UNIVERSITYOF

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Menu design approaches to promote sustainable vegetarian food choices when dining out
 Parkin, B. and Attwood, S.

NOTICE: this is the authors' version of a work that was accepted for publication in Journal of Environmental Psychology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Environmental Psychology, volume 79, February 2022, 101721.

The final definitive version in Journal of Environmental Psychology is available online at:
https://doi.org/10.1016/j.jenvp.2021.101721
© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Menu design approaches to promote sustainable vegetarian food choices when dining out

Abstract

Shifting dietary choices towards vegetarian food is an urgent challenge given the environmental impact of livestock production and imminent need to reduce global greenhouse gas (GHG) emissions. Previous research has proven the value of low cost, scalable menu design interventions to influence food choices, without the need for largescale educational campaigns. Here, we present two online randomized control trials to determine the effectiveness of two menu design approaches to nudge participants' food choices away from meat and towards vegetarian dishes. In study one we explore the impact of vegetarian items availability on choice. Participants were allocated to menus in which $75 \%, 50 \%$ or 25% of items were vegetarian. We show that meat eaters were significantly more likely to choose a vegetarian meal when presented with a menu with 75% vegetarian items, but not when half (50%) were vegetarian. This finding highlights that saturating the choice environment is required to promote vegetarian food. In study two, we explore the impact of vegetarian symbols (V) to determine if these are used by meat eaters as exclusion decision filters, as is seen in previous work with menus containing 'vegetarian' dish sections. Here we show that placement of V symbols, to either the left or right of a dish label, has no impact on choice. These studies provide insights into how the environmental footprint of the food service sector can potentially be reduced using easy and scalable menu design approaches.

Key Words

Behaviour change; Sustainability; Food choice; Diet; Climate change

1.Introduction

1.1 The climate impact of food choices

The 2015 Paris Agreement aims to keep global temperature rises below 1.5° to avoid the worse consequences of climate change (UNFCCC, 2020). In ordet to achieve this, countries around the world must rapidly reduce their greenhouse gas (GHG) emissions, especially within sectors that contribute most to national footprints. The food system is one such sector, with estimates showing that production, processing, distribution, preparation and consumption of food accounts for around 25-30\% of all global GHG emissions (Poore \& Nemeck, 2018; Crippa, Solazzo, Guizzardi et al., 2021; UNEP, 2020).

Moreover, further analyses shows that, even if GHG emissions from all other sectors were immediately curbed, the impact of the food system alone, if unchallenged, would prevent achievement of Paris Agreement targets (Clark et al., 2020). This situation is further compounded by population growth, projected to reach around 10 billion people by 2050.

Therefore, it is essential to find ways to feed approximately one third more people while simultaneously preventing agricultural expansion into virgin forests and reducing GHG emissions. This will require more efficient means of both producing and consuming food (Willett et al., 2019).

1.2 Ruminant meat and sustainable diets

Particularly problematic from the perspective of diet efficiency is over-consumption of meat from ruminant animals (i.e. beef, goats and lamb). Ruminant meat is far more resource intensive to produce than vegetarian food. For example, per unit of edible protein, producing beef emits around 20 times more GHG emissions than non-animal sources such as beans, peas and lentils (Ranganathan, Vennard, Waite, Lipinski, Searchinger et al., 2016).

While a wide range of different and promising approaches to improve the efficiency of ruminant meat production exist, these do not negate the need for a global shift in dietary choice towards eating less
meat. For example, the EAT Lancet consortium have recommended that, for optimal individual and planetary health, consumption of animal- products must be capped at 98 g of red meat and 203 g of poultry per person per week (Willett et al., 2019), with plantbased foods consti- tuting the majority of the diet.

Given that meat is integral to many cuisines across the world, a crucial question remains as to how exactly we achieve this move to more vegetarian diets? As many years of research and practice in the health domain indicates, eating habits tend to be hard to
change. For example, numerous campaigns have been launched worldwide to tackle over- consumption of calories leading to overweight and obesity (Walls, Peeters, Proietto, \& McNeil, 2011), yet prevalence continues to rise (Malik, Willet, \& Hu, 2020).

1.3 Nudging food choices

Efforts to change dietary choices have tended to focus on educating individuals about associated risks, often via population campaigns or targeted programs directed at 'high risk' groups (Stead et al., 2019). Recently, however, research has been directed towards the role of the decision context on food choices (Abrahamse, 2020; Wansink \& Love, 2014). More commonly known as 'nudging', these interventions involve modifying the way in which a choice is presented, known as the 'choice architecture', in dining establishments or food retail. Promisingly, these approaches have shown some efficacy at changing food choices (Van- denbroele, Vermeir, Geuens, Slabbinck, \& Van Kerckhove, 2020), often without consumer awareness that their decisions have been influenced (Rust et al., 2020). Examples include modifying the default food offering (i.e. Campbell Arvai, Arvai, \& Kalof, 2014), limiting access to the sale of certain food items, redesigning menus (i.e. Feldman, Su, Mahadevan, Brusca, \& Hartwell, 2014) , labelling products with symbols, signs or language (i.e Wansink, Painter, \& Van Ittersum, 2001), and altering the placement of food products (i.e Dayan \& Bar-Hillel, 2011).

1.4 Availability of vegetarian options

Considering nudges to promote sustainable dietary choices, one intervention that has been shown to work well in real-life dining con- texts is increasing the availability of vegetarian foods. Examples include adding more vegetarian dishes to menus or buffets, or presenting vegetarian dishes in ways to appear more numerous or abundant (i.e. separating salad ingredients into multiple separate bowls rather than mixing them together in one) (Friis et al., 2017).

Recent research conducted in a university canteen in the United Kingdom showed that doubling the number of vegetarian items on sale (from one to two items on a four-item menu) led to a 62% (range of $40.8 \%-78.8 \%$) increase in the number of diners choosing these options (Garnett, Balmford, Sandbrook, Pilling, \& Marteau, 2019). A second study in a restaurant based in the Netherlands demonstrated that replacing three meat dishes with vegetarian alternatives, and modifying the portion size of meat in a fourth dish, led to a 113% increase in the amount of vegetables consumed and 4% reduction in amount of meat consumed (Reinders, Lieshout, Pot, Neufinger et al., 2020). Similarly, an older campus-based restaurant study found that offering diners a default vegetarian menu, with meat available on a separate menu displayed 3.5 m away, significantly increased the
probability that vegetarian meals were chosen compared to when diners received a regular menu (Campbell Arvai et al., 2014).

