

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

4D trajectories - assessing the cost of time

Cook, A.J.

Presented at NAV09 - Air: Aviation's Future Trajectories (Organised by the Royal Institute of Navigation), Imperial College, London, 25th November 2009.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

4D trajectories - assessing the cost of time

Dr Andrew Cook Principal Research Fellow University of Westminster

The Royal Institute of Navigation – Aviation's Future Trajectories

UNIVERSITY OF WESTMINSTER

4D trajectories - assessing the cost of time

- § SESAR 4D trajectories at core of new concept
- § European delay context and method
- § Quantifying the cost of time (delay) to an airline
- § Airline delay cost management
 - technical challenges for 4D
- § The flow management context
 - SESAR revisited (KPAs)
- § Opportunities ahead for time/delay management

SESAR – 4D trajectories at core of new concept

Single European Sky ATM Research

modernisation programme for European ATM

The Business (4D) Trajectory

- § Negotiated 'contract' with time constraints (hence $\underline{4}D$)
- § Shared Business Trajectory (SBT)

Firstly, a trajectory is negotiated which represents the business intentions of the airline and takes account of Air Navigation Service Provider, ATFM and airport constraints

§ Reference Business Trajectory (RBT)

Negotiation complete: trajectory which airline agrees to fly and ANSP + airport agree to provide; c.f. current practice, from both providers and users, of pre-tactical and tactical changes: new concept designed to minimise changes to trajectories & achieve 'best business outcome' for all users

- § A key business outcome is reduction of delay
- § Matures through 'Service Levels' delivered ...

The six Service Levels (0-5)

The Royal Institute of Navigation – Aviation's Future Trajectories

Source: European ATM Master Plan (2009) (approximately to scale)

The six Service Levels (0-5)

The six Service Levels (0-5)

Service		Key features	
level	Business (4D) Trajectories	En-route	TMAs
0	better cross-border operations fac	ilitated through CDM with neighbours; fle	exible sectorisation management
1	better optimised trajectories (some times/ airspace); pilot-controller coordinated, optimised en-route cruise-climb	controller tools for: trajectory management over several sectors (i.e. MSP), near-time deconfliction and trajectory conformance monitoring	more RNAV routes, better capacity due to: more flexibility, reduced separation & tailored arrival procedures; A-CDAs in higher traffic
2	deployment of BTs & CTA; uplink of ATC constraints & downlink of 4D data; more free routeing in Upper Airspace	A-RNP for reduced spacing between routes, where required; tactical parallel offsets (instead of vectoring)	A-RNP 1 SIDs and STARs
3	RBT multiple CTOs & revisions through air-ground data exchange; upstream, small ground-based speed adjustments	free routeing to apply from ToC to ToD, pre-defined routes only where necessary	dynamic adjustment of TMA boundaries according to traffic patterns and runway usage
4	widely shared aircraft position & intent	two airspace categories - managed & unmanaged	free routeing from TMA exit to entry (except high complexity airspace)
5	dynamic sectors: shap	es and volumes adapted in real-time; air-t	o-air data exchanges

Navigation News

European delay – context and method

UNIVERSITY OF WESTMINSTER

European delay – context and method

- § 21% of arrivals >15 mins late in 2008 (slightly better than 2007)
 - traffic 'growth' negative from September 2008 onwards
 - 0.4% in 2008 (c.f. 5% in 2007; forecast -3% for 2009)
- § ATFM delays alone in 2008 cost airlines around €1.5 billion
- § Many airlines have significant barriers to identifying & quantifying delay costs, even before managing them
- § General lack of tools for delay cost management
- § 12 aircraft supported across the models
- § Costs by phase of flight and by three consistent scenarios
- § Shift (KPA) focus from <u>minutes</u> of delay to <u>cost</u> of delay

The Royal Institute of Navigation Aviation's Future Trajectories, A321, AT43, AT72; B747, B763, B733, B734, B735, B738, B752, A319, A320, A321, AT43, AT72; B747, B763

Quantifying the cost of time (delay) to an airline

Delay cost model & magnitudes

- § Airport charges and handling fees
 - e.g. hit or miss peak charge; penalty from an agent
- § Maintenance
 - extra minutes of wear & tear on airframe & powerplants
 - gate-to-gate (workload) model for marginal costs
 - line/transit + A, C & D checks (- overheads) converted to hours basis
- § Crew
 - derive marginal from unit costs; wide cross-section AO schemes
 - block/flight duty hours regNs, sectors flown and overnight stopovers
 - could be zero ('sector pay'); c.f. overtime with a high cost base
- § Fuel and emissions (EU ETS: extending to aviation from 01 JAN 12)
 - fuel burn from Lido OC; CO₂/tonne: €0.03 €30 (€13 Nov 09)
 - wy Bassenger costs: AQ thard'ut AQ to Soft's (+ 'internalised') ...

