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Abstract—Scientific workflows orchestrate the execution of 

complex experiments on high performance computing 

platforms. Meta-workflows represent an emerging type of 

such workflows which aim to integrate multiple embedded 

workflows from potentially different workflow systems to 

achieve complex experimentation. Workflow interoperability 

plays a profound role in achieving this objective. This paper 

is focused at formalizing definitions of different types of 

workflows and meta-workflows to facilitate improved 

understanding and interoperability. It also includes thorough 

formalization of the coarse grained workflow interoperability 

approach highlighting the role of workflow systems. The 

paper presents a case study from Heliophysics which 

successfully demonstrates the use of technologies developed to 

realize the concepts of meta-workflows and workflow 

interoperability within a science gateway environment.  

Keywords—Meta-workflows; Workflow Interoperability; 

Science Gateways; Workflow Repository. 

I. INTRODUCTION 

Scientific workflows represent complex computational 
experiments conducted by scientists focused at identifying 
and addressing scientific problems across diverse subject 
domains. Such experiments usually involve carrying out 
analysis of large volumes of data and typically run their 
processes on high performance computing infrastructures 
such as clusters, grids and clouds. Scientific workflows are 
often composed of control and data flow statements and 
rules which perform the analytics required to achieve the 
intended experimentation. A typical scientific workflow is 
composed of one or more individual tasks each of which 
requires certain input and generates relevant output after 
performing its intended function.  

An interesting and emerging trend in workflow 
development is composing workflows from one or more 
sub-workflows. These complex workflows, or meta-
workflows, may utilize existing workflows from libraries; 
incorporating such existing workflows as components of 
the meta-workflow for faster and more efficient 
development and reusability. Meta-workflows engage 
complex orchestration of applications which may span 
across multiple domains. For such complex workflows the 
nodes represent a combination of workflow jobs and sub-
workflows which can host multiple tasks within them. Our 
focus in this paper is to investigate the challenges 
encountered in facilitating such complex meta-workflows. 
In particular, we emphasize on the definition and analysis 
of different types of meta-workflows and highlight the role 
of workflow interoperability in different approaches for 
meta-workflow creation and execution. 

The rest of the paper is organized as follows: Section 2 
introduces the underlying concepts of meta-workflows 

including atomic and compound tasks, approaches for 
meta-workflow creation and execution and different types 
of meta-workflows. Section 3 briefly describes the 
fundamental technologies to implement these concepts 
followed by a description of the scientific use cases to 
demonstrate our experience with meta-workflows in 
Section 4. Section 5 describes the related work. Section 6 
concludes the paper and lists our future endeavors. 

II. DEFINITION AND TYPES OF META-WORKFLOWS 

Scientific workflows are usually represented using a 
directed graph where the nodes represent individual tasks 
or functionalities whereas the edges represent relationships 
or dependencies between these tasks. A simple graphical 
representation of scientific workflows has been presented 
in Fig 1a where the individual tasks are represented by 
nodes N1, N2 and N3, and the dependencies between these 
nodes are represented by edges e1, e2 and e3. 

We define the following types of workflows: single 
workflow, native meta-workflow and non-native meta-
workflow. In a single workflow all the nodes of the 
workflow are individual jobs that are executed and 
managed by a single workflow system such as P-GRADE 
[1], Galaxy [2] or Taverna [3] etc. Fig 1a presents a 
graphical representation for a single workflow. We define 
the term embedded workflows to refer to the sub-workflows 
which constitute a meta-workflow. Furthermore, we 
distinguish meta-workflows based on the workflow engine 
responsible for the execution of embedded workflows. 
Within this context, in a native meta-workflow, the 
embedded sub-workflows are all from the host workflow 
system (WS1) as demonstrated by Fig 1b. However, in a 
non-native meta-workflow, at least one of the embedded 
workflows is from external workflow systems as has been 
presented in Fig 1c where the two embedded workflows are 
from workflow systems WS2 and WS3, respectively.  

