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Abstract

The CA1 region of the hippocampus is one of the most studied regions of the rodent brain,

thought to play an important role in cognitive functions such as memory and spatial naviga-

tion. Despite a wealth of experimental data on its structure and function, it has been chal-

lenging to integrate information obtained from diverse experimental approaches. To

address this challenge, we present a community-based, full-scale in silico model of the rat

CA1 that integrates a broad range of experimental data, from synapse to network, including

the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the

effects that acetylcholine has on the system. We tested and validated each model compo-

nent and the final network model, and made input data, assumptions, and strategies explicit

and transparent. The unique flexibility of the model allows scientists to potentially address a

range of scientific questions. In this article, we describe the methods used to set up simula-

tions to reproduce in vitro and in vivo experiments. Among several applications in the article,

we focus on theta rhythm, a prominent hippocampal oscillation associated with various

behavioral correlates and use our computer model to reproduce experimental findings.
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Finally, we make data, code, and model available through the hippocampushub.eu portal,

which also provides an extensive set of analyses of the model and a user-friendly interface

to facilitate adoption and usage. This community-based model represents a valuable tool for

integrating diverse experimental data and provides a foundation for further research into the

complex workings of the hippocampal CA1 region.

Introduction

The hippocampus is thought to play a fundamental role in cognitive functions such as learn-

ing, memory, and spatial navigation [1,2]. It consists of three subfields of cornu ammonis
(CA), CA1, CA2, and CA3 (see [3]). CA1, for instance, one of the most studied, provides the

major hippocampal output to the neocortex and many other brain regions (e.g., [4]). There-

fore, understanding the function of CA1 represents a significant step towards explaining the

role of hippocampus in cognition.

Each year, the large neuroscientific community studying hippocampus contributes thou-

sands of papers to an existing mass of empirical data collected over many decades of research

(see S1 Fig). Recent reviews have, however, highlighted gaps and inconsistencies in the existing

literature [5–8]. Currently, the community lacks a unifying, multiscale model of hippocampal

structure and function with which to integrate new and existing data.

Computational models and simulations have emerged as crucial tools in neuroscience for

consolidating diverse multiscale data into unified, consistent, and quantitative frameworks

that can be used to validate and predict dynamic behavior [9]. However, constructing such

models requires assigning values to model parameters, which often involves resolving conflicts

in the data, filling gaps in knowledge, and making explicit assumptions to compensate for any

incomplete data. In order to validate the model, it must be tested under specific experimental

conditions using independent sources of empirical evidence before the model can be used to

generate experimentally testable predictions. Therefore, the curation of a vast range of experi-

mental data is a fundamental step in constructing and parametrizing any data-driven model of

hippocampus.

The challenge of incorporating these data into a comprehensive reference model of hippo-

campus, however, is considerable and calls for a community effort. While community-wide

projects are common in other disciplines (e.g., Human Genome Project in bioinformatics,

CERN in particle physics, NASA’s Great Observatories program in astronomy—[10–12]), they

are a relatively recent development in neuroscience. OpenWorm, for example, is a successful,

decade-long community project to create and simulate a realistic, data-driven reference model

of the roundworm Caenorhabditis elegans (C. elegans) including its neural circuitry of approxi-

mately 302 neurons to study the behavior of this relatively simple organism in silico [13,14].

By contrast, for the hippocampus, with a circuit many orders of magnitude larger than C. ele-
gans, models have typically been constructed with a minimal circuit structure on a relatively

small scale and often their model parameters have been tuned with the goal of reproducing a

single empirical phenomenon (see [15]). Comparing the results from a variety of circuit mod-

els is problematic because they vary in their degree of realism and frequently rely on one or a

few single neuron models making generalization of their findings difficult (see [15]). While

these focused models have led to valuable insights (see [16]), this piecemeal approach fails to

demonstrate whether these separate phenomena can be reproduced in a full circuit model

without the need to adjust parameters.
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and data needed to reproduce all the figures, are

also accessible on the Harvard Dataverse. Model:

https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/TN3DUI Figures:

https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/UGOQWE.
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Large-scale circuit models of hippocampus using realistic multi-compartment spiking neu-

ronal models pioneered by Traub and colleagues [17–20] have been used to explain key char-

acteristics of oscillatory activity observed in hippocampal slices and to examine the origins of

epilepsy in region CA3. More recently, with significant increases in high-performance com-

puting resources, [21] in a microcircuit model of CA1 and notably [22] in a full-scale CA1

model, have examined the contribution of diverse types of interneurons to the generation of

prominent theta (4 to 12 Hz) oscillations. While these large-scale circuit models provide a

more holistic approach, they still need to incorporate other features to improve their realism.

For example, to better reflect the highly curved shape of the hippocampus, an atlas-based

structure that more closely mimics anatomy is required. Additionally, models need to employ

pathway-specific short-term synaptic plasticity known to regulate circuit dynamics and neural

coding [23]. While [24] have constructed a down-scaled, atlas-based model of the rat dentate

gyrus (DG) to CA3 pathway, there has to date been no atlas-based, full-scale model of rat CA1

(for a more detailed comparison of these models, see S2 Table).

To initiate a community effort of this magnitude requires an approach that standardizes

data curation and integration of diverse data sets from different labs and uses these curated

data to construct and simulate a scalable and reproducible circuit automatically (for recent

discussion on the benefits of community-based standards and workflow, see [25,26]). A

reconstruction and simulation methodology was introduced and applied at the microcircuit

scale, for the neocortex [27] and the thalamus [28] and at full-scale for a whole neocortical

area [29,30]. However, these models relied primarily on data sets collected specifically for

the purpose rather than data sought from and curated with the help of the scientific

community.

In this paper, we describe a community-based reconstruction and simulation of a full-scale,

atlas-based multiscale structural and functional model of the area CA1 of the hippocampus

that extends and improves upon the approach described in [27]. Here, a community of 5 dif-

ferent labs (BBP, CNR, KOKI, LNMC, and UCL), with different expertise and having different

roles, collaborated to create a “first draft” reference CA1 circuit model that could be shared

with the wider hippocampus community. Specifically, to model stimuli originating from

beyond the intrinsic circuitry, we included the synaptic input from the Schaffer collaterals

(SC) from CA3, which is the largest afferent pathway to CA1 and the most commonly stimu-

lated in experiments. Furthermore, we also added the neuromodulatory influence of choliner-

gic inputs, perhaps the most studied neuromodulator in the hippocampus [31]. We

constrained all model parameters and data using available experimental data from different

labs or explicit assumptions made when data were lacking. We extensively tested and validated

each model component and the final network to assess its quality. To maximize realism of the

simulations, we set up simulation experiments to represent as closely as possible the experi-

mental conditions of each empirical validation. We demonstrated the broad applicability of

the model by studying the generation of neuronal oscillations, with a specific focus on theta

rhythm, in response to a variety of different stimulus conditions. Over time and with the help

of the community, limitations of the model revealed by these processes can be addressed to

improve upon it. To facilitate a widespread adoption by the community, we have developed a

web-based resource to share the model and its components, open sourcing extensive analyses,

validations, and predictions that can be accessed as a complement to direct interaction with

the model (hippocampushub.eu). Finally, we have developed a massive online open course

(MOOC) to introduce users to the building, analysis, and simulation of a rat CA1 microcircuit

(https://www.edx.org/course/simulating-a-hippocampus-microcircuit) providing a smaller

version of the full-scale model for education purposes.

PLOS BIOLOGY Community-based model of rat CA1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002861 November 5, 2024 3 / 61

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: ACh, acetylcholine; aCSF, artificial

cerebrospinal fluid; ADF, augmented Dickey–Fuller;

AIS, axon initial segment; bAC, bursting

accommodating; BBP, Blue Brain Project; BC,

basket cell; BPAP, back-propagating action

potential; CA, cornu ammonis; cAC, classical

accommodating; cNAC, classical non-

accommodating; CSD, current source density; CV,

coefficient of variation; DG, dentate gyrus; eFEL,

Electrophys Feature Extraction Library; LFP, local

field potential; MOOC, massive online open course;

MS, medial septum; MVS, median over visible

spread; OVS, overall visible spread; PC, pyramidal

cell; PCA, principal component analysis; PP,

perforant pathway; PSC, postsynaptic current;

PSD, power spectral density; PSP, postsynaptic

potential; SC, Schaffer collaterals; STD, standard

deviation; STP, short-term plasticity; STTC, spike

time tiling coefficient; TMD, topological

morphological descriptor.

https://www.hippocampushub.eu/
https://www.edx.org/course/simulating-a-hippocampus-microcircuit
https://doi.org/10.1371/journal.pbio.3002861


Results

We divide the Results section into 2 parts: how the model was constructed and validated (Model

reconstruction) and the simulation and analysis of activity in the reconstructed circuit model

(Model simulations). For a list of abbreviations and acronyms used in the paper, see S1 Table.

Model reconstruction

In this section, we describe how we reconstructed the main components of the model: the

cornu Ammonis 1 (CA1), the Schaffer collaterals (SC), and the effect of acetylcholine (ACh)

on CA1. Each of these main components is itself a compound model of several circuit “build-

ing blocks” (Fig 1 and S4 Fig). For each of these subcomponents, we show how, from the

sparse data available in the literature (see S3–S24 Tables) and a list of assumptions (section List

of assumptions), we arrived at the dense data necessary to ascribe a value for each model

parameter. For each “building block” subcomponent, we validate it against available experi-

ment data.

Fig 1. Overview of the model. A visualization of a full-scale, right-hemisphere reconstruction of rat CA1 region and its components. The

number of cells is reduced to 1% for clarity, and neurons are randomly colored. The CA1 network model integrates entities of different

spatial and temporal scales. The different scales also reflect our bottom-up approach to reconstruct the model. Ion channels (1) were inserted

into the different morphological types (3) to reproduce electrophysiological characteristics and obtain neuron models (4). Neurons were then

connected by synapses to generate an intrinsic CA1 connectome (5). For each intrinsic pathway, synaptic receptors (2) and transmission

dynamics were assigned based on single neuron paired recording data (6) to create a functional intrinsic CA1 network model (7). The

intrinsic CA1 circuit received synaptic input from CA3 via Schaffer collateral (SC) axons (8). The neuromodulatory influence of cholinergic

release on the response of CA1 neurons and synapses was modeled phenomenologically (9). The dynamic response of the CA1 network was

simulated with a variety of manipulations to model in vitro and in vivo, intrinsic and extrinsic stimulus protocols while recording

intracellularly and extracellularly (10) to validate the circuit at different spatial scales against specific experimental studies (11) and to make

experimentally testable predictions (12).

https://doi.org/10.1371/journal.pbio.3002861.g001
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Building CA1

To reconstruct a full-scale model of rat CA1, we created biophysical models of its neurons,

defined an atlas volume of the region for one hemisphere, placed these neurons in the volume,

and connected them together by following and adapting the method described in [27] (S4 Fig).

CA1 neurons

To achieve a full-scale version of CA1, we needed to populate the model with approximately

456,000 cells. We started by curating 43 morphological reconstructions of neurons belonging

to 12 morphological types: pyramidal cell (PC), axo-axonic cell (AA), 2 subtypes of bistratified

cell (BS), back-projecting cell (BP), cholecystokinin (CCK) positive basket cell (CCKBC), ivy

cell (Ivy), oriens lacunosum-moleculare cell (OLM), perforant pathway associated cell (PPA),

parvalbumin positive basket cell (PVBC), Schaffer collateral associated cell (SCA), and trilami-

nar cell (Tri). To increase the morphological variability, we scaled and cloned them producing

an initial morphology library of 2,592 reconstructions.

