 



        
  

  

            (16) 

where 

   1
ˆ

k k k kv R d ZX                     (17) 

and 

  
1

'

k kkF Z Z H


                     (18) 

This new estimate of kX  is called the filtered estimate. The log-likelihood function is given 

by (apart from a constant) 

    ' 1

1

1 1

1 1
log , , ; log

2 2

n n

n k k k k

i k

L R R F v F v 

 

                  (19) 

where kv  and kF  are given by equations (17) and (18), respectively. We can also use the 

formulae for computing the inverse and determinant of kF  given by 

   
1

1 1 1 ' 1 ' 1

1k k kF H Z Z H Z Z H


    

    

and 

  1 ' 1

1 1k k k k kF H Z H Z 

        

2.3 The Nelson-Siegel Term Structure Model 

In the current study, we also investigate the goodness-of-fit of the NS three-factor model and 

its estimation method. The model, developed by Nelson and Siegel (1987), decomposes the 
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term structure of interest rates into three factors, namely the level, slope and curvature factors. 

The NS three-factor model is popular among both practitioners and policy-makers as it uses a 

flexible and smooth parametric function to replicate the term structure at any given time 

(Svensson, 1995; Bank for International Settlements, 2005; Gurkaynak, et al., 2007; 

Christensen, et al., 2011; Sekkel, 2011). Although the NS model may lack the solid theoretical 

foundation of the affine-class models, it provides an excellent fit to the term structure of interest 

rates.1 

Diebold and Li (2006), De Pooter (2007) and Yu and Zivot (2011) all show, empirically, 

that the NS-class models provide a good fit to the real term structure both in- and out-of-sample. 

Despite the desirable arbitrage-free property enjoyed by the affine-class models introduced by 

Vasicek (1977) and Cox, et al. (1985), Duffee (2002) argues that the affine models perform 

poorly when compared with real yield curve data. This being said, Coroneo, et al. (2011), using 

US Treasury yield curves, show that the NS model, in the case of the US market,  is compatible 

with the arbitrage-free constraints. In other words, even without the arbitrage-free setting built-

in, the NS-class models are capable of providing a yield curve estimation which is free from 

arbitrage.2 

The NS model is based on Laguerre functions, which consist of the product between 

polynomial and exponential decay terms. The basic three-factor NS model can be treated as 

the solution to a second-order differential equation with equal roots for spot rates. The spot rate 

curve can be illustrated as 

                                                 
1 The NS model has no restrictions to eliminate opportunities for riskless arbitrage. As the technical detail is 

beyond the scope of the current paper, we refer interested readers to studies by Filipovic (1999), Diebold, et al. 

(2005) and Christensen, et al. (2011), among others. Recently, Christensen, et al. (2011) proposed a new set of 

NS models with an additional ‘yield-adjustment’ term, which ensure the arbitrage-free property. 

2 Svensson (1995) proposes an extended four-factor model, based on the original NS three-factor model, by adding 

an additional curvature factor. In this study, we choose to use the NS three-factor model so as to avoid any potential 

difficulties in interpreting the two curvature factors. In addition, Diebold, et al. (2008) show that even adopting a 

NS model with only the level and slope factors would adequately explain the dynamics of the term structure of 

interest rates. 
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    1 2 3

1 exp 1 exp

exp
t t

t t t t

t

t t

y

 

  
   

 

 

      
                                              

      

         (20) 

where  ty   us the spot rate with a maturity of   at time t ; 1t , 2t  and 3t  are the three 

factor loadings estimated by the NS model at time t ; and, t  is the decay factor that optimises 

the model fitting at time t . 

There are three reasons for the NS-class models’ popularity. The first of these is that it 

provides a parsimonious approximation of the yield curve in that it uses only four parameters, 

detailed below, to estimate the shape of the yield curve. The three components 

          1, 1 exp , 1 exp expt t t t t                 
   

 provide the model with 

enough flexibility to capture a range of monotonic S-type shapes commonly observed in the 

yield curve data. The second reason is that the model enjoys the desirable property of starting 

off at an easily computed instantaneous short-rate value of 1 2t t     and levelling off at a 

finite infinite-maturity value of 1t   , which is constant, hence 

     1 2 1
0

lim   ;  limt t t t ty y
 

    
 

    

The final reason is that the three components provide a clear interpretation in terms of long-, 

short-, and medium-term components, which can also be identified as the level  1t , slope 

 2t  and curvature  3t  factor loadings, respectively.3 

The component attached to 1t  is assigned as the long-term component as it is constant 

and therefore the same for every maturity. The component attached to 2t  is assigned as the 

                                                 
3 See Diebold and Li (2006) for further discussion. 
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short-term component since it starts at 1 but then decays to 0 at ab exponential rate as the 

maturity increases. The component attached to 3t  is the medium-term component, which 

starts at 0, increases for medium-term maturities, and then decays to 0 thereafter, thereby 

creating a hump-shape. t  is the decay factor that determines the maturity at which the 

medium-term component reaches is peak. The average curve resulting from the three-factor NS 

model is upward sloping and concave, with long-term rates being more persistent than short-

term rates. Furthermore, the NS model indicates that the variance of the interest rate decreases 

as the maturity increases, which is also consistent with the main empirical findings. There are 

two different approaches that can be employed to estimate the NS model. The first is a simple 

OLS approach, while second is a non-linear least squares (NLS) approach. 