In order to draw a formal representation of the meta-
workflow concept, we follow the definitions and guidelines 
adopted by [4]. A meta-workflow is considered a multi-
graph structure represented by <vertices, edges, source, 
target> where the vertices represent jobs, the edges 
represent dependencies between jobs. Here, the source and 
target of an edge represents the dependee and depender 
respectively. Firstly, in order to be qualified as a graph, a 
multi-graph structure G has to satisfy the following 
condition: 

vertices (G) ≠ φ 

Let G represent the meta-workflow graph and CG1 and 

CG2 represent the two embedded graphs, then G is a meta-

workflow composed of CG1 and CG2 if  

𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺1) ∪ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺2) ⊆ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝐺) 
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𝑒𝑑𝑔𝑒𝑠(𝐶𝐺1) ∪ 𝑒𝑑𝑔𝑒𝑠 (𝐶𝐺2) ⊆ 𝑒𝑑𝑔𝑒𝑠 (𝐺) 
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Fig 1a: A single workflow   Fig 1b: Native meta-workflow 
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Fig 1c: Non-native meta-workflow 

A. Approaches for Non-native Meta-workflow Creation 

and Execution 

In order to create a non-native meta-workflow two 
different approaches have been established, i.e. Coarse-
Grained Interoperability (CGI) or black box approach, and 
Fine-Grained Interoperability (FGI) or white box approach. 
We explain each of these in more detail below: 

i. Coarse-Grained Interoperability Approach: The 
CGI approach is focused at defining a workflow engine 
based interoperability concept independent of the 
workflow system allowing efficient management of 
workflows from different workflow systems [4]. A 
fundamental concept within the CGI approach is the native 
and non-native workflows. The host workflow engine and 
its workflows are considered native whereas the all other 
workflows and workflow engines are called non-native. 
Following this terminology, the non-native workflows and 
workflow engines are managed as legacy applications by 
the native workflow system.  
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Fig 2: Coarse-grained workflow interoperability usage scenario 

The CGI approach requires two important components 
for successful implementation, i.e. a repository to 
store/share workflows, and a submission service to 
understand and manage the formal descriptions of non-
native workflows and workflow engines. In a typical usage 

scenario, the formal description of workflows and 
workflow engines is published by respective developers in 
a repository. This formal description is used to wrap the 
workflows and workflow engines in the form of services. 
Among other attributes, this description also contains the 
data required to execute the workflows. When a host 
workflow engine is encountered with a non-native 
workflow, it forwards the workflow ID to the submission 
service. The submission service uses this workflow ID to 
retrieve the respective formal description from the 
repository. This formal description includes identification 
of the respective workflow engine and directions as to 
execution. Finally, the workflow is submitted to the 
workflow engine which manages the overall execution of 
the workflow. Fig 2 presents the sequence of events to 
execute a non-native workflow using the repository and the 
submission service as described above. 

Borrowing our formal definition of meta-workflows 

from [4], 

WFmeta = {J1…Jk, WFnat1…WFnatl, WFnnt1,..WFnntm}, 

where  Jnath : native job h = 1 . . . k  

WFnati : native workflow i = 1 . . . l 

WFnntj : non-native workflow j = 1 . . . m. 

Although the above definitions present a limited view 
of the meta-workflow concept, this paper envisages to 
achieve more comprehensive formalization of the meta-
workflow concept and the CGI approach for creation and 
execution of such workflows. This formalization is 
envisaged to make significant contribution in improving 
the usability of the existing meta-workflows by 
highlighting the requirements of the CGI based workflow 
interoperability approach.  Our effort is inspired by the 
formal definitions for graphs presented in [5] and is 
achieved using Z notation [6]. The data models used for our 
formal definition are: 

WF_ID : the unique workflow ID 

WF_N : set of native workflows 

WF_NN : set of non-native workflows 

WF_ENN : set of native workflow engine(s)  

WF_ENNN : set of non-native workflow 

engine(s) 

The formalization for the CGI approach using Z-

notation is presented in Fig 3.  

 
Fig 3: Formal description of the CGI approach using Z 



 

 

ii. Fine-Grained Interoperability Approach: With 

FGI, the workflow is treated as having two distinguished 

parts i.e. the abstract part and the concrete part. The abstract 

part includes the abstract input/output functionality of a 

workflow and the workflow based orchestration of 

computational tasks. The concrete part contains low level 

information about its computational tasks’ implementation 

technologies such as the method to call a web service and 

executing an application on a specific machine. 