To validate the resulting morphology library, we compared them morphometrically and

topologically to the original morphologies. The similarity scores for the distribution of mor-

phological features were statistically similar (S5 Fig, all values R>0.98, p<10−25). Using the

topological morphology descriptor (TMD) [32], the persistence diagrams (S6 Fig) show an

increase in morphological variability introduced by the cloning process (details per m-type in

S7 and S8 Figs).

To produce electrical models (e-models), we began by taking 154 single-cell recordings and

classifying traces into 4 electrical types (e-types) using Petilla nomenclature [33]: classical

accommodating for pyramidal cells and interneurons (cACpyr, cAC), bursting accommodating

(bAC), and classical non-accommodating (cNAC). From each trace, we extracted electrical fea-

tures (e-features) which we used in combination with the curated morphologies to produce and

validate 36 single-cell e-models [34,35]. In the case of pyramidal cells e-models, they qualita-

tively reproduced experimental findings in terms of back-propagating action potential (BPAP)

([36], R = 0.878, p = 0.121) and postsynaptic potential (PSP) attenuation ([37], R = 0.846,

p = 0.001, S9 Fig). However, since we constrained the models with somatic not dendritic fea-

tures, we expected some degree of difference compared with experimental results (see [38]).

To match the proportions of the morpho-electrical type (me-type) composition of the CA1

(S4 Table), we combined the 36 e-models with 2,592 curated morphologies to obtain an initial

library of 26,112 unique me-type models. This is the pool of biophysical cell models available

to populate the full-scale version of CA1.

Defining the spatial framework

To represent the CA1 spatial volume, we started with a publicly available atlas reconstruction

of the hippocampus [39]. Our aim was to create a continuous coordinate system to represent

the 3 axes of the hippocampus (longitudinal, transverse, and radial) and a precise vector field

for cell placement and orientation (Fig 2). For our building and analysis algorithms to work

effectively, we applied a series of post-processing steps (S10 Fig, see section Atlas). Within this

process, we redefined the layers parametrically to be consistent with the layer thicknesses in

our data sets (section Layers).

Placing neurons in the volume

After defining the volume, we wanted the model to match the neuronal density and proportion

of cell types in rat CA1. We compiled available data to derive the cellular composition (section
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Cell composition, see S3 Table) and used it to populate the atlas with soma locations (S11A

and S11B Fig). To check the consistency, we validated the resulting cell composition

(R = 0.999, p = 1.31×10−28) and cell density (R = 0.999, p = 0.0001) (S12B and S12C Fig and S5

Table). At each soma location, we needed to select from the e-model library the neuron that

best fits in the space of the layers. To this purpose, we oriented its morphology according to

the vector fields (S11C and S11D Fig) and evaluated it against a set of rules that describe the

target distribution of neurites per layer (S6 Table). Visually, cells in our model follow the cur-

vature of the hippocampus and the different parts of the cells target the expected layers (S12A

Fig). Subject to the multiple constraints of the cell placement algorithm, we placed 456,380

neurons in the volume, utilizing 2,523 unique morphologies, and 25,355 unique neuron

models.

Fig 2. Coordinate system. Custom parametric coordinates system used as spatial reference for circuit building, circuit segmentation, and for simulation

experiments. (A) Longitudinal (l, red), transverse (t, green) and radial (r, blue) axes of the CA1 volume are defined parametrically in range [0,1]. Left: Slice

from volume shows radial depth from SO/alveus (r = 0) to SLM/pial (r = 1) and transverse extent from CA3/proximal CA1 (t = 1) to distal CA1/subiculum

(t = 0) boundaries. Right: Full volume shows surface grid of transverse vs. longitudinal axes. Longitudinal axis extends from dorsal (l = 0) to ventral (l = 1)

CA1. (B) Circuit segmentation for analysis and simulation. Coordinates system used to select CA1 slices of a given thickness (B1) or a cylinders of a given

diameter (B2) at specific locations along longitudinal axis. (C) Extracellular electrode placed at a given surface position (left) and channels at selected

laminar depth (right) in CA1 volume. (D) Each neuron in the circuit is defined by a unique general identifier (gid), its morphological type (m-type),

electrical type (e-type), spatial xyz-coordinates and parameterized ltr-coordinates.

https://doi.org/10.1371/journal.pbio.3002861.g002
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Connecting CA1 neurons

To connect the placed neurons, we used the connectome algorithm previously described in

[40]. In brief, the algorithm searches for co-localization of axon and postsynaptic neurons

within a certain distance to identify a potential synapse (or apposition). After identifying all

potential synapses, a subsequent pathway-specific pruning step discards some to match the

known bouton densities (S7 Table) and number of synapses per single axon connection (S9

Table). This algorithm has been demonstrated to accurately recreate local connectivity [27–29]

as well as higher-order topological features [41]. The resulting intrinsic connectome consisted

of about 821 million synapses.

Given the importance of the connectome, we wanted to validate it as widely as possible to

mitigate the uncertainty in our assumptions and literature data (S14–S17 Figs). First, we veri-

fied the bouton density and number of synapses per connection used in the pruning step was

preserved in the generated connectome (bouton density: R = 0.909, p = 0.0120; number of syn-

apses per connection: R = 0.992, p = 2.41×10−9, S14 Fig and S7 and S9 Tables). Next, we

observed that the shape of the distributions for connection probability (S15A Fig), conver-

gence (S16A Fig) and divergence (S17A Fig) were positively skewed as reported experimentally

[42]. In the case of mean connection probability, experimental data did not allow a direct com-

parison because the distance between the neuron pairs tested was typically missing (S15C Fig

and S8 Table). For convergence, we found that the subcellular distribution of synapses on dif-

ferent compartments of pyramidal cells in our model was consistent with [43] (R = 0.988,

p = 0.012, S16D Fig). For divergence, the model did not always closely match the experimental

data for the total number of synapses per axon formed by certain m-types (R = 0.524,

p = 0.286, S17C Fig and S10 Table). We compared divergence also in terms of the percentage

of synapses formed with PCs or INTs (S17D Fig and S11 Table) and validated the distribution

of efferent synapses in the different layers (SO: R = 0.798, p = 0.057; SP: R = 0.905, p = 0.013;

SR: R = 0813, p = 0.049; SLM: R = 0.999, p = 4.11×10−8, S17E Fig and S12 Table). Overall, this

suggests the model connectome provides a reasonable approximation based on available data,

while the discrepancies can be due, for example, to the small sample size and high variability in

axon length recovered from in vitro slices.

To provide functional dynamics for synaptic connections with stochastic neurotransmitter

release and short-term plasticity (STP) (see S18 Fig), we used the optimized parameters we

previously derived in [34] for the 22 intrinsic synaptic classes of pathways we have identified

(S13 and S14 Tables). The model was able to reproduce the PSP amplitudes (S18D Fig,

R = 0.999, p = 1.65×10−19) and postsynaptic current (PSC) coefficient of variation (CV) of the

first peak (S18E Fig, R = 0.840, p = 0.018) for the pathways with available electrophysiological

recordings. After having constrained and validated the synapses, the reconstruction process of

the intrinsic CA1 circuit is complete.

Reconstruction of Schaffer collaterals (SC)

An isolated CA1 does not have substantial background activity [44], while normally the net-

work is driven by external inputs. The Schaffer collaterals from CA3 pyramidal cells are the

most prominent afferent input to the CA1 and the most studied pathway in the hippocampus

[45,46]. Their inclusion allows us to deliver synaptic activity input patterns to the CA1.

To reconstruct the anatomy of Schaffer collaterals, we constrained the number of CA3

fibers and their average convergence on CA1 neurons with literature data (S15 and S16

Tables). Due to scarce topographical information, we distributed synapses uniformly along the

transverse and longitudinal axes, while along the radial axis we followed a layer-wise distribu-

tion as reported by [5]. The resulting Schaffer collaterals added more than 9 billion synapses to
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CA1, representing 92% of total modeled synapses. As expected, the synapse laminar distribu-

tion (Fig 3A–3C) and mean convergence on PCs and interneurons (Fig 3D and 3E) match

experimental values (one-sample t test, p = 0.957 for PCs and p = 0.990 for INTs). Interest-

ingly, other unconstrained properties also match experimental data. The convergence variabil-

ity is comparable with the upper and lower limits identified by [5] (model PC: 20,878 ± 5,867

synapses and experimental PC: 13,059–28,697, model INT: 12,714 ± 5,541 and experimental

INT 7,952–17,476, Fig 3D and 3E). In addition, the axonal divergence from a single CA3 PC is

34,135 ± 185 synapses (S19A Fig), close to the higher end of the ranges measured by [47–49]

(15,295–27,440, S19B Fig). Finally, most of the connections formed a single synapse per neu-

ron (1.0 ± 0.2 synapses/connection, S19A Fig), consistent with what has been previously

reported [5].

The CA3 afferent pathway is sparsely connected to the CA1, so the chance of obtaining

paired CA3-CA1 neuronal recordings is small between PCs and much smaller from PC to

interneurons [50–53]. So, to constrain SC physiology we did not have enough data to follow

the parametrization used for intrinsic synapses [34]. Instead, we used the available data

Fig 3. Schaffer collaterals anatomy and physiology. (A) Section of a slice of the dorsal CA1 showing neurons in gray and SC synapses in orange (10%

of the existing ones). (B) Example of SC synapse placement (orange dots) on one reconstructed PC (in gray). (C–H) Validation of the anatomy (C–E)

and physiology (F–H) of the SC. Experimental values can be found in S15–S18 Tables. Density of SC synapses (lower x axis) and PDF (upper x axis) at

different depths (radial axis percentage) (C). Distributions of afferent synapses from SC to PC (D) and INT (E). Distribution of PSP amplitudes for SC

! PC synapses (F). Distribution of PSC ratio (see text) for SC! CB1R+ (G) and SC! CB1R- (H). Insets in panels F–H report voltage membrane

traces of 10 randomly selected pairs of SC! PC, SC! CB1R+, and SC! CB1R- interneurons, respectively. The presynaptic SC is stimulated to fire 8

times at 30 Hz, plus a recovery pulse after 500 ms from the last spike of the train. Solid black lines represent mean values and shaded gray areas the

standard deviation. PC, pyramidal cell; PDF, probability density function; PSP, postsynaptic potential; SC, Schaffer collaterals.

https://doi.org/10.1371/journal.pbio.3002861.g003
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(S17 and S18 Tables) and optimized the missing parameters as shown in S19C Fig. The result-

ing SC!PC synapses match the distribution of EPSP amplitudes as measured by [50] (Fig 3F,

experiment: 0.14 ± 0.11 mV, CV = 0.76, model: 0.15 ± 0.12 mV, CV = 0.80, z-test p = 0.709),

giving a peak synaptic conductance of 0.85 ± 0.05 nS and NRRP of 12. The rise and decay time

constants of AMPA receptors (respectively 0.4 ms and 12.0 ± 0.5 ms) were obtained by match-

ing [50] EPSP dynamics (S19C Fig, 10% to 90% rise time model: 5.4 ± 0.9 ms and experiment:

3.9 ± 1.8 ms, half-width model: 20.3 ± 2.9 ms and experiment: 19.5 ± 8.0 ms, decay time con-

stant model: 19.5 ± 2.5 ms and experiment: 22.6 ± 11.0 ms). In the case of SC!INT synapses,

we distinguished between cannabinoid receptor type 1 negative (CB1R-) and positive (CB1R

+) interneurons [54]. SC!CB1R- synapses match EPSCCBR1−/EPSCPC experimental ratio [54]

(model 6.95 ± 9.20 and experiment 8.15 ± 6.00, z-test p = 0.18, Fig 3G), resulting in a peak con-

ductance of 15.0 ± 1.0 nS and NRRP of 2. SC!CB1R+ synapses match the EPSCCBR+/EPSCPC
experimental ratio (model 1.27 ± 1.78 and experiment 1.09 ± 1.44, z-test p = 0.06, Fig 3H), giv-

ing peak conductance of 1.5 ± 0.1 nS and NRRP of 8. SC!INT synapses (all) match the timing

in the EPSP-IPSP sequence of [55] (model: 2.69 ± 1.18 ms, experiment: 1.9 ± 0.6 ms, S19 Fig

E), yielding a rise and decay constants for AMPA receptors of 0.1 ms and 1.0 ± 0.1 ms, respec-

tively. This short latency gives effective feedforward inhibition, which is a key aspect for the

transmission of oscillations from CA3 to CA1 (see below).