This research is promising as it shows that preferences can be influenced via relatively minor modifications to the way in which a choice is presented, without the need to educate or consciously persuade individuals to alter their behavior. However, despite these initial posi- tive findings, research is yet to determine exactly how much meat availability needs to decrease in order for this approach to produce the desired effect. For example, in the university canteen study noted above, meat options were decreased by 33\% (Garnett et al., 2019), while in the

Netherlands restaurant study, three meat dishes were replaced by vegetarian dishes in a buffet, although we are not told what proportion of the total dishes on offer this represents (Reinders, Lieshout, Pot, Neufinger et al., 2020).

This question has important practical significance, as knowing exactly how much meat to remove from menus would give useful, pragmatic guidance for retailers and food service operators. For example, to what extent do menus need to substitute meat to vegetarian dishes? Given that diners tend to consume more meat when eating out (Horgan, Scalco, Craig, Whybrow, \& Macdiarmid, 2019), reducing the number of meat options may have important implications for profit- ability or customer retention, and hence, may limit operator willingness to adopt this approach. As such, it would be useful for restaurants to have guidance on the minimum viable reduction in meat availability required to elicit a significant shift in consumer choice towards more sustainable vegetarian options.

1.5 Labelling of vegetarian options

A similarly pragmatic question that remains unanswered regards labelling of vegetarian options. To date, these have tended to be indi- cated by 'vegan' or 'vegetarian' labels on menus, signs or packaging. This approach is beginning to also receive interest for its potential to influence consumer food choices (Vlaeminck, Jiang, \& Vranken, 2014; Tobi et al., 2019).

One intriguing finding in existing literature is the fact that overtly indicating options are 'vegetarian' or 'free from meat' seems to reduce the numbers of diners willing to purchase them (Bacon \& Krpan, 2018; Krpan \& Houtsma, 2020). For example, an online menu study found that separating vegetarian items into their own dedicated and labelled 'vegetarian' section more than halved the odds they were chosen (Bacon \& Krpan, 2018). This finding was replicated in a separate online study also demonstrating that a designated 'vegetarian' menu section (versus an environmental or social designation, or no designation) was the least effective approach to promoting vegetarian dishes (Krpan \& Houtsma, 2020). In this study, authors suggested that the apparent choice-inhibiting effect of vegetarian labelling owed to this framing leading consumers to believe that vegetarian dishes were less enjoyable, and were used by meat-eaters as exclusionary
criteria when scanning menus. While it should be noted that both studies used hypothetical food choices and not real-world behaviours, Piernas et al. (2021) explored the influence of moving vegetarian products to meat aisles in supermarkets on real purchasing decisions. This study found that integrating these products increased sales of meat-free products, yet did not significantly reduce sales of meat products, although this may not apply to restaurant dining where the total number of products on offer may be more restricted.

The implications of this research presents a quandary for food service providers wishing to label vegetarian options without alienating their customer base; how can meat-free options be highlighted for those consumers who want to easily identify them, and also comply with allergen labelling requirements, whilst not inadvertently discouraging meateaters to select more vegetarian options?

Thus far, one approach routinely used in many dining and retail establishments is the inclusion of ' V ' symbols to denote either vegetarian or vegan options. However, no research has yet been conducted to un- derstand whether symbols also reduce the likelihood of these items being selected by consumers. A recent calorie labelling study measured the influence label placement has on dish choices. The results showed that only calorie labels presented before dish titles, but not after, encouraged less calorific food choices. This result was shown to be the case using participants from both the US (who read left to right) and Israel (who read right to left) (Dallas, Liu, \& Ubel, 2019). This finding has yet to be replicated in the context of climate labelling and such research would provide food operators insight into optimal placement of vegetarian symbols to avoid deterring vegetarian food choices.

1.6 Research Questions

In this study, we present findings from two separate online ran- domized controlled trials exploring the influence of vegetarian food availability and vegetarian labelling on choice. These two distinct areas are united by the direct, practical guidance they offer; the first study will help to provide the food service sector with guidance on how to re- design their menu to encourage vegetarian choices, and the second on how to communicate about these options on menus in a way that will appeal to meat-eaters. In study one, we test a range of menus with different ratios of vegetarian: meat dishes to address the question of how much of a menu needs to be vegetarian to encourage diners to shift away from choosing meat? In study two we test the role that placement of ' V ' symbols on menus play in influencing food choice, answering the question of whether placement of the symbol before or after dish titles influences the number of diners choosing vegetarian items? The goal of both studies is to give practical guidance on the use of these nudge ap- proaches to food service providers wishing to promote more vegetarian options.

Study 1: Availability of vegetarian menu options

2.1 Materials and Methods

2.11 Study design

This online randomized controlled trial was delivered via Qualtrics. Participants were randomly allocated to one of three conditions that presented them with a series of menus with different availability of vegetarian and meat dishes - a meat: vegetarian ratio of (a) 2:6 (75% vegetarian menu); (b) 4:4 (50\% vegetarian menu); and (c) 6:2 (25% vegetarian menu). Within each condition participants viewed five mock menus that reflected the types of offerings available in popular restau- rant chains in the UK (e.g. a burger menu, a brunch menu, a deli-style sandwich menu, a pub-style lunch menu, and an Italian food menu). The order in which each of these menus were presented was randomized across participants.

2.1.2. Participants

Participants were recruited via the online recruitment platform Prolific (https://www.prolific.co/) and received an incentive of $£ 1.50$ to undertake the study. Eligibility criteria included English speaking, UK residents aged over 18. Participant recruitment was stratified according to age categories (age brackets 18-24, 25-45, 46$64,65+$) and gender (male, female). We excluded participants who self-identified as following a pescatarian, vegetarian or vegan diet prior to data analysis. These exclusions were made via a post-task dietary questionnaire, rather than pre-screening, to avoid dietary questions priming vegetarian food choices in the subsequent experiment.