The Royal Institute of Navigati Plandvictors' model, awith sensitivity analysis

The Royal Institute of Sofe cost model included ware satisfaction modelling

Aircraft	1-15 mins	16-30 mins	31-45 mins
B737-300	12	35	60
B737-400	14	40	68
B737-500	11	31	53
B737-800	16	44	76
B757-200	19	55	94
B767-300ER	29	81	140
B747-400	41	117	202
A319	13	36	62
A320	15	42	72
A321	18	51	88
ATR42-300	4	12	20
ATR72-200	6	16	28

The Royal Institute costs in Euros.)

Airline delay cost management

Tactical recovery, the Cost Index

Value in FMS

Cl₀ save fuel Cl_{max} save time (e.g. recover delay)

§ 2–5 mins/hr; Δ_S: 3–8% (AVG 5%), appx. 20 kt

Dynamic cost indexing

The Royal Ins the comproh /- (tactical) management of delay costs

B738, 20 mins at-gate delay / route extension

At-gate, € 1109

Extended cruise, € 1948

Future exploitation potential for slot trade-offs & airspace design. Includes reactionary: different methods for pax, I-h / s-h crew & maintenance.

LIS-HEL, B738 (22 minutes delay)

Annual cost implications, simple example B738, 22 minutes delay: Cl_{opt} compared with Cl_{max} (i.e. recover 19 minutes); 20 such flights in network per day

Case	Emission s costs	Fuel cost	Optimum recovery	Optim CI	um	Annual loss c.f. Cl ₃₀₀
1	Yes	€ 0.7 / kg	10 mins		80	€ 6.7 million
2	No	€ 0.7 / kg	11 mins		90	€ 4.5 million
3	No	€ 0.5 / kg	12 mins		130	€ 2.7 million

(Without emissions costs: allows pre-2012 trade-offs.

The Royal Isido OCals ACARS-enabled: Transend CI proposal to aircraft.)

Technical challenges for 4D

- § "Best business outcome" as goal (Master Plan)
 - User-Driven Prioritisation Process: negotiation, CDM, SWIM
 - AOs "can among themselves recommend to the Network Management a priority order" for delayed flights (Strategic Guidance, May 2009)
 - quantifying prioritisation has been a headache for a long time!
 - "cooperative" (AO-CFMU) slot swapping is planned as part of process
- § Aircraft and controller 'compliance'
 - FMS parameters: Required Time of Arrival & Cost Index need to align
 - Controlled Time of Arrival in very busy TMA?
 - need ICAO recommendations re. 4D definition & data exchange
- § Arrival sequencing / queue management during transition
 - mixes of 4D-equipped and non-equipped traffic turn up
- The Roya Brooker (Journal of Navigation [62]) & Hansen et al (in progress)

The flow management context

The Royal Actual distribution, 2008. (NB, 88% IFR flights no ATFM delay.)

	Cost	μ	σ	≥60 mins
2008 (actual)	100	100	100	0.36
Simple halving	50	50	72	0.18
Push to left	51	74	68	0.00
Push to edges	33	60	53	0.07

The Royal Institute of Navigation – Aviation's Future Trajectories (All values are percentages. First three columns, relative.)

	Cost	μ	σ	≥60 mins
2008 (actual)	100	100	100	0.36
Simple halving	50	50	72	0.18
Push to left	51	74	68	0.00
Push to edges	33	60	53	0.07

The Royal Institute of Navigation – Aviation's Future Trajectories (All values are percentages. First three columns, relative.)

	Cost	μ	σ	≥60 mins
2008 (actual)	100	100	100	0.36
Simple halving	50	50	72	0.18
Push to left	51	74	68	0.00
Push to edges	33	60	(53)	0.07

The Royal Institute of Navigation – Aviation's Future Trajectories (All values are percentages. First three columns, relative.)