We functionally validated SC projections reproducing [56], where the authors examined

the basic input–output (I-O) characteristics of SC projections in vitro. The SC pathway is

thought to be dominated by feedforward inhibition, which increases the dynamic range of the

CA1 network and linearizes the I-O curve [56,57]. Blocking gamma-aminobutyric acid recep-

tor (GABAAR) drastically reduces the dynamic range of the network resulting in an I-O curve

that saturates very quickly. To match the methodology of [56], we set up the simulations to be

as close as possible to the experimental conditions (slice of 300 μm, Ca2+ 2.4 mM,Mg2+ 1.4

mM, 32˚C) (Fig 4A) and we used the same sampling strategy: randomly sampling 101 neurons

in the slice to find how many SC axons were required to make all of them fire (representing

respectively 100% of the input and 100% of output, Fig 4B). To assess the role of feedforward

inhibition, we mimic the effect of gabazine by disabling the connections from interneurons.

The model captured the quasi-linearization of the I-O response in control conditions (Pearson

test on linearity R = 0.992, p = 2.56×10−9) and the rapid saturation of the CA1 network with

the simulated “no GABA” condition (Fig 4B). In control conditions, at 50% of input intensity

(Fig 4C) the spiking activity of CA1 SP neurons is rather weak and rapidly suppressed by the

feedforward inhibition, while without inhibition CA1 neurons fire for more than 50 ms at

high frequency (up to 200 Hz). Taken together, these results suggest the SC projection repre-

sents a valid model given the available empirical data.

Cholinergic modulation

The behavior of the hippocampus is shaped by several neuromodulators, with acetylcholine

(ACh) among the most studied. Cholinergic fibers originate mainly from the medial septum

(MS) and have been correlated with phenomena such as theta rhythm, plasticity, memory

retrieval, and encoding, as well as pathological conditions such as Alzheimer’s disease [58].

This section describes the reconstruction of a phenomenological model of ACh, quantifying

the effects of ACh on neurons and synapses, and developing a novel method to integrate avail-

able experimental data (S19 and S20 Tables and Fig 5A and 5B). The data used to build the

model was obtained from in vitro application of various cholinergic agonists such as ACh and

carbachol (CCh); here, we assume that their effects are comparable [59]. We modeled the effect

of ACh on neurons and synapses. The effect on neurons results in an increase in resting

PLOS BIOLOGY Community-based model of rat CA1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002861 November 5, 2024 9 / 61

https://doi.org/10.1371/journal.pbio.3002861


membrane potential or firing frequency. We were able to integrate both types of experimental

data by estimating the net current that is required to evoke the corresponding changes for a

given concentration of ACh (see Eq 9 in Methods). ACh affects synaptic transmission acting

principally at the level of release probability [23,60,61] (see Eq 10 in Methods).

After modeling the effect of ACh on neuron excitability and synaptic transmission, we vali-

dated the effect of ACh at the network level against available data (see S21 Table). To accom-

plish this, we simulated bath application of ACh for a wide range of concentrations (from

0 μM (i.e., control condition) to 1,000 μM) (Fig 5E and 5F). We observed a subthreshold

increase in the membrane potential of all neurons for values of ACh lower than 50 μM, without

any significant change in spiking activity. At intermediate doses (i.e., 100 μM and 200 μM), the

network shifted to a more sustained activity regime. Here, we observed a generalized increase

in firing rate as ACh concentration increased and a progressive build-up of coherent oscilla-

tions whose frequencies ranged from 8 to 16 Hz (from high theta to low beta frequency

bands). The correlation peak between CA1 neurons occurred at 200 μM ACh (Fig 5G and

5H). At very high concentrations (i.e., 500 μM and 1,000 μM), we observed a decrease in the

Fig 4. Schaffer collaterals validation. Effect of the feedforward inhibition on the input–output relationship of the

network illustrated in a slice experiment. (A) The illustration (redrawn from Fig 1A of [56]) shows the in silico

experimental setup. (B) Response of 101 selected neurons to an increasing number of stimulated SC fibers, with and

without GABA. The dashed boxes identify the condition (50% of active SC) that is used to show the model’s results in

panel C. (C) Raster plots of SP neurons in response to the SC stimulation (orange vertical line) with the overlaying

firing rate (blue). On the right, membrane voltage traces of three randomly selected SP neurons in control (black) and

no GABA (gray) conditions. SC, Schaffer collaterals.

https://doi.org/10.1371/journal.pbio.3002861.g004
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Fig 5. Effects of Acetylcholine on neurons, synapses, and network. (A) Dose-response modulation of neuronal excitability caused by ACh. Black dots are

experimental data points; blue curve represents the fitted equation. The dashed part of the curve indicates regions outside available experimental data. (B)

Dose-response modulation of synaptic release. Same color code as in A. (C) Example traces for PC (C1) and interneurons (C2) in sub-threshold and supra-

threshold conditions, with different concentrations of ACh. (D) Example traces showing the STP dynamics for PC (D1) and interneurons (D2) at different

concentrations of ACh. (E) The illustration shows the in silico experimental setup to analyze network effects of ACh. Different concentrations of CCh are

applied to the circuit and multiple types of recordings made in the CA1 (membrane voltage, spike times, LFPs). (F) Mean STTC as a function of ACh
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power of network oscillations, which was further confirmed by analysis of local field potential

(LFP) (Fig 5I). Power spectral density (PSD) analysis showed a maximum absolute amplitude

for 200 μM ACh with a peak frequency of approximately 15 Hz (Fig 5J and 5K). Higher con-

centrations decreased the maximum amplitude of the PSD while the peak frequency converged

toward 17 Hz (Fig 5K). Thus, we observe the emergence of 3 different activity regimes at low,

intermediate, and high levels of cholinergic stimulation. It is unclear whether the network

behavior we observe is consistent with all experimental findings because of their different

methodologies. Nevertheless, this phenomenological model of ACh allows the reproduction of

other experiments in which ACh or its receptor agonists are necessary (see, for example, sec-

tions Medial septum input and Other frequencies).

Model simulations

By following a data-driven approach and independently validating each model component, we

have arrived at a candidate reference model. It can serve as a basis for investigating several sci-

entific questions where parameters are only adjusted to reflect the different experimental set-

ups, rather than tuned to achieve a specific network behavior. A simulation experiment is

essentially a model of the experimental setup that is reproduced with as much accuracy as pos-

sible within the limits of the circuit model. As presented in the Model reconstruction section

we can, for example, simulate slices of a certain thickness, change the extracellular concentra-

tion of ions, change temperature, and enable spontaneous synaptic events.

Because a central interest in hippocampus has been its oscillatory activity, here, we show

several simulations with particular emphasis on theta oscillations, a prominent network phe-

nomenon observed in the hippocampus in vivo and related to many behavioral correlates [62].

Then, we examine the frequency response band-pass properties of CA1 circuit for a wider

range of SC input frequencies.

Theta oscillations

During locomotion and REM sleep, CA1 generates a characteristic rhythmic theta-band (4 to

12 Hz) extracellular field potential [63–67]. Neurons in many other brain regions such as neo-

cortex are phase-locked to these theta oscillations [68,69] suggesting hippocampal theta plays a

crucial coordinating role in the encoding and retrieval of episodic memory during spatial navi-

gation [62,70]. Yet, despite more than 80 years of research, the trigger that generates theta

oscillations in CA1 remains unclear because of conflicting evidence. This represents an oppor-

tunity to use our reference model to investigate these inconsistencies and gain an improved

understanding of theta generation. As a first step, we wanted to reproduce a series of experi-

mental data and investigate potential mechanisms proposed in literature [71], namely, intrin-

sic CA1 generation and extrinsic pacemaker oscillations from CA3 or from MS.

CA1 generation

To investigate possible intrinsic mechanisms of theta rhythm generation in CA1 [72,73], we

examined 3 candidate sources of excitation that might induce oscillations: (1) spontaneous

synaptic release or miniature postsynaptic potentials (minis or mPSPs); (2) homogeneous

concentration. (G) Maximum of the LFP PSD and peak frequency as a function of ACh concentration. (H) The voltage of 100 randomly selected neurons at

different levels of ACh. The upper histograms show the instantaneous firing rate. (I) Spike-spike correlation histograms. (J) Spectrogram of the LFP measured

in SP at different ACh levels. (K) PSD of the LFP recorded in SP. ACh, acetylcholine; LFP, local field potential; PC, pyramidal cell; PSD, power spectral

density; STTC, spike time tiling coefficient.

https://doi.org/10.1371/journal.pbio.3002861.g005
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random spiking of SC afferent inputs; and (3) varying bath concentrations of extracellular cal-

cium and potassium to induce tonic circuit depolarization. While in their CA1 circuit model

[22] reported random synaptic activity was sufficient to induce robust theta rhythms, in our

model we found none of these candidates generated robust theta rhythms. For minis, we

found setting release probabilities to match empirically reported mPSP rates (S22 Table) led to

irregular, wide-band activity in CA1 (see S20 Fig). For random synaptic barrage, varying pre-

synaptic rate to match the mean postynaptic firing rate of pyramidal cells in [22] resulted in

irregular beta-band, not regular theta-band oscillations (see S21 and S22 Figs). For tonic depo-

larization, within a restricted parameter range it was possible to generate theta oscillations

around 10 to 12 Hz, but their intensity was variable and episodic (see S23 and S24 Figs). There-

fore, we could not find any intrinsic mechanism capable of generating regular theta activity in

our circuit model.