Sample size was informed by a prior power calculation reported in Attwood, Chesworth, and Parkin (2020), a previous study that we undertook to explore the influence of price on vegetarian food choices using a similar research protocol (Attwood et al., 2020). Criteria for this calculation were based on prior research (Vennard, Park, \& Attwood, 2018), and aimed to detect a minimum 7% shift in numbers choosing vegetarian menu items between intervention and control groups, at a significance level of 0.05 , with power of 80% and assuming a two-tailed hypothesis. The results of this calculation recommended $\mathrm{N}=156$ par- ticipants per menu condition (i.e. $\mathrm{N}=468$ total). Data collection occurred during April 2020, and we note that eventual recruitment was underpowered due to early cessation because of COVID-19 related limitations.

2.1.3. Intervention

For each menu in the three conditions, participants were asked to make a choice between eight dishes presented in two columns of four. Vegetarian dishes were all suitable for someone following a lacto-ovo vegetarian diet. The vegetarian and meat items were presented in fixed positions across all menu types (as seen in Fig. 1), to ensure that vegetarian and meat dishes were equally represented in the top two rows of the menu to control for the known influence of edge item positioning on choice (Kim, Hwang, Park, Lee, \& Park, 2018). Dishes listed on menus were priced similarly to their UK retail value, with meat and vegetarian options matched on price with the exception of one slightly higher priced meat option (>£2). This decision was made to ensure that menus appeared realistic while keeping the price variation within a range that has previously been shown to exert no influence on choice (Attwood et al., 2020). The dishes used in each condition are listed in supplementary materials 1.

2.1.4. Procedures and measures

The study was approved by the Westminster University Ethics Committee in line with the Declaration of Helsinki. Upon entry to the online platform, participants were provided with a description of the experimental task and gave informed consent. The primary outcome in this study was dish choice, represented as a dichotomous variable reflecting whether the dish chosen was vegetarian (1) or not (0). Prior to seeing each menu, participants were told to "Please consider the menu on the following page. We would like you to imagine you are in a restaurant and to select which dish you would be most likely to order". To highlight their choice, participants clicked on their desired option, and were then directed to the next menu.

Following this choice task, participants completed a series of de-mographic and dietary questions. These included age, gender (male/ female/other), BMI, usual diet (vegan/lactoovo vegetarian/pesca- tarian/Includes meat and dairy products/Other), current hunger levels (1- not at all - 10 extremely hungry), past behavior (whether their last meal contained meat: Yes/No) and the typical frequency that they dined out-of-home (Less than monthly/Monthly/Fortnightly/Once per week/ 2-3 times per week/Every day). Questions relating to the participants' perception of vegetarian food choice were also included, for example whether participants thought vegetarian options are for specific types of people and not for other eaters (from 0-strongly agree to 7-strongly disagree) and whether vegetarian foods are environmentally friendly (0 - strongly agree to 7strongly disagree). These measures were included to capture some of the variables known to influence food choice (for co- variate adjusted analyses) based on previous research using a similar paradigm (Attwood et al., 2020) and that which has shown age, gender (Neff et al., 2018) and past eating behaviour predict meat consumption (Saba \& Di Natale, 1998). An attention check question was also included.

Figure 1: Example menu for each availability condition in study 1: Participants were randomly allocated to one of three conditions, which differ according to the proportions of meat and vegetarian dishes. They were either allocated to a menu where A) 75% of the dishes were meat and 25% vegetarian B) 50% of the dishes were meat and 50% vegetarian of C) 25% of the dishes were meat and 75% were vegetarian.

2.1.5. Analysis

All analyses waere undertaken using statistical package IBM SPSS statistics version 25. To determine the influence of vegetarian option availability on food choice, we ran covariate unadjusted and adjusted binary logistic Generalized Estimating Equations (GEE) models, repli- cating the analytic approach taken in Attwood et al. (2020). GEE models allow for analysis of data from repeated measures or panel designs by accounting for the non-independence of responses from the same participant across multiple menus. This is done by including participant ID as a 'subject' variable and menu type as a 'within subjects' variable in the final statistical model.

Dichotomized dish choice (vegetarian (1) vs. non-vegetarian (0) option selected) was the primary outcome measure. Condition was added as a predictor to the model, ran first with the 50% menu as the comparison group, and then subsequently to compare the 25% vs. 75% menus directly. Menu type (the five types of menus) was also addi- tionally included in unadjusted models. Following this, we ran covariate adjusted models, including demographic and diet related covariates that were found to significantly predict dish choice ($p<0.05$) in prior in- dependent binary logistic regression analyses.

2.2. Results

2.2.1. Study sample

430 individuals were recruited into study one. 78 of these individuals were excluded because they either did not eat meat as part of their normal diet (i.e. vegan, vegetarian or pescatarian, $N=76$), or they had failed the attention check ($\mathrm{N}=2$ participants). This left a total sample of 352 participants, each viewing five menus, leading to 1760 observations for analysis.

Participant demographic and dietary characteristics are summarized in Table 1. The sample contained slightly more males (53.4\%) than fe-males, with ages ranging from 18 to 83 years. The median age of the sample was in the mid-thirties. Participants were, on average, slightly overweight (BMI: 25.86) and had an average hunger score of 5 out of 10 , indicating that they were not particularly hungry at the time of completing the task.

In terms of usual dietary behaviors, the sample ate meat frequently. On average, this was five out of seven days in the previous week, with just under 75% of participants consuming meat at their last meal. Conversely, most participants ate out infrequently, less than monthly (32\%). Only 1% of the sample reported that they ate out of home on a daily basis, which may reflect the fact that data was collected during the COVID 19 pandemic as lockdown restrictions were easing in the UK.

When choosing what to eat, the most common priority in this sample was taste. Most participants rated their views towards vegetarian dishes as neutral, in that they did not strongly agree that these dishes are made for specific 'other' types of people, nor did they feel strongly about the environmental credentials of vegetarian dishes. Lastly, the vast majority (75%) of the sample rated the dishes that they were shown across the menus as priced 'about right'.

