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Abstract 
 

Melanoma is the most aggressive type of skin cancer and various treatments have been 

investigated to treat this disease. However, an intrinsic issue in the clinical setting is the 

development of multidrug resistance. So far no single approach has emerged that may overcome 

such drug resistance by drug delivery. Alongside this, inflammation is an important marker of 

melanoma relating both to the incidence and progression of the disease, with upregulation in 

COX-2 and iNOS reported as playing a role in melanoma progression.  

The work embodied in this thesis describes the development, optimisation, and characterisation 

of alginate, chitosan, and pullulan nano-emulsions as a delivery platform to target melanoma. 

In this study, a novel nano-emulsion delivery system was designed and optimised using a series 

of experimental steps including, in vitro drug release, cell viability (MTT), Cellular apoptosis 

ELISA, confocal and fluorescent microscopy, PCR, and Western blot to address melanoma 

chemo-resistance, and COX-2 and iNOS expression. 

Chitosan-pullulan, pullulan-alginate, and alginate-chitosan polymer blends were prepared as 

nano-emulsions. A comparative analysis of their effect on melanoma (A375) and keratinocyte 

(HaCaT) cells was conducted. The “pullulan-chitosan” formulation was taken forward with 

folate-modification and used to target A375 cells. Subsequently, the melanocortin type 1 and 3 

receptor agonists BMS-470539-dihydrochloride and [DTrp8]-γ-MSH were delivered to A375 

cells using folate-modified pullulan-chitosan nano-emulsion, to target regulation of iNOS and 

COX-2 as important markers in melanoma progression.  
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Folate-modified pullulan-chitosan nano-emulsion enabled the delivery of doxorubicin and 

dacarbazine to A375 cells and diminished cell viability to 14 and 48% for doxorubicin and 

dacarbazine loaded nano-emulsions, respectively. Furthermore, BMS470539-dihydrochloride 

[DTrp8]-γ-MSH loaded nano-emulsions were able to decrease the regulation of iNOS and 

COX-2 to zero, after 72 hours.  

Optimal delivery of therapeutics has been successfully applied to address chemo-resistance and 

enhanced apoptosis induction to melanoma cells. A novel optimal pullulan-chitosan nano-

emulsion delivery system was developed for malignant melanoma. The nano-emulsion 

provided a controlled delivery of the chemotherapeutics to defeat chemo-resistance. 

Furthermore, the anti-inflammatory compound loaded pullulan-chitosan nano-emulsion 

decreased the iNOS and COX-2 expression in the A375 cell. This indicates that the compounds 

are more effective while delivered intracellularly, as opposed to the attachment to surface 

melanocortin receptors. This novel approach can be a promising tool to be used alongside 

treatments to prevent melanoma progression in its early stages.  
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1.1 Cancer and its challenges 

Increased cancer-related incidents and mortality rates in recent years have raised a challenge 

towards cancer diagnosis tools and treatments. Cancer is amongst the most common cause of 

mortality across the globe (Bray et al., 2018). The number of patients diagnosed with various 

types of it is increasing worldwide and it is estimated that the numbers will rise further in the 

next 20 years (Bray et al., 2018, Siegel et al., 2019, Ferlay et al., 2019). Cancer mortality and 

incidents were studied in the UK. According to the cancer mapping incidents in the UK, half 

of the people in the UK will develop cancer in their lifetime (Oke et al., 2018). Until 2018, 

cancer incidents and mortality rates were reported to raise in western Europe by 34.9% and 

27.7% incidents for men and women respectively. While the mortality was reported as 13.3% 

and 8.8% for men and women respectively (Rawla et al., 2019).   

So far, researchers have undertaken extensive investigations on the diagnosis, prevention, 

causes, and cancer therapies (Arruebo et al., 2011). However, no particular cause or therapy for 

cancer has been reported so far. This is mainly due to the highly heterogeneous nature of 

tumours (Siegel et al., 2020).  In simple terms, cancer is the irregular growth of the cells in any 

part of the body which leads to the development of a tumour (Sudhakar, 2009).  

The function of the cell is based on the expression of proteins that regulate cell growth, division, 

and programmed cell death. However, this regularity is entirely altered in cancer cells 

(Guimarães and Linden, 2004). This also means that inherited or recently generated gene 

mutations may lead to changed signalling pathways and dysregulation of protein expression 

(Cheng et al., 2019b). This in turn may lead to an irregular proliferation of the cells as the result 
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of dysfunction of cellular apoptosis, caused in the result of dysregulated programmed cell death 

(Ruddon, 2007, Kim, Duesberg and McCormack, 2013). There are many factors involved in 

the process of cellular transformation of normal cells to “cancer cells”; these factors arise from 

the genetic mutation in cells (Xu et al., 2018). When the normal cell is transformed into a so-

called “cancerous” cell, it will act autonomously; a cancer cell is completely independent of 

normal healthy cells in terms of growth and proliferation (Alibert et al., 2017). Cancerous 

tumours can be either benign or malignant (Weinberg, 2013) and can result from a variety of 

genetic or environmental factors.  

The cell proliferation cycle plays a crucial role in controlling cell proliferation and apoptosis, 

in the body (Pucci et al., 2000). Cell apoptosis is a programmed cell death which is a 

combination of organised biochemical processes leading to cell destruction (Elmore, 2007). 

There are two main pathways for apoptosis, the mitochondrial pathway, and the death receptor 

pathway (intrinsic and extrinsic) (Figure 1.1). The mitochondrial pathway is triggered by any 

DNA damage in the cells (Jan and Chaudhry, 2019). The death receptor pathway is activated 

by external death ligands activating tumour necrosis factor receptor (TNFr). Activation of both 

pathways leads to activation of apoptosis initiator caspases (Li and Yuan, 2008). 

While apoptosis is a crucial biological process for repair, healing, and regeneration, 

dysregulation in apoptotic pathways can lead to over-proliferation of the cells (Ryoo and 

Bergmann, 2012). Subsequently, irregular cell proliferation as the result of the absence of 

apoptotic factors will lead to the formation of tumours (Lee et al., 2018). Hence, resistance to 

apoptosis is a sign of malignant disease (Wong, 2011).  
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Figure 1.1 Intrinsic and extrinsic apoptosis pathways 

Created in Biorender.com 

 

Carcinogenesis happens in multiple steps that involve genetic and epigenetic (external factors 

which can cause damage or affect human genes) factors. Genetic instability is another important 

factor for carcinogenesis. Inherited or acquired DNA mutations will turn a healthy cell into a 

cancer cell. Existing mutations in patients also increase the risk of cancer (Coyle et al., 2017).  
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Figure 1.2 Irregular proliferation of cancerous cells leading to tumour formation 

Created in BioRender.com 

 

Malignant tumours are characterised by their invasiveness and ability to metastasise. The 

process of the growth of a tumour happens in a series of steps. The progression pace can be fast 

or slow, depending on the cancer type and/or the patient’s general health and immune system 

(van Zijl et al., 2011). Initially, a tumour consists of over proliferated cell clusters (Figure 1.2), 

called hyperplasia. This “overgrowth” starts to change appearance, a status called dysplasia. In 

the dysplasia phase, cells have the potential to spread over the healthy tissue, although, they 

have not done (invaded) so yet. With further progression, the cells lose their initial functions 

and this phase is called anaplastic. The cells in the anaplastic phase have the potential to invade 

the surrounding tissues and organs (Ruddon, 2007).  

Cancer cells produce enzymes such as metalloproteinases that break down extracellular matrix 

(ECM) which enables them to move away from the primary tumour. They can migrate through 
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the tissue and infiltrate the blood vessels and lymphatics and travel through the vasculature to 

reach other sites in the body (Walker et al., 2018). Tumours formed from migrated cells in 

distant organs are called “secondary tumours”. The process of secondary tumour formation is 

metastasis and it is the main cause of mortality after cancer (Agliano et al., 2017).  

1.2 Cancer treatment  

Cancer has been recognised throughout the millennia and early reports of cancer diagnosis date 

back to 1600 BC (Falzone et al., 2018b). Since then, investigators and physicians were in the 

quest for a cure to treat the disease. At that time, the most feasible treatment seemed to be 

surgery and removing the tumour mass (Samiee et al., 2012). Nevertheless, the mortality rate 

kept increasing (Jeffe et al., 2016). 

The very first cancer treatments started in the early 1820s using surgery to remove solid tumours 

(Kuflik and Gage, 1990). However, this technique could only be used in the excision of 

accessible solid tumours with a specific border and did not have a significant effect on the long-

term survival of cancer patients. During the late 1860s, a French doctor, Claudius Regaud, who 

is now known as the “father of radiation therapy” started treating cancer by X-ray radiations 

(Sgantzos et al., 2014). Afterward, X-ray treatment started to be used for breast cancer and a 

few types of skin cancer such as basal cell carcinoma (Silverman et al., 1992). In the 1920s, 

immune-stimulation by the injection of complex mixtures from tumours, was attempted as a 

complementary therapy to radiotherapy for cancer treatments (McCarthy, 2006a). This was 

done by injecting streptococcal organisms to a patient with advanced cancer (McCarthy, 
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2006b). Although the method was controversial at that time, it is now shown to have had some 

validity but the overall risk of this treatment was high (Wang, 2017). Chemotherapy remains 

the most common systemic cancer treatment with many chemotherapeutics synthesised, 

particularly by chemists commencing in the 1960s and beyond (DeVita and Chu, 2008). The 

chemicals for cancer treatments were partially successful. This means that although the survival 

rate of the patients increased, the mortality rate remained high (Huang et al., 2017). Moreover, 

the chemicals were severely toxic to the patients resulting in a significant decline in their 

general health conditions. Furthermore, most of the chemotherapeutics had poor bioavailability 

and were not able to specifically target cancer cells (De Souza et al., 2010, Gerber, 2008, 

Nurgali et al., 2018).  

Most of the chemotherapeutics are cytotoxic reagents that can interfere with DNA and destroy 

the cells. Therefore, the presence of chemotherapeutics in the bloodstream can interact with 

healthy and crucially essential cells in the body, such as bone marrow cells (Dickens and 

Ahmed, 2018). Chemotherapy reagents are usually more effective when used in combination 

with surgery (Huang et al., 2017). Furthermore, depending on the biochemical nature of the 

drugs and/or their bioavailability, the therapy may fail to be efficiently delivered to cancer cells 

(Tharkar et al., 2019). Although chemotherapy in metastasised cancer is mostly considered as 

palliative care, which increases the patient’s lifetime (Dickens and Ahmed., 2018), ultimately 

it may not be successful in eliminating cancer (Alfarouk et al., 2015).  

Chemo-resistance is an important gap between initial cancer treatment and effective cure. This 

problem directly affects the patient’s life quality and survival (Jo et al., 2018). Various 

approaches can be used which, depending on cancer type and progression, may change. 
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Nevertheless, effective and efficient delivery of chemotherapeutics to cancer cells and 

preventing chemo-resistance remain important factors in the therapy progress (Chatterjee and 

Bivona, 2019). 

All the mentioned therapy procedures which have been developed over time were successful in 

increasing the survival rate of cancer patients particularly during the last half-century (Joo et 

al., 2013). Nevertheless, cancer-related mortality is still high. Furthermore, the side effects 

caused by the conventional therapy procedures are quite significant to the patient’s overall 

health, their quality of life (QoL), and the cost is also notable (Love et al., 1989, Pearce et al., 

2017).  

Emerging novel targeted therapy procedures have had a great impact on cancer treatments and 

consequently have enhanced patients’ QoL. The combination of chemotherapy and targeted 

drug delivery systems is called targeted drug delivery in cancer (Bayat Mokhtari et al., 2017). 

The main purpose of targeted therapy is to increase the efficacy of cancer treatment and 

diminish adverse effects on healthy tissues (Senapati et al., 2018). In this regard, targeted 

therapy approaches are promising tools with regards to increasing the scope for the treatment 

of cancer (Sawyers, 2004). Targeted therapy is a vast area of research that consists of various 

branches. The approaches to treat different cancer types and the progression stages are also 

different in targeted therapy procedures (Pucci et al., 2019).  
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1.3 Cancer drug delivery  

A deeper understanding of cancer behaviour has driven researchers, particularly in the last 

decade, to seek improved delivery vehicles for chemotherapeutics (Falzone et al., 2018a). Due 

to the challenging nature of cancer and its treatments many investigations have been performed 

towards the effective delivery of therapeutics (Navya et al., 2019, Senapati et al., 2018b).  

Common obstacles faced by traditional chemotherapy include lack of targeting, enzymatic 

digestion of the drug and biodegradation, and chemo-resistance (Liang et al., 2010). Through 

designing pertinent carrier systems for specific or non-specific drugs, these problems are 

starting to be addressed (Iwamoto, 2013).  

1.3.1 How anti-cancer drugs work, general principles  

The most conventional treatments for cancer are surgery, chemotherapy, and radiotherapy, 

depending on the stage of progression (Miller et al., 1981). Conventional chemotherapy acts 

non-selectively on all the cells in the body (Senapati et al., 2018a) and has a cytotoxic effect on 

the cells. However, recently novel biopharmaceuticals such as monoclonal antibodies and 

immunomodulators have improved the concept of conventional therapies (Kesik-Brodacka, 

2018). Yet, cytotoxic drugs (chemotherapeutics) are principal components of cancer treatment 

along with surgery and radiotherapy (Schirrmacher, 2019). Cancer cells in a tumour exist in 

three states, dividing cells in active phases of the cell cycle, resting cells not dividing but 

potentially can, and cells that no longer have the capacity for cell division (Bertram, 2000). 

Cells in the first state, which are estimated to consist 5% of the tumour mass, are more prone 
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to be affected by cytotoxic drugs. The cells in the second state may not be affected by the 

cytotoxic drug, however, may start proliferating (Housman et al., 2014). 

Most of the cytotoxic anti-cancer drugs act only against one aspect of the cancer cell cycle. The 

cytotoxic drugs affect the cells in the dividing phase (S phase) and usually have an anti-

proliferative effect by damaging the cell DNA. However, along with cancer cells, most of the 

rapidly dividing healthy cells in the body can be affected by cytotoxic drugs. This may 

subsequently cause nausea, hair loss, vomiting, sterility, decreased resistance to infections, and 

growth suppression (mostly in children) (Mitchison, 2012).  

Anti-cancer drugs are divided into three general groups (Table 1.1) namely cytotoxic drugs, 

hormones, protein kinase inhibitors, and monoclonal antibodies. Cytotoxic drugs include 

alkylating agents, antimetabolites, cytotoxic antibiotics, and plant derivatives (Chari, 2008).
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Table 1.1 Chemotherapy drugs and their characteristics 

 Alkylating 

agents 

Antimetabolites Cytotoxic 

antibiotics 

Plant 

derivatives 

Hormones Protein kinase 

inhibitors 

Monoclonal 

antibodies 

Example Bendamustine, 

melphalan, 

carboplatin, 

dacarbazine, 

procarbazine 

Pemetrexed,  

Cytarabine,  

Decitabine, 

Fluorouracil, 

Gemcitabine, 

Cladribine,  

Daunorubicin, 

Doxorubicin, 

Dactinomycin, 

Mitomycin, 

Epirubicin  

Docetaxel, 

Paclitaxel, 

Vinblastine, 

Vincristine, 

Vindesine, 

Medroxyproges

Terone, 

Megestrol, 

Tamoxifen, 

Mitotane  

Acalabrutinib, 

axitinib, 

crizotinib, 

Brentuximab, 

ofatumumab, 

rituximab 

Main 

mechanism 

Intrastrand 

crosslinking of 

DNA 

Blocking the 

synthesis of RNA 

and/or DNA 

Effect on RNA 

and DNA 

synthesis,  

Prevention of 

spindle 

formation  

Inhibition of 

hormone 

dependant 

tumour growth  

Inhibition of 

kinase involved 

in tumour 

growth factors 

Preventing cell 

proliferation, 

inhibiting 

angiogenesis.  
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Chemotherapeutic drugs usually are used in combination but resistance to anticancer drugs can 

either happen in primary treatment or can be acquired during treatment mostly due to adaptation 

of the tumour cells or mutation (Bayat Mokhtari et al., 2017).  

Several mechanisms leading to resistance have been described. These include low accumulation 

or uptake of the cytotoxic drug in the cells, increase in drug inactivation, increased 

concentration of target enzyme, decreased substrate, activation of alternative metabolic 

pathways, rapid repair of DNA damage caused by the drug, alteration in target activity (in the 

cell), and mutation in various or multiple genes (Vaidya et al., 2020). Accordingly, recent 

advances in cancer therapy involve drug treatment with lower side effects, targeted therapies 

for increase treatment efficiency, and a decrease in the chance of resistance (Pucci et al., 2019).  

  

1.3.2 Cancer drug delivery and nano-medicine  

Emerging nano-medicine has the potential to have a huge impact on cancer drug delivery 

(Bertrand et al., 2014). The utilization of nano-sized particles as carriers for chemotherapeutics 

has become an important tool in cancer therapy (Cho et al., 2008). Nano-sized particles have a 

high tendency to enter cells by an enhanced permeation and retention (EPR) effect which is 

known as passive targeting. The transport of nano-sized particles via the leaky vasculature in 

the tumour microenvironment (Dadwal et al., 2018) is known as passive targeting of cancer 

cells. These carrier particles can be further modified to especially target the cancer cells; this is 

called active targeting.  
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Besides the EPR effect, delivery via nano-particles has additional advantages. Therapeutics and 

drug conjugates entrapped in nano-particles tend to be more stable, particularly for drugs that, 

intrinsically do not have stability and long half-life (Parveen et al., 2012). The nano-particle 

shell can preserve the drug allowing for longer biological life (Nguyen, 2011). Also, the 

concentration of drug-containing particles will increase in the cancerous tissue site, due to the 

EPR effect (Senapati et al., 2018b). Furthermore, nano-particles can be used for entrapments of 

multiple drugs and they are suitable for multiple modes of delivery. The use of nano-particles 

can be advantageous for the delivery of drugs containing siRNA and protein as well since they 

can protect them from being degraded (Navya et al., 2019).  

Nano-particles are investigated as suitable tools for both targeting cancer cells and addressing 

chemo-resistance at the same time (Sutradhar and Amin, 2014). Encapsulating 

chemotherapeutics within nano-particles can provide controlled release over time. This will 

happen by the slow degradation of the nano-sized shell encapsulating the drug (Rizvi and Saleh, 

2018). The drug efflux delivered to the tumour will be limited and slower over time; this helps 

to prevent drug-efflux-dependent chemo-resistance (Navya et al., 2019, Da Silva et al., 2017). 

This feature of the delivery system can be manipulated to fit the final purpose.  

Nano drug delivery systems can be prepared using various materials and different procedures. 

Liposomes (Allen and Cullis, 2013), micelles (Rapoport, 2007), polymeric nano-particles 

(Kumari et al., 2010), dendrimers (Tomalia et al., 2007), and hydrogels (Sharma et al., 2016), 

are the most common structures of nano-sized particles which can be used as drug carriers.  

Micelles are among the very first novel drug delivery systems (Sutton et al., 2007). Micelles 

are known for their high specificity of delivery and controlled release. However, micelles lack 
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the properties for effective extravasation and there is the possibility of chronic liver toxicity in 

micellar drug delivery systems (Yokoyama, 2011).  

After the successful application of micelles in delivering chemotherapy drugs such as 

doxorubicin, improvements to similar delivery systems for enhanced therapy and quality has 

gained importance (Fromherz and Ruppel, 1985). Lipid nano-carriers which emerged about 

three decades ago (Müller et al., 1997) were introduced as nano-sized delivery systems for 

therapeutics. Although these carriers have advantages like increased drug-loading efficiency 

and enhanced stability, other groups of non-toxic nano-sized particles made of natural and 

synthetic lipids show superior properties and provide controlled release with enhanced stability 

(Niu et al., 2016).  

Another well-known nano-delivery vehicle is the dendrimer-based nano-particle composed of 

repetitively branched molecules, recognised for its very small size (1.5 to 10 nm), (Wolinsky 

and Grinstaff, 2008, Guo and Shi, 2012). Dendrimer’s properties can be easily controlled by 

modifications and it can be used in a range of applications in nano-medicine and drug delivery 

(Bahrami and Arabi, 2016). Polymeric nano-structures made of various natural or synthetic 

polymers acting as nano-carriers for drugs or targeted therapies have very flexible preparation 

methods and controllable properties especially in cancer drug delivery (Wiradharma et al., 

2009). Other than polymers, gold particles (Singh et al., 2017), magnetic nano-carriers (Tietze 

et al., 2015), albumin nano-carriers (Khandelia et al., 2015), viral particles 

(Biabanikhankahdani et al., 2016) and carbon-based carriers (Karimi et al., 2015) are alternative 

nano-carrier materials used for targeted and specific cancer drug delivery. Although nano-sized 

carriers can act as both passive and active delivery vehicles targeting cancer cells, there are still 
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challenges and sometimes disadvantages with each system. These include stability and 

cytotoxicity and particle accumulation in the body (Jong et al., 2008); however, these 

limitations can be addressed with further alterations, such as surface modification for active 

targeting, using peptides (Pang et al., 2019).  

As mentioned above, the simplest tumour drug delivery mechanism using nano-particles is the 

EPR effect. It is capable of delivering chemotherapeutics to a cancer cell in a controlled fashion 

to overcome chemo-resistance and provide higher efficiency of chemotherapy. All of the nano-

sized delivery systems mentioned above, have their pros and cons. The most important factor 

in choosing a delivery system for cancer is the nature of the tumour and its stage of progression 

(Patra et al., 2018). However, the fate of the nano-particles after entering the cell cytosol needs 

to be considered. Therefore, a cancer-specific drug delivery system should be designed based 

on both kinetic and histologic parameters, to meet the criteria for ultimate use (Blanco et al., 

2015). 

1.3.3 Intracellular delivery of the drugs 

One of the major concerns of chemotherapeutics is the drug’s action-site and its fate in the body 

and even its interactions with the cancer cell (Alfarouk et al., 2015). Since organelles are located 

within the cell walls, the drug carrier must first penetrate the cell, to be effective. Hence 

successful uptake of drug or drug-carrying particles is crucial. There is a basic mechanism for 

cancer cells to take up the drug-carrying particles (Sakhrani and Padh, 2013).  
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1.3.3.1 Cellular uptake of drug particles in cancer cells  

Cells take up nano-particles and most chemotherapy therapeutics by endocytosis. However, due 

to endosomal entrapment, often they are degraded by the lysosome (Pei and Buyanova, 2019). 

Delivering drugs to cancer cells in a targeted manner requires surface functionalisation of the 

carrier particles, with specific ligands that will bind to cell surface receptors. The uptake of 

such functionalised particles is termed “receptor-mediated endocytosis” (Vácha et al., 2011, 

Devarajan et al., 2019), the aim is successful uptake of the drug carriers by the cells, however, 

this may not affect the ultimate treatment efficacy (Mo and Gu, 2016).  Drug particle size and 

penetration mechanism are significant factors and other important considerations are that the 

therapeutic reaches and activates the cellular organelle(s) effectively (Barua and Mitragotri, 

2014). As an instance, for doxorubicin to activate in the nucleus (Wang et al., 2017b), the drug 

delivery vehicle should be designed to penetrate the cytosol and reach the nucleus for ultimate 

effectiveness (Wei et al., 2018).  

A drug delivery system requires energy to enter the cancer cells and remain in the cytoplasm 

rather than being degraded in lysosomes (Dong et al., 2018). So far, various tools have been 

developed to address this issue. For example, the modification of therapeutic carriers for 

enhanced cellular uptake (Dissanayake et al., 2017). Surface modification using cell-

penetrating peptides is among the options for providing enhanced cellular uptake. As an 

instance, tat-peptide (a cell-penetrating peptide) was used in various targeted delivery systems 

and applications. Tat-modified drug-carrying nano-particles have demonstrated enhanced 

uptake in cancer cells (Cao et al., 2019). Cell-penetrating peptides have been used in drug 
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delivery systems and have shown an increased tendency to enter the cell without dependency 

on any external force. For example, this mechanism was used for doxorubicin which is a 

nucleus-specific drug (Hodoniczky et al., 2008). Cell-penetrating peptides are also used to 

address the drug-resistance issues, such as Acta-arginine (R8) delivering paclitaxel with high 

efficiency (Borrelli et al., 2018, Singh et al., 2018). Overexpressed in cancer cell lines, folate 

receptor is another option for surface modification of the drugs or drug carrier to provide 

increased uptake in cancer cells (Cheung et al., 2016).  Vitamin B-9 occurs as folate in the body, 

which is an essential component for rapidly proliferating cells in the body (Curtis et al., 2017).  

Transferrin proteins (Daniels et al., 2006) and antigens such as CD19 and CD20 (Yu et al., 

2010) which have been widely used in cancer drug delivery, are also alternatives for cancer 

targeting and providing enhanced uptake in cancer cells.  

1.3.3.2 Intracellular release and fate of the drug 

Reaching delivery target and controlling drug release pace can be achieved via manipulation of 

carriers to become stimuli-responsive as well, depending on the target and its specifications. 

The enzyme-redox potential, temperature, and pH-triggered releases are the most common 

elements for controlling drug release (Sheng et al., 2019). However, the fate of the drug particle 

may not be predictable even using these triggering factors. Hence, alternative triggering factors 

are being investigated. For example, nano-carriers can be triggered by ultrasound as they have 

been used for Paclitaxel delivery, and nano-emulsions can be activated by ultrasound (Cochran 

et al., 2011). Light-sensitive drug carriers can also be prepared where they can release the drug 
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once exposed to a light source such as UV light. However, there are concerns about this process 

due to polymerisation and in vivo degradation of polymer coatings (Viger et al., 2013).  

Every single cellular organelle in cancer has a specific role. An efficient drug delivery system 

should be able to enter the cell and deliver the drug to the related organelle. Hence knowledge 

of the subcellular organelles specifications is important (Biswas and Torchilin, 2014).  

Most of the cancer-targeting drugs can pass through the cell membrane and reach the cytosol 

(Yang and Hinner, 2015). However, a very negligible amount of them can reach into the 

subcellular organelles, such as the nucleus, where they exert their inhibitory effect on specific 

gene expression pathways. Subsequently, the cancer cell’s fate is controlled (Kumar et al., 

2020).  

The nucleus is the main and most important part of a cell and it hosts the human DNA, the 

genetic material of the cell. Any upregulation or downregulation of genes may lead to lethal 

diseases like cancer (Mazzone et al., 2019). In cancer cell lines, the nucleus is the target for the 

delivery of most of the chemotherapy drugs (Vasir and Labhasetwar, 2005). For drugs to get to 

nuclei they should be able to pass the nuclear pore complex (NPC) passively or actively 

(Yasuhara et al., 2004). Nano-sized drug delivery systems have been developed to be 

compatible with cancer drug delivery applications but not all of them successfully deliver the 

drug to the nucleus for subsequent cell death induction. This means that more specific 

modifications to nano-particles are needed (Parta et al., 2018). As an instance, Tat-peptide-

modified nano-particles have been developed to deliver doxorubicin more efficiently to the 

nucleus (Pan et al., 2012). Furthermore, the charge reversal process was also used to induce 
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nuclear-delivery by drug-loaded nano-particles. This method was simply used to deliver poly(ε-

caprolactone)-block-polyethyleneimine nano-particle directly to the nucleus (Xu et al., 2007).  

Mitochondria are known as the powerhouse of the cells. They regulate cell cycle and 

proliferation and have an important role in cell apoptosis. Apoptosis messenger agents in the 

cytosol induce mitochondrial membrane permeabilisation leading to initiation of the apoptosis 

process (Costantini et al., 2000, D'Souza et al., 2011). An alteration with an inhibitory effect on 

mitochondrial membrane permeabilisation functions can consequently inhibit apoptosis. This 

process may ultimately end up as cancer. Considering the importance of mitochondria in cancer, 

the possibility of inducing apoptosis to cancer cells by targeting the mitochondria can be an 

option. So far various delivery systems have been designed, including nano-particle delivery 

systems, which can be functionalised to have mitochondrial selective delivery (Murphy, 1997, 

Chan et al., 2017).  

Lysosomes have the most important role in endocytosis. They have a highly acidic environment 

and their role is to degrade the unwanted particles, recycle molecules, and receptors back to the 

cell. Cancer drug delivery systems need to escape this cycle (Piao and Amaravadi, 2016, 

Dielschneider et al., 2017) to be functional. On the other hand, failure of lysosomal function 

will lead to the accumulation of toxic materials in the cytosol which may end up in crucial 

diseases. However, this aspect can be taken for granted in a cancer cell drug delivery (Piao and 

Amaravadi, 2016). Accordingly, a major challenge for intracellular drug delivery is to find 

ways to prevent the drugs from entering the endocytosis cycle and keep the therapeutics in the 

cytosol, such as the utilization of modified polymer nano-complexes (Almeida et al., 2017).  
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Another cellular organelle, the Golgi apparatus, bears great importance in the drug delivery 

process. Any disorder in the Golgi apparatus may lead to serious disease, due to its role in 

processing macromolecules. It is known as an important target for cancer drug delivery (Vasir 

and Labhasetwar, 2005). Delivery systems that were targeted to the Golgi apparatus have 

appeared to be more functional and efficient (Tarragó-Trani and Storrie, 2007). Various 

pathways have been used to deliver the drugs to the Endoplasmic reticulum (ER) and then to 

the Golgi apparatus using specific receptors (Tarragó-Trani and Storrie, 2007). There are 

instances such as inhibition of breast cancer cell invasion by application of signaling proteins 

to target the Golgi (McKinnon and Mellor, 2017) and ADP-ribosylating bacterial toxin 

targeting cancer cell’s Golgi and ER. 

As mentioned above, many attempts have been tried to eliminate cancer cells efficiently and 

completely. Thus, the combination of the right delivery system and the right receptors to target 

the cell, and the organelle are crucially important. This requires a careful design of the delivery 

carrier to reach the appropriate target efficiently.  

1.4 Challenges in cancer drug delivery 

A multitude of factors has to be considered in the process of developing a novel delivery system. 