SESAR revisited (KPAs)

- § Performance objectives and targets for 2020
 - departure: 98% of flights departing as planned ±3 min other 2%: ATM average delay < 10 min
 arrival: 95% of flights arriving as planned ±3 min other 5%: average delay < 10 min
 fuel: 95% of flights fuel as planned ±2.5% other 5%: average additional consumption <5% NB. new definition of 'on time': ≤ [3 mins]
 - less variation in the actual block-to-block times
 - for repeatedly flown routes using aircraft with comparable performance, block-to-block σ < 1.5% of route mean
 - less reactionary delay & fewer reactionary cancellations (-50% 2010-2020)
 - other KPAs, e.g. for: capacity, flexibility, cost effectiveness, efficiency

Opportunities ahead for time/delay management

Opportunities ahead

- § Development of tools
 - integration of 4D tools (e.g. delay cost) with flight planning
 - cherry-pick: passenger re-accommodation tools (e.g. Sabre)
 - collaborative prioritisation tools interfaced into SWIM (?)
 - controller tools (congested airspace work underway)
- § Development of models (including emissions)
 - future use of Cost Index in 4D environment (Clean Sky)
 - passenger-centric (new metrics); reactionary effects
 - airport-centric models
 - ATFM slot distributions (feasibility), cost-focused

Thank you

UNIVERSITY OF WESTMINSTER

Stand-by slides

UNIVERSITY OF WESTMINSTER

SESAR's three ATM frameworks

- **§** Performance Framework
 - Concept of Operations is performance-based (as ICAO)
 - drives management decisions
 - focused on Key Performance Areas (KPAs)
- **8 Business Framework**
 - establishes stakeholder partnerships
 - establishes shared network targets & priorities
 - implements the "Business Trajectory"
- **§** Institutional and Regulatory Framework
 - member states remain responsible for enforcement
 - adapting to business & societal changes

Aircraft performance

Airspace procedures

- § Speed control, in European context
 - used in TMAs (usually with heading & altitude constraints)
 - very seldom used en route (various studies on this, although not our focus)
- § Evidence suggests
 - controllers used to +3% to -6% (mostly ±3%)
 - use of ICAO* > ±5% rule, "inadvertent changes" = rather unclear

* Rules of the Air, Annex 2 to the Convention of International Civil Aviation (1990)

Three key trade-off stages

- § Buffers in schedules (strategic cost of delay!)
 - large enough to absorb expected levels of tactical delay
 - avoid over-compromising utilisation
- § Slot management (pre-departure, tactical)
 - re-route potential
 - fuel uplift decision
- § Airborne recovery (tactical)
 - focus of project to date

weather (esp. wind, ABN) ATC / ATM cooperation

Tactical recovery, the Cost Index

benefit / profitability

punctuality

The Royal Institute of Navigation – Aviation's Future Trajectories

UNIVERSITY OF WESTMINSTER

Reactionary multipliers

Range (mins):	1-15	16-30	31-45	46-60	61-75	76-90	••	300+
Basic	1.48	1.74	2.00	2.25	2.51	2.77		6.47
Additional rotational	0.36	0.56	0.75	0.94	1.13	1.32		4.11
Additional non-rotational	0.12	0.19	0.25	0.31	0.38	0.44	•••	1.37

(Average value in each range.)

Different methods for passenger, long-haul crew, short-haul crew and The Royal Institute of Navigation – Aviation's Future Trajectories Maintenance costs.

Emissions (a future cost)

- § No global agreement on aviation regarding emissions
 - regional competitive distortion; focus on Copenhagen (December 2009)
- § % of anthropogenic GHGs: various estimates, agree increasing
 - 3.4% in Europe (European Environment Agency, 2006)
 - 1.6% global; 'CO₂+' \cong 5% of *warming* by 2050 (Stern Review, 2007)
- § ATM accounts for 0.2% of CO_2 emissions in the EU
- § CO_2 (warming effect; proportional to fuel burn)
 - EU ETS: extending to aviation (01 JAN 12) based on gate-to-gate fuel
 - legislation currently: all AOs operating to/from EU surrender permits
- § NO_x (NO & NO₂: warming effect [$\Box O_3$] & cooling effect [$\Box CH_4$])
- The ReyaCommission pledged aviation proposal by November 2009

Delay cost management

- § Many airlines have significant barriers to identifying & quantifying delay costs, even before managing them
- § General lack of tools for delay cost management
- § Lack of integration & standardisation of existing tools
- § Aircraft & crew often recovered first, respecting maintenance requirements - rarely driven by passenger solutions

Generally, in the disruption management literature passengers are given a low priority.

Kohl et al. (2007)

In most airlines ... two groups doing their individual best could actually be working against each other.

