Towards a Decentralised Application-Centric
Orchestration Framework in the Cloud-Edge
Continuum

Amjad Ullah®, Andras Markus® Haci Ismail Aslan”, Tamas Kiss,
Jozsef Kovacs*, James Deslauriers”, Amy L. Murphy*, Yiming Wang*, Odej Kao"

$A.Ullah@napier.ac.uk, Edinburgh Napier University, Edinburgh, United Kingdom
Tandras.markus @frontendart.com, FrontEndART Software Ltd., Szeged, Hungary
*{aslan, odej.kao} @tu-berlin.de Technische Universitit, Berlin, Germany
#{T.Kiss, J.Deslauriers } @ westminster.ac.uk, University of Westminster, London, United Kingdom
*jozsef.kovacs @sztaki.hu, Institute for Computer Science and Control (SZTAKI), Budapest, Hungary
#Imurphy, ywang} @fbk.eu, Fondazione Bruno Kessler, Trento, Italy

Abstract—Managing complex distributed applications in
the Cloud-Edge continuum, including deployment on di-
verse resources and runtime operations, presents significant
challenges. Orchestrators play a key role by automating
resource discovery, optimisation, deployment, and life-
cycle management while ensuring system performance.
This paper introduces Swarmchestrate, a decentralised,
application-centric orchestration framework inspired by
self-organising Swarms. Our initial findings, based on the
implementation in a Cloud-Edge simulator, demonstrate
Swarmchestrate’s potential, offering insights into resource
coordination and optimised allocation for scalable systems.

Index Terms—Cloud-Edge, Orchestration, Decentralised,
Resource selection, Swarm computing, Self-organisation

I. INTRODUCTION

The rapid growth of Cloud-Edge ecosystems has
reshaped how distributed applications provision, and
manage resources. Orchestration solutions are commonly
used for this purpose and to handle associated challenges
such as ensuring seamless access and coordination be-
tween heterogeneous cloud, fog, and edge resources, op-
timising conflicting QoS goals (e.g., cost, performance,
energy, etc.), and addressing scalability, adaptability, and
efficient monitoring of workloads [1], [2]. Addressing
these challenges has drawn significant attention toward
developing orchestration solutions [3], [4]. These solu-
tions, based on their control topology, can be classified
into centralised and decentralised.

Centralised approaches are easy to implement and
offer consistent decision-making; however, they face
issues such as scalability, a single point of failure,
performance bottlenecks, and cybersecurity risks. De-
centralised approaches address these issues by pro-
viding multiple decision-making entities (orchestrators)

distributed across the continuum. Several studies (see
Section II) have explored such strategies, demonstrating
their potential to manage the complexities of the contin-
uum. In the same realm, this paper presents Swarmches-
trate, a decentralised application-centric orchestration
framework inspired by the self-organisation of Swarms.
More specifically, our key contributions include the
design of a novel decentralised orchestration architecture
based on our earlier work [5], followed by a simulation-
based implementation covering the overall application
deployment process. Lastly, a thorough evaluation of the
proposed approach to demonstrate its applicability.

II. RELATED WORK

Several studies explored hierarchical architectures.
For example, mF2C [6] employs an N-layered model,
from edge (Layer-N) to cloud (Layer-0), with agents
at each layer collaborating on service execution while
prioritising lower layers to reduce latency. Oakestra [7]
uses a two-layered approach, where cluster orchestrators
manage local resources, and a root orchestrator oversees
multiple resource clusters under separate administration.

Other studies have explored P2P models. For exam-
ple, HYDRA [8] establishes a P2P overlay where each
node functions as both a resource and an orchestrator,
managing applications at varying levels of granularity.
Caravela [9] follows a similar approach but incorpo-
rates a market-oriented model, incentivising volunteer
resources. Other perspectives include a dedicated orches-
trator for each application, as proposed by Castellano et
al. [10]. EPOS Fog is introduced by Zeinab et al. [11],
which is a multi-agent system where each node acts as an
agent, determining service deployment within its neigh-
bourhood. Lastly, Zolton [12] proposed partitioning the

Application view | Orchestration Space (0S)

Knowledge Mgmt

Knowledge base

Resource view

N s ccifications ‘
- e

Capacities

-
)
\ B)

RA - Resource Agent
SA - Swarm Agent
LR - Lead Resource

| E—
S ificati
BT)

Resources

OBAGA® OBAGAS
+0 00

HA - High Availability
‘ . . ® K8S - Kubernetes

Fig. 1: Swarmchestrate architecture

infrastructure into isolated segments, called fog colonies,
enabling independent optimisation using either isolated
or shared resources.

