

A Definition and Analysis of the Role of Meta-workflows in Workflow

Interoperability

Junaid Arshad, Gabor Terstyanszky, Tamas Kiss, Noam Weingarten

Center for Parallel Computing, University of Westminster, London, UK

(J.Arshad, G.Z.Terstyanszky, T.Kiss, Weingan)@westminster.ac.uk

Abstract—Scientific workflows orchestrate the execution of

complex experiments on high performance computing

platforms. Meta-workflows represent an emerging type of

such workflows which aim to integrate multiple embedded

workflows from potentially different workflow systems to

achieve complex experimentation. Workflow interoperability

plays a profound role in achieving this objective. This paper

is focused at formalizing definitions of different types of

workflows and meta-workflows to facilitate improved

understanding and interoperability. It also includes thorough

formalization of the coarse grained workflow interoperability

approach highlighting the role of workflow systems. The

paper presents a case study from Heliophysics which

successfully demonstrates the use of technologies developed to

realize the concepts of meta-workflows and workflow

interoperability within a science gateway environment.

Keywords—Meta-workflows; Workflow Interoperability;

Science Gateways; Workflow Repository.

I. INTRODUCTION

Scientific workflows represent complex computational
experiments conducted by scientists focused at identifying
and addressing scientific problems across diverse subject
domains. Such experiments usually involve carrying out
analysis of large volumes of data and typically run their
processes on high performance computing infrastructures
such as clusters, grids and clouds. Scientific workflows are
often composed of control and data flow statements and
rules which perform the analytics required to achieve the
intended experimentation. A typical scientific workflow is
composed of one or more individual tasks each of which
requires certain input and generates relevant output after
performing its intended function.

An interesting and emerging trend in workflow
development is composing workflows from one or more
sub-workflows. These complex workflows, or meta-
workflows, may utilize existing workflows from libraries;
incorporating such existing workflows as components of
the meta-workflow for faster and more efficient
development and reusability. Meta-workflows engage
complex orchestration of applications which may span
across multiple domains. For such complex workflows the
nodes represent a combination of workflow jobs and sub-
workflows which can host multiple tasks within them. Our
focus in this paper is to investigate the challenges
encountered in facilitating such complex meta-workflows.
In particular, we emphasize on the definition and analysis
of different types of meta-workflows and highlight the role
of workflow interoperability in different approaches for
meta-workflow creation and execution.

The rest of the paper is organized as follows: Section 2
introduces the underlying concepts of meta-workflows

including atomic and compound tasks, approaches for
meta-workflow creation and execution and different types
of meta-workflows. Section 3 briefly describes the
fundamental technologies to implement these concepts
followed by a description of the scientific use cases to
demonstrate our experience with meta-workflows in
Section 4. Section 5 describes the related work. Section 6
concludes the paper and lists our future endeavors.

II. DEFINITION AND TYPES OF META-WORKFLOWS

Scientific workflows are usually represented using a
directed graph where the nodes represent individual tasks
or functionalities whereas the edges represent relationships
or dependencies between these tasks. A simple graphical
representation of scientific workflows has been presented
in Fig 1a where the individual tasks are represented by
nodes N1, N2 and N3, and the dependencies between these
nodes are represented by edges e1, e2 and e3.

We define the following types of workflows: single
workflow, native meta-workflow and non-native meta-
workflow. In a single workflow all the nodes of the
workflow are individual jobs that are executed and
managed by a single workflow system such as P-GRADE
[1], Galaxy [2] or Taverna [3] etc. Fig 1a presents a
graphical representation for a single workflow. We define
the term embedded workflows to refer to the sub-workflows
which constitute a meta-workflow. Furthermore, we
distinguish meta-workflows based on the workflow engine
responsible for the execution of embedded workflows.
Within this context, in a native meta-workflow, the
embedded sub-workflows are all from the host workflow
system (WS1) as demonstrated by Fig 1b. However, in a
non-native meta-workflow, at least one of the embedded
workflows is from external workflow systems as has been
presented in Fig 1c where the two embedded workflows are
from workflow systems WS2 and WS3, respectively.