As part of the FGI approach, the abstract part of the 
workflow is transformed using an Interoperable Workflow 
Intermediate Representation (IWIR) as illustrated by Fig 4. 
At the abstract level, IWIR is used for describing 
workflows at a lower level of abstraction that is only 
processed by the existing workflow systems and not 
directly exposed to the human developer [7]. The concrete 
part of the workflow is not transformed but is bundled with 
the IWIR representation of abstract part to form an IWIR 
bundle.  

 
Fig 4: Transformation of workflows for FGI approach 

The FGI approach for creating meta-workflows has 
several advantages such as abstraction from high-level 
workflow language, abstraction from the Distributed 
Computing Infrastructure (DCI) and the enactment engine 
and runtime interoperability among different workflow 
engines. Although we introduced the concepts surrounding 
both CGI and FGI approaches to meta-workflows, the 
focus of this paper will be limited to CGI based meta-
workflows due to their support in the SHIWA Simulation 
platform. 

B. Types of CGI-based Meta-workflows 

In this section we describe the different types of meta-
workflows along with their formal definitions. These 
definitions are envisioned to make significant contribution 
in facilitating workflow developers to design new 
workflows by enabling them to comprehend with the 
attributes and semantics of each type of meta-workflow.  

i. Single job meta-workflow: This type of meta-

workflow represents a workflow with one job in the native 

workflow system. The job representing this workflow can 

be a simple native job, a native workflow or even a non-

native workflow. Fig 5 presents a graphical representation 

of this workflow type.  
1 2

Job0

 
           Fig 5: Single job meta-workflow 

As we have emphasized as part of our formalization in 
[4], jobs can be native and non-native therefore we start 
with the formalization of a native job. Using our definitions 

of meta-workflows presented in the previous section, a 
single native job workflow can be represented as: 

Jn = {Jabs, Jcnf, Jcnr, Jennat}         -  (Eq. 1) 

where Jn : a native job,  
  Jabs : the abstract description of the job,  
  Jcnf : the configuration of the job, 

           Jcnr : the implementation or executable of the job        
and Jennat : a native workflow engine for the job 
Furthermore, the case where single job native meta-

workflow is a native workflow can be described as  
WFn = {WFabs, WFcnr, WFcnf, WFenn} -    (Eq. 2) 

where WFenn represents a native workflow engine and 
WFn represents the workflow to be a native workflow. 

In order to formalize a non-native workflow, we first 

describe a non-native job as  

Jnn = {Jabs, Jcnf, Jcnr, Jennnat}        -    (Eq. 3) 

where Jnn represents the non-native job and Jennnat 
represents non-native workflow engine for the job. Further 
to our formalization for FGI approach in the previous 
section, Jnn ∈ TASKS where TASKS represents the set of 
jobs within a workflow. Now, a single job non-native 
workflow can described as  

   WFnn = {TASKS, WFabs, WFcnr, WFcnf, WFennn} - (Eq. 4)  

where WFnn represents the non-native workflow and 

WFennn represents a non-native workflow engine. 

ii. Linear multi-job meta-workflow: This is a 

pipeline of multiple jobs in the native workflow system 

where any (or even all) of these jobs can be non-native 

workflows. The execution of each job depends on the 

receipt of input files from previous jobs. Fig 6 presents a 

graphical representation of this type of workflow. 
As linear multi-job meta-workflows are composed of 

single-jobs and/or single job meta-workflows, we use our 
formalization from previous sections to describe this type 
of meta-workflow. Therefore, a linear multi-job meta-
workflow can be described as: 

WFlmj = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1,…, 

WFny, WFnn1, …,WFnnz}    -    (Eq. 5) 

where Jj : job of linear multi-job workflow, j = 1.., m 

 Jni : native job, i = 1 … k 

Jnnp : non-native job, p = 1… y and refers to the 

formal description presented in Eq. 3 and 4. 

WFnp : native workflow ∈ Jj  p = 1,.., y 

WFnnt : non-native workflow, t = 1… z 
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             Fig 6: Linear multi-job meta-workflow 

Now, in order to formalize a linear multi-job meta-
workflow, let us define an edge as a connection between an 
input and an output port. By definition, an edge is defined 
as e = (o,i) where o is the output port and i is the input port. 
Consequently if Po is the output port of job J and Pi is the 
input port of job J. 



