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Abstract—In this paper, the linearity of a fabricated 

microstrip Doherty amplifier in asymmetrical topology (ADA) 

is experimentally tested for the fifth generation signals. The 

measurement set-up contains a Matlab programming platform, 

a signal generator, and a vector signal analyzer. The Matlab 

development platform and the signal generator are used for the 

generation of the 5G FBMC, UFMC, and FOFDM signals. The 

5G signal spectra are measured by the vector signal analyzer at 

the input and output of the Doherty amplifier. The output 

spectra of the 5G signals for different input power levels 

gained in measurements are compared to the simulated results. 
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I. INTRODUCTION 

The rapid development of the fifth generation (5G) 
mobile communication systems imposes the utilization of 
new modulation formats, such as  FBMC (Filter Bank Multi-
Carrier), UFMC (Universal Filtered Multi-Carrier) and 
FOFDM (Filtered Orthogonal Frequency Division 
Multiplexing), which can satisfy the required 5G system 
characteristics such as high efficiency, high data rate, 
linearity, reliability, low latency etc. [1], [2]. 

Doherty amplifier (DA) is a very suitable topology for 
5G systems applications considering its linearity and high 
efficiency. 

In this paper, we represent the simulated and measured 
output spectra of the microstrip asymmetrical Doherty 
amplifier (ADA) for the FBMC, FOFDM, and UFMC 5G 
modulations for various values of the input power (Pin). The 
obtained measurement results presented in the graphs show 
the output spectra of the mentioned modulation forms at the 
input and the output of the Doherty amplifier. The simulated 
results are extracted from the ADS (Keysight Advanced 
Design System) simulator and relate to the signals at the 
ADA output. 

Anteriorly developed linearization technique (DEB_LIN 
technique) within our research group, was tested in the ADS 
for the single PA that operates at 3.5 GHz for the FBMC, 
FOFDM, and UFMC signals with 50 MHz useful signal 
bandwidth [3], [4] and for the symmetrical two-way DA that 
operates at 3.5 GHz for the LTE signals with useful signal 

frequency bandwidth of 20 MHz, as well as for the FBMC 
signal with 50 MHz bandwidth [5], [6]. 

 The DEB_LIN technique was experimentally approved 
on the ADA for the 16QAM signal with 1 MHz useful signal 
frequency bandwidth and also for the 64QAM signal with 
2 MHz useful signal frequency bandwidth [5], [7], [8]. This 
linearization technique uses adequately processed baseband 
signals that modulate the carrier second harmonic, and a 
detailed explanation of the technique operation can be found 
in the mentioned literature [3]-[8]. 

In future work, experimental validation of the DEB_LIN 
technique is planned for the FBMC, UFMC, and FOFDM 
signals on the ADA. The experiments will include 
linearization signals insertion to the input and/or output of 
the carrier cell in the ADA topology and the results will be 
obtained for diverse Pin. 

II. MEASUREMENT SET-UP 

Fig. 1 represents the measurement set-up formed to 
generate the FBMC, UFMC, and FOFDM signals and to 
capture their output spectra at the output of the ADA.  
Figure 1a) illustrates the block scheme of the used equipment 
during the measurements whereas the Fig. 1b) is the photo of 
a real laboratory setup for the 5G signals generation and 
analysis.  

The measuring set-up consists of a signal generator 
(Agilent MXG N5182A) and a vector signal analyzer 
(Agilent VSA E4406A). The Matlab environment was used 
for the signal processing and preparation. The signal created 
in Matlab was downloaded to the signal generator via 
Agilent Signal Studio Toolkit utility software. The 
connection between the PC and the signal generator was 
established over the GPIB (General Purpose Interface Bus) 
interface. The RF output signal from the signal generator was 
fed to the input of the Doherty power amplifier, while the 
output of the ADA was measured and analyzed using the 
vector signal analyzer.  