The OLS approach estimates the term structure of interest rates for any given t  while 

fixing the decay factor t  at a pre-specified figure, which at constant for every t . In this way, 

the non-linear exponential measurement equation reduces to a linear framework (Diebold and 

Li, 2006). Therefore, the NS model can be estimated using a standard cross-sectional OLS 

approach over the estimation period. The decay factor t  determines the maturity at which the 

curvature factor loading reaches its maximum point. When estimating the model, Diebold and 

Li (2006) use a pre-specified decay factor of 16.42t  , which means that the curvature factor 

loading reaches its peak at a 30-month maturity. It is worth highlighting that a smaller (larger) 

value for t  produces faster (slower) decaying factor loadings, hence the curvature factor will 

reach its maximum value at a shorter (longer) maturity. 

Moving on to the NLS approach, the fact that this approach estimates the decay 

parameters alongside the other factors makes the estimation procedure more challenging. This 

being said, it also increases the flexibility of the model, since the assumption of a constant 

decay parameter over time is eliminated. For this reason, we also use a NLS approach to 
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estimate the parameters for the NS model in this study. One should be aware, however, that the 

non-linear estimation procedure can occasionally produce extreme results (Gimeno and Nave, 

2006; Bolder and Streliski, 1999). The non-linear structure of the model seems to pose serious 

difficulties in terms of the optimisation procedure arriving at reasonable estimates. De Pooter 

(2007) showed that, when the decay parameters take on extreme values, the behaviour of the 

factor loadings will introduce multicollinearity problems; therefore, some of the factors are no 

longer uniquely identified. The demonstration of this extreme decay parameter problem is 

shown as 

  

1 1

0 0
1

1 1

1 1

0 0

1

1 exp 1 exp

lim 0  ;  lim exp 0

1 exp 1 exp

lim 1  ;  lim

t t

t

t t

t t

t

 

 

 

  

 

 

 

 





 

 

      
                    

                         
      

   
      

     
    

  

1

1

exp 1
t

t







 
                    

  

            (21) 

The above results imply that, for very small values of t , the slope and curvature factors will 

be near non-identifiable, which can results in extreme estimation results; while, for large values 

of t , the curvature factors are nearly non-identified. In addition, this means that the level and 

slope factors can only be estimated jointly and no longer individually. 

In this study, we use both the OLS and NLS approaches to estimate our NS model. For 

the NLS approach, we follow De Pooter (2007) in that we impose restrictions on the estimation 

of the decay parameters so as to prevent the aforementioned unfavourable extreme estimates. 

Given that the mature of the rates in our sample set spans a horizon extending from the 1-month 

to 30-year rates; we assume that the curvature factor loading will reach its peak during the 

period between the 1-month and around the 20-year horizon. For this reason, the decay 
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parameter for the NS three-factor model is restricted to lie within the  2,120  domain. For the 

OLS approach, we define the fixed decay factor as the average decay factor estimated using 

the NLS approach over the sample period.4 

2.4 The ARIMA and ARFIMA Models 

An additional dimension is added to the study through the estimation of standard discrete time 

models, namely the ARIMA and ARFIMA models. These standard models differ in terms of 

their underlying assumptions regarding the degree of stationarity of the underlying data series, 

where the ARIMA model assumes that the underlying data series used in the estimation are 

non-stationary, while the ARFIMA model assumes that these are fractionally integrated. 

We begin the discussion here with the  ARIMA , ,p d q  model (Box and Jenkins, 1976), 

which, as discussed above, assumes that the underlying data series follow an  I d  non-

stationary process. This model has p  autoregressive and q  moving average terms, where the 

autoregressive terms measure the impact of the lagged variable and the moving average terms 

measure the impact of the lagged error. The d  parameter measures the level of integration, i.e. 

the number of times that the underlying data series have to be differenced in order to make the 

process stationary, where 1d   and an integer. We therefore specify the ARIMA model as 

       1
d

t tL L y L      
 

                (22) 

where  L  and  L  denote the polynomials in the lag operator. Therefore, 

  2

1 21 p

pL L L L       , where p  denotes the number of autoregressive terms in the 

                                                 
4 For the OLS approach, the decay factor is fixed at 24.12 and 23.64 for the Canadian and US rates, respectively. 
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model;   2

1 21 q

qL L L L       , where q  denotes the number of moving average terms; 

 1
d d

tL y    is the thd difference of ty ; and t  denotes white noise. 

The alternative model, i.e. the  ARFIMA , ,p d q  model, was first introduced by Granger 

and Joyeux (1980), Granger (1980, 1981) and Hosking (1981). The assumption underlying this 

model is that, while the underlying data series follow a mean reverting process, the Wold 

decomposition of the autocorrelation coefficients for this process will exhibit a very slow 

hyperbolic rate of decay, where, the higher the value of the d  component, the slower the rate 

of decay. As was the case of the ARIMA model, this model has p  autoregressive and q  

moving average terms as well as a d  component, which again measures the order of 

integration, however, in this case 0 1d  . The ARFIMA model parameterises the conditional 

mean of the series generating process as an  ARFIMA , ,p d q  process, which is specified as 

        1
d

t tL L y L                      (23) 

where  L  and  L  denote the polynomials in the lag operator, as described for equation 

(22), above, where all the roots of  L  and  L  lie outside the unit root circle; p  and q  

denote the number of autoregressive and moving average terms, respectively; d  denotes the 

fractional differencing parameter; and t  denotes white noise. This model is estimated using 

the Maximum Likelihood Estimation (MLE) method outlined in Sowell (1992), hence the 

proposed likelihood function is 

    ' 11 1
log log 2 log

2 2 2

T
L Y Y                      (24) 

where   i jij



  , where   denotes the autocovariances of the ARFIMA process, and Y  

denotes a -dimensionalT  vector of the observations on the process ty . It is worth highlighting 
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again that the Wold decomposition and the autocorrelation coefficients for this process will 

exhibit a very slow rate of decay, where the higher (lower) the value of d , the slower (faster) 

the decay. Furthermore, in the case of the first-difference of the series, where 0.5 0.5d   , 

the process is covariance stationary, while, should 0.5 1d  , the process would be 

fractionally integrated. This being said, as long as 1d  , the process will exhibit mean-

reversion. 