 

 

  e = (Po, Pi)  -  (Eq. 6) 

Therefore, for a linear multi-job meta-workflow, if Jx 

and Jy are any two consecutive jobs and Jx is not the last job 

of the workflow, there exists a valid edge such that 

              ei = (Pxo, Pyi)    -  (Eq. 7) 

where Pxo represents the output port of Jx and Pyi 

represents the input  port of Jy. 

iii. Parallel multi-job meta-workflow: This is a 

workflow in the native workflow system that includes 

parallel branches. One or more of these branches can 

include one or more non-native workflows. Parallel multi-

job meta-workflows are composed of several linear multi-

job meta-workflows as presented in Fig 7.  
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        Fig 7: Parallel multi-job meta-workflow 

Utilizing formalization from Eq. 5, the parallel multi-

job meta-workflow can be described as 

WFpmj = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1, …, 

WFny, WFnn1, …,WFnnz}    –    (Eq. 8) 

where  Jj : job of parallel multi-job meta-workflow, j 

=1,…,m 

 Jni : native job, i = 1 … k 

Jnnp : non-native job, p = 1… y 

WFnp : native workflow ∈ Jj, p = 1,…,y 

WFnnt : non-native workflow, t = 1… z  

Furthermore, from the formalization for the linear 
multi-job meta-workflow in the previous section, we define 
an edge in (x,y). 

For a parallel multi-job meta-workflow, the nature of 
connections among individual jobs is different to that for a 
linear multi-job workflow defined in the previous section.  

Let Js represent a split job (a job that is followed by 
several parallel worker jobs), Jw represent a worker job. 
Then from Eq. 7, a parallel multi-job meta-workflow must 
contain an edge  

eg = (Pgo, Pwxi), where    

 Pgo : the output port of the split job 

Jwx : a worker job and x = 1 … k 

Pwxi : the input port of the worker job Jwx  

Furthermore, let Jm represent the merge job (a job that 
merges the results of parallel workers jobs), then Pmi 

represents an input port for the merge job where i = 1 … k 
such that k = number of worker jobs. Therefore, a parallel 
multi-job meta-workflow must also have an edge em such 
that 

 em = (Jwxo, Pmi), where  

Jwxo : the output of a worker job Jwx and x = 1 … k 

     Pmi : an input port of the merge job Jm and i = 1 … k 

iv. Parameter sweep meta-workflow: This represents 

a parameter sweep workflow in the native workflow system 

that includes one or more non-native workflows. The 

parameter sweep meta-workflow has a generator job which 

produces a number of inputs each to be consumed by a 

worker job. The collector job then aggregates the outputs 

of all the worker jobs and prepares the final output. 

Although this functionality is very similar to the parallel 

multi-job meta-workflow, the primary difference between 

the two is that the worker jobs for parameter sweep 

workflow are generated dynamically and are not known at 

the configuration stage of the workflow. Therefore the 

relations between the generator, worker and collector are 

dynamic as compared to the parallel multi-job workflow as 

presented in Fig 8. Also, while workers in parallel multi-

job meta-workflows can represent different functionality, 

in case of parameter sweep meta-workflows all workers 

represent the same functionality with different parameter 

values only.    

1

1

1

1

2 2

2

Generator

Job2Job1

Collector

 
Fig 8: Parameter sweep meta-workflow 

Due to the similarity with the parallel multi-job 
workflow, parameter sweep workflow can be described 
using Eq. 8 as: 

WFps = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1, …, 

WFny, WFnn1, …,WFnnz}    -      (Eq. 9) 

where  Jj : job of parallel multi-job meta-workflow, j 

=1,…,m 

 Jni : native job, i = 1 … k 

Jnnp : non-native job, p = 1… y  

WFnp : native workflow ∈ Jj, p = 1,…,y 

WFnnt : non-native workflow, t = 1… z  

Furthermore, the connections between the generator, 
collector and the worker jobs for a parameter sweep meta-
workflow can be described in similar manner i.e.  

 e = (Jgo, Jwxi), where  

 Jgo : the output port of the generator job 

Jwx : a worker job and x = 1 … k 

Jwxi : the input port of the worker job Jwx  

Furthermore, let Jc represent the collector job then Jci 

represents an input port for the collector job where i = 1 … 
k such that k = number of worker jobs. Therefore, a 
parameter sweep meta-workflow must also have an edge ec 
such that 