In order to draw a formal representation of the meta-
workflow concept, we follow the definitions and guidelines
adopted by [4]. A meta-workflow is considered a multi-
graph structure represented by <vertices, edges, source,
target> where the vertices represent jobs, the edges
represent dependencies between jobs. Here, the source and
target of an edge represents the dependee and depender
respectively. Firstly, in order to be qualified as a graph, a
multi-graph structure G has to satisfy the following
condition:

vertices (G) ≠ φ

Let G represent the meta-workflow graph and CG1 and

CG2 represent the two embedded graphs, then G is a meta-

workflow composed of CG1 and CG2 if

𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺1) ∪ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺2) ⊆ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝐺)

This research has been funded by the EU-FP7 funding programme for
research, technological development and demonstration under ER-FLOW
project with grant agreement no. 312579

𝑒𝑑𝑔𝑒𝑠(𝐶𝐺1) ∪ 𝑒𝑑𝑔𝑒𝑠 (𝐶𝐺2) ⊆ 𝑒𝑑𝑔𝑒𝑠 (𝐺)

N1

CN2

CN1

N2

N3

Embedded WF

ce1

e1

e3

e2

Host Workflow System (WS1)

N1

N2

N3

e1

e3

e2

Host Workflow System (WS1)

Fig 1a: A single workflow Fig 1b: Native meta-workflow

N1

CN2

CN1

N2N3

e1

e3

e2

Host Workflow System (WS1)

N4

e4

CN3

CN2

CN1

WS3
WS2

ce1

ce1

ce2

Fig 1c: Non-native meta-workflow

A. Approaches for Non-native Meta-workflow Creation

and Execution

In order to create a non-native meta-workflow two
different approaches have been established, i.e. Coarse-
Grained Interoperability (CGI) or black box approach, and
Fine-Grained Interoperability (FGI) or white box approach.
We explain each of these in more detail below:

i. Coarse-Grained Interoperability Approach: The
CGI approach is focused at defining a workflow engine
based interoperability concept independent of the
workflow system allowing efficient management of
workflows from different workflow systems [4]. A
fundamental concept within the CGI approach is the native
and non-native workflows. The host workflow engine and
its workflows are considered native whereas the all other
workflows and workflow engines are called non-native.
Following this terminology, the non-native workflows and
workflow engines are managed as legacy applications by
the native workflow system.

Workflow

Engine A

Workflow

Repository

Submission

Service

Workflow

Engine B

DCIWF2WF1

WF3

Meta-workflow
Native WF

Engine

Non-native

workflow

Native WFNative WF

Non-native

WF Engine

Fig 2: Coarse-grained workflow interoperability usage scenario

The CGI approach requires two important components
for successful implementation, i.e. a repository to
store/share workflows, and a submission service to
understand and manage the formal descriptions of non-
native workflows and workflow engines. In a typical usage

scenario, the formal description of workflows and
workflow engines is published by respective developers in
a repository. This formal description is used to wrap the
workflows and workflow engines in the form of services.
Among other attributes, this description also contains the
data required to execute the workflows. When a host
workflow engine is encountered with a non-native
workflow, it forwards the workflow ID to the submission
service. The submission service uses this workflow ID to
retrieve the respective formal description from the
repository. This formal description includes identification
of the respective workflow engine and directions as to
execution. Finally, the workflow is submitted to the
workflow engine which manages the overall execution of
the workflow. Fig 2 presents the sequence of events to
execute a non-native workflow using the repository and the
submission service as described above.

Borrowing our formal definition of meta-workflows

from [4],

WFmeta = {J1…Jk, WFnat1…WFnatl, WFnnt1,..WFnntm},

where Jnath : native job h = 1 . . . k

WFnati : native workflow i = 1 . . . l

WFnntj : non-native workflow j = 1 . . . m.