Our approach against existing solutions stands out
for its highly decentralised, application-centric focus and
self-organising capabilities, enabling higher adaptability
and resilience. Unlike hierarchical or P2P models, we
adopt a hybrid architecture. The hierarchical aspect
stems from its two-layered structure: the interface—a
dynamic network of distributed resource agents—and
application spaces composed of Swarm agents managing
individual applications. The operational mechanisms at
each layer are designed around a P2P model.

III. SWARMCHESTRATE: PROPOSED APPROACH

Figure 1 illustrates the Swarmchestrate application
deployment process, organised into four sections. The
Application view allows operators to submit appli-
cations in the TOSCA format!. The Resource view
features a two-layered structure: Resources, representing
computational resources from various cloud and edge
providers (e.g., Amazon, Microsoft), and Capacity, a
logical grouping of resources within the Swarmchestrate
ecosystem, which must be registered for discovery and
deployment. The Knowledge Management component
acts as a distributed knowledge base, managing resource
descriptions, interactions, discovery, and trust.

The Orchestration Space (OS) leverages Decen-
tralisation, Swarms, and Intelligence for efficient, opti-
mised, and trusted orchestration. Decentralisation allows
to operate without central control. Swarm computing
enables dynamic, cooperative management of applica-
tions; and Intelligence, driven by machine learning and

Thttps://docs.oasis-open.org/tosca/ TOSCA/v2.0/TOSCA-v2.0.html

optimisation algorithms, informs resource selection and
decision-making. The following subsections detail the
OS component.

A. Application

Swarmchestrate supports microservices-based appli-
cations, described in TOSCA, covering four key as-
pects: (a) The details of application components such
as container images, environment variables, etc; (b)
The specific needs for application resources, such as
cloud/edge instances, instance types, and hardware limits
(CPU/RAM/Storage); (c) The desired QoS specifica-
tions, including performance, cost, energy efficiency,
trust, placement, etc; and (d) the specification of custom
metrics to be monitored by Swarmchestrate.

B. Resource Agent

The Resource Agent (RA) manages one or more
Capacities, providing access to their resources. Addition-
ally, by collaboration with other RAs, it facilitates the
discovery of suitable resources across the resource stack
for submitted applications. In Swarmchestrate, an RA
is instantiated, when the Capacity provider registers the
Capacity resources with attributes like processing power,
memory, hardware type, VM instances, pricing, locality,
and energy metrics. Once instantiated, the RA connects
to other RAs via a P2P network, forming a decentralised
OS interface. The TOSCA description is submitted to
the interface, where an RA receives it and initiates the
deployment process, outlined in the next section.

C. Overall deployment process

We illustrate the deployment process using a simple
example, featuring an application (appl) comprising four
microservices, having four resource requirements (A, B,

C.D Ell :AI
A,B,C,D

OO

(a) Resource offers collection and ranking

o

Swarm

e N Ra-3 ’ N
v A ’ R
r “ ’ M “
Y K8s control plane / X
\ \

} @ Lead Swarm Agent
|

1
1

— i

[y

1 (sn) Swarm Agent 3

, & g

T
/W@ Misrosanvics

,/ o Monitoring Agent

RA1 Y m@ m
°8
& ;

(b) Lead resource (c) Post-deployment

Fig. 2: Illustrative example of application deployment in Swarmchestrate

C, and D). Upon receiving the application (Figure 2a),
RA-X—selected randomly, however, can be based on
any particular logic—initiates the following steps:

1) Collecting resource offers: RA-X broadcasts re-
source requirements to all available RAs, requesting
offers (Figure 2a). Each RA evaluates its Capacity via
Knowledge Management and classifies its coverage as
Partial (some requirements met), Full (all met), or Zero
(none met). RAs respond with their coverage, and RA-X
compiles unique groups of potential offers.

2) Resource selection: This step selects the optimal
resource set from previous offers to maximise QoS goal
fulfilment. This optimal set, once configured, forms the
Swarm that will serve the application. The inputs for
this process consist of the resource offers from the pre-
vious step, the application QoS goals from the TOSCA
description, and the dynamically obtained reliability met-
rics (e.g. failure frequency, availability, resource accu-
racy, etc.), representing the impact on the achievement
of QoS goals, for each resource offer. An optimisation
algorithm (Section IV-A) ranks offers, selecting the top-
ranked set (e.g., RA-1, RA-2, RA-3 in Figure 2a) for
deployment.

