

WestminsterResearch

http://www.westminster.ac.uk/westminsterresearch

Potential use of electronic noses, electronic tongues and biosensors, as multisensor systems for spoilage examination in foods

Ghasemi-Varnamkhasti, M., Apetrei, C., Lozano, J. and Anyogu, A.

NOTICE: this is the authors' version of a work that was accepted for publication in Trends in Food Science and Technology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Trends in Food Science and Technology, DOI: 10.1016/j.tifs.2018.07.018, 2018.

The final definitive version in Trends in Food Science and Technology is available online at:

https://dx.doi.org/10.1016/j.tifs.2018.07.018

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or c	copyright appearing v	without permissior	n e-mail <u>rep</u> ository	<u>@westminster</u> .ac.uk
		·		

Accepted Manuscript

Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods

Mahdi Ghasemi-Varnamkhasti, Constantin Apetrei, Jesus Lozano, Amarachukwu Anyogu

PII: S0924-2244(17)30557-5

DOI: 10.1016/j.tifs.2018.07.018

Reference: TIFS 2279

To appear in: Trends in Food Science & Technology

Received Date: 29 August 2017
Revised Date: 2 March 2018
Accepted Date: 11 July 2018

Please cite this article as: Ghasemi-Varnamkhasti, M., Apetrei, C., Lozano, J., Anyogu, A., Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods, *Trends in Food Science & Technology* (2018), doi: 10.1016/j.tifs.2018.07.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT Potential use of electronic noses, electronic tongues and biosensors as 1 multisensor systems for spoilage examination in foods 2 Jesus Lozano ³, Ghasemi-Varnamkhasti *1, Constantin Apetrei 2, Mahdi 3 Amarachukwu Anyogu ⁴ 4 5 1, Department of Mechanical Engineering of Biosystems, Shahrekord University, Shahrekord, 6 7 Iran 2, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, 8 9 "Dunarea de Jos" University of Galati, Romania. 10 3, Department of Electrical Engineering, Electronics and Automation, Industrial Engineering 11 School, University of Extremadura, Badajoz, Spain 12 4, Department of Life Sciences, Faculty of Science and Technology, University of 13 Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom 14 *Corresponding author: ghasemymahdi@gmail.com, Tel/fax: +98-3832324428 15 16 17

18

19

20

21

22 Abstract

Development and use of reliable and precise detecting systems in the food supply
chain must be taken into account to ensure the maximum level of food safety and
quality for consumers. Spoilage is a challenging concern in food safety considerations
as it is a threat to public health and is seriously considered in food hygiene issues
accordingly. Although some procedures and detection methods are already available
for the determination of spoilage in food products, these traditional methods have
some limitations and drawbacks as they are time-consuming, labour intensive and
relatively expensive. Therefore, there is an urgent need for the development of rapid,
reliable, precise and non-expensive systems to be used in the food supply and
production chain as monitoring devices to detect metabolic alterations in foodstuff.
Attention to instrumental detection systems such as electronic noses, electronic
tongues and biosensors coupled with chemometric approaches has greatly increased
because they have been demonstrated as a promising alternative for the purpose of
detecting and monitoring food spoilage. This paper mainly focuses on the recent
developments and the application of such multisensor systems in the food industry.
Furthermore, the most traditionally methods for food spoilage detection are
introduced in this context as well. The challenges and future trends of the potential
use of the systems are also discussed. Based on the published literature, encouraging
reports demonstrate that such systems are indeed the most promising candidates for
the detection and monitoring of spoilage microorganisms in different foodstuff.

43 Keywords: Spoilage; Multisensors; Electronic noses; Biosensors; Electronic tongues

1. Introduction

47	Nowadays food safety is a worldwide public health issue that considers different
48	aspects which could promote hygiene and society health. The presence of foodborne
49	pathogens is a major global threat to public health and is one of the substantial
50	concerns from the production to consumption chain. Many death or illness cases
51	associated with unsaftey food as a plethora of diseases including diarrhoea, dysentery
52	due to some food pathogens (e.g, Salmonella spp., Shigella spp., Listeria
53	monocytogenes) being reported around the world. Furthermore, some spoilage
54	microorganisms (e.g. Botrytis spp., Pseudomonas spp., Acinetobacter spp.) can
55	significantly cause economic losses to the food manufactures by providing suitable
56	conditions for spoiling remaining food materials (Pinu, 2016).
57	Microbiological quality and safety of foodstuff should be monitored and checked to
37	Microbiological quanty and safety of foodstaff should be monitored and enecked to
58	ensure the consumption security of foods to human beings. Therefore, the originating
59	factors and detection of spoilage in any microbiological stage across the entire food
60	supply chain is of particular importance. The identification of microbial species in
61	foodstuff are still routinely carried out by conventional methods such as biochemical
62	and culturing approaches which have the disadvantages of being labour-intensive and
63	time-consuming. Additionally, some analytical techniques enabling identification of
64	spoilage indicators have been reported in the literature. They include purge and trap
65	(PT), Proton transfer reaction mass Spectrometry (PRT-MS), Secondary Electrospray
66	Ionization Mass Spectrometry (SESI-MS), Solid Phase Microextraction (SPME),
67	Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), Gas Chromatography Mass
68	Spectrometry (GC-MS), Gas Chromatography Time of Flight Mass Spectrometry
69	(GC-TOFMS). Apart from the fact that most of these methods require specific
70	analytical skills and the cost of the sample preparation is relatively expensive, they are

71	also not appropriate for continuous monitoring in food industry (Ghasemi-
72	Varnamkhasti et al., 2012). Moreover some techniques mentioned above, for instance
73	PTR-MS, are not readily available to be used in the food industry. Hence, there is a
74	necessity for the development and use of innovative instrumental techniques as fast,
75	reliable, non-expensive devices for the purpose of food spoilage characterization.
76	Spoilage can occurs in either stages of slaughtering or harvesting, cleaning, blanching,
77	processing, packaging and storage, handling and distribution (Wang, Li, Yang, Ruan,
78	& Sun, 2016). It is worth mentioning the nature of spoilage and the constituents
79	produced during this phenomenon are enormously complicated because the food
80	matrix including fat, carbohydrate, and protein can support microbial growth and the
81	exponential acceleration of spoilage. Awareness of such issues is necessary while
82	developing and using instrumental systems. Since the changes are created either in
83	aroma profile or food body, therefore more efficient monitoring of both mediums
84	could result in better judgment of spoilage (Kiani, Minaei, & Ghasemi-Varnamkhasti,
85	2016).
86	In recent decades, some diagnostic tools such as electronic noses, electronic tongues
87	and biosensors have attracted much interest in food spoilage detection and could be
88	considered as potential alternatives for detection of food spoilage. The development
89	of such multisensor systems is currently an on-going activity. In recent years
90	computerized techniques called chemometric tools have been coupled with such
91	instruments and the capability promotion has been reported in the literature
92	accordingly (Ghasemi-Varnamkhasti & Aghbashlo, 2014). However, the industrial
93	use of such instruments in detecting food spoilage is still in its early stages. In
94	particular for the case of biosensors and electronic tongue, some technical problems
95	still need to be solved before they can be used in the food industry.

In this paper, different aspects of food spoilage along with conventional detection methods are reviewed. In addition, the basic principles of multisensor tools which are the candidates to be used in food detection are discussed and their applications for spoilage identification are also reviewed. New ideas for detecting instruments to monitor the food production lines are substantial needs in the food industry (Peris & Escuder-Gilabert, 2013) and as the paper presents, the use of such detection systems is the future of food spoilage evaluation domain and consequently promising future could be imagined for industrial and commercial usage of such systems in food supply chain, from production to consumption.

2. The nature of food spoilage and factors involved in the process

Food spoilage remains a global economic problem that is not yet under control. It is estimated that annually about 1.3 billion tonnes of food, amounting to 30% of global food production intended for human consumption is lost or wasted. This loss occurs at all levels of the food supply chain 'from farm to fork' with spoilage an important contributing factor (FAO, 2011).

Food spoilage describes a variety of cumulative undesirable changes in a food product that renders it unacceptable to consumers (Huis in't Veld., 1996). Food spoilage is a complex process and loss of quality is associated with two main events; changes in the physical and chemical characteristics of the food product and the microbial activity of a wide range of microorganisms (Dalgaard et al., 2006; Ercolini et al., 2006). It should be noted that the distinction between both processes is not always clear. For instance, undesirable enzymes in milk are responsible for producing the rancidity and bitterness associated with spoilage. These enzymes can either be

119	indigenous or of microbial origin (The et al., 2004) but together catalyse the
120	proteolytic and lipolytic reactions that lead to undesirable changes in the product.
121	Physicochemical spoilage processes are usually observed as changes in the flavour
122	and colour of a food product and are also often interlinked. Physical treatments such
123	as excessive heat, high hydrostatic pressure and ultrasound technologies can initiate
124	chemical changes in food. Likewise, chemical reactions such as lipolysis and
125	lipid/enzyme oxidation can cause colour change and increased viscosity, gelation or
126	sedimentation (Ghanbari et al., 2013; Zhou et al., 2010).
127	Biochemical and microbial changes after harvest have a major impact on the final
128	quality and shelf life of food products. Apart from physical and chemical damage,
129	other changes to the sensory quality of a food product such as slime production, off-
130	flavours, off-odours and blown pack spoilage of vacuum-packaged foods can be
131	attributed to the metabolic activities of microorganisms (Brightwell et al., 2007;
132	Parlapani et al., 2015; Wang et al., 2017; Yang and Bedoni, 2013).
133	A vast range of bacterial and fungal species play an important role in food spoilage
134	therefore the microbial aspects of spoilage have been the subject of intensive research
135	for decades. Initial studies used conventional microbiology methods for identifying
136	microbial populations involved in food spoilage (Dainty and Mackay, 1992; Dalgaard,
137	1995). However, the evolution of more powerful molecular tools, particularly those
138	based on 16S rRNA bacterial species classification and culture independent
139	techniques allow for a more accurate assessment of the overall microbial food
140	ecosystem and in some cases a reconsideration of the diversity of food spoilage flora
141	(Ercolini et al., 2006; Jaaskelainen et al., 2016; Jaffres et al., 2009; Sade et al., 2017).
142	An important point to note is that not all microorganisms present or growing in food
143	product cause spoilage. Microbial species that directly contribute to food spoilage

144	have been described using terms such as 'specific spoilage organisms (SSO) or
145	'metabiotic spoilage associations', the latter term was introduced to recognize the
146	importance of microbial interactions in food spoilage (Jorgensen et al., 2000; Gram et
147	al., 2002).
148	Many studies have reported on the major microbial species associated with spoilage
149	for a wide range of food types (for reviews see Andre et al., 2017; Casaburi et al.,
150	2015; Hungaro et al., 2016; Quigely et al., 2013) . It is generally acknowledged that
151	every food product has a distinct microbial flora associated with it during each stage
152	of processing and storage. The composition of this microbial community depends on
153	the microorganisms present on the raw product as well as the conditions under which
154	the food is processed, preserved or stored (Gram et al., 2002; Parpalani et al., 2014).
155	Many interrelated factors influence the shelf life and quality indicators of a food
156	product. Intrinsic, processing and extrinsic factors individually or in combination
157	determine the selection of SSOs that will dominate and cause deterioration of a
158	specific food product (Mossel et al., 1995; Nychas et al., 2008). Intrinsic factors
159	describe the inherent physical, chemical and structural properties of the food product
160	such as water activity (aw), pH, nutrient availability and the presence of antimicrobial
161	compounds for e.g. bacteriocins. Common characteristics of highly perishable foods
162	such as milk, poultry, fish and meat is their high protein and moisture content, $a_{\rm w} >$
163	0.998 and neutral to acidic pH. These conditions provide a suitable growth
164	environment for a diverse range of bacterial and fungal species.
165	Physical or chemical preservation methods are applied during processing to inhibit the
166	survival and growth of microorganisms. Baked products are usually poorly
167	susceptible to microbial spoilage as the heat treatment during the baking process

168	eliminates most of the raw microbial flora. Post-processing contamination thus
169	becomes an important contributory factor to spoilage.
170	The conditions under which food is stored markedly influences the composition of the
L71	microbial flora that will contribute to the spoilage of the food product (Doulgeracki et
L72	al., 2010). Extrinsic factors relate to the environment the food is exposed to during
173	processing and storage. Temperature and the gaseous phase surrounding a food are
174	the most important factors that affect microbial growth (Ercolini et al., 2008; Casaburi
175	et al., 2015). Modifications to these conditions e.g. refrigeration, modified atmosphere
176	or vacuum packaging can be used to delay spoilage by slowing down microbial
177	metabolic activity.
178	As previously mentioned, SSOs typically represent a small percentage of microbial
179	species associated with a food product. This is because antagonistic and synergistic
180	interactions between the factors described above, referred to as implicit parameters,
181	will select for specific specie(s) adapted to occupy these ecological niches depending
182	on their physiology and nutrient assimilation ability (Mossel et al., 1995). Table 1
183	summarises the influence of these factors on the microbial species associated with
184	major food products.
185	For example, lactic acid bacteria (LAB) such as Carnobacterium spp. have been
186	shown to dominate the spoilage microbiota of different meat and fish products stored
187	at low temperature under modified atmospheres (Paludan-Muller et al., 1998; Barakat
188	et al., 2000; Laursen et al., 2005). However, in similar products stored aerobically
189	within the same temperature range, psychrotolerant aerobes like <i>Pseudomonas</i> spp.
190	often dominate (Del Rio et al., 2007; Nychas et al., 2008; Paparlani and Boziaris,
191	2016).

- Table 1. Reports on spoilage microorganisms in selected food products as influenced by
- intrinsic and extrinsic factors

194

3. Traditional methods and recent developments

195	Food spoilage is of great economic significance. The ability to predict shelf-life
196	during the development of new products and to determine remaining shelf life during
197	storage of food products is important for all stakeholders in the food value chain. This
198	has necessitated the development of fast, accurate and reproducible methods for
199	monitoring food spoilage (Blixt and Borsh, 1999). Traditional methods used for
200	quality control typically rely on microbiological, chemical and sensory analysis
201	(Haugen et al., 2006; Gobbi et al., 2010; Spadafora et al., 2016).
202	Early studies focused on determining the microbiological status of food products
203	relied mainly on total viable counts (TVC) and phenotyping microbial isolates using
204	biochemical tests (Dainty and Mackey, 1992; Haugen et al., 2006). These methods are
205	time consuming and sometimes provide limited information as the extent of spoilage
206	does not always correspond to the number of microorganisms present in the food
207	(Blixt and Borsh, 1999; Ramirez-Guizar et al., 2017). Furthermore, they often
208	underestimate the true microbial community. More recently, molecular approaches
209	based on rRNA gene sequences or metagenomics are increasingly used to identify
210	microbial communities involved in spoilage (Jaaskelainen et al., 2016; Jaffres et al.,
211	2009; Sade et al., 2017).
212	Chemical methods can be used as an indirect means to detect and quantify microbial
213	contamination of food based on the analysis of certain chemical markers. The quantity
214	of cell wall components such as chitin and ergosterol are used to assess spoilage of oil
215	seeds during storage (Gancarz et al., 2017). The colour change associated with
216	spoilage of chicken meat can be measured using colorimetry and spectrophotometry

217	(Mancini et al., 2005). The amounts of total volatile basic nitrogen (TVBN) and
218	trimethylamine can be indicative of fish spoilage (Jaffres et al., 2011) but as these
219	markers only increase in fish during the late stages of storage, they cannot be used as
220	an indication of freshness (Oehlenschangler, 2014). Organic acid profile and pH are
221	also routinely measured. A drawback of some of these methods is the requirement for
222	laborious sampling and extraction procedures. Despite technological advances,
223	sensory analysis using trained panellists remains an important aspect of investigating
224	the direct quantification of spoilage (Parpalani et al., 2014; Lytou et al., 2017);
225	however this is not always practical for routine analysis as it is time consuming and
226	requires skilled personnel.
227	Nowadays, the detection of characteristic volatile compounds (VOC) of microbial
228	origin has become a viable option to investigate the presence and growth of spoilage
229	organisms in food and has been used in clinical settings (Tait et al., 2014). Wang et
230	al., (2016) recently reviewed the range of methods used for the sampling, detection
231	and analysis of these microbial volatile organic compounds in foods.
232	Solid phase microextraction (SPME) coupled with gas chromatography/mass
233	spectroscopy (GC/MS) is one of the most common methods for studying volatile
234	organic compounds. The use SPME-GCMS to evaluate the degree of spoilage in
235	several food products including yoghurt (Ndagijimana et al., 2008), shrimp (Jaffres et
236	al., 2011), ham (Martin et al., 2010) has been reported. However, VOC profiles are
237	influenced by sample preparation, extraction and chromatographic procedures which
238	may create inconsistencies (Ramirez-Guizar, 2017).
239	The development of more rapid and efficient identification methods continues to be
240	the focus of intensive research. While traditional methods are for the most part cost
241	effective, they do not always provide accurate, sensitive and reliable information.

Instrumentation overcomes this hurdle but widespread routine use for quality control during processing and storage is limited by cost of equipment and technical skills required by personnel (Concina et al., 2009; Wang et al., 2016). Furthermore, they mainly focus on compounds produced when food is spoiled, limiting their use for at-site quality monitoring. In recent decades, there have been developments towards the use of gas sensors in devices such as the electronic nose for odour detection and electronic tongue (Gil-Sanchez et al., 2011) and biosensors. Despite all advancements in this research area, the complexity of the microbiological and biochemical processes involved in spoilage remains a challenge to developing a single quality monitoring technique for individual food products (Remenant et al., 2015).

4. Production of chemical compounds (gas and substrate) in spoiled foods

As described previously, various sensory defects such as off-odours, off-flavours and discolouration in spoiled food can be attributed to the presence and metabolic activity of spoilage microorganisms. During exponential growth, spoilage microorganisms preferentially utilize the carbohydrates, sugars, proteins and fats in food to provide their metabolic needs. For example, during storage at low temperatures, bacteria present in meat use glucose as a carbon and energy source. When glucose is depleted, other substrates such as lactate, pyruvate, amino acids and nucleic acids may be metabolized (Casaburi et al., 2015). Primary metabolites such as polysaccharides, amino acids, lipids and vitamins act as precursors for the production of a range of compounds. These chemical compounds serve as indicators of spoilage and comprise

265	of organic acids, biogenic amines and a range of VOCs (alcohols, aldehydes, ketones,
266	esters, volatile fatty acids and sulphur compounds) (Doyle, 2007; Wang et al., 2016).
267	The composition and concentration of VOCs produced in food is for the most part
268	determined by the combined effect of both intrinsic and extrinsic factors. For
269	example, some amino acids can be decarboxylated by microbial enzymes to produce
270	biogenic amines such as histamine, tyramine, putrescine and cadaverine (Naila et al.,
271	2010). Biogenic amine accumulation in fermented meat products has been reported to
272	be influenced by fermenting strains, pH, sausage diameter (intrinsic) as well as
273	storage temperature and relative humidity (extrinsic). These conditions favour
274	proteolytic and decarboxylase reactions required for biogenic amine formation
275	(Suzzia and Gardini, 2003; Lattore-Moratalla et al., 2012).
276	A list of some compounds associated with the spoilage of selected food products is
277	reported in Table 2. Several authors have reported the detection and measurement of
278	these molecules in spoiled food and there have been attempts to identify VOCs that
279	are likely specific to both SSO and substrate (Concina et al., 2009; Spadafora et al.,
280	2016). This has paved the way for more focused studies to determine the so called
281	chemical spoilage index (CSI), a profile of microbial VOCs (MVOCs) for a particular
282	food product (Parpalani et al., 2014). The concentration of these CSI metabolites
283	should increase in tandem with the growth of the SSOs as well as loss of sensory
284	quality and therefore can be used to estimate shelf life (Jay, 1986; Miks-Krajnik et al.,
285	2016).
286	Table 2. Some spoilage substrates and metabolites typically found in spoiled food
287	Correlating sensory impressions of spoilage to the metabolic activity of SSOs is not
288	always clear. This reflects both the complex nature of food spoilage and the limited
289	information available regarding the metabolism of the microbial species involved.

290 Some VOCs can be produced from reactions catalaysed by both SSOs and food 291 matrix enzymes, others from complex metabolic reactions involving different microbial species (Remenant et al., 2015). Species of LAB, Enterobacteriaceae and 292 293 Clostridia have been implicated in 'blown pack' spoilage (BPS) of refrigerated, 294 vacuum packed meat products (Brightwell et al., 2007; Hernandez-Macedo et al., 295 2012). The 'blown pack' effect has been attributed to gas production but it remains 296 unclear which species is directly implicated although some authors have attributed 297 BPS to be largely due to the metabolic activities of Clostridium estertheticum (Cavill 298 et al., 2016; Rajagopal et al., 2016). In addition, MVOCs identified from culture 299 media experiments as potential CSI candidates may not be detected in food (Yu et al., 300 2000).

5. Multisensor systems

301

302

303

304

305

306

307

308

309

310

311

- 5. 1. Electronic nose and its performance
- The human nose is much more complicated than other human senses like the ear and the eye. It is still the primary 'instrument' to assess the smell of various products and it is is currently used to identify a diverse range of food spoilage. Sensory evaluation using the human sense of smell is subjective; careful design and rigorous training of assessors allows it to become a more objective, but still expensive option. Instrumental methods, such as gas chromatography/ mass spectrometry (GC/MS), are also expensive and require trained personnel. The concept of the electronic nose has attracted attention in many branches of industry for its potential in routine odour analysis.

The electronic nose is an electronic system that tries to mimick the structure of the human nose, but trying to reduce its limitations. An accepted definition was given by

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Gardner in 1994: "an electronic nose is an instrument which comprises an array of electronic chemical sensors with partial specificity and an appropriate pattern recognition system, capable of recognising simple or complex odours" (Gardner & Bartlett, 1994). The similarity of electronic nose with the biological sense of smell can be observed in the smelling process: the first step in both is the interaction between volatile compounds (usually a complex mixture) with the appropriate receptors: olfactory receptors in the biological nose and a sensor array in the case of the electronic nose. The next step is the storage of the signal generated by the receptors in the brain or in a pattern recognition database (learning stage) and later the identification of one of the odour stored (classification stage). An electronic nose uses currently a number of individual sensors (typically 5-100) whose selectivities towards different molecules overlap. The response from a chemical sensor is usually measured as the change of some physical parameter, e.g. conductivity or current. There are some significant drawbacks for these devices, like the lack of selectivity and the sensors drift, that are one of the main research topics in this field. On the other hand, they have the advantage of high portability for making in situ and on-line measurements with lower costs and good reliability.

An electronic nose generally consists of an aroma extraction system, a sensor array, a control and measurement system, and a pattern recognition method. A simple flow chart of the typical structure of an electronic nose is shown in Fig. 1 (Lozano, 2006).

Fig. 1. Block diagram of an electronic nose system.

The aroma extraction system or sampling method carries the volatile compounds from the samples to the sensor chamber and it significantly contributes to the capability and reliability in an odour sensing system. Various techniques of the sample flow, static

338	and preconcentrator systems are available for using with an electronic nose and the
339	most appropriate aroma extraction system should be selected for the project taking
340	into account the type of samples, the application and the portability of the system.
341	There is a basic classification of sampling methods if concentrator is used or not. A
342	concentrator is often used to enhance the sensitivity and can be used to autonomously
343	enhance the selectivity of a sensor array. On the other hand, there are two main types
344	of aroma extracting systems, the sample flow system and the static system. In the first
345	one, the sensors are placed in the vapour flow, which allows the rapid exchange of
346	vapour and hence many samples can be measured within a short time. In the static
347	system, there is no vapour flow around the sensor, and measurements are usually
348	made on the steady-state responses of the sensors exposed to vapour at a constant
349	concentration. The most common techniques used for solid or liquid samples in food
350	applications are static headspace (HS), purge and trap (P&T) and solid phase micro
351	extraction (SPME) (Lozano, Santos, Gutiérrez, & Horrillo, 2007).
352	The most important part of an electronic nose is the detection system or chemical
353	sensors, that are capable of converting a chemical change in the environment into an
354	electric signal in the gas sensors and respond to the concentration of specific
355	compounds from gases or liquids (Nagle, 2006). Chemical sensors can be based on
356	electrical, thermal, mass or optical principles. Several examples of chemical sensors
357	used in electronic noses are: conducting polymers (Guadarrama, Fernández, Íñiguez,
358	Souto, & De Saja, 2000), semiconductor devices (Jose Pedro Santos & Lozano, 2015)
359	quartz resonators (Sharma et al., 2015), and surface acoustic sensor (SAW) (Jose
360	Pedro Santos et al., 2005).