Type and stage of cancer, age of the patient, and immune response are among key factors 

influencing drug design and delivery (Hassanzadeh et al., 2019). Furthermore, the design 

should be based on essential therapeutics needed for specific target cells and must overcome 

the basic problems which cannot be addressed with traditional chemotherapy and radiotherapy 
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(Li et al., 2018b). So far various systems have been developed to achieve efficient delivery of 

chemotherapy drugs to cancer cells, a few of them address specific delivery along with 

overcoming resistance in cancer cells. A delivery system needs to address both to have a highly 

efficient therapy procedure.  

Other than cancer type, the tumour microenvironment is an important factor in cancer drug 

delivery system design (Khawar et al., 2015). Heterogeneous cancer cells are surrounded by 

immune cells, growth factors, blood vessels, signalling molecules, and extracellular matrix 

(ECM) (Anderson et al., 2020).  For a drug delivery system to be successful, the particles must 

cross the extracellular matrix, fibroblasts, and other cells of the tumour microenvironment to 

reach the cancer cells (Roma-Rodrigues et al., 2019). Thus, it is important to understand the 

tumour microenvironment structure to avoid drug resistance and provide more efficient 

delivery (Figure 1.3).  

Stromal cells, one of the tumour microenvironment components, secrete connective tissue 

proteins including collagen, this can lead to fibrosis. When this happens, it may prevent the 

delivery of therapeutic agents from reaching cancer cells (Ria and Vacca, 2020). Hence, an 

active tumour microenvironment will lead the cancer cells to metastasise and invade the lymph 

nodes initially and ultimately to other organs. Additionally, the pressure-induced by stromal 

cells will affect the therapy adversely (Trédan et al., 2007). This will also happen through the 

entrapment of the drugs and lowered drug efflux due to the same mechanism, which inhibits 

the effect of therapy. This process may also lead to drug resistance in cancer (Yang and Gao, 

2017, Sharma et al., 2012).  
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Figure 1.3 Understanding tumour microenvironment and how it limits drug delivery 

Created with Biorender.com 

 

Hence, the drug delivery system should be able to cross the tumour microenvironment and 

reach the cancer cells. Given the importance of tumour microenvironment, a drug delivery 

vehicle must be able to overcome these barriers (Stylianopoulos et al., 2018). Nano-particle-

based delivery systems have demonstrated their ability to increase the yield and the quality of 

drug delivery and subsequently increases the therapy outcome. This will help to defeat tumour 

microenvironment-associated chemo-resistance (Xin et al., 2017).  
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1.5 Skin structure and function 

 Skin is the largest organ in our body and has the crucial protection role acting as a shield against 

pathogens and is responsible for synthesising vitamin D3 (cholecalciferol) in presence of UVB 

(Mostafa and Hegazy, 2015). Three main layers are located in the skin, epidermis, dermis, and 

hypodermis (Agarwal and Krishnamurthy, 2019).  

The epidermis is the outermost layer of the skin which consists of four layers, namely Stratum 

corneum, Stratum lucidum, Stratum granulosum, Stratum spinosum, and Stratum Basale. 

Stratum Basale is home to keratinocytes and melanocytes (Baroni et al., 2012). Melanocytes 

are responsible for producing granules of melanin in melanosomes (Cichorek et al., 2013). 

While keratinocytes divide and grow, they travel towards the surface of the skin.  

The dermis is located below the epidermis and its thickness varies all over the body depending 

on the underlying tissue (Carroll, 2007). Fibroblasts are located in the dermis, it also contains 

blood vessels, lymphatics, hair follicles, sebaceous gland, and sweat gland.  

The hypodermis, the most innermost layer of the skin, contains connective and adipocyte tissues 

and its thickness can change depending on its anatomical locations (Lee, 1953).  

1.5.1 Skin cancer  

Skin cancer is one of the most frequently diagnosed cancer types. The incidence is higher in 

people with fair and white skin types (Roider and Fisher, 2016). So far an increasing rate of 

skin cancer incidence and related mortality has been reported (Queen, 2017). According to the 

global cancer statistics, non-melanoma skin cancer incidents have fifth-place among other 
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cancers, which its 5-year mortality rate has increased by 0.7% until 2018 (Bray et al., 2018). 

Hence early detection, diagnosis, and treatment are vital in any kind of skin cancer type – 

aggressive or benign-(Diepgen and Mahler, 2002, Esteva et al., 2017).  

Among the reasons for the increased rates of skin cancer diagnosis, environmental factors could 

be mentioned (Masoumi et al., 2018). Yet, various factors may be involved as an initiation point 

for skin cancer incidents, including inherited gene mutations or lifestyle. The genetic factor 

gains importance when the patient has a family history of skin cancer or a less pigmented skin 

type. The most important risk factor for skin cancer is increased exposure to UV light which 

increases the risk of skin cancer incidents which is most common in people aged 20-35 

(O’Sullivan et al., 2019).  

UV light is a primary reason for sunburn and skin cancers. It has three categories, UVA (320-

400 nm), UVB (290-320 nm), and UVC (200-280 nm) (Harrison and Bergfeld, 2009). Only 5% 

of sun radiations are UV light, and about 0.3% of it reaches the earth after absorption by the 

ozone layer. However, even this amount can cause sunburns and skin defects (Gonzaga et al., 

2009). UV light is known as an important reason for skin aging, benign skin defects, and rashes. 

It is known that UVB and UVA radiations are more responsible for skin cancer than UVC (Rass 

and Reichrath, 2008). 

There are three most common skin cancer subtypes (Figure 1.4) squamous cell carcinoma, basal 

cell carcinoma, and malignant melanoma (Deinlein et al., 2016). Squamous cells are located on 

the outer layer of the skin. This type of skin cancer is also called non-melanoma skin cancer. It 

occurs most commonly on sun-exposed areas of the body. These cells grow slowly, and they 

rarely spread or metastasise. Early diagnosis and detection usually help to control squamous 
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cell carcinoma. Basal cell carcinoma is another non-melanoma skin cancer. About 80 percent 

of skin cancer cases are basal cell carcinoma (Rubin et al., 2005). This kind of skin cancer 

develops from UV exposure, in the lowest layer of the skin epidermis. Basal cell carcinoma is 

rarely lethal but it may be when left untreated (Helfand et al., 2001). On the other hand, 

melanoma which initiates from melanocytes is an aggressive type of skin cancer that has the 

potential to invade and spread in the body (Ioannides, 2017).  

 

 

Figure 1.4 Skin cancer types 

 Basal cell carcinoma (left), Squamous cell carcinoma (middle), and malignant melanoma 

(right). Created with BioRender.com 
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1.5.2 Drug resistance in skin cancer  

Surgery, chemotherapy, laser therapy, immunotherapy, and radiotherapy are the main treatment 

procedures for cancer, still, chemotherapy plays the main role in the treatment (Price and 

Sikora, 2020). However, about 90% of chemotherapy procedures will end up in failure due to 

drug resistance during the invasion and metastasis (Longley and Johnston, 2005). Hence, drug 

resistance is a serious problem in cancer treatments.  

Various mechanisms are responsible for drug resistance. Multidrug resistance happens while 

cancer cells continue to survive despite the use of multiple anti-cancer drugs (Wu et al., 2014). 

This can happen due to the increased release of drugs outside of the cancer cells and reduced 

absorption of the drugs. ABC transporters including P-glycoproteins (P-gp), multidrug 

resistance-associated protein 1 (MRP1), and breast cancer resistance protein (BCRP/ABCG2), 

are a family of ATP-dependant transporters, are responsible for these phenomena (Leslie et al., 

2005, Choi and Yu, 2014). Blocked pathways of apoptosis are another mechanism for drug 

resistance (Fernald and Kurokawa, 2013).  

As mentioned in section 1.1, cellular apoptosis regulation plays a crucial role in cancer initiation 

and treatment. Cell death happens in three apoptosis, necrosis, and autophagy, and apoptosis 

happens through internal and external pathways (Chen et al., 2018). Cell death receptors such 

as TFN-R, FAS, linker proteins, caspases-3, -6, -7, -8 are involved in external pathways leading 

to apoptosis (Figure 1.1) (Elmore, 2007). As internal mitochondrial apoptosis pathway, 

upregulation of anti-apoptotic genes (Bcl2, AKT, etc) (Sharma et al., 2019) and downregulation 
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of pro-apoptotic genes (Bax, Bclxl, etc) in tumour cells will lead to the emergence of resistance 

(Campbell and Tait, 2018).  

Alteration in drug metabolism is another factor leading to drug resistance (Lopes-Rodrigues et 

al., 2017). Enzyme reactions in the cells limit the drug resistance via reducing the activation of 

prodrug (reduced activity of some enzymes) (Ahmed et al., 2016) and increasing the drug 

activation (increased activity of some enzymes) (Hientz et al., 2017). Hence, alterations in 

enzyme activities associated with drugs and receptors may lead to drug resistance.  

In some cases of skin cancer especially in melanoma, resistance happens with the alteration of 

chemotherapy drug targets (Kozar et al., 2019). In most of the melanoma cases bearing 

BRAFV600 mutation, resistance happens through the inactivation of MAPK/ERK pathways 

(Czarnecka et al., 2020). While the target of the chemotherapy drug, such as mutations and 

expression levels changes, the drugs will not be effective on that target (Wang et al., 2019b).  

So, the cell will continue proliferating without any damage. For instance, cancer cells having 

mutations of topoisomerase II will be resistant to the drug targeting topoisomerase II (Nitiss, 

2009).  

Imposing DNA damage (directly or indirectly) is one of the mechanisms of chemotherapy drugs 

(Woods and Turchi, 2013). Some mechanisms lead to the repair of the damaged DNA. These 

include the nucleotide excision repair system (NER) (Shuck et al., 2008) and homologous 

recombination repair mechanism (RRM), which can repair the DNA damage thus will trigger 

resistance (Li and Heyer, 2008).  
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Amplification of drug target genes is also a reason for the cancer cells to be drug-resistant. 

Some epigenetic factors such as DNA methylation and histone alterations will take a part in 

resistance as well (Lu et al., 2020).  

There are also other factors at a cellular level, leading to resistance development. Namely 

tumour heterogeneity, drug efflux, tumour microenvironment, and cancer stem cells. Intra-

tumoural pressure induces by stromal cells, hypoxia and paracrine signalling often lead to block 

the drug passage and inefficient delivery leading to drug resistance in tumour cells (Prasetyanti 

and Medema, 2017).  Extracellular matrix (ECM) in tumour microenvironment also positively 

contributes to resistance emergence due to being home to cytokines and growth factors 

(Nallanthighal et al., 2019). Accordingly, to reach an efficient cancer therapy, the problem of 

drug resistance should be resolved. 

1.6 Melanoma  

Among the skin cancer categories, melanoma is the most aggressive and lethal type of skin 

cancer (Carreau and Pavlick, 2018). Similar to many other diseases, there are external factors 

that may be the initiation point for melanoma (Belter et al., 2017). UV radiation exposure is 

one of the critical environmental factors responsible for melanoma initiation and progression. 

Also, genetic and lifestyle factors should not be neglected, a weak immune system is likewise 

a factor that is important in the development of melanoma (Queen, 2017, Rangwala and Tsai, 

2011).  
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Melanoma initiates from melanocytes (Figure 1.5), melanocytes are responsible for skin 

pigmentation.  They produce melanin which changes skin colour when exposed to UV light. 

Melanocytes are located in the skin epidermis and have a protective effect on the skin from UV 

light. However, under triggering factors such as increased exposure to UV light, melanocytes 

start to proliferate irregularly and abnormally, which leads to malignant melanoma formation 

(Kozovska et al., 2016, Brenner and Hearing, 2008). Melanoma growth and progression have 

various types depending on the tumour cells spreading direction. Melanoma has 4 main 

subtypes Figure 1.6 superficial spreading melanoma, nodular melanoma, lentigo melanoma, 

and acral lentiginous melanoma (Garbe and Leiter, 2009).  
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Figure 1.5 Skin layers showing the location of melanocytes in the skin  

Melanoma initiates from the irregular proliferation of melanocytes, which are located in the 

epidermis. Created with BioRender.com. 

 
 

The most common subtype of melanoma is superficial spreading melanoma (Forman et al., 

2008). This type of melanoma has uneven borders and it is mostly on the surface of the skin 

and grows horizontally. It can also grow vertically penetrating the epidermis but the larger 

portion of the tumour is on the surface of the skin.  

The second most common melanoma, nodular melanoma, grows deep into the skin layer (Erkurt 

et al., 2009). It grows fast and spreads very promptly. It is the worst type of melanoma. It is 

mushroom-shaped on the skin surface and usually dark-coloured but in some cases can be 

pinkish-red.  
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The third subtype of melanoma that is more common in old people is lentigo melanoma 

(DeWane et al., 2019). Lentigo melanoma is usually dark brown and grows in the epidermis. It 

can also grow within the skin layers after a long time of growth on the skin surface. The final 

subtype of melanoma is common in people with darker skin. Unlike other types of melanoma, 

Acral lentiginous melanoma is not so dependent on high UV exposure. This type of melanoma 

is more prone to develop and metastasise (Liu and Sheikh, 2014).  
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Figure 1.6 Various melanoma separated in terms of physical shape 

Nodular melanoma, (b) Acral lentiginous melanoma, (c) Lentigo malignant 

melanoma and, (d) superficial spreading melanoma are four subtypes of 

melanoma. Created with BioRender.com. 

 
 

 

Melanoma progression happens after a few evolutionary stages, to reach its malignant form. 

The initial sign of a melanoma is the development of a mole (Nevi), which on its own, is a 

benign skin lesion (Michael et al., 2017). However, most of the melanoma cases initiate from 

a mole (Bauman et al., 2018). With the abnormal proliferation of melanocytes, the mole will 
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start differentiating irregularly and turn into dysplastic nevi, which is stage two. In the third 

stage, dysplastic nevi start growing and turns into a tumour (Zaidi et al., 2008). It may grow 

vertically or horizontally, depending on the type of melanoma as mentioned above, until it 

reaches the epidermis but does not invade the dermis. In stage four, melanoma can invade the 

dermis. At this stage, melanoma has the potential to invade and differentiate faster. Following 

this stage, the tumour grows faster and metastatic lesions appear, which can invade other organs 

(Elder, 2016).  

The mortality rate of melanoma patients is among the highest compared to other skin cancer 

types (Schadendorf et al., 2018). According to epidemiology studies in the United States, over 

the past 30 years, the population of patients diagnosed with melanoma has been increased (Erdei 

and Torres, 2010). Until 2017, 87,100 new patients were diagnosed with a progressed stage of 

melanoma in the United States. The mortality rate of patients was 11.15%; the majority of them 

being men (Matthews et al., 2017). In the UK, melanoma incidents had a sharp rise of 55% over 

9 years until 2009 (Arnold et al., 2014). Since 2011, melanoma is the 5th most common cancer 

in the UK (Robertson and Fitzgerald, 2017). It is predicted that incidents will rise by 7% until 

2035 in the UK (Mayers, 2018). 

In the early stages, the melanoma lesion can be removed with surgery (Testori et al., 2009). The 

survival rate for early-stage patients is about 98% (Mohammadpour et al., 2019). However, the 

more developed it becomes, the treatment process becomes a challenge and the survival rate 

drops to 17% in the metastatic stage (Ugurel et al., 2017). Hence, early detection and highly 

efficient treatment can increase the survival time of melanoma patients (Eftekhari et al., 2019).  
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The treatment process for melanoma is a challenge. Due to difficulties of early diagnosis 

melanoma is hard to be diagnosed in the early stages and often presents a poor prognosis 

(Weyers, 2018). In most cases, it can be detected only when it is progressed to late stages and 

already invaded other organs, which makes the treatment process hard and lowers the patient’s 

survival chance. More importantly, melanoma is highly drug-resistant which makes the 

treatment process a challenge (Nikolaou et al., 2018). Hence, conventional therapeutics used 

for cancer treatments are less effective.  

Melanoma cells can develop alternative pathways to avoid apoptosis and resist therapeutics and 

can continue proliferating and spreading even after severe conditions of treatment. The 

malignancy of melanoma also depends on the stage of its progression (Winder and Virós, 2017). 

Melanoma may travel, initially, to the closest lymph nodes forming loco-regional deposits. 

These may seed out further metastases which may travel to distant organs, the wider the 

melanoma is disseminated, and the greater number of organs involved, so the poorer outlook 

and prognosis (Damsky et al., 2010).   

However, the development of metastasis can be very fast, but only it forms after certain 

evolutionary stages, as mentioned above (Maddox, 2017). There are many factors and 

hypotheses which can be the initiating points of tumour metastasis, but the exact reason behind 

it is still a mystery. Distant metastasis to multiple organs is the most problematic stage of 

melanoma to treat and more efficient therapy procedures are desirable for advanced melanoma 

stages (Hua et al., 2016). 

Depending on the stage of disease progression, common treatment procedures for a person 

diagnosed with melanoma are surgery, immunotherapy, adjuvant therapy, targeted therapy, 
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radiation therapy, and chemotherapy (Tran et al., 2009). Specifying the best treatment depends 

on how developed the melanoma is. Usually, four stages of its progression need to be 

considered. Surgery applies to melanoma in stages zero and one, in which the cancer cells are 

very superficial or have not grown deeply. Wide excision surgery is applied for the patients 

diagnosed with stage II melanoma in which lymph nodes are also involved, adjuvant therapy 

can also be advised (Koster et al., 2017). Adjuvant and radiation therapy are recommended for 

stage III melanoma patients, after surgery of the affected area, followed by chemo and targeted 

therapy (Blank et al., 2018). For stage IV of melanoma, the treatment will be the combination 

of radiotherapy, chemotherapy, and targeted therapy depending on how wide metastasis has 

been spread (Brossart et al., 1993, Garbe et al., 2010). 

So far there are only a few therapy options that are approved by the FDA to treat metastatic 

melanoma, nevertheless, the overall chance of survival is still the same despite the high toxicity 

of the chemotherapeutics (Jacquelot et al., 2017). Later on, many of the therapeutics containing 

highly toxic components were removed from formulations in the markets (Bonifacio et al., 

2014). As mentioned, there remain many challenges to have malignant melanoma treated 

without possible side effects, with enhanced efficiency and decreased multidrug resistance 

using conventional therapy systems. However, novel targeted therapy approaches can have 

promising effects on reducing the progression of melanoma.  

The most important obstacle towards melanoma treatment is chemo-resistance (Kalal et al., 

2017). There are various reasons behind the resistance mechanism in melanoma (Erdmann et 

al., 2019). Melanoma cells can develop various signalling pathways to regulate cell 

proliferation and differentiation. Downregulation or upregulation of these pathways can lead to 
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the development of the tumour or on the other hand, apoptosis induction to the tumour cells. 

The fundamental reason for resistance can be apoptosis dysregulation (Helmbach et al., 2001). 

More specifically, resistance in melanoma happens via altered DNA repair, altered enzymatic 

activation, dysregulation of apoptosis pathways, and drug transport efflux (Kalal et al., 2017).  

Recently, investigators have been focused on alternative resistance factors influencing 

melanoma treatment such as the physical environment of the tumours. There are possibilities 

that tumour microenvironment can be an escalating factor for resistance (Parkin et al., 2019). 

High intra-tumoural pressure induced by stromal cells, poor perfusion of drugs in the tumour 

microenvironment, drug efflux, and intracellular entrapment of therapeutics are the most 

important related factors (Somasundaram et al., 2016).  

 

1.6.1 Anti-cancer treatments for melanoma alleviation 

Dacarbazine (DTIC) was the first drug approved by the FDA for melanoma treatment (Velho, 

2012). It was used as the main chemotherapy agent for treating melanoma. However, the 5-year 

mortality rate was still 96-98%. Hence, despite its high toxicity which is thought to be in result 

of photo-degradation (Koreich et al., 1981), the utilisation of dacarbazine continued to be used 

in combined chemotherapies (Wu et al., 2015). The most important side effects of dacarbazine 

are decreasing white blood cells and severe hepatotoxicity (Ma et al., 2013). Among 

chemotherapy drugs, doxorubicin (classified as anthracycline antibiotic) has been routinely 

used for multiple types of cancer treatments including melanoma (Licarete et al., 2020). 

Although doxorubicin is vastly used in melanoma treatment (Mukherjee et al., 2020), it is 
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among the drugs to which melanoma develops resistance (Fukunaga kalabis et al., 2012, 

Licarete et al., 2020). Furthermore, doxorubicin is severely cardiotoxic due to its reaction with 

free iron in the body, which can be prevented by combined therapy using iron chelators such as 

dexrazoxane (Thorn et al., 2012).  

Improvements in melanoma treatment continued by using Temozolomide (TMZ), a prodrug 

derived from dacarbazine (Shah et al., 2010a). Although the development of Temozolomide 

was an important step, the survival rate of melanoma patients did not improve. According to 

the investigations, no significant difference in side effects of Temozolomide was detected 

compared to DTIC (Teimouri et al., 2013), hence the use of DTIC was recommended. 

Electrochemotherapy (ECT) was later developed for treating melanoma. This system was 

designed for use of two cytotoxic drugs bleomycin and cisplatin (Fiorentzis et al., 2018). The 

base of treatment was facilitating the delivery of the drugs to cells by high-intensity electric 

pulses. This method was effective for treating subcutaneous melanoma nodules, however, it 

was highly toxic to the lymphatic system. Another treatment procedure for melanoma was 

introduced as photodynamic therapy (PDT), a light-based minimally invasive therapy for stage 

III/IV cutaneous melanoma (Naidoo et al., 2018). Although this method was non-toxic, it 

helped reactive oxygen species (ROS) to release. Hence the effect of PDT on melanoma was 

limited. However, it was suggested to be used in combination with chemotherapy drugs.   

Cancer and the immune system are closely related, due to the presence of immune cells in 

tumour sites at the chronic inflammation site. Hence Immunotherapy was suggested for cancer 

treatment in the 19th century (Drake et al., 2014, Domingues et al., 2018). This procedure was 

a promising method for advanced stages of melanoma, yet again, it was more effective whilst 



 

 

 

38 

 

used in combination with chemotherapy. Interferons are important cytokines in 

immunotherapy. They have important immunomodulatory, antiangiogenic, antitumor, and 

antiproliferative. FDA approved the use of Interferon α-2b in 1995 for melanoma stage III/IIB. 

Approved in 2011 by FDA, Peg-interferon (Peg-INF α-2b) was used in stage III, melanoma 

treatment as a supplementary therapy (Medrano et al., 2017). Peg-INF was developed by 

combining Interferon α-2b with polyethylene glycol to prolong the stability of the Interferon α-

2b (Shiffman, 2001). Hence its therapeutic effect was improved. IL-2 was another cytokine 

known for its antitumor effect and approved by the FDA in 1998 for metastatic melanoma 

treatment (Jiang et al., 2016). Another treatment approved by the FDA in 1999 for antitumor 

immune response suppression, were Treg inhibitors (Han et al., 2019). FDA also approved the 

use of Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade in 2011, PD-I ligand 

blockade in 2014, oncolytic virus therapy in 2015, Toll-like receptor agonists, and adoptive T-

cell therapy, as immune therapy approaches for cancer (Wang et al., 2011). However, all these 

approaches were more efficient while used in combination with other therapies such as 

chemotherapy.  

Targeted therapy procedures significantly contributed to melanoma therapy. Approved in 2011, 

BRAF inhibitors were used in the treatment of melanomas harbouring BRAF mutations (Shah 

et al., 2019). Vemurafenib and Debrafenib two BRAF inhibitor drugs used for metastatic 

melanoma patients were reported to show tumour regression in 90% of patients (Croce et al., 

2019). Furthermore, Trametinib (MEK inhibitor) (Lugowska et al., 2015), Imatinib (CKIT 

inhibitor) (McLean et al., 2005), Bevacizumab (VEGF inhibitor) (Ferrara et al., 2005), 

rapamycin (PI3K-AKT-mTOR inhibitor) (Feldman and Shokat, 2010), ribociclib (CDK 



 

 

 

39 

 

inhibitor) (Spring et al., 2019), and lapatinib (ErbB4 inhibitor) (Qiu et al., 2008), demonstrated 

increased efficacy in melanoma targeted therapy. 

1.6.2 Melanoma drug delivery 

As mentioned in previous sections, the most important obstacle towards reaching efficient 

melanoma treatment is chemo-resistance (Xue and Liang, 2012). Furthermore, the drug release 

efflux delivered to the cell and its release from the drug carrier have to be controlled to prevent 

drug-efflux dependant resistance in melanoma. Due to the high potential of chemo-resistance 

in melanoma, drug delivery system design is even more challenging (Helmbach et al., 2001). 

Among the delivery systems, polymer-drug conjugates, and encapsulation of 

chemotherapeutics in nano-particles have shown a worthy performance regarding melanoma 

treatment (Li et al., 2015).  

The table below (Table .1 2), indicates the most common delivery vehicles tested for melanoma 

treatment.



 

 

 

40 

 

 

Table 1.2 Drug delivery systems used for melanoma 

Delivery 
system 

Drug Material Synthesis Method Cell line Experiment  Reference  

Hydrogel 
Matrix (cell 

culture 
platform) 

PLX 4032 
(Vemurafenib) 

PEG Photopolymerization WM35-A375 
melanoma 

In vivo (Tokuda et 
al., 2014) 

Magnetic based 
core-shell 
particles 

Curcumin- 
doxorubicin 

Poly (N-isopropyl acrylamide–
allylamine) and a core of poly 

(lactic-co-glycolic acid) 
(PLGA) 

embedded with magnetite 
nanoparticles 

Thermo-responsive B16F10 
melanoma 

In vivo (Wadajkar 
et al., 2012) 

In-situ 
hydrogel 

Curcumin- 
hydroxypropyl-b-

cyclodextrin 

Poloxamers Thermos-responsive B16-F10 In vitro (Sun et al., 
2014) 

Nano-particles Docetaxel- 
everolimus-
LY294002 

PEG-PCL - Metastatic 
melanoma 

In vivo (Doddapane
ni et al., 
2015) 

Micellar-Nano 
particles 

Doxorubicin PEG-based - Melanoma In vivo (Li et al., 
2019b) 

Nano gel 5-Fluorouracil Chitin pH-responsive A375 
melanoma 

In vitro; Ex 
vivo 

(Sabitha et 
al., 2013) 

Polymersomes Doxorubicin PMPC25-PDPA70 pH-sensitive - In vitro (Pegoraro et 
al., 2013) 
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Bioactive 
polymer 
micelle 

Doxorubicin Poly(l-glutamic acid)n-b-
poly(d, l-lactic acid) 

pH responsive A 375 
melanoma 

In vitro; In 
vivo 

(Wang et 
al., 2014) 

Hybrid Nano 
gel 

5-Fluorouracil PEG- Ni-Ag Nano gel pH-responsive B16-F10 
melanoma 

In vitro (Wu et al., 
2011) 

Copolymer 
micelle 

azobenzene and β-
galactose 

- Light responsive A375 In vitro  (Alfurhood, 
2016) 

Nano gel 5-Flouroracil Chitosan-PEG pH responsive B16F10 In vitro (Maya et al., 
2013) 

Emulsion SU5416 PEG based - C26-B16 - (Ogawara et 
al., 2014) 

Polymer-drug 
conjugate 

Paclitaxel PEG based pH-redox sensitive B16F1 In vivo (Lv et al., 
2014) 

Liposome Paclitaxel PEG Redox responsive - - (Fu et al., 
2015) 

Liposome N-
Butyldeoxynojirimy

cin 

cholesterylhemisuccinate 
(CHEMS), cholesterol (Chol), 
dioleoylphosphatidylethanola

mine (DOPE), 
phosphatidylcholine (PC), 
phosphatidylethanolamine 

(PE), and phosphatidylserine 
(PS) 

pH sensitive B16-F1 
mouse 

melanoma 
cells 

In vitro  (Costin et 
al., 2002) 

Hydrogel Ni-Oxzaprozin poly(2-hydroxypropyl 
acrylate/itaconic acid) 

(P(HPA/IA)) 

pH sensitive Melanoma 
cell lines 
(FemX) 

In vitro (Babić et 
al., 2016) 

Layer-by-layer 
Nano-particles 

STAT3 (protein) 
siRNA 

Chitosan coated gold - B16F10 
murine 

In vitro (Labala, 
2016) 
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melanoma 
cells 

Solution - Chitosan - A375-
SKMEL28- 
RPMI7951 

In vitro (Gibot et al., 
2015) 

Man-CTS-TCL 
NPs vaccine 

- Chitosan - B16 In vivo- In 
vitro 

(Shi et al., 
2017) 

Nano-particles Green tea 
polyphenol 

epigallocatechin-3-
gallate (EGCG) 

Chitosan - Human 
melanoma 
Mel 928 cells 

In vivo- In 
vitro 

(Siddiqui et 
al., 2014) 

Gel Doxorubicin non-ionic 
hydroxyethylcellulose- 

cationic chitosan 

- B16F10 In vitro-In 
vivo 

(Taveira et 
al., 2009) 

Nano-particles - gadolinium-loaded chitosan - B16F10 In vivo- In 
vitro 

(Naves and 
Almeida, 
2015) 

polypeptide-
based micelle 

Docetaxel- cisplatin PLG-g-Ve/PEG 
 

 B16F1 In vivo  (Song et al., 
2014) 

Nano-particles Paclitaxel CpG-B 1826 thiophosphate 
(CpG) 

- DCs, 
CD11c+ 
B16-F10 

In vivo (Thomas et 
al., 2014) 

Nano-gel Decitabine - - Melanoma 
cells, 

leukemia 
cells 

- (Vijayaragh
avalu and 
Labhasetwa
r, 2013) 

Polymer-drug 
conjugate 

Docetaxel Carboxymethyl chitosan - B16-HepG2 In vitro- In 
vivo 

(Liu et al., 
2013) 

Liposome Curcumin Chitosan - B16-F10 In vitro (Karewicz 
et al., 2013) 
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Nano-emulsion 
gel 

Leflunomide - - A375 and 
SK-MEL-2 

In vitro –In 
vivo 

(Pund et al., 
2015) 

Nano-
ethosomes 

Docetaxel Epigallocatechin-3-O-gallate 
(EGCG 

- A375 In vivo (Liao et al., 
2016) 

cationic self-
micro 

emulsifying 
drug delivery 
system (ECS) 

- - - B16F10 In vivo-In 
vitro 

(Liao et al., 
2016) 

Intratumoral 
injection – 

nanoparticles 

Doxorubicin Gold nanoparticles - Murine B16, 
human SK-

MEL-28 

In vitro-In 
vivo 

(Bagheri et 
al., 2018) 

Nanoparticle Docetaxel – cellax Carboxymethyl cellulose -PEG - B16F10 In vivo  (Hoang et 
al., 2015) 

Liposome Doxorubicin PEG based - B16F0- C26 - (Teymouri 
et al., 2016) 

Copolymeric 
Nanoparticles 

- methyl methacrylate (MMA) 
and N-vinylcaprolactam 

(VCL) 

Thermos-responsive B16F10 - (Shah et al., 
2010b) 

Orally 
administrated 
Nanoparticles 

Curcumin Chitosan-PCL - B16F10 In vivo-In 
vitro  

(Loch-
Neckel et 
al., 2015) 

Theranostic 
nanoparticles 

PLX4032 BPLP-PLA - melanoma In vitro (Xie et al., 
2017) 

Injectable 
hydrogel 

Doxorubicin Sericin-Dextran Chemical cross-
linking 

Melanoma In vitro  (Liu et al., 
2016) 
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Light 
responsive 
micelles 

Nile red Azobenzene and β-galactose 
polymer units 

Self-assembly A375 In vitro  (Pearson et 
al., 2015) 

Edge activated 
liposome 

siRNA - - melanoma In vitro (Dorrani et 
al., 2016) 

Cell-
penetrating 

peptides 

Paclitaxel - - B10F16 In vivo (Jiang et al., 
2018) 

Core-shell 
nano-fiber 

5FU Chitosan- PCL - B16F10 In vitro (Zhu et al., 
2019) 

nanofiber mesh - PCL Electrospinning Melanoma In vitro  (Lin et al., 
2018) 

Microneedle Debrafenib –
trametinib 

- - A375 In vivo  (Tham et 
al., 2018) 

Solid in oil 
peptide nano-

carrier 

Vaccine - - B16F10 In vivo  (Wakabayas
hi et al., 
2018) 

Liposome Indocyanine green Chitosan coated - B16F10 In vitro  (Lee et al., 
2019) 

Dendritic nano-
particles 

Doxorubicin Dendritic Fe3O4 - Melanoma In vivo (Nigam and 
Bahadur, 
2018) 

Redox 
responsive 

micelle 

Paclitaxel Hyaluronic acid – Tocopherol 
succinate 

Self-assembly B16F10 In vivo (Xia et al., 
2018) 

Nano-particles Curcumin Bovine serum albumin - Murine 
melanoma 

In vivo (Camargo et 
al., 2018) 
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Prodrug 
micelle 

Doxorubicin Polysaccharide - A375 In vivo (Li et al., 
2018a) 

Nano clay Doxorubicin Bentonite Self-assembly Melanoma in vitro  (Hosseini et 
al., 2018) 

Micelle Doxorubicin-
pheophorbide 

Pluronic F127 - B16F10 In vivo  (Zhang et 
al., 2018a) 

Nano-particles siRNA Gold - B16-BL6 In vitro  (Zhang et 
al., 2018b) 

Nano-gel 5FU Chitosan Ionic gelation Melanoma-
HaCaT 

In vitro-Ex 
vivo 

(Sahu et al., 
2019a) 

Nano-particle Carboplatin PCL - Melanoma In vivo  (Bragta et 
al., 2018) 

Polymeric 
nano-particle 

- Chitosan - B16F10 In vitro  (Ferraz et 
al., 2018) 
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The summary information provided in the table above indicates the variability of drug delivery 

systems used to combat melanoma in vitro and in vivo. Polymeric drug carriers seem to be more 

utilized as drug carriers for melanoma. Furthermore, among them, nano-sized delivery systems 

have acted more efficiently against melanoma (Table 1.2). 