The ARFIMA model is included in the analysis as Shea (1991) appeared to provide 

evidence of long memory in interest rate spreads and some interest rates. Furthermore, although 

Backus and Zin (1993) noted that estimation of various ARFIMA models for bond series was 

relatively inconclusive, Crato and Rothman (1994) concluded that when the full MLE method 

was used to estimate an  ARFIMA 0, ,1d  model of annual bond yields, the estimated d  

component, i.e. 0.81d  , was found to be significantly different from 1d  , which would be 

the assumption under the ARIMA model. This paper therefore adds another dimension to the 

debate as to the existence of long memory in interest rates. 

3. Data 

The dataset used in the empirical work consists of daily zero yields for Canada and the US, 

obtained from Datastrean. In particular, the 1-month and 1, 5, 7, 10, 15, 20 and 30-year 

maturities are used. The interest rates are sampled from January 2003 until December 2011, 

with data also being collected for January 2012, which is used for out-of-sample forecasts. 

There is a total of 2,348 observation dates, where at each date there are N  interest rates 

 8N  . Table 1 reports the summary statistics for the Canadian and US rates, while Figures 

1 to 4 display the term structure evolutions over the period. In particular, the means of the 

Canadian rates range from 2.5410%, for the 1-month rate, to 4.9474%, for the 20-year rate, 

while the standard deviations range from 1.4987%, for the   1-year rate, 0.6905%, for the 15-
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year rate. In the case of the US rates, the means range from 2.2825%, for the 1-month rate, to 

4.9459%, for the 30-year rate, with the standard deviations ranging from 2.0083%, in the case 

of the 1-month rate, to 0.8593%, for the 30-year rate. Finally, the results from the Augmented 

Dickey-Fuller tests (Dickey and Fuller, 1981) indicate that the Canadian and US rates are first-

difference stationary across all maturities. 

[Insert Table 1 about here] 

[Insert Figures 1 to 4 about here] 

Having outlined the initial characteristics of the data, we perform a principal components 

analysis (PCA) on the sample covariance matrix of the rates to identify the factors that explain 

the majority of the variation in each dataset. This should provide insight into the number of 

factors to use in a full-blow estimation of an interest rate model (e.g. Egorov, et al., 2011). 

PCA transforms the original dataset into variables that maximise the explained variance of the 

group where each variable is orthogonal to one another. Since the variables are orthogonal, 

each factor is uniquely determined, up to a sign change. 

PCA starts from the assumption that the covariance matrix for the data    can be 

decomposed to T , where   is a N N  orthogonal matrix containing factor loadings and 

  is a N N  diagonal matrix containing N  eigenvalues, with N  being the number of interest 

rates. Denoting our original dataset as X , each subsequent variable is defined to be T X . As 

the variance of each factor is given by its corresponding eigenvalue, each variable is ordered 

based on the relative size of its eigenvalue (see Flury (1988) for more details).5 The variable 

with the largest eigenvalue is the first principal component, while the variable with the second 

                                                 
5 To see this, we denote each variable as M . Since 

TM X  ,        T Tvar var var var .M M X X       

Since  var X   ,  T Tvar X       owing to the orthogonality of the   matrix. Here,   us a N N  

matrix containing the eigenvalues of the sample covariance matrix of the group.  
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largest eigenvalues is the second principal component, and so on. As they are mathematical 

constructs, principal component factors are latent or unobservable in nature. The simplest way 

to interpret factors is to examine the effects of a shock to each factor on each yield. To 

accomplish this task, we plot the factor loading coefficients and provide a description of their 

shape. 

The factor loadings of the first three factors for the Canadian and US rates, respectively, 

which were estimated using PCA, are presented in Table 2. We also plot the coefficients for 

the first three factors in Figures 5 and 6 for the Canadian and US rates, respectively. It is worth 

noting the factor loadings also correspond to the coefficients on an ordinary least squares (OLS) 

regression of the zero coupon yields on the factors. Each principal component coefficient 

measures the relative change in the rates given a shock to the corresponding factor. 

[Insert Table 2 about here] 

[Insert Figures 5 and 6 about here] 

The patterns of the factor loadings for the first principal component indicate that a shock 

to the first factor moves all rates corresponding to each maturity in the same direction.6 These 

patterns hold for both the Canadian and US rates. For the rates in both countries, a shock to the 

second factor moves rates corresponding to short-term maturities (i.e. 1-month and 1-year) in 

the opposite direction to the rates corresponding to the remaining maturities. Finally, although 

it only explains 0.1% of the total variation in each group, we examine the third factor since it 

has a clear interpretation in that, for both the Canadian and US rates, the third factor is a 

curvature factor. In the case of the Canadian rates, the third factor shifts the   1-month, 1-year, 

15-year, 20-year and 30-year yields in the opposite direction to the 5-year, 7-year and 10-year 

                                                 
6 As each is uniquely determined up to a sign change, we can only conclude that a shock to the first factor moves 

all yields up or down. Similar conclusions are made for the second and third factors. 
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yields; while for the US rates, it shifts the 1-month, 15-year, 20-year and 30-year yields in the 

opposite direction to the 1-year, 5-year, 7-year and 10-year yields. 

For our sample of Canadian yields, the first two factors explain 98.54% of the cumulative 

variation in the sample of yields, with the first factor explaining about 82.59% and the second 

factor explaining about 15.95% of the variation in the sample. For the sample of US yields, the 

first two factors explain approximately 98.73% of the variation in the sample of yields, with 

the first factor explaining about 86.50% and the second factor explaining about 12.23% of the 

variation in the sample. For each country, the remaining six factors would be regarded as noise. 