Table 1: Characteristics of the sample from study one

Characteristic	Mean (SD) or Count (\%)
Gender (Female)	163 (46.3\%)
Age (years)	35.17 (15.53)
Current Hunger level (1-10)	4.97 (2.34)
Body Mass Index (kg/m²)	25.86 (4.94)
Dietary Variables	
Last meal contained meat	262 (74.4\%)
Number of days meat eaten in last week	4.94 (2.03)
Frequency of dining out-of-home	
Daily	4 (1.1\%)
2-3 times per week	23 (6.5\%)
1-2 times per week	62 (17.6\%)
fortnightly	81 (23.0\%)
Monthly	77 (21.9\%)
Less than monthly	105 (29.8\%)
Priority when choosing food	
Health	57 (16.2\%)
Cost	40 (11.4\%)
Taste	199 (56.5\%)
Filling	15 (4.3\%)
Usual choice	41 (11.6\%)
Menu perceptions	
Vegetarian dishes are for other people, not me	
Agree or strongly agree	65 (18.5\%)
Neutral	176 (50\%)
Disagree or strongly disagree	111 (31.5\%)
Vegetarian dishes are good for the environment	
Agree or strongly agree	69 (19.6\%)
Neutral	257 (73.0\%)
Disagree or strongly disagree	26 (7.4\%)
Price perceptions	
Too expensive	87 (24.7\%)

About right	$263(74.7 \%)$
Too cheap	$2(0.6 \%)$

2.2.2. Unadjusted analysis

In unadjusted GEE models, compared to the 50% vegetarian menu, significantly more participants chose a vegetarian dish in the 75\% vegetarian menu group (OR 2.58, 95\% CI 1.86 to $3.57, \mathrm{p}<0.001$).

However, there were no significant differences in the number of par- ticipants who chose a vegetarian dish in the 25% vegetarian menu condition (OR $0.84,0.61$ to $1.15, \mathrm{p}=$ 0.263). When repeating the analysis by comparing the two experimental groups directly, this showed significantly fewer vegetarian dishes were chosen in the 25% vegetarian menu than the 75% vegetarian menu condition (OR $0.32,95 \% \mathrm{Cl} 0.24$ to $0.44, \mathrm{p}<0.001$).

2.2.3. Adjusted analysis

Analyses were re-run as fully adjusted models, adding demographic and dietary related variables found to predict dish choice in prior ana- lyses. Menu type, gender, last meal contained meat, the number of days that meat was eaten in the last week, frequency of eating out-of-home, a variable summarizing top priorities when choosing food and a variable measuring the perception that vegetarian dishes are for specific types of 'other' people were entered into the model.

In this fully adjusted model, once again, there was no significant difference in the number of participants who chose vegetarian dishes in the 25% vegetarian menu group compared to the 50% vegetarian menu group (OR $0.90,95 \% \mathrm{Cl} 0.67$ to 1.21, $\mathrm{p}=0.48$) (see Fig. 2). However, significantly more participants chose vegetarian dishes in the 75\% vegetarian menu group compared to the 50\% menu group (OR 2.96, $95 \% \mathrm{Cl} 2.19$ to 4.01, p < 0.001). Repeating the adjusted analysis by comparing the two experimental groups directly also showed signifi- cantly fewer vegetarian dishes were chosen in the 25% vegetarian menu than in the 75% menu group ($\mathrm{OR} 0.30,95 \% \mathrm{Cl} 0.23$ to $0.41, \mathrm{p}<0.001$).

Figure 2: Dish choice by condition in study 1: The results show that significantly more participants chose vegetarian dishes in the 75% vegetarian menu group, when compared to the 50% menu, and the 25% vegetarian menu condition. ${ }^{*} p<0.05,{ }^{* *} p<0.001$.

3. Study 2: Labelling of vegetarian menu options

3.1. Material and methods

3.1.1. Study design

Study two also used an online randomized controlled design delivered via Qualtrics. Here, participants were randomly allocated to one of three conditions; where menus were presented with the vegetarian symbol (V) to (a) the left (V Left), or (b) the right (V Right) of the dish name, or (c) a control condition where vegetarian items were not highlighted by V symbols. Within each condition, participants viewed a total of eight mock menus, the five included in study one (e.g. a burger menu, a brunch menu, a deli-style sandwich menu, a pub-style lunch menu, and an Italian food menu), plus three further menus (a salad menu, a mezze style menu and an Indian food menu). Given that participant fatigue was not a problem in the previous study, these additional menus were added to observe choice across a larger number of scenarios. The order in which menus were presented was randomized across participants. Participants were asked to make a choice between eight dishes per menu, three of which were always vegetarian options. This proportion of meat to vegetarian options was chosen to reflect the typical ratio found in national UK restaurant chains. The vegetarian and meat items were, once again, presented in fixed positions across all menus to control for the effect of item positioning on choice.

3.1.2. Participants

Participants were recruited via an online recruitment platform (Prolific https://www.prolific.co/), receiving an incentive of $£ 1.50$ for completing the study. Eligibility and exclusion criteria was identical as for study one, and we based our sample size requirements on the power calculation detailed above. Data collection occurred during June 2020, recruitment was, again, underpowered due to cessation due to COVID- 19.

3.1.3. Intervention

In study two, participants in the intervention groups were exposed to menus with V symbols inserted either to the left or to the right of the dish name, while control group participants were exposed to the same menus with no V symbols. The V symbol design was taken from the EU endorsed registered symbol for labelling vegan and vegetarian products (https://www.v-label.eu/en). Fig. 3 shows an example menu across all three conditions. A list of the dishes included in each condition are listed in supplementary materials 2.