Chitosan is among the most utilized biopolymers for melanoma treatment, as indicated in 

Table 1.2. This can be due to chitosan’s improved ability to permeate through skin cells (He et 

al., 2009). As mentioned, using the EPR effect, nano-particles can accumulate in the tumour 

via the leaky tumour vasculatures which have larger pore sizes (Maeda et al., 2009). Molecules 

having a range of nano-sized particles up to a few hundred nano-meters can penetrate tumour 

vasculatures easily (Zununi Vahed et al., 2019). On the other hand, these nano-sized particles 

cannot penetrate healthy tissues since the vasculature conditions are normal and this range of 

nano-sized particles is unable to extravasate. Hence the accumulation of nano-particles will be 

in the tumour environment. Consequently, they can provide targeted delivery to melanoma 

(Blanco et al., 2015). 

In another perspective, the nano-particle shell protects the low molecular weight drugs from 

enzymatic digestion in the cell cytosol. The small molecules such as drugs can be lysed in the 

cell cytosol before affecting the cancer cell. Enzymatic digestion is one of the reasons that 

chemotherapy cannot be effective enough in the treatment of melanoma (Pfannenstiel et al., 

2019).  

Delivery of therapeutics using nano-particles is also important in terms of delivery dose and 

delivery flux of the drugs. A nano-sized delivery shell, rather than protecting the drugs 

encapsulated, can be designed to provide controlled delivery (Girdhar et al., 2018). This will 
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prevent increased drug accumulation in the cell and consequent resistance development 

(Yoncheva et al., 2019).  

Among nano-sized delivery systems, polymeric nano-particles are the most common ones 

(Khalid and El-Sawy, 2017). A range of synthetic and natural, biodegradable, and 

biocompatible polymers have been used in the development of various drug delivery systems 

against melanoma treatment (Naves et al., 2017).  

So far, Polymeric nanoparticles have been investigated as appropriate options to be used as 

melanoma delivery systems and to decrease chemo-resistance by adjusting drug release (Liu et 

al., 2018). Using careful design and optimisations, polymeric nano-particles can be designed to 

reach the appropriate initial burst followed by controlled release of the drugs. They can also be 

modified to increase or decrease the delivery rate. Surface modifications of the nano-particles 

can further increase the quality of delivery (Pathak et al., 2019).  

1.6.3 Polysaccharides in melanoma drug delivery 

Due to their unique characteristics and wide availability, polysaccharides have gained 

importance specially in the cancer drug delivery field (Coviello et al., 2007, Debele et al., 2016). 

Furthermore, their low cost has made them a good option for medical and pharmaceutical 

applications (Debele et al., 2016). Additionally, polysaccharides have an increased tendency 

for cell membrane permeation and adherence. These features have made them a suitable choice 

for targeted cancer drug delivery (Dheer et al., 2017).  

Polysaccharides are long-chain monosaccharides linked with glycosidic bonds. Based on their 

source, they can be found with various structures. Polysaccharides are also well-known for their 
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non-toxicity, low immunogenicity, bioactivity, muco-adhesion, are environmentally safe, and 

have the potential for targeting specific tissues (Gopinath et al., 2018). Various polymers 

include alginate, pectin, guar gum, dextran, xanthan gum, chitosan, chondroitin, hyaluronic 

acid, heparin, cyclodextrin, pullulan, and amylose are included in the polysaccharides family 

(abedini et al. 2018). Each of these polysaccharide-based polymers has a unique characteristic 

that can be used in a wide range of applications. Polysaccharide molecules have several reactive 

groups (depending on the polymer) which are accessible to various modifications. Based on 

their functional groups, they can be hydrophobic, hydrophilic, or neutral. Polymers from this 

category usually have a more extracellular matrix (ECM)-like backbone which is considered as 

a positive point for a delivery system (Liu et al., 2008). Hence, they are not considered as 

foreign material in the body consequently they will not be lysed readily and they are not 

immunogenic (Diekjürgen and Grainger, 2017). The most advantageous characteristics for 

polysaccharides nano-particles are their selective attachment to the target cancer site and 

successful uptake by the cells (Wang et al., 2006).  

The following table (Table .1 3) shows a variety of polysaccharides and their structure, source, 

and characteristics.



 

 

 

49 

 

 

Table 1.3 Characteristics of selected polysaccharides 

Polymer Structure Source Characteristics Reference  

Chitosan  

 

Chitin -Non-toxic 
-Biodegradable 
-Biocompatible 
-Antimicrobial 

-Anti-inflammation 
-Analgesic 

-Mucoadhesive 
-Angiogenesis stimulator 

-Macrophage activator 
-Haemostatic 

-Easy modifications 

(Jaworska et 
al., 2003, 
Chung et al., 
2004, Bano et 
al., 2017) 

Dextran  Microorganism 
Leuconostoc 

mesenteroides 
 

-Antithrombotic 
-Water-soluble 
-Biocompatible 
-Biodegradable 

-Stable for more than 5 years 

(Weissleder et 
al., 2018) 
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Pullulan  

 

-Fungus 
(Aureobasidium 

pullulans) 

-Non-toxic 
-Non-immunogenic 

-Water-soluble 
-Easy modification 

-adhesive 
-Oxygen impermeable 
-increase permeability 

(Gibbs and 
Seviour, 2017) 

Alginate  

 

-Algal (Brown 
sea weed, 

Azotobacterand P
seudomonas 

 

-Non toxic 
-Anionic activity 

- Non toxic 
-Easy modification 

(Wongkanya et 
al., 2017) 



 

 

 

51 

 

Hyaluronic 
acid 

 

 

-Human (synovial 
fluid) 

-Non-toxic 
-inducing cell proliferation 

and migration 
-wound healing and tissue 

repair 

(Wang et al., 
2016) 

Pectin  

 

Plants primary 
cell walls 

-Non-toxic 
-Fast hydration 

-Lowering cholesterol 
-Wound healing 
-Gel formation 

(Mohnen, 
2008) 

Heparin  

 

-Human (mucosal 
tissue) 

-Synthetically 
made (2003-

2008) 

-Anticoagulant 
-High water-soluble 
-Negatively charged 

(Lai et al., 
2018) 



 

 

 

52 

 

Amylose  

 

-Starch -Hydrophobic 
-Unstable in the form of 

solution 
-Easy precipitation 

(Koski and 
Bose, 2019) 

Chondroitin  

 

-Animal bone 
tissue 

-Anti-inflammatory 
-Anti angiogenic 

-Tissue reconstruction 
ability 

(Pal and Saha, 
2019) 
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Table 1.3 shows the potential capability of polysaccharides  for drug delivery and their unique 

characteristics. A few polysaccharides show enhanced activity to permeate skin cells making 

them suitable for skin cancer targeted delivery alternatives (Franze, 2015). Depending on their 

characteristics and the ultimate aim of application, each can perform different behaviours.  

Chitosan, α(1-4)2-amino 2-deoxy β-D glucan, one of the most abundantly available 

biopolymers is derived from chitin. Chitosan is a de-acetylated form of chitin and is a well-

known polysaccharide that has been widely investigated for various applications (Mohammed 

et al., 2017). Positively charged chitosan can make a strong bonding through electrostatic 

interactions with negatively charged molecules, surfaces, and particles. Chitosan is soluble in 

acidic environments and hydrophilic in a neutral environment (Ali and Ahmed, 2018, Ghaz-

Jahanian et al., 2015). This unique characteristic makes it a promising choice for cancer drug 

delivery, mostly due to the acidic environment of the tumours. A few of the chitosan properties 

depend on its deacetylation degree (DD), and others on molecular weight (Kumar et al., 2020). 

The lower the deacetylation degree, the more soluble the chitosan in increased pH and vice 

versa. Also, lower concentrations of chitosan usually have lower encapsulation efficiency(Ding 

et al., 2019). However, due to its functional groups, it is capable of various modifications to 

enhance its biological and biochemical properties. (Chellappan et al., 2019). Chitosan emerged 

in many investigations for various applications including skin tissue engineering and drug 

delivery due to its unique permeation ability (Liang et al., 2019).  

Alginate is another linear well-known polyanionic polysaccharide, and it is initially sourced 

from algae. Its chemical structure is 1,4-linked -α-L-guluronic acid and β-D-mannuronic acid. 

Negatively charged alginate can interact with positively charged particles. Modified sodium 
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alginate can act as a mildly pH-sensitive polymer and has been used in drug delivery systems 

(Bhunchu and Rojsitthisak, 2014, De Souza et al., 2010). 

Pullulan is a highly water-soluble neutral polysaccharide derived from the fungi Aureobasidium 

pullulans and it is composed of α-1,6-linked maltotriose units (Tabasum et al., 2018). It is 

known to have promising characteristics and has been used in various medical, biological, and 

drug delivery applications. Pullulan is capable of adhering to cell surfaces and facilitates 

intracellular uptake and provides a time-based release (Ganeshkumar et al., 2014) of 

encapsulated molecules.  

These three polymers separately have been used for skin and skin cancer delivery systems. 

However, the potential for improved drug delivery quality using mixing polysaccharides has 

not been greatly investigated. 

1.6.4 Nano-emulsion delivery system for melanoma treatment 

Nano-emulsion is a homogenized form of mixed immiscible reagents (oil/water) stabilized 

using an emulsifier (Jaiswal et al., 2015). Recently nano-emulsions have been increasingly used 

in the pharmaceutical fields (Rai et al., 2018a). This is potentially due to advantages such as 

increased drug loading efficiency, stability, decreased size of particles, and increased 

bioavailability. The use of nano-emulsions has also increased topical delivery systems such as 

cream and spray forms (Pathak et al., 2018). Simple preparation and functionalization abilities 

have also made nano-emulsions suitable for cancer drug delivery and specifically melanoma 

(Severino et al., 2013, Bagde et al., 2018). The table below lists some nano-emulsions used for 

skin cancer drug delivery (Table 1.4).  
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Table 1.4 Nano-emulsions used in cancer research 

Material Polymeric details Characteristics Nano-size 
preparation methods 

Hydrophilicit
y 

In vivo degradation Reference  

PLA Aliphatic polyester- thermoplastic, 
high-strength, 
high-modulus 

solvent evaporation, 
solvent displacement, 

salting out, solvent 
diffusion 

Hydrophobic Scission to lactic acid 
monomers, as an intermediate 
for carbohydrate metabolism 

(no catalyst or enzyme needed)-
degradation rate is dependent 

on size and hydrolysis 
temperature. 

(Lassalle and 
Ferreira, 2007) 

PLGA PLA- PGA copolymer Crystalline 
structure 

Emulsification, 
evaporation, and 

precipitation 

Less 
Hydrophilic 

Hydrolysis of an ester linkage (Fornaguera et 
al., 2015) 

Nano-
cellulose 

homopolysaccharide 
composed of b- 1,4-

anhydro-D-
glucopyranose units 

Both Crystalline 
and amorphous, 

high specific 
surface area, 

barrier 
properties, 

surface 
chemical 
reactivity, 

biocompatible 

Emulsion 
polymerization 

NA Through cellulase enzyme - 
Biodegradable – slowly 

degradable in animal body (in 
vivo) 

(Sarker, 2005) 
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Chitosan glucosamine and N-
acetylglucosamine 

NA ionotropic gelation, 
microemulsion, 

emulsification solvent 
diffusion, 

polyelectrolyte 
complex, self-assembly 

Hydrophobic In vitro: β-N-
acetylhexosaminidase, 

chitosanase, chitinase and chitin 
deacetylase. 

In vivo: lysozyme, acid, 
gastrointestinal enzymes and 

colon bacteria 

(Badawi et al., 
2008) 

Silk Polysaccharide Crystalline 
structure. 

NA Predominantly 
hydrophobic 

In vitro degradation: Protease 
XIV 

Slowly biodegradable 

(Khandavilli and 
Panchagnula, 
2007) 

PCL Poly ester Low melting 
point 

nanoprecipitation, 
solvent displacement, 
solvent evaporation 

Hydrophobic Hydrolysis of ester linkage (Wan et al., 
2015) 

PEG Polyether Non ionic NA Hydrophilic In vitro degradation using 
proteinase K 

(Constantinides 
et al., 2008) 

Gelatine Polypeptide Physical and 
chemical 

crosslinking 

Desolvation and 
emulsification- 

Through physical and 
chemical cross-linking 

Hydrophilic In vivo degradation in 
physiological conditions 

(Date et al., 
2010) 

Pectin Polysaccharide Polyanionic 
nature 

Cross linkable Hydrophilic Pectinase (Burapapadh et 
al., 2012) 
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Alginate Polysaccharide Anionic Covalent and Ionic 
cross-linking, thermo 

gelation 

Hydrophilic In vitro degradation using 
alginase. 

But Slightly oxidized alginate 
can degrade in aqueous media 

(Li et al., 2013, 
Liu et al., 2008) 

Pullulan Polysaccharide Neutral, high 
water solubility, 

adhesive 

Crosslinking ability Hydrophilic In vitro degradation via 
pullulanase, and in vivo 

degdarable 

(Liu et al., 2008, 
Shingel, 2004) 
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As the table shows, a range of materials has been used for the preparation of nano-emulsions 

for skin cancer and melanoma drug delivery. The nano-emulsions can be prepared using various 

approaches depending on the ultimate application (Fofaria et al., 2016b). However, most of the 

nano-emulsion delivery systems lack stability and high drug loading capacity (Patel et al., 

2017). Nano-emulsions were investigated to provide a potential solution for the flux-dependant 

melanoma drug resistance and a tool to increase therapy efficiency (Vecchione et al., 2017). 

This can happen through the nano-emulsion particles which can cross the tumour 

microenvironment barrier, and overcome intra-tumoural pressure. Hence they can reduce the 

resistance caused by alterations in drug efflux, due to their ability to provide a controlled release 

and increase the stability of the drug. Although to reach this, specific modifications may be 

needed (Patel et al., 2019).  

 

1.6.5 Classification of nano-emulsions for melanoma treatment 
based on the rout of administration 

 

As melanoma has a poor response to existing treatment modalities and is highly resistant to 

conventional therapies, the development of a novel system to defeat it, is crucial (Mishra et al., 

2018). Nano-emulsions are considered attractive drug delivery tools especially for skin diseases 

(McDonald et al., 2015). They are also well-known drug delivery systems for dermal and 

transdermal disorders (Shakeel et al., 2012). Increasing bioavailability of the drugs, nano-

emulsions tend to be used in various administration routes (Rai et al., 2018a). Depending on 
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the size of nano-emulsion particles and the target disease, it can be designed to be used for 

particular administration routes.  

Nano-emulsions have been successfully used in topical delivery of hydrophobic and toxic drugs 

such as Dacarbazine for melanoma, and facilitated use of the delivery system was consequently 

reported as an important point (Hafeez and Kazmi, 2017, Lasoń, 2020).  Researchers also 

investigated the delivery of drug-loaded nano-emulsion by intramuscular injection, which 

decreased melanoma by 61% compared to untreated control (Tagne et al., 2008). Other 

administration routes of drug-loaded nano-emulsions for melanoma were also investigated, 

such as oral (Lin, 2018) and intravenous injection (Sánchez-López et al., 2019).  However, 

topical delivery of nano-emulsion for skin cancer has been reported among the most common 

and effective routes of delivery (Giacone et al., 2020, Kaplan et al., 2019).  

1.7 Effect of inflammation on melanoma 

Inflammation is the body’s response to damage caused in the body following exposure to 

pathogens, damaged cells, injury, and toxins. This process involves immune cells (Leukocytes), 

blood vasculatures, and some molecular mediators. The mediators including chemokines, 

cytokines, histamine, proteases, prostaglandin, leukotrienes, and serglycin proteoglycans are 

released during the host response (Chen et al., 2017).  

When a tissue or part of the body is injured due to internal (autoimmune disorder) or external 

factors (bacteria, toxins, heat, and trauma), Histamine is released from mast cells immediately 

by the damaged tissue to aid in the repair. When the tissue repair process or healing, (resolution 
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of the host inflammatory response), is completed, inflammation subsides (Prockop, 2016). The 

physical signs of inflammation are usually redness (rubor), swelling (tumour), pain (dolor), and 

fever (calor) and correspond with acute inflammatory changes seen within the first 48 hours of 

an inflammatory response (Zetoune et al., 2014). 

There are two types of inflammation, acute and chronic. Acute inflammation will stop after the 

injured part of the body is completely healed due to the body’s prompt response to any trauma 

or injury (Coussens and Werb, 2002). It is characterised by the migration of neutrophils to the 

site of injury or infection via a repair process involving these stages. Initially, capillaries will 

expand to increase the blood flow following the release of histamine from mast cells causing a 

constriction in the endothelial cells, secondly, the microvascular structure will change with 

protein plasma exudation and finally, leukocytes migrate through the endothelium and 

accumulate at the damaged part (Hunter, 2012). This occurs by leukocytes passing from the 

bloodstream, adhering to the endothelium via upregulation of β2 integrins (CD11a/CD18b) on 

the leukocyte cell surface and upregulation of adhesion molecules on the endothelium e.g. 

intracellular adhesion molecule 1 (ICAM1). This leads to a strong interaction of the leukocyte 

to the endothelium, subsequent flattering of the cell, and finally emigration through adjacent 

endothelial cells via upregulation of molecule CD31 (PECAM1) (Golias et al., 2007). 

Afterward, the foreign bodies will be removed by phagocytosis and the tissue will start to repair 

with subsequent scar formation. 

Chronic inflammation is the failure of the inflammation to resolve due to a continued 

inflammatory response and may take weeks, months, or years to diminish as seen in diseases 

such as rheumatoid arthritis (Zaid et al., 2018). Chronic inflammation is prolonged acute 
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inflammation (Abudukelimu et al., 2018) and occurs due to various reasons such as prolonged 

exposure to mycobacterium, fungi, or protozoa which the body’s immune system is unable to 

eliminate (Fulford and Stankiewicz, 2020, Bellamy et al., 2020), or chemical irritants (Bains 

and Fonacier, 2019). Alternatively, existing autoimmune disorders such as seen in Rheumatoid 

Arthritis or mitochondrial dysfunction can also lead to chronic inflammatory changes (Pahwa 

and Jialal, 2018) or via physical injury (Hughes, 2018), all these can lead to the 5th cardinal sign 

of inflammation, loss of function (function laesa). 

Prolonged chronic inflammation may cause severe DNA damages and genomic changes which 

may be an initiation point for various diseases (Crusz and Balkwill, 2015) including 

cardiovascular diseases (Ferrucci and Fabbri, 2018), various cancer types, and diabetes (Chang 

and Yang, 2016).  

There are two types of chronic inflammation, one is nonspecific proliferative inflammation, 

and the other granulomatous inflammation. The first type forms as a non-specific granulation 

in the presence of lymphocytes, macrophages, and plasma cells, and it continues proliferating 

in fibroblasts and connective tissue (Snape and Collins, 2020). Simple forms of this kind of 

inflammation are polyps and abscess, whilst the second types usually form as nodular lesions 

or granulomas. This type of inflammation can be due to a chronic infection such as tuberculosis 

or leprosy or in the presence of a foreign body or immune response (Billero et al., 2017). Some 

of these can be attributed to risk factors such as age, overweight, diet, smoking, and stress 

(Serhan et al., 2010). 
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1.7.1 Mediators that drive the host inflammatory response 

For initiation of an inflammatory response, a message is delivered by inflammatory mediators 

which are released by injured or activated cells. These mediators are chemicals responsible as 

messengers. There are two types of mediators, plasma-derived mediators, and cell-derived 

mediators. Vasoactive amines (such as histamine and serotonin), arachidonic acid metabolites 

(Cyclooxygenase and Lipoxygenase pathways), liposomal components, platelet-activating 

factors, cytokines (IL-1, TNF-α, TNF-β, IFγ, and chemokines), and nitric oxide and nitrogen 

metabolites are cell-derived mediators of inflammation. On the other hand, plasma-derived 

mediators are derived from the kinin system, the clotting system, the fibrinolytic system, and 

the complement system (Abdulkhaleq et al., 2018). Each mediator has a particular role in the 

inflammation process and these responses such as pain, fever, and irritation. For instance, iNOS 

is the inducible form of Nitric Oxide synthetases (NOS), (Nakazawa et al., 2017), and 

cyclooxygenase-2 (COX-2), are enzymes that mediate inflammatory responses in the body 

(Gandhi et al., 2017) and are overexpressed in cancerous tissues (Murakami and Ohigashi, 

2007, Singh et al., 2019).  

1.7.2 Inflammation and cancer 

Chronic inflammation has been proved to be an important hallmark in cancer occurrence and 

progression. The very first hypothesis of cancer initiation in chronic inflammation sites was 

mentioned in 1863 (Weber et al., 2010). The triggering factor is the proliferation of the cells in 

a microenvironment filled with inflammatory cells, growth factors, and stroma (Wang et al., 
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2017a) with persistent inflammation potentially leading to cancer cell formation (Korniluk et 

al., 2017). Persistent inflammation could be due to immune deficiency problems, prolonged 

injury or infection, and long-term exposure to toxic chemicals and irritants (Mosenthal, 2018).  

There are two types of inflammatory mediators, pro-inflammatory ones (e.g. TNF-α, IL-1β), 

and anti-inflammatory mediators (e.g. IL-10, Heme-oxygenase 1) (Coras et al., 2019). The 

presence of increased pro-inflammatory chemokines and an uneven balance between catabolic 

pro-inflammatory vs anabolic anti-inflammatory chemokines are in part due to prolonged 

inflammatory response (Coussens and Werb, 2002). Consequently, due to long-lasting chronic 

inflammation phagocytic cells, Leukocytes and other inflammatory mediators will damage the 

DNA of the host cells, resulting in alterations in the proliferation cycle of the cells and 

subsequent abnormalities occurring (Kawanishi et al., 2017).  

Studies have highlighted that cancer initiated from inflammation is responsible for 15-20% of 

cancer-related death worldwide (Okada, 2014). Rather than cancer initiation, inflammation can 

have a critical role in all stages of cancer and will positively affect cancer cell proliferation, 

migration, and invasion (Sui et al., 2017). Since inflammatory cells are known to be an 

abundant source of growth factors and cytokines prerequisites for cell survival and 

proliferation, this can affect the whole cancer therapy process including the response to the 

chemotherapeutics (Rajput and Wilber, 2010, Coussens and Werb, 2002). Several 

inflammatory mediators and chemokines are known to be directly related to cancer initiation 

and tumorigenesis. These include the pro-inflammatory, TNF-α, IL-6, TGF-β, NF-κB, and 

STAT3, which have great importance in carcinogenesis and metastasis. The enzymes, iNOS, 
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and COX-2 expression increase during the inflammatory process (Liu et al., 2003), with 

overexpression causing tumorigenesis and metastasis (Janakiram and Rao, 2012). 

The cytokine IL-10 is anti-inflammatory which is associated with suppression of cancer-

associated inflammatory changes with inhibition of pro-inflammatory genes including TNF-α, 

IL-1β via inhibition of NF-κB(Landskron et al., 2014).  

Inflammation is also known as one of the important risk factors for skin cancer initiation and 

malignancy. As mentioned in previous sections, UV light has an important impact on skin 

cancer by inducing DNA damage (Prasad and Katiyar, 2017). When skin is inflamed by the 

action of UV light, inflammatory mediators, and cytokines such as IL-6 are released (Quist et 

al., 2016). Long-term accumulation of them in the skin will lead to the initiation of melanoma. 

The cytokines such as IL-1β released from UV triggered keratinocytes, and melanocytes along 

with dendritic cells and Langerhans cells, during the melanoma inflammation process, promote 

aggressive tumour cell behaviour (Bou-Dargham et al., 2017).  

Recent studies have shown a strong link between chronic inflammation and melanoma 

progression and metastasis (Maru et al., 2014, Tang and Wang, 2016). Non-melanoma skin 

cancers (Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)) are directly linked 

to inflammation (Voiculescu et al., 2018). Melanoma development is also strongly linked to 

inflammation due to the increased release of various cytokines such as IL-4, IL-10, and IL-13 

by melanocytes (Neagu et al., 2019), due to paracrine signalling with the tumour 

microenvironment of the inflamed part. Hence the inflammation prevention and treatment gain 

importance (Xiao et al., 2016).  
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1.7.3 Current treatments for inflammatory pathologies 

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to relieve pain, inflammation, 

and fever. These include aspirin, ibuprofen, and naproxen. NSAIDs have two categories, non-

selective ones such as aspirin, ibuprofen, and diclofenac which inhibit the COX-1, and 2 

pathways leading to a reduction in prostaglandins and COX-2 selective (Coxibs) such as 

celecoxib which decrease the pain and inflammation-mediated from COX-2 (Cairns, 2007). 

However, although NSAIDs decrease the symptoms of inflammation, they may cause other 

side effects such as gastrointestinal diseases/bleeding via inhibition of the cytoprotective 

enzyme COX-1 (Matsui et al., 2011). On the other hand, specific COX-2 inhibitors (Coxibs) 

can inhibit inflammation by inhibiting PGE2. However, the most important problem with 

Coxibs is substantial cardiotoxicity. This may lead to myocardial infarction through inhibition 

of prostacyclin tipping the balance in favour of thromboxane a prothrombiotic eicosanoid 

(Zarghi and Arfaei, 2011).  

1.7.4 Novel therapeutics for treating inflammatory pathologies 

Melanocortin peptides are short amino acid sequences including alpha-melanocyte-stimulating 

hormone which corresponds to the first 13 amino acids of the parent hormone ACTH1-39, a 

hormone derived from the larger precursor molecule the Proopiomelanocortin (POMC) gene 

(Getting et al., 2009). 

Melanocortin peptides exert their biological effect by binding to a family of G-protein coupled 

receptors called the melanocortin receptors of which five have been identified and termed MC1-
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MC5. Their activation leads to an increase in adenylate cyclase and a subsequent increase in 

cAMP (Wang et al., 2019a, Can et al., 2020). Studies have highlighted that melanocortin 

receptors can be expressed in various tissues in the body such as the brain and skin (Lisak and 

Benjamins, 2017). They have a notable effect on a few of the body functions including 

inflammation (Maaser et al., 2006). Activation of MC1 and MC3 has been shown to modulate 

the host inflammatory response and lead to an anti-inflammatory phenotype resulting in 

resolution of inflammation (Kaneva et al., 2012). To date, the most characterised peptide is an 

α-melanocyte stimulating hormone (αMSH) which is a naturally occurring melanocortin 

peptide. αMSH has a high affinity for the MC receptors and is involved in inflammation. 