Although the above definitions present a limited view
of the meta-workflow concept, this paper envisages to
achieve more comprehensive formalization of the meta-
workflow concept and the CGI approach for creation and
execution of such workflows. This formalization is
envisaged to make significant contribution in improving
the usability of the existing meta-workflows by
highlighting the requirements of the CGI based workflow
interoperability approach. Our effort is inspired by the
formal definitions for graphs presented in [5] and is
achieved using Z notation [6]. The data models used for our
formal definition are:

WF_ID : the unique workflow ID

WF_N : set of native workflows

WF_NN : set of non-native workflows

WF_ENN : set of native workflow engine(s)

WF_ENNN : set of non-native workflow

engine(s)

The formalization for the CGI approach using Z-

notation is presented in Fig 3.

Fig 3: Formal description of the CGI approach using Z

ii. Fine-Grained Interoperability Approach: With

FGI, the workflow is treated as having two distinguished

parts i.e. the abstract part and the concrete part. The abstract

part includes the abstract input/output functionality of a

workflow and the workflow based orchestration of

computational tasks. The concrete part contains low level

information about its computational tasks’ implementation

technologies such as the method to call a web service and

executing an application on a specific machine.

As part of the FGI approach, the abstract part of the
workflow is transformed using an Interoperable Workflow
Intermediate Representation (IWIR) as illustrated by Fig 4.
At the abstract level, IWIR is used for describing
workflows at a lower level of abstraction that is only
processed by the existing workflow systems and not
directly exposed to the human developer [7]. The concrete
part of the workflow is not transformed but is bundled with
the IWIR representation of abstract part to form an IWIR
bundle.

Fig 4: Transformation of workflows for FGI approach

The FGI approach for creating meta-workflows has
several advantages such as abstraction from high-level
workflow language, abstraction from the Distributed
Computing Infrastructure (DCI) and the enactment engine
and runtime interoperability among different workflow
engines. Although we introduced the concepts surrounding
both CGI and FGI approaches to meta-workflows, the
focus of this paper will be limited to CGI based meta-
workflows due to their support in the SHIWA Simulation
platform.

B. Types of CGI-based Meta-workflows

In this section we describe the different types of meta-
workflows along with their formal definitions. These
definitions are envisioned to make significant contribution
in facilitating workflow developers to design new
workflows by enabling them to comprehend with the
attributes and semantics of each type of meta-workflow.

i. Single job meta-workflow: This type of meta-

workflow represents a workflow with one job in the native

workflow system. The job representing this workflow can

be a simple native job, a native workflow or even a non-

native workflow. Fig 5 presents a graphical representation

of this workflow type.
1 2

Job0

 Fig 5: Single job meta-workflow

As we have emphasized as part of our formalization in
[4], jobs can be native and non-native therefore we start
with the formalization of a native job. Using our definitions

of meta-workflows presented in the previous section, a
single native job workflow can be represented as:

Jn = {Jabs, Jcnf, Jcnr, Jennat} - (Eq. 1)

where Jn : a native job,
 Jabs : the abstract description of the job,
 Jcnf : the configuration of the job,

 Jcnr : the implementation or executable of the job
and Jennat : a native workflow engine for the job
Furthermore, the case where single job native meta-

workflow is a native workflow can be described as
WFn = {WFabs, WFcnr, WFcnf, WFenn} - (Eq. 2)

where WFenn represents a native workflow engine and
WFn represents the workflow to be a native workflow.

In order to formalize a non-native workflow, we first

describe a non-native job as

Jnn = {Jabs, Jcnf, Jcnr, Jennnat} - (Eq. 3)

where Jnn represents the non-native job and Jennnat
represents non-native workflow engine for the job. Further
to our formalization for FGI approach in the previous
section, Jnn ∈ TASKS where TASKS represents the set of
jobs within a workflow. Now, a single job non-native
workflow can described as

 WFnn = {TASKS, WFabs, WFcnr, WFcnf, WFennn} - (Eq. 4)

where WFnn represents the non-native workflow and

WFennn represents a non-native workflow engine.

ii. Linear multi-job meta-workflow: This is a

pipeline of multiple jobs in the native workflow system

where any (or even all) of these jobs can be non-native

workflows. The execution of each job depends on the

receipt of input files from previous jobs. Fig 6 presents a

graphical representation of this type of workflow.
As linear multi-job meta-workflows are composed of

single-jobs and/or single job meta-workflows, we use our
formalization from previous sections to describe this type
of meta-workflow. Therefore, a linear multi-job meta-
workflow can be described as:

WFlmj = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1,…,

WFny, WFnn1, …,WFnnz} - (Eq. 5)

where Jj : job of linear multi-job workflow, j = 1.., m

 Jni : native job, i = 1 … k

Jnnp : non-native job, p = 1… y and refers to the

formal description presented in Eq. 3 and 4.