Conducting polymers (based on polypyrrole, polyaniline, thiophenes, indoles, or
furans) have been used as the active layers of gas sensors since early 1980s. The
sensors made of conducting polymers have many improved characteristics: high
sensitivities and short response time at room temperature. The electronic interface is
straightforward, and they are suitable for portable instruments. Conducting polymers
are easy to be synthesized through chemical or electrochemical processes, and their
molecular chain structure can be modified conveniently by copolymerization or
structural derivations. Most of the conducting polymers are doped/undoped by redox
reactions; therefore, their doping level can be altered by transferring electrons from or
to the analytes. Electron transferring can cause the changes in resistance and work
function of the sensing material. The work function of a conducting polymer is
defined as the minimal energy needed to remove an electron from bulk to vacuum
energy level. This process occurred when the sensing films are exposed to redox-
active gases. They can remove electrons from the aromatic rings of conducting
polymers. When this occurs at a p-type conducting polymer, the doping level as well
as the electric conductance of the conducting polymer is enhanced. An opposite
process will occur when detecting an electro-donating gas.
Semiconductor chemical sensors detect gases and aromas in samples by a chemical
reaction that takes place when the gas comes in direct contact with the sensor surface.
This chemical reaction and the presence of the gases can be detected since the
electrical resistance in the sensor is modified when it is exposed to the monitored gas.
This change in resistance is measured and can be used to identify the presence of a
gas, to predict the the gas concentration or other tasks. Tin dioxide in different
structures (thin or thick film, nanostructures, nanowires, etc.) is the most common
material used in semiconductor sensors, that are commonly used to detect hydrogen,

386	oxygen, alcohol vapor, and harmful gases such as carbon monoxide in different
387	applications related with environment, health, food quality, etc. Operating the device
388	at different temperatures and varying the type and thickness of the material, the
389	sensitivity and selectivity can be optimized.
390	The piezoelectric family of sensors has two main members: quartz crystal
391	microbalance (QCM) and surface acoustic-wave (SAW) devices. They can measure
392	temperature, mass changes, pressure, force, and acceleration, but in the electronic
393	nose, they are configured as mass-change-sensing devices.
394	The QCM type consists of a resonating disk a few millimeters in diameter, with metal
395	electrodes on each side connected to a lead wire. The device resonates at a
396	characteristic (10 MHz to 30 MHz) frequency when excited with an oscillating signal.
397	During manufacture, a polymer coating is applied to the disk to serve as the active
398	sensing material. In operation, a gas sample is adsorbed at the surface of the polymer,
399	increasing the mass of the disk-polymer device and thereby reducing the resonance
400	frequency. The reduction is inversely proportional to odorant mass adsorbed by the
401	polymer.
402	The SAW sensor differs from QCM in several important ways. First, the wave travels
403	over the surface of the device, not throughout its volume. SAW sensors operate at
404	much higher frequencies, and so can generate a larger change in frequency. A typical
405	SAW device operates in the hundreds of megahertz, while 10 MHz is more typical for
406	a QCM, but SAW devices can measure changes in mass to the same order of
407	magnitude as QCMs. Even though the frequency change is larger, increased surface-
408	to-volume ratios mean the signal-to-noise ratio is usually poorer. Hence, SAW
409	devices can be less sensitive than OCMs in some instances

410	With QCMs, many polymer coatings are available, and as with the other sensor types,
411	differential measurements can eliminate common-mode effects. For example, two
412	adjacent SAW devices on the same substrate (one with an active membrane and
413	another without) can be operated as a differential pair to remove temperature
414	variations and power line noise. A disadvantage of both QCM and SAW devices is
415	more complex electronics than are needed by the conductivity sensors. Another is
416	their need for frequency detectors, whose resonant frequencies can drift as the active
417	membrane ages.
418	The control and measurement system includes all electronic circuits needed for the
419	measurements of signals generated by the sensors such as interface circuits, signal
420	conditioning and A/D converters. This sensor electronics usually amplify and
421	condition the sensor signal. The signal must be converted into a digital format to be
422	processed by a computer, and this is carried out by an analogue to digital converter
423	(e.g. a 12 bit converter) followed by a multiplexer to produce a digital signal which
424	either interfaces to a serial port on the microprocessor (e.g. RS-232, USB) or a digital
425	bus (e.g. GPIB). The microprocessor is programmed to carry out a number of tasks,
426	including the pre-processing of the time-dependent sensor signals to compute the
427	input vectors \mathbf{x}_j and classify them against known vectors stored in memory. Finally,
428	the output of the sensor array and the odour classification can be displayed on a LCD
429	or on a PC monitor.
430	The main goal of an electronic nose is to identify an odorant sample and perhaps to
431	estimate its concentration. The multivariate information obtained by the sensor array
432	can be sent to a display so a human can read that information and do an action or an
433	analysis. Also, that information, that is an electronic fingerprint of the volatile
434	compound measured, can be sent to a computer to perform an automated analysis and

435	emulate the human sense of smell. These automated analysis that comes from
436	methods of statistical pattern recognition, neural arrays and chemometrics (Aguilera,
437	Lozano, Paredes, Alvarez, & Suárez, 2012), is a key part in the development of a gas
438	sensor array capable to detect, identify or quantify different volatile compounds
439	responsible for food spoilage. This process may be subdivided into the following
440	steps: preprocessing and feature extraction, dimensionality reduction, classification or
441	prediction, and decision-making.
442	Preprocessing compensates for sensor drift, compresses the transient response of the
443	sensor array, and reduces sample-to-sample variations. Typical techniques include:
444	manipulation of sensor baselines; normalization of sensor response ranges for all the
445	sensors in an array (the normalization constant may sometimes be used to estimate the
446	odorant concentration); and compression of sensor transients. Feature extraction has
447	two purposes: to reduce the dimensionality of the measurement space, and to extract
448	information relevant for pattern recognition. For example, in an electronic nose with
449	32 sensors, tipically one feature is extracted from each raw response of the sensor and
450	the measurement space has 32 dimensions.
451	A dimensionality reduction stage projects this initial feature vector onto a lower
431	
452	dimensional space in order to avoid problems associated with high-dimensional,
453	sparse datasets. Maybe, some of them probably respond in a similar (but not identical)
454	way. This means that the number of dimensions in the data set can be reduced without
455	any loss of information. It is generally performed with linear transformations such as
456	the classical principal component analysis (PCA) and linear discriminant analysis
457	(LDA). The resulting low-dimensional feature vector is further used to solve a given
458	prediction problem, generally classification, regression or clustering.

Classification is a general process related to categorization, the process in which ideas	
and objects are recognized, differentiated, and understood. In this case, the	
identification of an unknown sample into previously learned classes is usually	
performed by artificial neural networks (ANNs). An artificial neural network is an	
information processing system that has certain performance characteristics in	
common with biological neural networks. It allows the electronic nose to function in	
the way a brain function when it interprets responses from olfactory sensors in the	
human nose. During training, the ANN adapts the synaptic weights to learn the	
patterns of the different odorants. After training, when presented with an unidentified	
odorant, the ANN feeds its pattern through the different layers of neurons and assigns	
the class label that provides the largest response.	
Finally, the classifier produces an estimate of the class for an unknown sample along	
with an estimate of the confidence placed on the class assignment. A final decision-	
making stage may be used if any application-specific knowledge is available, such as	
confidence thresholds or risk associated with different classification errors. Cross	
validation is usually employed and training is stopped at the point of the smallest error	
in the validation set to detect and avoid overtraining.	

5.2. Electronic tongue

The analysis of the substances dissolved in liquid samples with multisensor systems was firstly developed in mid-1980s (Otto & Thomas, 1985). In the beginning of the 1990s, the first taste sensor was built, based on ion-selective electrodes (Hayashi, Yamanaka, Toko, & Yamafuji, 1990; Iiyama, Miyazaki, Hayashi, Toko, Yamafuji, Ikezaki, & Sato, 1992). The sensitive membrane was made of various lipid

483	membranes immobilized onto polyvinyl chloride (Toko, 2000). Later, in 1995, the
484	concept of electronic tongue was introduced. It was based on inorganic chalcogenide
485	glass sensors, being used for both qualitative and quantitative determinations (Legin,
486	Rudnitskaya, Di Natale, Mazzone, & D'Amico, 2000; Vlasov, Legin, Rudnitskaya, Di
487	Natale, & D'Amico, 2005).
488	This concept has been developed, and in the last years the bioelectronic tongue system
489	was introduced (del Valle, Cetó, & Gutierrez-Capitán, 2014; Ghasemi-Varnamkhasti,
490	Rodríguez-Méndez, Mohtasebi, Apetrei, Lozano, Ahmadi, Razavi, de Saja, 2012). It
491	contains an array of biosensors and is able to qualitatively and quantitatively
492	characterize multicomponent liquid samples (Cetó, Voelcker, & Prieto-Simón, 2016;
493	Song, Jin, Ahn, Kim, Lee, Kim, Simons, Hong, & Park, 2014; Rodriguez-Méndez,
494	Medina-Plaza, García-Hernández, de Saja, Fernández-Escudero, Barajas-Tola, &
495	Medrano, 2014).
496	Conceptually speaking, electronic tongues are analytical tools which artificially
497	determine the gustatory perceptions (del Valle, 2012; Smyth & Cozzolino, 2013).
498	These systems consist of an array of sensors coupled with chemometric means of data
499	processing for the characterization of complex liquid samples (Winquist, Olsson, &
500	Eriksson, 2011; Martínez-Bisbal, Loeff, Olivas, Carbó, García-Castillo, López-
501	Carrero, Tormos, Tejadillos, Berlanga, Martínez-Máñez, Alcañiz,& Soto, 2017;
502	Kumar, Ghosh, Tudu & Bandyopadhyay, 2017; Rudnitskaya , Schmidtke, Reis,
503	Domingues, Delgadillo, Debus, Kirsanov, Legin, 2017). Following adequate
504	calibration and training, the electronic tongue is able to determine the qualitative and
505	quantitative chemical composition of more chemical species in complex samples
506	(Lvova, Di Natale & Paolesse, 2017; Gutiérrez, Haddi, Amari, Bouchikhi, Mimendia,
507	Cetó, & del Valle, 2013; Immohr, Hedfeld, Lang, & Pein, 2017).

508 The general scheme which describes the concept of electronic tongue is outlined in 509 Fig. 2. 510 Fig. 2. General scheme of an electronic tongue system 511 Electronic tongue comprises three components: (1) automatic sampler, which may be necessary, but it is featured in the majority of commercial systems; (2) array of 512 513 sensors with different selectivity and sensitivity and (3) chemometric software with proper algorithms for processing the signals from sensors and delivering the results 514 (del Valle, 2012; Ciosek & Wróblewski, 2007; Kalit, Marković, Kalit, Vahčić, & 515 516 Havranek, 2014; Tahara & Toko, 2013). 517 Usually, the initial studies dedicated to the development of electronic tongues with 518 sensors based on various detection systems focused on the qualitative and quantitative 519 analysis of the solutions which represent basic tastes (sweet, sour, salty, bitter and umami), as well as of other gustatory sensations or perceptions (astringency, 520 pungency) (Riul Jr., dos Santos Jr., Wohnrath, Di Tommazo, Carvalho, Fonseca, 521 Oliveira Jr., Taylor, & Mattoso, 2002; Eckert, Pein, Reimann, & Breitkreutz, 2013; 522 523 Tian, Feng, Xiao, Song, Li, Liu, Mao, & Li, 2015; Pioggia, Di Francesco, Marchetti, 524 Ferro, Leardi, Ahluwalia, 2007; Jain, Panchal, Pradhan, Patel, & Pasha, 2010; 525 Rudnitskaya, Polshin, Kirsanov, Lammertyn, Nicolai, Saison, Delvaux, Delvaux, & Legin, 2009; Toko, 1998; Legin, Rudnitskaya, Clapham, Seleznev, Lord, & Vlasov, 526 527 2004; Khan, Khalilian, & Kang, 2016; Arrieta, Rodriguez-Mendez, & de Saja, 2003; 528 Apetrei, Rodríguez-Méndez, Parra, Gutierrez, & de Saja, 2004; Arrieta, Apetrei, 529 Rodríguez-Méndez, & de Saja, 2004). This is absolutely necessary in order to prove 530 that the sensor responds to compounds with various organoleptic properties. The main 531 compounds analyzed, as well as their sensorial properties, are presented in Table 3.

532	Table 3. The main sensorial properties and their relative compounds.
533	For developing the arrays of sensors, more types of sensors have been used:
534	electrochemical (potentiometric, voltammetric, amperometric, impedimetric,
535	conductimetric), optic or enzymatic (biosensors).
536	Most electronic tongue systems reported in the specialized literature are based on
537	potentiometric sensors (Mimendia, Gutiérrez, Leija, Hernández, Favari, Muñoz, & del
538	Valle, 2010; Ciosek & Wróblewski, 2011; Cuartero, Carretero, Garcia, & Ortuño,
539	2015). By using the potentiometric methods, one measures the potential between two
540	electrodes in the absence of an external flow of current. The value of potential
541	measured under these circumstances is used for the quantitative determination of the
542	analytical species of interest in the multicomponent liquid solution (Bard & Faulkner,
543	2001; Zoski, 2007; Wang, 2000).
544	Potentiometric sensors present a number of advantages, such as: their functioning
545	principle is well-known, there is a possibility to obtain selective sensors, low cost,
546	high possibility of industrial production, and the detection is very similar to the
547	principle of molecular recognition, i.e., with the principle of biologic detection of the
548	substances responsible of taste. Their disadvantages are their being temperature
549	dependant and the fact that the adsorption of the solution compounds in the sensitive
550	element modifies the value of the measured potential (Bratov, Abramova, & Ipatov,
551	2010; Bobacka, Ivaska, & Lewenstam, 2008).
552	Potentiometric sensors are most often used in the development of electronic tongues
553	with various applications: fermentation processes monitoring, identification of the
554	botanic origin of honey, evaluation of the impact of micro-oxygenation in the process
555	of wine aging in the presence of oak chips, etc. (Gerstl, Joksch, & Fafilek, 2013; Peris

556	& Escuder-Gilabert, 2013; Dias, Veloso, Sousa, Estevinho, Machado, & Peres, 2015;
557	Schmidtke, Rudnitskaya, Saliba, Blackman, Scollary, Clark, Rutledge, Delgadillo, &
558	Legin, 2010; Mednova, Kirsanov, Rudnitskaya, Kilmartin, & Legin, 2009; Gutiérrez-
559	Capitán, Vila-Planas, Llobera, Jiménez-Jorquera, Capdevila, Domingo, & Puig-Pujol,
560	2014).
561	Another category of sensors which has been widely used for the development of
562	electronic tongues are the voltammetric sensors (Bard & Faulkner, 2001; Zoski, 2007;
563	Wang, 2000). In this case, a potential, either fix or, most often, variable, is introduced
564	into the system, and the electroactive compounds present in the sample are oxidized
565	or reduced, which leads to the generation of a flow of anodic or cathodic current.
566	When the sample to be analyzed is a complex one, containing more chemical species
567	with redox properties, the selectivity of this type of sensors is limited for a specific
568	analyte present in the sample. The greatest disadvantage of this type of sensors is their
569	reduced selectivity, but this aspect can be improved by using nanomaterials or by
570	employing pulse techniques (differential pulse voltammetry and square-wave
571	voltammetry) or by optimization of the experimental conditions (Brett & Fungaro,
572	2000; Gupta, Jain, Radhapyari, Jadon, Agarwal, 2011; Reza Ganjali, Garkani Nejad,
573	Beitollahi, Jahani, Rezapour, & Larijani, 2017; Rodríguez-Méndez, Apetrei, & de
574	Saja, 2008).
575	The complexity of the voltammetric signals is even more complicated in the case of
576	sensors which contain electroactive substances immobilized onto the sensitive
577	element. The interpretation of results is often difficult, as the interactions are
578	extremely complex, electrocatalytic, synergetic or inhibition effects may occur. This
579	is why, in most cases, it is necessary to use analytical methods for multivariate data

580 (Cetó, Apetrei, del Valle, & Rodríguez-Méndez, 2014; Winquist, 2008; Bueno, de 581 Araujo, Salles, Kussuda, & Paixão, 2014; del Valle, 2010). Numerous research groups have developed various multisensory systems based on 582 583 voltammetric sensors (metallic electrodes, electrodes based on nanocomposite materials, chemically-modified electrodes, etc.) for the studies of different industrial 584 products (Campos, Alcañiz, Aguado, Barat, Ferrer, Gil, Marrakchi, Martínez-Mañez, 585 Soto, & Vivancos, 2012; Domínguez, Moreno-Barón, Muñoz, & Gutiérrez, 2014; 586 Campos Sánchez, Bataller Prats, Gandía Romero, Soto Camino, Martínez Mañez, & 587 Gil Sánchez, 2013; Winquist, 2008; Cetó, Capdevila, Puig, & del Valle, 2014; 588 589 Apetrei & Apetrei, 2014). 590 The detection principle of the conductimetric sensors is based on the change in the conductivity of the sensible material as a result of the interaction with various 591 592 chemical species present in the solution to be analysed. There are only a few studies 593 in the literature which tackle the use of conductimetric sensors in the development of electronic tongues (Winquist, Holmin, Krantz-Rückler, Wide, Lündström, 2000; Sha, 594 595 2013). The measurement principle of impedance sensors is based on measuring the 596 597 impedance at a certain frequency value or for a range of frequencies with the help of impedance spectroscopy. This type of sensors, based on various materials, has been 598 largely used in the development of electronic tongues with various applications 599 600 (Cabral, Bergamo, Dantas, Riul Jr, & Giacometti, 2009; Guo, Chen, Yang, & Wang, 2005). 601 602 The detection principle of piezoelectric sensors is based on the piezoelectric 603 phenomenon. The result of the exposure of these sensors to various substances is the

604	modification of their mass due to adsorption or absorption processes, which modify
605	the resonance frequency of the sensor. Therefore, the electric current is modified, i.e.
606	the exit signal provided by the sensor. The advantages of these types of sensors are
607	high sensibility, durability, low costs, and reduced size. The detection principle is
608	based on mass modification (Pearce, Schiffman, Troy Nagle, Gardner, 2006). The
609	advantages of these types of sensors are: high sensibility, durability, low costs, and
610	reduced size. The electronic tongues with piezoelectric sensors arrays have been used
611	for various applications in food analysis (Sehra, Cole, & Gardner, 2004; Kalit,
612	Marković, Kalit, Vahčić, Havranek, 2014).
613	Colorimetric sensors are based on the interaction between electromagnetic radiation
614	and matter, from which various phenomena, such as reflection, fluorescence or
615	absorption, result. This type of sensors contains a source of light or a series of filters
616	for a specific wave length for increasing selectivity, an indicator, and a detector. The
617	properties of the indicator are modified as a result of the interaction with the
618	substance to be analysed, and consequently, a change in absorbance or fluorescence
619	occurs. The changes are quantified by the detector, which converts the optical signal
620	in electrical signal. Colorimetric sensors present the following advantages: simplicity,
621	low cost, and high selectivity. In addition, it is possible for these sensors to detect
622	non-electroactive substances which cannot be detected by electrochemical sensors.
623	The disadvantages of the colorimetric sensors are: low durability and distortion of the
624	exit signal, which greatly limits their applications (Piriya, Joseph, Daniel
625	Lakshmanan, Kinoshita, Muthusamy, 2017; Kangas, Burks, Atwater, Lukowicz,
626	Williams, & Holmes, 2017). In the literature, there are several papers which report on
627	the use of electronic tongues based on colorimetric sensors in food analysis

628	(Gutierrez, Llobera, Vila-Planas, Capdevila, Demming, Buttgenbach, Minguez, &
629	Jiménez-Jorquera, 2010; Chung, Park, Park, Kim, Park, Son, Bae, & Cho, 2015) .
630	Bioelectronic tongue systems are endowed with biosensors arrays which can
631	specifically determine a number of analytes of interest for a certain sample. However,
632	when using certain detection methods, interferences are significant, and there can be
633	obtained signals which may be assimilated to a chemical impression, which can be
634	used for the discrimination and classification of the analyzed samples (Ahn, An,
635	Song, Park, Lee, Kim, Jang, & Park, 2016; Song, Jin, Ahn, Kim, Lee, Kim, Simons,
636	Hong, & Park, 2014). Bioelectronic tongue systems have been successfully used in
637	the qualitative and quantitative analysis of various foods (Zeravik, Hlavacek, Lacina,
638	& Skládal, 2009).
639	The comparison between electronic tongues based on different type of sensors were
640	reported in literature. For instance, a hybrid electronic tongue based on six chemically
641	modified graphite-epoxy voltammetric sensors and 15 potentiometric sensors was
642	applied in the recognition of beer types (Gutiérrez, Haddi, Amari, Bouchikhi,
643	Mimendia, Cetó, & del Valle, 2013). In other study the data obtained with two sets of
644	voltammetric sensors, prepared using different strategies, have been combined in an
645	electronic tongue to evaluate the antioxidant properties of red wines (Cetó, Apetrei,
646	del Valle, & Rodríguez-Méndez, 2014). Furthermore, the purpose of a complex study
647	was to compare the performance characteristics of six different e-tongues applied to
648	the same set of pharmaceutical samples. Two commercially available electronic
649	tongues (from AlphaMOS and Insent) and four laboratory prototypes (one
650	potentiometric system from St. Petersburg University, two potentiometric systems
651	from Warsaw University operating in flow and static modes, one voltammetric system

652	from Barcelona University) were employed (Pein, Kirsanov, Ciosek, del Valle,
653	Yaroshenko, Wesoły, Zabadaj, Gonzalez-Calabuig, Wróblewski, &Legin, 2015).
654	The advantages of electronic tongues compared to the classical analytical methods
655	include: high sensitivity, easy building and use, low costs of equipment and price per
656	analysis, as well as short time necessary for analysis. Through miniaturizing and
657	automating, electronic tongues can be used for on-line, in-line or real-time analyses,
658	another advantage being that it is a non-destructive analytical method (Khan,
659	Khalilian, & Kang, 2016; Cetó, González-Calabuig, del Valle, 2015; Medina-Plaza,
660	García-Hernandez, de Saja, Fernandez-Escudero, Barajas, Medrano, García-Cabezon,
661	Martin-Pedrosa, & Rodriguez-Mendez, 2015).
662	Nevertheless, research in this field is necessary in what concerns aspects such as:
663	sensor-obtaining technologies, data processing, system calibration and validation of
664	results. Researchers in this field grant special attention to these themes, and most of
665	the recent studies are more and more thorough and present clear applications in
666	various fields.
667	
668	5.3. Biosensors
669	Biosensors are analytical devices which integrate a bioreceptor (enzymes, organelles,
670	living cells, tissues, nucleic acids, aptamers, etc.) in a compatible transducing system,
671	and which are capable to specifically determine certain chemical compounds (Rotariu,
672	Lagarde, Jaffrezic-Renault, & Bala, 2016; Scognamiglio, Arduini, Palleschi, & Rea,
673	2014; Di Rosa, Leone, Cheli, & Chiofalo, 2017). The most frequently used
674	transducers are: electrochemical, optical, mass, thermal, but there are other types as

- 675 well (Compagnone, Di Francia, Di Natale, Neri, Seeber, & Tajani, 2017; Ali, Najeeb, 676 Ali, Aslam, & Raza, 2017; Almeida Silva, Cruz Moraes, Campos Janegitz, Fatibello-Filho, 2017; Chauhan, Maekawa, & Kumar, 2017). An electric signal which can be 677 678 measured and recorded is produced as a result of the specific interaction between the 679 analyte and the biocomponent. The analytes or target compounds comprise a large 680 and various number of chemical species, from inorganic compounds to organic 681 compounds with small molecules and even with large molecules such as proteins (Abdulbari & Basheer, 2017; El-Nour, Salam, Soliman, &. Orabi, 2017; Matysik, 682 683 2017; Leca-Bouvier & Blum, 2005). The scheme of analytes detection with 684 biosensors is presented in Fig. 3.
- 685 Fig. 3. Biosensor detection scheme