Melanocortin peptides are expressed on immune cells such as neutrophils, macrophages, and 

also melanocytes responsible for skin pigmentation and melanoma metastasis and progression 

(Bulman et al., 2013). BMS-470539 dihydrochloride and [DTrp8]-γ-MSH are two 

commercially available melanocortin receptor agonists targeting the MC1 and MC3 receptor 

respectively and have been shown to modulate the host inflammatory response in in vitro 

models of osteoarthritis and in vivo models of stroke and ischaemic reperfusion injury (Can et 

al., 2020; Holloway et al., 2015; Leoni et al., 2010). These compounds inhibit leukocyte 

trafficking in models of stroke and ischaemic reperfusion injury in mice (Holloway et al., 2015; 

Leoni et al., 2010), modulate inflammatory markers including IL-6, IL-8 (Can et al., 2020), and 

induce an anti-inflammatory protein in in vitro models of osteoarthritis (Can et al., 2020; 

Kaneva et al., 2012).  

As mentioned previously, chronic inflammatory markers are important factors influencing 

cancer initiation, progression, and metastasis (Yang, 2010, Qian, Greten, and Grivennikov, 
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2019). Malignant melanoma expresses high levels of MC1 (Baumann et al., 1997, Park et al., 

2019), which plays a crucial role in melanogenesis. Hence this can be utilized as a positive 

point towards melanoma treatment.  
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1.8 Research approach  

The growing number of patients diagnosed with cancer, today is a global issue. The acquisition 

of genetic mutations due to environmental and lifestyle factors is increasingly important in 

influencing the incidence of melanoma. Cancer research is a vast field of study, so there are 

various factors to be considered in cancer therapy. Prevention, diagnosis, treatment, and 

palliative care are four major tasks in cancer research. In this project, the major focus is on 

treatment. To this end, an experimental approach was followed for this research.  

The design of experiments was based on choosing appropriate polymers and cell lines for the 

particular aim of melanoma drug delivery and design a nano-emulsion for topical drug delivery. 

Initially, series of optimisation steps were carried out to reach a nano-emulsion providing a 

controlled release and lowest initial burst. Followed by reaching the optimal nano-emulsion, 

the nano-emulsion particles were surface modified.  

The optimal drug-loaded nano-emulsion was further assessed using in vitro cellular assays. The 

related experimental assays were performed using A375, human malignant melanoma primary 

cell line, and HaCaT, keratinocyte cell line as control.  

Furthermore, the downregulation of two important inflammation markers in melanoma was 

investigated. Current research contains a novel approach used for downregulation of iNOS and 

COX-2 by encapsulation and delivery of melanocortin peptides by nano-emulsion.  
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1.9 Research aim and objectives 

This research aimed to develop a strategy to improve the drug delivery to A375 malignant 

melanoma human cell line. The intended drug delivery aims for successful apoptosis induction 

and decrease flux-dependant drug resistance. 

To achieve the aim of this research a careful design and optimisation of the nano-emulsion were 

implemented to provide enhance uptake of the drug in A375 cells. Furthermore, the nano-

emulsion was designed to be used as a topical delivery system in early-stage melanoma. Hence, 

the experimental part of the thesis was conducted using a comparison study between A375 and 

HaCaT cells as control healthy cells. Ultimately knockdown of two inflammation markers was 

tried to control melanoma progression.  

To address the aim, the following objectives were implemented. 

1. Development of chitosan/pullulan/alginate nano-emulsion to provide a slow and controlled 

release and optimisation of the nano-emulsions.   

2. Tracking nano-emulsion particles in cell culture via encapsulation of coumarin-6 (C6, a 

fluorescent model drug) and comparing to the doxorubicin-loaded nano-emulsions. 

3. Comparing the toxicity of doxorubicin/dacarbazine loaded nano-emulsions to naïve drugs in 

melanoma and keratinocytes. 

4. Surface modification of optimised nano-emulsion to increase the uptake specifically in 

melanoma cells.  

5. Increase the apoptosis induction to melanoma cells via surface-modified nano-emulsions. 
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6. Encapsulation of BMS-470539 dihydrochloride and [DTrp8]-g-MSH in the surface modified-

optimised nano-emulsion to inhibit melanoma growth and progression. 
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2 Materials and methods 
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2.1 Materials   

2.1.1 Chemicals and reagents 

Basic laboratory chemicals and reagents were purchased from Sigma, Thermo-Fischer 

Scientific, and Invitrogen. The list of materials and reagents, used in this research are outlined 

below in Table 2.1. 

Table 2.1 Materials and reagents 

Compound Supplier Catalog number  

3,3′,5,5′-Tetramethylbenzidine 
(TMB) Liquid Substrate System for ELISA 

Sigma Aldrich-Merck 0440 

Agarose (molecular biology grade) Fischer scientific UK 10366603 

Cell tracker green (CMFDA) Thermo-Fischer scientific-
Invitrogen 

C7025 

Cell tracker red (CMTPX) Thermo-Fischer scientific-
Invitrogen 

C34552 

Chitosan medium molecular weight 
(deacetylation ≥ 75%) 

Sigma Aldrich-Merck. UK 9012-76-4 

Chloroform  Sigma Aldrich-Merck 67-66-3 

Coumarin-6 (≥99%) Sigma Aldrich-Merck UK 38215-36-0 

Dacarbazine (DTIC) Sigma Aldrich-UK 4342-03-4 

DAPI (4',6-Diamidino-2-Phenylindole, 
Dihydrochloride) 

Thermo-Fischer scientific D1306 

Dimethyl Sulfoxide  Sigma Aldrich-Merck. UK D2650 

DMEM low high glucose Sigma Aldrich-UK MFCD00217342 
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DNA free, DNA removal kit Thermo–Fischer scientific AM1906 

Doxorubicin hydrochloride Sigma Aldrich-UK 25316-40-9 

Ethanol absolute  VWR chemicals-UK 20821.310P 

Fetal bovine serum Sigma Aldrich-UK MFCD00132239 

Folic acid Sigma Aldrich-Merck F7876 

Formaldehyde Sigma Aldrich-Merck F8775 

Gene Ruler 1 kb DNA Ladder Thermo-Fischer scientific SM0311 

Genipin Sigma Aldrich-Merck 4796 

Glacial acetic acid Fischer scientific UK 15541152 

Glycerol (molecular biology grade) Sigma Aldrich-UK 56-81-5 

Guanidine chloride Sigma Aldrich-Merck 50-01-1 

Isopropanol VWR chemicals-UK 470301-456 

Methanol Fischer scientific 10365710 

NuPAGE™ 10% Bis-Tris Protein Gels, 1.0 
mm, 10-well 

Thermo-Fischer scientific-
Invitrogen 

NP0301BOX 

PCR master mix 2X Thermo-Fischer scientific K0171 

Phosphate buffered saline (DPBS) Sigma Aldrich-UK MFCD00131855 

Ponceau S Solution Sigma Alrich-Merck UK 7170 

Pre-stained protein molecular weight marker  Thermo-Fischer scientific 26612 

Pullulan (aureobasidium pullulans) Sigma Aldrich-Merck UK 9057-02-7 

Sodium alginate Sigma Aldrich-Merck UK 9005-38-3 

Sodium dodecyl sulfate Sigma Aldrich-Merck 151-21-3 

SYBR™ Safe DNA Gel Stain 
 

Sigma Aldrich-Merck 33102 
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TBE (tris-borate-EDTA) Thermo-Fischer scientific-
Invitrogen 

LC6675 

Thiazolyl Blue Tetrazolium Bromide Sigma Aldrich-Merck M2128 

Tri reagent  Sigma Aldrich-Merck 93289 

Tris-Acetate-EDTA 10x Sigma Aldrich-UK  9650 

Tris-HCl Invitrogen 15-568-025 

Trypan blue  Thermo-Fischer scientific T10282 

Trypan blue solution  Sigma Aldrich-Merck T8154 

Trypsin-EDTA 10X Sigma Aldrich-UK 9002-07-7 

Twin 20 Fischer scientific 9005-64-5 

Twin 80 Fischer scientific 9005-65-6 
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The list of cytotoxic drugs used for drug delivery and their physicochemical characteristics are 

listed in the table below Table 2.2. 

Table 2.2 Characteristics of cytotoxic drugs used for drug delivery 

Anti-cancer 

drug 

Molecular 

weight 

Toxicity LogP pKa Stability  Pharmacological 

classification 

Doxorubicin  543.5 

g/mol 

Cardiotoxicity, 

hepatotoxicity, 

gastrointestinal 

problems 

1.27 4.42 Neutral/ 

stable at 

room 

temperature 

Topoisomerase II 

inhibitors 

Dacarbazine  182.18 

g/mol 

Hepatotoxicity  -0.24 7.34 Unstable in 

presence of 

light 

Anti-neoplastic 

agent, Alkylating 

 

 

The list of cell lines used in this research is outlined below in Table 2.3. 

Table 2.3 Cell lines 

Cell 
line 

Supplier Order number Mutations  

A375 American tissue culture collection ATCC® CRL-
1619™ 

BRAFV600E/KRA
SG13D 

HaCaT Provided by University College London 
Hospital 

NA None 
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The list of oligonucleotide sequences, used in this research are outlined below in the Table 2.4 

Table 2.4 Primer sequences used for PCR (Si et al, 2018) 

Gene  Primers  Size 
(bp) 

Company  

Bax F:5’-ACGAACTGGACAGTAACATGGAG-3’ 
R:5’-CAGTTTGCTGGCAAAGTAGAAAAG-3’ 

839 IDT Integrated DNA 
Technologies, BVBA 

Bcl-2 F:5’-ATGTGTGTGGAGAGCGTCAA-3’ 
R:5’-GAGACAGCCAGGAGAAATCAA-3’ 

6492 IDT Integrated DNA 
Technologies, BVBA 

Caspase-3 F:5’-CTGGACTGTGGCATTGAGAC-3’ 
R:5’-ACAAAGCGACTGGATGAACC-3’ 

2689 IDT Integrated DNA 
Technologies, BVBA 

Caspase-9 F:5’-AGGGTCGCTAATGCTGTTTC-3’ 
R:5’-GCAAGATAAGGCAGGGTGAG-3’ 

1848 IDT Integrated DNA 
Technologies, BVBA 

GAPDH F:5’-CAAGGTCATCCATGACAACTTTG-3’ 
R:5’-GTCCACCACCCTGTTGCTGTAG-3’ 

1513 IDT Integrated DNA 
Technologies, BVBA 

 

The list of ELISA kits, used in this research is outlined below in Table 2.5 

Table 2.5 ELISA kits 

Kit Supplier Catalog number 
Human folate binding protein ELISA Abcam-UK ab213781 

DNA fragmentation ELISA Sigma Aldrich-Roche 11585045001 
 

The list of antibodies, used in this research is outlined below in Table 2.6 

Table 2.6 antibodies 

Antibody Supplier Catalog number  
Human polyclonal Anti-COX-2 anti-body Abcam-UK ab15191 
Human polyclonal Anti-iNOS anti-body Abcam-UK  ab3523 
Mouse anti-α-Tubulin antibody Thermo-Fischer Scientific A11126 
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The list of buffers, used in this research are outlined below in Table 2.7 

Table 2.7 Buffers used in the experiments 

Buffer  Preparation 
1% SDS 1 gr SDS 100 ml H2O 
Lameali sample 
buffer 

4% SDS, 10% 2-mercaptoethanol, 20% glycerol, 0.004% bromophenol 
blue, 0.125 M Tris-HCl, pH 6.8.  

SDS page running 
buffer 

25 mM Tris, 190 mM glycine,  0.1% SDS  

TAE 1X 100 ml 10xTAE buffer, 900 ml milli Q water. 

TBST 1x 
10 ml 1M Tris-HCL, pH 8.0, 30 ml 5M NaCl, 500 µl Tween 20, ddH2O 
up to 1L. 

Western blot transfer 
buffer 

25 mM Tris, 190 mM glycine, 20% methanol  

 

The list of equipment, used in this research is outlined below in Table 2.8 

Table 2.8 Equipment 

Equipment  Model/Supplier Serial number  
Balance  Sartorius  M-Power SAR AZ64 
C18 HPLC column (4.6 mm x 
10.0 mm) 3PK 

Thermo-Scientific  071973 

Centrifuge  Eppendorf 5418 R, 05-401-201 
Confocal microscope Leica TCS SP2 NA 
Countess™ Cell Counting 
Chamber Slides 

Thermo-Fischer Scientific- 
Invitrogen 

C10228 

Countess™ II FL 
Automated Cell Counter 

Thermo-Fischer scientific- 
Applied Biosystems 

A27974 

Electrophoresis tank 
Bio-rad Wide Mini sub-cell 
GT  

170–4405 

ELISA reader BMG Labtech NA 

Fluorescent microscope 
EVOS M5000 Thermo-
Fischer Scientific 

A40486 

Glassware  
Fischer brand, Doran 
laboratories  

NA 

Nano-particle tracking 
analyser 

Nano sight NS300 
Malvern UK  

NA 
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Nano-drop  Thermo-Fischer Scientific ND-One-W 
Scanning electron 
microscopy  

FEI Quanta 650 FEG-ESEM 
 

NA 

Sonicator Phillip Harris Scientific  599006006 
Sonicator probe-MS73 
micro-tip, titanium alloy, 3 
mm diameter 

Sigma-Aldrich UK  659150 

Spectrophotometer 
JENWAY 6300 
spectrophotometer 

83054-05 

Spectrum™ Labs 
Spectra/Por™ 5 12-14 kD 
MWCO Dialysis tubing 

Fischer scientific 15340782 

Thermo-cycler  Bio-Rad MJ Mini 48-well PTC1148 

UHPLC  
Ultimate 3000 Thermo-
scientific 

IQLAAAGAAOFAMUMZZZ 

UV gel imaging system  

BioDoc-It UVP 3-Door 
Imaging System, 302nm 
20x20cm Transilluminator; 
115V 

WZ-97701-82 

Western blot tank 
Thermo-Fischer Scientific 
XCell SureLock™ Mini-Cell 

EI0001 

Zeta sizer  Malvern UK NA 
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The list of software, used in this research are outlined below in Table 2.9. 

Table 2.9 Software 

Software  Version  
Biochem draw Pro V.16.0.1 
Biorender online drawing software NA 
Chromeleon  7 
Endnote  X9 
Graph pad Prism  8-win64bit 

Image J 
1.52d 
Java 1.7.0 – 60 (64 bit) 

Microsoft office  Microsoft version 2013 
NTA software version 3.4 built 3.4.003 
SPSS  25-win64bit 
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2.2 Methods  

2.2.1 Preparation of drug-loaded polysaccharide-based nano-
emulsion  

Nano-emulsions were prepared using a high-energy sonication method (Fofaria et al., 2016a). 

Chitosan, pullulan, and alginate were used as main biopolymers. A range of nano-emulsions 

was prepared using different w/w ratios of the three polymers for coumarin-6 (Smith and Purr, 

2019) or doxorubicin encapsulation to reach the formulation with an optimised and controlled 

release rate. 

Starting with chitosan, the polymer powder was dissolved in ultrapure water containing the 

same ratio of acetic acid to chitosan Table 2.10. The solution was stir-mixed for 24 hours to 

reach homogeneity. Coumarin-6 solution (1mg/ml concentration), was prepared before the 

nano-emulsion preparations. Separately tween-80 was added to glycerol and then mixed for 2 

hours. Fifty microliters of coumarin-6 solution were added to tween-80 and glycerol mixture 

and then left mixing for another hour. After preparing the oil phase (glycerol-tween-80), the 

chitosan solution was added to the oil mixture and was left for mixing for 2 hours to reach the 

oil in the water mixture. The mixture was sonicated using a high-energy sonicator for 20 

minutes in an ice bucket to obtain coumarin-6 loaded nano-emulsion particles. The pH of 

prepared samples was adjusted to 7.4 using 1M sodium hydroxide. The ratios used for the 

preparation of nano-emulsions are shown in the tables below.   
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Table 2.10 Chitosan nano-emulsion preparation ratios 

 
Chitosan 
(w/v%) 

Acetic acid/MQ 
water (v/v%) 

Tween-80 
(v/v%) 

Glycerol 
(ml) 

Coumarin-6 
(µl) 

NEC1 0.2 0.2 1 20 50 
NEC2 0.4 0.4 2 20 50 
NEC3 0.6 0.6 3 20 50 
NEC4 0.8 0.8 4 20 50 
NEC5 1 1 5 20 50 
NEC6 1.2 1.2 6 20 50 

NEC7 1.4 1.4 7 20 50 

 

Similarly, alginate powder was dissolved in ultrapure water. The solution was stir-mixed for 

24 hours to obtain a homogenous mixture. Separately tween-80 with the ratio of 5:1 to alginate 

was added to glycerol and mixed for 2 hours. Fifty microliters of coumarin-6 solution were 

then added to tween-80 and glycerol mixture followed by another hour of stir-mixing. Alginate 

solution was added to the oil and tween-80 mixture then left for mixing for 2 hours to obtain 

oil/water mixture. The mixture was sonicated for 20 minutes to prepare nano-emulsion 

particles. The ratios of all prepared samples are shown in Table 2.11. the same preparation 

procedure as alginate was repeated to develop pullulan nano-emulsion and the ratios are 

available in the Table 2.12. 
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Table 2.11 Alginate nano-emulsion preparation ratios 

Name 
Alginate 
(w/v%) 

MQ water 
(ml) 

Tween 80 
(v/v%) 

Glycerol 
(ml) 

Coumarin-6 
(µl) 

NEAl1 0.2 20 1 20 50 
NEAl2 0.4 20 2 20 50 
NEAl3 0.6 20 3 20 50 
NEAl4 0.8 20 4 20 50 
NEAl5 1 20 5 20 50 
NEAl6 1.2 20 6 20 50 
NEAl7 1.4 20 7 20 50 

 

Table 2.12 Pullulan nano-emulsion preparation ratios 

Name 
Pullulan 
(w/v%) 

MQ water 
(ml) 

Tween 80 
(v/v%) 

Glycerol 
(ml) 

Coumarin-6 
(µl) 

NEPl1 0.2 20 1 20 50 

NEPl2 0.4 20 2 20 50 

NEPl3 0.6 20 3 20 50 

NEPl4 0.8 20 4 20 50 

NEPl5 1 20 5 20 50 

NEPl6 1.2 20 6 20 50 

NEPl7 1.4 20 7 20 50 
 

Each of the mentioned nano-emulsions was examined in the in vitro release test. Following the 

selection of one best sample from each polymer group, based on coumarin-6 and doxorubicin 

release, selected polymer samples were cross-linked. Accordingly, chitosan-pullulan, pullulan-

alginate, and chitosan-alginate blended nano-emulsions were prepared using different w/w 

ratios (1:2, 2:1, 1:1). Genipin was used as a crosslinker, the solution was prepared with the 
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concentration of 1mg/ml and 500 microliters of genipin solution (1% v/v) were added to each 

polymer blend and stir mixed continuously for 72 hours to complete the cross-linking process. 

The cross-linking procedure was also applied to previously selected three non-composite 

formulations, chitosan, pullulan, and alginate. All the prepared blends were loaded with 

coumarin-6 and doxorubicin separately. Fifteen nano-emulsions were prepared with the same 

procedure. UV sterilisation was applied over two 20-minute cycles before uptake experiments. 

Coumarin-6 and doxorubicin release tests were also conducted for these samples under the 

same conditions as stated above. The same preparation and drug loading procedure were 

applied to prepare doxorubicin-loaded nano-emulsions. Blank coumarin-6 and doxorubicin 

were used as positive controls in the treatments and calculations.  

Sample-coding is given in the following table Table 2.13. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

84 

 

Table 2.13 IDs for in-house prepared nano-emulsions 

Polymer 
 
 

Nano-emulsion 

Alginate 
(mg/ml) 

Chitosan 
(mg/ml) 

Pullulan 
(mg/ml) 

NEC1-Al (2:1) 2 4 - 

NEC1-Al (1:1) 2 2 - 

NEC1-Al (1:2) 4 2 - 

NEAl2-Cs (2:1) 8 4 - 

NEAl2-Cs (1:1) 4 4 - 

NEAl2-Cs (1:2) 4 8 - 

NEPl2-Cs (1:1) - 4 4 

NEPl2-Cs (2:1) - 4 8 

NEPl2-Cs (1:2) - 8 4 

NEC1-Pl (1:1) - 2 2 

NEC1-Pl (2:1) - 4 2 

NEC1-Pl (1:2) - 2 4 

NEPl2-Al (1:2) 8 - 4 

NEPl2-Al (2:1) 4 - 8 

NEPl2-Al (1:1) 4 - 4 

NEC1 - 2 - 

NEPl2 - - 4 

NEAl2 4 - - 
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2.2.2 Measurement of the drug encapsulation efficiency of 
optimised nano-emulsion 

To quantify the drug encapsulated within nano-emulsion particles dialysis methodology was 

used. All prepared coumarin-6, and doxorubicin-loaded nano-emulsions were dialyzed against 

phosphate-buffered saline (PBS). The buffer pH was adjusted to 7.4 using hydrochloric acid 

(HCl). To obtain the drug encapsulation efficiency, 1 ml of each sample was placed in a dialysis 

bag (10-12 KD molecular weight cut off (MWCO)) and then located in PBS buffer. The amount 

of free coumarin-6 in PBS was quantified by a spectrophotometer (JENWAY 6300, 83054-05) 

at 450 nm, and encapsulation efficiency was calculated using the following equation: 

 

"#$%&'()%*+,#	.//+$+.#$0 = 2,*%)	34(5	),%3.3 − 74..	34(5
2,*%)	34(5	),%3.3 ∗ 100		

 

The amount of free doxorubicin was quantified using high-performance liquid chromatography 

(HPLC) according to (Dharmalingam et al., 2014) with slight modifications. Briefly, UHPLC 

(Ultimate 3000 Thermo-scientific) was performed using a C18 column (4.6 mm x 100 mm, 2.7 

µm, Thermo-Scientific 071973). UV detection for doxorubicin was done at 233 nm. The mobile 

phase contained water and acetonitrile (25:75 v/v, adjusted to pH 3.0 using 85% w/v phosphoric 

acid) using the flow-rate of 1.0 ml per minute. The mobile phase was run using a gradient 

method as follows: acetonitrile gradient of 10% at 0 minutes, 20% at 3 minutes, 35% at 6 

minutes, 55% at 8 minutes, 75% at 10 minutes, and 100% at 12 minutes was used. The peak 
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was identified, and the retention time of doxorubicin was detected at 2 minutes. Accordingly, 

the quantity of the doxorubicin released was measured (Appendix A). 

2.2.3 Coumarin-6 and doxorubicin in vitro release tests 

To identify the drug release profile for each prepared nano-emulsion, in vitro coumarin-6 

release experiment was conducted. The experiment was carried out for all the prepared 

coumarin-6 and doxorubicin-loaded chitosan, alginate and pullulan, and blended nano-

emulsion samples. A dialysis method was used to screen the in vitro release (Hua, 2014), 1 ml 

of each nano-emulsion was added to separate dialysis bags and placed into flasks containing 

PBS. The flasks moved into a shaker incubator, at 25°C and 55 rpm with continuous stirring. 

Liquid samples from the flasks analysed using UV-spectrophotometer at 450 nm wavelength 

for coumarin-6 and 479 nm for doxorubicin. The measurements were conducted for 21 days. 

The amount of liquid taken out was replaced each time. This protocol was applied to all the 

nano-emulsion samples in this experiment under the same conditions. Naïve coumarin-6 and 

doxorubicin solutions were used as control.  

2.2.4 Nano-emulsion characterisation  

To identify the particle size, size distribution, morphology, and stability of a nano-emulsion, it 

needs to be characterised. To characterise the size and concentration of nano-emulsion particles, 

a nanoparticle tracking analyser (NTA, Nano sight NS300, Malvern, UK) was used. To confirm 

the results further, the method was optimised and results were analysed by NTA software. The 
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optimisation was done by diluting the nano-emulsion sample in multiple steps (Grillo et al., 

2019).  

The experiment started by cleaning the lens over the flow cell. Initially, 1 ml of PBS was 

pumped into the system using a syringe to clean any previously remaining particles. The diluted 

nano-emulsion (1:200 PBS) was then syringe-pumped into the system. Images were captured 

using the following settings: laser type on blue 488, camera level set at 11, slider gain 146, 

syringe pump speed 50, detect threshold 2, and blur on auto. All the experiments were carried 

out at 25 °C and were performed in triplicates. The raw data was analysed by the software. The 

size, the mean concentration of particles, and the finite track length adjustment (FTLA) were 

collected during the total time of recording.  

To identify the morphology of the nano-emulsion particles, scanning electron microscopy 

(SEM) was performed using FEI Quanta FEGSEM operating at 5.00 kV, 63k magnification, 

50 pa pressure, dwelling 10 µseconds.  

Zeta potential was determined at room temperature using Zetasizer nano (Malvern 

instrumentals, UK) in triplicates. The dilutions were made using PBS (1:100 v/v).  

 

2.2.5 Preparation of drug-loaded Folic Acid surface-modified 
nano-emulsion  

Modification of nano-emulsion was carried out in order to increase the uptake of particles in 

A375 cells. Hence, the previously, prepared drug-loaded nano-emulsions (section 2.2.1) were 

surface coated with folic acid.  
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Folic acid coating of the polymer was conducted via electrostatic interactions according to Song 

et al (Song et al., 2013) with slight modifications. Briefly, folic acid solution (20 w%) was 

prepared by dissolving folic acid in 1 M NaOH. The folic acid solution was added dropwise to 

the drug-loaded nano-emulsion while stirring for 12 hours. The solution was washed with PBS 

3 to 4 times and centrifuged for 30 minutes at 16000 rpm to remove the unbound folic acid.  

2.2.6 Encapsulation of anti-inflammatory compound in optimised 
nano-emulsion 

According to the aims of the current research, to target iNOS and COX-2 expression in A375 

cells anti-inflammatory compounds were used. The compounds aimed to target iNOS and 

COX-2 expression by means of the developed nano-emulsion. Hence, encapsulation of the anti-

inflammatory compounds in nano-emulsion was conducted using the same procedure as 

mentioned above (section 2.2.2). However, due to the short half-life of the peptides (6 hours), 

the whole encapsulation procedure was done on ice. The compounds BMS-470539 

dihydrochloride and [DTrp8]-γ-MSH (Can et al., 2020) were used to target human melanocortin 

receptors on melanoma (MC1 and MC3) (Zhang et al., 2017, Zhou, 2019). In this research, they 

are utilised to downregulate iNOS and COX-2 in A375 cells. 
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2.2.7 Cell culture 

As the skin comprises fibroblasts, melanocytes, and keratinocytes. The HaCaT cell line was 

used as a highly proliferative epidermis in-vitro model in cell culture and viability (Souto et al., 

2020, Bácskay et al., 2018) studies due to facilitated proliferation, propagation, and its 

phenotype (Lehmann, 1997, López-García et al., 2014). Similarly, the A375 metastatic 

melanoma human-derived primary cell line was chosen for in-vitro studies of drug optimisation 

and viability screening (Couto et al., 2019). A375 cells are chosen to study the features of the 

drug delivery system for early-stage melanoma. Hence, the HaCaT cell line was used as a 

control healthy cell to malignant A375 cell line in this study to investigate the effect of drug-

loaded nano-emulsion as a topical delivery system (Bittkau et al., 2019).    

A375 (malignant melanoma) and HaCaT (human immortalized keratinocyte) cell lines were 

cultured in T-75 flasks using Dulbecco’s Modified Eagle Medium (DMEM) high glucose (4500 

mg/L, no sodium pyruvate and containing L-Glutamin) and 10% (v/v) fetal bovine serum 

(FBS). The cell-containing flask was incubated at 37°C and 5% CO2. After confluency of 80%, 

the cells were collected for seeding.  

To seed the cells in multi-well plates, the medium was removed from the flask, and cells were 

washed with PBS. Trypsin-EDTA was added to the volume of 2 ml to the flask to detach the 

cells and left for incubation at 37 °C and 5% CO2, 2 minutes for melanoma cells, and 4 minutes 

for keratinocytes. After the cells were detached, 6 ml of DMEM was added to the flask, and 

cells were suspended and collected. The media containing trypsin-ETDA was centrifuged for 

5 minutes at 15,000 rpm. The supernatant was removed afterward, the cell pellet was re-
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suspended in fresh DMEM and added to a new T-75 flask containing 10 ml of fresh DMEM. 

Passage numbers 13-17 were used for cell experiments.   

To seed the cells in multi-well plates, the pellet was re-suspended in 1 ml DMEM and was 

transferred to an Eppendorf tube. To count the cells, 10 µl of the cell suspension was mixed 

with 10 µl Trypan Blue dye and incubated for 2 minutes. Then 10 µl of the dyed cell suspension 

was pipetted into cell counting chamber slides and the cells were counted using Countess™ II 

FL Automated Cell Counter (Thermo-Fischer Scientific, A27974).  

Subsequently, the cells were seeded in suitable multi-well plates with a density of 106 cells per 

well in 6 well plates, and 105 cells per well in 96 well plates. Plates were incubated under the 

same conditions. Cell treatments were done after 8 hours while the cells were attached to the 

plates. The cell culture condition remained unchanged for all the cell-culture-based experiments 

and for all the time points.  

2.2.8 Mitochondrial activity (MTT) cytotoxicity assay 

To explore the viability of cells treated with drug-loaded and non-loaded nano-emulsions, MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was conducted. Cells 

(A375 and/or keratinocyte) were collected from T-75 flasks and seeded in 96 well plates with 

a density of 105 cells per well, then they all were incubated with 1-18 nano-emulsion 

preparation using three doses of 10, 20, and 30 µl/ml of culture medium during 72 hours. After 

the treatments, MTT dye (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide)) 

(Figure 2.1) (5 m g/ml) equivalent to 1/10 of culture medium was added to each well. The plate 

containing dye was incubated for 4 hours at 37 C° and 5% CO2. After incubation, the culture 
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medium was removed. DMSO to the volume of 200 µl was added to the wells and incubated 

overnight at room temperature (25°C) in dark. The optical density (OD) of the wells was 

obtained at 570nm by an ELISA reader. The results were obtained as the percentage of control 

(untreated cells).  