Figure 3: Example menu for each labelling condition in study 2 Example menu for each labelling condition in study 2: Participants were allocated to either a A) control condition with no V symbols, B) an experimental condition where the V symbols denoting vegetarian food were place to the left of the dish label or C) to the right of the dish label.
A)

B)

GARDEN BREAKFAST $£ 9.45$	EGGS ROYALE $\mathrm{E}^{9} .45$
Poached eggs, hash browns, smashed avocado, roasted plum tomatoes, mushrooms \& toast	Smoked salmon, poached eggs, hollandaise on grilled ciabatta
$\begin{gathered} \text { EGGS BENEDICT } \\ £ 8.45 \end{gathered}$	EGGS FLORENTINE $£ 8.45$
Roasted ham, poached eggs, hollandaise on griled ciabatta	Spinach, poached eggs, hollandaise on grilled ciabatta
THE BREAKFAST STACK $£ 9.45$	MEDITERRANEAN BREAKFAST $£ 9.45$
Sausage \& chorizo baked beans on a grilled bagel with two poached free range eggs	Poached eggs, grilled aubergine, charred red peppers, roasted plum tomatoes, hummus \& toast
FRENCH TOAST $£ 9.45$	THE FULL ENGLISH $£ 10.95$
Topped with streaky bacon and maple syrup Vegetarian/ Vegan	Fried eggs, Cumberland sausage, smoked bacon, roasted plum tomatoes \& toast

C)

GARDEN BREAKFAST $£ 9.45$	EGGS ROYALE $£ 9.45$
Poached eggs, hash browns, smashed avocado, roasted plum tomatoes, mushrooms \& toast	Smoked salmon, poached eggs, hollandaise on grilled ciabatta
$\begin{gathered} \text { EGGS BENEDICT } \\ £ 8.45 \end{gathered}$	EGGS FLORENTINE $£ 8.45$
Roasted ham, poached eggs, hollandaise on grilled ciabatta	Spinach, poached eggs, hollandaise on grilled ciabatta
THE BREAKFAST STACK $£ 9.45$	MEDITERRANEAN BREAKFAST $£ 9.45$
Sausage \& chorizo baked beans on a grilled bagel with two poached free range eggs	Poached eggs, grilled aubergine, charred red peppers, roasted plum tomatoes, hummus \& toast
	THE FULL ENGLISH
FRENCH TOAST $£ 9.45$	$£ 10.95$
Topped with streaky bacon and maple syrup Vegetarian/ Vegan	Fried eggs, Cumberland sausage, smoked bacon, roasted plum tomatoes \& toast

3.1.4. Procedure and measures

The procedure for study two directly replicated that used in study one. Participants who gave informed consent were required to select their preferred choices from the different menus, followed by a demographic questionnaire.

3.1.5. Analysis

Unadjusted and adjusted GEE models were once again run using IBM SPSS statistics version 25. Similar to study one, dichotomized dish choice (vegetarian (1) vs. nonvegetarian (0) option selected) was the primary outcome measure, with condition and menu type added to unadjusted models as predictor variables. We first compared both V Left and V Right conditions to the control group, and then re-ran the models to compare these two experimental conditions directly. Adjusted models were then run, to include demographic and diet related covariates that were found to significantly predict dish choice ($p<0.05$) in prior in- dependent binary logistic regression analyses.

3.2. Results

3.2.1. Study sample

424 individuals were included in study two analysis, following exclusion of 82 participants who self-reported omitting meat from their diets (e.g. vegan, vegetarian, pescatarian) and 3 participants who failed the attention check. As participants viewed eight menus each, they together contributed 3388 observations to the analysis.

Participant demographic and dietary characteristics are summarized in Table 2. The sample contained slightly more males (53.1\%) than fe- males, with ages ranging from 18 to 82 years. The sample average age was just under 40 years. On average, participants were slightly over- weight (mean BMI: 26) and reported an average hunger score just below the middle of the scale (4.77) at the time of testing.

The sample ate out relatively infrequently, with the majority (31.8\%) eating out monthly or less than monthly, and only 0.2% of the sample eating out of home on a daily basis. In terms of meat consumption, meat was eaten, on average, on just under four days in the last week. Approximately three quarters of participants reported that they had eaten meat at their last meal, although we note data collection occurred during the Covid 19 pandemic period in the UK.

When choosing what to eat, the most common priority was taste, with just over 60% rating this as their leading choice driver. On average, the sample did not strongly agree with the statement that vegetarian dishes are made for specific 'other' types of people (mean score 4.99 out of 7), and agreed somewhat with the statement that vegetarian dishes are good for the environment (mean score 3.29 out of 7). Lastly, the vast majority of the sample (84%) rated the dishes that they were shown across the menus as priced 'about right'.

Table 2: Characteristics of sample from study two ($\mathrm{N}=424$)

Characteristic	Mean(SD) or Count (\%)
Gender (Female)	$199(46.9 \%)$
Age (years)	$39.1(16.21)$
Current Hunger level (1-10)	$4.77(2.33)$
Body Mass Index (kg/m²)	$26.04(4.9)$
Dietary Variables	
Last meal contained meat	$315(74.3 \%)$
Number of days meat eaten in last week	$3.86(2.75)$
Frequency of dining out-of-home	$1(0.2 \%)$
Daily	$17(4.0 \%)$
2-3 times per week	$72(16.7 \%)$
1-2 times per week	$83(19.6 \%)$
fortnightly	$117(27.6 \%)$
Monthly	$135(31.8 \%)$
Less than monthly	
Priority when choosing food	$68(16.0 \%)$
Health	
Cost	$46(10.8 \%)$
Taste	$48(11.3 \%)$
Filling	$259(61.1 \%)$
Usual choice	$13(3.1 \%)$
Menu perceptions	$58(13.7 \%)$
Vegetarian dishes are for other people, not	
me	$27(6.3 \%)$
Pgree or strongly agree	$189(44.6 \%)$
Too expensive	$208(49.1 \%)$
Disagree or strongly disagree	
Vegetarian dishes are	
environment	
Agree or strongly agree	
Neutral	
Disagree or strongly disagree	for
the	

419

About right	$355(83.7 \%)$
Too cheap	$1(0.2 \%)$

Too cheap
1 (0.2\%)

420

3.2.2. Unadjusted analysis

In unadjusted GEE models, compared to the control group, there were no significant differences in the numbers of participants choosing a vegetarian dish in either the V left group ($\mathrm{OR} 0.65,95 \% \mathrm{Cl} 0.36$ to $1.21, \mathrm{p}=0.17$) or the V right group (OR $0.65,95 \% \mathrm{Cl}$ 0.35 to $1.21, \mathrm{p}=0.17$). There was also no significant difference in the numbers choosing a vegetarian dish when comparing the two experimental groups directly (V right vs. V left: OR $0.99,95 \% \mathrm{Cl} 0.52$ to $1.92, \mathrm{p}=0.998$).