686

687

688

689

690

691

692

693

- When compared to classical methods of analysis, biosensors present a number of advantages, such as: extremely high selectivity, which allows the detection of the target molecule in real complex samples, without requiring the pre-treatment of the sample, short time of analysis (from a few seconds to a few minutes), relatively low costs, possibility of miniaturizing and turning them into portable devices, which allows fast and precise on-site, in-line, on-line or real time analytical determinations (Scognamiglio, Rea, Arduini, & Palleschi, 2017; Shao, Wang, Wu, Liu, Aksay, & Lina, 2010; Mehrotra, 2016).
- 694 Food quality control, as well as the detection or monitoring of the food spoilage 695 processes, requires methods and tools for the precise analysis of various parameters. 696 Biosensors can accomplish these functions, which is why the special interest in 697 developing new biosensors which can be used in food analysis for example, for 698 determining freshness or spoilage, is fully justified (Dornelles Mello & Tatsuo

Kubota, 2002; Poltronieri, Mezzolla, Primiceri, & Maruccio, 2014; Pividori & 699 700 Alegret, 2010). 701 The main research directions include the analysis of compounds of interest for food 702 quality and that of contaminates, compounds which accidentally appear in food and which should not be there under normal conditions (McGrath, Elliott, & Fodey, 2012; 703 Dragone, Grasso, Muccini, & Toffanin, 2017). Moreover, focus is laid on monitoring 704 705 various chemical or biochemical processes related to fermentation, degradation, 706 spoilage, maturation or freshness of foods with the help of the biosensors (Mutlu, 707 2016; Vasilescu, Nunes, Hayat, Latif, & Marty, 2016; Adley, 2014; Ispas, Crivat, & 708 Andreescu, 2012; Park, Kim, Lee, & Jang, 2015). Other studies lay importance on the 709 characterization of foods in terms of biologic or geographic origins, as well as authenticity, fraud or adulteration of foods (Apetrei & Ghasemi-Varnamkhasti, 2013; 710 711 Bassi, Lee, & Zhu, 1998; Narsaiah, Jha, Bhardwaj, Sharma, & Kumar, 2012; Campuzano, Ruiz-Valdepeñas Montiel, Torrente-Rodríguez, Reviejo, & Pingarrón, 712 713 2016). 714 The classification of the biosensors can be made according to several criteria, the 715 most often being the biochemical recognition mechanism (Thévenot, Toth, Durst, Wilson, 2001; Monošík, Streďanský, Šturdík, 2012; Apetrei & Ghasemi-716 Varnamkhasti, 2013; Gorton, 2005). 717 718 Enzyme-based biosensors are the most frequently used in foods analysis (Kumar & 719 Neelam, 2016; Prodromidis & Karayannis, 2002). Two basic principles are used in 720 practice, one being the direct detection of the analyte (substrate) resulted from an 721 enzymatic process, the other being the inhibition of the enzymatic activity (Upadhyay & Nishant, 2013; Murugaboopathi, Parthasarathy, Chellaram, Prem Anand, & 722

/23	Vinurajkumar, 2013). Enzymes in the class of oxidoreductases (laccase, tyrosinase,
724	peroxidase, dehydrogenases) are used for substrate detection, and the main
725	electroactive compounds detected by these biosensors are o-quinone derivatives,
726	hydrogen peroxide or reduced forms of nicotinamide adenine dinucleotide (Amine,
727	Mohammadi, Bourais, & Palleschi, 2006; Mello & Kubota, 2002; Tembe & D'Souza,
728	2015). The enzyme sources can be purified enzymes commercially available, but also
729	organelles, cells, tissues, microorganisms, etc. (Apetrei & Apetrei, 2016; Rodríguez-
730	Delgado, Alemán-Nava, Rodríguez-Delgado, Dieck-Assad, Martínez-Chapa, Barceló,
731	Parra, 2015; Gul, Sheeraz Ahmad, Saqlan Naqvi, Hussain, Wali, Farooqi, & Ahmed,
732	2017; Liu, Wu, Cai, Hu, Zhou, & Wang, 2014; Hasan, Nurunnabi, Morshed, Paul,
733	Polini, Kuila, Al Hariri, Lee, & Jaffa, 2014; Lim, Ha, Lee, Lee, & Kim, 2015). For the
734	detection of inhibitors of enzymatic activity, the activity of the enzyme is determined
735	in the absence and in the presence of the inhibitor, determining the inhibition degree
736	based on inhibitor concentration. The detection of target compounds does not involve
737	its transformation (Upadhyay & Nishant, 2013; Murugaboopathi, Parthasarathy,
738	Chellaram, Prem Anand, & Vinurajkumar, 2013).
739	The detection principle of affinity biosensors is based on molecular recognition
740	systems, such as the interaction between DNA (Deoxyribonucleic acid) strands,
741	antigen – antibody or hormone – receptor interactions (Patel, 2006; Turner, 2013;
742	Rogers, 2000). Another class of compounds used in the production of this types of
743	biosensors is molecularly imprinted polymers (Song, Xu, Chen, Wei, & Xiong, 2014;
744	Frasco, Truta, Sales, & Moreira, 2017; Wackerlig & Schirhagl, 2016).
745	Nano biosensors are emerging as a promising tools for the applications in the food
746	analysis. They are integrating knowledge of physical sciences, biology, chemistry,
747	biotechnology, molecular engineering, and nanotechnology offering important

748	improvements in selectivity and sensitivity compared to classical chemical and
749	biological methods. Nano biosensors can be used for detection and quantification of
750	microorganisms, contaminants, and food freshness (Pérez-López, & Merkoçi, 2011;
751	Grumezescu, 2016).
752	6. Literature evidence multisensor systems to food spoilage detection
753	6.1. Electronic nose
754	There are several electronic nose systems, including different types of and gas sensors
755	and systems combined with other techniques and using different data processing
756	methods for the detection and characterization of food spoilage. Some successful
757	experiments performed by different authors have been described in the bibliography.
758	As a general rule, there are some chemical compounds that are responsible for defects
759	and off-flavors in food and beverages. These compounds are known by consumers as
760	the first alarm signal linked to spoilage. It is very important to optimize the
761	measurement system to detect these compounds. Table 4 summarizes the sensors and
762	sensory systems applications for detection and characterization of spoilage in the food
763	industry.
764	Table 4. A summarized overview on the application of electronic nose to food
765	spoilage detection
766	There are different prototypes designed by some research groups with different
767	features that are appropriate for different applications. In the bibliography, Laboratory
768	equipment as well as portable instruments are designed for food spoilage detection.
769	The following reference (Jose Pedro Santos & Lozano, (2015) shows a hand-held

wireless portable electronic nose applied to the real-time detection of two common

770

aromatic defects in beer: acetaldehyde and ethyl acetate. An image of the electronic nose is illustrated in Fig. 4. These aromatic defects in beer have been measured at level between the organoleptic threshold and five times this quantity (25 ppm for acetaldehyde and 21 ppm for ethyl acetate). PCA were applied to these responses to see the data distribution among classes. Although there is some confusion between some classes corresponding to different concentrations, non-defect beer samples were separated from the other samples. In a qualitative classification among beer without defects (blank) and beer with one of the defects (ethyl acetate or acetaldehyde) regardless the concentration, the measurements were grouped into three classes: blank, ethyl acetate and acetaldehyde. The PCA score plot for the whole measurement set is shown in Fig. 4. Some partial overlapping is observed among the classes, although the ANN analysis gave a 94 % success rate in validation. Few samples are wrongly classified among the three clases. Authors explain that these results could be improved using other types of classifiers and improving the measurement system in order to a better control of the operation temperatures and flows and reducing the measurement noise.

787

788

789

790

791

792

793

794

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

Fig. 4. Portable e-nose system for the defect discrimination in beer and PCA score plot of measurements of beer defects.

It is usually recognized that electronic noses have not achieved the market penetration that was expected in the mid-90s. The prototype presented in Lozano et al., (2015) could be a first step for implementation in the wine industry. It is installed in a wine cellar for on-line monitoring of wine evolution during 9 months. The system has a novel sampling method that extracts the aroma directly from the tanks where wine is

stored; and it automatically carries the volatile compounds to the sensor cell with tin
oxide multisensor. Linear techniques as principal component analysis (PCA) and
nonlinear ones as Artificial Neural Arrays (ANN) are used for pattern recognition,
and Partial Least Squares (PLS) is used for predicting GC-MS analysis. Results
showed that system can detect the evolution of two different wines along 9 months
stored in the monitored tanks. The evolution of the wine is confirmed with chemical
and sensory analysis. Moreover, GC-MS analysis was performed to the wine of the
tanks. In the whole, 19 odorants were analysed. The chemical compounds analysed
were acids (butyric acid, decanoic acid, hexanoic acid, isobutyric acid, isovaleric acid,
and octanoic acid), alcohols (1-hexanol and 2-phenilethanol), esters (hexyl acetate,
ethyl butyrate, ethyl decanoate, ethyl hexanoate, ethyl isovalerate, ethyl lactate, ethyl
octanoate, isoamyl acetate, isobutyl acetate, diethyl succinate and phenyl ethyl
acetate) and phenols (4-vinyl-guaiacol). The aforementioned 19 compounds analysed
in GC-MS profiles were used as predictor variables. Then, a model was created in
order to predict these responses from sensor measurements. In this way, the
concentration of chemical compounds in wine determined by GC-MS were correlated
with electronic nose response PLS regression analysis. Correlation coefficients near to
1 are obtained in the prediction of several volatile organic compounds (VOCs), i.e.
ethyl butyrate, isobutyric acid, isobutyl acetate, hexyl acetate and ethyl octanoate.
This system could be trained for monitoring wine preservation and evolution in tanks
and therefore detecting off-odours of wine and warning the wine expert to correct it as
soon as possible, preventing the wine spoilage and improving its final quality.
Based on the body of scientific literature, numerous considerable works on spoilage
detection using electronic nose has been conducted on meat and fish products.
Chemical reaction between volatile compounds involved in spoiled meat with gas

820	sensors has imperative results and this measuring principle is the basis of the spoilage
821	detection in meat products (Wojnowski, Majchrzak, Dymerski, Gębicki, Namieśnik,
822	2017).
823	Meat spoilage as a tremendously complex phenomenon is affected by many
824	parameters such as storage conditions, packaging type and materials used,
825	temperature and so on. Innovative instrumental approaches such as electronic nose
826	have shown promising results to be used as a potential candidate for inspection of
827	meat and its spoilage. A list of the most applications on such products is summarized
828	in Table 4. For instance, two cases of the more recent applications are discussed here.
829	Estelles-Lopez et al., (2017) conducted a research to develop the appropriate models
830	for predicting minced beef spoilage. For this aim, a commercial electronic nose
831	((LibraNose, Technobiochip, Napoli, Italy) comprising eight quartz crystal
832	microbalance (QMB) sensors coated with different poly-pyrrole derivatives was used.
833	Based on the planned experimental protocol, few grams of the meat was inserted in a
834	container and left for a moment to collect the adequate headspace as called static
835	sampling. Then the volatile compounds present in the headspace were passed over the
836	sensors and the responses registered and saved. The authors have also used four
837	analytical instruments to fuse the data with electronic nose. They were Gas
838	Chromatography-Mass Spectrometry (GC-MS), High Performance Liquid
839	Chromatography (HPLC), multispectral imaging (MSI), and Fourier Transformed
840	Infrared Spectroscopy (FT-IR). For data fusion and analyses, numerous techniques as
841	given in Table 4, were used and modeled. In final, they developed an on line platform
842	to identify different types on microorganisms present in spoiled meat. Electronic nose
843	showed satisfactory contribution for this aim.

Lipid oxidation as a spoilage indicator was studied by Gu, Sun, Tu, & Pan (2017) who aimed their research at evaluating the odor of Chinese-style sausage as a high-fat meat product during processing and storage using electronic nose. During lipid oxidation, some chemical changes occur in the sausage where some volatile compounds involved in the sample headspace are found such as certain aldehydes, ketones and alcohols. Monitoring these compounds could help in lipid oxidation prediction and spoilage detection consequently. They used a portable electronic nose (PEN 3, Win Muster Air-sense Analytics Inc., Germany) consisting of ten metal oxide sensors which were extremely sensitive to a lot of volatile compounds as nitrogen oxides, ammonia and aromatic compounds, Benzene, hydrogen, alkenes and aromatic compounds, Propane, methane, sulphur compounds, alcohols, sulphur organic compounds, alkane). The sensors were non selective and partial sensitive to aromatic compounds. The time of the measurement was 60 s and 110 s for odor injection and purging periods, respectively. Win Muster software was exploited to transform the information to digital signals. As mentioned in Table 4, many data processing algorithms were used to classify the samples. The authors concluded that the results show great potential use of electronic nose in judging the lipid oxidation of the highfat meat products.

862

863

864

865

866

867

868

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

6.2. Electronic tongue

Electronic tongues have been successfully used for qualitative and quantitative determinations of the spoilage of many foods of interest (Haddi, El Barbri, Tahri, Bougrini, El Bari, Llobet, & B. Bouchikhi, 2015; Śliwinska, Wisniewska, Dymerski, Namiesnik, & Wardencki, 2014). As it is well-known, the foods spoilage is a complex biochemical and microbiologic process which involves atmospheric oxygen, the

869 activity of some specific enzymes and microorganisms, etc. (Sahu & Bala, 2017; de 870 Blackburn, 2006). 871 Thus, for the quantitative case, a number of toxic compounds formed during the 872 spoilage process has been determined, especially biogenic amines, which result from amino acids decarboxylation. The amino acids involved in these processes are free 873 874 amino acids present in foods, but also the ones which originate in proteins hydrolysis 875 (Naila, Steve Flint, Fletcher, Bremer, & Meerdink, 2010; Karovičová & Kohajdová, 876 2005). Other quantitatively determined compounds are inosine 5'-monophosphate, inosine and xanthine and hypoxanthine, which originate from adenosine triphosphate 877 878 (ATP) degradation (Vilas, Alonso, Herrera, García-Blanco, & García, 2017) (Fig. 5). 879 Fig. 5. Decomposition of ATP in the muscles (Nelson & Cox, 2017) 880 Where, ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; AMP: 881 Adenosine monophosphate, IMP: Inosine monophosphate; Ino: Inosine; Hx: 882 Hypoxanthine; Xa: Xanthine; PI: phosphate ion. Quantitative determination is generally acquired from statistic models obtained 883 884 according to the data recorded with the sensor system of the electronic tongue, which 885 allow quantitative estimations of certain physical-chemical or sensorial parameters 886 (e.g. partial least squares-discriminant analysis (PLS-DA) or PLS2 regression 887 models) (Haddi, El Barbri, Tahri, Bougrini, El Bari, Llobet, & B. Bouchikhi, 2015; Rodríguez-Méndez, Gay, Apetrei, & de Saja, 2009). 888 889 More types of foods have been analyzed and the systems used and the main results 890 obtained are presented in the following paragraphs.

891	The concept of meat freshness is quite complex, including various physicochemical,
892	biochemical and microbiologic characteristics related to two different processes - the
893	former, aging, determined by the storage period required by meat in order to acquire
894	the proper taste for consumption, and the latter, also in relation to the period of
895	storage, which leads to meat spoilage due to bacterial growth and autolysis (Iulietto,
896	Sechi, Borgogni & Cenci-Goga, 2015; Dave & Ghaly, 2011).
897	Gil et al. (2011) presented a case study of the use of potentiometric electronic tongue
898	in the study of the spoilage process of a whole piece of pork loin stored under
899	refrigeration (Gil, Barat, Baigts, Martínez-Máñez, Soto, Garcia-Breijo, Aristoy,
900	Toldrá, Llobet, 2011). The sensors array used in the developing of the electronic
901	tongue consisted of six electrodes made of Au, Ag, Cu, Pb, Zn and C, and a reference
902	electrode. By using more methods in the multivariate data analysis (PCA and artificial
903	neural arrays - multilayer perceptron and fuzzy ARTMAP), the authors proved that
904	the potentiometric electronic tongue is capable to determine the storage time, which is
905	in relation to the degradation of the pork loin.
906	For data validation and for establishing the correlation with the results of classical
907	analytical methods, a number of physical-chemical, microbial and biochemical
908	parameters were analysed. These analyses consisted in pH determination, microbial
909	count, concentrations of inosine 5'-monophosphate, inosine and hypoxanthine. Using
910	the PLS regression method, a very good correlation was found between pH and the
911	data obtained from potentiometric sensors, as well as between K-index
912	(simultaneously measures the variation in the adenosine triphosphate) and the data
913	obtained with the electronic tongue. The conclusion of the study was that the
914	potentiometric electronic tongues are very useful in the qualitative or semi-

915	quantitative evaluation of freshness in meat samples and they can have numerous
916	applications in food industry in quality control of pork meat.
917	Another study, presented by Kaneki et al., (2004) described the use of a
918	potentiometric electronic tongue based on simple solid electrodes (i.e. Pt, CuS and
919	Ag ₂ S) which are able to detect certain compounds responsible for the initial stage of
920	meat putrefaction. This system was successfully used in the study of pork meat
921	freshness (Kaneki, Miura, Shimada, Tanaka, Ito, Hotori, Akasaka, Ohkubo, & Asano,
922	2004).
923	Microbiological contamination in dry-cured ham can occur at various stages of the
924	maturation process, and the development of a large number of microorganisms
925	involved in spoilage may lead to the alteration of the end product (Dikeman &
926	Devine, 2014). These processes lead to some unpleasant and non-common odours,
927	which are detected by an expert taster, who follows a procedure called "cala", by
928	which he classifies hams as good and altered hams (Paarup, Nieto, Peláez, & Reguera,
929	1999). Girón et al. (2015) produced a potentiometric electronic tongue based on an
930	array of sensors which contains three types of sensors, silver, nickel and copper
931	electrodes. This electronic tongue was used for the classification of altered and
932	unaltered hams before the classification of hams by an expert tester. The results of the
933	analyses showed that, in the case of altered hams, the Ag potentials have the lowest
934	values and the Cu potentials, the highest values. Starting from these experimentally
935	observed differences, a model of classification of hams was built, but further studies
936	are required for the system validation for industrial practice (Girón, Gil-Sánchez,
937	García-Breijo, Pagána, Barat, & Grau, 2015).

938

Gil-Sánchez et al. (2011) presented the use of a combined multisensor system for the

939	analysis of the spoilage of wine when it is in contact with air (Gil-Sánchez, Soto,
940	Martínez-Máñez, Garcia-Breijo, Ibáñez, & Llobet, 2011). The system consists of a
941	potentiometric electronic tongue and a humid electronic nose. The potentiometric
942	electronic tongue was used for the evolution in time of the wine samples in the
943	presence of air. The classical method of analysis used for monitoring the wine
944	spoilage was the determination of the titratable (total) acidity. The electronic tongue
945	used in this study is based on potentiometry. Potentiometric sensors were built using
946	thick-film serigraphic techniques. The paste used for making the sensors was
947	commercial, generally used for the production of thick-film resistances and
948	conductors for hybrid electronic circuits. Each paste contains an active element,
949	which are, in this case, Ag, Au, Cu, Ru, AgCl, and C. These sensitive materials are
950	often used in the production of non-specific electrodes. Some materials were used in
951	duplicate for the production of sensors, by modifying, for instance, the thickness of
952	the sensitive layer, 9 potentiometric sensors being included in the multisensor system.
953	Fig. 6 presents the distribution of the sensors on the multisensor pad and the tracks
954	and pads for connecting to measuring equipment.
955	Fig. 6. The sensor array used for the potentiometric electronic tongue (Gil-Sánchez,
956	Soto, Martínez-Máñez, Garcia-Breijo, Ibáñez, & Llobet, 2011).
957	Ruiz-Rico et al. (2013) studied the shelf-life assessment of fresh cod in cold storage
958	using a voltammetric electronic tongue (Ruiz-Rico, Fuentes, Masot, Alcañiz,
959	Fernández-Segovia, & Barat, 2013). The electronic tongue system is based on an
960	array of sensors, specialised software installed on a PC and electronic equipment.
961	Measurements relied on pulse voltammetry, the voltage pulses being applied to
962	sensors by the electronic equipment, and the generated currents being measured

afterwards. For each sensor, 1,000 values were recorded, which correspond to the
time evolution of the current generated in the system after applying the voltage pulse.
The sensor system is made up of 8 metallic electrodes, separated into two subsystems,
one made up of 4 electrodes based on noble metals (iridium, rhodium, platinum and
gold) and the other, of 4 metallic electrodes based on non-noble metals (silver, cobalt,
copper and nickel). Therefore, a total of 8,000 values are registered by the electronic
tongue for each sample under study. For the validation of the analytical system, data
resulted from physical-chemical and microbial analyses were used. For all samples
analysed, the limits of the main parameters related to fish freshness, such as total
volatile basic nitrogen, mesophilic and Enterobacteriaceae, were exceeded on the
fourth day of storage, which means that fish has a shelf-life less than four days. The
results of physical-chemical and microbial analyses showed an obvious loss of
freshness from day 0 to day 4. Also, the voltammetric tongue results showed a clear
difference between the freshness of fish on days 0 and 1 of storage and that in the
following days. The regression patterns based on partial least squares for Total
Volatile Basic Nitrogen (TVB-N) and mesophilic counts proved that the predicted
values concord with the experimental results, which confirms the usefulness of
voltammetric electronic tongue for assessing cod spoilage.
Haddi et al. (2015) implemented a voltammetric electronic tongue based on an array
of seven working electrodes, a platinum counter electrode and an Ag/AgCl reference
electrode (Haddi, El Barbri, Tahri, Bougrini, El Bari,. Llobet, & Bouchikhi, 2015).
The working electrodes were made of platinum, gold, silver, glassy carbon,
palladium, copper and nickel. They were assembled in the form of an array of sensors
in a stainless steel tube. The wires of each electrode were connected to a portable

987	potentiostat through a relay box. The responses of the array of sensors in the presence
988	of the samples to be analyzed were recorded by cyclic voltammetry.
989	With the help of this system, it was objectively and rapidly assessed whether there
990	were any significant differences between meat types (beef, goat and mutton), and
991	between the same piece of meat in various spoilage states. The electronic tongue
992	system, made up of 7 voltammetric sensors, was used for the detection of the specific
993	electroactive compounds for each of the three types of meat. Data analysis was
994	pursued using discrimination and classification methods, Principal Component
995	Analysis (PCA) and Support Vector Machines (SVMs). The results obtained proved
996	that the system is capable of distinguishing meats based on their biologic origin. Also,
997	for each type of meat, the number of days passed in cold storage can be determined.
998	A number of studies reported in the literature relied on the use of voltammetric
999	electronic tongues based on sensors modified with electroactive substances
1000	(phthalocyanines or conducting polymers), both regular and screen-printed electrodes.
1001	A study reported the use of a novel array of voltammetric sensors used for the
1002	detection of the principal biogenic amines resulted from the spoilage process of Tench
1003	fish (Rodríguez-Méndez, Gay, Apetrei, & de Saja, 2009). The array of sensors
1004	consisted of screen-printed electrodes modified with phthalocyanines. The method
1005	conveyed in this study entailed the global detection of the chemical products resulted
1006	from the process of spoilage of fish, including the biogenic amines.
1007	The sensors proved very good sensitivity to biogenic amines present in the solution to
1008	be analysed (ammonia, dimethylamine, trimethylamine, cadaverine and histamine). It
1009	was observed that biogenic amines have great influence on the chemical behaviour of
1010	the sensors, due to the fact that some biogenic amines are electroactive and that all

1011	biogenic amines have basic and nucleophilic properties. The developed sensors are
1012	very sensitive, reproducible, and present good stability on long term.
1013	The array of sensors was used for the determination of the freshness degree of fish
1014	kept at 4°C in the refrigerator for 12 days. The responses recorded by cyclic
1015	voltammetry were successfully used for assessing freshness and for determining the
1016	post-mortem period. The voltammetric signals displayed increasing intensity with the
1017	increasing of storage time.
1018	The ability of discriminating fish samples based on their freshness was demonstrated
1019	by principal component analysis. The ability of classifying the fish samples according
1020	to their freshness, as well as the prediction of freshness of some samples was
1021	calculated by partial least squares-discriminant Analysis (PLS-DA). The results
1022	proved that voltammetric electronic tongue is able for determining the degree of fish
1023	freshness by monitoring the production of spoilage products. In addition, this method
1024	is able to determine the stage of the spoilage process, which comprises 4 states.
1025	Another paper reported the use of a voltammetric electronic tongue for monitoring the
1026	freshness of Pontic shad fish samples (Apetrei, Rodriguez-Mendez, Apetrei, de Saja,
1027	2013). The samples were Pontic shad (Alosa Pontica), a species living in the north-
1028	western part of the Black Sea. Pontic shad migrates in the Danube River for
1029	spawning. The array of sensors was made up of a series of sensors based on carbon
1030	screen printed electrodes modified with polypyrrole doped with different doping
1031	agents. The electrochemical signals are complex and present redox processes related
1032	to the electrochemical activity of the amines, and redox peaks associated to the
1033	electrochemical activity of the electroactive material. The viability of the
1034	voltammetric electronic tongue was tested for fish freshness monitoring. From the

1035	analysis of the signals registered by sensors, a growth of the signal currents associated
1036	to biogenic amines was observed in the analysed samples with the increase of the
1037	storage time.
1038	The voltammetric signals obtained with the help of the array of sensors were used to
1039	discriminate and evaluate the state of fish freshness. Principal component analysis
1040	confirmed the ability of the voltammetric electronic tongue to monitor the fish
1041	freshness. The partial least squares-discriminant analysis (PLS-DA) model showed
1042	that this electronic tongue is able to determine the post-mortem time elapsed, being
1043	highly useful in practice.
1044	Another study was dedicated to the detection and quantification of putrescine and
1045	ammonia resulted from the spoilage of dehydrated beef, as well as to monitoring beef
1046	freshness under refrigeration conditions (Apetrei & Apetrei, 2016).
1047	The array of sensors used in this study was a hybrid one, made up of screen-printed
1048	electrodes modified with bisphthalocyanines and polypyrrole doped with different
1049	doping agents. The electrochemical responses of the sensors were analysed for two
1050	compounds of interest in beef spoilage, namely ammonia and putrescine.
1051	The electrochemical signals are related to the redox properties of the substances used
1052	for modifying the electrodes, which are greatly influenced by the compounds present
1053	in the solution to be analysed. At first, it was determined that the sensors were capable
1054	to detect amine compounds in beef extract powder with good sensitivity to the levels
1055	of concentration at which the respective compounds are found in the initial spoilage
1056	stages. The sensor array made up of sensors with the best performance was used for
1057	beef freshness monitoring. The methods conveyed for the analysis of experimental

data, PCA and PLS-DA, demonstrated that the electronic tongue system is able to discriminate and classify samples according to their refrigeration time.