 

 

Figure 2.1 Mitochondrial reduction happening during MTT assay 

 

2.2.9 Cellular uptake test using confocal microscopy 

To screen the uptake of the nano-emulsion particles in A375 and HaCaT confocal microscopy 

was used. As nano-emulsions were loaded with doxorubicin and coumarine-6 separately, after 

the treatment the cells were imaged. The fluorescent intensity of both doxorubicin and 

coumarine-6 was used as to observe the nano-emulsion particle’s uptake in the cells. To conduct 

cellular uptake experiments, cells were seeded into 6 well plates with a density of 5x106 cells 

per well and were treated with coumarin-6 and doxorubicin-loaded nano-emulsion. The uptake 



 

 

 

92 

 

of the coumarin-6 and doxorubicin-loaded nano-emulsions was measured for both HaCaT and 

A375 cells after specific treatment periods (4 hours, 24 hours, 48 hours, and 72 hours). After 

the treatments, the medium was removed from the wells, and all wells were washed with PBS 

twice. The cells were fixed using 4% (v/v) formaldehyde. For this, formaldehyde (50 µl) was 

added to the media into each well and left for 5 minutes, then the media were removed and 250 

µl of formaldehyde was added to each well to cover all the cell surface and incubated for 20 

minutes for cells to fix. Cells were washed with PBS twice and 2 ml of PBS were added to the 

wells for confocal microscopy (Leica TCS SP2).  

To obtain images for coumarin-6, FITC filter was used (λmax 488nm). Images were obtained 

along Z-axis (Z wide) and Z position was set to 0.1 µm per turn (objective HCX APOLU-V-1 

63X0.9W, pixels 1024 X 1024, pinhole 1 airy unit, stack 0.5 µm thick). Images for doxorubicin 

(excitation 543 nm, emission long-pass filter 570 nm) were obtained under the same conditions. 

After the cells were observed using confocal microscopy, the fluorescence intensity was 

quantified using Image J, to identify the cellular uptake. 

2.2.10  Fluorescent microscopy  

For more investigation on the cell morphology after the treatments with drug loaded nano-

emulsion, fluorescent microscopy was conducted. The microscopy imaging of the cells was 

conducted using an EVOS fluorescent microscope. The cells were initially labelled with cell 

tracker red (CMTPX) and cell tracker green (CMFDA) florescent probes according to the 

manufacturer’s protocol (Zouani et al., 2013). For CMFDA labelling, 107 µl of DMSO was 

added to one of the CMFDA vials provided by the manufacturer to make a 1 mM stock solution. 
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To make 10 µM working solution, 50 µl of the stock solution (1 mM) were diluted in 5 ml of 

serum-free DMEM. For CMTPX, 72 µl of DMSO was added to the CMTPX vial; again 50 µl 

of the stock solution was diluted in 5 ml serum-free DMEM to make 10 µM working solution. 

To label the cells, HaCaT and A375 cells were previously passaged and seeded in a T-75 flask. 

After the cells became confluent, the media was removed and the cells were washed with PBS 

twice. Five ml of CMFDA working solution was added to the A375 flask and 5 ml of CMTPX 

working solution was added to the HaCaT flask. The flasks were incubated for 30 minutes in 

an incubator. Afterward, media from both flasks were removed and the cells were washed with 

PBS twice. The labelled cells were detached using trypsin-EDTA and collected for subsequent 

seeding in the 6 well plates. After the attachment of the cells, nano-emulsion treatments were 

applied. Cells were imaged for durations of 24 hours, 48 hours, and 72 hours afterward. 

DAPI stain was used to image the cell nuclei. Deionized water (2 ml) was added to the entire 

content of the DAPI vial to make a 5 mg/ml stock solution. To make a 300 µM DAPI 

intermediate solution, 2.1 µl of DAPI stock solution, was added to 100 µl of PBS. The 

intermediate solution was diluted 1:1000 in PBS to make a 300 nM solution. To commence the 

staining, the cells were washed with PBS twice. A sufficient amount of 300 nM DAPI solutions 

(approximately 250 µl) was added to cells to cover their surface. The plates were incubated for 

15 minutes protected from light, at room temperature. After incubation, the stain was removed 

and the cells were washed with PBS twice. They were then imaged using the DAPI filter in an 

EVOS microscope (M5000 Thermo-Fischer Scientific). Cells that demonstrated decreased 

nuclear size, condensation of chromatin, and intensive fluorescent emission are considered as 

apoptotic. 
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Images of CMFDA-probed cells were taken at excitation 492 nm and emission 517 nm and 

GFP filter on EVOS microscope. CMTPX was imaged at excitation 577 nm and emission 602 

nm using an RFP filter.  

2.2.11   DNA fragmentation ELISA 

The apoptosis process includes activation of endonucleases leading to fragmentation of 

chromatin to oligonucleosomal fragments (approximate sizes of 180 bp). These DNA 

fragments appear in the early stages of apoptosis. One of the approaches to detect these 

fragments is DNA fragmentation ELISA (Salgame et al., 1997). DNA fragmentation ELISA 

was used in this section to detect early apoptosis as it is a highly sensitive monoclonal-antibody-

based assay (Jablonski et al., 2017, George and Rupasinghe, 2017).   

Cellular apoptosis ELISA experiment was done to specify the doxorubicin-loaded nano-

emulsions apoptosis induction-ability on melanoma and keratinocyte cells. A cellular apoptosis 

experiment was conducted using cellular fragmentation ELISA kit, following the manufacturer 

protocol. After confluency of about 80%, cells were treated with trypsin-EDTA to detach from 

the flask. After 30 seconds, 5 ml of media was added to the flask and the cell suspension was 

centrifuged for 5 minutes at 15000 rpm. The supernatant was removed, and the cell pellet was 

re-suspended in a fresh medium. BrdU (Bromodeoxyuridine/ 5-bromo-2'-deoxyuridine) 

labelling solution was added to the medium to prepare the final concentration of 10 µM and the 

cell suspension was incubated overnight in the incubator. After incubation time, BrdU cell 

suspension was centrifuged for 10 minutes at 250×g. The supernatant was taken out and the 

labelled cells were re-suspended in a fresh medium. BrdU labelled cells were seeded into 
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triplicate wells of round bottom 96 well plates to a final concentration of 1×105 cells/ml. The 

cells were treated with 10 µl/ml of nano-emulsions (section 2.2.5) and incubated for 4, 24, 48, 

and 72 hours. After the incubation, plates were centrifuged for 10 minutes at 250×g, and 

supernatants were removed thoroughly. Incubation solution was added to the remaining cells 

to lyse them. For this, the plates were incubated for 30 minutes at room temperature and then 

centrifuged. Supernatants were collected from each well and then added to triplicate wells pre-

coated plates for ELISA photometric measurements using an ELISA reader (BMG, Labtech). 

Add the full protocol detail 

2.2.12   Folate binding protein ELISA 

Folate receptors are overexpressed in most cancer cell lines. However, to confirm and identify 

the folate receptor expression concentration on melanoma cells (A375) folate binding protein 

(FBP) ELISA was done (Ogbodu et al., 2015). Accordingly, cell supernatants from A375, 

HaCaT (negative control), and MDB MA-231 (positive control) cell lines were used for the 

assay. Preparation of all the reagents, samples, and standard stock solutions was based on the 

manufacturer’s protocol. Standard solution (100 µl) and sample solutions were added to the 

appropriate wells of the pre-coated ELISA plate. The plate was incubated at 37 °C for 90 

minutes. The content of the plate was tapped out after the incubation and 100 µl of biotinylated 

antibody was added to the wells and incubated for 60 minutes at 37 °C. The wells were washed 

with 300 µl of 0.01 M PBS three times. After the washing, 100 µl of Avidin-biotin-peroxidase 

complex (ABC) working solution was added and the plate was incubated at 37 °C for 30 

minutes. The wells were washed again and 90 µl of TMB (3,3′,5,5′-Tetramethylbenzidine) was 
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added to the wells and incubated at 37 °C in dark for 15-20 minutes. TMB stop solution with 

the volume of 100 µl was added to the wells afterward, and the OD of the wells was read at 450 

nm within 30 minutes.  

2.2.13   Co-culture of HaCaT and A375 cells  

To observe the effect of the drug-loaded nano-emulsions on both A375 and HaCaT cell lines, 

the treatments were conducted on the co-culture of both cells. The co-culture of HaCaT and 

A275 was also a primary monolayer model to study the effect of drug-loaded nano-emulsion 

as a topical delivery system for melanoma.  Previously fluorescent labelled A375 and HaCaT 

cells 2.2.10)were seeded in 6 well plates with a ratio of 1:5 respectively and grown in DMEM. 

Plates were incubated at 37°C and 5% CO2. After 12 hours, the seeded and labelled cells were 

treated with 10 µl/ml of drug-loaded nano-emulsions in duplicate wells, incubated for 72 hours, 

and imaged using fluorescent microscopy. 

 

2.2.14  Polymerase chain reaction 

Polymerase chain reaction (PCR) was performed to screen the apoptosis-associated proteins 

caspase-3 (Duan et al., 2020), and caspase-9 (Chen et al., 2019). Bax (Pan et al., 2019) a pro-

apoptotic gene, and Bcl2 (Pan et al., 2019) an anti-apoptotic gene expression were also screened 

using a PCR methodology. This methodology was used as a qualitative method screening of 

the gene expressions in the treated cells. 



 

 

 

97 

 

2.2.14.1   RNA extraction using TRIzol method 

Total RNA was extracted directly from the treated cells in 6 well plates (cell density of 5x106) 

using TRIzol reagent. Initially, the media was removed and cells were washed with PBS. Using 

1ml of TRIzol, the content of 3 wells was pooled together and mixed well. The lysate was then 

transferred to 1.5 ml Eppendorf microcentrifuge tubes containing 1.5 µl Glycoblue co-

precipitant. Chloroform at 200 µl/ml of TRIzol was added to each tube. The content of each 

tube was mixed by inversion for 10 seconds and left for incubation for 5 minutes at room 

temperature. The mixture was then centrifuged at 12,000 × g for 15 minutes at 4 °C.  

 

Figure 2.2 Organic, interface, and aqueous phases after treating with TRIzol. 

 

After centrifugation, the upper phase was removed fully and accurately added to a new tube. 

Isopropanol at half of the original TRIzol was added to each tube and gently mixed by inversion 

three times followed by centrifugation at 12,000 × g for 10 minutes at 4°C. The supernatant 

was removed leaving a blue pellet behind. The pellet was washed using 500 µl of 75% ethanol 

by gentle inversion and flicking. The tube was centrifuged at 10,000 × g for 5 minutes at 4°C. 



 

 

 

98 

 

The pellet was then air-dried and RNA was re-suspended in 44 µl of nuclease-free water. The 

RNA quality was measured and quantified using nano-drop in the table below (Table 2.14) 

(Thermosientific UK). 

 

Table 2.14 RNA quantification and quality by nano-drop 

Treatment A375 cell 

line (ng/µl) 

HaCaT cell 

line (ng/µl) 

260/280 

ratio 

260/230 

ratio 

Doxorubicin-loaded 

modified nano-

emulsion 

770.01 263.5 2.10 2.09 

Dacarbazine-loaded 

modified nano-

emulsion 

810.08 351.1 2.12 2.08 

Doxorubicin-loaded 

nano-emulsion 

697.0 1084.5 2.10 2.10 

Dacarbazine-loaded 

nano-emulsion 

659.9 264.3 2.11 2.10 

Naïve doxorubicin 332.3 313.3 2.25 2.07 

Naïve dacarbazine 983.3 396.6 2.11 2.05 

Control 683.5 248.2 

 

2.11 2.13 
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2.2.14.2  RNA purification and DNase treatment 

The extracted RNA samples were DNase treated using the DNA purification kit according to 

the manufacturer’s recommendations. The volumes used are shown in the table below 

Table 2.15. 

 

Table 2.15 RNA purification and reagents 

RNA 17 µl 

DNase (buffer) 2 µl 

DNase enzyme 1 µl 

 

The mixtures were incubated for 15 minutes at 25 °C in a thermocycler. EDTA was then added 

to all samples to the volume of 1 µl and incubated for 10 minutes at 65 °C. All the samples 

were run on the gels to detect the total, DNA-free RNA. 

2.2.14.3  Preparation of cDNA  

The extracted and purified RNA was used for complementary DNA synthesis. The RNA was 

converted to cDNA using a superscript II reverse transcriptase kit (Invitrogen). The total 

extracted and purified RNA (500 ng) was used for cDNA synthesis. To commence, Oligo 

(dT)12-18 and dNTP mix was added to nuclease-free microcentrifuge tubes (1 µl each). Nuclease-

free sterile water was added to each sample to the total volume of 12 µl. Finally, 4 µl of purified 

RNA was added to the tubes. The mixture was heated to 65°C for 5 minutes. Subsequently, the 

tubes were promptly chilled on ice. In the next step first strand buffer 5x, 0.1 M DTT, and 
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RNAse OUT to the volumes of 4, 2, and 1 µl respectively, were added to the tube. The mixture 

was gently mixed and 1µl of superscript II was added to the tube. The mixture was incubated 

at 42 °C for 50 minutes followed by reaction inactivation for 15 minutes at 70 °C.  

2.2.14.4    Thermo-cycling, an agarose gel electrophoresis analysis 

PCR was done using 5 µl of PCR master mix (2X), 0.5 µl forward and reverse primers, 1 µl of 

cDNA template, and Nuclease free water up to 12 µl (Si et al., 2018). 

The mixtures were gently vortexed and spun down. The samples were put in a thermal cycler 

with the conditions as follows: 

Table 2.16 PCR cycles and conditions 

Step Temperature °C Time Number of cycles 

Initial denaturation 95 2 minutes 1 

Denaturation 95 30 seconds  

Annealing 55 30 seconds 30 

Extension 72 2 minutes  

Final extension 72 15 minutes 1 

 

To visualise the amplified DNA, agarose gel electrophoresis was used. Agarose gel (1% w/v) 

was prepared before the experiment. The agarose powder (1 gr), was added to 100 ml of TAE 

(Tris-acetate-EDTA) buffer and heated in a microwave until the solution was clear and the 

agarose was dissolved. The agarose solution was cooled down at room temperature, and a 2% 

v/v Gel red DNA stain was added to the solution to visualise the DNA under UV light. The 
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agarose solution was then poured into the gel electrophoresis tray and was left to set at room 

temperature. After solidifying, the gel was placed in the tank and TAE buffer was added. 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye 

(Thermo-Scientific 6X DNA loading dye). The mixture was then loaded into the wells of 1% 

agarose gel in the tank.  

A molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected. 

2.2.15 Western blotting  

2.2.15.1    Protein extraction using TRIzol method 

The western blot experiment was carried out in order to screen and identify the iNOS and COX-

2 expression in A375 cells treated with anti-inflammatory compound-loaded nano-emulsion. 

Before performing Western blotting, the total protein content of the cells (5x106 cells per well) 

was extracted directly from the treated cells in 6 well plates, media was removed and cells 

washed with PBS once before the addition of, 1 ml of TRIzol, the content of 3 wells were 

pooled together and mixed well. The lysate was then transferred to 1.5 ml Eppendorf micro-

centrifuge tubes, chloroform, 200 µl per 1 ml of initial TRIzol was added to each tube. The 

content of tubes was mixed by inversion for 10 seconds and left for 5 minutes at room 

temperature and centrifuged at 12,000 x g for 15 minutes at 4 °C. The upper aqueous phase and 
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interface were discarded, and the organic phase was kept for protein extraction. Isopropanol 

was then added to each tube (0.8 ml per 1 ml of TRIzol). Samples were incubated for 10 minutes 

at 15-30 °C, and protein centrifuged at 7,500xg for 5 minutes at 2-8 °C. The supernatant was 

removed and the protein pellet washed three times using 0.3 M guanidine hydrochloride 

solution in 95% ethanol (2 ml of wash buffer was used per 1 ml of initially used TRIzol). During 

each wash step, the protein pellet was kept in the solution for 20 minutes at 15-30 °C, then 

centrifuged at 7,500xg for 5 minutes at 2-8 °C. Following the final wash step, the pellet was 

stored in ethanol for 20 minutes at 15-30 °C and then centrifuged at 7,500xg for 5 minutes at 

2-8 °C. The pellet was vacuum dried and dissolved in 1% SDS by continuous pipetting. The 

step was completed on a heat block at 50 °C. Final centrifugation at 10,000xg for 10 minutes 

at 2-8°C was done and the supernatant was removed to a fresh tube and stored at -80 °C for 

western blotting.  

2.2.15.2  SDS 10% polyacrylamide gel electrophoresis (SDS-PAGE) 

Extracted proteins were prepared and loaded onto SDS page gel; Subsequently, 25 µl of each 

protein extracted was mixed with 25 µl of 2x laemmli loading buffer (4% SDS, 10% 2-

mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, 0.125 M Tris-HCL, pH 6.8), and 

boiled at 95 °C water for 5 minutes. Samples were centrifuged down at 12,000 g for 1 minute 

and 20 µl of each sample was loaded into each well of precast SDS 10% polyacrylamide gels 

along with protein molecular markers (prestained protein MW marker). The tank was filled 

with running buffer (containing 25 mM tris, 190 mM glycine, and 20% methanol) and the gel 

was run at 50 V constant for 5 minutes and then 100 V for 1 hour.  
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2.2.15.3  Protein transfer 

Following running the gel, the gel cassette was placed in the Western blot running buffer for 

10-15 minutes and the gel was removed from the cassette to prepare the transfer sandwich. 

Nitrocellulose membrane(s), Western blot papers, and sponges were soaked in Western blot 

buffer for a few minutes and the gel was placed in a Western blot sandwich, with the gel on the 

anode side and the blot on the cathode side. The cassette was placed in the Western blot tank 

alongside an ice block (-20 °C) to keep the buffer cold using a magnetic stirrer. The transfer 

was run for 150 minutes at 30 mA.  

After the Western blotting step, the blot was removed and placed in TBST (Tris buffer saline 

containing tween 20). The blot was rinsed with dH2O and stained with 0.2% Ponceau S in 10% 

v/v acetic acid for 1 minute to assess transfer quality (Figure 2.3) The blot was then blocked 

with 5% non-fat milk in TBST for 2 hours and rinsed with TBST for 5 minutes 3-5 times.  

Following blocking, the blot was then incubated with primary antibodies against target proteins 

(anti-Cox-2 and anti iNOS antibodies (Abcam, ab15191 and ab 3523)). The antibody (dilution 

factor 1:200) was dissolved in TBST and then blot was incubated with the primary antibody at 

4 °C overnight. Following incubation, the blot was washed with TBST 3-5 times and incubated 

with the secondary antibody -mouse α-tubulin antibody- solutions for 1 hour at room 

temperature.  

The protein bands were visualized by incubating the blot in 3 ml of TMB solution for 10 

minutes. The blot was washed with dH2O and imaged using UVP Image Capture System.  
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Figure 2.3 Western blot stained Ponceau S 

 

2.3 Statistical analysis 

The experiments conducted in this research were repeated at least three times (n=3) unless 

stated in the results. The acquired data were analysed using GraphPad software and ECXEL. 

Two-way ANOVA, Tukey’smultiple comparison test was performed to compare the significant 

differences in the same treatment groups. Any set of data with P<0.05 is considered statistically 

significant.  
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3 Results  
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3.1 Synthesis and optimisation of nano-emulsion for enhanced 

drug delivery to melanoma  

3.1.1 Introduction 

One of the important factors causing an increase in drug-resistance in melanoma (at the 

cellular level) is the inefficient and uncontrolled (too low or too high) drug efflux (Xue 

and Liang, 2012) in delivering chemotherapeutics (Yuan et al., 2016). It has been 

reported that polysaccharides have unique potential in cancer drug delivery (Posocco et 

al., 2015), such as enhanced uptake in the cancer cells (Dheer et al., 2017). In this 

chapter, novel synergy of chitosan, pullulan and alginate were investigated with the 

intention of uptake enhancement and chemo-resistance defeat in melanoma (Gilani et 

al., 2018).  

The in vitro characteristics of chitosan-pullulan, pullulan-alginate, and alginate-

chitosan polymer blends as nano-emulsions, as described in this chapter. Based on 

release profiles, the nano-emulsion samples were narrowed down to top-nine.  

Subsequently, the toxicity to the A375 and HaCaT cell lines, release, and uptake of 

drug-loaded nano-emulsions were measured.  

Furthermore, apoptosis induction of doxorubicin delivery was evaluated by DNA 

fragmentation ELISA and based on the results, the optimal nano-emulsion was selected 

for further investigations. 

The flow-chart below indicates the work carried out in brief Figure 3.1 
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Figure 3.1 Flow-chart of the development and optimisation of nano-emulsions 
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3.1.2 Synthesis and evaluation of polymeric nano-emulsions 
characteristics 

3.1.2.1 Evaluation of in vitro release of coumarin-6 and doxorubicin 

from chitosan, pullulan, and alginate nano-emulsions 

A set of experiments were carried out to monitor the release of doxorubicin and coumarin-6 

from pullulan, alginate, and chitosan nano-emulsions. In the previous investigations, the three 

polymers individually presented unique characteristics in drug delivery systems, and they were 

subjected to various modifications and combinations in previous investigations (Ahmed and 

Aljaeid, 2016, Vora et al., 2020, Cheng et al., 2019a, Yu et al., 2017).  

However, in this research as a novel approach, the polymer combinations were compared to 

each other. Chitosan, alginate, and pullulan all have different surface charges. So the surface 

charge was considered as one of the factors influencing release profile and consequently the 

stability of the nano-emulsion.  

Each of the nano-emulsions was prepared with different amounts of polymers. The profile of 

coumarin-6 and doxorubicin release from nano-emulsion was measured by the dialysis method 

for 21 days. Initial burst (release in 0-24 hours) of coumarin-6 from chitosan nano-emulsions 

ranged between 0 to 30%, for pullulan nano-emulsions the range was 1 to 17.5%, and for 

alginate ranged between 1 to 5%. The initial burst of doxorubicin from chitosan nano-emulsions 

ranged between 0 to 9% for pullulan nano-emulsions the range was 1.7 to 14%, and for alginate 

ranged between 2.25 to 11.9%. Nano-emulsions that showed the steadiest release (fewer 

fluctuations over 21 days) and the lowest initial burst were chosen for blending. The release 
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profiles were recorded for both coumarin-6 and doxorubicin-loaded nano-emulsions. In both 

cases, the data were collected from 3 independent experiments and calculated as percentages 

of naïve coumarin-6 and doxorubicin control values. Recorded profiles for doxorubicin release 

was steadier and showed less fluctuation with a lower initial burst.  
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Figure 3.2 Coumarin-6 cumulative release from chitosan nano-emulsions 

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measured by spectrophotometer at 

7 different time points over 21 days. The experiment was conducted using the dialysis method 

at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed using 

UV-spectrophotometer at 450 nm wavelength. The results were normalised to naïve coumarin-

6 release (control) and are demonstrated as the percentage of the control. The data were 

obtained from 3 independent experiments and presented as mean ±SD error bars.  
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Figure 3.3 Coumarin-6 cumulative release profile from pullulan nano-emulsions 

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measured by spectrophotometer at 

7 different time points over 21 days (n=3). The experiment was conducted by dialysis method 

at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed using 

UV-spectrophotometer at 450 nm wavelength. The results were normalised to naïve coumarin-

6 release (control) and are demonstrated as the percentage of the control.  The data are obtained 

from 3 independent experiments and presented as mean ±SD error bars.  
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Figure 3.4 Coumarin-6 cumulative release profile from alginate nano-emulsion  

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measured by spectrophotometer at 

7 different time points over 21 days (n=3). The experiment was conducted using a dialysis 

method at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed 

using UV-spectrophotometer at 450 nm wavelength. The results were normalised to naïve 

coumarin-6 release (control) and are demonstrated as the percentage of the control. The data 

are obtained from 3 independent experiments and presented as mean ±SD error bars.  
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Figure 3.5 Doxorubicin cumulative release profile from chitosan nano-emulsion 

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measured by spectrophotometer at 

7 different time points over 21 days (n=3). The experiment was conducted using a dialysis 

method at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed 

using UV-spectrophotometer at 479 nm wavelength. The results were normalised to naïve 

doxorubicin release (control) and are demonstrated as the percentage of the control. The data 

are obtained from 3 independent experiments and presented as mean ±SD error bars.  
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Figure 3.6 Doxorubicin cumulative release profile from pullulan nano-emulsions 

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measured by spectrophotometer at 

7 different time points over 21 days (n=3). The experiment was conducted using a dialysis 

method at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed 

using UV-spectrophotometer at 479 nm wavelength. The results were normalised to naïve 

doxorubicin release (control) and are demonstrated as the percentage of the control. The data 

are obtained from 3 independent experiments and presented as mean ±SD error bars.  
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Figure 3.7 Doxorubicin cumulative release profile from alginate nano-emulsions 

The nano-emulsions were prepared (0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7 w/v %), loaded with 

coumarin-6 and screened for 21 days. The release data was measure by spectrophotometer at 7 

different time points over 21 days (n=3). The experiment was conducted using a dialysis 

method at 25°C and 55 rpm with continuous stirring. Liquid samples from the flasks analysed 

using UV-spectrophotometer at 479 nm wavelength. The results were normalised to 

doxorubicin release (control) and are demonstrated as the percentage of the control.  The data 

are obtained from 3 independent experiments and presented as mean ±SD error bars. 
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According to the Figure 3.2 to Figure 3.7 overall release pattern for all nano-emulsions for 21 

days increased over time. However, the cumulative release pattern of each nano-emulsion was 

different at each period.  

Through the release optimisation assessment, the selection of nano-emulsions was based on the 

controlled and slow release pattern over time. Additionally, the minimal initial burst of release 

pattern was considered for the nano-emulsion selection exercise.  

According to Figure 3.2 and Figure 3.5, the initial burst of chitosan nano-emulsions release 

profile was closest to zero for two of the samples. For pullulan nano-emulsions, three of the 

samples had initial bursts closest to zero. Among alginate nano-emulsions, four samples had 

initial bursts closest to zero. 

The main objective for this experiment was to identify which nano-emulsions could provide 

the lowest initial burst and a steady release profile. To this end, initial bursts and overall release 

patterns for each nano-emulsion were carefully analysed. Accordingly, NEC1, NEPl2, and 

NEAl2 were chosen due to their lowest initial burst and lowest fluctuations over time.  

3.1.2.2 Evaluation of in vitro release for blended chitosan, pullulan, 

and alginate nano-emulsions 

To improve the physical characteristics of nano-emulsions, the selected nano-emulsions from 

section 2.2.1 were blended. Nano-emulsions that showed the steadiest release and lowest initial 

burst during the 21 days were chosen for blending. In section 3.1.2.1 nano-emulsions presented 

a slow release profile over time. However, the patterns did not concur with the desired 

controlled release to overcome flux-dependant resistance in melanoma. Consequently, 
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chitosan-pullulan, pullulan-alginate, and alginate-chitosan nano-emulsions were developed. 

Each of the blended nano-emulsions was prepared according to the method described in section 

2.2.1 and the release profile of encapsulated coumarin-6 and doxorubicin was measured by the 

dialysis method for 21 days. The results were obtained from three independent experiments and 

were calculated as percentages of naïve coumarin-6 and doxorubicin control values. In 

comparison to single polymer nano-emulsions, all the initial bursts were improved and were 

closer to zero.  

The initial burst of coumarin-6 loaded nano-emulsions ranged between 0 to 3.9%, and for 

doxorubicin-loaded nano-emulsions ranged between 0 to 2.7%. The release profile quality 

increased significantly. The initial burst reduced and the release profiles for the 21 days were 

steadier.  

The release trends for all the samples were observed and recorded (Figure 3.8 and Figure 3.9). 

The best release profile for both doxorubicin and coumarin-6 release fitting the criteria appeared 

to be pullulan-chitosan. This nano-emulsion consisted of 4 mg/ml pullulan and 8 mg/ml 

chitosan (Table 2.13). However, after the analysis, the samples narrowed down to 9 best 

according to controlled release and steadiness over 21 days, to investigate further. Based on the 

findings, nine nano-emulsion samples were marked out for their superior performance: NEC1-

Al 2:1, NEAl2-Cs 1:2, NEPl2-Cs 2:1, NEPl2-Cs 1:2, NEC-Pl 1:1, NEC1-Pl 2:1, NEPl2-Al 1:2, 

NEPl2-Al 2:1 and NEPl2-Al 1:1.  

The drug release showed an increasing pattern over 21 days, in all cases. The release profile 

was detected to be about 80% during the first 72 hours for a few samples. Hence, a good extent 

of the drug was released, yet, in a controlled pattern to avoid resistance.  
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Figure 3.8 Coumarin-6 cumulative release profile from blended nano-emulsions 

The nano-emulsions were prepared with three different weight ratios (1:1, 1:2, 2:1 w/w%) 

loaded with coumarin-6 and screened for 21 days. The release data was measured by 

spectrophotometer at 7 different time points over 21 days (n=3). The experiment was conducted 

using a dialysis method at 25°C and 55 rpm with continuous stirring. Liquid samples from the 

flasks analysed using UV-spectrophotometer at 450 nm wavelength. The results were 

normalised to coumarin-6 release (control) and are demonstrated as the percentage of the 

control.  The data were obtained from 3 independent experiments and presented as mean ±SD 

error bars.  
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Figure 3.9 Doxorubicin cumulative release profile from blended nano-emulsions 

The nano-emulsions were prepared with three different weight ratios (1:1, 1:2, 2:1 w/w%) 

loaded with doxorubicin and screened for 21 days. The release data was measured by 

spectrophotometer at 7 different time points over 21 days (n=3). The experiment was conducted 

using a dialysis method at 25°C and 55 rpm with continuous stirring. Liquid samples from the 

flasks analysed using UV-spectrophotometer at 479 nm wavelength. The results were 

normalised to doxorubicin release (control) and are demonstrated as the percentage of the 

control. The data are obtained from 3 independent experiments and presented as mean ±SD 

error bars.
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3.1.2.3 Viability screening of non-loaded blended nano-emulsions at 

three different doses 

A375 and HaCaT cells were treated with 15 non-loaded blended nano-emulsions to screen the 

cell viability. The outcome was confirmed by MTT assay. The data were obtained from six 

independent experiments and outcomes are reported as a percentage of control.  