This highlights that PCA is a powerful to that enables us to summarise the data while at the 

same time minimising the number of factors or variables. 

4. Empirical Results 

4.1 The Generalised Vasicek Model 

We now discuss the empirical results of the one- and two-factor models, presented in Tables 3 

and 4 for the Canadian and US rates, respectively. These tables therefore contain the parameter 

estimates of , , , ,j j qc    , the estimated standard deviations of the measurement errors 

 1 , , Nh h  as well as the respective log-likelihood and Bayesian Information Criterion 

(BIC) (Schwarz, 1978). 

[Insert Table 3 about here] 

Beginning with the results for the one-factor model of the Canadian rates, the mean 

reversion  1  and the diffusion  1c  parameters are significant, while the long-run average 

rate    and the market price of risk  1  parameters are insignificant. The estimated standard 

deviations of the measurement errors are significant and, when compared, are larger for the 

one-factor model than in the case of the two-factor model. In particular, in the case of the one-
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factor model, these standard deviations are 74 basis points (bps) for the one-month rate, less 

than 1 bps for the 1-year rate, 59 bps for the 5-year rate, 63 bps for the 7-year rate, 61 bps for 

the 10-year rate, 63 bps for the 15-year rate, 69 bps for the 20-year rate, and 74 bps for the 30-

year rate. 

In the two-factor model, the mean reversion and the diffusion parameters as well as the 

measurement errors are significant. The long-run average rate is plausible within the data range, 

and the market price of risk is both positive and significant. The standard deviations of the 

measurement errors in the two-factor model are generally very small. In particular, these 

standard deviations are 46 bps for the 1-month rate, less than 1 bps for the 1-year rate, 13 bps 

for the 5-year rate, less than 1 bps for the 7- and 10-year rates, 31 bps for the 15-year rate, 30 

bps for the 20-year rate, and 31 bps for the 30-year rate. 

The correlation coefficient  12  in the two-factor model is -79% and significant. The 

log-likelihood values for the one- and two-factor models are 45,549 and 50,160, respectively. 

Based on the BIC, we find that moving from the one-factor to the two-factor model improves 

the BIC by 10%. The likelihood ratio test of the one- vs. two-factor models gives a value of 

9,222, hence on can reject the null hypothesis of one-factor model at the 5% level of 

significance. The mean reversion parameters imply the mean half-lives of the interest rate 

process, i.e. the expected time for the process to return half-way to its long-term mean, defined 

as  ln 0.5 j . For the Canadian rates, for the one-factor model the mean half-life is 1.4 

years, while the mean half-lives for the two-factor model are 1.4 years for the first factor and 

7.1 years for the second factor. 

[Insert Table 4 about here] 

Turning to the results for the one-factor model of the US rates, the mean reversion and 

market price risk parameters are significant. The long-run average rate is also significant and 
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within the average level. The estimated standard deviations of the measurement errors are 

significant and are larger for most of the rates for the one-factor than when compared to the 

two-factor model. In particular, in the one-factor model, these standard deviations are 47 bps 

for the 1-month rate, less than 1 bps for the 1-year rate, 48 bps for the 5-year rate, 53 bps for 

the 7-year rate, 57 bps for the 10-year rate, 65 bps for the 15-year rate, 72 bps for the 20-year 

rate, and 75 bps for the 30-year rate. 

In the two-factor model, the mean reversion parameter, first diffusion parameter and the 

measurement errors are significant; and the long-run average is plausible within the data range. 

The market price of risk parameters are both positive and the first one is significant. The 

standard deviations of the measurement errors for the two-factor model are generally very 

small. In particular, these standard deviations are 46 bps for the 1-month rate, less than 1 bps 

for the 1-year rate, 23 bps for the 5-year rate, less than 1 bps for the 7- and 10-year rates, 31 

bps for the 15-year rate, 40 bps for the 20-year rate, and 70 bps for the 30-year rate. 

The correlation coefficient in the two-factor model is -80% and significant. The log-

likelihood values for the one- and two-factor models are 46,615 and 54,584, respectively. 

Based on the BIC, we find that moving from the one-factor to the two-factor model improves 

the BIC by 17%. The likelihood ratio test of the one- vs. two-factor models gives a value of 

15,938, hence on can reject the null hypothesis of one-factor model at the 5% level of 

significance. The mean reversion parameters imply that, for the US rates, for the one-factor 

model the mean half-life is 2.7 years, while the mean half-lives for the two-factor model are 

1.4 years for the first factor and 7.1 years for the second factor. 

We also look at the factor loadings for the two-factor model as a function of maturity, 

which should help determine the nature of the factors calculated by the Kalman filter. This is 

supported by Litterman and Scheinkman (1991) who, using PCA, investigated a number of US 
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yields and identified three factors, which they interpreted as changes in level, steepness and 

curvature. 

[Insert Figures 7 and 8 about here] 

With this in mind, Figures 7 and 8 plot the Canadian and US factor loadings for the two-

factor model, as a function of maturity, respectively. These indicate that, in the case of the two-

factor model, the first factor’s impact on changes in the yield, where Litterman and Scheinkman 

(1991) identified this as a level factor, for both the Canadian and US rates, has an increasing 

and positive effect on maturity of up to 8 years, beyond which it has an equal impact on the 

remaining maturities. Moving on, the figures indicate that the second factor, which Litterman 

and Scheinkman (1991) identified as a steepness factor, has a strong influence, for both the 

Canadian and US rates, on short-term rates of up to 10 years, where it lowers them, following 

which it then raises yields on longer-term maturities. 