CA3 input

To mimic the transmission of CA3 theta oscillations to CA1, we generated SC spike trains

across a range of theta-modulated sinusoidal rate functions (signal frequency) at different

mean individual rates (cell frequency) (Fig 6A). We delivered these stimuli at 3 different circuit

scales (whole circuit, thick slice, and cylinder circuit; see Fig 2) and measured extracellular

LFP and intracellular membrane potential. To mimic recordings performed under in vivo and

in vitro conditions, we did this using different calcium levels: 1 mM for “in vivo-like” and

2 mM for “in vitro-like.” For LFP, we found CA1 faithfully followed the theta-modulation

input frequency at both in vivo-like and in vitro-like calcium levels and at the different circuit

scales tested (e.g., 8 Hz, see Fig 6C–6F). However, for the same stimulus, the LFP at in vivo-

like calcium levels was around 3 orders of magnitude less powerful than the one at in vitro-like

calcium levels (Fig 6B, 6C and 6F) due to CA1 spiking rates being far lower (e.g., in full circuit,

pyramidal cell mean firing rate of 0.00018±0.0067 (1 mM) versus 0.25±0.50 Hz (2 mM)).

Therefore, due to this very low firing rate, we decided not to analyze results from in vivo-like

conditions further and focused on those from the in vitro-like condition only (Fig 6C–6E).

We analyzed the properties of the model LFP and compared them to experimental data.

First, we examined whether the circuit size is critical for theta generation. We found that all

the 3 circuit scales generated theta oscillations, but slice and cylinder circuits had reduced

magnitude of the modulation and LFP power (Fig 6C–6E). Second, across all the scales, the

LFP waveform (Fig 6C–6E, left columns) was more asymmetrical with a fast rise and slower

decay (mean asymmetry index = −1.34±0.23; see S25 Fig) with respect to what was reported

during rat locomotion (asymmetry index = −0.27, [74]) or REM sleep periods (asymmetry

index = −0.13, [75]). Third, we observed a strong narrow-band peak of power at the same fre-

quency as the signal that was maintained throughout the entire period of stimulation (Fig 6A–

6C, middle left columns). Fourth, consistent with experimental evidence (e.g., Fig 1B in [72]),

first- (16 Hz) and second-order (24 Hz) harmonics of the theta modulation frequency were

also present (Fig 6A–6C, middle right columns). Fifth, current source density (CSD) showed a

highly regular alternating current dipole between layers with a phase reversal between SP and

SR (Fig 6A–6C, far right column). This is similar to in vivo LFP recordings in the absence of

perforant pathway input [70], which we did not model. Therefore, since the results did not

depend qualitatively on circuit size, for the sake of simplicity, we further analyzed only the cyl-

inder circuit.

Next, we looked at how the spiking of different neuronal classes in the model are modulated

by theta oscillations ([76–79]; see S23 Table). When the spike times of neurons close to the

extracellular recording electrode in SP were compared with the phases of theta-band LFP
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rhythm (theta trough = 0˚), all neuron types were found to respond at roughly the same phase

of the theta cycle (Fig 7). As the mean rate of SC afferent spiking increased, more neurons

became phase-locked yielding a denser mono-phase distribution for higher signal modulation

frequencies (Fig 7A). For example, under stimuli with a 0.4 Hz SC mean spiking frequency

and 8 Hz signal modulation, CA1 PCs fired first during the mid-rising phase of theta and were

followed by all types of interneurons, whose spiking mostly ended before peak theta, with BS

Fig 6. CA3 theta (8 Hz) oscillatory input entrains CA1 to matched theta oscillation across different scales of circuit. (A) Schema showing the in silico

experimental setup. (B) Dependency of peak frequency (left) and PSD (right) from calcium level, cell and signal frequencies during simulations of a cylinder

circuit. (C) Full circuit model (2 mM calcium). LFP recordings from SP (far left), spectrogram (left middle), PSD (right middle), CSD (far right). (D) Slice

circuit model (thickness of 300 μm, 2 mM calcium). (E) Cylinder circuit model (radius of 300 μm, 2 mM calcium). (F) Full circuit model (1 mM calcium).

Note that PSD has 1,000 times smaller y-axis scaling than the ones in panels A–C. CSD, current source density; LFP, local field potential; PSD, power spectral

density.

https://doi.org/10.1371/journal.pbio.3002861.g006
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Fig 7. CA1 morphological types are homogeneously tuned to CA3 theta oscillatory input. (A) Neurons for analysis were selected within 100 μm radius of

the stratum pyramidale electrode location (top left), shown as shaded region with the arrow indicating the radius of this region. Phase locking angle and

strength for a range of individual (CA3) cell frequencies (columns) and modulation frequencies (rows). (B) Phase modulation. Spike discharge probability of

all neurons grouped by morphological type (left). Phase locked neurons tuning over theta cycle for each morphological class over a single theta cycle

(middle). Experimental validation of phase-locking against in vivo recordings (right) with an arrow representing the mean phase angle (experimental

data = black arrow; simulated = colored arrow) and gray shaded sector indicating, where known, the experimental angular deviation. (C) Spiking raster

plots. SP_PC cell spiking (top panel); LFP theta rhythm (trace above plot); intereuron spiking (bottom panel). (D) Intracellular traces from morphological

cell types (left) and validation against in vivo recordings. Stimulus panels B–D: 0.4 Hz SC mean spiking frequency and 8 Hz signal modulation. All

simulations shown for 2 mM calcium. Experimental values in panels B and D can be found respectively in S23 and S24 Tables. LFP, local field potential; PC,

pyramidal cell; SC, Schaffer collaterals.

https://doi.org/10.1371/journal.pbio.3002861.g007
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neurons emitting few or no spikes (Fig 7B, left). Phase-locked neurons had a tighter tuning

than in vivo, with pyramidal neurons typically firing before interneurons (Fig 7B, middle).

When compared with in vivo recordings of phase-locked neurons (see S23 Table), the mean

phase angle of model spiking was closely matched for SP_CCKBC but substantially out of

phase for SP_AA (Fig 7B, right). Although the angular deviation of phase-locking was gener-

ally tighter than observed in vivo (e.g., model versus in vivo for SP_AA 8.9˚ (n = 4) versus

55.0˚ (n = 2), SP_PVBC 12.0˚ (n = 2) versus 68.0˚ (n = 5), and SP_Ivy 10.9˚ (n = 19) versus

63.1˚ (n = 4)).

For the same neuronal classes in the model, we compared their somatic membrane poten-

tials and mean firing rates to experimental data. Pyramidal cell spiking was closely aligned to

theta LFP rhythm although individual neurons did not spike at every cycle (Fig 7C, top).

SP_Ivy showed a similar pattern to SP_PC while other types of interneuron participated more

sporadically (Fig 7C, bottom). Intracellular voltage traces for pyramidal and ivy cells were also

similar albeit with ivy cell firing slightly later and overlapping with other types of interneurons

(Fig 7D, left). Mean firing rates during theta were generally lower than observed in vivo except

for ivy cells, which were a close match; SP_AA, BS, and BC (CCK+ and PV+) were well below

empirical expectations (Fig 7D, right). Theta modulated the amplitude of pyramidal cell mem-

brane potential by 1.57–7.34 mV (for 0.1–0.4 Hz SC axon frequency), consistent with the in

vivo range (2–6 mV, [80]). When we compared model population synchrony during theta

oscillations with in vivo data [81], we found that the percentage of SP_PC spiking was a poor

match around the theta trough (0˚) but was a better match around theta peak (180˚), while

fast-spiking SP_PVBC and to a lesser degree SP_AA were under-recruited (S26 Fig). Overall,

for this stimulus the pyramidal-interneuron theta phase order suggests that intrinsic inhibition

was activated more powerfully by recurrent than by afferent excitation. Altogether, for the

CA3 input, the model does not generate theta at in vivo-like calcium levels but does reliably at

in vitro-like ones. However, the phase analysis suggests that the mechanism is different from

what is observed in vivo.

Medial septum input

In vivo evidence points to a fundamental role of the MS in theta generation [71]. To model the

possible role of MS-mediated disinhibition to CA1 in theta oscillations, we (i) set an in vivo extra-

cellular calcium concentration (1 mM); (ii) applied a tonic depolarizing current (% of rheobase

current) to all neurons to represent in vivo background activity; (iii) introduced an additional cur-

rent to mimic the depolarizing effect of an arhythmic release of ACh from the cholinergic projec-

tion (see ACh section); and (iv) applied a theta frequency sinusoidal hyperpolarizing current

stimulus only to PV+ CA1 neurons to represent the rhythmic disinhibitory action of the GABAer-

gic projection ([82–84]; see Fig 8A). Due to uncertainty regarding some of these factors, we exam-

ined the response over a wide range of physiological conditions (see Methods). Since this required

a high number of simulations, we decided to use the cylinder circuit.

Prior to the onset of the disinhibitory stimulus (“MS OFF”), the global tonic depolarization

resulted in weak, irregular beta-band LFP activity in CA1 but after its onset (“MS ON”), it

induced a strong and sustained, regular theta oscillation matching the frequency of the hyper-

polarizing stimulus (Fig 8B). For disinhibitory modulation amplitude of 0.2 nA, the LFP wave-

forms generated were close to symmetrical (mean asymmetry index = 0.25±0.11; see S27 Fig).

Over a range of ACh concentrations and tonic depolarization levels, this theta rhythm was

robust, narrow banded (Fig 8B and 8C), and generated by a highly regular current source

restricted to SP (Fig 8E). Higher ACh concentrations, while slightly reducing theta-band

power, reduced the level of beta-band activity (Fig 8C). Increased levels of tonic depolarization

PLOS BIOLOGY Community-based model of rat CA1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002861 November 5, 2024 16 / 61

https://doi.org/10.1371/journal.pbio.3002861


Fig 8. MS disinhibition of parvalbumin-positive (PV+) interneurons induced theta oscillations in CA1. (A) Simulation setup. All neurons received a tonic

depolarizing current in the presence of ACh (“MS OFF” condition). For a given period, an oscillatory hyperpolarizing current was injected into PV+ interneurons

only (“MS ON” condition). (B) Example of simulation before and after the onset of disinhibition. LFP in black and theta-filtered LFP in gray. (C) Spectrogram for a

range of ACh concentrations (top labels) and tonic depolarization levels (right labels). (D) PSD across different levels of tonic depolarization (right labels) with and

without disinhibition. (E) CSD analysis across different ACh concentrations (top labels), with and without disinhibition. (F) Theta band power as a function of the

amplitude of oscillatory hyperpolarizing current, ACh concentration, and level of tonic depolarization. B–E: Stimulus disinhibitory modulation amplitude of 0.2

nA. ACh, acetylcholine; CSD, current source density; LFP, local field potential; MS, medial septum; PSD, power spectral density.

https://doi.org/10.1371/journal.pbio.3002861.g008
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enhanced both theta harmonics and higher frequency components (Fig 8C and 8D). We

observed that theta-band power was more dependent on the amplitude of the disinhibitory

oscillation than on either ACh concentration or tonic depolarization level (Fig 8B and 8F).

Therefore, we found MS-mediated disinhibition could strongly induce CA1 theta oscillations.