Cytotoxicity assay was conducted for 15 blended nano-emulsions plus three single polymer 

nano-emulsions chosen in section 3.1.2.1.  the cells were treated with three concentrations of 

10, 20, and 30 µl/ml of non-loaded nano-emulsions. 

The viability of HaCaT cells ranged from 75.5 to 106.06% (NEPl2-Al 1:2 and NEPl2-Cs 1:2), 

43.32 to 85% (NEAl2-Cs 2:1 and NEC1-Al 2:1) and 47.13 to 80% (NEAl2-Cs 2:1 and NEPl2-

Cs 1:1) for treatment concentrations of 10, 20, and 30 µl/ml respectively. A375 cell viabilities 

ranged from 70 to 107.48% (NEC1 and NEPl2-Cs 1:2), 56.14 to 87.71% (NEAl2-Cs 2:1 and 

NEC1-Al 2:1) and 28.16 to 96.99% (NEAl2-Cs 1:1 and NEPl2-Al 1:1) for treatment doses of 

10, 20 and 30 µl/ml respectively. This set of experiments aimed to choose the optimal 

concentration and find out the non-loaded nano-emulsions which do not decrease HaCaT 

viability but decrease the A375 viability. Nano-emulsion treatment concentration of 10 µl/ml 

was chosen accordingly. This was used to narrow down the samples to the ones inducing higher 

toxicity to A375 and lower toxicity to HaCaT. 

Increasing the dose to 20 and 30 µl/ml, significantly decreased the viability of both A375 and 

HaCaT cells to a maximum of 45% compared to untreated control, for a few treatments. Hence, 
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the lowest dose was chosen for treatments. However, the reason for decreased viability of both 

cell lines treated with increased concentration of the nano-emulsions can be further investigated 

with Annexin-V assay. A good example is sample NEPL2-Cs 1:2 which had a significant 

desirable (High HaCaT viability and low A375 viability) effect compared to other treatments.  
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Figure 3.10 Viability screening keratinocyte (HaCaT) cells treated with non-loaded nano-
emulsions 

The cells were treated at three nano-emulsion concentrations of 10, 20, and 30 µl/ml. Cells were 

treated with 15 nano-emulsion and incubated for 72 hours. The viability data were obtained 

using the MTT method, results were calculated based on untreated control cells, and reported 

as the percentage of control. Bars represent the mean value of 6 independent experiments ±SD 

error. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05.  
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Figure 3.11 Viability screening melanoma (A375) cells treated with non-loaded nano-emulsions 

The cells were treated at three nano-emulsion concentrations of 10, 20, and 30 µl/ml. Cells were 

treated with 15 nano-emulsion and incubated for 72 hours. The viability data were obtained 

using the MTT method, results were calculated based on untreated control cells, and reported 

as the percentage of control. Bars represent the mean value of 6 independent experiments ±SD 

error. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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3.1.2.4 Evaluation of the top-nine blended doxorubicin-loaded nano-

emulsions to induce toxicity to melanoma 

From the last three sections, based on MTT and release assays, the blended nano-emulsion 

samples were analysed and narrowed down to 9 top nano-emulsions as best fit designs for this 

project. The criteria for the top best were the highest possible viability for HaCaT compared to 

untreated HaCaT and decreased viability for A375 cells compared to untreated A375 cells. The 

data were obtained from 6 independent experiments and the values were calculated as a 

percentage of control. The results below, belong to the chosen 9 nano-emulsions.  

The toxicity of top-nine nano-emulsions was monitored and compared to doxorubicin-loaded 

nano-emulsions and naïve doxorubicin. 

The figure below (Figure 3.12) is a comparison of A375 cell viability treated with of non-

loaded, doxorubicin-loaded, and naïve doxorubicin. 

The viability of A375 cells treated with non-loaded nano-emulsions ranged from 35.82 to 

107.07% and 25.62 to 47.22% for doxorubicin-loaded nano-emulsions while the viability of 

cells treated with doxorubicin is 104.55% (All the viability data assessed as percentage of 

untreated control).  For the samples, NEC1-Al 2:1, NEPl2-Cs 2:1, NEC1-Pl 2:1, NEPL2-Al 

1:2, and NEPl2-Al 1:1 viability of A375 cells significantly decreased by a range of 25-30% of 

control.  
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Figure 3.12 Viability of A375 cells treated with top-nine blended nano-emulsions 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and naïve 

doxorubicin. The cells were incubated for 72 hours following the treatment. The viability data 

were obtained using the MTT method, results were calculated based on untreated control cells, 

and reported as the percentage of control. Bars represent the mean value of 6 independent 

experiments ±SD error. The data were analysed with two-way ANOVA Tukey’s comparison 

test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 

 

 

 

 

 

NEC1-
Al 2

:1

NEAl2-
Cs 1

:2

NEPl2-
Cs 2

:1
 

NEPl2-
Cs 1

:2
 

NEC1-
Pl 1

:1

NEC1-
Pl 2

:1
 

NEPl2-
Al 1

:2

NEPl2-
Al 2

:1
 

NEPl2-
AL 

1:
1

Unt
re

at
ed

 co
nt

ro
l 

0

50

100
A

37
5 

 c
el

l v
ia

b
ili

ty
 (

%
)

Non-loaded blended nano-emulsions

Doxorubicin loaded blended nano-
emulsions

Naive doxorubicin  

✱✱

✱✱✱✱

✱✱✱✱ ✱✱✱✱

✱✱✱✱

✱✱✱

✱✱✱✱



 

 

 

126 

 

According to Figure 3.12 viability of the cells treated with blank nano-emulsions was 

significantly higher than the cells treated with doxorubicin-loaded nano-emulsions.  

The results indicate that the encapsulation of doxorubicin is more effective to decrease the 

viability of A375 cells compared to blank blended nano-emulsions. Lower viability of cells 

treated with doxorubicin-loaded nano-emulsions may be the result of increased intracellular 

uptake of the drug-loaded nanoparticles and the subsequent effective action of the main drug 

(doxorubicin). Hence, while melanoma develops resistance to naïve doxorubicin (Xiao et al., 

2018), encapsulated doxorubicin can be effective in treating melanoma.    

3.1.2.5 Evaluation of the top-nine blended doxorubicin-loaded nano-

emulsion to induce toxicity to melanoma and keratinocytes at 4, 24, 48, and 

72 hours 

The experiment in section 3.1.2.4 was repeated, the repeat was to screen the viability of cells 

treated with blank and doxorubicin-loaded nano-emulsions over 72 hours. The viability test was 

conducted for both A375 and HaCaT cells treated with blank blended nano-emulsions. Six 

independent experiments were carried on to obtain the data and the results were calculated as a 

percentage of control. In each treatment, the effect of both treatments on cell viability was 

compared. A significant decrease of viability was observed in both cell lines treated with 

doxorubicin-loaded blended nano-emulsions compared to the viability of cells treated with non-

loaded nano-emulsion and control.  
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Figure 3.13 Viability of A375 cells in 4-hour treatment with non-loaded and doxorubicin-loaded 
blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 4 hours. The viability data were obtained using the MTT method, results were calculated 

based on untreated control cells, and reported as the percentage of control. The experiment was 

conducted in 6 independent experiments and bars are indicating the mean value ±SD error bars. 

The data were analysed with two-way ANOVA Tukey’s comparison test, **** is indicating 

P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.14 Viability of A375 cells in 24-hour treatment with non-loaded and doxorubicin-loaded 
blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 24 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.15 Viability of A375 cells in 48-hour treatment with non-loaded and doxorubicin-loaded 
blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 48 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.16 Viability of A375 cells in 72-hour treatment with non-loaded and doxorubicin-loaded 
blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 72 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.17 Viability of HaCaT cells in 4-hour treatment with non-loaded and doxorubicin-loaded 
blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 4 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.18 Viability of HaCaT cells in 24-hour treatment with non-loaded and doxorubicin-
loaded blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 24 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.19 Viability of HaCaT cells in 48-hour treatment with non-loaded and doxorubicin-
loaded blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 48 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.20 Viability of HaCaT cells in 72-hour treatment with non-loaded and doxorubicin-
loaded blended nano-emulsion 

The cells were treated with non-loaded and doxorubicin-loaded nano-emulsions and incubated 

for 72 hours. The experiment was conducted in 6 independent experiments and bars are 

indicating the mean value ±SD error bars. The viability data were obtained using the MTT 

method, results were calculated based on untreated control cells, and reported as the percentage 

of control. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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3.1.2.6 Quantification of in vitro coumarin-6 release in melanoma using 

confocal microscopy  

Confocal microscopy images were captured to screen the uptake of drug-loaded nano-

emulsions in A375 cells over 72 hours. Accordingly, the imaging was performed after 4, 24, 

28, and 72 hours.  In these experiments, the drug-loaded in the nano-emulsions was coumarin-

6. The data was obtained from quantification of images (using ImageJ) from 3 independent 

experiments and calculated as a percentage of control. Figure 3.21 indicates the intracellular 

release of the coumarin-6 within the cell cytosol compared to naïve coumarin-6 uptake.  
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Figure 3.21 Coumarin-6 intracellular release in A375 cells treated with top-nine C6 loaded nano-
emulsions 

The cells were treated with C6 loaded top-nine nano-emulsions. The experiment was repeated 

four times in the same conditions, and treated cells were incubated for 4, 24, 48, and 72 hours 

respectively. The fluorescent images were obtained by confocal microscopy (λmax 488nm) and 

quantified using Image-J. The results are normalised to naïve coumarin-6 uptake and presented 

as the percentage of control. The experiment was conducted in 3 independent experiments and 

mean data are reported ±SD error bars. The data were analysed with two-way ANOVA Tukey’s 

comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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In Figure 3.21, based on coumarin-6 fluorescent intensity, the intracellular release of the drug 

from nano-emulsions can be estimated. Samples NEPl2-Al 1:1, NEPl2-Cs-1:2, NEC1-Al 2:1, 

and NEC1-Pl 2:1 demonstrated the increasing pattern of release over 72 hours. Other samples 

did not exhibit a certain pattern, but a sudden increase and decrease of fluorescent intensity 

were detected. Samples which can provide an increasing and steady pattern during the 72 hours, 

such as NEPl2-Cs 1:2, are most relevant to this project. The fluorescent intensity recorded for 

NEPl2-Cs 1:2 was increased from 9.28 to 58%. This could be an indication of the abrupt release 

of the drug due to possible degradation of the nano-particles and needs to be further investigated 

using alternative fluorescent drugs or NTA.  

Although there was a pattern for the release of coumarin-6 from the nano-emulsions, there was 

no significant difference in the release patterns. Samples NEPl2-Cs 2:1 and NEPl2-Al 1:2 have 

an abrupt decrease or increase in the fluorescent intensities which could be due to lysosomal 

degradation of coumarin-6 inside the cells.  

3.1.2.7 Visualisation of coumarin-6 and doxorubicin uptake and 

release in A375 and HaCaT cells 

To investigate the uptake of the nano-emulsions in the cell cytosol, both HaCaT and A375 cells 

were treated with coumarin-6 and doxorubicin-loaded nano-emulsions. Here the overall uptake 

after 72 hours were screened and the status for the two cell lines was compared.  

Confocal photos obtained from 72 hours’ treatments of doxorubicin-loaded nano-emulsions 

and coumarin-6 loaded nano-emulsions are demonstrated. The images were obtained from the 

A375 and HaCaT cells after treatments. 
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The uptake of drug-loaded nano-emulsion particles in A375 cells and HaCaT is presented in 

Figure 3.22 and 3.23. Interestingly, it can be observed that a few nano-emulsions, namely 

NEPl2-Cs 1:2, NEC1-Al 2:1, NEPl2-Al 1:1, NEPl2-Al 1:2 and NEAl2-Cs 1:2 provided a good 

fluorescent intensity in A375 cells, yet the fluorescent intensity in the HaCaT for the same 

treatments was not considerable. On the other hand, some nano-emulsion samples provide good 

uptake both in A375 and HaCaT. The samples showing less uptake (low fluorescent intensity) 

in the HaCaT and high uptake in A375 cells (high fluorescent intensity) were selected for 

further research (NEC1-Pl 1:1, NEPl2-Cs 1:2, and NEPl2-Al 1:2).  
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Figure 3.22 Confocal images of A375 and HaCaT cells treated with C6 loaded nano-emulsions 

The A375 and HaCaT cells were treated with coumarin-6 loaded nano-emulsions for 72 hours. The cells 
were washed and fixed. PBS was added to the wells for confocal imaging. FITC filter was used (λmax 
488nm). Images were obtained along Z-axis (Z wide) and Z position was set to 0.1 µm per turn 
(objective HCX APOLU-V-1 63X0.9W, pixels 1024 X 1024, pinhole 1 airy unit, stack 0.5 µm 
thick) (scale bars 200µm).   
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Figure 3.23 Confocal images of A375 and HaCaT cells treated with doxorubicin-loaded nano-
emulsions 

The A375 and HaCaT cells were treated with doxorubicin loaded nano-emulsions for 72 hours. The 
cells were washed and fixed. PBS was added to the wells for confocal Imaging. Images were obtained 
along Z-axis (Z wide) and Z position was set to 0.1 µm per turn (objective HCX APOLU-V-1 
63X0.9W, pixels 1024 X 1024, pinhole 1 airy unit, stack 0.5 µm thick) (scale bars 200µm).   
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According to Figure 3.22 Figure 3.23, drug-loaded (Coumarin-6/Doxorubicin) nano-emulsions 

had successful uptake in melanoma cells, for most of the samples. Among the nano-emulsion 

samples, NEPl2-Cs 1:2 showed good uptake in A375, yet decreased uptake in HaCaT compared 

to A375 cells.  

3.1.2.8 DNA fragmentation ELISA measurement of apoptosis 

induction by the top-nine blended nano-emulsions delivering doxorubicin to 

A375 melanoma cells  

DNA fragmentation ELISA was performed to confirm and monitor the apoptosis induction 

ability of the doxorubicin-loaded nano-emulsions on the best nine nano-emulsions chosen from 

the previous sections (3.1.2.1 and 3.1.2.3). The data were obtained from three independent 

experiments and calculated as the percentage of control.  

The results from the ELISA indicate the apoptosis induction ability trend of nano-emulsions on 

A375 cells over 72 hours. Doxorubicin alone was used as the control in the analysis.  

 

 

 

 

 

 

 

 



 

 

 

142 

 

 

 

 

Figure 3.24 Induced apoptosis trend by doxorubicin-loaded nano-emulsions measured by DNA 
fragmentation ELISA 

Apoptosis induction ability of doxorubicin-loaded top nine nano-emulsion was measured by 

treating BrdU labeled A375 cells with doxorubicin-loaded nano-emulsions. After 4, 24, 48, and 

72 hours of incubations (in separate plates), The supernatant was tested with ELISA, and 

absorbance was measured (A370). The control values were assessed separately for each time 

point. The results are indicating the mean values from three independent experiments 

normalised to untreated A375 control value ±SD. 
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Figure 3.24 indicates the cellular apoptosis trend for doxorubicin-loaded nano-emulsions 

treated A375 cells. Samples NEC1-Al 2:1, NEPl2-Cs 1:2, and NEAl2-Cs 1:2 show increasing 

apoptosis trends over 72 hours. Sample NEAl2-Cs 1:2 apoptosis trend indicated absorbance 

increase from 20 to 70.8 at 370 nm over 72 hours. For NEPl2-Cs 1:2 absorbance increases from 

55.52 to 91.67 at 370 nm, and from 2.67 to 59.79 for the nano-emulsion NEC1-Al 2:1.  

The overall trend of apoptosis induced to A375 cells by doxorubicin-loaded nano-emulsion 

demonstrates an increasing pattern. Looking at nano-emulsion NEC1-Pl 2:1, decreased 

apoptosis induction is observed. Yet, the best trends are the increasing ones with the highest 

yield (absorbance) for apoptosis induction (NEPl2-Cs 1:2, Figure 3.24).  

Based on the experiments done, NEPl2-Cs 1:2 was chosen as the optimised nano-emulsion for 

further experiments to continue with.  
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3.2 Modification of optimised pullulan-chitosan nano-emulsion for 

enhanced uptake in A375 cells  

3.2.1 Introduction  

So far, preliminary experiments were conducted to find a nano-emulsion optimised in terms of 

release and toxicity. Pullulan-chitosan nano-emulsion was optimised in terms of physical 

characteristics. To have targeted uptake toward melanoma cells, the nano-emulsion was further 

modified. The modification was done using folic acid (folate). The procedure for nano-

emulsion modification is briefed in Figure 3.25. 
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Figure 3.25 Flow-chart of nano-emulsion characterization and experiments for surface 
modification of optimised nano-emulsions 
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3.2.2 Characterisation of pullulan-chitosan nano-emulsion  

Based on the results of the previous experiments (section 3.1), the best sample optimised based 

on increased toxicity to melanoma cells, controlled release, and optimised apoptosis induction 

were NEPl2-Cs 1:2 (pullulan- chitosan nano-emulsion containing 4 mg/ml pullulan and 8 

mg/ml chitosan). 

The characteristics for optimised pullulan-chitosan nano-emulsion were investigated before 

surface modification.  

3.2.2.1 Drug encapsulation efficiency of pullulan-chitosan nano-

emulsion  

The encapsulation efficiency of the nano-emulsion was investigated using dialysis 

methodology. The nano-emulsion was investigated for encapsulation of doxorubicin and 

dacarbazine. The encapsulation efficiency of doxorubicin was detected as 87% and for 

dacarbazine was 86.12% (Figure 3.26). 
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Figure 3.26 Encapsulation efficiency of drug-loaded optimal nano-emulsion 

The experiment was conducted using the dialysis method at 25°C and 55 rpm with continuous 

stirring for 72 hours. Liquid samples from the flasks analysed using UV-spectrophotometer at 

479 nm and 331 nm for doxorubicin and dacarbazine respectively. The bars are indicating the 

mean value of 3 independent experiments (n=3) ±SD error bars. 
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The Figure 3.26 shows the encapsulation efficiency of pullulan-chitosan nano-emulsion loaded 

with dacarbazine and doxorubicin separately, they both indicate high encapsulation efficiency.  

3.2.2.2 Evaluation of particle size and size distribution of drug-loaded 

pullulan-chitosan nano-emulsion 

Defining the size of nano-emulsion plays an important role in its uptake and action in melanoma 

cells, hence the size was identified by a nano-particle tracking analyser. The method was 

optimised first and subsequently, the analysis was done for doxorubicin-loaded nano-emulsion 

and doxorubicin-loaded surface-modified nano-emulsion.  

Accordingly, the mean particle size for doxorubicin-loaded nano-emulsion (9F-dox) was 

detected as 174.2 +/- 3.8 nm, the zeta potential of +5, and peak concentration of particles at 115 

nm. The procedure was repeated with surface modified doxorubicin-loaded nano-emulsion and 

the mean particle size was measured as 238.7 +/- 10.7 nm, the zeta potential of +5.7, and peak 

concentration of particles was detected at 118 and 183 nm (Figure 3.27, Figure 3.28, and 

Table 3.1) (Appendix B).  

Table 3.1 Particle size and charge of doxorubicin-loaded nano-emulsions 

Nano-

emulsion 

Mean particle 

size (nm) 

Standard 

deviation (nm) 

Peak concentration 

(particles/ml) 

Zeta potential 

(mV) 

9F-dox 174.6 150.1 1.65e+10 +/- 1.67e+09 +5.0 

FA9-dox 240.1 83.7 7.73e+09 +/- 5.02e+08 +5.7 
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Figure 3.27 Nano-particle tracking analysis using NanoSight 

The analysis was performed for doxorubicin-loaded pullulan-chitosan nano-emulsion. 
The diluted nano-emulsion (1:200 PBS) was syringe-pumped into the NTA equipment. 
Images were captured using the following settings: laser type on blue 488, camera level 
set at 11, slider gain 146, syringe pump speed 50, detect threshold 2, and blur on auto. 
The graphs are a single demonstration from 3 independent experiments carried on.  
 

 



 

 

 

150 

 

 

Figure 3.28 Nano-particle tracking analysis using NanoSight 

The analysis was performed for folate-modified doxorubicin-loaded pullulan-chitosan 
nano-emulsion. The diluted nano-emulsion (1:200 PBS) was syringe-pumped into the 
NTA equipment. Images were captured using the following settings: laser type on blue 
488, camera level set at 11, slider gain 146, syringe pump speed 50, detect threshold 
2, and blur on auto. The graphs are a single demonstration from 3 independent 
experiments carried on. 
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3.2.3  Cell viability screening of modified nano-emulsion 

3.2.3.1 Comparison of induced toxicity of modified and non-modified 

nano-emulsion on HaCaT and A375 cells  

The cytotoxicity test was conducted on both melanoma (A375) and keratinocyte (HaCaT) cells 

to compare the effect of folate-modified nano-emulsion on cell viability. Briefly, doxorubicin 

and dacarbazine-loaded folate-modified nano-emulsions and non-modified ones versus naïve 

doxorubicin and dacarbazine were tested on both cell lines. The results are shown in 

Figure 3.29. 
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Figure 3.29 Viability screening of A375 and HaCaT cells treated with drug-loaded nano-emulsion 
and naïve drugs  

The cells were treated with drug-loaded nano-emulsions and naïve drugs and the viability data 

were obtained using the MTT method. Results were calculated based on untreated control cells 

and reported as the percentage of control. The figure aims to exhibit the significant differences 

in HaCaT and A375 viability treated with modified and non-modified drug-loaded nano-

emulsions compared to Naïve drugs. Bars represent the mean value of 6 independent 

experiments ±SD error. The data were analysed with two-way ANOVA Tukey’s comparison 

test, to compare the effect of drug encapsulation on cell viability compared to untreated control 

**** is indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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The figure presents the viability of both cell lines screened with the MTT cytotoxicity test.  

The viability of A375 cells decreased by 17% and 14% for doxorubicin-loaded nano-emulsion 

and modified doxorubicin-loaded nano-emulsion treatments, compared to untreated A375 

viability, respectively. On the other hand, A375 treated with folate-modified dacarbazine-

loaded nano-emulsion detected as 48% viable, while the viability of A375 treated with naïve 

doxorubicin and dacarbazine detected as 92% and 53% respectively. 

HaCaT cell was observed as 47% viable while treated with doxorubicin-loaded nano-emulsion. 

However, modified doxorubicin and dacarbazine-loaded nano-emulsions increased the HaCaT 

cell viability by 112% compared to untreated HaCaT, and decreased its viability to 97% 

compared to untreated HaCaT viability, respectively. Yet, viability decreased by 22% for 

HaCaT cells treated with naïve dacarbazine compared to untreated HaCaT viability. For Naïve 

doxorubicin treatment, contrarily, the viability increased by 83% for HaCaT cells compared to 

the viability of HaCaT cells treated with doxorubicin-loaded optimal nano-emulsion treatment.  

A sharp decrease in melanoma viability by 14.8% was detected while treated with modified 

doxorubicin-loaded nano-emulsion. This decrease can be compared to the increase of 

keratinocytes viability by 112.37% while treated with the same treatment compared to untreated 

control. The obtained results provided a clear indication of increased uptake of modified nano-

emulsion in A375 rather than HaCaT. On the other hand, the low viability of both cell lines 

(17.3 and 47% for A375 and HaCaT respectively) treated with non-modified nano-emulsion 

compared to untreated control was detected.  
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3.2.4 Fluorescent microscopy  

3.2.4.1 Fluorescent imaging of modified and non-modified nano-

emulsion on co-culture of HaCaT and A375 cells 

To investigate a more realistic effect of the surface coated-nano-emulsion, the treatment was 

done on the co-culture of A375 and HaCaT, and the results were visually observed.  

The co-culture of the A375 and HaCaT cells was done successfully after labelling the cells 

using fluorescent cell trackers, fluorescent tracker green (CMFDA) for A375 cells, and 

fluorescent tracker red (CMTPX) for HaCaT cells (Figure 3.30). Followed by labelling the cells 

and seeding in 6 well plates for co-culture, the wells were treated with 5 treatments including, 

doxorubicin-loaded nano-emulsion, modified doxorubicin-loaded nano-emulsion, modified 

dacarbazine-loaded nano-emulsion, naïve doxorubicin, and dacarbazine. The results are 

obtained from fixed cells after 72 hours of treatment using EVOS microscopy.  The images are 

a single demonstration from three independent experiments.
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Naïve dacarbazine  Naïve doxorubicin Untreated control 

   

Doxorubicin loaded nano-emulsion  Doxorubicin loaded modified nano-
emulsion 

Dacarbazine-loaded modified nano-
emulsion 

   

 

Figure 3.30 Fluorescent microscopy of HaCaT and A375 in co-culture 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-culture. Two cell 
lines were seeded (1:5, A375: HaCaT) and incubated for 12 hours before the treatment, then incubated 
for 72 hours after the treatments. The cells were imaged on 72nd hour.  Apoptotic melanoma cells are 
marked by blue arrows and healthy melanoma cells are pointed by red arrows. The images are a single 
demonstration from three independent experiments. The red arrow in the untreated figure, however, 
indicates healthy melanoma cells. The scale bar indicates 100 µm.
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According to images obtained from co-culture, the wells treated with modified drug-loaded 

nano-emulsion have more viable HaCaT (red) rather than A375 (green) cells compared to the 

ones treated with non-modified nano-emulsion or naïve doxorubicin and dacarbazine.  

3.2.4.2 Imaging co-culture of A375 and HaCaT cells over 72 hours 

treated with modified and non-modified nano-emulsions  

Treated keratinocyte and melanoma co-culture plates (containing DMEM) were screened 

consecutively, during 4, 24, 48, and 72 hours in a fluorescent microscope. The obtained images 

are single demonstrations from three independent experiments.  

According to the images obtained, a reduction of melanoma cells (green fluorescent labelled), 

can be detected with the treatment of doxorubicin/dacarbazine loaded modified nano-emulsion. 

Although in the same treatment, keratinocytes are remaining healthy and proliferating. The 

result images obtained are demonstrated in the figures below.  
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Figure 3.31 Fluorescent microscopy of A375 and HaCaT in co-culture (dacarbazine-loaded 
nano-emulsion) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-culture 
were treated with dacarbazine-loaded pullulan-chitosan nano-emulsion. Two cell lines 
were seeded (1:5, A375: HaCaT) in wells of a 6 well plate incubated for 12 hours before 
the treatment, then incubated and imaged on 24th, 48th, and 72nd hours after the treatments. 
The wells contained DMEM during the imaging. The Images are a single demonstration 
from three independent experiments conducted (scale bar: 125µm).  
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Figure 3.32 Fluorescent microscopy of A375 and HaCaT in co-culture (doxorubicin-
loaded nano-emulsion) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-
culture were treated with doxorubicin-loaded pullulan-chitosan nano-emulsion. Two 
cell lines were seeded (1:5, A375: HaCaT) in wells of a 6 well plate incubated for 12 
hours before the treatment, then incubated and imaged on 24th, 48th, and 72nd hours 
after the treatments. The wells contained DMEM during the imaging. The Images are 
a single demonstration from three independent experiments conducted (scale bar: 
125µm). 
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 Figure 3.33 Fluorescent microscopy of A375 and HaCaT in co-culture (dacarbazine-
loaded modified nano-emulsion) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-
culture were treated with dacarbazine-loaded modified pullulan-chitosan nano-
emulsion. Two cell lines were seeded (1:5, A375: HaCaT) in wells of a 6 well plate 
incubated for 12 hours before the treatment, then incubated and imaged on 24th, 48th, 
and 72nd hours after the treatments. The wells contained DMEM during the imaging. 
The Images are a single demonstration from three independent experiments 
conducted (scale bar: 125µm). 
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 Figure 3.34 Fluorescent microscopy of A375 and HaCaT in co-culture (naïve 
doxorubicin) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-culture were 
treated with naïve doxorubicin. Two cell lines were seeded (1:5, A375: HaCaT) in wells of a 6 
well plate incubated for 12 hours before the treatment, then incubated and imaged on 24th, 48th, 
and 72nd hours after the treatments. The wells contained DMEM during the imaging. The 
Images are a single demonstration from three independent experiments conducted (scale bar: 
125µm). 
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 Figure 3.35 Fluorescent microscopy of A375 and HaCaT in co-culture (naïve 
dacarbazine) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-culture 
were treated with naïve dacarbazine. Two cell lines were seeded (1:5, A375: HaCaT) in wells 
of a 6 well plate incubated for 12 hours before the treatment, then incubated and imaged on 
24th, 48th, and 72nd hours after the treatments. The wells contained DMEM during the 
imaging. The Images are a single demonstration from three independent experiments 
conducted (scale bar: 125µm). 
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 Figure 3.36 Fluorescent microscopy of A375 and HaCaT in co-culture (doxorubicin-
loaded modified nano-emulsion) 

Fluorescent labelled HaCaT (CMTPX, red) and A375 (CMFDA, green) cells in co-culture were 
treated with doxorubicin-loaded modified pullulan-chitosan nano-emulsion. Two cell lines 
were seeded (1:5, A375: HaCaT) in wells of a 6 well plate incubated for 12 hours before the 
treatment, then incubated and imaged on 24th, 48th, and 72nd hours after the treatments. The 
wells contained DMEM during the imaging. The Images are a single demonstration from three 
independent experiments conducted (scale bar: 125µm). 
 



 

 

 

163 

 

3.2.4.3 Fluorescent imaging of A375 and HaCaT cells in mono-cultures 

treated with modified and non-modified nano-emulsion  

Melanoma (A375) and keratinocyte (HaCaT) cells were treated with doxorubicin-loaded nano-

emulsion, modified doxorubicin-loaded nano-emulsion, modified dacarbazine-loaded nano-

emulsion, naïve doxorubicin, and naïve dacarbazine, in mono-culture. The images obtained 

after 72 hours of treatment and are a single demonstration from three independent experiments. 