6.3. Biosensors

Various types of biosensors have been used for the specific determination of some analytes directly related to the spoilage process (Rotariu, Lagarde, Jaffrezic-Renault, Bala, 2016). The most important are biogenic amines and the compounds resulted from the decomposition of nucleic acids, as is the case of xanthine, hypoxanthine and other metabolites (Ghaly, Dave, Budge, & Brooks, 2010). The following section reviews the most relevant results reported in the specialized literature, according to the type of food under analysis.

Meat and meat products are the foods which have been most often studied using biosensors for spoilage detection. The reason is that the products which result from the spoilage process are toxic and may lead to intoxication, allergies, and even death when ingested in large quantities (Stadler & Lineback, 2008). In order to be fitted with consumption, beef must be subject to a refrigeration process for a few days, a process that is named "aging" (Perry, 2012). During its refrigeration, besides aging, the unwanted process of bacterial spoilage may also occur. Therefore, in order to obtain aged meat with optimal organoleptic properties, the simultaneous monitoring of aging and bacterial spoilage is necessary. For highlighting the bacterial spoilage process, it is necessary to monitor the concentration of putrescine and cadaverine, two biogenic amines, which can be considered markers of the spoilage process (Perry, 2012; Dashdorj, Tripathi, Cho, Kim, & Hwang, 2016; Apetrei & Apetrei, 2016).

1081	Yano et al. (1996) developed a direct sensing method in order to determine the quality
1082	of beef (Yano, Yokoyama, Tamiya, & Karube, 1996). The biosensor was made of an
1083	Ag/AgCl electrode and a platinum electrode onto which two enzymes were
1084	immobilized, namely putrescine oxidase or xanthine oxidase. The detection method
1085	used was potential-step chronoamperometry, the potential was stepped in the range
1086	from 0.3 V to 0.6 V. The experimental conditions, such as pH and selectivity, were
1087	adequate and the target compounds could be analysed on the beef surface. Sensitivity,
1088	selectivity and stability of the biosensor were very good in detecting putrescine,
1089	cadaverine and hypoxanthine. The experimental results demonstrated that the method
1090	of direct determination with this biosensor could be successfully used in the non-
1091	destructive assessment of beef quality.
1092	Kress-Rogers et al. (1993) developed a prototype biosensor (in the form of an array of
1093	biosensors) in view of ultra-fast assessment of pork meat freshness (Kress-Rogers,
1094	D'Costa, Sollars, Gibbs, & Turner, 1993). The biosensors array allows the
1095	measurement of glucose concentration at 2 and 4 mm depth under the meat surface.
1096	The array of biosensors was used to monitor the spoilage process of refrigerated pork
1097	carrying a slaughterhouse flora. The assessment of meat freshness was pursued based
1098	on the three-dimensional profile of glucose near the meat surface. This method can be
1099	applied as a marker for the fast evaluation of complex foods, in what concerns the
1100	microbial and oxidative spoilage, maturation and the fermentation process.
1101	Fish and fish products spoilage is also of great interest in food industry, as fish is
1102	susceptible to spoilage due to storage conditions. Fish spoilage under refrigeration
1103	conditions is attributed to the metabolic degradation of trimethylamine N-oxide
1104	(TMAO) to trimethylamine (TMA) by psychrophilic bacteria. TMA accumulation in
1105	tissues is responsible for the specific smell of degrading fish, while the TMA

1106	concentration depends on the stage of the spoilage process (Barrett & Kwan, 1985;
1107	Muzaddadi, Devatkal, & Oberoi, 2016).
1108	Gamati et al. (1991) developed a biosensor for monitoring the trimethylamine
1109	concentration, based on the difference in the oxygen uptake response of two microbial
1110	electrodes (Gamati, Luong & Mulchandani, 1991). One of the electrodes was
1111	produced using Pseudomonas aminovorans grown on TMA. It was particularly
1112	sensitive to TMA, trimethylamine N-oxide, dimethylamine and monomethylamine.
1113	The other electrode was produced using Pseudomonas aminovorans grown on
1114	TMAO, and it was sensitive to TMA, trimethylamine N-oxide, dimethylamine and
1115	monomethylamine. The response of biosensor is linear with TMA concentration and
1116	the limit of detection is in pM domain. Besides, the relative standard deviation of the
1117	biosensor response is low, the response is stable and reproducible. The results
1118	obtained with the help of this sensor were validated by HPLC. The biosensor is useful
1119	for TMA determination in fish tissue extracts.
1120	Another biosensor for the TMA detection was developed by Bourigua et al. (2011). It
1121	was based on polypyrrole-flavin-containing monooxygenase (FMO3) and ferrocene.
1122	The detection techniques employed were amperometry and impedance spectroscopy.
1123	The biosensor presents high selectivity and sensitivity to TMA in real samples. The
1124	validation of the biosensor was carried out using GC/SM and the real sample was fish
1125	extract after deterioration during storage (Bourigua, El Ichi, Korri-Youssoufi, Maaref,
1126	Dzyadevych, & Jaffrezic Renault, 2011).
1127	In food industry, fish processing is difficult because of its low commercial life and
1128	high variability of the raw material, starting from the biologic species and ending with
1129	fishing and storage. An important biomarker of fish spoilage is the level of xanthine:

1130	above certain values, it is certain that the spoilage process has begun (Costa &
1131	Miertus, 1993).
1132	Fish freshness is the most important feature of this raw material for its processing in
1133	food industry under safe, qualitative conditions. After the fish's death, breathing and
1134	biosynthesis of adenosine triphosphate (ATP) nucleotide cease. Consequently, the
1135	ATP in the muscles is degraded, according to the scheme presented in Fig. 5.
1136	Among the spoilage products, IMP is the main factor which contributes to fish
1137	freshness flavour, and the spoilage product hypoxanthine is what gives the fish meat
1138	its specific bitter taste. Dervisevic et al. (2015) produced a biosensor based on a host
1139	matrix nanocomposite for immobilization of xanthine oxidase made up of MWCNT
1140	incorporate in poly (GMA-co-VFc) copolymer film (Dervisevic, Custiuc, Çevik, &
1141	Senel, 2015). The inclusion of MWCNT in the polymer matrix resulted in a
1142	substantial growth of the sensitivity of the biosensor. The fabrication process of the
1143	sensitive layer of the biosensor was characterized by scanning electron microscopy.
1144	The electrochemical behaviour of the biosensor was studied by cyclic voltammetry
1145	and electrochemical impedance spectroscopy. The biosensor presents maximum
1146	response to xanthine at pH 7.0 and 45°C, when +0.35 V is applied. The biosensor
1147	reaches 95% of steady-state current in approximately 4 seconds. The limit of
1148	detection of the biosensor to xanthine detection is of $0.12~\mu\text{M}$, positive results being
1149	obtained for the measurement of xanthine concentration in fish meat. The response of
1150	the biosensor is stable and the interferences are very low.
1151	Dervisevic et al. (2015) studied the detection of xanthine molecules, which is an
1152	indicator of meat spoilage (Dervisevic, Custiuc, Çevik, Durmus, Senel, Durmus,
1153	2015). Xanthine is formed as a result of the decomposition of guanine. To this end.

1154	they developed a novel biosensor by embedding reduced expanded graphene oxide
1155	sheets decorated with iron oxide (Fe ₃ O ₄) nanoparticles into poly (glycidyl
1156	methacrylate-covinylferrocene) phase, and by covalent immobilization of xanthine
1157	oxidase onto the surface of P(GMA-co-VFc)/REGO-Fe ₃ O ₄ nanocomposite film. The
1158	experimental conditions were studied and optimized for the high sensitivity detection
1159	of xanthine (response time, linear range, operation and storage stability, pH and
1160	temperature) a limit of detection of 0.17 μM being obtained. The xanthine biosensor
1161	was used for the analysis of xanthine content in fish real samples after 5, 8, 10, 13, 15,
1162	and 20 days of storage. The novel biosensor proved that it could be successfully
1163	employed in the analysis of real samples and also that it could be successfully used as
1164	a reliable fish freshness controlling technique.
1165	Apetrei et al. (2015) developed a biocomposite screen-printed biosensor based on
1166	immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for
1167	assaying tyramine in fish products (Apetrei & Apetrei, 2015). Tyramine is a biogenic
1168	amine which is especially found in fermented food products, but also in smoked,
1169	salted or soused fish (Luten, 2006). This compound can be used as a biomarker for
1170	spoilage monitoring. The detection principle employed was the amperometric one, by
1171	applying the optimum potential for the electrochemical reduction of the o-quinone
1172	formed in the enzymatic process at the surface of the sensitive layer of the biosensor.
1173	The biosensor presented very good analytical performance in what tyramine detection
1174	is concerned. These results are related to the presence of carboxyl functionalized
1175	carbon nanotube in the sensitive layer which facilitates the transfer of the electrodes
1176	involved in the electrochemical process.

1177	Histamine is a biogenic amine of low molecular weight, with biologic activity.
1178	Histamine intoxication is also known as "scombroid fish poisoning". Histamine
1179	concentration is used as an indicator of fish spoilage (Luten, 2006; Feng, Teuber, &
1180	Gershwin, 2016).
1101	Historian is accomplated in scafeed often the beginning of hesterial encilose and
1181	Histamine is accumulated in seafood after the beginning of bacterial spoilage and
1182	causes histamine poisoning even though the fish may not be altered in what the visual
1183	aspect and smell is concerned (Luten, 2006; Feng, Teuber, & Gershwin, 2016).
1184	Keow et al. (2007) developed a biosensor based on diaminoxidase for the detection of
1185	histamine in tiger prawn (Penaeus monodon) (Keow, Bakar, Salleh, Heng, Wagiran,
1186	& Bean, 2007). The response time of the biosensor is below 1 minute under optimal
1187	pH conditions of 7.4. The limit of detection is in the sub-ppm domain (under 50 ppm,
1188	the level established by FDA USA), which recommends it for practical usage.
1189	For the validation of the biosensor on real samples, the variation of histamine
1190	concentration was studied on tiger prawn samples after a 5-hour exposure at $30 \pm 2^{\circ} C$
1191	temperature. The results obtained were comparable to the results determined by
1192	HPLC. There is good linear correlation between the two methods, with the
1193	determination coefficient higher than 0.95. The biosensor is reusable and may be used
1194	for the determination and quantification of histamine without further sample
1195	processing, being appropriate for the analysis of histamine in tiger prawn and also for
1196	spoilage monitoring.
1197	Bóka et al. (2012) developed a novel amperometric biosensor based on putrescine
1198	oxidase for the selective detection and quantification of putrescine, a characteristic
1199	which may function as an indicator of microbial spoilage (Bóka, Adányi, Szamos,
1200	Virág, & Kiss, 2012). Putrescine oxidase was isolated from Kocuria rosea

1201	(Micrococcus rubens). The purified enzyme was immobilized onto the surface of a
1202	graphite electrode in a hydrogel containing horseradish peroxidase, as a mediator of
1203	electron transfer and poly (ethylene glycol) (400) diglycidyl ether as a reticular agent.
1204	This biosensor was used in an amperometric electrochemical cell in flow together
1205	with the reference electrode Ag/AgCl (0.1 M KCl) and a platinum wire as an auxiliary
1206	electrode. Under optimal conditions of pH, flow rate and applied potential, a vast
1207	linearity domain was obtained between the response of the biosensor and the
1208	putrescine concentration, with a detection limit appropriate for applications in foods
1209	analysis. The validation of the biosensor was pursued by analysing beer samples and
1210	comparing the results obtained with the results of the reference method HPLC.
1211	The formation of volatile compounds, such as acetaldehyde and ethylene in plants and
1212	fruits is related to the state of their metabolism. For example, the synthesis speed of
1213	ethylene in apples increases with the time spent after harvest, while the acetaldehyde
1214	production is related to the anaerobic metabolism which grows in fruits after
1215	harvesting. The quantity of ethylene and acetaldehyde is related to the metabolic state
1216	and to the quality of fruit (Chen, Zhang, Hao, Chen, & Cheng, 2015; Maffei, 2010).
1217	Weber et al. (2009) developed and implemented a hybrid dual-channel catalytic-
1218	biological sensor system, able to quantify the two volatile substances in situ (Weber,
1219	Luzi, Karlsson, & Fussenegger, 2009). This biosensor is based on a mammalian cell
1220	line engineered for constitutive expression of an Aspergillus nidulans, which triggers
1221	quantitative reporter gene expression in the presence of acetaldehyde. Ethylene
1222	oxidized to acetaldehyde through Wacker process can be quantified with the same
1223	biosensor. The quantification of metabolites allowed the accurate assessment of the

1224	quality of fruits, the fresh apples being clearly differentiated from the old and rotten
1225	apples.
1226	By placing in relation the catalytic processes and the detection technology of the
1227	biosensors, it was possible to determine the metabolic state of food. Consequently,
1228	this could be used in the assessment of foods which suffer biochemical
1229	transformations, as well as in control processes for detecting and preventing food
1230	spoilage (Zhang & Keasling, 2011).
1231	Fumarate is a very important intermediary in Krebs cycle (the tricarboxylic acid
1232	cycle) and has a key role in the fundamental processes which produce energy, as well
1233	as in the biosynthesis of amino acids and lipids (Nelson & Cox, 2017).
1234	The accumulation of fumarate in organism above a certain limit, due to fumarate
1235	hydratase mutation, is one of the main causes of hereditary leiomyomatosis and renal
1236	cell cancer, being considered an oncometabolite (Yang, Soga, Pollard, & Adam,
1237	2012)
1238	On the other hand, fumarate is present in beverages, baking powders and candy, as a
1239	result of the microbial activity which leads to spoilage. Another source of
1240	contamination is represented by the impurities present in certain synthetic additives.
1241	Accordingly, fumarate is an important and relevant indicator of food quality, which
1242	can be used as a biomarker of food freshness (Hurrell, 2010; Kvasničk & Voldřich,
1243	2000). Nevertheless, a cost-effective and fast analytical method for the detection and
1244	quantification of fumarate is desired. Si et al. (2015) produced an electrochemical
1245	whole-cell biosensing system for the quantification of fumarate in foods (apple juice)
1246	(Si, Zhai, Liao, Gao, & Yong, 2015). A sensitive inwards electric output (electron
1247	flow from electrode into bacteria) is sensitive to fumarate in Shewanella oneidensis

Therefore, the electrochemical fumarate biosensing system delivered symmetric current peak immediately upon fumarate addition in the sample. The peak area increases in direct ratio with fumarate concentration in vast concentration domain with a limit of detection of 0.83 µM. This biosensing system showed to be specific to fumarate, as the interferences are very low. The validation of this biosensing system was pursued by the successful quantification of fumarate in samples of apple juice. The advantages of this biosensing system are: simplicity, low cost, limited time required for analysis and its robustness in fumarate quantification.

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1248

1249

1250

1251

1252

1253

1254

1255

1256

7. Challenges and future trends

Commercial electronic noses are designed for general-purpose use and besides selectivity and sensitivity of the sensors in the array; they do not match the needs for a particular application. It is necessary to design an array of sensors with optimized conditions for each application in order to increase the performance for food spoilage detection.

So far, electronic noses as sensory detectors of food spoilage have been widely used in the laboratory of different research groups. It is also clear that the utility of using electronic noses in an industrial or consumer context is high; the chemical compounds responsible of food spoilage are usually detected by electronic noses at lower concentrations than human nose, so efforts must be made by researchers to transfer this technology to them. For the food industry, faster and more efficient sampling techniques suitable for successive batches need to be developed in the future. On the sensors side, major focus must be given to the design and development of high sensitivity and selectivity drift free sensors that can be used reliably over long

temporal horizons. Novel and promising materials like grapheme or silicene should be
used for developing ambient temperature sensors and novel nanostructures like
nanowires and nanofibers and other nanostructures could enhance the response and
reduce the time of response and consumption. Data processing methods not only must
be made for classification and prediction problems, but also for sensor replacements,
compensating drift, stability and reliability of the sensors. It will allow a long-term
use that will be a convincing factor for industry when considering the uptake of such a
device. On the consumers' side, there are now available in the market miniature gas
sensors with low size (less than 2x3mm) and consumption (less than 7mw) that will
allow to develop very small electronic noses systems for consumers in order to advise
them if food they are going to consume is of adequate quality. Moreover, mobile
phones have been increasing the number of sensors they contain; from one or two
sensors in 2003 to more than 16 sensors in 2016. Predictions of the sensor market say
that in the near future, smart phones will include gas sensors, and with it hundreds of
apps for detecting compounds, odours and aromas related with food spoilage.
The future of the electronic tongue systems and the biosensors are closely related
because improving the sensitivity and selectivity of the sensor array remain
challenging tasks.
It seems that the trends will include the development of novel sensitive nanomaterials
and the nanotechnologies for the preparation of the sensors as well as the use of
hybrid array of sensors. The inclusion of the biosensors in the sensors arrays could be
a factor that will improve the multi-analyte detection, the quantitative analyses
becoming more significant and more precise. This is necessary in the detection of
food spoilage in early stage, when it starts and not when the food product is spoiled
and not suitable for human consumption. Other important research directions will

include the miniaturization of the systems able to measure in-flow in real-time analysis, coupled with wireless signal transmitters, expert systems for data analysis and feed-back action. These multisensory systems will assure a rapid and accurate control of food spoilage, important for the producers and for the consumers.

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1297

1298

1299

1300

8. Conclusion

In this paper, we have outlined the major contributions of electronic nose, biosensors, and electronic tongue technologies related with food spoilage. There is a great interest for handheld instruments that respond to simple questions related with food spoilage posed by producers, food inspectors and general consumers. A great number of references can be found with different applications of food spoilage detection, including wine spoilage monitoring and detection of off-flavors, beer defects, microbial contamination in tomatoes, egg quality detection, grain spoilage, enterobacteriaceae in vegetable soups, spoilage of bakery products, contamination of soft drinks, apple defects, milk spoilage and olive oil defects, fish freshness monitoring, meats freshness, seafood spoilage, apple juice spoilage, among others. Electronic noses and gas sensors have shown in the last years an important enhancement in the time response and time life as well as a decrease in the size and consumption. The latest works about the electronic tongue systems for detection of food spoilage demonstrates one significant progress in the terms of high sensitive sensor arrays based on different methods of detection and the use of improved data analyses. The biosensors were used in the detection of target analytes related to food spoilage with high sensitivity, improved selectivity, and low detection limit. These superior analytical characteristics are principally related to the use of nanomaterials and nanotechnologies in the development of biosensors.

	ACCEPTED MANUSCRIPT
1322	
1323	Acknowledgments
1324	The supports of Shahrekord University (Shahrekord, Iran) and University of
1325	Extremadura (Spain) are gratefully appreciated. Also, this work was supported in a
1326	part by a grant of the Romanian National Authority for Scientific Research and
1327	Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-1093.
1328	
1329	References
1330	Abdulbari, H. A., Basheer, E. A. M. (2017) Electrochemical Biosensors: Electrode
1331	Development, Materials, Design, and Fabrication. <i>ChemBioEng Reviews</i> 4 , 92 – 105.
1332	doi:10.1002/cben.201600009.
1333	Adley, C. C. (2014) Past, Present and Future of Sensors in Food Production. Foods 3,
1334	491 –510.
1335	Aguilera, T., Lozano, J., Paredes, J. A., Alvarez, F. J., & Suárez, J. I. (2012).
1336	Electronic nose based on independent component analysis combined with partial least
1337	squares and artificial neural arrays for wine prediction. Sensors (Basel, Switzerland),
1338	12(6), 8055–72. http://doi.org/10.3390/s120608055
1339	
1340	Ahn, S.R, An, J.H., Song, H.S., Park, J.W., Lee, S.H., Kim, J.H., Jang, J., Park, T.H.
1341	(2016) Duplex Bioelectronic Tongue for Sensing Umami and Sweet Tastes Based on

- Η.
- n
- Human Taste Receptor Nanovesicles. ACS Nano 10, 7287 7296. 1342

1343

1344 Ali, J., Najeeb, J., Ali, M.A., Aslam, M.F., Raza, A. (2017) Biosensors: Their Fundamentals, Designs, Types and Most Recent Impactful Applications: A Review. 1345 Journal of Biosensors & Bioelectronics 8, 235. doi: 10.4172/2155-6210.1000235. 1346 1347 Almeida Silva, T., Cruz Moraes, F., Campos Janegitz, B., Fatibello-Filho, O. (2017) 1348 Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review. 1349 1350 Journal of Nanomaterials **2017**, Article ID 4571614, 14 pages. Amine, A., Mohammadi, H., Bourais, I., Palleschi, G. (2006) Enzyme inhibition-1351 1352 based biosensors for food safety and environmental monitoring. Biosensors and *Bioelectronics* **21**, 1405 – 1423. 1353 1354 Andre, S., Vallaeys, T., Planchon, S. (2017) Spore-forming bacteria responsible for 1355 1356 food spoilage. Research in Microbiology 52, 123-138. 1357 1358 Apetrei, C., Ghasemi-Varnamkhasti, M. (2013) Biosensors in food PDO authentication. Comprehensive Analytical Chemistry, Volume 60, 279 - 297. 1359 Apetrei, C., Rodríguez-Méndez, M. L., Parra, V., Gutierrez, F., de Saja, J.A. (2004) 1360 1361 Array of voltammetric sensors for the discrimination of bitter solutions. Sensors and *Actuators B: Chemical* **103**, 145 – 152. 1362 1363 Apetrei, I.M., Apetrei, C. (2014) Detection of virgin olive oil adulteration using a 1364 voltammetric e-tongue. *Computers and Electronics in Agriculture* **108**, 148 – 154. 1365 1366 Apetrei, I.M., Apetrei, C. (2015) The biocomposite screen-printed biosensor based on immobilization of tyrosinase onto the carboxyl functionalised carbon nanotube for 1367 assaying tyramine in fish products. *Journal of Food Engineering* 149, 1-8. 1368

1369	
1370	Apetrei, I.M., Apetrei, C. (2016) Amperometric biosensor based on diamine
1371	oxidase/platinum nanoparticles/graphene/chitosan modified screen-printed carbon
1372	electrode for histamine detection. Sensors 16, Article number 422, doi:
1373	10.3390/s16040422.
1374	Apetrei, I.M., Apetrei, C. (2016) Application of voltammetric e-tongue for the
1375	detection of ammonia and putrescine in beef products. Sensors and Actuators B:
1376	Chemical 234 , 371 - 379.
1377	
1378	Apetrei, I.M., Rodriguez-Mendez, M.L., Apetrei, C., de Saja, J.A. (2013) Fish
1379	freshness monitoring using an E-tongue based on polypyrrole modified screen-printed
1380	electrodes. IEEE Sensors Journal 13, 2548 – 2554.
1381	
1382	Arrieta, A., Rodriguez-Mendez, M. L., de Saja, J.A. (2003) Langmuir-Blodgett film
1383	and carbon paste electrodes based on phthalocyanines as sensing units for taste.
1384	Sensors and Actuators B: Chemical 95, 357 – 365.
1385	
1386	Arrieta, A.A. Apetrei, C., Rodríguez-Méndez, M. L., de Saja, J. A. (2004)
1387	Voltammetric sensor array based on conducting polymer-modified electrodes for the
1388	discrimination of liquids. <i>Electrochimica Acta</i> 49 , 4543 – 4551.
1389	
1390	Barakat, R.K., Griffiths, M.W., Harris, L.J. (2000) Isolation and characterization of
1391	Carnobacterium, Lactococcus and Enterococcus spp. from cooked, modified
1392	atmosphere packaged, refrigerated, poultry meat. International Journal of Food
1393	<i>Microbiology</i> 62, 83 – 94.