During theta oscillations, the phase of spiking of different neuronal classes here divided

into 2 main groups that were in anti-phase with each other (see Fig 9). As the level of tonic

depolarization increased, more phase-locked cells were detected (Fig 9A) and only above 110%

depolarization (where 100% represents the depolarization necessary to reach spike threshold)

were there a sufficient number of active interneurons to discern this dual grouping. Increasing

ACh concentration tended to weaken pyramidal phase locking (Fig 9A). For example, at 120%

depolarization and 1 μM ACh, the firing of SP_PC, SP_Ivy, and SP_CCKBC cells was broadly

tuned around the theta trough and rising phase, while the firing of SP_AA, BS and SP_PVBC

neuron was more narrowly tuned around the peak of the theta rhythm (Fig 9B, left). Neurons

with significant phase locking matched this pattern but were even more narrowly tuned (Fig

9B, middle). The phase locking of SP_AA, SP_Ivy and PC closely matched in vivo recordings

(see S23 Table) but SP_BS and BC (CCK+ and PV+) were by comparison more than 90

degrees out of phase (Fig 9B, right).

The voltage traces and rate of spiking during theta oscillations for different neuronal types

was also grouped. While SP_PC did not spike on every theta cycle their firing appeared weakly

modulated by theta (Fig 9C, top). Whereas for interneurons, SP_AA, BS, and SP_PVBC spiked

tightly for most cycles, ivy cells spiked more rarely and SP_CCKBC more tonically (Fig 9C,

bottom). Intracellular voltage traces for SP_AA, BS, and SP_PVBC showed they spiked tightly

on the rebound from the release of the hyperpolarizing stimulus, whereas SP_PC and other

interneurons lacking this were less reactive to theta (Fig 9D, left). Notably, all neurons spiked

at a lower average rate than in vivo recordings [76–79] (Fig 9D, right). The population syn-

chrony of SP_PC with theta trough was consistent with in vivo data [81] for a range of disinhi-

bitory stimulus amplitudes, whereas for fast-spiking interneurons like SP_AA and SP_PVBC,

synchronization with theta peak only occurred with lower stimulus amplitudes (S28 Fig).

Taken together, the MS-mediated disinhibition entrained theta oscillations under in vivo-like

conditions, creating a diversity of firing phases between interneuron classes, close to what has

been observed experimentally.

In summary, we used the reference model to investigate several possible mechanisms for

theta oscillations. For intrinsic mechanisms, we found that spontaneous synaptic release and

random afferent synaptic barrage did not induce detectable theta oscillations in the model,

while tonic depolarization could induce a variable and unstable theta oscillation at 10 to 12 Hz.

For extrinsic mechanisms, both CA3 and MS input induced a stable and stronger theta oscilla-

tion but in different ways, where MS disinhibition was more compatible with in vivo data.

Other frequencies

Next we asked whether the reference circuit was capable of propagating gamma oscillation

using the commonly used in vitro experimental paradigm of inducing them using bath carba-

chol (CCh) [85–88]. Specifically, we replicated the setup of [89], where the authors added CCh

to generate oscillations in CA3, which were transmitted to CA1 via SC. The simulation condi-

tions were tailored to these in vitro experiments (i.e., 300 μm-thick slices, 2 mM extracellular

Ca2+, 2 mM extracellularMg2+, 10 μM ACh). We matched the shape and frequency of the

input stimulus reported by [89] and followed the same LFP analysis methodology. We

observed that gamma oscillatory SC input could entrain the entire CA1 network of the model

slice to oscillate at the driving frequency (31 Hz) (S29A Fig). As well as inducing oscillations in
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Fig 9. MS disinhibition induced anti-phase modulation of CA1 neurons during theta cycles. (A) Neurons for analysis were selected within 100 μm radius

of the stratum pyramidale electrode location (top left). Phase locking angle and strength for range of ACh concentration (columns) and levels of tonic

depolarization (rows, where 100% represents the spike threshold) for modulation amplitude of A = 0.2 nA. (B) Phase modulation. Spike discharge

probability of all neurons grouped by morphological type (left). Phase-locked neurons tuning over theta cycle for each morphological class over a single theta

cycle (middle). Experimental validation of phase locking against in vivo recordings (right) with an arrow representing the mean phase angle (experimental

data = black arrow; simulated = colored arrow) and gray shaded sector indicating, where known, the experimental angular deviation. (C) Spiking raster

plots. SP_PC cell spiking (top panel); LFP theta rhythm (trace above plot); interneuron spiking (bottom panel). Disinhibition is switched on (“MS ON”) at
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CA3, in vitro CCh could alter the response of CA1 neurons to the SC input. Thus, to quantify

the effect of CCh on CA1, we repeated the simulation without the influence of CCh. SC inputs,

ranging from 15,000 to 100,000 stimulated fibers, were able to induce strong gamma oscilla-

tion in the absence of CCh. However, CCh increased the number of inputs needed for stable

gamma oscillation, probably due to its weakening effect on synapses (S29B Fig). Therefore, at

least for this experimental setup, the circuit was capable of propagating gamma oscillations.

Finally, we investigated how the reference circuit behaved across a much wider range of SC

input frequencies. Because the nature of the input was less clear across this range, we used a

sinusoidal modulated stimulus. In this case, we isolated the role of SC input and we excluded

the influence of modulators as ACh. In particular, we extended SC input for a wider range of

cell (0.1 to 0.8 Hz) and modulation frequencies (0.5 to 200 Hz) and measured the correspond-

ing input–output (I-O) gain and spike-spike correlation (Fig 10A). We found I-O gain was not

uniform but depended on both cell and signal input frequencies (Fig 10B). The I-O responses

of PC and interneurons were different, with interneuron gain greater at lower cell frequencies

compared to PCs (Fig 10B). The strongest overall CA1 gain was obtained with a mean CA3 fre-

quency of 0.4 Hz. The spike-spike correlation also depends on both cell and signal input fre-

quencies (Fig 10C–10E, upper). In the case of input cell frequency of 0.4 Hz, we found CA1

spiking activity was strongly correlated for delta- to lower gamma-band input signal frequen-

cies (i.e., between 1 and 30 Hz) but weaker outside this range. Internal CA1-CA1 spike correla-

tion was similar but spanned higher frequencies of the gamma-band (Fig 10C–10E, lower).

Therefore, the model predicts that oscillations propagate better within the delta- to low

gamma-band range.

Discussion

Main summary

This study presents the reconstruction and simulation of a full-scale, atlas-based reference

model of the rat hippocampal CA1 region based on community data and collaboration. We

extended and improved the framework of [27] to curate and integrate a wide variety of ana-

tomical and physiological experimental data from synaptic to network levels. We then system-

atically applied multiple validations for each level of the model. We augmented the resulting

highly detailed intrinsic CA1 circuit with a reconstruction of its main input from CA3 and a

phenomenological model of neuromodulation by acetylcholine. Importantly, the reference cir-

cuit model is, by definition, general. It is capable of addressing a range of research questions

because its parameters are adjusted only to different experimental setups, not tuned each time

to specifically reproduce individual experimental results. For example, to help explain network

activity observed in both health and disease, with the model one can block different neuro-

transmitters or specific groups of synapses, change the proportions of different cell types, mod-

ify synaptic strength or short-term plasticity, or alter the properties of ion channels in specific

cell types to study their consequences on network dynamics. However, the range of the

research questions it can address is necessarily limited by the current extent of the model and

its inputs (see later). To demonstrate its general utility, we were able to simulate different scales

of circuits and investigate the generation and transmission of neuronal oscillations, with par-

ticular emphasis on theta rhythm, for a variety of stimulus conditions.

time 10 s. (D) Intracellular traces from morphological cell types (left) and validation against in in vivo recordings. B–D: Stimulus disinhibitory modulation

amplitude of A = 0.2 nA, 1 μM ACh and tonic depolarization 120%. Experimental values in panels B and D can be found respectively in S23 and S24 Tables.

ACh, acetylcholine; LFP, local field potential; MS, medial septum.

https://doi.org/10.1371/journal.pbio.3002861.g009
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Previous work and limitations

While a full review of the many hippocampal circuit models is beyond the scope of the paper,

we focus on the progression in both the size and level of detail of large, multiscale models of

the rat hippocampus during the last 3 decades (for a comparison of their key features with the

present model, see S2 Table). These biologically realistic models aim to explain the complex

dynamics of hippocampal activity, in particular the generation and control of rhythmic

responses. However, all these models, including the one reported here, are incomplete descrip-

tions of a hippocampal region or regions because of the paucity or even absence of some types

of data necessary to constrain them. Moreover, the results of these models are difficult to com-

pare because (1) there is no commonly agreed-upon set of validations with which to bench-

mark a circuit model against experimental data; and (2) there are fundamental differences in

their composition, organization, and underlying assumptions.

In terms of model validation, circuit models of isolated CA1 have, ever since the reports of

[72], been expected to generate theta oscillations intrinsically (see [22]). Later research by the

same lab, however, raises some doubts about this interpretation of the results. In an isolated

whole mouse hippocampal preparation, as used by [72], [90] found that inactivating the subi-

culum abolished theta (5 Hz) activity in CA1 and the remaining 2.5 Hz oscillations in CA1

matched that of intact CA3 (see their S6 Fig). So the theta oscillations in isolated CA1 observed

in [72] might be explained if the subiculum was not removed when isolating CA1 from CA3

(see S10 Fig of [72]). Therefore, these later results imply that CA1 may not be able to generate

robust theta oscillations intrinsically but instead its oscillations are induced by subiculum and

Fig 10. Intermediate frequencies propagate more efficiently through SC. (A) In silico experimental setup. (B) Ratio between the number of CA1 and CA3

spikes as a function of input cell and signal frequencies. We considered all CA1 neurons (left), CA1 PCs (center) and CA1 interneurons (right). (C) Heatmaps

representing the computed STTC values as a function of input cell and signal frequencies, for CA3-CA1 and CA1-CA1 neurons. (D) Examples of CA3 and

CA1 spike train (cell frequency of 0.4 Hz, signal frequency of 10 Hz); 100 random CA3 neurons (i.e., SC fibers) and CA1 neurons are selected for clarity. The

same neurons are used to compute the STTC and spike-spike correlations (panels D and E). (E) Spike-spike normalized correlation histograms for 4 signal

frequencies (cell frequency of 0.4 Hz) for CA3-CA1 and CA1-CA1 neurons. SC, Schaffer collaterals; STTC, spike time tiling coefficient.

https://doi.org/10.1371/journal.pbio.3002861.g010
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CA3 inputs, which is what we observed here for CA1 circuit model for CA3 input simulations.

Yet, while it is clear from the current model that different mechanisms can generate CA1 theta

oscillations (degeneracy; for a review of this concept, see [91]), the cell-class specific phasing of

spiking of circuit neurons during theta LFP oscillations does not offer a good overall match to

in vivo experimental results [77–79,92].

In terms of model construction, the current model stands out by realistically constraining

neurons and their connectivity by the highly curved shape of CA1 rather than by relying on an

artificial space as found in other contemporary models. Additionally, it reflects both STP and

spontaneous synaptic release, well-established characteristics of central nervous system synap-

ses. In addition, the morphologies and electrical properties of model neurons here are not just

copies of the same class exemplars but their properties have been systematically varied to better

capture the diverse nature of neuronal circuits and their responses to stimulation. However,

compared with [22], some elements are still missing from the current model such as neuroglia-

form cells, which did not exist in our available data set, and GABAB R which are not included

in our simulations. Yet, neither the current model nor [22] incorporates other established fea-

tures of CA1 such as dorsal-ventral differences in neuronal and synaptic properties [93] or

burst firing of pyramidal neurons [94].