Melanoma cells were labelled with CMFDA, and keratinocyte cells were labelled with CMTPX 

fluorescent labels for imaging before the treatment using the same procedure as the previous 

section.  

After the treatment was done (after 72 hours) the cells were fixed and stained with DAPI 

nucleus stain and were imaged with an EVOS microscope.  

The images below show the treated and the control melanoma (A375) and the keratinocyte 

(HaCaT) cells. The images below are obtained for DAPI, CMFDA, and CMTPX.  
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Figure 3.37 CMFDA and DAPI labelled A235 cells treated with drug-loaded nano-
emulsions 

Treatments are (A) untreated A375, (B) doxorubicin-loaded nano-emulsion, (C) 
modified doxorubicin-loaded nano-emulsion, (D) modified dacarbazine-loaded 
nano-emulsion, (E) naïve dacarbazine, and (F) naïve doxorubicin. The cells were 
imaged immediately after 72 hours of treatment. The images are a single 
demonstration from three independent experiments (scale 200µm). 
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Figure 3.38 Comparison of CMTPX labelled HaCaT treated with nano-emulsions 

Treatments are (A) untreated A375, (B) doxorubicin-loaded nano-emulsion, (C) 
modified doxorubicin-loaded nano-emulsion, (D) modified dacarbazine-loaded 
nano-emulsion, (E) naïve dacarbazine, and (F) naïve doxorubicin. The cells were 
imaged immediately after 72 hours of treatment. The images are a single 
demonstration from three independent experiments (scale 200µm). 
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According to the images obtained from mono-cultures and DAPI staining, keratinocytes 

(HaCaT) that are treated with surface-modified nano-emulsions show an increased DAPI 

fluorescent intensity which indicates increased viability of cells. On the other hand, melanoma 

(A375) cells treated with surface-modified drug-loaded nano-emulsion indicate decreased 

fluorescent intensity of DAPI, this is an indication of lower viability. The decreased and 

apoptotic melanoma cells can be detected in the CMFDA image of the same treatment. 

Figure 3.37-B indicates A375 cells treated with doxorubicin-loaded pullulan-chitosan nano-

emulsion, compared to (A) untreated A735, the cell numbers decreased and visually seem 

apoptotic. In figure 3.37-C, folate-modified nano-emulsion also decreased the A375 cells. 

HaCaT cells treated with folate-modified dacarbazine/doxorubicin (figure 3.38 C and D) seem 

intact and healthy. Nevertheless, Figure 3.38-B indicates negatively affected HaCaT cells from 

non-modified nano-emulsion treatment. 

Although surface-modified nano-emulsion is more toxic to melanoma cells, the non-surface-

modified nano-emulsion reduces the numbers of both melanoma (A375) and keratinocytes 

(HaCaT). The scale bar for all the images obtained from EVOS fluorescent microscopy is 200 

µm (Figures 3.37, 3.38).  
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3.2.4.4 Polymerase chain reaction and gene expression of the treated 

cells  

The effect of nano-emulsion treatment on the melanoma and HaCaT cells were investigated at 

the molecular level by monitoring the expression of four genes (excluding house-keeping gene 

GAPDH). Therefore, the expression of Caspase 9, Caspase 3, Bax, and Bcl2 were investigated 

in both treated cell lines. The band intensities obtained from the PCR are demonstrated for 

Caspase3, caspase9, Bax, and Bcl2 respectively in Figure 3.43 to Figure 3.48.  

Accordingly, the obtained bands were quantified using ImageJ (n=3), normalized using 

GAPDH band intensity, and gene expression intensities are demonstrated in Figures 3.39 to 

3.42. 

The figure indicates apoptosis gene, caspase 3, in A375 cells treated with folate-modified 

doxorubicin and dacarbazine-loaded pullulan-chitosan nano-emulsion expressed 67 and 63% 

respectively.  While cells treated with naïve doxorubicin and dacarbazine expressed 11 and 

16% caspase3, respectively.  Caspase 3 expression in control A375 cells was 16%.  

Caspase 9 was also measured. The expression of caspase 9 in control A375 cells was 23%, this 

value increased to 73 and 65% for folate-modified doxorubicin and dacarbazine-loaded nano-

emulsion treatments.  

Pro-apoptotic gene Bax was expressed 6% in A375 cells, while in cells treated with folate-

modified doxorubicin and dacarbazine-loaded pullulan-chitosan nano-emulsion this figure was 

87 and 65% respectively.  Naïve doxorubicin and dacarbazine-expressed Bax to 28 and 27.5% 

respectively.  
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Anti-apoptotic gene Bcl2 was expressed 17% in folate-modified doxorubicin-loaded nano-

emulsion, 19% in folate modified dacarbazine-loaded nano-emulsion, 57% in doxorubicin, and 

35% in dacarbazine treated cells, compared to 86% expression in control A375.  

Caspase 3, in HaCaT cells treated with folate-modified doxorubicin and dacarbazine-loaded 

pullulan-chitosan nano-emulsion, expressed 15 and 3% respectively.  While cells treated with 

naïve doxorubicin and dacarbazine expressed 13 and 59% caspase 3, respectively.  Caspase 3 

expression in control HaCaT cells was 17%.  

Caspase 9 was also measured. The expression of caspase 9 in control HaCaT cells was 25%, 

this value was 24 and 28% for folate-modified doxorubicin and dacarbazine-loaded nano-

emulsion treatments.  

Pre-apoptotic gene Bax was expressed 37% in HaCaT cells, while in cells treated with folate-

modified doxorubicin and dacarbazine-loaded pullulan-chitosan nano-emulsion this figure was 

41 and 31% respectively.  Naïve doxorubicin and dacarbazine-expressed Bax to 93 and 86% 

respectively.  

Pre anti-apoptotic gene Bcl2 was expressed 93% in folate-modified doxorubicin-loaded nano-

emulsion, 68% in folate modified dacarbazine-loaded nano-emulsion, 40% in doxorubicin, and 

12% in dacarbazine-treated cells, compared to 96% expression in control HaCaT. 
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Figure 3.39 Quantified DNA band intensities analysed with PCR and gel electrophoresis (Caspase 
3) 

The figure demonstrates the expression of the caspase 3 gene in A375 and HaCaT cell lines 

treated with drug-loaded nano-emulsions and naïve drugs compared to untreated control cells. 

The band intensities were quantified using ImageJ. The Experiment was conducted after 72 

hours of treatment. Complementary DNA was used to screen the gene expressions. The band 

intensity of each treatment was normalised to GAPDH (housekeeping gene) and is reported as 

a percentage of control (untreated cells). The data are representative of the mean values of 3 

independent experiments ±SD in the bar chart. The results were analysed with two-way 

ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and 

* P<0.05. 
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Figure 3.40 Quantified DNA band intensities analysed with PCR and gel electrophoresis (Caspase 
9) 

The figure demonstrates the expression of the caspase 9 gene in A375 and HaCaT cell lines 

treated with drug-loaded nano-emulsions and naïve drugs compared to untreated control cells. 

The band intensities were quantified using ImageJ. The Experiment was conducted after 72 

hours of treatment. Complementary DNA was used to screen the gene expressions. The band 

intensity of each treatment was normalised to GAPDH (housekeeping gene) and is reported as 

a percentage of control (untreated cells). The data are representative of the mean values of 3 

independent experiments ±SD in the bar chart. The results were analysed with two-way 

ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and 

* P<0.05. 
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Figure 3.41 Quantified DNA band intensities analysed with PCR and gel electrophoresis (Bax) 

The figure demonstrates the expression of the Bax gene in A375 and HaCaT cell lines treated 

with drug-loaded nano-emulsions and naïve drugs compared to untreated control cells. The 

band intensities were quantified using ImageJ. The Experiment was conducted after 72 hours 

of treatment. Complementary DNA was used to screen the gene expressions. The band intensity 

of each treatment was normalised to GAPDH (housekeeping gene) and is reported as a 

percentage of control (untreated cells). The data are representative of the mean values of 3 

independent experiments ±SD in the bar chart. The results were analysed with two-way 

ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and 

* P<0.05. 
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Figure 3.42 Quantified DNA band intensities analysed with PCR and gel electrophoresis (Bcl2) 

The figure demonstrates the expression of the Bcl2 gene in A375 and HaCaT cell lines treated 

with drug-loaded nano-emulsions and naïve drugs compared to untreated control cells. The 

band intensities were quantified using ImageJ. The Experiment was conducted after 72 hours 

of treatment. Complementary DNA was used to screen the gene expressions. The band intensity 

of each treatment was normalised to GAPDH (housekeeping gene) and is reported as a 

percentage of control (untreated cells). The data are representative of the mean values of 3 

independent experiments ±SD in the bar chart. The results were analysed with two-way 

ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, and 

* P<0.05. 
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Figure 3.43 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.  
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Figure 3.44 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.  
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Figure 3.45 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.  
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Figure 3.46 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.  
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Figure 3.47 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.  
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Figure 3.48 DNA bands detected in agarose gel 

After the thermo-cycler step, the samples were collected and mixed with 3 µl of loading dye. 

The mixtures were then loaded into the wells and run on the 1% agarose gel in the tank. A 

molecular weight marker of 1Kb and 100 Kb were used alongside the cDNA samples. 

Electrophoresis was set to run for 60 minutes in the 100 V constant. After 60 minutes, the gel 

was imaged using the UV transilluminator at the wavelength of 200-280 nm and the DNA 

fragments were detected.
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3.2.4.5 Folate binding protein ELISA 

To confirm folate receptors' quantity on A375 cell’s surface, folate binding protein (FBP) 

ELISA was conducted. This was reported before by (Ogbodu et al., 2015), however, secondary 

confirmation was done in current research. Hence, the FBP ELISA was conducted to confirm 

and quantify the folate binding receptors on melanoma (A375) compared to keratinocytes 

(HaCaT) as negative control and epithelial breast cells (MDB-MA-231) as a positive control. 

This is to show that uptake of the folate-modified nano-emulsions in melanoma cells is via 

folate receptors. The results obtained from the colourimetric reading and using linear regression 

from the standard curve Figure 3.49. Table 3.2 is indicating the concentration of the folate 

receptors expressed in three cell lines. Accordingly, the folate concentration on the A375 

surface is 179 pg/ml, for HaCaT and MDB-MA-231 the concentrations are 21.5 and 315 pg/ml 

respectively. 

Three supernatants of three cell lines were used, A375, HaCaT, and MDB-MA-231. HaCaT 

cell line was used as negative control and MDB-MA-231 cell supernatant was used as a positive 

control. Subsequently, it was confirmed that A375 cells express folate receptors, however less 

than MDB-MA-231. HaCaT had negative amounts and on the other hand, MDB-MA-231 was 

containing an increased amount of folate receptors compared to A375 melanoma.  
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Figure 3.49 Standard curve of different concentrations of the folate binding protein detected in 
ELISA  

The results are the mean value of three independent ELISA tests ±SD. 

 

 

Table 3.2 Folate receptor concentration  

Cell line FBP concentration (pg/ml) 

A375 179 

MDB-MA-231 315 

HaCaT 21.5 
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3.3 Evaluation of anti-inflammatory compounds encapsulated in 

nano-emulsions on melanoma cells 

3.3.1 Introduction: Encapsulation of BMS-470539-
dihydrochloride and [DTrp8]-γ-MSH in pullulan-chitosan 
nano-emulsion as a novel tool for melanoma treatment 

Previous studies have shown the expression of MC1 on A375 cells (Nagy et al., 2017), and 

multiple studies have shown these to have anti-inflammatory effects in different models of 

inflammation including gout (Getting et al., 2006), asthma (Getting et al., 2008), Rheumatoid 

Arthritis (Patel et al., 2010), Osteoarthritis (Can et al., 2020, Kaneva et al., 2012) and Stroke 

(Holloway et al., 2015). MC1 receptor is activated by the number of melanocortin peptides 

including α-Melanocyte stimulating hormone (αMSH), NDP-α-MSH, and POMC gene-derived 

peptides (Tafreshi et al., 2019). Hence, in this study, the effect of encapsulation of the anti-

inflammatory compounds in nano-emulsion was investigated. This approach seeks to find out 

any improvement in their anti-inflammatory effect and consequently a reduction in melanoma 

viability. The approach involved encapsulation of BMS-470539-dihydrochloride and [DTrp8]-

γ-MSH in pullulan-chitosan modified nano-emulsion and subsequent measurement of iNOS 

and COX-2 level in A375 cells. 

Accordingly, the compounds were encapsulated in folate-modified pullulan-chitosan nano-

emulsion and according to the methodology explained in section 2.2.6. However, due to the 
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limited half-life of the compounds, the encapsulation procedures were completed in less than 6 

hours.  

3.3.2 Viability of A375 cells treated with encapsulated BMS-
470539-dihydrochloride and [DTrp8]-γ-MSH in folate-
modified pullulan-chitosan nano-emulsion 

To clarify the effect of naïve BMS-470539-dihydrochloride and [DTrp8]-γ-MSH and their 

encapsulation in nano-emulsion on the melanoma cell treatment, the MTT cytotoxicity test was 

performed to assess their effects on cell viability. The A375 cells were treated with BMS-

470539-dihydrochloride (10 µg/ml) and [DTrp8]-γ-MSH] (3 µg/ml) and encapsulated BMS-

470539-dihydrochloride and [DTrp8]-γ-MSH] for 24, 48, and 72 hours and the viability of A375 

cells was measured and analysed accordingly.  

The viability of cells treated with BMS-470539-dihydrochloride ranged from 78 to 86% and 

for encapsulated BMS-470539-dihydrochloride from 75 to 12% over the 24-72-hour time 

course. The viability of cells treated with [DTrp8]-γ-MSH] ranged from 83 to 59% and for 

encapsulated [DTrp8]-γ-MSH] were from 68.05 to 9% over the 24-72-hour time course (Figure 

3.50-3.52).  

 

 

 

 

 



 

 

 

183 

 

 

 

Figure 3.50 Viability of the A375 cells treated with encapsulated and naïve BMS-470539-
dihydrochloride 

A375 cells were treated with naïve and encapsulated BMS-470539-dihydrochloride (10µg/ml).  

Independent experiments were conducted for different time points. The test was conducted 24, 

48, and 72 hours after treatments. The viability data were obtained using the MTT method, 

results were calculated based on untreated control cells, and reported as the percentage of 

control. Bars represent the mean value of 6 biological replicates ±SD error. The data were 

analysed with two-way ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** 

P<0.001, ** P<0.01, and * P<0.05. 
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Figure 3.51 Viability of the A375 cells treated with encapsulated and naïve [DTrp8]-g-MSH 

A375 cells were treated with naïve and encapsulated [DTrp8]-γ-MSH (1µg/ml). Independent 

experiments were conducted for different time points. The test was conducted 24, 48, and 72 

hours after treatments. The viability data were obtained using the MTT method, results were 

calculated based on untreated control cells, and reported as the percentage of control. Bars 

represent the mean value of 6 biological replicates ±SD error. The data were analysed with two-

way ANOVA Tukey’s comparison test, **** is indicating P<0.0001, *** P<0.001, ** P<0.01, 

and * P<0.05. 
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Figure 3.52 Viability of the A375 cells treated with LPS 

A375 cells were treated with LPS. Independent experiments were conducted for different time 

points. The test was conducted 24, 48, and 72 hours after treatments. The viability data were 

obtained using the MTT method, results were calculated based on untreated control cells, and 

reported as the percentage of control. Bars represent the mean value of 6 biological replicates 

±SD error. The data were analysed with two-way ANOVA Tukey’s comparison test, **** is 

indicating P<0.0001, *** P<0.001, ** P<0.01, and * P<0.05. 
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According to Figure 3.50 and 3.51, the viability of A375 cells treated with encapsulated 

compounds decreased drastically during 72 hours, compared to untreated control cells. The 

viability of A375 cells treated with naïve BMS-470539-dihydrochloride decreases to 84% over 

72 hours, compared to untreated A375 cells. However, A375 cells treated with encapsulated 

BMS-470539-dihydrochloride were 15% viable after 72 hours. Likewise, A375 cells treated 

with naïve [DTrp8]-γ-MSH show decreased viability to 58.35% over 72 hours and to 23.29% 

for the cells treated with encapsulated [DTrp8]-γ-MSH. LPS decreased the viability of A375 

cells from 49.36% to 25.17% both compared to control viable cells. 

3.3.3 iNOS and COX-2 expression analysis  

Expression of iNOS and COX-2 are important markers of inflammation and directly affect 

melanoma proliferation and invasion (Johansson et al., 2009). Hence, the effect of encapsulated 

peptides in decreasing cell viability and proliferation of melanoma cells is of importance to 

disease progression. Since increased iNOS and COX-2 are markers for inflammation and 

particularly a marker for progression and invasion of melanoma, expression of both during the 

treatment with encapsulated BMS-470539-dihydrochloride and [DTrp8]-γ-MSH in pullulan-

chitosan modified nano-emulsion was measured.  

A western blot experiment was done to screen the expression of iNOS and COX-2 proteins in 

treated melanoma cells. Cells were treated with both encapsulated and naïve compounds, in the 

presence or absence of LPS (1.0 µg/ml).  

The figure below (Figure .3 53) is an indication of the iNOS and COX-2 expressions that were 

conducted using western blot assay.
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Figure 3.53 iNOS and COX-2 expression analysis by Western blot  

This image is a single demonstration of three independent western blots (for each time point) conducted to analyse iNOS and COX-2 expressions in 
treated A375 cells. The experiment was conducted after 24, 48, and 72 of incubation with treatments. The results are normalised to α-tubulin. The full 
blots are presented in appendix C figure 7.4.  
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According to the figure, iNOS and COX-2 expression significantly decreased using 

encapsulated compound treatments at 48 and 72hour time points compared to their expression 

in A375 cells treated with non-encapsulated compound. At the earlier time point only a 

reduction was seen with respect to COX-2 with similar levels of expression observed for iNOS. 

Accordingly, the iNOS and COX-2 expressions were zero after 72 hours. However, the proteins 

were still expressed in the cells treated with only peptides. The Intensity of the bands obtained 

in the western blot was normalized with α-tubulin, quantified and presented in Figure 3.53. 
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Figure 3.54 iNOS and COX-2 expression over 24 hours in melanoma cells treated with 
encapsulated and naïve compounds 

Expression of iNOS and Cox-2 were evaluated by western blot. The experiment was conducted to 

analyse iNOS and COX-2 expressions in treated A375 cells. The results are reported as a mean value 

obtained from three independent western blots after 24 hours of treatment. The results are normalised 

to α-tubulin. Concentrations used  for the treatments were , 10 µg/ml BMS-470539-dihydrochloride, 3.0 

µg/ml  [DTrp8]- g-MSH  and 1µg/ml LPS, the bars are indicating mean values ±SD error bar.
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Figure 3.55 iNOS and COX-2 expression over 48 hours in melanoma cells treated with 
encapsulated and naïve compounds 

Expression of iNOS and Cox-2 were evaluated by western blot. The experiment was conducted to 

analyse iNOS and COX-2 expressions in treated A375 cells. The results are reported as a mean value 

obtained from three independent western blots after 48 hours of treatment. The results are normalised 

to α-tubulin. Concentrations used for the treatments were, 10 µg/ml BMS-470539-dihydrochloride, 3.0 

µg/ml  [DTrp8]-g-MSH, and 1µg/ml LPS, the bars are indicating mean values ±SD error bar.
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Figure 3.56 iNOS and COX-2 expression over 72 hours in melanoma cells treated with 
encapsulated and naïve compounds 

Expression of iNOS and Cox-2 were evaluated by western blot. The experiment was conducted to 

analyse iNOS and COX-2 expressions in treated A375 cells. The results are reported as a mean value 

obtained from three independent western blots after 72 hours of treatment. The results are normalised 

to α-tubulin. Concentrations used  for the treatments were , 10 µg/ml BMS-470539-dihydrochloride, 3.0 

µg/ml  [DTrp8]-g-MSH  and 1µg/ml LPS, the bars are indicating mean values ±SD error bar
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According to image 3.56, no bands are representing the expression of iNOS and COX-2 after 

72 hours of treatment with encapsulated BMS-470539-dihydrochloride and [DTrp8]-γ-MSH. 

This is an indication of no iNOS and COX-2 expression in melanoma cells, on the other hand, 

the α-tubulin band associated with the 72hour treatment of encapsulated compounds displays 

low expression. This was due to the lower population of A375 cells in the wells after 72 hours 

of treatment with encapsulated compounds. As the results are consistent with the MTT viability 

experiment for 72hour treatment of the cells with encapsulated compounds (figures 3.50, and 

3.51). The viability of A375 cells treated with encapsulated compounds was significantly lower 

compared to control and naïve compounds.  

3.3.4 Fluorescent microscopy of A375 and HaCaT cells in co-
culture, treated with encapsulated BMS-470539-
dihydrochloride and [DTrp8]-γ-MSH and non-encapsulated 
BMS-470539-dihydrochloride and [DTrp8]-γ-MSH 

To screen the effects of compounds visually, the treatments were done on co-culture of A375 

melanoma and HaCaT keratinocytes. Here the effect of treatments can be detected on 

keratinocytes as well (Curry et al., 2001).  

Figure 3.57 and Figure 3.58 were obtained from the treated co-culture plates over 24, 48, and 

72 hours. The co-culture plates were imaged with DMEM inside the wells. Therefore, the effect 

of treatments was observed during 72 hours.  

According to the images, the effect of encapsulated BMS-470539-dihydrochloride and 

[DTrp8]-γ-MSH on melanoma cells can be distinguished.  
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A375 cells are rapidly proliferating cells under normal culture conditions. In Figure 3.57 and 

Figure 3.58 both encapsulated BMS-470539-dihydrochloride and [DTrp8]-γ-MSH have 

inhibited A375 proliferation while HaCaT cells are proliferating. The A375 cells are labelled 

green (CMFDA) and HaCaT cells are labelled red (CMTPX). 
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Figure 3.57  Fluorescent imaging of HaCaT and A375 co-cultures treated with encapsulated and naïve BMS-470539-dihydrochloride  

The images are a single demonstration of three independent experiments. The cells labelled with CMFDA green (A375) and CMTPX red (HaCaT), 
incubated after treatments and imaged on 24th, 48th, and 72nd hours of incubation time. All images belong to a single multi-wall plate containing cells and 
treatments and contain DMEM. The cells were treated with 10µg/ml encapsulated and naïve BMS-470539-dihydrochloride, over 72 hours (scale bar 
200µm). 
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Figure 3.58 Fluorescent imaging of HaCaT and A375 co-cultures treated with encapsulated and naïve [DTrp8]-g-MSH   

The images are a single demonstration of three independent experiments. The cells labelled with CMFDA green (A375) and CMTPX red (HaCaT), 
incubated after treatments and imaged on 24th, 48th, and 72nd hours of incubation time. All images belong to a single multi-wall plate containing cells and 
treatments and contain DMEM. The cells were treated with 10µg/ml encapsulated and naïve [DTrp8]-g-MSH  , over 72 hours (scale bar 200µm). 
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4 Discussion  
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4.1 Introduction 

The development of chemo-resistance in response to cytotoxic drugs in the course of melanoma 

treatment was a major obstacle toward efficient therapy (Naves et al., 2017a). So far, 

researchers have vastly investigated approaches to defeat melanoma drug resistance, however, 

few have address flux-dependent melanoma chemo-resistance (Robey et al., 2018). This thesis 

aimed to design a drug delivery to alleviate melanoma by decreasing its resistance towards 

cytotoxic drugs. This was done by encapsulating the drug in a polymeric nano-emulsion 

providing a controlled release thereby controlled drug efflux. The nano-emulsion was also 

designed to facilitate the treatment procedure by using topical delivery administration for early-

stage melanoma. The first part of this thesis was concerned with the development of a novel 

nano-emulsion delivery system to address melanoma and the associated chemo-resistant 

(Khalid and El-Sawy, 2017). 

Efficient targeted therapy and controlled delivery of therapeutics have been successfully 

applied to provide enhanced apoptosis induction to A375 primary melanoma cells. 

Subsequently, controlled delivery of therapeutics via nano-emulsion was investigated as an 

efficient melanoma targeted therapy approach. As a consequence, the viability of A375 

decreased by 15% while treated with doxorubicin and dacarbazine-loaded nano-emulsions, 

compared to untreated A375. Furthermore, the drug-carrying nano-emulsion was able to induce 

apoptosis to A375 cells by 80% after 72 hours.  

In the second part of the study, as a novel approach, BMS470539 and [DTrp8]-γ-MSH were 

delivered to A375 cells using the nano-emulsion. The compounds were used to target the 
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regulation of iNOS and COX-2 in A375 cells. iNOS and COX-2 are two important markers for 

melanoma progression (Hao et al., 2018) hence this feature was investigated as potential 

progress for melanoma treatment. The anti-inflammatory compound loaded nano-emulsions 

decrease melanoma viability by 10% and 12% compared to non-encapsulated compounds. This 

was done in consequence of decreased iNOS and COX-2 expressions to 0% after 72 hours of 

treatment with encapsulated anti-inflammatory compounds.  

4.2 Nano-emulsion optimisation  

4.2.1 In vitro release test 

In general, specific drug delivery systems are used as tools to retain the drug in the body or 

affected area (Sagbas and Sahiner, 2018). However, in cancer drug delivery, there are other 

aspects to be considered. For example, the patient’s lifetime, the tumour should be able to be 

eliminated at the earliest in the host body (Koushik et al., 2016). In the meantime, the drug 

release should not be too fast to prevent chemo-resistance (Cavaco et al., 2017). Hence as a 

primary step drug release pattern has been optimised based on the “cancer drug delivery” 

criteria (Iturrioz-Rodríguez et al., 2019, Sun et al., 2020).  

Nano-emulsions developed from each of the polymers (chitosan, pullulan, and alginate) 

successfully slowed down the drug release over the 21 days, however, they did not provide a 

steady release. Not all the samples presented a steady and controlled release profile to fulfill 

the criteria of this research. Minute details and fluctuations in the cumulative release trends of 

all nano-emulsions affect the final result (Senapati et al., 2018a). Alginate nano-emulsions 
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presented a lower initial burst compared to pullulan and chitosan, Yet, chitosan and pullulan 

nano-emulsions presented more fluctuations in the release profiles. However, pullulan and 

chitosan are reported to provide controlled release after further modifications (Soni et al., 2018, 

Shah et al., 2020, Mahdavinia et al., 2017).  

The release pattern measurements were done over 21 days (section .3 1.2.1). Hence, major 

fluctuations detected after 72 hours were deemed to be due to the instability of coumarin-6 

(Gupta et al., 2019). On the other hand, doxorubicin was separately encapsulated in the same 

nano-emulsions and the release profiles were screened. As was expected, more steady 

cumulative release patterns were detected assuming that blended nano-emulsions improved the 

bioavailability of doxorubicin (Khdair et al., 2016). This was due to the more stable nature of 

doxorubicin compared to coumarin-6 (Bastiat et al., 2013, Li et al., 2019a). Hence coumarin-6 

is a good option to track nano-particles but for short-term release or uptake (Chittasupho et al., 

2009). It is recommended for the release test to be conducted using other chemotherapy drugs 

such as dacarbazine.   

Not all the results obtained from the primary naïve polymeric nano-emulsions release show a 

steady and long-term controlled release profile. Hence, the best preparations from each group 

were chosen and blended to see the effect on the release profile (section 3.1.2.2). Obtained 

release profiles from blended nano-emulsions were greatly improved.  

The hypothesis of chemo-resistance prevention requires avoiding a sudden burst of the drug 

and keeping the release pattern steady whiles increasing with time. For blended nano-

emulsions, each release profile showed a different pattern, however, all increased during 21 

days. Increased polymer amount had a positive effect, improving the steadiness of the drug 



 

 

 

200 

 

release profile. This may have happened through improved entrapment of the drug  

(Mohammed et al., 2017). It was noticeable that blended nano-emulsions presented a more 

controlled release. Hence, the chitosan-alginate-pullulan polymer blending seems to be 

successful. 

There were fluctuations for both doxorubicin and coumarin-6 release profiles; albeit less for 

doxorubicin. This can be the indication of the unstable nature of coumarin-6 for long-term 

release experiments. The overall pattern of each individual nano-emulsion is dependent on 

several factors, such as polymer mass ratio, water solubility, and surface charge (Rizvi and 

Saleh, 2018). In the case of chitosan and alginate nano-emulsions, however, the hypothesis did 

not match with the obtained results. This means, albeit increased mass ratio of the polymer, the 

initial burst of the drug was still high and fluctuations were occurring during the release. 

Although alginate is soluble in neutral water, its initial burst is lowest. On the other hand, 

chitosan, soluble in acidic environments, has a higher initial burst compared to alginate.  

The optimal nano-emulsion was chosen as pullulan-chitosan (1:2). According to the release 

pattern recorded for the optimal blended nano-emulsion, the release pattern was improved 

compared to previous investigations on chitosan-only nano-particles (Baghbani et al., 2017, Tai 

et al., 2020). Furthermore, this research contains the novel approach for using pullulan among 

the main components of a nano-emulsion for drug delivery. Utilisation of pullulan alone and as 

a blend led to a drug release up to 21 days. Previous investigations on drug release from pullulan 

provided a drug release for less than 72 hours (Xu et al., 2020, Yuan et al., 2019). 
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4.2.2 Cell viability test 

MTT test was used as a primary test to screen the viability of the treated cells based on 

mitochondrial activity (A375 and HaCaT) (Rai et al., 2018b, Soe et al., 2019). HaCaT cells 

were used as a marker of non-cancerous control cells to monitor the possible toxicity of nano-

emulsions as a topical delivery system.  

Initially, a viability test was conducted on the cells treated with non-loaded blended nano-

emulsions. Three concentrations of the nano-emulsions were used as treatments.  As the result 

of increasing concentration, the overall viability of A375 treated with the non-loaded nano-

emulsions was detected as a minimum of 25% and a maximum of 107%. Consequently, with 

the increased concentration of nano-emulsion, the cell viability decreased compared to control. 