It is worth noting that, whereas the Litterman and Scheinkman (1991) approach is 

completely data-driven, the state-space approach imposes restrictions on the extracted factors 

that come from a formal term structure model used in pricing bonds. Further examples of using 

this approach of comparing the factors from the seminar Cox, Ingersoll and Ross model (Cox, 

et al., 1985) using the state-space approach are given in Geyer and Pichler (1999) and Chen 

and Scott (2003). 

 

4.2 The ARIMA and ARFIMA Models 

Having completed the analysis of the results of the GVT model, we now examine those for the 

discrete time models. Given the fact that the unit root tests presented in Table 1 indicated that 

both the Canadian and US rates were non-stationary,  ARIMA 0,1,1  through  ARIMA 3,1,3  
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models were estimated, where the best specification was selected on the basis of the log-

likelihood, Akaike Information Criterion (AIC) (Akaike, 1974) and BIC.  

The results of the best model specifications for the Canadian rates are presented in Panel 

A of Table 5. The results here are somewhat mixed in that no specification for the 7-year rate 

was found to be significant, while the Canadian 1-month, 1-year, 5-year and 10-year rates were 

best specified as  ARIMA 2,1,0 ,  ARIMA 2,1,2 ,  ARIMA 1,1,1  and  ARIMA 0,1,1  

processes, respectively. The results at the long-end of the curve are more consistent in that the 

Canadian 15-year, 20-year and 30-year rates are best specified as  ARIMA 1,1,0  processes. 

We therefore conclude that, while past rates are found to have a significant impact on current 

rates across the yield curve, with the exception of the 10-year rate, the impact of past shocks is 

found to vary at the short- and medium-ends of the curve, while at the long-end of the curve 

they do not appear to have any real impact. 

[Insert Table 5 about here] 

Changing focus to the results for the US rates, presented in Panel B of Table 5, these are 

somewhat more uniform in that only the ARIMA specifications at the very short-end of the 

curve, i.e. for the 1-month and 1-year rates, are found to be significant. As was the case for the 

Canadian rates, past rates are found to have a significant impact on current rates for the 1-

month and 1-year rates, although past shocks are only found to have an impact on the prevailing 

1-month rate. 

As stated previously, the underlying assumption of the ARIMA model is that the 

underlying data series follows a non-stationary process. Given the discussion in the extant 

literature, and as stated previously, an interesting approach would be to extend this debate by 

arguing that US and Canadian rates are fractionally integrated, hence shocks to these would 

not persist indefinitely, as would be the case under the assumption of non-stationarity, but 
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would instead decay hyperbolically, thereby indicating that these rates are mean-reverting, 

however, there would be a delay in the mean-reversion process. In order to investigate this 

alternate hypothesis,  ARFIMA 0, ,1d  through  ARFIMA 3, ,3d  models are estimated across 

both sets of rates, where, as was the case for the ARIMA models, the best model is then selected 

on the basis of the log-likelihood, AIC and BIC measures. 

Examining the results of these models of the Canadian rates, present in Panel A of Table 

6, no ARFIMA specification is found to be significant for any of the 1-year, 7-year and 10-

year rates. As above, results for the long-end of the curve indicate that rates in the previous 

period have a significant impact on the current prevailing rates, while past shocks are found to 

have no significant effect. At the shorter-end of the curve, both past rates and past shocks are 

found to have a significant impact on the current rates. 

[Insert Table 6 about here] 

If one looks at the results for the US rates, presented in Panel B of Table 6, the results 

are almost uniform in that, with the exception of the 1-month rate, the best model specification 

is found to be an  ARFIMA 1, ,0d . Interestingly, past shocks are found to have no significant 

impact on current rates, regardless of the time horizon examined. We therefore conclude that 

this may be an indication that including the fractional component in the process may enable us 

to capture more of the dynamics of the data. 

 

5. Forecast Results 

Having estimated these models, ex-post dynamic forecasts were performed for each of these 

models using the rates during January 2012, which corresponds to a period of 22 days. These 

forecasts were then compared using the Root Mean Squared-Error (RMSE) forecast metric, 

which is calculated as 
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where a

ir  denotes the actual observed value at time i , f

ir  denotes the forecasted value at time 

i , and FH  denotes the forecast horizon. 

Beginning with the forecast metrics for the forecasts of the Canadian rates, presented in 

Panel A of Table 7. At the short-end of the curve, the NS model is found to perform best in 

terms of forecasting the 1-month rate, followed by the two-factor GVT model; while, in the 

case of the 1-year rate, the two-factor GVT model is found to perform best, followed by the 

NS model. For the medium-term of the curve, the NS model is found to perform best for both 

the 5-year and 7-year rates, again followed by the two-factor GVT model. Finally, for the 

longer-end of the curve, although the two-factor model outperforms the NS model in terms of 

forecasting the 15-year rate, the NS model outperforms all other models for the 20-year and 

30-year rates. Overall, however, the NS model is found to outperform the other models in terms 

of forecasting the yield curve. 

[Insert Table 7 about here] 

Moving onto the forecast metrics for the forecasts of the US rates, presented in Panel B 

of Table 7, at the short-end of the curve, the ARIMA model is found to perform best, followed 

by the ARFIMA model, in terms of forecasting the 1-month rate, while in the case of the 1-

year rate, the ARIMA and ARFIMA models are joint best. Across all other horizons, however, 

the ARFIMA model uniformly outperforms the other models. In terms of the remaining 

models, the NS model is found to outperform the one-and two-factor GVT model in terms of 

forecasting the 1-month, 7-year, 10-year, 15-year, 20-year and 30-year rates, while the two-

factor GVT model outperforms the NS model for the 1-year and 5-year rates. We can therefore 
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conclude that introducing a fractional component, at least in terms of the US rates, definitely 

allows us to better capture the overall dynamics of the yield curve. 