 

 

 ec = (Jwxo, Jci), where   

      Jwxo : the output of a worker job Jwx and x = 1 … k 

      Jci : an input port of collector job Jc and i = 1 … k 

III. THE SHIWA SIMULATION PLATFORM 

The SHIWA Simulation Platform (SSP) enables data, 
infrastructure and workflow interoperability at both coarse- 
and fine-grained level. It supports the whole workflow life-
cycle addressing the challenges of (i) executing workflows 
of different workflow systems as non-native workflows (ii) 
combining workflows of different workflow systems into 
meta-workflows and (iii) running these workflows on 
different DCIs. Currently, the simulation platform provides 
production-level CGI support for the following workflow 
systems: ASKALON, Galaxy, GWES, Kepler, MOTEUR, 
Pegasus, ProActive, Taverna, Triana and WS-PGRADE. 

The simulation platform contains a science gateway 
(SHIWA Science Gateway), a submission service (SHIWA 
Submission Service), a workflow repository (SHIWA 
Repository) and a data transfer service (Data Avenue 
Service). The platform is presented in Fig 10. The SHIWA 
Science Gateway is built on the gUSE/WS-PGRADE 
technology. It incorporates the SHIWA Portal, the WS-
PGRADE Workflow System and the DCI Bridge service. 
The portal offers a graphical workflow editor, a workflow 
engine and workflow execution monitor. The gateway is 
integrated with the WS-PGRADE Workflow System which 
is used as native workflow engine in the simulation 
platform. The DCI Bridge service provides access to 
different Distributed Computing Architectures such as 
clouds, clusters, desktop and service grids and 
supercomputers. The SHIWA Repository stores binaries, 
configuration and default data and meta-data of workflows 
and workflow engines. Workflow and workflow engine 
developers can publish (or export or upload), edit, and 
delete workflows and workflow engines through the 
repository GUI. To support execution of non-native 
workflows the SHIWA Submission Service first, imports 
the workflow from the SHIWA Repository. Next, it either 
invokes it locally or remotely on pre-deployed workflow 
engines or submits workflow engines with the workflow to 
local or remote resources. The Data Avenue service 
manages different data formats and data transfer 
technologies used by different workflow systems. 

 
Fig 9: SHIWA simulation platform 

IV. THE SCIENTIFIC USE CASE 

The results of the research presented in this paper have 
been adopted by diverse scientific disciplines. In this 
section, we present the experience of the Heliophysics 
community mapping their use-cases to the formal 
descriptions described earlier in this paper. The details of 
this use case have been presented in [8]. 

Case from Heliophysics – Propagation of Type II CMEs 

Coronal Mass Ejection (CME) are extremely relevant 
phenomena that consist in great masses of charged particles 
emitted from the Sun and hitting bodies of the Solar 
System. When Earth is hit by a CME, its environment is 
disturbed resulting in potentially dangerous effects on 
satellites, information networks and power distributions. 
The simulation of propagation of CMEs is quite complex 
as the speed is influenced by various factors and the physics 
governing the phenomena are complex.  

Furthermore, evaluation of initial conditions of the 
simulations may be too complicated to assess precisely. 
This investigation is focused on fast CMEs and it uses a 
simple ballistic model with corrections. It is assumed that 
fast CME will slow down due to Solar Wind drag during 
the propagation.  Based on this assumption, the propagation 
model is corrected with values of the speed of Solar Wind 
at target (the Earth). 

 

Fig 10: Meta-workflow for the propagation of type II CME 

Linear multi-job meta-workflow: Investigation of the 
fastest CME in a given period of time is executed with the 
linear multi-job meta-workflow described in Fig 10. The 
embedded Taverna workflow is composed of four main 
phases: 

A. Evaluation of initial parameters for the 
propagation. Values obtained from the HELIO 
Event Catalogue (HEC) that, in turn, accesses 
table with the details of various solar events. The 
fastest CME within the given time range is 
selected and the initial parameters obtained from 
the event catalogues. 