3) Lead SA deployment: This step initiates the
Swarm formation by deploying the lead Swarm Agent
(SA). Multiple SAs operate at the Swarm level, ensuring
self-organisation and reconfiguration. The lead SA—first
instance of SA—assembles the Swarm (Section III-C4).
Deployment starts by RA-X using the following sub-
steps: (a) RA-X selects the Lead Resource (LR) from
the top-ranked offer to host the lead SA and Kubernetes
control plane, considering factors like CPU, storage, and
networking; (b) Once identified, the LR is instantiated
(e.g., a cloud resource is dynamically created); (c) The
Kubernetes control plane is set up on the LR for con-
tainer orchestration; (d) Lastly, the lead SA is initiated
to assemble the Swarm (see next section). After these
steps, the system reaches the state in Figure 2b, where
only the LR (type B from RA-2) is active, hosting the
Kubernetes control plane and lead SA within the Swarm.

TABLE I: Experimental settings for simulation

P Val Parameter Value
Carameter Ca ue 3 Location EU, US
omponents ompute: Provider AWS, Azure
Storage:1 CPU 16 1%
CPU (po) 1= RAM(P(C})B 6100
RAM (GB) s S : G)B 16 — 100
Storage (GB) T—10 Igi"“ge (iv e
Tmage size (MB) | 1 — 500 e power (W) -

- - Max power (W) | 500 — 3500
Instances 1—3 I 15 190
Msg size (KB) 2 %lency (ms) —

Price (€/hour) 0.025 — 25

(a) Applications

(b) Capacities (Nodes)

4) Application deployment: The Lead SA finalises
Swarm formation and deploys the application using the
TOSCA description, RA details, and credentials. More
specifically, (a) the Lead SA, with the involved RAs,
instantiates the remaining resources, and makes them
part of the cluster setup on the LR; (b) to ensure
high availability (HA), additional resources are selected
using the same criteria as LR, and HA configurations
are applied; (c) to ensure self-organisation, a group of
SAs are identified to be hosted alongside application
components; (d) additional SAs, application components,
and monitoring agents are deployed via the Kubernetes
scheduler by the lead SA. Completion of these steps take
the system to the state in Figure 2c, with all required
resources (greyed boxes) integrated into the Swarm,
running four microservices of appl.

IV. EVALUATION

To evaluate the feasibility and performance of the pro-
posed framework, we extended DISSECT-CF-Fog [13],
a widely used discrete event simulator’> known for its
realism and customisability in Cloud-Edge simulations,
with the necessary constructs (e.g., RA, Capacity) to
support Swarmchestrate.

A. Application, RA, Capacities, and resource selection

The simulator accepts the application in TOSCA for-
mat and supports two types of application components:

Zhttps://github.com/sed-inf-u-szeged/DISSECT-CF-Fog

Compute, having a container image, and hardware (CPU
and memory) limits for instantiation; and Storage with
the size of the allocated partition only. The RA is mod-
elled as a virtualised resource, whereas, the Capacities
are represented as the physical resources. For our experi-
mentation, 8 Capacities each represented by one RA and
six applications are utilised to assess system behaviour.
Table Ia and Ib present the interval-based specification
used for applications and Capacities respectively.

Upon application submission, an RA (e.g., RA-X in
Figure 2a) manages deployment. RA-X broadcasts the
request, and each receiving RA evaluates it using a first-
fit strategy, sorting components by CPU requirements—
50% in ascending and 50% in descending order—to
balance allocation. Components are mapped based on
available capacity, reserving resources upon a successful
match. RA-X then compiles unique offers, ensuring each
component appears once per combination. These offers
are then ranked using the following methods based on the
submitted application’s QoS objective, consisting of four
attributes including latency, cost, bandwidth, and energy
consumption. Each of these attributes is defined with a
priority reflecting the application owner’s preferences.
Additionally, reliability, as explained in Section III-A, is
also considered in decision-making.

1) Cost Function: This approach calculates a cost
value for each offer and then ranks all in descending
order of overall cost. For each offer, all QoS attributes are
first normalised to a 0—1 range for comparability as can
be seen from Equation (1) for raw data r, of each QoS
attribute ¢ € Q. For attributes like bandwidth, values
are inverted to reflect their desirability. Each normalised
value is then weighted by its QoS priority p,, and the
total cost for an offer ¢ is calculated using (2).