The Royal Institute of Navigation – Aviation's Future Trajectories

Narasimhan (2001)

MASTER VIEW for flight LH9999 on route LISHEL2

<u>H</u>elp

TDD

Close

a 1

F		B738 ISHEL2) (1-15 mins 30 /min	16-30 m €73 /min	ins 31-45 mii n €137/mi	ns 46-60 m in €230 /n	nins 61-75 mins nin €343 /min	76-90 mins € 452 /min	91-119 mins €623 /min	€ 1009 /min	180-239 mir € 1365 /mir	ns 240-299 i €1722 /
N-P)epa	ASSENGEF inture delay co	R delay cos osts [US]	ts	Arrival	delay cost:	s [HEL]			Airborne co	osts			
[ŧ	€5.8 /min €2.8 /min			[£:	5.8 /min 2.8 /min	J		Flight crew	€5.8 /	'min 'min	€0.0 €6.4	037/kg	CO ₂ NO _X
6	2000 /min	Airport/gate		60	00.2min	Airport/gate	1		€2.8 /	min Maint	enance	F	uel settings
Fi	60.4 /min	Maintenance		03 sts	00./min	Other			Eeoo.7	-min0	ther		ci seangs
SSE ielec © U	EO.4 /min	Maintenance	elay co	sts age costs fr	oo Zmin	Defau				Exte	ernal	Soft cos	sts
SSE Select C U Pax	EO.4 /min	Maintenance ETWORK d thod ing flight / C ts (total) for Aircraft	elay co use aver delayin	sts age costs fo g flights b ionary 0	or LH9999 elow. Soft	Defau	J It 1-15 mins	16-30 mins	31-45 mins		ernal	Soft cos	sts
SSE ielec ielec ielec	EO.4 /min ENGER & NE st required me Jse own data y each connect ssenger cos Flight LH1111	Maintenance ETWORK d thod ing flight / C ts (total) for Aircraft B733	lelay co use aver delayin Read	sts age costs fo g flights b ionary 0 0	00.7min or LH9999 elow. Soft E-buffer mins	Defau Defau costs are [0] Tot pax 95	J It 1-15 mins € 98	16-30 mins € 796	31-45 mins € 2265		tionary costs	Soft cos	sts
SSE Select C U Pas	EO. 4. /min ENGER & NE ct required met Jse own data y each connect ssenger cos Flight LH1111 LH2222	Maintenance ETWORK d thod ing flight / C ts (total) for Aircraft B733 B734	elay co use aver delayind React	age costs fo ionary 0 0 0 0	or LH9999 elow. Soft E-buffer mins mins	Defau Defau costs are [01 Tot pax 95 109	J It 1-15 mins € 98 € 112	16-30 mins € 796 € 909	31-45 mins € 2265 € 2586		tionary costs Include At-gate Arrival delay	Soft cos	sts ude
SSE Selecc © U Pas	EO.4.7min ENGER & NE st required me Jse own data y each connect ssenger cos Flight LH1111 LH2222 LH3333	Maintenance ETWORK d thod ing flight / C ts (total) for Aircraft B733 B734 B735	elay co use aver delayin Read	age costs fr g flights b ionary 0 0 0 0 0	on LH9999 elow. Soft E-buffer mins mins mins	Defau Defau Costs are [OI Tot pax 95 109 85	J I-15 mins € 98 € 112 € 87	16-30 mins € 796 € 909 € 709	31-45 mins € 2265 € 2586 € 2015		tionary costs Include At-gate Arrival delay	Soft cos	sts ude ettings

Manage real-time departures data / view connecting passengers The Royal Institute of Navigation – Aviation's Future Trajectories

Effects of cost index settings on emissions

- § Compared 3 operational flight plans at min/max CI
 - comparison of time savings at higher CI
 - comparison of costs for CO₂ and NO_x
 - costs shown for illustration only, to nearest Euro
 - used: CO_2 at \in 37 / tonne; NO_x at \in 6 414 / tonne (2012)
 - values depend on policy design & implementation estimates vary

§ For NO_x derived relative measure of radiative forcing

- only fuel consumption > 3000 ft used (for LAQ use kg < 3000 ft)
- takes into account aircraft type and route length
- altitude dependence of radiative impact considered

- § Ideally need dynamic data for each passenger, although in practice historical estimates may be better
- § Regulation (EC) 261 (17 February 2005); airline policy
- § 'Soft' cost model [starting from 2003 estimate of average]
 - very little published; very few airlines have assessed
 - model used (own) surveys; complaints rates and disutility models
- § 'Hard' cost model [starting from 2003 estimate of average]
 - model used (own) surveys, limited airline data & literature
 - 'care': drink/meal vouchers, hotel accommodation etc
- 'reaccommodation': rebooking/rerouting (/reimbursements) The Royaltheoretical distribution, subject to aeveral known constraints