3.2.3. Adjusted analysis

Analyses were re-run as fully adjusted GEE models, adding demographic and dietary related variables that prior analyses indicated were significant predicters of dish choice. These included; gender, BMI, health as the highest priority when choosing food, perception that vegetarian dishes are for specific types of 'other' people, last meal contained meat, the number of days in the last week in which meat was eaten and menu type.

In this fully adjusted model, once again, experimental group assignment had no significant impact on dish choice. Compared to the control group, the number of participants choosing a vegetarian option across all menus did not differ significantly in the V left group (OR $0.85,95 \% \mathrm{Cl} 0.58$ to $1.23, \mathrm{p}=0.38$) nor in the V right group (OR $1.08,95 \% \mathrm{Cl} 0.76$ to $1.53, \mathrm{p}=0.67$). Repeating this adjusted analysis comparing the two experimental groups directly showed no significant differences be- tween conditions (OR V right vs. V left OR $1.03,95 \% \mathrm{Cl} 0.51$ to $2.10, \mathrm{p}=0.93$) (Figure 4).

Fig. 4. Dish choice by condition in study 2: There were no significant differences in vegetarian dish choice when V symbols were included on menus. *p $<0.05{ }^{* *} \mathrm{p}<0.001$.

4.Discussion

4.1. Summary of findings

This paper presents findings from two online studies that explored whether easy and scalable menu re-design approaches could shift food choices towards more sustainable vegetarian options. In study one, we examined whether the ratio of meat to vegetarian options on menus influenced participants' choices by comparing a predominantly meatbased menu (25% vegetarian dishes), a predominantly vegetarian menu (75% vegetarian dishes) and a menu offering parity between meat and vegetarian choices. Our results show that, although non-vegetarian consumers prefer meat dishes overall, their preferences are influenced by the choice context. Significantly more participants selected vege- tarian dishes when these made up the majority of the menu (in the 75% vegetarian menu condition), compared to when these dishes were scarce (in the 25% vegetarian menu condition) or offered at the same frequency as meat. Hence, the findings of this study suggest that the availability of vegetarian dishes should largely exceed that of meat dishes to create large-scale shifts towards more sustainable food items.

In study two, we explored whether the inclusion and positioning of vegetarian 'V' symbols on menus influenced food choices. Contrary to prior research, our study found no significant influence of V symbol placement on choice compared to when vegetarian dishes were not labelled. Given that adding V symbols to menus, wherever placed, do not influence choice, these symbols may be a useful way for food service providers to meet legal requirements to communicate allergen infor- mation without inadvertently discouraging those who follow meat- based diets from choosing vegetarian options, as has previously been shown with separate vegetarian sections on menus.

4.2. Results in context

Overall, findings from study one contribute to growing evidence that one of the foundational approaches used to market unhealthy foods - that is, increasing product availability - also works to promote typically less popular, healthier and more sustainable options (Garnett et al., 2019). Our research also supports the broader literature indicating that 'nudge' interventions are an effective way to encourage more sustain- able food choices (Rust et al., 2020), while circumventing the need for consumers to consciously agree with pro-environmental arguments regarding their diets. Instead, increased availability of vegetarian op- tions may influence choice by setting a consumption norm (Raghoebar, Van Kleef, \& De Vet, 2020) or by providing consumers with a wider
range of desirable options to choose from. Further support for the latter explanation can be inferred by comparing the composition of the menus used in the current study to previous research. For example, when we featured eight dishes per menu, $>75 \%$ of the menu needed to be vege- tarian to promote a significant shift in choice, whilst a prior study by Garnett et al. (2019), using four dish menus, found a significant shift in choice when 50% of options were vegetarian. Hence, diners appear to be sensitive to the total
number of meat and vegetarian options available, as well as the relative ratio of meat: vegetarian dishes.

Of further practical benefit, increasing the availability of vegetarian options on menus may offer a viable 'middle ground' approach for food businesses wishing to reduce their GHG footprints, but also continue to satisfy customer preferences. While default 100\% vegetarian menus appear extremely effective at encouraging sustainable dish choices (Hansen, Schilling, \& Malthesen, 2019), previous research shows this approach can lead to consumer backlash (Kurz, 2018) as well as increased food waste (Lombardini \& Lankoski, 2013). Study one dem- onstrates that offering predominantly vegetarian menus can lead to a significant shift towards vegetarian dish choices without requiring full restriction of choice.

The non-significant results we found in study two contradict previ- ous research in the domain of calorie labelling, showing no influence of ' V ' symbols on dish choice, regardless of their position. Speculating as to why placement of calorie indicators influences diners' choices, but vegetarian labelling does not, we tentatively suggest that vegetarian labelling may be less salient. V symbols have been present on menus for many years, used internationally since 1996 (https://www.v-label. eu/en), while calorie labelling is a comparatively newer addition, and likely one that people are more engaged with, and hence may be more inclined to notice, since the related issue of obesity is commonly discussed in the media.

Moreover, it may be the case that calorie/health information is a more relevant consideration than whether a dish is vegetarian. This is supported by study two where 12% of participants stated that they prioritized health when making food choices, whilst only 7% agreed that "vegetarian dishes are not for people like me". In line with this Campbell Arvai et al. (2014) found that the provision of environmental informa- tion alone on menus (which highlighted that consuming less meat hel- ped reduce environmental footprints) was not sufficient to influence preference for meat-free meals. Finally, it may also be that vegetarian labelling provides little additional information that cannot be inferred from reading the dish name. In contrast, calorie information needs to be directly provided to the consumer.