0, if max(rq) = min(rq)
ot = rq—min(rq) h . (1)
max(rq)—min(ry)’ otherwise

q€Q
Lastly, to incorporate reliability (R) into ranking, two ap-
proaches are used: (A) Additive, where R is subtracted
from the total cost (total_cost; — R;), lowering costs for
more reliable offers; and (B) Multiplicative, where R
scales the total cost (total_cost; = (1 — R;) - total_cost;),
adjusting cost proportionally to reliability.

2) Borda Voting: This approach ranks offers based
on their relative positions across QoS attributes. Each
attribute is ranked independently (e.g., bandwidth in
descending order, latency in ascending order), and offers
receive scores based on their rank, with ties sharing the
highest score for their position. Scores are then weighted
by attribute priorities to determine the final ranking.
Lastly, reliability—either as an additive or multiplica-
tive approach—is incorporated into the ranking process.

More formally, Equation (3) defines the Borda score S;
of an offer ¢, where scorey(¢) and scorer (i) represent
the Borda scores for QoS attribute ¢ and reliability R,
respectively; whereas, Equation (4) and (5) represents
the final Borda scores with reliability as additive and
multiplicative factors.

S; = Z Dy - scoreg(7) 3)
qc@
S; = scorep(i) + Z Pq - scoreg (%) @)
q€Q
S; =R, Z Pq - score,(4))
q€Q

B. Application deployment

Once the ranking is performed, RA-X deploys the ap-
plication using the top-ranked offer. Next, RA-X selects
the lead resource (LR) based on the highest CPU core
count as the selection criteria (Section III-C3). Further-
more, to simulate real-world deployment, we integrate a
Docker Hub-like registry with 1000 Mbps bandwidth in
DISSECT-CF-Fog for storing and transferring container
images. Once the LR is chosen, the images are deployed
and associated capacities are marked as allocated. Lastly,
to assess the long-term impact of the deployment de-
cision, we ran each Compute component at full CPU
capacity for 30 minutes.

C. Results

The evaluation assessed Swarmchestrate’s ability to
handle six simultaneous applications while varying QoS
priorities. We evaluated six strategies: four where a
single QoS attribute had priority 1.0 while others were
set to 0.1, one with equal priorities, and one with random
assignment. For comparison, the following metrics are
considered: 1) Simulation Time, duration from submis-
sion to all tasks completion; 2) Total Price, resource
costs based on hourly rates; 3) Avg. Deployment Time,
time from submission to deployment, influenced by
latency and bandwidth; and 4) Total Energy, cumulative
energy consumption per node.

Table II presents the results, with the best values
highlighted in green and the worst in red. The proposed
ranking algorithm consistently excelled when a priority
value of 1.0 was assigned (rows 1-8). For instance, a
price-aware strategy effectively reduced operating costs.
While the Cost function method produced some worse
results (red columns), it generally outperformed the
Borda method in meeting priority-specific objectives.
The Equal strategy balanced cost and deployment effi-
ciency, while the bandwidth-aware strategy outperformed
the latency-aware approach, underscoring the critical role
of bandwidth in deployment.

TABLE II: Simulation results for different priorities and resource selection methods

Priority Method | Simulation Time (min) | Total Price (EUR) | Avg. Deployment Time (min) | Total Energy (KWh)
P Borda 37.946 0.053 3.636 2.232
Cost 37.946 0.046 3.779 2.170
Price Borda 35.044 0.015 2.451 2.292
Cost 37.946 0.032 3.645 2.211
et Borda 34.641 0.077 1.352 2.360
Cost 34.562 0.079 1.285 2.363
Bandwidth Borda 34.385 0.075 1.288 2.316
Cost 32.175 0.115 0.968 2.260
e Borda 34.318 0.036 1.620 2.229
Cost 34.562 0.076 1.285 2.363
Random 34.437 0.082 1.365 2.310

enode-1 enode-2 ¢ node-3 ®node-4 enode-5 ®node-6 enode-7 enode-8

o
N
°

L[] .O
_ L4 * °®
L]
5015 .. °® .O‘;;'.
3 () ... Oi;:.'
> 0.1 o o Lossiiis
2 ®e® ';l"'
£ 0.05 eIl
w ™ jasiiet
.nil'
0 5 10 15 20 25 30 35