1394	
1395	Bard, A. J., Faulkner, L. R. (2001) Electrochemical Methods: Fundamentals and
1396	Applications, 2 nd Edition, John Willey & Sons, Inc., New York.
1397	Barrett, E.L., Kwan, H.S. (1985) Bacterial reduction of trimethylamine oxide. Annual
1398	Review of Microbiology 39 , 131 - 149.
1399	
1400	Bassi, A.S., Lee, E., Zhu JX. (1998) Carbon paste mediated, amperometric, thin film
1401	biosensors for fructose monitoring in honey. Food Research International 31, 119 -
1402	127.
1403	Benabdellah, N. Bourhaleb, M., Benazzi, N., Nasri, M., Dahbi, S. 2017. The detection
1404	of smell in spoiled meat by TGS822 gas sensor for an electronic noseused in rotten
1405	food. Advances in Intelligent Systems and Computing. 520, 279-286.
1406	Berna, A. Z., Trowell, S., Cynkar, W., & Cozzolino, D. (2008). Comparison of metal
1407	oxide-based electronic nose and mass spectrometry-based electronic nose for the
1408	prediction of red wine spoilage. Journal of Agricultural and Food Chemistry, 56(9),
1409	3238–3244. http://doi.org/10.1021/jf7037289
1410	
1411	Blixt, Y., Borch, E. (1999) Using an electronic nose for determining the spoilage of
1412	vacuum packaged beef. Int J. Food. Microbiol. 46, 123 -134.
1413	
1414	Bobacka, J., Ivaska, A., Lewenstam, A. (2008) Potentiometric Ion Sensors. Chemical
1415	Reviews 108 , 329 - 351.
1416	

1417	Bóka, B., Adányi, N., Szamos, J., Virág, D., Kiss A. (2012) Putrescine biosensor
1418	based on putrescine oxidase from Kocuria rosea. Enzyme and Microbial Technology
1419	51 , 258 – 262.
1420	
1421	Bourigua, S., El Ichi, S., Korri-Youssoufi, H., Maaref, A., Dzyadevych, S., Jaffrezic
1422	Renault, N. (2011) Electrochemical sensing of trimethylamine based on polypyrrole-
1423	flavin-containing monooxygenase (FMO3) and ferrocene as redox probe for
1424	evaluation of fish freshness. Biosensors and Bioelectronics 28, 105-111.
1425	
1426	Bratov, A., Abramova, N., Ipatov A. (2010) Recent trends in potentiometric sensor
1427	arrays—A review. <i>Analytica Chimica Acta</i> 678 , 149 – 159.
1428	
1429	Brett, C.M.A., Fungaro, D. A. (2000) Modified Electrode Voltammetric Sensors for
1430	Trace Metals in Environmental Samples. Journal of the Brazilian Chemical Society
1431	11 , 298 – 303.
1432	
1433	Brightwell, G., Clemens, R., Urlich, S., Boerema, J. (2007) Possible involvement of
1434	psychrotolerant Enterobactericeae in blown pack spoilage of vacuum-packaged raw
1435	meats. <i>International Journal of Food Microbiology</i> 119 , 334 – 339.
1436	
1437	Bueno, L., de Araujo, W. R., Salles, M. O., Kussuda, M. Y., Paixão, T. R. L. C.
1438	(2014) Voltammetric Electronic Tongue for Discrimination of Milk Adulterated with
1439	Urea, Formaldehyde and Melamine. Chemosensors 2, 251-266.
1440	

1441 Cabañes, F. J., Sahgal, N., Bragulat, M. R., & Magan, N. (2009). Early discrimination 1442 of fungal species responsible of ochratoxin A contamination of wine and other grape products using an electronic nose. Mycotoxin Research, 25(4), 187-192. 1443 http://doi.org/10.1007/s12550-009-0027-x. 1444 1445 Cabral, F.P., Bergamo, B.B., Dantas, C.A., Riul Jr., A., Giacometti, J.A. (2009) 1446 Impedance e-tongue instrument for rapid liquid assessment. Review of Scientific 1447 Instruments 80, 026107. doi: 10.1063/1.3084210. 1448 Campos Sánchez, I., Bataller Prats, R., Gandía Romero, J.M., Soto Camino, J., 1449 Martínez Mañez, R., Gil Sánchez, L. (2013) Monitoring grape ripeness using a 1450 1451 voltammetric electronic tongue. Food Research International 54, 1369 - 1375. 1452 Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., Marrakchi, M., 1453 1454 Martínez-Mañez, R., Soto, J., Vivancos, J.-L. (2012) A voltammetric electronic 1455 tongue as tool for water quality monitoring in wastewater treatment plants. Water Research 46, 2605 – 2614. 1456 1457 Campuzano, S., Ruiz-Valdepeñas Montiel, V., Torrente-Rodríguez, R. M., Reviejo, 1458 Á. J., Pingarrón, J. M. (2016) Electrochemical Biosensors for Food Security: 1459 Allergens and Adulterants Detection, 287-307. In book: Biosensors for Security and 1460 Bioterrorism Applications. Springer. 1461 1462 1463 Casaburi, A., Nasi, A., Ferrochino, L., Di Monaco, R., Mauriello, G., Villiani, F., Ercolini, D. (2011) Spoilage-related activity of Carnobacterium maltaromaticum 1464

1465	strains in air stored and vacuum packed meat. Applied and Environmental
1466	Microbiology 77 , 7382 - 7393.
1467	
1468	Casaburi, A., Piombino, P., Nychas, G-J., Villiani, F. (2015) Bacterial populations
1469	and the volatilome associated to meet spoilage. <i>Food Microbiology</i> 45 , 83 – 102.
1470	
1471	Cetó, X., Apetrei, C., Del Valle, M., Rodríguez-Méndez, M.L. (2014) Evaluation of
1472	red wines antioxidant capacity by means of a voltammetric e-tongue with an
1473	optimized sensor array. <i>Electrochimica Acta</i> 120 , 180 – 186.
1474	
1475	Cetó, X., Capdevila, J., Puig, A., del Valle, M. (2014) Cava wine authentication
1476	employing a voltammetric electronic tongue. <i>Electroanalysis</i> 26 , 1504 - 1512.
1477	
1478	Cetó, X., González-Calabuig, A., del Valle, M. (2015) Use of a Bioelectronic Tongue
1479	for the Monitoring of the Photodegradation of Phenolic Compounds. Electroanalysis
1480	27 , 225 – 233.
1481	
1482	Cetó, X., Voelcker, N. H., Prieto-Simón, B. (2016) Bioelectronic tongues: New trends
1483	and applications in water and food analysis. Biosensors and Bioelectronics 79, 608 -
1484	626.
1485	
1486	Chatterjee, D., Bhattacharjee, P., & Bhattacharyya, N. (2014). Development of
1487	methodology for assessment of shelf-life of fried potato wedges using electronic

1488 noses: Sensor screening by fuzzy logic analysis. Journal of Food Engineering, 133, 23–29. http://doi.org/10.1016/j.jfoodeng.2014.02.009 1489 1490 Chauhan, N., Maekawa, T., Kumar, D. (2017) Graphene based biosensors— 1491 Accelerating medical diagnostics to new-dimensions. Journal of Materials Research, 1492 1493 1 - 23. doi:10.1557/jmr.2017.91 1494 Chen, S., Zhang, R., Hao, L., Chen, W., Cheng, S. (2015) Profiling of Volatile 1495 Compounds and Associated Gene Expression and Enzyme Activity during Fruit 1496 Development in Two Cucumber Cultivars. PLoS One 10, e0119444. doi: 1497 1498 10.1371/journal.pone.0119444 1499 Chung, S., Park, T. S., Park, S. H., Kim, J. Y., Park, S., Son, D., Bae, Y. M., Cho S. I. 1500 (2015) Colorimetric Sensor Array for White Wine Tasting. Sensors 15, 18197 -1501 1502 18208. 1503 1504 Ciosek, P., Wróblewski W. (2007) Sensor arrays for liquid sensing – electronic tongue systems. *Analyst* **132**, 963 – 978. 1505 1506 Ciosek, P., Wróblewski, W. (2011) Potentiometric Electronic Tongues for Foodstuff 1507 and Biosample Recognition—An Overview. Sensors 11, 4688 - 4701. 1508 1509 Cleto, S., Matos, S., Kluskens, L., Vieira, M.J. (2012) Characterization of 1510 contaminants from a sanitized milk processing plant. PLoS One. 7, e40189. 1511

1512	
1513	Compagnone, D., Di Francia, G., Di Natale, C., Neri, G., Seeber, R., Tajani A. (2017)
1514	Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature. Sensors
1515	17 , 868; doi:10.3390/s17040868.
1516	
1517	Concina, I., Bornšek, M., Baccelliere, S., Falasconi, M., Gobbi, E., & Sberveglieri, G.
1518	(2010). Alicyclobacillus spp.: Detection in soft drinks by Electronic Nose. Food
1519	Research International, 43(8), 2108–2114.
1520	http://doi.org/10.1016/j.foodres.2010.07.012
1521	
1522	Concina, I., Falasconi, M., Gobbi, E., Bianchi, F. Musci, M., Mattarozzi, M., Pardo,
1523	M., Mangia, A., Careri, M., Sberveglieri, G., (2009) Early detection of microbial
1524	contamination in processed tomatoes by electronic nose. Food Control, 20, 873-880.
1525	
1526	Costa, C., Miertus, S. (1993) Trends in Electrochemical Biosensors: Proceedings of
1527	the Conference. World Scientific, Singapore.
1528	
1529	Cuartero, M., Carretero, A., Garcia, M. S., Ortuño, J. A. (2015) New Potentiometric
1530	Electronic Tongue for Analysing Teas and Infusions. <i>Electroanalysis</i> 27 , 782 – 788.
1531	
1532	Cynkar, W., Cozzolino, D., Dambergs, B., Janik, L., & Gishen, M. (2007). Feasibility
1533	study on the use of a head space mass spectrometry electronic nose (MS e_nose) to
1534	monitor red wine spoilage induced by Brettanomyces yeast. Sensors and Actuators, B:
1535	Chemical, 124(1), 167–171. http://doi.org/10.1016/j.snb.2006.12.017

1536	
1537	Dainty, R.H., Mackey, B.M., (1992) The relationship between phenotypic properties
1538	of bacteria from chill-stored meat and spoilage processes. Society of Applied
1539	Bacteriology Symposium Series 73 , 103S – 114S.
1540	
1541	Dalgaard, P. (1995) Qualitative and quantitative characterization of spoilage bacteria
1542	from packed fish. <i>International Journal of Food Microbiology</i> 26 , 319 – 333.
1543	
1544	Dalgaard, P., Madsen, H., Samieian, N., Emborg, J. (2006) Biogenic amine formation
1545	and microbial spoilage in chilled garfish (Belone belone) effect of modified
1546	atmosphere packaging and previous frozen storage. Journal of Applied Microbiology
1547	101 , 80 – 95.
1548	
1549	Dashdorj, D., Tripathi, V. K., Cho, S., Kim, Y., Hwang, I. (2016) Dry aging of beef.
1550	Journal of Animal Science and Technology 58 : 20. doi: 10.1186/s40781-016-0101-9
1551	Dave, D., Ghaly A. E. (2011). Meat Spoilage Mechanisms and Preservation
1552	Techniques: A Critical Review. American Journal of Agricultural and Biological
1553	Sciences 6, 486-510.
1554	
1555	de Blackburn, C. (2006) Food Spoilage Microorganisms, 1st Edition, Elsevier.
1556	
1557	Del Rio, E., Panizo-Moran, M., Prieto, M., Alonso-Calleja C., Capita, R. (2007)
1558	Effect of various chemical decontamination treatments on natural microflora and

- sensory characteristics of poultry. *International Journal of Food Microbiology* **76**,
- 1560 201 207.

1561

- del Valle M. (2010) Electronic Tongues Employing Electrochemical Sensors.
- 1563 *Electroanalysis* **22**, 1539 1555.
- del Valle, M. (2012) Sensor Arrays and Electronic Tongue Systems. International
- 1565 Journal of Electrochemistry 2012, Article ID 986025, 11 pages.
- 1566 http://dx.doi.org/10.1155/2012/986025
- del Valle, M. (2012) Sensor Arrays and Electronic Tongue Systems. International
- 1568 Journal of Electrochemistry 2012, Article ID 986025, 11 pages.
- 1569 doi:10.1155/2012/986025
- del Valle, M., Cetó, X., Gutierrez-Capitán, M. (2014) BioElectronic tongues: When
- the sensor array incorporate biosensors, pp. 211-246, in Multisensor Systems for
- 1572 Chemical Analysis: Materials and Sensors. Lvova, L., Kirsanov, D., Di Natale, C.,
- 1573 Legin, A. (Eds.) CRC Press.
- Dervisevic, M., Custiuc, E., Çevik, E., Durmus, Z., Senel, M., Durmus, A. (2015)
- 1575 Electrochemical biosensor based on REGO/Fe₃O₄ bionanocomposite interface for
- 1576 xanthine detection in fish sample. *Food Control* **57**, 402 410.
- Dervisevic, M., Custiuc, E., Çevik, E., Senel, M. (2015) Construction of novel
- 1578 xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for
- 1579 fish freshness detection. *Food Chemistry* **181**, 277 283.
- Di Rosa, A. R., Leone, F., Cheli, F., Chiofalo V. (2017) Fusion of electronic nose,
- 1581 electronic tongue and computer vision for animal source food authentication and
- quality assessment A review. *Journal of Food Engineering* **210**, 62 75.

- Dias, L. G., Veloso, A. C.A., Sousa, M. E. B. C., Estevinho, L., Machado, A. A. S. C.,
- Peres, A. M. (2015) A novel approach for honey pollen profile assessment using an
- electronic tongue and chemometric tools. *Analytica Chimica Acta* **900**, 36 45.
- Dikeman, M., Devine C., (Eds) (2014) Encyclopedia of Meat Sciences, 2nd edition,
- 1587 Elsevier.
- Domínguez, R. B., Moreno-Barón, L., Muñoz, R., Gutiérrez, J. M. (2014)
- Voltammetric Electronic Tongue and Support Vector Machines for Identification of
- 1590 Selected Features in Mexican Coffee. *Sensors* **14**, 17770 17785.
- Doulgeracki, A.I., Ercolini, D., Villani, F., Nychas, G.J. (2012) Spoilage microbiota
- associated to the storage of raw meat in different conditions. *International Journal of*
- 1593 *Food Microbiology* **157**, 130-141.
- Doyle, M.E. (2007) Microbial Food Spoilage Losses and Control Strategies: a brief
- review of the literature. Food Research Institute. Briefings. University of Winsconsin
- 1596 Madison. www.wisc.edu/fri.
- 1597 Dragone, R., Grasso, G., Muccini, M., Toffanin, S. (2017) Portable
- 1598 Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and
- 1599 Food Safety Diagnostics. Frontiers in Public Health 5, 80. doi:
- 1600 10.3389/fpubh.2017.00080
- 1601 dry-cured ham, J. Food Sci. 75 M360–M365.
- 1602 Eckert, C., Pein, M., Reimann, J., Breitkreutz, J. (2013) Taste evaluation of
- multicomponent mixtures using a human taste panel, electronic taste sensing systems
- and HPLC. Sensors and Actuators B: Chemical 182, 294-299.

- 1605 El Barbri, N., Llobet, E., El Bari, N., Correig, X., and Bouchikhi, B., 2008. Electronic
- Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for
- the Spoilage Classification of Red Meat. Sensors, 8, 142-156
- 1608 El-Nour, K. M. A., Salam, E. T. A., Soliman, H. M., Orabi A. S. (2017) Gold
- Nanoparticles as a Direct and Rapid Sensor for Sensitive Analytical Detection of
- Biogenic Amines. Nanoscale Research Letters 12, 231. DOI 10.1186/s11671-017-
- 1611 2014-z
- 1612 Ercolini, D., Russo, F., Nasi, A., Ferranti, P., Villiani, F. (2009) Mesophilic and
- psychrothropic bacteria from meat and their spoilage potential in vitro and in beef.
- Applied and Environmental Microbiology **75**, 1990-2001.
- 1615 Ercolini, D., Russo, F., Torrieri, E., Masi, P., Villani, F. (2006) Changes in the
- spoilage -related microbiota of beef during refrigerated storage under different
- packaging conditions. *Applied and Environmental Microbiology* **72**, 4663-4671.
- 1618 Esposto, S., Servili, M., Selvaggini, R., Ricc, I., San, V., & Perugia, C. (2006).
- Discrimination of virgin olive oil defects comparison of two evaluation methods:
- 1620 HS-SPME GC-MS and electronic nose, 315–318.
- 1621 Estelles-Lopez et al., 2017. An automated ranking platform for machine learning
- regression models for meat spoilage prediction using multi-spectral imaging and
- 1623 metabolic profiling. Food Research International, In press,
- 1624 http://dx.doi.org/10.1016/j.foodres.2017.05.013
- 1625 FAO. (2011) Global food losses and food waste Extent, causes and prevention.

1626

- Feng, C., Teuber, S., Gershwin, M.E. (2016) Histamine (Scombroid) Fish Poisoning:
- a Comprehensive Review. *Clinical Reviews in Allergy & Immunology* **50**, 64-69.

-	\sim	_
	h ,	u

- 1630 Fonnesbech Vogel, B., Venkateswaran, K., Satomi, M., Gram, L. (2005)
- 1631 Identification of Shewanella baltica as the most important H2S-producing species
- during iced storage of Danish marine fish. Appl Environ Microbiol. 71, 6689-97.

1633

- 1634 Frasco, M. F., Truta, L. A. A. N. A., Sales, M. G. F., Moreira, F. T. C. (2017)
- 1635 Imprinting Technology in Electrochemical Biomimetic Sensors. Sensors 17, 523.
- 1636 doi:10.3390/s17030523
- Gamati, S., Luong, J. H. T., Mulchandani, A. (1991) A Microbial Biosensor for
- 1638 Trimethylamine Using Pseudomonas aminovorans Cells. Biosensors and
- 1639 *Bioelectronics* **6**, 125-131
- Gancarz, M., Wawrzyniak, J., Gawrysiak-Witulska, M., Wiącek, D., Nawrocka, A.,
- Tadla, M., & Rusinek, R. (2017). Application of electronic nose with MOS sensors to
- 1642 prediction of rapeseed quality. Measurement, 103, 227–234.
- 1643 <u>http://doi.org/10.1016/j.measurement.2017.02.042</u>
- Ganjali, M. R., Nejad, F. G, Beitollahi, H., Jahani, S., Rezapour, M., Larijani B.
- 1645 (2017) Highly Sensitive Voltammetric Sensor for Determination of Ascorbic Acid
- 1646 Using Graphite Screen Printed Electrode Modified with ZnO/Al₂O₃ Nanocomposite.
- *International Journal of Electrochemical Science* **12**, 3231 3240.
- Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors
- and Actuators B, 19, 18–19. http://doi.org/10.1016/0925-4005(94)87085-3
- Gerstl, M., Joksch, M., Fafilek, G. (2013) Designing a Simple Electronic Tongue for
- 1651 Fermentation Monitoring. Journal of Analytical & Bioanalytical Techniques S12:
- 1652 002. doi: 10.4172/2155-9872.S12-002

- 1653 Ghaly, A.E., Dave, D., Budge, S., Brooks, M.S. (2010) Fish Spoilage Mechanisms
- and Preservation Techniques: Review. American Journal of Applied Sciences 7, 859 -
- 1655 877.
- Ghanbari, M., Ja,I, M., Domig, K.J., Kneifel, W. (2013) Seafood biopreservation by
- lactic acid bacteria A review. *LWT Food Science and Technology* **54**, 315 324.
- 1658 Ghasemi-Varnamkhasti M, Aghbashlo M (2014) Electronic nose and electronic
- mucosa as innovative instruments for real time monitoring of food dryers Trends in
- Food Science & Technology 38:158-166.
- 1661 Ghasemi-Varnamkhasti M, Mohtasebi S, Rodriguez-Mendez M, Lozano J, Razavi S,
- Ahmadi H, Apetrei C (2012) Classification of non-alcoholic beer based on aftertaste
- sensory evaluation by chemometric tools. Expert Systems with Applications 39,4315-
- 1664 4327.
- 1665 Ghasemi-Varnamkhasti, M., Rodríguez-Méndez, M. L., Mohtasebi, S. S., Apetrei, C.,
- Lozano, J., Ahmadi, H., Razavi, S. H., de Saja, J. A. (2012) Monitoring the aging of
- beers using a bioelectronic tongue. *Food Control* **25**, 216-224.
- 1668 Gil, L., Barat, J. M., Baigts, D., Martínez-Máñez, R., Soto, J., Garcia-Breijo, E.,
- Aristov, M. C., Toldrá, F., Llobet E. (2011) Monitoring of physical-chemical and
- 1670 microbiological changes in fresh pork meat under cold storage by means of a
- potentiometric electronic tongue. *Food Chemistry* **126**, 1261 1268.
- Gil-Sanchez, L., Soto, J., Martinez-Mañez, R., Garcia-Breijo, E., Ibañez, J., & Llobet,
- 1673 E. (2011). A novel humid electronic nose combined with an electronic tongue for
- assessing deterioration of wine. Sensors and Actuators, A: Physical, 171(2), 152–158.
- 1675 http://doi.org/10.1016/j.sna.2011.08.006.

- 1676 Gil-Sánchez, L., Soto, J., Martínez-Máñez, R., Garcia-Breijo, E., Ibáñez, J., Llobet, E.
- 1677 (2011) A novel humid electronic nose combined with an electronic tongue for
- assessing deterioration of wine. *Sensors and Actuators A* **171**, 152 158.
- 1679 Girón, J., Gil-Sánchez, L., García-Breijo, E., Pagána, M. J., Barat, J. M., Grau, R.
- 1680 (2015) Development of potentiometric equipment for the identification of altered dry-
- 1681 cured hams: A preliminary study. *Meat Science* 106, 1-5.
- Gobbi, E., Falasconi, M., Concina, I., Mantero, G., Bianchi, F., Mattarozzi, M., ...
- Sberveglieri, G. (2010). Electronic nose and Alicyclobacillus spp. spoilage of fruit
- 1684 juices: An emerging diagnostic tool. Food Control, 21(10), 1374–1382.
- 1685 <u>http://doi.org/10.1016/j.foodcont.2010.04.011</u>
- Gobbi, E., Falasconi, M., Concina, I., Mantero, G., Bianchi, F., Mattarozzi, M.,
- Musci, M., Sberveglieri, G., 2010. Electronic nose and Alicyclobacillus spp. spoilage
- of fruit juices: an emerging diagnostic tool. Food Control 21, 1374–1382.
- 1689 Gobbi, E., Falasconi, M., Zambotti, G., Sberveglieri, V., Pulvirenti, A., &
- Sberveglieri, G. (2015). Rapid diagnosis of Enterobacteriaceae in vegetable soups by
- a metal oxide sensor based electronic nose. Sensors and Actuators, B: Chemical,
- 207(PB), 1104–1113. http://doi.org/10.1016/j.snb.2014.10.051
- Godziszewska, J., et al., 2017. A simple method of the detection of pork spoilage
- caused by Rahnella aquatilis. LWT, IN press, DOI; 10.1016/j.lwt.2017.05.049.
- Gorton L. (2005) Biosensors and Modern Biospecific Analytical Techniques. Elsevier.
- Gram, L., Ravn, L., Rasch, M., Bruhn, J.B., Christensen, A.B., Givskov, M. (2002)
- 1697 Food spoilage interactions between food spoilage bacteria. *International Journal of*
- 1698 *Food Microbiology* **78**, 79-97.