B. Execution of the SHEBA Propagation Model on 
the HELIO Processing Service (HPS). 

C. Comparison of the results of the propagation 
model at target (Earth) with the speed of the solar 
wind and corrections of the propagation of the 
initial parameters. 

D. Execution of the SHEBA Propagation Model on 
the HPS with the corrected parameters. 



 

 

Parameter sweep meta-workflow: This meta-workflow 
finds and propagates the fastest CME over a given time 
range. The WS-PGRADE parameter sweep extension (Fig 
11) of the Taverna meta-workflow performs the same 
operation over many time ranges. A simple WS-PGRADE 
workflow creates a series of time ranges from a general 
time range and granularity and invokes the Taverna meta-
workflow for each of them. As each execution of the 
Taverna meta-workflow is independent from each other, 
they can be executed in parallel. 

 
Fig11: Parameter sweep meta-workflow in WS-PGRADE 

V. RELATED WORKS 

The usage of scientific workflow paradigm has been 
widely adopted to address problems across widespread 
domains such as Computational Chemistry [9] [10], [11], 
Astrophysics [12], or Bioinformatics [13]. In order to 
facilitate workflow development, various workflow 
systems have been implemented which enable the process 
of workflow creation, configuration and execution. 
Examples of such workflow systems include Taverna, 
MOTEUR[14], Galaxy, and P-GRADE. 

As many different workflow systems have been 
developed based on different programming models having 
different internal workflow description, interoperability 
across workflows generated by different workflow systems 
is a non-trivial challenge. Workflow interoperability is 
fundamental to facilitate sharing of workflows across 
different workflow systems and therefore has attracted 
significant attention from the scientific community. Within 
this context, four major approaches for workflow 
interoperability include workflow language 
standardization, workflow translation, workflow engine 
integration and sharing among data sources [4].  

A number of recent efforts focus on addressing the 
workflow interoperability problem, establishing 
mechanisms to facilitate sharing of scientific workflows, 
and creating meta-workflows. 

The SHIWA (Sharing Interoperable Workflows for 
large-scale scientific simulations on Available DCIs) [15] 
project focused at addressing the challenge of workflow 
interoperability by using the Coarse-Grained 
Interoperability (CGI) and Fine-Grained Interoperability 
(FGI) concepts. The CGI concept is based on workflow 
engine integration, embedding and nesting workflows of 

different workflow systems [4]. The FGI concept is built 
on workflow language translation using the Interoperable 
Workflow Intermediate Representation (IWIR) for 
common workflow description [7]. The SHIWA project 
has developed a workflow repository, the SHIWA 
Workflow Repository, which enables publishing and 
retrieving workflows created using different workflow 
systems such as Galaxy, Kepler, MOTEUR, Taverna, WS-
PGRADE, etc. These imported workflows can be used by 
a workflow developer as part of a meta-workflow from 
within the SHIWA Portal.  

The ClowdFlows [16] project aims to facilitate 
workflow creation, execution and sharing using a user 
friendly web based front end. It allows the users to 
construct new workflows using elements called widgets 
and also enables them to share their workflows via a 
workflow repository. The platform also facilitates the 
creation of meta-workflows. Abouelhoda et al. [13] present 
another approach to facilitate creation and execution of 
meta-workflows with specific emphasis on the 
bioinformatics scientific community. The approach focuses 
on two workflow engines i.e. Taverna and Galaxy which 
are widely used within the bioinformatics community and 
develops a software system called Tavaxy to combine 
advantages of both systems. Wings Project [17] is an 
extension to the Pegasus workflow engine with special 
emphasis on execution and management of very large 
scientific workflows. The approach exploits semantic 
representation of workflows to create workflow templates 
which can then be used to create workflows or meta-
workflows of any scale.  

Although meta-workflows have been introduced in 
various related papers, no attempt has been made to 
categorize and systematically describe meta-workflow 
types and their design patterns. 

VI. CONCLUSIONS 

The paper has contributed towards the definition and 
analysis of meta-workflow approaches for complex 
scientific meta-workflows. It has focused on the formal 
definition of different types of CGI-based meta-workflows 
including formalizing the CGI-based meta-workflow 
execution. The paper has also presented experimentation 
for heliophysics as a proof of concept for the approach 
presented in the paper. We aim to address challenges with 
respect to FGI based meta-workflow approach as part of 
future work. 
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