WFnp : native workflow ∈ Jj p = 1,.., y

WFnnt : non-native workflow, t = 1… z

Job0

1 2 12 1 2

Job1 Job2

 Fig 6: Linear multi-job meta-workflow

Now, in order to formalize a linear multi-job meta-
workflow, let us define an edge as a connection between an
input and an output port. By definition, an edge is defined
as e = (o,i) where o is the output port and i is the input port.
Consequently if Po is the output port of job J and Pi is the
input port of job J.

 e = (Po, Pi) - (Eq. 6)

Therefore, for a linear multi-job meta-workflow, if Jx

and Jy are any two consecutive jobs and Jx is not the last job

of the workflow, there exists a valid edge such that

 ei = (Pxo, Pyi) - (Eq. 7)

where Pxo represents the output port of Jx and Pyi

represents the input port of Jy.

iii. Parallel multi-job meta-workflow: This is a

workflow in the native workflow system that includes

parallel branches. One or more of these branches can

include one or more non-native workflows. Parallel multi-

job meta-workflows are composed of several linear multi-

job meta-workflows as presented in Fig 7.

1

2

1

1 1

1

2

2

32

4

Job0

Job1

Job2 Job3

Job4

 Fig 7: Parallel multi-job meta-workflow

Utilizing formalization from Eq. 5, the parallel multi-

job meta-workflow can be described as

WFpmj = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1, …,

WFny, WFnn1, …,WFnnz} – (Eq. 8)

where Jj : job of parallel multi-job meta-workflow, j

=1,…,m

 Jni : native job, i = 1 … k

Jnnp : non-native job, p = 1… y

WFnp : native workflow ∈ Jj, p = 1,…,y

WFnnt : non-native workflow, t = 1… z

Furthermore, from the formalization for the linear
multi-job meta-workflow in the previous section, we define
an edge in (x,y).

For a parallel multi-job meta-workflow, the nature of
connections among individual jobs is different to that for a
linear multi-job workflow defined in the previous section.

Let Js represent a split job (a job that is followed by
several parallel worker jobs), Jw represent a worker job.
Then from Eq. 7, a parallel multi-job meta-workflow must
contain an edge

eg = (Pgo, Pwxi), where

 Pgo : the output port of the split job

Jwx : a worker job and x = 1 … k

Pwxi : the input port of the worker job Jwx

Furthermore, let Jm represent the merge job (a job that
merges the results of parallel workers jobs), then Pmi

represents an input port for the merge job where i = 1 … k
such that k = number of worker jobs. Therefore, a parallel
multi-job meta-workflow must also have an edge em such
that

 em = (Jwxo, Pmi), where

Jwxo : the output of a worker job Jwx and x = 1 … k

 Pmi : an input port of the merge job Jm and i = 1 … k

iv. Parameter sweep meta-workflow: This represents

a parameter sweep workflow in the native workflow system

that includes one or more non-native workflows. The

parameter sweep meta-workflow has a generator job which

produces a number of inputs each to be consumed by a

worker job. The collector job then aggregates the outputs

of all the worker jobs and prepares the final output.

Although this functionality is very similar to the parallel

multi-job meta-workflow, the primary difference between

the two is that the worker jobs for parameter sweep

workflow are generated dynamically and are not known at

the configuration stage of the workflow. Therefore the

relations between the generator, worker and collector are

dynamic as compared to the parallel multi-job workflow as

presented in Fig 8. Also, while workers in parallel multi-

job meta-workflows can represent different functionality,

in case of parameter sweep meta-workflows all workers

represent the same functionality with different parameter

values only.