- 1699 Grumezescu A. (Ed.) (2016) Nanobiosensors, Volume 8, 1st Edition. Academic Press,
- 1700 Amsterdam.
- Gu, X., Sun, Y., Tu, K., & Pan, L., 2017. Evaluation of lipid oxidation of Chinese-
- style sausage during processing and storage based on electronic nose. Meat Science,
- 1703 133, 1–9
- Guadarrama, A., Fernández, J. A., Íñiguez, M., Souto, J., & De Saja, J. A. (2000).
- 1705 Array of conducting polymer sensors for the characterisation of wines. Analytica
- 1706 Chimica Acta, 411(1–2), 193–200. http://doi.org/10.1016/S0003-2670(00)00769-8
- Gul, I., Sheeraz Ahmad, M., Saqlan Naqvi, S. M., Hussain, A., Wali, R., Farooqi, A.
- A., Ahmed, I. (2017) Polyphenol oxidase (PPO) based biosensors for detection of
- phenolic compounds: A Review. Journal of Applied Biology & Biotechnology 5, 072
- 1710 -085.
- Guo, X.S., Chen, Y.Q., Yang, X.L., Wang, L.R. (2005) Development of a novel
- electronic tongue system using sensor array based on polymer films for liquid phase
- testing. 2005 IEEE Engineering in Medicine and Biology, 27th Annual Conference,
- 1714 Shanghai, 259 262.
- Gupta, V.K., Jain, R., Radhapyari, K., Jadon, N., Agarwal, S. (2011) Voltammetric
- techniques for the assay of pharmaceuticals-a review. Analytical Biochemistry 408,
- 1717 179 96.
- 1718 Gutiérrez, J. M., Haddi, Z., Amari, A., Bouchikhi, B., Mimendia, A., Cetó, X., del
- 1719 Valle, M. (2013) Hybrid electronic tongue based on multisensor data fusion for
- discrimination of beers. Sensors and Actuators B: Chemical 177, 989 996.
- Gutiérrez, M., Llobera, A., Vila-Planas, J., Capdevila, F., Demming, S., Büttgenbach,
- 1722 S., Mínguez, S., Jiménez-Jorquera, C. (2010) Hybrid electronic tongue based on

- optical and electrochemical microsensors for quality control of wine. *Analyst* 135:
- 1724 1718 1725.
- Gutiérrez-Capitán, M., Vila-Planas, J., Llobera, A., Jiménez-Jorquera, C., Capdevila,
- 1726 F., Domingo, C., Puig-Pujol, A. (2014) Hybrid electronic tongues based on
- microsensors applied to wine quality control. IEEE Sensors 2014 Proceedings,
- 1728 Valencia, 2130 2133.
- Haddi, Z., El Barbri, N., Tahri, K., Bougrini, M., El Bari, N., Llobet, E., Bouchikhi,
- B. (2015) Instrumental assessment of red meat origins and their storage time using
- electronic sensing systems. *Analytical Methods* 7, 5193 5203.
- Hasan, A., Nurunnabi, M., Morshed, M., Paul, A., Polini, A., Kuila, T., Al Hariri, M.,
- Lee, Y., Jaffa, A. A. (2014) Recent Advances in Application of Biosensors in Tissue
- Engineering. *BioMed Research International* **2014**, Article ID 307519, 18 pages.
- Haugen, J.E., 2006. Rapid control of smoked Atlantic salmon (Salmo salar) quality by
- electronic nose: Correlation with classical evaluation methods. Sensors and Actuators
- 1737 B 116, 72–77.
- Hayashi, K., Yamanaka, M., Toko, K., Yamafuji, K. (1990) Multi-channel taste
- sensor using lipid membranes. Sensors and Actuators B: Chemical 2, 205 213.
- 1740 Hernandez-Macedo, M.L., Contreras-Castillo, C.J., Tsai, S.M., Da Cruz, S.H.,
- 1741 Sarantoupoulous, C.I.G.L., Padula, M., Dias, C.T.S. (2012) Gases and volatile
- 1742 compounds associated with microorganisms in blown pack spoilage of Brazilian
- vacuum-packed beef. *Letters in Applied Microbiology* **55**, 467-475.
- http://www.fao.org/docrep/014/mb060e/mb060e.pdf
- 1745 Huang, X. C., Guo, C. F., Yuan, Y. H., Luo, X. X., & Yue, T. L. (2015). Detection of
- medicinal off-flavor in apple juice with artificial sensing system and comparison with

- 1747 test panel evaluation and GC-MS. Food Control.
- 1748 http://doi.org/10.1016/j.foodcont.2014.11.037
- Huis int. Veld., J.H.J. (1996) Microbial and biochemical spoilage of food; an
- overview. *International Journal of Food Microbiology* **33**, 1-18.
- Hungaro, H.M., Caturla, M.Y.R., Horita, C.N., Furtado, M.M. Sant Ana, A.S. (2016)
- Blown pack spoilage in vacuum-packaged meat: a review on clostridia as causative
- agents, sources, detection methods, contributing factors and mitigation strategies.
- 1754 *Trends in Food Science and Technology*, **52**, 123 -138.
- Hurrell, R. (2010) Use of ferrous fumarate to fortify foods for infants and young
- children. Nutrition Reviews 68, 522-530.
- 1757 Iiyama, S., Miyazaki, Y., Hayashi, K., Toko, K., Yamafuji, K., Ikezaki, H., Sato, K.
- 1758 (1992) Highly sensitive detection of taste substances using monolayer lipid
- membranes. Sensors Materials 4, 21 27.
- 1760 Immohr, L. I., Hedfeld, C., Lang, A., Pein, M. (2017) Suitability of e-tongue sensors
- to assess taste-masking of pediatric liquids by different beverages considering their
- physico-chemical properties. *AAPS PharmSciTech* **18**, 330 340.
- 1763 Ispas, C. R., Crivat, G., Andreescu, S. (2012) Review: Recent Developments in
- 1764 Enzyme-Based Biosensors for Biomedical Analysis. *Analytical Letters* **45**, 168 186.
- 1765 Iulietto, M. F., Sechi, P., Borgogni, E., Cenci-Goga, B. T. (2015) Meat Spoilage: A
- 1766 Critical Review of a Neglected Alteration Due to Ropy Slime Producing Bacteria.
- 1767 Italian Journal of Animal Science 14, Article 4011,
- 1768 http://dx.doi.org/10.4081/ijas.2015.4011

1769

- Jaaskelainen, E., Hultman, J., Parshintsev, J., Riekkola, M-L., Bjorkroth, J. (2016)
- Development of spoilage bacterial community and volatile compounds in chilled beef
- 1772 under vacuum or high oxygen atmospheres. International Journal of Food
- 1773 *Microbiology* **223**, 25-32.
- Jaffres, E., Lalanne, V., Mace, S., Cornet, J., Cardinal, M., Serot, T., Dousset, X.
- Joffraud, J.J., (2011) Sensory characteristics of spoilage and volatile compounds
- associated with bacteria isolated from cooked and peeled tropical shrimps using
- 1777 SPME-GC-MS analysis. *International Journal of Food Microbiology* **147**, 195 202.
- Jaffres, E., Sohier, D., Leroi, F., Pilet, M.F., Prevost, H., Joffraud, J.J., Dousset, X.
- 1779 (2009) Study of the bacterial ecosystem in tropical cooked and peeled shrimps using a
- polyphasic approach. *International Journal of Food Microbiology* **131**, 20-29.
- Jain, H., Panchal, R., Pradhan, P., Patel, H., Pasha, T. (2010) Electronic tongue: A
- 1782 new taste sensor. International Journal of Pharmaceutical Sciences Review and
- 1783 *Research* **5**, 91 96.
- Jay, J.M. (1986) Microbial spoilage indicators and metabolites. In: Pierson, M.D.,
- 1785 Sterm, N.J. (Eds.) Food-Borne Microorganisms and their toxins: Developing
- 1786 Methodology, Marcel Dekker, Inc., New York, N.Y., pp. 219-240.
- Jorgenson, L.V., Huss, H.H, Dalgaard, P. (2000) The effect of biogenic amine
- 1788 production by single bacterial cultures and metabiosis on cold-smoked salmon.
- 1789 *Journal of Applied Microbiology* **89**, 920 934.
- Kalit, M. T., Marković, K., Kalit, S., Vahčić, N., Havranek, J. (2014) Electronic nose
- and electronic tongue in the dairy industry. *Mljekarstvo* **64**, 228 244.

- 1792 Kaneki, N., Miura, T., Shimada, K., Tanaka, H., Ito, S., Hotori, K., Akasaka, C.,
- Ohkubo, S., Asano, Y. (2004) Measurement of pork freshness using potentiometric
- 1794 sensor. *Talanta* **62**, 217 221.
- Kangas, M. J., Burks, R. M., Atwater, J., Lukowicz, R. M., Williams, P., Holmes, A.
- 1796 E. (2017) Colorimetric Sensor Arrays for the Detection and Identification of Chemical
- Weapons and Explosives. *Critical Reviews in Analytical Chemistry* **47**, 138 153.
- 1798 Karovičová, J., Kohajdová, Z. (2005) Biogenic Amines in Food. Chemical Papers 59,
- 1799 70 79.
- 1800 Keow, C. M., Bakar, F. A, Salleh, A. B., Heng, L. Y., Wagiran, R., Bean, L. S.
- 1801 (2007) An amperometric biosensor for the rapid assessment of histamine level in tiger
- prawn (*Penaeus monodon*) spoilage. Food Chemistry **105**, 1636 1641.
- 1803 Khan, M. R. R., Khalilian, A., Kang S. W. (2016) A High Sensitivity IDC-Electronic
- Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. Sensors 16,
- 1805 668. doi:10.3390/s16050668
- 1806 Khan, M. R. R., Khalilian, A., Kang, S.-W. (2016) A High Sensitivity IDC-Electronic
- Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes. Sensors 16,
- 1808 668. doi: 10.3390/s16050668.
- 1809 Khulal, U., Zhao, J., Hu, W., Chen, Q., 2017. Intelligent evaluation of total volatile
- basic nitrogen (TVB-N) contentin chicken meat by an improved multiple level data
- 1811 fusion model. Sensors and Actuators B 238 (2017) 337–345
- 1812 Kiani S, Minaei S, Ghasemi-Varnamkhasti M (2016) Fusion of artificial senses as a
- robust approach to food quality assessment Journal of Food Engineering 171:230-239.
- 1814 Kodogiannis, V.S., 2017. Application of an Electronic Nose Coupled with Fuzzy-
- 1815 Wavelet Network for the Detection of Meat Spoilage. Food Bioprocess Technology,
- 1816 10,730–749.

- 1817 Korkeala, H., Suortti, T., MäkeläRopy, P. (1998) Slime formation in vacuum-packed
- 1818 cooked meat products caused by homofermentative lactobacilli and a *Leuconostoc*
- species. International Journal of Food Microbiology, 7, 339-347.
- 1820 Koutsoumanis, K., Nychas, G.J.E. (2000) Application of a systematic experimental
- procedure to develop a microbial model for rapid fish shelf-life predictions.
- 1822 International Journal of Food Microbiology, 60, 171 -174.
- 1823 Kress-Rogers, E., D'Costa, E. J., Sollars, J. E., Gibbs, P. A., Turner, A. P. F. (1993)
- Measurement of meat freshness in situ with a biosensor array. Food Control 4, 149 –
- 1825 154.
- 1826 Kumar, H., Neelam, R. (2016) Enzyme-based electrochemical biosensors for food
- safety: a review. *Nanobiosensors in Disease Diagnosis* **5**, 29 39.
- Kumar, S., Ghosh, A., Tudu, B., Bandyopadhyay, R. (2017) An equivalent electrical
- network of an electronic tongue: A case study with tea samples, 2017 ISOCS/IEEE
- 1830 International Symposium on Olfaction and Electronic Nose (ISOEN), Montreal, QC,
- 1831 Canada, 1 3.
- 1832 Kvasničk, F., Voldřich, M. (2000) Determination of fumaric acid in apple juice by on-
- line coupled capillary isotachophoresis—capillary zone electrophoresis with UV
- detection. *Journal of Chromatography A* **891**, 175 181.
- Latorre-Moratalla, M.L., Bover-Cidl, S., Bosch-Fuste, J., Vidal-Carou, M.C. (2012)
- 1836 Influence of technological conditions of sausage fermentation on the aminogenic
- activity of L. curvatus CTC273. *Food Microbiology* 29, 43 -48.
- Laursen, B.G., Bay, L., Cleenwerck, I., Vancanneyt, M., Swings, J., Dalgaard, P.,
- Leisner, J.J. (2005) Carnobacterium divergens and Carnobacterium maltaromaticum

- 1840 as spoilers or protective cultures in meat and seafood: phenotypic and genotypic
- characterization. *Systematic and Applied Microbiology* **28**, 151 164.
- Leca-Bouvier, B., Blum, L. J. (2005) Biosensors for Protein Detection: A Review.
- 1843 *Analytical Letters* **38**, 1491 1517.
- Ledenbach, L.H., and Marshall, R.T. (2009) Microbiological Spoilage of Dairy
- Products. In W.H. Sperber, M.P. Doyle (eds.), Compendium of the Microbiological
- 1846 Spoilage of Foods and Beverages, Food Microbiology and Food Safety, Springer
- 1847 Verlag New York.
- Leduc, F., Tournayre, P., Kondjoyan, N., Mercier, F., Malle, P., Kol, O., Berdagué,
- J.L., Duflos, G. (2012) Evolution of volatile odorous compounds during the storage of
- European seabass (Dicentrarchus labrax). Food Chemistry, 131, 1304-1311.
- Legin, A., Rudnitskaya, A., Clapham, D., Seleznev, B., Lord, K. & Vlasov, Y. (2004)
- 1852 Electronic tongue for pharmaceutical analytics: quantification of tastes and masking
- effects. *Analytical and Bioanalytical Chemistry* **380**, 36 45.
- 1854
- Legin, A., Rudnitskaya, A., Di Natale, C., Mazzone, E., D'Amico, A. (2000)
- Application of electronic tongue for qualitative and quantitative analysis of complex
- 1857 liquid media. *Sensors and Actuators B: Chemical* **65**, 232 234.
- Lerma-García, M. J., Cerretani, L., Cevoli, C., Simó-Alfonso, E. F., Bendini, A., &
- Toschi, T. G. (2010). Use of electronic nose to determine defect percentage in oils.
- 1860 Comparison with sensory panel results. Sensors and Actuators, B: Chemical, 147(1),
- 1861 283–289. http://doi.org/10.1016/j.snb.2010.03.058
- Li, C., Heinemann, P., & Sherry, R. (2007). Neural array and Bayesian array fusion
- models to fuse electronic nose and surface acoustic wave sensor data for apple defect

- 1864 detection. Sensors and Actuators, B: Chemical, 125(1), 301–310.
- 1865 <u>http://doi.org/10.1016/j.snb.2007.02.027</u>.
- 1866 Lim, J. W., Ha, D., Lee, J., Lee, S. K., Kim T. (2015) Review of
- 1867 Micro/Nanotechnologies for Microbial Biosensors. Frontiers in Bioengineering and
- 1868 *Biotechnology* **3**, 61. doi: 10.3389/fbioe.2015.00061
- Liu, Q., Wu, C., Cai, H., Hu, N., Zhou, J., Wang, P. (2014) Cell-Based Biosensors
- and Their Application in Biomedicine. *Chemical Reviews* **114**, 6423 6461.
- Lopez-Caballero, M.E., Sanchez-Fernandez, J.A., Moral, A., (2001) Growth and
- metabolic activity of Shewanella putrefaciens maintained under different CO_2 and O_2
- concentrations. *International Journal of Food Microbiology* 64, 277-287.
- Lovdal, T. (2015) The microbiology of cold salmon. Food Control 54, 360 373.
- Lozano, J. (2006) New technology in sensing odours: from human to artificial noses.
- 1876 In: Teixeira da Silva JA (Ed) (2006) Floriculture, Ornamental and Plant
- 1877 Biotechnology: Advances and Topical Issues (1st Edn, Vol IV), Global Science
- 1878 Books, London, pp 152-161
- Lozano, J., Álvarez, F., Santos, J.P., Horrillo, C., (2011). Detection of acetic acid in
- wine by means of an electronic nose. In: AIP Conference Proceedings ISOEN11, pp.
- 1881 176–177.
- Lozano, J., Santos, J. P., Gutiérrez, J., & Horrillo, M. C. (2007). Comparative study of
- sampling systems combined with gas sensors for wine discrimination. Sensors and
- Actuators B: Chemical, 126(2), 616–623. http://doi.org/10.1016/j.snb.2007.04.018
- Lozano, J., Santos, J. P., Suarez, J. I., Cabellos, M., Arroyo, T., & Horrillo, C. (2015).
- 1886 Automatic Sensor System for the Continuous Analysis of the Evolution of Wine.

- 1887 American Journal of Enology and Viticulture, 66(2), 148–155.
- 1888 <u>http://doi.org/10.5344/ajev.2014.14103</u>
- 1889 Luten J.B. (2006) Seafood Research from Fish to Dish: Quality, Safety and
- 1890 Processing of Wild and Farmed Fish. Wageningen Academic Pub.
- Lvova, L., Di Natale, C., Paolesse, R. (2017) Electronic tongue based on porphyrins
- for Apulian red wines defects detection, 2017 ISOCS/IEEE International Symposium
- on Olfaction and Electronic Nose (ISOEN), Montreal, QC, Canada, 1 2.
- Lytou, A.E., Panagou, Z.E., Nychas, G.J.E (2017) Effect of different marinating
- 1895 conditions on the evolution of spoilage microbiota and metabolomic profile of
- chicken breast fillets. Food Microbiol. 66, 141 -179.
- Mace, S., Cornet, J., Chevalier, F., Cardinal, M., Pilet, M-F., Dousset, X., Joffrau, J-J.
- 1898 (2012) Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks
- 1899 stored under vacuum or modified atmosphere packaging combining conventional
- methods and PCR-TTGE. *Food Microbiology* **30**, 164-172.
- 1901 Macías, M., Manso, A., Orellana, C., Velasco, H., Caballero, R., & Chamizo, J.
- 1902 (2012). Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable
- 1903 Electronic Nose. Sensors, 13(1), 208–220. http://doi.org/10.3390/s130100208
- 1904 Maffei M.E. (2010) Sites of synthesis, biochemistry and functional role of plant
- volatiles. *South African Journal of Botany* **76**, 612 631.
- 1906 Magan, N., & Evans, P. (2000). Volatiles as an indicator of fungal activity and
- differentiation between species, and the potential use of electronic nose technology
- 1908 for early detection of grain spoilage. Journal of Stored Products Research.
- 1909 http://doi.org/10.1016/S0022-474X(99)00057-0

- 1910 Magan, N., Pavlou, A., & Chrysanthakis, I. (2001). Milk-sense: A volatile sensing
- 1911 system recognizes spoilage bacteria and yeasts in milk. Sensors and Actuators, B:
- 1912 Chemical, 72(1), 28–34. http://doi.org/10.1016/S0925-4005(00)00621-3
- 1913 Mancini, R. A., & Hunt, M. C. (2005). Current research in meat colour. Meat Science,
- 1914 71, 100-121.
- 1915 Marín, S., Vinaixa, M., Brezmes, J., Llobet, E., Vilanova, X., Correig, X., ... Sanchis,
- 1916 V. (2007). Use of a MS-electronic nose for prediction of early fungal spoilage of
- 1917 bakery products. International Journal of Food Microbiology, 114(1), 10-16.
- 1918 http://doi.org/10.1016/j.ijfoodmicro.2006.11.003
- 1919 Martin, A., Benito, M.J., Aranda, E., Ruiz-Moyano, S., Cordoba, J.J., Cordoba, M.J.
- 1920 (2010) Characterization by volatile compounds of microbial deep spoilage in Iberian
- 1921 Martínez-Bisbal, M. C., Loeff, E., Olivas, E., Carbó, N., García-Castillo, F. J., López-
- 1922 Carrero, J., Tormos, I., Tejadillos, F. J., Berlanga, J. G., Martínez-Máñez, R., Alcañiz,
- 1923 M., Soto, J. (2017) A Voltammetric Electronic Tongue for the Quantitative Analysis
- of Quality Parameters in Wastewater. *Electroanalysis* **29**, 1147 1153.
- 1925 Matysik F. M. (Ed.) (2017) Trends in Bioelectroanalysis. Springer International
- 1926 Publishing AG.
- 1927 McGrath, T.F., Elliott, C.T., Fodey, T.L. (2012) Biosensors for the analysis of
- 1928 microbiological and chemical contaminants in food. Analytical and Bioanalytical
- 1929 *Chemistry* **403**, 75 92.
- 1930 Medina-Plaza, C., García-Hernandez, C., de Saja, J.A., Fernandez-Escudero, J.A.,
- 1931 Barajas, E., Medrano, G., García-Cabezon, C., Martin-Pedrosa, F., Rodriguez-
- 1932 Mendez, M.L. (2015) The advantages of disposable screen-printed biosensors in a

- bioelectronic tongue for the analysis of grapes. LWT Food Science and Technology
- **62**, 940 947.
- 1935 Mednova, O., Kirsanov, D., Rudnitskaya, A., Kilmartin, P., Legin, A. (2009)
- 1936 Application Of A Potentiometric Electronic Tongue For The Determination Of Free
- 1937 SO₂ And Other Analytical Parameters In White Wines From New Zealand. AIP
- 1938 *Conference Proceedings* **1137**, 263. doi: http://dx.doi.org/10.1063/1.3156521
- 1939 Mehrotra, P. (2016) Biosensors and their applications A review. *Journal of Oral*
- 1940 *Biology and Craniofacial Research* **6**, 153 159.
- Mello, L. D., Kubota, L. T. (2002) Review of the use of biosensors as analytical tools
- in the food and drink industries. *Food Chemistry* **77**, 237 256.
- 1943 Membre, J-M., Dagnas, S. (2016) Modelling microbial responses: application to food
- spoilage. *Modelling in Food Microbiology* **2016**, 33 60.
- 1945 Mikš-Krajnik, M., Yoon, Y.J., Ukuku, D.O., Yuk, H.G. (2016) Volatile chemical
- spoilage indexes of raw Atlantic salmon (Salmo salar) stored under aerobic condition
- in relation to microbiological and sensory shelf lives. Food Microbiol. 53(Pt B), 182-
- 1948 91.
- 1949 Mimendia, A., Gutiérrez, J. M., Leija, L., Hernández, P. R., Favari, L., Munoz, R., del
- 1950 Valle, M. (2010) A review of the use of the potentiometric electronic tongue in the
- monitoring of environmental systems. *Environmental Modelling & Software* **25**, 1023
- -1030.
- 1953 Monošík, R., Streďanský, M., Šturdík, E. (2012) Biosensors classification,
- characterization and new trends. *Acta Chimica Slovaca* **5**, 109 120.