6. Conclusions 

In this paper, we have compared empirical evidence for the Canadian and US yield curves 

using a one- and two-factor GVT yield curve model, using daily panel data, which were then 

compared to the NS and standard discrete time (ARIMA and ARFIMA) models. We then 

compared the forecasting performance of these models so as to determine which best fits the 

dynamics of the respective yield curves. 

The choice of model comparison was justified by the argument that, although the NS 

model may lack the theoretical foundation of the affine-class models, introduced by Vasicek 

(1977) and Cox, et al. (1985), Duffee (2002) argues that the affine models perform poorly when 

compared with real yield curve data, whereas the NS provides an excellent fit to the term 

structure of interest rates. The inclusion of the ARIMA and ARFIMA models was justified by 

the fact that, although Backus and Zin (1993) did not found any conclusive evidence of interest 

rates following a fractionally integrated process, this argument was counteracted by Shea 

(1991) and Crato and Rothman (1994). We therefore felt that it would be interesting to examine 

whether the Canadian and US rates are fractionally integrated, whereby shocks to these would 

not persist indefinitely, as would be the case under the assumption of non-stationarity inherent 

in the ARIMA model and as suggested by the unit root tests performed, but would instead 

decay hyperbolically, thereby indicating that the rates are mean-reverting, however there would 

be a delay in the mean-reversion process. 

Our in-sample results suggest that, out of the two forms of GVT models; the two-factor 

model has a good fit for both the Canadian and US yield curves. The in-sample results for the 

discrete-time models, suggest that the US rates could not be estimated using the standard 
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ARIMA approach, but could using the ARFIMA approach, thereby lending support to the 

argument of fractional integration, at least for these rates. In terms of the ex-post forecasts, we 

find that, overall, the NS model is found to outperform the other models in terms of forecasting 

the Canadian yield curve. This being said, when examining the forecasts of the US rates, we 

found that the ARFIMA model generally outperformed the other models, where the NS model 

was generally found again to outperform the GVT models. 

Given that the yield curve provides crucial information for both policymakers and other 

players in the fixed-income instrument markets, in terms of providing a preliminary indication 

of the future direction of interest rates and yields, we can draw two important conclusions. The 

first of these is that NS-class models do indeed outperform the affine-class models when 

compared with real data, which, together with the fact that these have the advantage of being 

parsimonious in terms of its parameterisation, the fact that it is comparatively easy to compute, 

and that is has a clear interpretation, may lend support to the further use of these models. The 

second conclusion is that further investigation is needed to definitively conclude whether 

interest rates follow a fractionally integrated process. 
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Table 1: Summary Statistics for the Canadian and US Rates (2003 to 2011) 

Panel A - Levels of the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 Mean 2.5410 2.6261 3.6071 3.9319 4.3193 4.7760 4.9474 4.8465 

Standard Deviation 1.4605 1.4987 0.9772 0.9106 0.8098 0.6905 0.6916 0.7991 

Augmented Dickey-Fuller Test -0.9525 -1.1378 -2.0408 -2.1984 -2.5114 -2.8606 -2.7197 -2.8780 

 (0.9484) (0.9211) (0.5780) (0.4897) (0.3225) (0.1758) (0.2286) (0.1699) 

Panel B - First-Differences of the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 Mean -0.0007 -0.0010 -0.0012 -0.0012 -0.0012 -0.0012 -0.0013 -0.0015 

Standard Deviation 0.0257 0.0351 0.0562 0.0526 0.0507 0.0500 0.0482 0.0478 

Augmented Dickey-Fuller Test -23.2209 -24.4489 -48.2241 -47.1650 -46.9510 -46.3894 -46.1243 -50.2181 

 (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Panel A - Levels of the US Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 Mean 2.2825 2.5168 3.6307 4.0074 4.3754 4.7431 4.8939 4.9459 

Standard Deviation 2.0083 1.8549 1.2321 1.0594 0.9334 0.8678 0.8789 0.8593 

Augmented Dickey-Fuller Test -1.3708 -1.2568 -1.9531 -2.1679 -2.4421 -2.6475 -2.6490 -2.7054 

 (0.8693) (0.8975) (0.6260) (0.5068) (0.3575) (0.2591) (0.2584) (0.2344) 

Panel B - First-Differences of the US Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 Mean -0.0005 -0.0003 -0.0009 -0.0009 -0.0010 -0.0011 -0.0012 -0.0012 

Standard Deviation 0.0709 0.0424 0.0705 0.0700 0.0699 0.0675 0.0661 0.0673 

Augmented Dickey-Fuller Test -11.0939 -44.7287 -48.5677 -48.1719 -48.1902 -48.3365 -48.3350 -49.6208 

  (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

Note:  Figures in parentheses denote the p-values for the Augmented Dickey-Fuller test (Dickey and Fuller, 1981), which tests 0 : 1H    vs. : 1AH   . 
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Table 2: Factor Loadings for the Canadian and US Rates (2003 to 2011) 

Panel A - Factor Loadings for the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

Factor 1 0.4989 0.5307 0.3621 0.3303 0.2812 0.2171 0.2053 0.2466 

Factor 2 -0.4953 -0.4062 0.1389 0.2290 0.2951 0.3503 0.3845 0.4004 

Factor 3 0.0235 0.3145 -0.5871 -0.4056 -0.1611 0.1166 0.3020 0.5105 

Panel B - Factor Loadings for the US Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

Factor 1 0.5586 0.5237 0.3585 0.3034 0.2561 0.2170 0.2058 0.1952 

Factor 2 -0.4586 -0.3578 0.1282 0.2128 0.2929 0.3807 0.4300 0.4336 

Factor 3 0.6068 -0.3770 -0.4759 -0.2908 -0.0821 0.1250 0.2500 0.3062 
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Table 3: Estimates for the GVT Models of the Canadian Rates (2003 to 2011) 