1

1

1

1

2 2

2

Generator

Job2Job1

Collector

Fig 8: Parameter sweep meta-workflow

Due to the similarity with the parallel multi-job
workflow, parameter sweep workflow can be described
using Eq. 8 as:

WFps = {J1,…,Jm} = {Jn1…, Jnk, Jnn1 …, Jnny, WFn1, …,

WFny, WFnn1, …,WFnnz} - (Eq. 9)

where Jj : job of parallel multi-job meta-workflow, j

=1,…,m

 Jni : native job, i = 1 … k

Jnnp : non-native job, p = 1… y

WFnp : native workflow ∈ Jj, p = 1,…,y

WFnnt : non-native workflow, t = 1… z

Furthermore, the connections between the generator,
collector and the worker jobs for a parameter sweep meta-
workflow can be described in similar manner i.e.

 e = (Jgo, Jwxi), where

 Jgo : the output port of the generator job

Jwx : a worker job and x = 1 … k

Jwxi : the input port of the worker job Jwx

Furthermore, let Jc represent the collector job then Jci

represents an input port for the collector job where i = 1 …
k such that k = number of worker jobs. Therefore, a
parameter sweep meta-workflow must also have an edge ec
such that

 ec = (Jwxo, Jci), where

 Jwxo : the output of a worker job Jwx and x = 1 … k

 Jci : an input port of collector job Jc and i = 1 … k

III. THE SHIWA SIMULATION PLATFORM

The SHIWA Simulation Platform (SSP) enables data,
infrastructure and workflow interoperability at both coarse-
and fine-grained level. It supports the whole workflow life-
cycle addressing the challenges of (i) executing workflows
of different workflow systems as non-native workflows (ii)
combining workflows of different workflow systems into
meta-workflows and (iii) running these workflows on
different DCIs. Currently, the simulation platform provides
production-level CGI support for the following workflow
systems: ASKALON, Galaxy, GWES, Kepler, MOTEUR,
Pegasus, ProActive, Taverna, Triana and WS-PGRADE.

The simulation platform contains a science gateway
(SHIWA Science Gateway), a submission service (SHIWA
Submission Service), a workflow repository (SHIWA
Repository) and a data transfer service (Data Avenue
Service). The platform is presented in Fig 10. The SHIWA
Science Gateway is built on the gUSE/WS-PGRADE
technology. It incorporates the SHIWA Portal, the WS-
PGRADE Workflow System and the DCI Bridge service.
The portal offers a graphical workflow editor, a workflow
engine and workflow execution monitor. The gateway is
integrated with the WS-PGRADE Workflow System which
is used as native workflow engine in the simulation
platform. The DCI Bridge service provides access to
different Distributed Computing Architectures such as
clouds, clusters, desktop and service grids and
supercomputers. The SHIWA Repository stores binaries,
configuration and default data and meta-data of workflows
and workflow engines. Workflow and workflow engine
developers can publish (or export or upload), edit, and
delete workflows and workflow engines through the
repository GUI. To support execution of non-native
workflows the SHIWA Submission Service first, imports
the workflow from the SHIWA Repository. Next, it either
invokes it locally or remotely on pre-deployed workflow
engines or submits workflow engines with the workflow to
local or remote resources. The Data Avenue service
manages different data formats and data transfer
technologies used by different workflow systems.

Fig 9: SHIWA simulation platform

IV. THE SCIENTIFIC USE CASE

The results of the research presented in this paper have
been adopted by diverse scientific disciplines. In this
section, we present the experience of the Heliophysics
community mapping their use-cases to the formal
descriptions described earlier in this paper. The details of
this use case have been presented in [8].

Case from Heliophysics – Propagation of Type II CMEs

Coronal Mass Ejection (CME) are extremely relevant
phenomena that consist in great masses of charged particles
emitted from the Sun and hitting bodies of the Solar
System. When Earth is hit by a CME, its environment is
disturbed resulting in potentially dangerous effects on
satellites, information networks and power distributions.
The simulation of propagation of CMEs is quite complex
as the speed is influenced by various factors and the physics
governing the phenomena are complex.

Furthermore, evaluation of initial conditions of the
simulations may be too complicated to assess precisely.
This investigation is focused on fast CMEs and it uses a
simple ballistic model with corrections. It is assumed that
fast CME will slow down due to Solar Wind drag during
the propagation. Based on this assumption, the propagation
model is corrected with values of the speed of Solar Wind
at target (the Earth).