Nonetheless, the current model includes the perforant path-associated and trilaminar inter-

neurons, which were absent from all previous models. In addition, we modeled the NMDA

synaptic currents observed in both hippocampal pyramidal cells and interneurons (with spe-

cific NMDAR conductance, rise and decay time constants for each pathway) that are absent in

the model of [22]. Furthermore, the connectivity algorithm used for the current model gener-

ates an intrinsic connectome with more realistic high-order statistics than the more prescrip-

tive approach used in the [22] model (see [42] for the analysis). Unlike [24], we did not

replicate the topography of the afferent projections, which may play a role in patterning the

circuit response, but did model the projections and circuit at a full rather than reduced scale.

Overall, further improvement to our model requires additional experimental data.

While we incorporated key features distributed among previous models into a single, gen-

eral model (see S2 Table), it is important to recognize that our aims and approach were differ-

ent, representing a step change in hippocampal modeling. The intention of the framework was

first to curate and integrate community data into the model, preserving provenance for repro-

ducibility, in a way that would allow the addition of new datasets from the large hippocampal

community. Re-using these data sets and then making them publicly available through the hip-

pocampushub.eu supports the 3R principles (replace, reduce, refine) for the reduction of ani-

mal experiments. Each circuit component and the final model was then systematically

validated in an open and transparent way to a degree not previously attempted by other

research groups. To increase the realism and utility of simulation experiments, we sought to

approximate experimental conditions (e.g., slice thickness and location, bath calcium, magne-

sium and acetylcholine concentrations, and recording temperature) and to increase the capa-

bility to manipulate and record from the model (e.g., enable spontaneous synaptic release,

alter connectivity, estimate extracellular LFP signals, and apply a variety of stimuli). In short,

the aim was to offer a more realistic yet scalable and sustainable approach to model brain

regions at full scale.

Lessons learned

In the context of a community effort, the process of curating and integrating available data to

reconstruct a brain region and replicating the experimental conditions in silico proved instruc-

tive in a number of ways. First, assembling the components to reconstruct a brain region

PLOS BIOLOGY Community-based model of rat CA1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002861 November 5, 2024 22 / 61

https://doi.org/10.1371/journal.pbio.3002861


reveals surprising gaps in the available data and knowledge. Notably, for example, while Schaf-

fer collateral input to CA1 has received many decades of attention, especially in terms of long-

term plasticity, we found the basic information needed to model this pathway quantitatively,

was limited. To address this gap, we devised a multi-step algorithm constrained by the data

that were available to parameterize these connections. Second, when data was available it often

required further work before it could be used in the model. While an open-source rat hippo-

campal atlas [39] was crucial to reconstruct CA1, the original volumetric reconstruction was

too noisy for our purposes and required additional processing to give smooth layering. This

smoothness was necessary to place and orient morphologies accurately in the atlas in relation

to the layers. If the morphology was incorrectly placed or oriented, this had a knock-on effect

for how the circuit was connected. Similarly, the completeness of morphological reconstruc-

tions also affected connectivity. For these reasons, some cell types in our available data set

could not be used in the circuit model, sacrificing a small amount of cell type diversity in favor

of completeness. Third, setting up simulations to reproduce the desired experimental condi-

tions required careful attention. We offer 2 examples from our research. When reproducing

the I-O gain of SC afferent input reported in [56], we initially sampled all neurons in the

model slice to plot to the I-O curve. However, the result was poor. We later resolved this by

reproducing how the neurons were sampled in the experiments with which we could closely

match the empirical curve. When reproducing MS-induced theta oscillations, we initially sim-

ulated under default conditions of extracellular calcium concentration at 2 mM, resulting in

theta oscillations that occurred episodically and only for a restricted parameter regime. How-

ever, when we lowered the extracellular calcium to in vivo levels (1 mM), sparser activity led to

more robust and stable theta oscillations.

A community-based modeling approach

The model was built and simulations run through the cooperation of several laboratories each

with different expertise. Since we could not access a standardized core set of data made for the

purpose of modeling as done previously [27–29], instead, we curated and integrated data from

collaborating labs which followed different protocols. The majority of single neuron morphol-

ogies and recordings, for example, came from University College London (UCL) [76,95–102].

From these data, single neuron models were created between the Blue Brain Project (BBP) and

Italian National Research Council (CNR) [35] and these were then validated by a computa-

tional lab at Institute of Experimental Medicine, Budapest (KOKI) [103]. Similarly, physiologi-

cal data from paired recordings that characterized individual synaptic pathways were provided

by an experimental lab in KOKI and then curated and integrated together with BBP [34]. Sub-

sequently, BBP used these single neuron and synapse models to build and share the circuit

model so computational labs at BBP, CNR, and KOKI could simulate various hippocampal use

cases, only some of which have been presented here. Combining the framework of [27] with

community data and collaboration resulted in the generalization and improvement of data

curation and integration methods for more varied data, improvements in tools like BluePyOpt

for optimizing neurons, and the development of a new tools such as HippoUnit to systemati-

cally validate and compare different single neuron models.

This approach offers important features that make an attractive case for adoption by the

wider hippocampus community. First, anchoring a circuit model in the volumetric space of a

brain region atlas makes mapping experimental data for data integration, validation, and pre-

diction easier than for more abstract spaces and permits investigations at different scales, e.g.,

a brain slice cut at an arbitrary angle. The Allen Brain Atlas has demonstrated the advantages

of registering community experimental data in a common reference atlas [104]. Extending this
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principle, a common framework appears advantageous for modeling as well. Second, the

model components, validations, and circuit are openly available through a dedicated portal

(hippocampushub.eu) to maximize transparency and reproducibility. We allow the commu-

nity to examine how the reference circuit model was built, validated, simulated, and analyzed.

We conceived the model to be adopted by the community, extended and improved. Third,

while the traditional approach of constructing circuits for a specific use case has short-term

advantages for demonstrating proof-of-concept, in the long-term a community reference

model must be valid across a range of use cases.

To illustrate its utility, we suggest how the circuit model could be developed by the commu-

nity to help address key scientific questions concerning structure and function of hippocam-

pus. An example use case under in vitro-like conditions could be to use slice circuit models to

study network responses to different stimuli based on observed difference in neuronal and

synaptic properties between dorsal and ventral CA1 [93]. Under in vivo-like conditions, the

full-scale circuit model could be employed to investigate the factors necessary for the emer-

gence of traveling and standing wave phenomena reported from CA1 LFPs [105]. To increase

the level of biological accuracy at the cellular level, for example, a new class of neurons might

be added to the circuit (for practical steps required, see S1 Appendix). To achieve greater accu-

racy at the circuit level, particularly in investigating place cells, significant additions would be

necessary to match the current level of biological accuracy in the model. In particular, the anat-

omy and function of the perforant pathway (PP) would need to be reconstructed using avail-

able empirical data as we did here for the SC pathway. This would involve understanding

quantitatively the synaptic connectivity and unitary monosynaptic EPSPs from individual PP

axons onto CA1 neurons, ideally from single neuron paired recordings. Additionally, the sim-

ulation patterns of these PP and SC projection axons would need to reflect the activity of EC

and CA3 neurons during rat locomotion to activate place cells realistically. Finally, to model

the formation and remapping of place cells, model synaptic connections would need to be

endowed with long-term plasticity (e.g., [106]). While the level of effort required is significant,

the potential benefits of creating a model-experiment loop, where experimental data are incor-

porated in the model (experiments to model) and model results used to generate experimen-

tally testable predictions (model to experiments) should not be underestimated in minimizing

the cost in terms of animals and materials.

Methods

Experimental procedures

In this study, we used 2 data sets for single neuron morphological reconstructions and

electrophysiological recordings from the region CA1: Sprague Dawley rat and Wistar rat. Both

data sets also include the reconstruction of the layers that were used to estimate the layer thick-

nesses (see section Layers) and guide the cell placement (see section Soma placement). Note

that, while the Wistar rat data set also includes electrophysiological recordings, we did not use

them for this model. The experimental procedures have been previously described in [35], but

are summarized below.

Sprague Dawley rat data set

Procedures involving animal care and use were approved by the University of London or Uni-

versity College London ethical committees and by the British Home Office with regard to the

Animal Scientific Procedures Act 1986 (PPL 80/2131, 80/2598). Hippocampal slices were

obtained from young adult rats (Sprague Dawley, 90 to 180 g) as previously described [76,95–

102]. Briefly, following deep anesthesia with euthatal solution, young adult rats (Sprague
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Dawley, 90 to 180 g) were perfused transcardially with ice-cold modified artificial cerebrospi-

nal fluid containing in mM: 248 sucrose, 25.5 NaHcO3, 3.3 KCl, 1.2 KH2PO4, 1MgSO4, 2.5

CaCl2, 15 D-glucose, equilibrated with 95% O2/5% CO2; 450 to 500 μm coronal sections were

cut, transferred to an interface recording chamber and maintained at 34−36˚C in modified

ACSF solution for 1 h and then in standard ASCF (in mM: 124 NaCl, 25.5 NaHCO3, 3.3 KCl,

1.2 KH2PO4, 1MgSO4, 2.5 CaCl2, and 15 D-glucose, equilibrated with 95% O2/5% CO2) for

another hour prior to starting electrophysiological recordings. Single intracellular recordings

were made using sharp microelectrodes (tip resistance, 90 to 190 MO) filled with 2% biocytin

in 2M KMeSO4 under current-clamp (Axoprobe; Molecular Devices, Palo Alto, California,

United States of America). Electrophysiological characteristics of the recorded neurons were

obtained from voltage responses to 400 ms current pulses between −1 and +0.8 nA and

recorded with pClamp software (Axon Instruments, USA).

Following recording and biocytin filling, slices of 450 to 500 μm were fixed overnight [4%

paraformaldehyde (PFA), 0.2% saturated picric acid solution, 0.025% glutaraldehyde solution

in 0.1 M phosphate buffer] as previously described [97,107]. Slices were then cut in 50 to 60

μm sections, cryoprotected with sucrose, freeze-thawed, incubated in 1%H2O2 and then in 1%

sodium borohydride (NaBH4). Slices were incubated overnight in ABC (Vector Laboratories)

and then in DAB (3, 30 diaminobenzidine, Sigma) to reveal the morphology of the recorded

neurons. Following washes, sections were postfixed in osmium tetroxide (OsO4), dehydrated,

cleared with propylene oxide, mounted on slides (Durcupan epoxy resin, Sigma), and cured

for 48 h at 56˚C. For immunofluorescence staining, slices were incubated in 10% normal goat

serum after incubation with NaBH4. Sections were then incubated overnight in a primary anti-

body solution containing mouse anti-PV (Sigma), rabbit anti-PV [108] or mouse anti-gastrin/

CCK (CURE, UCLA) made up in ABC and then in a solution of secondary antibodies (Avi-

din-AMCA, FITC and anti-rabbit Texas Red) for 3 h. Following fluorescence visualization,

slices were incubated in ABC, DAB, andOsO4 prior to dehydration and mounting as described

above. All neurons were then reconstructed in 3D using a Neurolucida software (MBF Biosci-

ence) and a 100× objective as previously described [107].