- 1955 Mossel, D.A.A., Corry, J.E.L., Struijk, C.B. and Baird, R.M. (1995) Essentials of the
- 1956 Microbiology of Foods: a textbook for advanced studies. Wiley, England, pp. 175 –
- 1957 214.
- 1958 Murugaboopathi, G., Parthasarathy, V., Chellaram, C., Prem Anand, T.,
- 1959 Vinurajkumar, S. (2013) Applications of Biosensors in Food Industry. *Biosciences*
- 1960 *Biotechnology Research Asia* **10**, 711 714.
- 1961 Mutlu, M. (2016) Biosensors in Food Processing, Safety, and Quality Control. CRC
- 1962 Press.
- 1963 Muzaddadi, A.U., Devatkal, S., Oberoi, H.S. (2016) Seafood Enzymes and Their
- 1964 Application in Food Processing Chapter 9. Agro-Industrial Wastes as Feedstock for
- 1965 Enzyme Production. Apply and Exploit the Emerging and Valuable Use Options of
- 1966 Waste Biomass, 201 232.
- 1967 Nagle, H. T. J. W. G. T. C. P. S. S. S. (2006). Handbook of machine olfaction:
- electronic nose technology. Aging (Vol. 7). http://doi.org/10.1002/3527601597.
- Naila, A., Flint, S., Fletcher, G., Bremer, P., Meerdink, G. (2010) Control of Biogenic
- 1970 Amines in Food—Existing and Emerging Approaches. Journal of Food Science 75,
- 1971 R139 R150.
- 1972 Narsaiah, K., Jha, S. N., Bhardwaj, R., Sharma, R., Kumar, R. (2012) Optical
- biosensors for food quality and safety assurance—a review. *Journal of Food Science*
- 1974 *and Technology* **49**, 383 406.
- 1975 Ndagijimana, M., Chaves-Lopez, C., Corsetti, A., Tofalo, R., Sergi, M., Paparella, A.
- 1976 (2008) Growth and metabolites production by Penicillium brevicompactum in
- 1977 yoghurt, Int. J. Food Microbiol. 127 276–283.

- 1978 Nelson, D. L., Cox, M. M. (2017) Lehninger Principles of Biochemistry, 7th Edition,
- 1979 Macmillan Higher Education, New York.
- 1980 Nychas, G.J.E., Skandamis, P.N., Tassou, C.C., Koutsoumanis, K.P., (2008) Meat
- spoilage during distribution. *Meat Science* **78**, 77 -89.
- Oehlenschlager, J. (2014) Seafood quality assessment. In Boziaris, I.S. (Ed.) Seafood
- 1983 Processing. Technology, Quality and Safety. IFST Advances in Food Science Series,
- 1984 Wiley Blackwell, 361 386.
- Otto, M., Thomas, J. D. R. (1985) Model studies on multiple channel analysis of free
- magnesium, calcium, sodium, and potassium at physiological concentration levels
- with ion-selective electrodes. *Analytical Chemistry* **57**, 2647 2651.
- 1988 Paarup, T., Nieto, J. C., Peláez, C., Reguera, J. I. (1999) Microbiological and physico-
- 1989 chemical characterisation of deep spoilage in Spanish dry-cured hams and
- 1990 characterisation of isolated Enterobacteriaceae with regard to salt and temperature
- tolerance. *European Food Research and Technology* **209**, 366 371.
- Paludan-Muller, C., Dalgaard, P., Huss, H.H., Gram, L. (1998) Evaluation of the role
- 1993 of Carnobacterium piscicola in spoilage of vacuum- and modified-atmosphere-
- 1994 packed cold-smoked salmon stored at 5°C. International Journal of Food
- 1995 *Microbiology*, **39**, 155 168.
- 1996 Panigrahi, S., Balasubramanian, S., Gu, H., Logue, C., Marchello, M., 2006a. Neural-
- network-integrated electronic nose system for identification of spoiled beef. LWT 39,
- 1998 135–145.
- 1999 Panigrahi, S., Balasubramanian, S., Gu, H., Logue, C., Marchello, M., 2006b. Design
- and development of a metal oxide based electronic nose for spoilage classification of
- beef. Sensors and Actuators B 119, 2–14

- Papadopoulou, O.S., Panagou, E.Z., Mohareb, F.R., Nychas, G.E., 2013. Sensory and
- 2003 microbiological quality assessment of beef fillets using a portable electronic nose in
- tandem with support vector machine analysis. Food Research International 50, 241–
- 2005 249.
- 2006 Park, Y. W., Kim, S. M., Lee, J. Y., Jang, W. (2015) Application of biosensors in
- smart packaging. *Molecular & Cellular Toxicology* **11**, 277 285.
- 2008 Parlapani, F.F., Mallouchos, A., Haroutounian, S.A., Boziaris, I.S. (2017)
- 2009 Microbiological spoilage and investigation of volatile profile during storage of sea
- bream fillets under various conditions. *International Journal of Food Microbiology*
- **189**, 153 163.
- Parpalani, F.F., Boziaris, I.S. (2016) Monitoring of spoilage and determination of
- 2013 microbial communities based on 16S rRNA gene sequence analysis of whole sea
- bream stored at various temperatures. LWT Food Science and Technology, 66, 553 –
- 2015 559.
- 2016 Parpalani, F.F., Haroutounian, S.A., Nychas, G.J., Boziaris, I.S. (2015)
- 2017 Microbiological spoilage and volatiles production of gutted European sea bass stored
- 2018 under air and commercial modified atmosphere package at 2°C. Food Microbiology
- **50**, 44 53.
- 2020 Parpalani, F.F., Meziti, A., Kormas, K.Ar., Boziaris., I.S. (2013) Indigenous and
- spoilage microbiota of farmed sea bream stored on ice identified by phenotypic and
- 2022 16S rRNA gene analysis. Food Microbiology **33**, 85 89.
- Patel, P. D. (2006) Overview of affinity biosensors in food analysis. *Journal of AOAC*
- 2024 International 89, 805-818.

- Pathange, L. P., Mallikarjunan, P., Marini, R. P., O'Keefe, S., & Vaughan, D. (2006).
- Non-destructive evaluation of apple maturity using an electronic nose system. Journal
- 2027 of Food Engineering, 77(4), 1018–1023.
- 2028 http://doi.org/10.1016/j.jfoodeng.2005.08.034
- Pearce, T. C., Schiffman, S. S., Nagle, H. T., Gardner, J. W. (2006) Handbook of
- 2030 *Machine Olfaction: Electronic Nose Technology.* John Wiley & Sons.
- Pein, M., Kirsanov, D., Ciosek, P., del Valle, M., Yaroshenko, I., Wesoły, M.,
- Zabadaj, M., Gonzalez-Calabuig, A., Wróblewski, W., Legin, A. (2015) Independent
- 2033 comparison study of six different electronic tongues applied for pharmaceutical
- analysis. *Journal of Pharmaceutical and Biomedical Analysis* **114**, 321-329.
- 2035 Pennacchia, C., Ercolini, D., Villiani, F. (2011) Spoilage-related microbiota
- associated with chilled beef stored in air or vacuum pack. Food Microbiology 28, 84 –
- 2037 93.
- 2038 Pérez-López, B., Merkoçi, A. (2011) Nanomaterials based biosensors for food
- analysis applications. *Trends in Food Science & Technology* **22**, 625-639.
- 2040 Peris, M., Escuder-Gilabert, L. (2013) On-line monitoring of food fermentation
- processes using electronic noses and electronic tongues: A review. *Analytica Chimica*
- 2042 *Acta* **804**, 29 36.
- Peris, M., Escuder-Gilabert, L. (2013). On-line monitoring of food fermentation
- processes using electronic noses and electronic tongues: a review. Analytica Chimica
- 2045 Acta, 804(4), 29-36.
- 2046 Perry, N. (2012) Dry aging beef. International Journal of Gastronomy and Food
- 2047 *Science* 1, 78 80.

- 2048 Pinu, F., 2016. Early detection of food pathogens and food spoilage microorganisms:
- Application of metabolomics. *Trends in Food Science & Technology* 54, 213-215.
- 2050 Pioggia, G., Di Francesco, F., Marchetti, A., Ferro, M., Leardi, R., Ahluwalia, A.
- 2051 (2007) A composite sensor array impedentiometric electronic tongue: Part II.
- 2052 Discrimination of basic tastes. *Biosensors and Bioelectronics* **22**, 2624 2628.
- 2053 Piriya, V. S. A., Joseph, P., Daniel, S. C. G. K., Lakshmanan, S., Kinoshita, T.,
- 2054 Muthusamy, S. (2017) Colorimetric sensors for rapid detection of various analytes.
- 2055 Materials Science & Engineering. C, Materials for Biological Applications 78, 1231 -
- 2056 1245.
- 2057 Pividori, M. I., Alegret S. (2010) Electrochemical biosensors for food safety.
- 2058 *Contributions to Science* **6**, 173 191.
- 2059 Poltronieri, P., Mezzolla, V., Primiceri, E., Maruccio G. (2014) Biosensors for the
- 2060 Detection of Food Pathogens. *Foods* **3**, 511 526.
- 2061 Prodromidis, M. I., Karayannis, M. I. (2002) Enzyme Based Amperometric
- Biosensors for Food Analysis. *Electroanalysis* **14**, 241 261.
- Quigely, L., O'Sullivan, O., Stanton, C., Beresford, T.P., Ross, R.P., Fitzgerals, G.F.,
- 2064 Cotter, P.D. (2013) The complex microbiota of raw milk. FEMS Microbiol Rev. 37,
- 2065 664 -698.
- 2066 Ragazzo-Sanchez, J. A., Chalier, P., Chevalier-Lucia, D., Calderon-Santoyo, M., &
- 2067 Ghommidh, C. (2009). Off-flavours detection in alcoholic beverages by electronic
- 2068 nose coupled to GC. Sensors and Actuators, B: Chemical, 140(1), 29–34.
- 2069 http://doi.org/10.1016/j.snb.2009.02.061

- 2070 Rajamaki, T., Alakomi, H., Ritvanen, T., Skytta, E., Smolander, M., Ahvenainen, R.,
- 2071 2006. Application of an electronic nose for quality assessment of modified
- atmosphere packaged poultry meat. Food Control 17, 5–13.
- 2073 Ramirez-Guizar, S., Sykes, H., Perry, J.D., Schwalbe, E.C., Stanforth, S.P., Perez-
- Perez, C.I.M., Dean, J.R. (2017) A chromatographic approach to distinguish Gram-
- 2075 positive from Gram-negative bacteria using exogenous volatile organic compound
- 2076 metabolites. *Journal of Chromatography A* **1501**, 79-88.
- 2077 Remenant, B., Jaffres, E., Dousset, X., Pilet, M-F., Zagorec, M. (2015) Bacterial
- spoilers of food: Behaviour, fitness and functional properties. Food Microbiology 45,
- 2079 45 -53.
- 2080 Riul Jr., A., dos Santos Jr., D. S., Wohnrath, K., Di Tommazo, R., Carvalho, A. C. P.
- 2081 L. F., Fonseca, F. J., Oliveira Jr., O. N., Taylor, D. M., Mattoso, L. H. C. (2002)
- 2082 Artificial Taste Sensor: Efficient Combination of Sensors Made from Langmuir-
- 2083 Blodgett Films of Conducting Polymers and a Ruthenium Complex and Self-
- Assembled Films of an Azobenzene-Containing Polymer. *Langmuir* **18**, 239 245.
- 2085 Rodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-
- 2086 Assad, G., Martínez-Chapa, S. O., Barceló, D., Parra, R. (2015) Laccase-based
- biosensors for detection of phenolic compounds. Trends in Analytical Chemistry 74,
- 2088 21 45.
- 2089 Rodriguez-Méndez, M. L., Medina-Plaza, C., García-Hernández, C., de Saja, J. A.,
- Fernández-Escudero J. A., Barajas-Tola, E., Medrano G. (2014) Analysis of grapes
- and wines using a voltammetric bioelectronic tongue. Correlation with the phenolic
- and sugar content. *IEEE Sensors 2014 Proceedings*, Valencia, 2139 2142.

- 2093 Rodríguez-Méndez, M.L., Apetrei, C., de Saja, J.A. (2008) Evaluation of the
- 2094 polyphenolic content of extra virgin olive oils using an array of voltammetric sensors.
- 2095 *Electrochimica Acta* **53**, 5867 5872.
- 2096 Rodríguez-Méndez, M.L., Gay, M., Apetrei, C., de Saja, J.A. (2009) Biogenic amines
- and fish freshness assessment using a multisensor system based on voltammetric
- 2098 electrodes. Comparison between CPE and screen-printed electrodes. *Electrochimica*
- 2099 *Acta* **54**, 7033 7041.
- 2100 Rogers, K. R. (2000) Principles of affinity-based biosensors. Molecular
- 2101 *Biotechnology* **14**, 109 129.
- 2102 Rotariu, L., Lagarde, F., Jaffrezic-Renault, N., Bala, C. (2016) Electrochemical
- 2103 biosensors for fast detection of food contaminants –trends and perspective. TrAC
- 2104 Trends in Analytical Chemistry 79, 80 87.
- 2105 Rudnitskaya, A., Polshin, E., Kirsanov, D., Lammertyn, J., Nicolai, B., Saison, D.,
- Delvaux, F. R., Delvaux, F., Legin, A. (2009) Instrumental measurement of beer taste
- 2107 attributes using an electronic tongue. *Analytica Chimica Acta* **646**, 111 118.
- 2108 Rudnitskaya, A., Schmidtke, L. M., Reis, A., Domingues, M. R., Delgadillo, I.,
- Debus, B., Kirsanov, D., Legin, A. (2017) Measurements of the effects of wine
- 2110 maceration with oak chips using an electronic tongue. *Food Chemistry* **229**, 20 27.
- 2111 Ruiz-Rico, M., Fuentes, A., Masot, R., Alcañiz, M., Fernández-Segovia, I., Barat, J.
- 2112 M. (2013) Use of the voltammetric tongue in fresh cod (Gadus morhua) quality
- 2113 assessment. *Innovative Food Science and Emerging Technologies* **18**, 256 263.
- Sade, E., Penttinen, K., Bjorkroth, J., Hultman, J. (2017) Exploring lot-to-lot variation
- 2115 in spoilage bacterial communities on commercial modified atmosphere packaged
- 2116 beef. *Food Microbiology* **62**, 147 152.

- Sahu, M., Bala, S. (2017) Food Processing, Food Spoilage and their Prevention: An
- 2118 Overview. *International Journal of Life-Sciences Scientific Research* **3**, 753 759.
- 2119 Santos, J. P., & Lozano, J. (2015). Real time detection of beer defects with a hand
- 2120 held electronic nose. In Proceedings of the 2015 10th Spanish Conference on Electron
- Devices, CDE 2015. Institute of Electrical and Electronics Engineers Inc.
- 2122 Santos, J. P., Fernández, M. J., Fontecha, J. L., Lozano, J., Aleixandre, M., García,
- 2123 M., et al., Horrillo, M. C. (2005). SAW sensor array for wine discrimination. Sensors
- 2124 and Actuators B: Chemical, 107(1), 291–295.
- 2125 http://doi.org/10.1016/j.snb.2004.10.013.
- Santos, J. P., Lozano, J., Aleixandre, M., Arroyo, T., Cabellos, J. M., Gil, M., &
- 2127 Horrillo, M. del C. (2010). Threshold detection of aromatic compounds in wine with
- 2128 an electronic nose and a human sensory panel. Talanta, 80(5), 1899–906.
- 2129 <u>http://doi.org/10.1016/j.talanta.2009.10.041</u>
- 2130 Sarnoski, P.J., Jahncke, M.L., O'Keefe, S.F., Mallikarjunan, P., & Flick, G.J.
- 2008. Journal of Aquatic Food Product Technology, 17(3), 234-252.
- 2132 Schmidt, V.S.J., Kaufmann, V., Kulozik, U., Scherer, S., Wenning, M. (2012)
- 2133 Microbial biodiversity, quality and shelf life of microfiltered and pasteurized
- extended shelf life (ESL) milk from Germany, Austria and Switzerland. *International*
- 2135 *Journal of Food Microbiology* **154**, 1-9.
- 2136 Schmidtke, L. M., Rudnitskaya, A., Saliba, A. J., Blackman, J. W., Scollary, G. R.,
- 2137 Clark, A. C., Rutledge, D. N., Delgadillo, I., Legin A. (2010) Sensory, Chemical, and
- 2138 Electronic Tongue Assessment of Micro-oxygenated Wines and Oak Chip
- 2139 Maceration: Assessing the Commonality of Analytical Techniques. Journal of
- 2140 *Agricultural and Food Chemistry* **58**, 5026 5033.

- Scognamiglio, V., Arduini, F., Palleschi, G., Rea, G. (2014) Biosensing technology
- for sustainable food safety. *Trends in Analytical Chemistry* 62, 1 10.
- Scognamiglio, V., Rea, G., Arduini, F., Palleschi, G. (Eds.) (2016) Biosensors for
- 2144 Sustainable Food New Opportunities and Technical Challenges. Comprehensive
- 2145 Analytical Chemistry, Volume 74, 3-432, Elsevier BV.
- Sehra, G., Cole, M., Gardner, J. W. (2004) Miniature taste sensing system based on
- 2147 dual SH-SAW sensor device: an electronic tongue. Sensors and Actuators B:
- 2148 *Chemical* **103**, 233 239.
- 2149 Shah, J. S. (2013) An Electronic tongue for core taste identification based on
- 2150 conductometry. International Journal of Engineering Research and Applications 3,
- 2151 961 963
- Shao, Y., Wang, J., Wu, H., Liu, J., Aksay. I. A., Lina, Y. (2010) Graphene Based
- Electrochemical Sensors and Biosensors: A Review. *Electroanalysis* **22**, 1027 1036.
- Sharma, P., Ghosh, A., Tudu, B., Sabhapondit, S., Baruah, B. D., Tamuly, P., ...
- 2155 Bandyopadhyay, R. (2015). Monitoring the fermentation process of black tea using
- 2156 QCM sensor based electronic nose. Sensors and Actuators, B: Chemical, 219, 146-
- 2157 157. http://doi.org/10.1016/j.snb.2015.05.013
- 2158 Si, R. W., Zhai, D. D., Liao, Z. H., Gao, L., Yong, Y. C. (2015) A whole-cell
- 2159 electrochemical biosensing system based on bacterial inward electron flow for
- fumarate quantification. *Biosensors and Bioelectronics* **68**, 34 40.
- Sliwinska, M., Wisniewska, P., Dymerski, T., Namiesnik, J., Wardencki, W. (2014)
- Food Analysis Using Artificial Senses. *Journal of Agricultural and Food Chemistry*
- **62**, 1423 1448.

- 2164 Smyth, H., Cozzolino, D. (2013) Instrumental methods (spectroscopy, electronic nose,
- and tongue) as tools to predict taste and aroma in beverages: advantages and
- 2166 limitations. *Chemical Reviews* **113**, 1429 1440.
- 2167 Song, H. S., Jin, H. J., Ahn, S. R., Kim, D., Lee, S. H., Kim, U. K., Simons, C. T.,
- 2168 Hong, S., Park, T. H. (2014) Bioelectronic tongue using heterodimeric human taste
- 2169 receptor for the discrimination of sweeteners with human-like performance. ACS
- 2170 *Nano* **8**, 9781 9789.
- 2171 Song, H. S., Jin, H. J., Ahn, S. R., Kim, D., Lee, S. H., Kim, U. K., Simons, C. T.,
- 2172 Hong, S., Park, T. H. (2014) Bioelectronic Tongue Using Heterodimeric Human Taste
- 2173 Receptor for the Discrimination of Sweeteners with Human-like Performance. ACS
- 2174 *Nano* **8**, 9781 9789.
- Song, X., Xu, S., Chen, L., Wei, Y., Xiong, H. (2014) Recent advances in molecularly
- 2176 imprinted polymers in food analysis. *Journal of Applied Polymer Science* **131**, 40766.
- 2177 doi: 10.1002/app.40766
- 2178 Spadafora, N.D., Paramithiotis, S., Drosinos, E., Cammarisano, L., Rogers, H.J.,
- 2179 Muller, C.T. (2016) Detection of *Listeria monocytogenes* in cut melon fruit using
- analysis of volatile organic compounds. Food Microbiology 54, 52 59.
- 2181 Stadler, R. H., Lineback, D. R. (2008) Process-Induced Food Toxicants: Occurrence,
- 2182 Formation, Mitigation, and Health Risks. John Wiley & Sons.
- Susiluoto, T., Korkeala, H., Bjorkroth, K.J. (2003) Leuconostoc gasicomitatum is the
- 2184 dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated
- broiler meat strips on sell-by-day. *International Journal of Food Microbiology* **80**, 89
- 2186 -97.

- 2187 Suzzia, G., Gardini, F. (2002) Biogenic amines in dry fermented sausages: a review.
- 2188 International Journal of Food Microbiology 88, 41 -54.
- Tahara, Y., Toko, K. (2013) Electronic Tongues-A Review. IEEE Sensors Journal
- **13**, 3001 3011.
- Tait, E., Stanforth, S.P., Reed, S., Perry, J.D., Dean, J.R. (2014) Use of volatile
- compounds as a diagnostic tool for the detection of pathogenic bacteria. Trends Anal.
- 2193 Chem. 53, 117 -125.
- 2194 Technologies, Sensors (Basel) 9, 5099–5148.
- 2195 Tembe, S., D'Souza, S. F. (2015) Immobilisation strategies for construction of
- 2196 tyrosinase-based biosensors. *Materials Technology* **30**, B190 B195.
- The, K.H., Flint, S., Palmer, J., Andrewes, P., Bremer, P., Lindsay, D. (2014) Biofilm
- 2198 An unrecognised source of spoilage enzymes in dairy products? International Dairy
- 2199 Journal 34, 32-40.
- 2200 Thévenot, D. R., Toth, K., Durst, R. A., Wilson, G. S. (2001) Electrochemical
- 2201 biosensors: recommended definitions and classification. Biosensors and
- 2202 *Bioelectronics* **16**, 121 131.
- 2203 Tian, H., Feng, T., Xiao, Z., Song, S., Li, Z., Liu, Q., Mao, D., Li, F. (2015)
- 2204 Comparison of intensities and binary interactions of four basic tastes between an
- electronic tongue and a human tongue. Food Science and Biotechnology 24, 1711 –
- 2206 1715.
- Tian, X., Cai, Q., & Zhang, Y., 2012. Rapid Classification of Hairtail Fish and Pork
- Freshness Using an Electronic Nose Based on the PCA Method. Sensors, 12, 260-277.

- 2209 Timsorn, K., Thoopboochagorn, T., Lertwattanasakul, N., & Wongchoosuk, C.,
- 2210 (2016). Evaluation of bacterial population on chicken meats using a briefcase
- 2211 electronic nose. Biosystems Engineering, 151, 116-125.
- Toko K. (2000) *Biomimetic Sensor Technology*, Cambridge University Press.
- Toko, K. (1998) Electronic sensing of tastes. Sensors Update 3, 131 160.
- Turner, A. P. F. (2013) Biosensors: sense and sensibility. Chemical Society Reviews
- **42**, 3184 3196.
- 2216 ul Hasan, N., Ejaz, N., Ejaz, W., & Kim, H. S. (2012). Meat and fish freshness
- 2217 inspection system based on odor sensing. Sensors (Basel, Switzerland), 12(11),
- 2218 15542–15557.
- Upadhyay, L. S. B., Verma, N. (2013) Enzyme Inhibition Based Biosensors: A
- 2220 Review. *Analytical Letters* **46**, 225 241.
- Upadhyay, R., Sehwag, S., & Mishra, H. N. (2017). Electronic nose guided
- determination of frying disposal time of sunflower oil using fuzzy logic analysis.
- 2223 Food Chemistry, 221, 379–385. http://doi.org/10.1016/j.foodchem.2016.10.089
- Valerio, F., De Bellis, P., Di Biase, M., Lonigro, S.L., Giussani, B., Visconti, A.,
- 2225 Lavermicocca, P., Sisto, A. (2012) Diversity of spore forming bacteria and
- 2226 identification of *Bacillus amyloliquefaciences* as a species frequently associated with
- 2227 the ropy spoilage of bread. *International Journal of Food Microbiology* **156** 278 –
- 2228 285.
- Vasilescu, A., Nunes, G., Hayat, A., Latif, U., Marty, J.-L. (2016) Electrochemical
- 2230 Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of
- 2231 Food Allergens. Sensors **16**, 1863. doi:10.3390/s16111863
- Verma, P., & Yadava, R. D. S. (2015). Polymer selection for SAW sensor array based
- 2233 electronic noses by fuzzy c-means clustering of partition coefficients: Model studies

- on detection of freshness and spoilage of milk and fish. Sensors and Actuators, B:
- 2235 Chemical, 209, 751–769. http://doi.org/10.1016/j.snb.2014.11.149
- Vilas, C., Alonso, A.A., Herrera, J.R., García-Blanco, A., García, M.R. (2017) A
- 2237 model for the biochemical degradation of inosine monophosphate in hake (*Merluccius*
- 2238 *merluccius*). *Journal of Food Engineering* 200, 95 101.
- Vlasov, Y., Legin, A., Rudnitskaya, A., Di Natale, C., D'Amico, A. (2005)
- Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids. *Pure*
- 2241 *and Applied Chemistry* **77**, 1965 1983.
- von Neubeck, M., Baur, C., Krewinkel, M., Stoeckel, M., Krantz, B., Stressler, T.,
- 2243 Jorg, L.F. (2015) Biodiversity of refrigerated raw milk microbiota and their
- enzyamatic spoilage potential. *International Journal of Food Microbiology*, 211, 57 –
- 2245 65.
- Vytrasova, J., Pribanova, P., Marvanova, L. (2002) Occurrence of xerophilic fungi in
- bakery gingerbread production. International Journal of Food Microbiology 72, 91-
- 2248 96.
- Wackerlig, J., Schirhagl, R. (2016) Applications of Molecularly Imprinted Polymer
- 2250 Nanoparticles and Their Advances toward Industrial Use: A Review. Analytical
- 2251 *Chemistry* **88**, 250 261.
- Wang, C., Yang, J., Zhu, X., Lu, Y., Xue, Y., Lu, Z., 2017. Effects of Salmonella
- bacteriophage, nisin and potassium sorbate and their combination on safety and shelf
- life of fresh chilled pork. Food Control, 73, 869-877.
- 2255 Wang, G-y., Wang, H-h., Han, Y-w., Xing, T., Ye, K-p., Xu, X-l., Zhou, G-h. (2017)
- Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro
- 2257 and in situ. *Food Microbiology* **63**, 139 146.