Panel A - Model Parameters 

  One-Factor Two-Factor 

1  
0.4947 0.4947 

(0.1514) (0.0124) 

2 
 0.0973 

 (0.0484) 

1c  
0.0158 0.0157 

(0.0053) (0.0037) 

2c  
 0.0170 

 (0.0090) 

12  
 -0.7976 

 (0.0119) 

  0.0435 0.0435 

(0.0307) (0.0130) 

1  
0.2163 0.2163 

(1.0227) (0.0031) 

2  
 0.3504 

 (0.0085) 

Panel B - Standard Deviations of Measurement Errors 

  One-Factor Two-Factor 

1h  
0.0074 0.0046 

(0.0015) (0.0002) 

2h  
0.0000 0.0000 

(<0.0001) (<0.0001) 

3h  
0.0059 0.0013 

(0.0006) (0.0003) 

4h  
0.0063 0.0006 

(0.0005) (0.0002) 

5h  
0.0061 0.0004 

(0.0002) (<0.0001) 

6h  
0.0063 0.0031 

(0.0001) (0.0017) 

7h  
0.0069 0.0030 

(0.0002) (0.0014) 

8h  
0.0074 0.0030 

(0.0002) (0.0014) 

Panel C - Information Criteria 

  One-Factor Two-Factor 

log-likelihood 45,549 50,160 

BIC -91,004   

Note: Figures in parentheses are the standard errors of the coefficient estimate above. 
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Table 4: Estimates for the GVT Models of the US Rates (2003 to 2011) 

Panel A - Model Parameters 

  One-Factor Two-Factor 

1  
0.2536 0.4901 

(0.0222) (0.0429) 

2 
 0.0974 

 (0.0129) 

1c  
0.0078 0.0220 

(1.6449) (0.0085) 

2c  
 0.0196 

 (0.0135) 

12  
 -0.7976 

 (0.0788) 

  0.0471 0.0488 

(0.0109) (0.0458) 

1  
0.2956 0.1734 

(0.0768) (0.0018) 

2  
 0.3504 

 (0.2927) 

Panel B - Standard Deviations of Measurement Errors 

  One-Factor Two-Factor 

1h  
0.0047 0.0046 

(0.0024) (0.0002) 

2h  
0.0000 0.0000 

(<0.0001) (<0.0001) 

3h  
0.0048 0.0023 

(0.0022) (0.0003) 

4h  
0.0053 0.0006 

(0.0016) (0.0001) 

5h  
0.0056 0.0004 

(0.0015) (0.0001) 

6h  
0.0065 0.0031 

(0.0010) (0.0006) 

7h  
0.0072 0.0040 

(0.0009) (0.0013) 

8h  
0.0075 0.0070 

(0.0012) (0.0002) 

Panel C - Information Criteria 

  One-Factor Two-Factor 

log-likelihood 46,615 54,584 

BIC -93,137 -109,169 

Note: Figures in parentheses are the standard errors of the coefficient estimate above. 



Page 34 of 44 

 

Table 5: Estimates for the ARIMA Models of the Canadian and US Rates (2003 to 2011) 

Panel A - ARIMA Model Results for the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 
-0.0007 -0.0012 -0.0012 -0.0013 -0.0012 -0.0013 -0.0013 -0.0015 

(0.0007) (0.0015) (0.0012) (0.0011) (0.0011) (0.0011) (0.0010) (0.0010) 

1  0.0888 0.5549 -0.4212 -0.1431  0.0444 0.0498 -0.0361 

(0.0205) (0.1353) (0.2176) (0.4528)  (0.0206) (0.0206) (0.0206) 

2  0.1202 0.4149  0.1514     

(0.0205) (0.1285)  (0.2466)     

1   -0.4932 0.4496 0.1739 0.0359    

 (0.1343) (0.2147) (0.4502) (0.0206)    

2   -0.4427  -0.1865     

 (0.1230)  (0.2505)     

log-likelihood 5,291 4,552 3,428 3,586 3,671 3,708 3,792 3,808 

AIC -7.3488 -6.7184 -5.7589 -5.8946 -5.9655 -5.9978 -6.0699 -6.0833 

BIC -7.3388 -6.7018 -5.7489 -5.8780 -5.9589 -5.9912 -6.0633 -6.0767 

Panel B - ARIMA Model Results for the US Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 
-0.0005 -0.0004 -0.0010 -0.0011 -0.0012 -0.0013 -0.0014 -0.0013 

(0.0016) (0.0009) (0.0014) (0.0014) (0.0014) (0.0014) (0.0013) (0.0013) 

1  -0.5235 0.0821 -0.7216 -0.7487 -0.7591 -0.7638 0.0412 0.2601 

(0.0872) (0.0206) (0.1578) (0.1600) (0.1562) (0.1610) (0.3756) (0.5229) 

2  0.0749  0.1106 0.0825 0.1009 0.0689 0.1168 0.1201 

(0.0287)  (0.1270) (0.1273) (0.1280) (0.1301) (0.2099) (0.2821) 

3  -0.1505  0.7225 0.7587 0.7686 0.7678 -0.0367 -0.2852 

(0.0205)  (0.1578) (0.1605) (0.1566) (0.1617) (0.3728) (0.5207) 

1  0.7503  -0.1566 -0.1167 -0.1340 -0.0990 -0.1695 -0.1547 

(0.0868)  (0.1323) (0.1328) (0.1341) (0.1333) (0.2089) (0.2923) 

log-likelihood 2,952 4,098 2,908 2,922 2,925 3,004 3,051 3,007 

AIC -5.3545 -6.3305 -5.3157 -5.3275 -5.3301 -5.3978 -5.4383 -5.4004 

BIC -5.3379 -6.3239 -5.2992 -5.3109 -5.3135 -5.3813 -5.4217 -5.3839 

Note: Figures in parentheses are the standard errors of the coefficient estimate above. 
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Table 6: Estimates for the ARFIMA Models of the Canadian and US Rates (2003 to 2011) 