Simulation time (min)

e
o

Energy (KWh)

o
= o

e
o
a

e node-1 enode-2 ®node-3 ®node-4 enode-5 ®node-6 ®node-7 ®node-8

...
.o"‘ ’ .oo’.
-.. -'...i"!!!
o®® oi,..l'
bo°° "."l
TH1L L
1L

...‘

0 5 10 15 20 25 30 35

Simulation time (min)

Fig. 3: Energy consumption per node with energy priority (left) and latency priority (right)

Figure 3 illustrates accumulated energy consumption
per node for energy- and latency-aware scenarios. Mea-
surements cover the period from application submission
to completion, excluding cold start and infrastructure
setup. In the energy-aware approach, CPU-heavy tasks
begin after five minutes, whereas the latency-aware strat-
egy enables faster deployment (Avg. Deployment Time in
Table II), with tasks starting after three minutes.

V. CONCLUSION

This study presented Swarmchestrate, a decentralised
orchestration framework for Cloud-Edge applications.
By adopting an application-centric approach, it tackles
scalability, resource heterogeneity, self-organisation, and
multi-QoS balancing. Simulation results demonstrated
its effectiveness in seamless deployment across diverse
providers. Ongoing work focuses on implementing self-
organisation for runtime reconfiguration, with plans to
prototype the framework on four real-world industry use
cases, further establishing its scalability and applicability
for next-generation distributed systems.

ACKNOWLEDGMENT

This work was funded by the EU Horizon programme
within the Swarmchestrate project (no. 101135012).

REFERENCES

[1] G.J. Hu and T. Vardanega. An architectural view on the compute
continuum: Challenges and technologies. Available at SSRN
4328069, 2023.

A. Ullah, H. Dagdeviren, R. C Ariyattu, J. DesLauriers, T. Kiss,
and J. Bowden. MiCADO-Edge: Towards an Application-level
Orchestrator for the Cloud-to-Edge Computing Continuum. Jour-
nal of Grid Computing, 19(4):1-28, 2021.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

A. Ullah et al. Orchestration in the cloud-to-things compute
continuum: taxonomy, survey and future directions. Journal of
Cloud Computing, 12(1):135, 2023.

S. Bohm and G. Wirtz. Cloud-edge orchestration for smart cities:
A review of kubernetes-based orchestration architectures. EA[
Endorsed Transactions on Smart Cities, 6(18):e2—e2, 2022.

T. Kiss et al. Swarmchestrate: Towards a fully decentralised
framework for orchestrating applications in the cloud-to-edge
continuum. In Leonard Barolli, editor, Advanced Informa-
tion Networking and Applications, pages 89—100, Cham, 2024.
Springer Nature Switzerland.

X. Masip-Bruin et al. Managing the cloud continuum: Lessons
learnt from a real fog-to-cloud deployment. Sensors, 21(9):2974,
2021.

G. Bartolomeo, M. Yosofie, S. Biurle, O. Haluszczynski, N. Mo-
han, and J. Ott. Oakestra: A lightweight hierarchical orchestration
framework for edge computing. In 2023 USENIX Annual
Technical Conference (USENIX ATC 23), pages 215-231, 2023.
L. L. Jimenez and O. Schelen. Hydra: Decentralized location-
aware orchestration of containerized applications. [EEE Trans-
actions on Cloud Computing, 10(4):2664-2678, 2020.

A. Pires, J. Simdo, and L. Veiga. Distributed and decentralized
orchestration of containers on edge clouds. Journal of Grid
Computing, 19:1-20, 2021.

G. Castellano, F. Esposito, and F. Risso. A service-defined
approach for orchestration of heterogeneous applications in
cloud/edge platforms. IEEE Transactions on Network and Service
Management, 16(4):1404-1418, 2019.

Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras.
Decentralized edge-to-cloud load balancing: Service placement
for the internet of things. IEEE Access, 9:64983-65000, 2021.
Z. A. Mann. Decentralized application placement in fog com-
puting. IEEE Transactions on Parallel and Distributed Systems,
33(12):3262-3273, 2022.

A. Markus, V. D. Hegedus, J. D. Dombi, and A. Kertesz.
Synergizing fuzzy-based task offloading with machine learning-
driven forecasting for iot. In 2024 IEEE 8th International
Conference on Fog and Edge Computing (ICFEC), pages 71—
78, 2024.