- Wang, H., Hu, Z., Long, F., Guo, C., Yuan, Y., Yue, T (2016) Early detection of
- 2259 Zygosaccharomyces rouxii—spawned spoilage in apple juice by electronic nose
- 2260 combined with chemometrics. Int. J. Food Microbiol. 217, 68 -78.
- Wang, J. C. (2000). *Analytical electrochemistry*, John Wiley & Sons, Chichester.
- Wang, Y., Li, Y., Yang, J., Ruan, J., & Sun, C., 2016. Microbial volatile organic
- 2263 compounds and their application in microorganism identification in foodstuff. Trends
- in Analytical Chemistry, 78, 1–16.
- Wang, Y., Li, Y., Yang, J., Ruan, J., Sun, C. (2016) Microbial volatile organic
- 2266 compounds and their application in microorganism identification in foodstuff. *Trends*
- *in Analytical Chemistry* **78**, 1-16.
- Weber, W., Luzi, S., Karlsson, M., Fussenegger, M. (2009) A novel hybrid dual-
- 2269 channel catalytic-biological sensor system for assessment of fruit quality. *Journal of*
- 2270 *Biotechnology* **139**, 314 317.
- Wilson, A.D., Bauietto, M. (2009) Applications and Advances in Electronic-Nose
- 2272 Winquist F. (2008) Voltammetric electronic tongues basic principles and
- 2273 applications. *Microchimica Acta* 163, 3 10.
- Winquist, F., Holmin, S., Krantz-Rückler, C., Wide, P., Lündström, I. (2000) A
- 2275 hybrid electronic tongue. *Analytica Chimica Acta* **406**, 147 157.
- 2276 Winquist, F., Olsson, J., Eriksson, M. (2011) Multicomponent analysis of drinking
- water by a voltammetric electronic tongue. *Analytica Chimica Acta* **683**, 192 197.
- 2278 Wojnowski, W., Majchrzak, T., Dymerski, T., Gębicki, J., Namieśnik, J., 2017.
- 2279 Electronic noses: Powerful tools in meat quality assessment. Meat Science 131, 119–
- 2280 131

- Yang, M., Soga, T., Pollard, P. J., Adam, J. (2012) The emerging role of fumarate as
- an oncometabolite. Frontiers in Oncology 2, 85. doi: 10.3389/fonc.2012.00085
- Yang, S.P., Xie, J., Qiang, Y-F (2017) Determination of Spoilage Microbiota of
- Pacific White Shrimp During Ambient and Cold Storage Using Next-Generation
- 2285 Sequencing and Culture-Dependent Method. Journal of Food Science 82, 1178 -
- 2286 1183.
- Yang, X., Badoni, M. (2013) Substrate utilization during incubation in meat juice
- 2288 medium of psychrotolerant clostridia associated with blown pack spoilage. Food
- 2289 *Microbiology* **34**, 400 -405.
- Yano, Y., Yokoyama, K., Tamiya, E., Karube, I. (1996) Direct evaluation of meat
- spoilage and the progress of aging using biosensors. *Analytica Chimica Acta* **320**, 269
- -276.
- Yongwei, W., Wang, J., Zhou, B., & Lu, Q. (2009). Monitoring storage time and
- quality attribute of egg based on electronic nose. Analytica Chimica Acta, 650(2),
- 2295 183–188. http://doi.org/10.1016/j.aca.2009.07.049.
- Yu, K., Thomas, R., Hamilton-Kemp, T.R., Archbold, D.D., Collins, R.W., Newman,
- 2297 M.C. (2000) Volatile compounds from *Escherichia coli* O157:H7 and their absorption
- by strawberry fruit. Journal of Agriculture and Food Chemistry, 48, 413 417.
- Zeravik, J., Hlavacek, A., Lacina, K., Skládal P. (2009) State of the Art in the Field of
- 2300 Electronic and Bioelectronic Tongues Towards the Analysis of Wines.
- 2301 *Electroanalysis* **21**, 2509 2520.
- 2302 Zhang, F., Keasling, J. (2011) Biosensors and their applications in microbial
- metabolic engineering. *Trends in Microbiology* **19**, 323 329.

2304	Zhou, G.H., Xu, X.L., Liu, Y. (2010) Preservative technologies for fresh meat - A
2305	review. <i>Meat Science</i> 86 , 119 – 128.
2306	Zoski C. (ed) (2007). Handbook of Electrochemistry, 1st Edition, Elsevier Science,
2307	New York.
2308	
2309	
2310	
2311	
2312	
2313	
2314	
2315	Captions of Figures
2316	Fig. 1. Block diagram of an electronic nose system.
2317	Fig. 2. General scheme of an electronic tongue system
2318	Fig. 3. Biosensor detection scheme
2319	Fig. 4. Portable electronic nose system for the defect discrimination in beer
2320	Fig. 5. Decomposition of ATP in the muscles (Nelson & Cox, 2017)
2321	Fig. 6. The sensor array used for the potentiometric electronic tongue (Gil-Sánchez,
2322	Soto, Martínez-Máñez, Garcia-Breijo, Ibáñez, & Llobet, 2011).

Table 3. The main sensorial properties and their relative compounds.

Taste	Compounds				
Sweetness	Glucose, Sucrose, Fructose, D-Amino acids,				
	Sweeteners (natural or artificial)				
Sourness	Acetic acid, Citric acid, Tartaric acid, Lactic acid				
	Phosphoric acid				
Saltiness	NaCl, KCl				
Bitterness	Quinine, Caffeine, MgCl ₂ , Humulone, L-Amino acids				
Umami	Monosodium glutamate, Glutamic acid, Disodium				
	inositate, Disodium guanilate				
Astringency	Tannins				
Pungency	Capsaicin, piperine				

Table 4. A summarized overview on the application of electronic nose to food spoilage detection

Application	Sensor technology	Number of sensors	Additional Techniques	Data processing algorithm	References
Wine monitoring	MOX	16	GC-MS	PCA, PNN	(J. Lozano et al., 2015)
Acetic Acid in wine	MOX(PEN3)	10	-	PCA, MLP	(Macías et al., 2012)
	MOX	4	- <	PCA, RBFNN	(Lozano et al., 2011)
Wine spoilage, off-flavors	Humid e- nose	5	E-tongue	PCA, K-means	(Gil-Sanchez et al., 2011)
	MOX(FOX 3000)	12	- 4	PCA, CLA	(Cabañes, Sahgal, Bragulat, & Magan, 2009)
	MOX (FOX4000)	18		PCA, DFA	(Ragazzo-Sanchez, Chalier, Chevalier-Lucia, Calderon- Santoyo, & Ghommidh, 2009)
	MOX (FOX 3000)	12	MS	PLS	(Berna, Trowell, Cynkar, & Cozzolino, 2008)
Red wine spoilage induced by Brettanomyces yeast	MS-enose		GC-MS	PCA, SLDA, PLS	(Cynkar, Cozzolino, Dambergs, Janik, & Gishen, 2007)
Threshold detection wine compounds	MOX	16	Sensory panel	PCA, NN	(José Pedro Santos et al., 2010)
Beer defects	MOX	4	-	PCA, NN	(Jose Pedro Santos &

					Lozano, 2015)
Fried potato	MOX (Figaro)	8	Biochemical assays	Fuzzy logic, PCA, ANOVA	(Chatterjee, Bhattacharjee, & Bhattacharyya, 2014)
Microbial contamination in tomatoes	MOX (EOS835 – Sacmi)	6	DHS-GC-MS	PCA, Pearson correlation	(Concina et al., 2009)
Egg quality	MOX	8	-	PCA, LDA, BPNN, GANN, QPSR	(Yongwei, Wang, Zhou, & Lu, 2009)
Grain spoilage (review)	MOX	17	-	DFA, Neural Networks	(N. Magan & Evans, 2000)
Spoiled Rapeseed	MOX (Agrinose)	8	HPLC, Colony Forming Units, Fourier Transform Infrared (FT-IR) Spectra	PCA	(Gancarz et al., 2017)
Enterobacteriaceae in vegetable soups	MOX (EOS507C)	4	GC-MS	PCA,LDA, Pearson correlation	(Emanuela Gobbi et al., 2015)
Spoilage of bakery products	MS-enose	-	HPLC	PLS	(Marín et al., 2007)
Contamination of soft drinks	MOX (EOS835)	6	PCR, HPLC	PCA, LDA, kNN, SVM	(Concina et al., 2010)
Alicyclobacillus spp. spoilage of fruit juices	MOX (EOS835)	6	DHS-GC-MS	PCA, Pearson correlation	(E. Gobbi et al., 2010)
Zygosaccharomyces spoilage in apple juice	MOX (PEN3)	10.	Sensory panel	LDA, PLS	(Wang et al., 2016)
Apple defects	CP (Cyranose 320)	32	-	PCA, MANOVA, DA	(Pathange, Mallikarjunan, Marini, O'Keefe, & Vaughan, 2006)
	СР	32	Z-nose	PCA, PNN, Bayesian	(Li, Heinemann, & Sherry,

	(Cyranose 320)				2007)
Medicinal off-flavor in apple juice	MOX (PEN3)	10	GC-MS, Test panel	PCA, LDA, ANOVA	(Huang, Guo, Yuan, Luo, & Yue, 2015)
Spoilage of milk and fish	SAW	6	-	Fuzzy c-means, PCA, RBNN	(Verma & Yadava, 2015)
Milk spoilage (bacteria and yeasts)	CP (BH-114)	14	-	DFA, PCA, Dendrogram, NN	(Naresh Magan, Pavlou, & Chrysanthakis, 2001)
Olive oil defects	MOX (EOS)	6	GC-MS, Test panel	PCA, SIMCA	(Esposto et al., 2006)
	MOX (EOS507)	6	Test panel	LDA, MLR, NN	(Lerma-García et al., 2010)
Rancidity of oil	MOX (EOS507)	18	Rancidity analysis	РСА, НСРС	(Upadhyay, Sehwag, & Mishra, 2017)
Classification of Chicken meat freshness and bacterial population prediction	MOX	8	GC-MS	BPNN	Timsorn et al., 2016
Prediction of total volatile basic nitrogen (TVB-N) content in chicken meat	Colorimetric sensors array	<u>-</u>	Hyperspectral imaging system, Texture analysis	Data fusion techniques	Khulal et al., (2017)
Microbiological examination of beef fillets	QMB	8	Microbiological and sensory analyses	SVM, DFA	Papadopoulou et al., 2013
Identification of spoiled beef	СР	32	Microbiological analysis	ANNs	Panigrahi et al., 2006a
Determining the spoilage of vacuum packaged beef	MOSFET	10	Microbiological and sensory analyses	PLSR	Blixt & Borch, 1999
Spoilage classification of beef	MOX (M-	9	Microbiological analyses	LDA, QDA	Panigrahi et al., 2006b

	Module E- nose)				
Monitoring the spoilage of beef fillets under storage	QCM	8	Microbiological analyses	Fuzzy-Wavelet Network	Kodogiannis, 2017
Odor spoilage sensing of beef and fish	MOS	8	-	SVM, ANNs	ul Hasan et al., (2012)
Developing an automated ranking platform to predict minced beef spoilage	QMB (LibraNose)	8	HPLC, FT-IR, GC-MS and MSI	OLS-R, SL-R, PCR, PLS-R, SVM-R, RF-R and kNN-R	Estelles-Lopez et al., 2017
Spoilage detecting in hairtail fish and pork	MOX	8	Measuring total volatile basic nitrogen (TVBN)	PCA	Tian et al., 2012
Spoilage Classification of Red Meat	MOS	6	Microbiological analyses	PLS, SVM	El Barbri et al., 2008
Detection of Acetone and Ethanol in spoiled meat	MOS (TGS822)	1	Microbiological analysis	Statistical analysis	Benabdellah et al., 2017
Reduction of <i>Salmonella</i> and the spoilage bacteria on fresh chilled pork	MOS (PEN3)	10	Chemical analyses	One-way ANOVA	Wang et al., 2017
Study of lipid oxidation of Chinese-style sausage	MOS (PEN3)	10	Measuring acid value (AV) and peroxide value (POV)	PLSDA, FLDA, MLR, ANNs, SVM, HCA	Gu et al., 2017
Identification of pork meat samples spoiled by <i>R. aquatilis</i>	Heracles II	Columns: MXT-5 and MXT-17	PCR and microbiological analyses	ANOVA, Tukey's post-hoc test	Godziszewska et al., 2017
Spoilage detection of modified	MOSFET,	10	Microbiological and	PLSR, ANNs	Rajamaki et al., 2006

atmosphere packaged poultry meat	NST 3320 instrument		sensory analyses		
Evaluation of Spoilage of the blue crab (Crab (Callinectes sapidus) meat	CP (Cyranose) [™]	32	Microbiological and sensory analyses	Canonical discriminant analysis (CDA), stepwise discriminant analysis (SDA)	Sarnoski et al., 2008
Quality and spoilage identification in smoked salmon	MOX - FishNose system	6	GC-MS	Partial least-squares regression (PLSR)	Haugen et al., 2006

Table 1. Reports on spoilage microorganisms in selected food products as influenced by intrinsic and extrinsic factors

-	Extrins	ic			Intrinsic		<u> </u>		
Food product	Temper			ric conditions	pН		Preservative	Spoilage organism(s)	Reference
	Low	High	Aerobic	Anaerobic	Low	High			
Baked products		X	X		(x)			Bacillus spp.	Valerio et al., (2012);
								Moulds	Vytrasova et al., 2002
Meat	X			X	X			Lactic acid bacteria,	Cavill et al., 2011;
								Enterobactericeae,	Doulgeracki et al.,
							~	Clostridium, Shewanella	(2010); Hernandez- Macedo et al., 2012;
Meat	X		X		X			Pseudomonas,	Ercolini et al., 2006;
Wicat	Α		Α		Λ			Brochothrix	Nychas et al., 2008;
								thermosphacta,	Pennachia et al.,
						X '		Photobacterium,	2011
Meat		X	X		X			Enterobactericeae,	Gill and Newton,
						7		Pseudomonas,	1979
Meat	**			T/			Nisin	Acinetobacter Enterobactericeae,	Ferrocino et al., 2013
Meat	X			X	X		INISIII	Pseudomonas	remocino et al., 2015
Marinated	X			x	x		Spices	Leuconostoc	Susuiluito et al.,
broiler								gasicomaticum	(2003)
Raw milk	X		X	ANY	Neutral			Pseudomonas,	von Neubeck et al.,
(refrigeration)								Lactococcus,	(2015)
								Acinetobacter	
Minimally	X		x		(x)			Pseudomonas,	Ragaert et al., (2007)
processed								Enterobactericeae,	
vegetable								Cryptococcus	

Table 1 (contd.). Reports on spoilage microorganisms in selected food products as influenced by intrinsic and extrinsic factors

·	Extrins	ic			Intrinsic	;			
Food product	Temper	rature	Atmosphe	ric conditions	pН		Preservative	Spoilage organism(s)	Reference
	Low	High	Aerobic	Anaerobic	Low	High			
Filtered milk	X	J	Х		ND			Acinetobacter, Chryseobacterium, Psychrobacter, Sphingomonas, Paenibacillus, Bacillus	Schmidt et al., 2012
Fish Fish	X	X	X	X		x x	Essential oil	Aeromonas, Lactococcus Pseudomonas, H ₂ S producing bacteria, Enterobactericeae	Zhang et al., 2017 Parpalani et al., 2014
Fish	X			X		X		Pseudomonas, Photobacterium, Lactococcus, Brocothrix thermosphacta	Koutsoumanis et al., (2000); Mace et al., 2012
Smoked fish	X			X		X		Lactic acid bacteria, Phospobacterium, psychothrophic Enterobactericeae	Lovdal, 2015
Seafood		X	X			X		Proteus, Vibrio	Yang et al., 2017
Fruits		X	X		X			Yeasts	Gram et al., 2002
Fermented alcoholic beverages – sake and beer	X			X	X		Ethanol as by product of fermentation	Lactobacillus spp, Pediococcus spp., Pectinatus spp., Megaspaera spp.	Jespersen and Jackobsen, (1996); Suzuki (2011)

 Table 2. Some spoilage substrates and metabolites typically found in spoiled food

Sensory characteristic	Spoilage compound	Spoilage substrate	Food product	Reference
Blown pack	CO_2	sugars	vacuum packed meat	Hernandez-Macedo et al. (2012)
Ropiness/Slime	EPS	glucose	wine	Delarheche et al. (2004)
		starch	bread	Valerio et al. (2008)
		sugars	vacuum packed	Korkeala et al. (1988)
			cooked meats	
Off odours				
Fruity	ethylhexanoate,	glucose	air stored beef	Ercolini et al. 2010
	ethyloctanonate,			
	ethyldecnoate			
	ethyl butanoate	ethanol	meat	La Storia et al. (2012)
	hexanal	lipids	fish	Leduc et al. (2012)
Pungent/alcoholic/	3-methyl-1-butanol, 2-	sugars	fish	Miks-Krajnik et al. (2016);
fermented	butanol, ethanol			Parpalani et al. (2017)
	1-pentanol	sugars	RTE salads	Dias-Lula et al. (2017)
	acetic acid	glucose	fish	Mace et al. (2013)
		Y	bell peppers	Pothakos et al. (2014)
Fishy	Trimethylamine	trimethylamine oxide	seafood	Lopez-Caballero et al. (2001)
Musty, mushroom	1-octen-3-ol	unsaturated fatty acids	baby spinach	Dias-Lula et al. (2017)
			fish	Leduc et al. (2012)
		Y	rapeseed	Gancarz et al., 2017
Cheesy	Acetoin	glucose	fish	Miks-Krajnik et al. (2016)
	Butanoic acid	triglycerides/amino acids	meat	Ercolini et al. (2011)
	2,3-heptanedione	$\langle \rangle$	shrimps	Jaffres et al. (2011)
Sulphide off-odour	H_2S	sulphur containing amino	fish	Fonnechbech Vogel et al. (2005)
		acids		
	Dimethyl sulfoxide	sulphur containing amino	baby spinach	Dias-Lula et al. (2017)
		acids		

^aThe combination of acrolein with polyphenols leads to the production of bitter compounds.

Table 2 (contd.). Some spoilage substrates and metabolites typically found in spoiled food

Sensory characteristic	Spoilage compound	Spoilage substrate	Food product	Reference
		sulphur containing amino	sulphur containing amino fish	
		acids		
Off flavours				
Rancid	Volatile fatty acids	triglycerides	milk	Deeth
Bitter		protein	milk	Cleto et al., (2012)
	acrolein ^a	glycerol	beer and wine	Garai-Ibabe et al., (2008)

^aThe combination of acrolein with polyphenols leads to the production of bitter compounds.

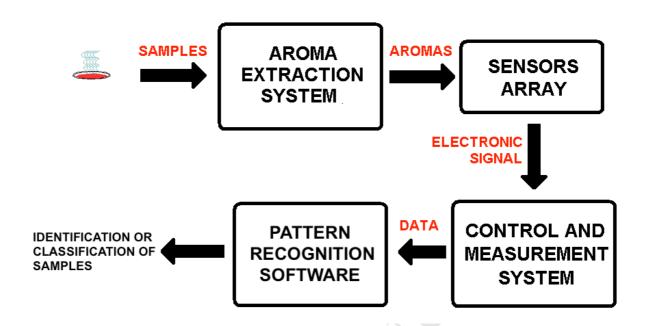


Fig. 1. Block diagram of an electronic nose system.

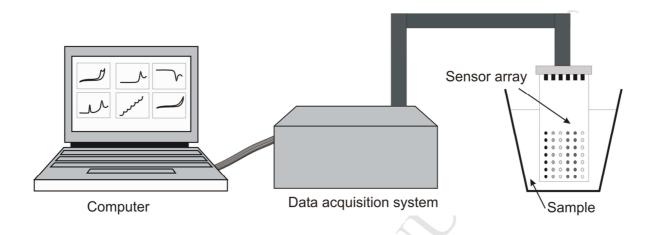


Fig. 2. General scheme of an electronic tongue system

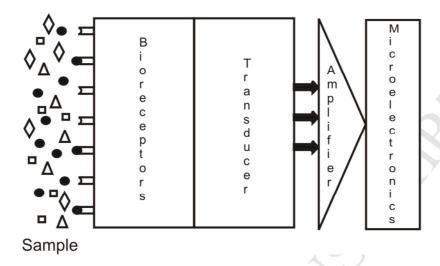
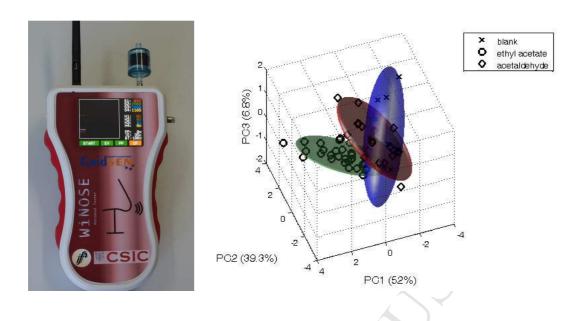
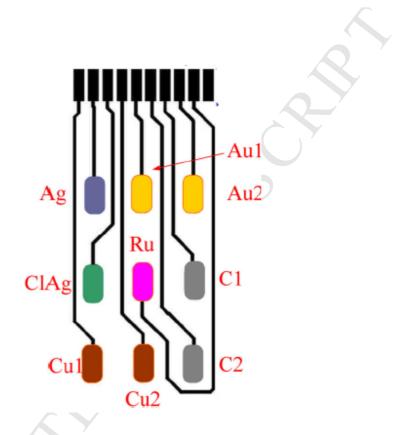




Fig. 3. Biosensor detection scheme

Fig. 4. Portable electronic nose system for the defect discrimination in beer and PCA score plot of measurements of beer defects.

Fig. 5. Decomposition of ATP in the muscles (Nelson & Cox, 2017)

Fig. 6. The sensor array used for the potentiometric electronic tongue (Gil-Sánchez, Soto, Martínez-Máñez, Garcia-Breijo, Ibáñez, & Llobet, 2011).

There is an urgent need for the development of rapid, reliable, precise and non-expensive systems to be used in the food supply and production chain.

In recent decades, some diagnostic tools such as electronic noses, electronic tongues and biosensors have attracted much interest for detection of food spoilage.

The future of the electronic tongue systems and the biosensors are closely related because improving the sensitivity and selectivity of the sensor array remain challenging tasks.

Electronic noses and gas sensors have shown in the last years an important enhancement in the time response and time life as well as a decrease in the size and consumption.