Panel A - ARIMA Model Results for the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 
-0.0004 -0.0005 -0.0008 -0.0009 -0.0009 -0.0009 -0.0009 -0.0013 

(0.0013) (0.0008) (0.0012) (0.0011) (0.0010) (0.0011) (0.0010) (0.0010) 

d  
1.0783 1.0417 1.0086 1.0152 1.0081 1.0093 1.0114 0.9852 

(0.0310) (0.0000) (0.0160) (0.0000) (0.0000) (0.0480) (0.0490) (0.0500) 

1  0.9514 0.7524 -0.4010 -0.2924 0.3184 0.0357 0.0391 0.0196 

(0.0235) (0.1484) (0.2363) (0.3599) (0.3567) (0.0206) (0.0206) (0.0074) 

2  0.0372 0.0205  -0.0433 -0.0539    

(0.0212) (0.0230)  (0.0232) (0.0209)    

1  -0.9714 -0.7349 0.4224 0.3068 -0.2945    

(0.0113) (0.1481) (0.2342) (0.3602) (0.3571)    

log-likelihood 5,317 4,548 3,427 3,586 3,675 3,707 3,791 3,807 

AIC -7.3711 -6.7152 -5.7584 -5.8949 -5.9704 -5.9973 -6.0692 -6.0816 

BIC -7.3578 -6.7020 -5.7485 -5.8816 -5.9572 -5.9907 -6.0626 -6.0749 

Panel B - ARIMA Model Results for the US Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

 
-0.0002 -0.0003 -0.0008 -0.0009 -0.0010 -0.0011 -0.0012 -0.0011 

(0.0012) (0.0009) (0.0015) (0.0015) (0.0015) (0.0015) (0.0014) (0.0014) 

d  
1.1130 1.0179 0.9785 0.9840 0.9854 0.9870 0.9886 0.9825 

(0.0540) (0.0330) (0.0420) (0.0150) (0.0440) (0.0450) (0.0460) (0.0160) 

1  0.0979 0.0627 0.0618 0.0593 0.0528 0.0497 0.0469 0.0398 

(0.0205) (0.0206) (0.0149) (0.0136) (0.0124) (0.0110) (0.0104) (0.0104) 

2  -0.1374        

(0.0204)        

3  -0.1162        

(0.0205)        

log-likelihood 2,959 4,099 2,900 2,916 2,920 3,002 3,051 3,005 

AIC -5.3610 -6.3317 -5.3084 -5.3222 -5.3250 -5.3952 -5.4366 -5.3977 

BIC -5.3478 -6.3251 -5.3018 -5.3156 -5.3184 -5.3885 -5.4300 -5.3911 

Note: Figures in parentheses are the standard errors of the coefficient estimate above. 
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Table 7: Forecast Comparison for the Canadian and US Rates Using the Root Mean Squared-Error Metric 

Panel A - Forecast Metric for the Canadian Rates 

  1-Month 1-Year 5-Year 7-Year 10-Year 15-Year 20-Year 30-Year 

ARIMA 0.3536 0.4752 0.5771  0.6154 0.6073 0.6329 0.7256 

ARFIMA 0.3535  0.5772   0.6075 0.633 0.7256 

1-Factor GVT 1.3719 0.0907 1.5484 1.6524 1.6026 1.4494 1.5266 1.9377 

2-Factor GVT 0.6623 0.0046 0.0972 0.0655 0.0936 0.118 0.1529 0.7946 

Nelson-Siegel [2,120] 0.0295 0.0096 0.0324 0.0496 0.0606 0.2195 0.1524 0.2578 

Nelson-Siegel [2,120] 0.0377 0.0249 0.0353 0.0564 0.0552 0.2125 0.1458 0.2643 

Nelson-Siegel [2,120] 0.1172 0.1761 0.0363 0.0365 0.0954 0.2194 0.1223 0.3219 

Panel A - Forecast Metric for the US Rates 

  US1M US1Y US5Y US7Y US10Y US15Y US20Y US30Y 

ARIMA 0.0018 0.0186       

ARFIMA 0.002 0.0186 0.0372 0.0422 0.0471 0.0506 0.0527 0.0536 

1-Factor GVT 0.1587 0.1693 1.3114 1.3776 1.4749 1.6144 1.7932 2.0277 

2-Factor GVT 0.327 0.1001 0.1276 0.076 0.0718 0.2397 0.5784 1.1225 

Nelson-Siegel [2,120] 0.0624 0.1116 0.1497 0.0515 0.0663 0.1022 0.0575 0.0994 

Nelson-Siegel [2,120] 0.0611 0.1128 0.1481 0.0508 0.0682 0.1042 0.0586 0.098 

Nelson-Siegel [2,120] 0.0945 0.1655 0.1374 0.0612 0.0546 0.1002 0.0657 0.0691 
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Figure 1: Canadian Yield Curve (2003 to 2011) 
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Figure 2: US Yield Curve (2003 to 2011) 
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Figure 3: Canadian Term Structure (2003 to 2011) 
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Figure 4: US Term Structure 
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Figure 5: Factor Loadings for the Canadian Rates 
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Figure 6: Factor Loadings for the US Rates 
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Figure 7: Two-Factor Model Factor Loadings (Maturity Years) for the Canadian Rates 
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Figure 8: Two-Factor Model Factor Loadings (Maturity Years) for the US Rates 

 

 

 

 