Wistar rat data set

The project was approved by the Swiss Cantonal Veterinary Office following its ethical review

by the State Committee for Animal Experimentation. All procedures were conducted in con-

formity with the Swiss Welfare Act and the Swiss National Institutional Guidelines on Animal

Experimentation for the ethical use of animals (license VD3389). Hippocampal slices were

obtained from young adult rats (Wistar, postnatal 14 to 23 days) as previously described

[27,35]. In brief, ex vivo coronal preparations (300 μm thick) were cut in ice-cold aCSF (artifi-

cial cerebrospinal fluid) with low Ca2+ and highMg2+. The intracellular pipette solution con-

tained (in mM) 110 potassium gluconate, 10 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP, 10

HEPES and 13 biocytin, adjusted to 290±300 mOsm/Lt with D-mannitol (2±35 mM) at pH

7.3. Chemicals were from Sigma Aldrich (Stenheim, Germany) or Merck (Darmstadt, Ger-

many). A few somatic whole cell recordings (not used for this model) were performed with

Axopatch 200B amplifiers in current clamp mode at 34±1˚C bath temperature.

The 3D reconstructions of biocytin-stained cell morphologies were obtained from whole-

cell patch-clamp experiments on 300 μm thick brain slices, following experimental and post-

processing procedures as previously described [109]. The neurons that were chosen for 3D

reconstruction were high contrast, completely stained, and had few cut arbors. Reconstruction

used the Neurolucida system (MicroBrightField, USA) and a bright-field light microscope

(DM-6B, Olympus, Germany) at a magnification of 100× (oil immersion objective, 1.4 to 0.7
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NA). The finest line traced at the 100× magnification with the Neurolucida program was

0.15 μm. The slice shrinkage due to the staining procedure was approximately 25% in thick-

ness (Z-axis). Only the shrinkage of thickness was corrected at the time of reconstruction.

Morphological classification

We classified the morphologies into one of 12 different morphological types (m-types) based

on the layer containing their somata and their morphological features. For the classification,

we adopted 3 main assumptions. (1) Several subtypes of PCs have been described [108,110–

116], but for simplicity we consider the pyramidal cells as a uniform class (SP_PC or simply

PC). (2) SP_PVBC and SP_CCKBC were classified as 2 separate m-types. The 2 types of basket

cells can be distinguished by biochemical markers and electrical properties, and they show dif-

ferent densities and connectivity [5]. On the contrary, there is no strong evidence for differ-

ences in their morphologies and the small number of examples in our possession (3

SP_PVBCs, 1 SP_CCKBCs) prevented us from conducting any systematic classification. While

we could have pulled the 2 cell types into one m-type, we kept them separated for the sake of

simplicity. (3) We created supersets of m-types based on their principal biochemical marker.

In particular, we defined PV+ cells as SP_PVBC, SP_BS, SP_AA, CCK+ cells as SP_CCKBC,

SR_SCA, SLM_PPA and SOM+ (somatostatin) cells as SO_OLM, SO_BS, SO_BP, SO_Tri.

When the layer is not specified (e.g., BS), we meant all the neurons of this type regardless their

soma location.

Morphology curation

We curated the morphological reconstructions extensively prior to insertion in the network

model. First, we translated the reconstructions to have their somas centered at coordinates

(0,0,0). We reoriented the reconstructions so that their x, y, and z axes coincided respectively

with the transverse, radial, and longitudinal axes they followed in the tissue. We considered

the cells to be substantially complete, with only a few cuts, so we have not applied any correc-

tions for cuts [27]. The only exception is the PC axon. One particular reconstruction has a rela-

tively long axon (3,646 μm) that spans 1,325 μm along the transverse axis. We assumed this

axon to be relatively complete within the CA1 and we used it as a prototype for all the PCs.

Validation of the number of synapses per connection, bouton density, and connection proba-

bility showed that this assumption is reasonable (see section Building CA1). A subsequent

cloning procedure (see section Morphology library) guaranteed that all the PC axons are

unique. We removed 2 pyramidal cells due to the complete absence of an axon since at least

the axon initial segment (AIS) needs to be present to create electrical models.

We applied a series of corrections as described in [27]. In brief, to comply with the NEU-

RON and CoreNEURON standards, we repaired the reconstructed morphologies using Neu-

roR [117] (Table 1). In particular, we used this tool to remove unifurcations of dendrites, fix

neurites whose type changes along its main branch, fix invalid formats of soma, and remove

segments with close to zero length. We used this tool also to correct tissue shrinkage. The cor-

rection increased the neurite reach approximately 25% along the z-axis and approximately

10% along the x- and y-axes.

Morphology library

To produce morphology variants that fit well in different locations of the space, we applied

scaling ±15% of the original reconstructions. This range was a good compromise between the

need to change the size but yet to not introduce too much distortion [27]. To increase morpho-

logical diversity, we applied a cloning procedure as described in [27]. Some clones showed a
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wrong distribution of axons and dendrites, and we removed them. In particular, we annotated

how different parts of the morphology were positioned within the layers (see section Layers).

We used these annotations to guide the cell placement, but it was also useful to discard cells

that were too distorted by cloning and had an incorrect distribution of neurons within the lay-

ers. Clones were further validated by visual inspections. For OLM cells, a scaling of ±15% was

not sufficient to make sure that the axon correctly targeted SLM in all dorso-ventral positions.

In this case, we introduced a synthetic axon. In the reconstruction of OLM cell, a chunk of

60 μm axon, which is placed at 85 to 145 μm from the soma, falls in SR and it is relatively sim-

ple. To produce morphologies with about 90% to 150% (step of 5%) of the height of the origi-

nal morphology, we removed the aforementioned chunk of 60 μm axon (93%), only 45 μm of

it (95%), or added a multiple of 45 μm (corresponding to a step of 5%) synthetic axon within

SR until we reached a 150% scaling.

After we corrected the orientation of the initial set of reconstructions, the cloning proce-

dure changed the branch lengths and rotations, which may have resulted in a change in the

main orientation of the cells. Based on visual inspection, the effect on short neurites was negli-

gible. In the case of PCs, the axon is relatively longer and has a clear orientation [118]. In this

case, the cloning may significantly alter the orientation of the axon, and this may result in a

wrong placement in the circuit (see section Soma placement). To avoid this problem, we

Table 1. List of software used.

Software name Source Identifier

atlas-direction-vectors BBP/EPFL software package https://github.com/BlueBrain/atlas-direction-vectors

bbp-workflow BBP/EPFL software package https://github.com/BlueBrain/bbp-workflow

BluePySNAP BBP/EPFL software package https://github.com/BlueBrain/snap

BluePyEfe BBP/EPFL software package https://github.com/BlueBrain/BluePyEfe

BluePyOpt BBP/EPFL software package https://github.com/BlueBrain/BluePyOpt

BluePyMM BBP/EPFL software package https://github.com/BlueBrain/BluePyMM

Brainbuilder BBP/EPFL software package https://github.com/BlueBrain/brainbuilder

Brayns BBP/EPFL software package https://github.com/BlueBrain/Brayns

circuit-build BBP/EPFL software package not yet open source

CoreNEURON BBP/EPFL software package https://github.com/BlueBrain/CoreNeuron

eFEL BBP/EPFL software package https://github.com/BlueBrain/eFEL

Elephant Elephant authors and contributors https://doi.org/10.5281/zenodo.1186602

EMSim BBP/EPFL software package https://github.com/BlueBrain/EMSim

Hippounit KOKI software package https://github.com/KaliLab/hippounit

ITK-SNAP University of Pennsylvania http://www.itksnap.org/

morphology-workflows BBP/EPFL software package https://github.com/BlueBrain/morphology-workflows

mtspec pypi python package https://pypi.org/project/mtspec/

neo The NeuralEnsemble Initiative https://github.com/NeuralEnsemble/python-neo

Neurodamus BBP/EPFL software package https://github.com/BlueBrain/neurodamus

NeuroMorphoVis BBP/EPFL software package https://github.com/BlueBrain/NeuroMorphoVis

NeuroM BBP/EPFL software package https://github.com/BlueBrain/NeuroM

NeuroR BBP/EPFL software package https://github.com/BlueBrain/NeuroR

projectionizer BBP/EPFL software package https://github.com/BlueBrain/projectionizer

psp-validation BBP/EPFL software package https://github.com/BlueBrain/psp-validation

regiodesics BBP/EPFL software package https://github.com/BlueBrain/regiodesics

TMD BBP/EPFL software package https://github.com/BlueBrain/TMD

voxcell BBP/EPFL software package https://github.com/BlueBrain/voxcell

https://doi.org/10.1371/journal.pbio.3002861.t001
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renormalized the orientation of the cloned PCs. In particular, we used principal component

analysis (PCA) to first determine the principal axis of all axonal points in each cloned mor-

phology. Next, we used the direction of the principal axis to rotate the caudal portion of the

arbor onto the x-axis so all pyramidal axon arbors were aligned in the same direction. Finally,

to remove an unrealistic degree of variability, we filtered out cloned morphology outliers

whose width (z-axis range) was 3.3 times greater than that of the original pyramidal axon

arbor from which they were derived. This filtering step rejected about 14% of all pyramidal cell

cloned morphologies.

Morphology library validation

Neuronal morphologies were validated at the end of the processing stage (cloning) by compar-

ison of their morphological properties, as well as their topological profiles. Around 100 mor-

phological features from dendritic and axonal neurites were extracted using the NeuroM

package [119]. The median over visible spread (MVS) statistical score, defined as the ratio of

the absolute value of the difference between the medians of the feature (~F) divided by the over-

all visible spread (OVS), was computed according to the following formula:

MV S Fð Þ ¼
j~FPr � ~FPc j
OVSðFPc ; FPr Þ

ð1Þ

to identify the difference between populations of reconstructed Pr and cloned Pc neurons for

each feature F. This score is close to zero for similar populations and increases as the difference

between the populations increases. Scores below 0.3 indicate good agreement between the 2

populations as their differences are contained within 3 standard deviations (STD). Note that

this measurement depends on the sample size, due to the computation of the OVS, which

remains small if the sample size is small and therefore the MVS score increases accordingly.

In addition to the traditional morphometrics, the topological profiles of the original recon-

structions were compared to those of the processed morphologies (repaired and cloned). The

TMD encodes the start and the end radial distances of each branch from the soma surface

[120]. The pairs of distances (start, end) are represented in a 2D plane, a representation known

as the persistence diagram of the neurons (S6 Fig). The Gaussian kernels of these points are

averaged to generate the persistence images (S7 and S8 Figs). The persistence images of 2 pop-

ulations can be subtracted to study the precise differences between data sets. Note that the

robustness of average persistence images depends on the sample size of the population, when

only few (less than 3) cells are available these images represent a small subset of the biological

population and are therefore not quantitatively reliable.

Electrical type classification

We classified the cells into different electrical types (e-types) based on their firing patterns as

defined by the Petilla nomenclature [33]. Some of the firing patterns (i.e., irregular patterns)

were too rare and we excluded them. For SP_CCKBC we do not have traces, and we consid-

ered them to be classical accommodating (cAC) [96].

Morpho-electrical compositions

The 154 recordings were recorded from different m-types, and we observed that each m-type

can show one or more firing patterns with different probabilities. We used this information to

derive the morpho-electrical type (me-type) composition (S4 Table).
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Ion channels

We considered a set of active membrane properties which included a voltage-gated transient

sodium current, 4 types of potassium current (DR-, A-, M-, and D-type), 3 calcium channels

(CaN, CaL, and CaT), a nonspecific hyperpolarization-activated cation current (Ih), 2 Ca-

dependent potassium channels (KCa and Cagk), and a simple Ca2+-extrusion mechanism with

a 100 ms time constant. We based channels’ kinetics on previously implemented cell models of

hippocampal neurons [121–124].