4.3. Strengths and Weaknesses

Here we add to a growing body of literature exploring effective ap- proaches to promoting more sustainable choices. Both the nudges tested here - altering the availability and labelling of vegetarian dishes - are interventions that do not restrict consumer choice nor require conscious buy-in to pro-environmental arguments to work. This is a key benefit from the perspective of food businesses keen to retain customers and ensure compliance to allergen labelling regulations, yet also want to sell more sustainable options.

Both studies presented here required that participants make hypo- thetical food choices via online 'mock' menus, and we recognize that this is somewhat different from the context in which food choices are made in real life restaurants, where diners spend their own money and are often eating in social settings. In addition, the participants in our study were not actively seeking a meal at the time of testing, therefore the effects we cite here may play out differently in the real world where choices may be more driven by innate factors, such as hunger.

However, the external validity of hypothetical food choice experi- ments is supported by previous work showing that choices made during online menu research do predict reallife decision making when similar nudges are also tested in restaurant settings (Bacon, Wise, Attwood, \& 2018). Study one and two thus present further proof-of-concept for online
testing paradigms in the context of food choice, highlighting the rele- vance of online restaurant menu design interventions to real life decision making. We also acknowledge that food choices are influenced by a broad array of factors, indicating that future research would benefit from measuring a wider selection of additional demographic and dietary variables (including SES) to include as covariates in statistical models. Finally, it should be noted that our studies included fewer participants than recommended by the power calculation, this was partly due to the post of hoc exclusion of those who follow vegetarian and vegan diets and also due to under recruitment.

4.4. Implications

Our work adds to a growing body of literature indicating that menu design interventions can support more sustainable eating habits, yet not all approaches have equal value in their ability to shift choices. In particular, we show that the availability of vegetarian options is a strong driver of decision-making, but may only influence choice when the environment is replete with vegetarian options. This finding provides initial practical guidance, where currently there is none, to the food service sector; given that 75% of the menu was required to be vegetarian to successfully promote these options, our findings suggest that the food service may need to vastly increase the proportion of vegetarian meals on offer. More research examining this finding in a field setting is war- ranted, as is work to explore key parameters of vegetarian food avail- ability, including the interaction between availability and the total number of options present, as well as other dish attributes such as meal composition or relative cost. Furthermore, future work using tighter gradations of meat to vegetarian ratios would allow a deeper under- standing of where the choice tipping point occurs between a 50% and 75% vegetarian menu.

5. Conclusion

Here we explore the efficacy of two menu-based nudges intended to promote vegetarian food. Our results indicate that availability of vege- tarian food is a key factor when presenting options to diners in the hope of promoting more sustainable choices. We demonstrate that predomi- nantly vegetarian menus ($>75 \%$) can lead to more vegetarian
choices in meat eaters, while still offering a small range of meat options. Further- more, we show that unlike segregated vegetarian dish sections, vege- tarian symbol labelling (V) is not used by meat eaters as an exclusion decision filter and has no impact on choice. Together these studies provide insights into how the environmental footprint of the food ser- vice sector can be reduced via scalable menu design approaches. Further field research is warranted to validate these findings in food service settings, in addition to more online work to explore other menu engi- neering ideas prior to full role out in the food service sector.

6. References

Abrahamse, W. (2020). How to effectively encourage sustainable food choices: A minireview of available evidence. Frontiers in Psychology. Retrieved from https://www. frontiersin.org/article/10.3389/fpsyg.2020.589674.

Attwood, S., Chesworth, S. J., \& Parkin, B. L. (2020). Menu engineering to encourage sustainable food choices when dining out: An online trial of priced-based decoys. Appetite, 149, 104601. https://doi.org/10.1016/j.appet.2020.104601

Bacon, L., \& Krpan, D. (2018). (Not) Eating for the environment: The impact of restaurant menu design on vegetarian food choice. Appetite, 125, 190-200. https://doi.org/ 10.1016/J.APPET.2018.02.006

Bacon, L., Wise, J., Attwood, S., \& Vennard, D. (2018). The language of sustainable diets: A field study exploring the impact of renaming vegetarian dishes on U.K. Caf \square e menus, (december), 1-20. Retrieved from www.wri.org/publication/renaming-vegetarian-di shes.

Campbell Arvai, V., Arvai, J., \& Kalof, K. (2014). Motivating sustainable food choices: The role of nudges, value orientation, and information provision. Environment and Behavior, 46(4), 453-475. https://doi.org/10.1177/0013916512469099

Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., et al. (2020). Global food system emissions could preclude achieving the 1.5° and $2^{\circ} \mathrm{C}$ climate change targets. Science, 370(6517), 705 LP-708. https://doi.org/10.1126/ science.aba7357

Crippa, M., Solazzo, E., Guizzardi, D., Monforti-Ferrario, F., Tubiello, F. N., \& Leip, A. J. N. F. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198-209.

Dallas, S. K., Liu, P. J., \& Ubel, P. A. (2019). Don't count calorie labeling out: Calorie counts on the left side of menu items lead to lower calorie food choices. Journal of Consumer Psychology, 29(1), 60-69. https://doi.org/10.1002/jcpy. 1053

Dayan, E., \& Bar-Hillel, M. (2011). Nudge to nobesity II: Menu positions influence food orders. Judgment and Decision making, 6(4), 333-342.

Feldman, C., Su, H., Mahadevan, M., Brusca, J., \& Hartwell, H. (2014). Menu psychology to encourage healthy menu selections at a New Jersey University. Journal of Culinary Science \& Technology, 12(1), 1-21.

Friis, R., Skov, L. R., Olsen, A., Appleton, K. M., Saulais, L., Dinnella, C., et al. (2017). Comparison of three nudge interventions (priming, default option, and perceived variety) to promote vegetable consumption in a self-service buffet setting. PLoS One, 12(5), 116. https://doi.org/10.1371/journal.pone. 0176028

Garnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A., \& Marteau, T. M. (2019). Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proceedings of the National Academy of Sciences, 116(42), 20923. https://doi.org/ 10.1073/pnas. 1907207116 . LP-20929.