On the other hand, the same treatments were conducted on HaCaT cells. Interestingly, a few of 

the nano-emulsion samples decreased the viability of HaCaT cells drastically against 

expectations (Sahu et al., 2019b). The rationale for effective delivery to A375 is to avoid 

harming the surrounding non-cancerous cells (Liu et al., 2018). Hence in the optimisation 

process, the high viability of HaCaT is important. Decreased viability of cells treated with nano-

emulsions containing chitosan can be an indication of its cytotoxicity against cancer cell lines, 

according to previous investigations (Abedian et al., 2019, Gibot et al., 2015). Pullulan also has 

been extensively investigated for its increased uptake in cancer cells such as A375 cells (Nešić 

et al., 2020), and its anti-proliferative activity (Manitchotpisit et al., 2014, Bischoff et al., 2015). 

Hence, this can be a reason for the decrease of viability in the cells treated with pullulan-based 

nano-emulsions, compared to viable control untreated cells. 
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The action of nano-emulsion toward A375 cells is crucial. To this end in another experiment, 

the viability of A375 cells treated with both naïve and doxorubicin-loaded nano-emulsions was 

compared to non-loaded doxorubicin.  

The cell viability was retained in the A375 cells treated with non-encapsulated doxorubicin. 

This indication may have two reasons behind it. The first, is that the drug is unable to decrease 

A375 cell viability despite its toxic nature. Secondly, the cells developed resistance to the drug. 

Out of the two, the latter is more probable, since the intrinsic resistance of melanoma cells to 

doxorubicin were previously stated and investigated (Oláh et al., 2018, Elliott and Al-Hajj, 

2009). However, encapsulated doxorubicin drastically decreases the A375 cell viability 

compared to untreated A375. This can be an indication of the effective delivery of doxorubicin 

without the development of resistance in the cells. Hence the combination of doxorubicin and 

polymeric shell confirms the hypothesis of the drug being protected from degradation or being 

lysed. More importantly, the delivery of encapsulated doxorubicin with controlled efflux 

prevented the melanoma cells to develop resistance to the drug. This can be a confirmation of 

flux-dependent resistance development in melanoma (Kalal et al., 2017).   

4.2.3 Cellular uptake and intracellular drug release studies 

To address the cellular uptake of the nano-emulsions, confocal microscopy was conducted 

(Cutrona and Simpson, 2019). The experiment was done over 72 hours to screen the uptake of 

the nano-emulsions and consequent intracellular drug release by quantifying the fluorescent 

intensity of doxorubicin and coumarin-6 during the 72 hours. Using coumarin-6 as a fluorescent 

model was a primary experiment to make the drug delivery system traceable. It has been also 
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widely used as a drug model in delivery systems because of its good stability  (Rivolta et al., 

2011, Chirio et al., 2014). This experiment can also be further investigated using alternative 

fluorescent trackers to compare its effect on release and traceability (Yuan and Liu, 2017), and 

Coumarin-6 can be further investigated as a non-toxic drug model for in vivo animal models.  

According to the quantified fluorescent intensity an increasing pattern was detected for most of 

the samples. Among drug-loaded nano-emulsions, a few samples performed a controlled 

release over 72 hours. Increased fluorescent intensity is an indication of intracellular drug 

release in the cytosol. However, in some samples, the release pattern showed a sudden increase 

or decrease. Several reasons can cause a sudden decrease or increase in fluorescent intensity 

(Pretor et al., 2015). Instability of dye and sudden degradation of nano-emulsion are among the 

causes leading to fluorescent fluctuations. 

The confocal images were obtained for both doxorubicin and coumarin-6 loaded nano-

emulsions. The treatments were applied to both cell lines (A375 and HaCaT). Among all, it was 

detected that nano-emulsions consisting of chitosan or pullulan had increased uptake in 

melanoma cells. This showed the increased affinity of these two polymers to bind to the A375 

cells. This is consistent with the previous investigations of increased polysaccharide-based 

particle uptake in cancer cells (Salatin and Yari Khosroushahi, 2017). The nano-emulsions had 

successful uptake by cells and the encapsulated molecules were able to escape endosomes in 

the cell cytosol during 72 hours. As the nano-emulsions are made of polysaccharides without 

any surface modification, they have provides successful uptake as successfully as modified or 

non-polymeric nano-delivery systems (Capanema et al., 2019, Joseph et al., 2015).  
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4.2.4 Cellular apoptosis induction ability of the nano-emulsions 

Initial optimisations based on release were performed to investigate the best delivery efflux 

from nano-emulsions. Melanoma cells are prone to develop flux-dependant drug-resistance and 

escape the apoptosis cycle, hence monitoring the effect of nano-emulsions on apoptosis 

induction is important. After the treatments over 4, 24, 48, and 72hours apoptosis induction 

ability of doxorubicin-loaded nano-emulsions were investigated. Even though the nano-

emulsions presented successful uptake, their ultimate impact was investigated through DNA 

fragmentation ELISA.  

Melanoma cells were treated with doxorubicin-loaded blended nano-emulsions. As indicated 

in Figure 3.24, all the doxorubicin-loaded blended non-emulsions were able to successfully 

induce apoptosis to melanoma cells over the time course of 72 hours. However, among them, 

pullulan-chitosan nano-emulsion (pullulan-chitosan 1:2) performed more prompt and had an 

increasing apoptosis induction pattern during the time. At the beginning of four hours, the 

apoptosis induction to melanoma cells was about 55% and increased to about 90% after 72 

hours. The pullulan-chitosan nano-emulsion showed better performance since it was able to 

induce apoptosis fast enough. Its apoptosis induction pattern was consistent with its release 

profile. This is an indication of improved delivery of the drug which was carried by the nano-

emulsion (pullulan-chitosan), without developing resistance. Sample nine consisted of chitosan 

and pullulan.  Chitosan and pullulan are both polysaccharides that have been used in cancer 

drug delivery systems in earlier investigations (Scomparin et al., 2011). Chitosan intrinsically 

is an anti-cancer antioxidant (Gibot et al., 2015), which has a potency to adhere to skin cells 
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(Popat et al., 2014, Adhikari and Yadav, 2018) and can act as an anti-proliferative agent for 

cancer cells. Pullulan, as well, is a non-toxic and non-immunogenic polysaccharide, it can 

increase cellular uptake (Huang et al., 2018, Tao et al., 2016). Pullulan (Tao et al., 2018) and 

chitosan (Garg et al., 2019) were separately investigated in several cancer drug delivery systems 

as anti-proliferative polymers. However, the capability of the developed pullulan-chitosan 

nano-emulsion to induce apoptosis on other melanoma cell lines and various cancer cells can 

be further investigated.  

In another aspect, nano-size nano-emulsion has provided a better uptake in A375 cells via the 

EPR effect due to the intrinsic characteristics of involved polymers. To summarise, the effect 

of pullulan-chitosan nano-emulsion was convincingly effective in inducing apoptosis to 

melanoma cells after 72 hours and consequent decrease of drug resistance. 

In this research, ELISA was used as an anti-body-based experiment to detect the early apoptosis 

state of A375 cells. However, a more detailed study of A375 cell death mode, further 

investigations can be carried out by Annexin-V flow cytometry and tunnel assays.  

4.2.5 Nano-emulsion characterisation  

So far the experiments were conducted to come up with an optimised nano-emulsion. Before 

the surface modifications, the optimised nano-emulsion was characterised. The size range of 

nano-emulsion particles is an important factor defining their fate in cancer cells (Hui et al., 

2019). Also, depending on the route of administration, the particle size and particle 

concentrations can be different (Rizvi and Saleh, 2018).  
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One of the disadvantages of nano-emulsions is their instability (Kale and Deore, 2017). Nano-

particles having a zeta potential between -10 and +10 mV are considered neutral (Clogston and 

Patri, 2011).  Interestingly in the results obtained and according to zeta potential (Table 3.1), 

the optimised nano-emulsion performs a neutral behaviour, due to the zeta potential of +5.  

According to previous investigations, similar nano-emulsions of chitosan are measured with 

high positive zeta potential (Baghbani et al., 2017, Li et al., 2016), on the other hand, pullulan 

nano-emulsions have low negative zeta potential (Costa et al., 2019, Niu et al., 2020). This 

accounts for the neutral zeta potential of nano-emulsion consisting of chitosan and pullulan 

blend. Furthermore, scanning electron microscopy revealed the relative morphology of the 

nano-emulsion particles.  

The encapsulation efficiency of the nano-emulsion was also investigated. This is an important 

factor for nano-emulsions to be effective in the delivery. Both dacarbazine and doxorubicin 

were encapsulated in the nano-emulsion successfully. The encapsulation efficiency of both 

drugs (doxorubicin and dacarbazine) was about 85%, which was lower compared to nano-

emulsions consisting of only one polymer type (Abhinav et al., 2016). However, the 

encapsulation efficiency of the nano-emulsion is suitable for the aim of controlled delivery.  
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4.3 Modification of optimised chitosan-pullulan nano-emulsion  

According to the results obtained, the developed nano-emulsion successfully provided 

controlled release and increased uptake via passive targeting by the EPR effect. However, the 

uptake test was done for both melanoma and keratinocyte cells, and uptake of the particles was 

detected in both cell lines. Hence, the motive for further modifications was to provide active 

targeting towards melanoma.   

4.3.1 Folate-modification of nano-emulsion  

Surface modification of the nano-emulsion was performed using folate (folic acid) (Dhas et al., 

2015) to target folate receptors on A375 cells. Folate receptors are overexpressed in cancer cells 

and they exist excessively on their surfaces. According to the previous investigations and 

literature review, the A375 cell line was used as a folate receptor-negative (Ladino et al., 1997). 

Although, in comparison to non-cancerous cells, it has increased the expression of folate 

receptors (Ogbodu et al., 2015). On the same note, folate binding protein (FBP) ELISA was 

performed as a confirmation of folate receptor expression on the A375 cells (Chen et al., 2016).  

Zeta potential and size distribution were also done for the folic acid surface coated nano-

emulsion Table 3.1. According to the results, a slight increase in particle size was observed. 

This could be due to surface coating, although the size difference is not considered high. 

However, according to zeta potential, the particles demonstrate neutral behaviour. Other than 

folate modification, the nano-emulsion can be further investigated to be modified using various 
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cancer-targeting receptors (Daniels et al., 2012). RGD peptide can be used as an alternative 

modification for the nano-emulsion to target A375 cells (Gajbhiye et al., 2019).  

Modification of nano-emulsion using alternative receptors on A375 may increase or decrease 

the uptake of nano-emulsion particles depending on the concentration of receptors expressed in 

A375. Subsequently, by alterations in particle uptake, cellular viability may be affected. 

 

4.3.2 Viability of melanoma and keratinocyte cells treated with 
surface modified optimized nano-emulsion 

It is expected that after modification, the toxicity of nano-emulsions would be more on 

melanoma cells. Hence the MTT assay was performed to compare the viability of cells treated 

with drug-loaded nano-emulsion before and after modification. 

The viabilities of both HaCaT and A375 cells treated with drug-loaded nano-emulsion and 

surface coated drug-loaded nano-emulsion, doxorubicin, and dacarbazine, was investigated 

(Jangdey et al., 2019). According to the MTT test, surface coated nano-emulsion significantly 

decreased the viability of melanoma cells while keratinocyte cells remained viable.  

The results indicated an important point. The viability of melanoma treated by doxorubicin and 

dacarbazine was 93 and 53% respectively (Piotrowska et al., 2019, Andreucci et al., 2019).  

This may be due to emerging potential resistance in melanoma cells (Piotrowska et al., 2019, 

Movafegh et al., 2018). On the other hand, folate-functionalised nano-emulsion seems to have 

a protective effect on the non-cancerous control cell line (HaCaT). Figure 3.29 is an indication 

of an increased affinity of surface-modified nano-emulsion towards melanoma cells. The 
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mechanism of their uptake was predicted to be via folate receptors which are confirmed in the 

toxicity tests.  

The findings of this experiment indicate a promising approach towards melanoma treatment. 

So, the encapsulated drugs in folate-modified nano-emulsion had more tendency to have uptake 

in melanoma cells and affect their viability without triggering cells to develop resistance. The 

decrease of A375 cell viability happens while the HaCaT cells remain viable (107 and 97% for 

folate-modified doxorubicin and dacarbazine loaded nano-emulsion treatments respectively). 

The outcome of this experiment can also be further investigated by Annexin-V flowcytometry 

assay to screen the state of the cells in the same treatments.  

4.3.3 Fluorescent microscopy of melanoma and keratinocyte cells 
in co-culture  

To visually monitor the melanoma and keratinocyte cells, each cell line was labelled with a 

different fluorescent marker. The A375 cells were labelled with CMFDA and the HaCaT cells 

with CMTPX. DAPI stain was also utilized for the nucleus imaging. The images were captured 

both from melanoma and keratinocyte in mono-cultures and once more in the co-culture of both 

cell lines. Both mono-culture and co-culture were conducted to monitor the effect of nano-

emulsion as a topical delivery system, on A375 and HaCaT as a monolayer model. In single-

cell treatments, the images were captured from CMFDA labelled A375 cells and CMTPX 

labelled HaCaT cells.  

In the images obtained from fluorescent microscopy, the difference between the cells treated 

with folate-modified nano-emulsion, non-modified nano-emulsion, and blank drugs can be 
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detected according to the shape of the cells (apoptotic or healthy cell). Keratinocytes treated 

with surface-modified nano-emulsions, on the other hand, continue to proliferate, while many 

of the melanoma cells treated with folate-modified nano-emulsions show impeded growth and 

apoptosis.  

The co-culture of the cells provided a more realistic model compared to a mono-culture (Chung 

et al., 2018), and it is feasible and quick compared to the preparation of a 3D culture. This 

method can be used as an alternative for mono-culture to study the effect of treatments on two 

or more cell lines. However, there are limitations to monolayer cu-culture such as different 

doubling times of the cells. Furthermore, the co-culture of two adherent cell lines can be 

challenging if the time required for their detachment is similar (Gabbott et al., 2018). 

For advanced investigations, a 3D co-culture model can provide a better resemblance to the 

actual tumour (Majety et al., 2015). Hence, the 3D tumour model helps to have a better 

understanding of the tumour microenvironment and paracrine signalling in two cell lines 

(Kapałczyńska et al., 2018) before translation of the drug delivery system to the clinical stage.  

The obtained images from the co-culture can give us a better understanding of the treatment’s 

effect on the cells. However, the experiment was done for 72 hours containing DMEM in the 

wells, which had slightly affected the background noise of the images (Ettinger and Wittmann, 

2014). According to the images obtained from co-culture, the A375 cells treated with the folate-

modified nano-emulsion seem to have faded fluorescent intensity and scattered nucleolus as 

signs of early apoptosis compared to healthy HaCaT cells.  
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4.3.4 Polymerase chain reaction  

PCR gel electrophoresis experiment was conducted to investigate the apoptosis-associated gene 

expressions in treated A375 and HaCaT cell lines (He et al., 2018, Del Puerto et al., 2010). In 

this regard, the regulation of five genes was investigated including reference gene and caspase-

3, caspase-9, pre-apoptotic Bax, and anti-apoptotic Bcl2 genes (Lo et al., 2010). In this 

experiment, cDNA has been used instead of genomic DNA (Litwack, 2018) since the aim is to 

monitor the gene expression, upregulation, or downregulation of certain pro-apoptotic and anti-

apoptotic genes rather than detection. Accordingly, cDNA was used to provide a more accurate 

analysis.  

According to Figure 3.41 and Figure 3.42, in the A375 cells treated with doxorubicin and 

dacarbazine decreased expression of the pro-apoptotic gene (Bax) was detected. Bax and Bcl2 

genes are known as an important apoptosis-related gene and has been investigated as a marker 

of resistance in the literature (Kale et al., 2018, Wang et al., 2017). This can be an indication of 

resistance towards both naïve drugs.  

Upregulation of caspase-9 and Bax was detected in A375 cells treated with folate-modified 

nano-emulsion compared to non-modified drug-loaded nano-emulsion and naïve drug 

treatments. On the other hand, HaCaT had lower Bcl2 expressed rather than Bax.  

An increase of the pro-apoptosis genes in A375 cells treated with folate-modified drug-loaded 

nano-emulsion was detected. Although the detection of this result indicates the increase in 

initial apoptosis markers, however, more investigations on the apoptosis of A375 can be done 

by quantitative-PCR (Jafarizad et al., 2018, Sarigöl-Kiliç and Ündeğer-Bucurgat, 2018) and 
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Annexin-V flow cytometry (Kotawong et al., 2018). A few researchers also investigated 

expression of caspase-3, caspase-9, Bax, and Bcl2 by western blot (Wang et al., 2019a, Shang 

et al., 2019) . 

4.4 Investigation of cell viability and iNOS and COX-2 

downregulation after treating with encapsulated anti-

inflammatory compounds 

In the second part of the thesis, melanocortin peptides were used to control melanoma 

progression. Melanocortin compounds are anti-inflammatory agents that have been used for 

both chronic and acute inflammation therapies (Tsatmali et al., 2002, Wang et al., 2019b). 

Cancer cells, most particularly melanoma cells, overexpress melanocortin receptors (Zhou et 

al., 2020). So far melanocortin peptides were used to target receptors on cancer cells as a 

targeted delivery tool (Li et al., 2019, Zhou et al., 2020, Dissanayake et al., 2017).  

However, in current research using a novel approach, anti-inflammatory melanocortin 

compounds were used as potential tools to inhibit melanoma progression. Hence, this was done 

utilizing folate-modified pullulan-chitosan nano-emulsion developed and optimised according 

to section 2.2.5 and instead of the drugs, anti-inflammatory compounds were encapsulated in 

the optimal pullulan-chitosan nano-emulsion.  
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4.4.1 iNOS and COX-2 expression  

iNOS and COX-2 protein upregulations have been investigated and reported as precursors for 

melanoma progression and metastasis (Johansson et al., 2009, Paulino et al., 2016). Hence, the 

effect of melanocortin compounds on iNOS and COX-2 expressions was investigated for the 

first time as a novel approach by BMS-470539-dihydrochloride and [DTrp8]-γ-MSH loaded 

optimal nano-emulsion to ascertain whether they were effective in modulating these 

inflammatory pathways. 

The treatments were evaluated over 72 hours and their effect on cell viability and protein 

expression was confirmed by MTT and Western blot assays, subsequently imaged by 

fluorescent microscopy.  

Evaluation of the cell viability via MTT assay has demonstrated that the melanoma cells treated 

with the melanocortin compound (BMS-470539-dihydrochloride and [DTrp8]-γ-MSH) loaded 

nano-emulsions caused a decrease to 12 and 9% respectively in A375 cell viability after 72 

hours (Can et al., 2020). According to the investigations, COX-2 has been expressed in most of 

the malignant melanoma primary tumours and was confirmed in five malignant melanoma cell 

lines including MeWo, SK-Mel-13, SK-Mel-28, IGR 37, and A375 (Goulet et al., 2003, 

Denkert et al., 2001a). This leads to the progression of the melanoma cells. On the other hand, 

according to the studies conducted on benign nevi, no expression of COX-2 was detected 

(Denkert et al., 2001b, Lee et al., 2020). Inhibition of CXCL10 expression by iNOS also affects 

melanoma tumorigenesis and progression (Tanese et al., 2012). Therefore, iNOS is an 

important marker to target melanoma treatment (Tanese et al., 2012, Grimm et al., 2008). 
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Interestingly, the Western blot test showed a 100% knockdown of iNOS and COX-2 expression 

in A375 cells after 72 hours of encapsulated BMS470539-dihydrochloride and [DTrp8]-γ-MSH 

treatment and is a novel finding for these compounds on this cell line. According to the western 

blots, no band was detected for iNOS and COX-2 expressions in the cells treated with 

encapsulated compounds after 72 hours. Accordingly, the associated α-tubulin band was faint 

but detectable, this is most likely due to low levels of A375 cells left after treatment as can be 

seen from the data generated in the cell viability experiments (Figure 3.50 and 3.51), compared 

to untreated A375 cells. Whilst this data provides evidence of proof of concept it would be 

interesting to see if increasing the cell density would enable a higher number of cells for 

extraction to demonstrate this more clearly. 

This is a promising point in melanoma treatment and prognosis. While the compounds used in 

this study decreased melanoma viability, according to the previous investigations they increase 

the viability of cells such as chondrocytes (Can et al., 2020). This happens following TNF-α 

stimulation, whereby the loss of chondrocytes within the cartilage leads to the development of 

osteoarthritis (Can et al., 2020). This indicates the potential of the current treatment procedure 

for targeted delivery applications. 

There are certain problems with the delivery of small molecules and peptides. Most peptides 

have a very limited half-life starting from a few minutes to a few hours, thence they lack 

stability (Wei et al., 2016). Moreover, they are prone to oxidation and hydrolysis (Fosgerau and 

Hoffmann, 2015) which decreases their ability to function (Lau and Dunn, 2018). The 

administration route for them is usually the in-situ or subcutaneous injection. However, the 

delivery efficacy may not be always high (Pai et al., 2017).  
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In this study, the MC1 agonist BMS470539-dihydrochloride and MC3 agonist, [DTrp8]-γ-MSH 

(Tao et al., 2006) were encapsulated in the pullulan-chitosan optimised nano-emulsion, to 

ensure that the compounds would be protected against early degradation and therefore reach 

the target more efficiently (Bentz et al., 2017).  

Although the approach is promising, there are certain challenges to address in further 

investigations. These include the sterilisation of the nano-emulsion after encapsulation of the 

compounds. In this study, short periods of UV light exposure were used to sterilise the nano-

emulsion compound. The obtained results can be further confirmed by q-PCR or Annexin-V 

assays to detect the state of the cells (apoptotic/ necrotic).  

4.4.2 Toxicity induced by encapsulated compounds on A375 cells 

Measurement of the effect on cell viability induced by the naïve and encapsulated compounds 

on melanoma was used to ascertain their effects on the mitochondrial activity and subsequent 

viability of the melanoma (A375) cells. The viability of the melanoma cells treated with 

encapsulated BMS-470539-dihydrochloride and [DTrp8]-γ-MSH for 72 hours, caused a 

significant decrease in cell viability compared to naïve compounds. Which is consistent with 

the bands on the 72hour western blot.  

As iNOS and COX-2 are known to have a substantial effect on melanoma progression and 

invasion (Kim et al., 2016), they also have an impact on melanoma viability (Herraiz et al.). In 

this study, the ultimate impact of the encapsulated compounds on iNOS and COX-2 expression 

was 100% downregulation after 72 hours. Encapsulation enhanced the compound’s abilities to 
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downregulate the expression of both iNOS and COX-2 and decrease the A375 cell viability 

after 72 hours. However, the effect of the compounds on HaCaT cells is yet to be investigated.  

4.4.3 Fluorescent microscopy of melanoma-keratinocyte co-
culture treated with encapsulated compounds 

The effect of encapsulated peptides on melanoma cells was investigated using Western blot and 

MTT. In further investigations, encapsulated BMS-470539-dihydrochloride, [DTrp8]-γ-MSH, 

and naïve BMS-470539-dihydrochloride, [DTrp8]-γ-MSH treatments were applied to the co-

culture of pre-labelled A375 and HaCaT cells to visually screen their effectivity (Chung et al., 

2018). Accordingly, the images were obtained, and the melanoma (green labelled) growth was 

monitored. Under normal conditions (without treatment) A375 cells proliferate rapidly and it 

was expected to grow within 72 hours. However, decreased numbers of A375 cells in the well 

(Figure 3.57 and 3.58) were detected while treated with encapsulated compounds. On the 

contrary, HaCaT cells (red labelled) continue to proliferate over the 72hours. This study 

suggests that BMS-470539-dihydrochloride and [DTrp8]-γ-MSH in both naïve and 

encapsulated form, do not affect effects on HaCaT cells.  The results obtained from the 

microscopy also validated the Western blot and MTT results. 
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5 Conclusion 
 

The aim of this thesis was achieved through two main phases. Firstly, development and 

optimisation of an appropriate drug-delivery platform for melanoma; secondly, investigation of 

inflammation control as a tool to control melanoma progression. 

From the findings of the first part of the experimental work, polysaccharide-based nano-

emulsions presented the promising potential for melanoma drug delivery. Alginate, chitosan, 

and pullulan each tested for their features in drug release. However, the blended alginate-

pullulan, pullulan-chitosan, and chitosan-alginate demonstrated improved release profiles. The 

optimisation procedure of the blended nano-emulsions led to the optimal nano-emulsion 

“pullulan-chitosan”. The synthesized and folate-modified pullulan-chitosan nano-emulsion was 

found to have enhanced uptake in A375 cells. Furthermore, doxorubicin/dacarbazine loaded 

nano-emulsion substantially decreased the melanoma viability. In the meantime, the control 

cell line (HaCaT) was minimally affected by the drug-loaded folate-modified nano-emulsion. 

Hence the first part of the investigation showed that the drug-loaded pullulan-chitosan nano-

emulsion can be used as melanoma targeted treatment. 

The second part of the investigations pointed out that the nano-emulsion has the potential to be 

used as a highly efficient multi-propose delivery platform. Upregulation of the inflammation 

markers is reported to affect melanoma progression. Hence the delivery of anti-inflammatory 

compounds using the developed nano-emulsion was investigated. This novel approach led to a 

significant downregulation of the inflammation markers in A375 cells. This was due to the 
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efficient delivery of the anti-inflammatory compounds using the pullulan-chitosan nano-

emulsion. 

In conclusion, the developed formulation can be considered as an important tool toward the 

elimination of melanoma drug resistance. Moreover, the delivery of anti-inflammatory 

compounds using nano-emulsions was found to have a great impact in controlling melanoma 

progression. 
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6 Future work 
 

In the results of the experimental part of this thesis, a novel folate modified pullulan-chitosan 

nano-emulsion was developed. This delivery platform had two unique features. First, targeted 

uptake in melanoma cells, and an ability to provide intracellular controlled release. Second, the 

potential to be used as a delivery platform for small molecules/compounds. This novel approach 

was used to deliver a-MSH-peptides into skin melanoma cells to downregulate iNOS and COX-

2 and then using the same system, doxorubicin/dacarbazine was delivered into the A375 cells 

to induce apoptosis.  

Although the obtained results depicted success in reducing A375 viability and inducing 

apoptosis, other features need to be investigated further. In this project, nano-emulsions were 

applied to mono-layer cell cultures on two cell lines. To get closer to a real-life system, the 

formulation can be tested in a 3D tumour model and a flow system. Furthermore, as the rout of 

the delivery was aimed to be topical, the detailed study on nano-emulsion particle permeation 

through skin layers is crucial. This can be done via using a skin model or ex vivo flow tumour 

models. In such a system, the effects of the drug-loaded nano-emulsions on the tumour 

microenvironment, and the resulting interstitial fluid pressure on the uptake of the immobilised 

drugs can be investigated.  

Investigation of the hepatotoxicity or any accumulations in distant organs can also be conducted 

before the translation of the nano-emulsion to clinical trial. Further research can be carried out 

to study the immunogenicity of the drug-loaded nano-emulsion. 
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As chemotherapy drugs have severe side effects, the developed nano-emulsion can be a tool to 

decrease the damages caused to healthy tissues during the course of treatment. The nano-

emulsion can also be investigated as a tool to study the severe side effect of other cytotoxic 

drugs along with doxorubicin and dacarbazine. 

Furthermore, effect of nano-emulsion can be investigated on the range of skin cancer cell lines 

such as SK-MEL-28, MeWo, and B16 F1. Ability of skin cancer to metastasis can also be 

investigated as the further effects of the optimal nano-emulsion.  

Moreover, to use the nano-emulsion as a topical delivery formulation, the size of nano-emulsion 

particles can be further reduced to a range of 50-75 nm. Therefore, there will be a potential for 

the drug-loaded nano-emulsion particles to penetrate the skin. 

Furthermore, the combined therapy of a-MSH-peptides-doxorubicin-dacarbazine loaded nano-

emulsion can be investigated in melanoma treatments. The downregulation of inflammation 

modulators can significantly affect the progression of melanoma. Hence a combined therapy of 

anti-inflammatory compounds and chemotherapeutics can be a potential therapy for melanoma.  

Also, additional anti-inflammatory compounds such as NSAIDs (diclofenac) or COX-2 

inhibitors (celecoxib) can be encapsulated in the nano-emulsion for investigation of cancer 

treatment or the prevention/treatment of severe inflammatory diseases. 
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7 Appendix 
Appendix A. Evaluation of doxorubicin quantity 

To evaluate encapsulation efficiency for doxorubicin-loaded nano-emulsion, HPLC was performed. The calibration curve was plotted based on various 
doxorubicin concentrations. Doxorubicin peak was detected at 2 minutes. 

 

Figure 7.1 HPLC peak detected at 2 minutes for doxorubicin 

UHPLC (Ultimate 3000 Thermo-scientific) was performed using a C18 column (4.6 mm x 100 mm, 2.7 µm, Thermo-Scientific 071973). 
UV detection for doxorubicin was done at 233 nm. The mobile phase contained water and acetonitrile (25:75 v/v, adjusted to pH 3.0 using 
85% w/v phosphoric acid) using the flow-rate of 1.0 ml per minute.
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Appendix B. SEM imaging. 

 

 

Figure 7.2 SEM image of the optimal pullulan-chitosan nano-emulsion 

Scanning electron microscopy (SEM) was performed using FEI Quanta FEGSEM operating at 
5.00 kV, 63k magnification, 50 pa pressure, dwelling 10 µseconds. 
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Appendix C. Western blots 

                                                    B 

  

 

Figure 7.3 iNOS and COX-2 expression analysis by Western blot  

This image is a single demonstration of three independent western blots (for each 
time point) conducted to analyse iNOS and COX-2 expressions in treated A375 
cells. The experiment was conducted after 24, 48, and 72 of incubation with 
treatments. The results are normalised to α-tubulin. Blots demonstrated in the figure 
are the full demonstrations of figure 3.53. Figure 7.3A is indicating the a-tubulin 
bands and Figure 7.3 B and C are indicating the band obtained from the treatments. 
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