Fig 10: Meta-workflow for the propagation of type II CME

Linear multi-job meta-workflow: Investigation of the
fastest CME in a given period of time is executed with the
linear multi-job meta-workflow described in Fig 10. The
embedded Taverna workflow is composed of four main
phases:

A. Evaluation of initial parameters for the
propagation. Values obtained from the HELIO
Event Catalogue (HEC) that, in turn, accesses
table with the details of various solar events. The
fastest CME within the given time range is
selected and the initial parameters obtained from
the event catalogues.

B. Execution of the SHEBA Propagation Model on
the HELIO Processing Service (HPS).

C. Comparison of the results of the propagation
model at target (Earth) with the speed of the solar
wind and corrections of the propagation of the
initial parameters.

D. Execution of the SHEBA Propagation Model on
the HPS with the corrected parameters.

Parameter sweep meta-workflow: This meta-workflow
finds and propagates the fastest CME over a given time
range. The WS-PGRADE parameter sweep extension (Fig
11) of the Taverna meta-workflow performs the same
operation over many time ranges. A simple WS-PGRADE
workflow creates a series of time ranges from a general
time range and granularity and invokes the Taverna meta-
workflow for each of them. As each execution of the
Taverna meta-workflow is independent from each other,
they can be executed in parallel.

Fig11: Parameter sweep meta-workflow in WS-PGRADE

V. RELATED WORKS

The usage of scientific workflow paradigm has been
widely adopted to address problems across widespread
domains such as Computational Chemistry [9] [10], [11],
Astrophysics [12], or Bioinformatics [13]. In order to
facilitate workflow development, various workflow
systems have been implemented which enable the process
of workflow creation, configuration and execution.
Examples of such workflow systems include Taverna,
MOTEUR[14], Galaxy, and P-GRADE.

As many different workflow systems have been
developed based on different programming models having
different internal workflow description, interoperability
across workflows generated by different workflow systems
is a non-trivial challenge. Workflow interoperability is
fundamental to facilitate sharing of workflows across
different workflow systems and therefore has attracted
significant attention from the scientific community. Within
this context, four major approaches for workflow
interoperability include workflow language
standardization, workflow translation, workflow engine
integration and sharing among data sources [4].

A number of recent efforts focus on addressing the
workflow interoperability problem, establishing
mechanisms to facilitate sharing of scientific workflows,
and creating meta-workflows.

The SHIWA (Sharing Interoperable Workflows for
large-scale scientific simulations on Available DCIs) [15]
project focused at addressing the challenge of workflow
interoperability by using the Coarse-Grained
Interoperability (CGI) and Fine-Grained Interoperability
(FGI) concepts. The CGI concept is based on workflow
engine integration, embedding and nesting workflows of

different workflow systems [4]. The FGI concept is built
on workflow language translation using the Interoperable
Workflow Intermediate Representation (IWIR) for
common workflow description [7]. The SHIWA project
has developed a workflow repository, the SHIWA
Workflow Repository, which enables publishing and
retrieving workflows created using different workflow
systems such as Galaxy, Kepler, MOTEUR, Taverna, WS-
PGRADE, etc. These imported workflows can be used by
a workflow developer as part of a meta-workflow from
within the SHIWA Portal.

The ClowdFlows [16] project aims to facilitate
workflow creation, execution and sharing using a user
friendly web based front end. It allows the users to
construct new workflows using elements called widgets
and also enables them to share their workflows via a
workflow repository. The platform also facilitates the
creation of meta-workflows. Abouelhoda et al. [13] present
another approach to facilitate creation and execution of
meta-workflows with specific emphasis on the
bioinformatics scientific community. The approach focuses
on two workflow engines i.e. Taverna and Galaxy which
are widely used within the bioinformatics community and
develops a software system called Tavaxy to combine
advantages of both systems. Wings Project [17] is an
extension to the Pegasus workflow engine with special
emphasis on execution and management of very large
scientific workflows. The approach exploits semantic
representation of workflows to create workflow templates
which can then be used to create workflows or meta-
workflows of any scale.