Hansen, P. G., Schilling, M., \& Malthesen, M. S. (2021). Nudging healthy and sustainable food choices: three randomized controlled field experiments using a vegetarian lunchdefault as a normative signal. Journal of Public Health, 43(2), 392-397.

Horgan, G. W., Scalco, A., Craig, T., Whybrow, S., \& Macdiarmid, J. I. (2019). Social, temporal and situational influences on meat consumption in the UK population. Appetite, 138, 1-9. https://doi.org/10.1016/j.appet.2019.03.007

Kim, J., Hwang, E., Park, J., Lee, J. C., \& Park, J. (2018). Position effects of menu item displays in consumer choices: Comparisons of horizontal versus vertical displays. Cornell Hospitality Quarterly, 60(2), 116-124. https://doi.org/10.1177/ 1938965518778234

Krpan, D., \& Houtsma, N. (2020). To veg or not to veg? The impact of framing on vegetarian food choice. Journal of Environmental Psychology, 67, 101391. https://doi. org/10.1016/j.jenvp.2020.101391

Kurz, V. (2018). Nudging to reduce meat consumption: Immediate and persistent effects of an intervention at a university restaurant. Journal of Environmental Economics and Management, 90, 317-341. https://doi.org/10.1016/j.jeem.2018.06.005

Lombardini, C., \& Lankoski, L. (2013). Forced choice restriction in promoting sustainable food consumption: Intended and unintended effects of the mandatory vegetarian day in helsinki schools. Journal of Consumer Policy, 36(2), 159-178. Retrieved from http s://econpapers.repec.org/RePEc:kap:jcopol:v:36:y, 2013:i:2:p:159-178.

Malik, V. S., Willet, W. C., \& Hu, F. B. (2020). Nearly a decade on - trends, risk factors and policy implications in global obesity. Nature Reviews Endocrinology, 16(11), 615616. https://doi.org/10.1038/s41574-020-00411-y

Neff, R. A., Edwards, D., Palmer, A., Ramsing, R., Righter, A., \& Wolfson, J. (2018). Reducing meat consumption in the USA: A nationally representative survey of attitudes and behaviours. Public Health Nutrition, 21(10), 1835-1844. https://doi. org/10.1017/S1368980017004190

Piernas, C., Cook, B., Stevens, R., Stewart, C., Hollowell, J., Scarborough, P., et al. (2021). Estimating the effect of moving meat-free products to the meat aisle on sales of meat and meat-free products: A non-randomised controlled intervention study in a large UK supermarket chain. PLoS Medicine, 18(7), Article e1003715.

Poore, J., \& Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science, 360(6392), 987-992.

Raghoebar, S., Van Kleef, E., \& De Vet, E. (2020). Increasing the proportion of plantbased foods available to shift social consumption norms and food choice among nonvegetarians. Sustainability, 12(13), 5371.

Ranganathan, J. W. R. (2016). Sustainable diets: What you need to know in 12 charts. Retrieved from https://www.wri.org/blog/2016/04/sustainable-diets-what-you-n eed-know-12-charts.

Reinders, M. J., van Lieshouth, L., Pot, G. K., Neufinger, N., van den Broek, E., \& BattjesFries. (2020). Portioning meat and vegetables in four different out of home settings: A winwin for guests, chefs and the planet. Appetite, 147(1). https://doi.org/10.1016/ j.appet.2019.104539

Rust, N. A., Ridding, L., Ward, C., Clark, B., Kehoe, L., Dora, M., ... West, N. (2020). How to transition to reduced-meat diets that benefit people and the planet. Science of the Total Environment, 718, 137208.

Saba, A., \& Di Natale, R. (1998). A study on the mediating role of intention in the impact of habit and attitude on meat consumption. Food Quality and Preference, 10(1), 69-77.

Stead, M., Angus, K., Langley, T., Katikireddi, S. V., Hinds, K., Hilton, S., et al. (2019). Mass media to communicate public health messages in six health topic areas: A systematic review and other reviews of the evidence. https://doi.org/10.3310/phr07080

Tobi, R. C., Harris, F., Rana, R., Brown, K. A., Quaife, M., \& Green, R. (2019). Sustainable diet dimensions. Comparing consumer preference for nutrition, environmental and social responsibility food labelling: A systematic review. Sustainability, 11(23), 6575.

UNEP. (2020). Improved climate action on food systems can deliver 20 percent of global emissions reductions needed by 2050. Retrieved from https://www.unenvironment.or g/news-and-stories/press-release/improved-climate-action-food-systems-can-deli ver-20-percent-global.

UNFCCC. (2020). The Paris agreement. Retrieved from https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement.

Vandenbroele, J., Vermeir, I., Geuens, M., Slabbinck, H., \& Van Kerckhove, A. (2020). Nudging to get our food choices on a sustainable track. Proceedings of the Nutrition Society, 79(1), 133-146. https://doi.org/10.1017/S0029665119000971

Vennard, D., Park, T., \& Attwood, S. (2018). Encouraging sustainable food consumption by using more-appetizing language (December). Retrieved from www.wri.org/publication /encouraging.

Vlaeminck, P., Jiang, T., \& Vranken, L. (2014). Food labeling and eco-friendly consumption: Experimental evidence from a Belgian supermarket. Ecological Economics, 108, 180-190. https://doi.org/10.1016/j.ecolecon.2014.10.019

Walls, H. L., Peeters, A., Proietto, J., \& McNeil, J. J. (2011). Public health campaigns and obesity - a critique. BMC Public Health, 11(1), 136. https://doi.org/10.1186/1471- 2458-11-136

Wansink, B., \& Love, K. (2014). Slim by design: Menu strategies for promoting highmargin, healthy foods. International Journal of Hospitality Management, 42, 137-143.

Wansink, B., Painter, J., \& Ittersum, K. V. (2001). Descriptive menu labels' effect on sales. Cornell Hotel and Restaurant Administration Quarterly, 42(6), 68-72.

Willett, W., Rockstro $\square \mathrm{m}$, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., et al. (2019). Food in the anthropocene: The EAT-lancet commission on healthy diets from sustainable food systems. Lancet (London, England), 393(10170), 447-492. https:// doi.org/10.1016/S0140-6736(18)31788-4