Fig. 2 depicts a layout of the microstrip ADA which 
operates at 900 MHz central frequency with 9 dB maximal 
transducer gain, 15 dBm output power at 1-dB compression 
point, and 18 dBm maximum output power [9]. The carrier 
and peaking PA in asymmetrical DA were designed based on 
AP602A-2 GaAs MESFET on Rogers 3010 substrate with 



1.6 mm thickness and 17 µm metallization layer. The carrier 
amplifier operates in class AB and the peaking amplifier in 
class C. Table I represents the values of the components used 
for the fabrication of the ADA.  

III. RESULTS 

The signals used for testing the ADA are the 5G FBMC, 
UFMC, and FOFDM signals at carrier frequency 900 MHz 
with a useful signal frequency bandwidth of 3.75 MHz. The 
output spectra of the 5G FBMC, UFMC, and FOFDM 
signals were measured by the vector signal analyzer and 
presented in Figs. 3 to 5. The simulation testing and 
measurements were performed for the three different 5G 
signal input power levels: -10 dBm, 0 dBm, and 10 dBm. 
The simulated results were gained in the ADS for the ADA 
circuit whose layout is shown in Fig. 2. The simulation was 
performed when the same 5G signals, as the ones used in the 
measurement set-up, were at the amplifier input. The first 
graphs on the left side demonstrate the spectra of the three 
mentioned types of signals measured at the input of the 
ADA, while the second and the third graphs represent the 
measured and simulated spectra at the output of the ADA, 
respectively.  

 
a) 

 

b) 

Fig. 1. The measurement set-up: a) Block scheme, b) Photo. 

We can observe from the figures that very similar results 
of the FBMC, UFMC, and FOFDM signals were obtained in 
the measurements as in the simulations for all considered 

Pin. The measured output spectra of the 5G signals at the 
output of the ADA detains the same spectrum shape as the 
simulated one for the in-band signal part, while out-of-band 
parts have a similar shape but slightly different values, which 
is more visible with the increased power. 

 
Fig. 2.  Layout of the asymmetrical Doherty amplifier.  

TABLE I. LUMPED ELEMENTS AND COMPONENTS VALUE  
ON THE LAYOUT SCHEME 

Component Value 

C1 100 pF 
 

 

 

 

 

 

0805 
package 

C2 100 nF 

C3 2.2 uF 

R1 620 Ω 

R2 50 Ω 

R3 100 Ω 

R4 430 Ω 

R5 12 Ω 

L1 27 nH 

IC1 AP602 FET 

IV. CONCLUSION 

The linearity test was experimentally performed on a  
two-way microstrip Doherty amplifier with asymmetrical 
configuration when the source signals are the 5G FBMC, 
UFMC, and FOFDM modulation forms. The useful 5G 
signals were generated by the Matlab programming platform. 
The Agilent Signal Studio Toolkit utility software was 
exploited to download signals from Matlab to the signal 
generator Agilent MXG N5182A. The signal generator 
output signals were led to the input of the amplifier. The 
Agilent VSA E4406A vector signal analyzer was utilized for 
the measurement and analysis of the signals at the input and 
the output of the ADA. The acquired measurement results 
were compared with the simulated one from the ADS for the 
same conditions at the output of the ADA. The measured 
results show that all considered 5G signals retain the same 
spectrum shape and similar values as in the simulations.  
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c) 

Fig. 3. FBMC signal spectra measured at the input and output of ADA (left and middle, respectively) and simulated at the output of ADA in ADS 
software (right) for input power: a) -10 dBm; b) 0 dBm; c) 10 dBm. 
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c) 

Fig. 4. UFMC signal spectra measured at the input and output of ADA (left and middle, respectively) and simulated at the output of ADA in ADS 
software (right) for input power: a) -10 dBm; b) 0 dBm; c) 10 dBm. 
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c) 

Fig. 5. FOFDM signal spectra measured at the input and output of ADA (left and middle, respectively) and simulated at the output of ADA in ADS 
software (right) for input power: a) -10dBm; b) 0 dBm; c) 10 dBm. 
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