Although meta-workflows have been introduced in
various related papers, no attempt has been made to
categorize and systematically describe meta-workflow
types and their design patterns.

VI. CONCLUSIONS

The paper has contributed towards the definition and
analysis of meta-workflow approaches for complex
scientific meta-workflows. It has focused on the formal
definition of different types of CGI-based meta-workflows
including formalizing the CGI-based meta-workflow
execution. The paper has also presented experimentation
for heliophysics as a proof of concept for the approach
presented in the paper. We aim to address challenges with
respect to FGI based meta-workflow approach as part of
future work.

VII. ACKNOWLEDGEMENTS

We acknowledge the contribution of Dr. Gabriel

Pierantoni (TC-HPC), Dr. Eoin Carley (TCD-Physics) and

Dr. Byrne (Rutherford Appleton Laboratory) for this

research.

REFERENCES

[1] A. Kertész, G. Sipos and P. Kacsuk; Brokering multi-grid
workflows in the P-GRADE portal, in: Euro-Par 2006: Parallel
Processing, vol. 4375, Springer, Berlin, 138–149, 2007.

[2] Giardine, B., Riemer et al.; Galaxy: A platform for interactive
large-scale genome analysis. Genome Research, 15(10):1451-5,
2005.

[3] Oinn, T., Addis et al.; Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics,
20(17):3045-54, 2004

[4] Terstyanszky, G. et al; Enabling Scientific Workflow Sharing
Through Coarse Grained Interoperability in the Future Generation
Com[puter Systems Vol 37, 46-59, 2014.

[5] Toda, Y.; The Formalization of Simple Graphs, Formalized
Mathematics, vol.5, no. 1, 137-144, 1996

[6] ISO/IEC 13568, "Information Technology- Z formal Specification
Notation- Syntax,TypeSystemandSemantics:InternationalStandard",
2002

[7] Plankensteiner K. et al; Fine-Grained Interoperability of Scientific
Workflows in Distributed Computing Infrastructures, in the Journal
of Grid Computing, Vol 11(3), 429-455, 2013

[8] Pierantoni, G. and Carley, E.; Metaworkflows and Workflow
Interoperability for Heliophysics, in the proceedings of the 6th
International workshop on Science Gateways, 79-84, 2014

[9] Herres-Pawlis, S. et al.; Quantum chemical meta-workflows in
MosGrid in the Concurrency and Computation: Practice and
Experience 27(2), 344-357, 2015.

[10] Herres-Pawlis, S. et al.; Meta-metaworkflows for Combining
Quantum Chemistry and Molecular Dynamics in the MoSGrid
Science Gateway in the 6th International Workshop on Science
Gateways. 73-78. 2014

[11] Herres-Pawlis, S. et al.; User-friendly metaworkflows in
Quantum Chemistry, in the IEEE International Conference on Cluster
Computing, 1-3, 2013.

[12] Becciani, U. et al.; Science Gateway technologies for the
astrophysics community, in the Concurrency and Computation:
Practice and Experience, 2014

[13] Abouelhoda, M., Alaa, S., Ghanem, M.; Meta-Workflows:
Pattern-based Interoperability between Galaxy and Taverna in the
International workshop on workflow approaches for New Data-
Centric Science, 2010.

[14] Glatard T., Montagnat J., Lingrand D, Pennec X.; Flexible and
efficient workflow deployment of data-intensive applications on
Grids with MOTEUR, in the International Journal of High
Performance Computing Applications, 2008

[15] SHIWA: SHaring Interoperable Workflows for large-scale
scientific simulation on Available DCIs. http://www.shiwa-
workflow.eu, 2011.

[16] Kranjc, J., Podpecan, V., Lavrac, N.; ClowdFlows: A Cloud
Based Scientific Platform, in Machine Learning and Knowledge
Discovery in Databases, LNCS, Vo.. 7524, 816-819, 2012

[17] Gil, Y., Ratnakar, V., Dellman, E.; Wings for Pegasus: A
Semantic Approach to Creating Very Large Scientific Workflows, in
OWLED 2006.