Single-neuron modeling

Single-cell models are described in previous publications [34,35,125]. In brief, we optimized

cell parameters to match electrophysiological features rather than the traces directly. We

extracted features using the open-source Electrophys Feature Extraction Library (eFEL,

Table 1) or the Blue Brain Python E-feature extraction (BluePyEfe, Table 1). Initial optimiza-

tions considered only features from somatic recordings [35], while a subsequent refinement

included also the amplitude of the back-propagating action potential (in the apical trunk, 150

and 250 μm from the soma) for PCs [34].

We assumed channels were uniformly distributed in all dendritic compartments except KA
and Ih, which in pyramidal cells are known to increase with distance from the soma [126,127].

Pyramidal cells include KM in the soma and axon [128], KA with different kinetics in dendrites,

soma and axon [121,129], KM with a different kinetics in the soma and the axon, Na and KDR,

whereas they do not include KD since the delayed spiking is not a feature observed in PCs.

Given the limited knowledge of the currents in interneurons, we applied the same currents of

pyramidal cells with the following exceptions. Dendritic sodium channel densities decay expo-

nentially with distance from the soma (with a length constant of 50 μm) based on [130]. We

included KD since some interneurons show delayed firing. KA has the same kinetics in somas

and dendrites because there is no experimental evidence of a different KA kinetics in the den-

drites of interneurons. We distinguished 2 types of KA for proximal and distal dendrites [121].

For both pyramidal cells and interneurons, we optimized channel peak conductance indepen-

dently in the different regions of a neuron (soma, axon, and dendrites).

We performed a multi-objective evolutionary optimization using the open source Blue

Brain python optimization library (BluePyOpt, Table 1) [131] to obtain 39 single-cell models.

From this set, we excluded 3 models because their me-types are not used in the network model

(cAC_SP_Ivy, cAC_SP_PVBC, cNAC_SR_SCA).

Single neuron model validations

We used HippoUnit [103] (Table 1) to validate the electrical models of pyramidal neurons,

specifically considering the attenuation of PSP and BPAP.

PSP attenuation

The PSP attenuation test evaluates how much PSP amplitude attenuates as it propagates from

different dendritic locations to the soma. To get the behavior from the model, EPSC-like cur-

rents (i.e., double exponentials with rise time constant of 0.1 ms, decay time constant of 3 ms,

and peak amplitude of 30 pA) were injected into the apical trunk of PCs at varying distances

from the soma (100, 200, 300 ± 50 μm), and PSP amplitudes were simultaneously measured at

the local site of the injection and in the soma. Finally, the experimental and model data points

were fitted using a simple exponential function. The space constants resulting from the fitting

were then reported and compared with experimentally observed data in [37].
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BPAP attenuation

The BPAP test evaluates the strength of AP back-propagation in the apical trunk at locations

of different distances from the soma. The AP is triggered by a step-current of 1 s with an

amplitude for which the soma fires at approximately 15 Hz. The values were then averaged

over distances of 50, 150, 250, 350 ± 20 μm from the soma. We measured the amplitudes of the

first AP at the 4 different dendritic locations and compared them with experimentally observed

data in [36].

Library of neuron models

Optimizing all the neurons in the morphology library is computationally expensive. Following

[27], we minimized the problem by using Blue Brain Python Cell Model Management (Blue-

PyMM, Table 1) which combines the morphology library with initial single-cell models to pro-

duce a library of cell models. The procedure accepts a new combination if the model and

experimental features are within 5 STD of the experimental feature. If at least 1 feature is

greater than this range, then the new combination is excluded. This strategy also has the

advantage of increasing the model variability within the experimental data. In the case of

bAC-SLM_PPA, the threshold for accepting new combinations had to be relaxed to 12 STD to

obtain some valid models.

Rheobase estimation

For all the single-cell model combinations, we estimated their rheobase with a bisection search

until an accuracy of e-3 was reached. The spikes were recorded at the AIS, and the upper

bound from the last step of the search was used, to ensure cells spiked in the axon at rheobase.

Atlas

Volume. We based our annotated volume on a publicly available atlas of the CA1 region

[39] (http://cng.gmu.edu/hippocampus3d/). From the original atlas, we took all voxels labeled

as CA1 without maintaining their subdivisions in CA1a, CA1b, and CA1c or the 4 layers

(S10A Fig). The original file was converted from a csv to a nrrd format using voxcell (Table 1).

We undertook a series of post-processing steps to augment the atlas with a coordinate system

and vector fields that followed the 3 hippocampal axes (longitudinal, transverse, radial). First, a

substantial smoothing operation was necessary to render the surfaces within the CA1 regular

enough for subsequent manipulations. To obtain smoother surfaces, we applied a Gaussian fil-

ter together with a morphological closing filter. A few manual checks were needed to ensure iso-

lated voxels were removed and holes from missing tissue closed. The resulting volume has a

minor difference in voxel counts compared with the original atlas (−3.7%) (S10B Fig).

We created a mesh for the boundary surface of the CA1 using Ultraliser (Table 1) and sepa-

rated it into an upper and lower shell (S10C Fig). In practice, the operation of separating the

mesh into 2 portions is challenging and we were not able to automate it. The curved structure

of the hippocampus makes automatic solutions appear incorrect upon visual inspection, par-

ticularly around the ridges. Taking the results into account, we used an OpenGL 3D graphical

user interface tool (atlas-direction-vectors, see Table 1) that allows one to paint voxels on the

surface of the atlas in different colors. It enabled us to manually correct the voxel selection

until the shell division appeared satisfactory. Two surface meshes were then derived from the

selected voxel masks.

We generated a polygonal centerline along the innermost voxels of the CA1 from the dorsal

to the ventral extremity (S10D Fig). In detail, this process started by computing the distance
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transform of the input volume by assigning each voxel the distance from its closest neighbor

outside of the volume. The 2 extremity points were used as entry and exit locations to build a

stochastic chain of points following the local maxima of the distance transform. A further step

generated a graph of these possible points using proximity conditions and determined the

overall shortest path between the extremities using a weighted Dijkstra algorithm [132]. The

resulting skeleton of the centerline was then converted into a Bézier curve [133] and its contin-

uous derivative was used to orient a series of planes. These planes are oriented perpendicularly

to the curve and cut the volume of the hippocampus in slices at regular intervals (S10E Fig).

Coordinates system. To utilize the 3D volume fully, we created a set of parametric coordi-

nates ranging from 0 to 1 and named them l, t, r as they follow the longitudinal, transverse,

and radial axes of the hippocampus (S10F Fig). The longitudinal coordinate was assigned first

using the derivative of the centerline to sample the volume with many cross-section planes and

assigning each CA1 voxel the [0, 1] value of the plane closest to it.

The transverse coordinate was obtained by considering the intersection between each of the

cross-section planes and the meshes assigned previously as the upper and lower shells of the

volume. Each plane cuts the meshes creating 2 lines of points which were fitted to spline func-

tions and re-sampled to yield the same number of points each having a [0, 1] u coordinate.

Connecting the upper to the lower line points resulted in a field of vectors that represent the

natural orientation of pyramidal neurons in CA1. The transverse coordinate t was assigned

from the u value of the spline points to all voxels found on the plane according to which was

their closest vector (i.e., the line segment joining the upper usp(u) and lower lsp(u) line points

with the same u).

The radial coordinate was assigned following the previous step and represents the relative

[0, 1] location of each voxel of the plane along the segment connecting the usp(u) and lsp(u)
points. It is defined as the ratio:

jjussðpÞ; voxeljj
jjussðpÞ; lssðpÞjj

ð2Þ

In summary, all voxels lying on the same l plane are assigned a t coordinate from the upper

and lower splines and later those voxels on the same t segment are assigned a relative r position

along it. Taken together, these 3 coordinates provide a coherent system to slice and parse the

volume which is more robust to surface irregularities compared to other methods. Finally, for

each voxel we re-computed its direction vector from the partial derivative of the (l, t, r) coordi-

nates with respect to r to ensure perfect correspondence between the vector field and coordi-

nate space (S10G Fig).

Layers. Having achieved the necessary smoothing and orientations over the entire vol-

ume, we reintroduced the distinction into layers (S10H Fig) that are used to constrain cell den-

sity and the placement of specific portions of neural morphologies such as the axon and the

apical dendritic tuft (S11 Fig). For this reason, we used a combined approach to determine

layer position: extracting thicknesses from morphology reconstructions and comparing the

final layer volumes with voxel counts from the original atlas. During morphology reconstruc-

tion, we traced layer thicknesses from 23 images of pyramidal cells in CA1 slices and averaged

them: SLM: 146±27 μm, SR: 279±40 μm, SP: 59±15 μm, SO: 168±30 μm.

The available morphological reconstructions came from the dorsal CA1, and thus these

layer thicknesses reflect the dorsal portion rather than the entire extent of the region. To rein-

troduce layer labels back into the atlas, we used the radial coordinate computed above to assign

a uniform proportion of voxels to each layer (SLM: 0.224, SR: 0.42791, SP: 0.090, SO: 0.258).

This assumption returns the same relative layer thickness throughout the volume,
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automatically compensating for the different CA1 shape in each location thanks to the [0, 1]

parametric range. As a final step, we computed the total volumes for each layer (SLM: 3.2143,

SR: 6.8421, SP: 1.5789, SO: 4.8178 mm3).

Cell composition

We started by fixing the PC density in SP to 264 ± 32.6 × 103 mm3 [134]. By combining the PC

density and SP volume as extracted from the atlas (1.5789 mm3), we estimated the total num-

ber of PCs as 416,842. To estimate the number of cells or cell densities for interneurons, we

used the ratio between PCs and the different interneurons as predicted by [5] with several

assumptions. In some cases, a cell type has been described as present in several layers. If we

only have reconstructions of cells from one layer, we consider all the expected cells to be placed

in this layer. In the case of bistratified (BS) cells, we have reconstructions from SO and SP, but

[5] also described a small percentage of cells in SR. In this case, we considered the cells from

SR to be placed in SP; [5] gave a rough estimation of 1,400 cells for trilaminar cells and radia-

tum-retrohippocampal cells together in SO. Without any other information, we considered

these 2 cell types to have the same proportion, so we estimated the number of trilaminar cells

as 700. We ignored the m-types for which we do not have at least 1 reconstruction. The lack of

some cell types led to a smaller number of interneurons. To maintain the same E/I ratio of

89:11 [5], we increased the number of interneurons accordingly. The resulting cell composi-

tion counts and densities are shown in S3 Table.

Cell placement

Soma placement. We expanded the basic algorithm of [27] to take into account the more

complex volume of the atlas and the particular constraints of the hippocampus. For each me-

type, the cell positions are created given cell density volumetric data (using uniform distribu-

tion). The total cell count is calculated based on cell density values and the volume. Each voxel

is populated with the desired count of cells, weighted by the contribution of that voxel to the

total density so that the total count of cells is reached. For SR_SCA and SLM_PPA, we could

not select morphologies for all the potential positions within the corresponding layers. For this

reason, the soma placement was restricted to 2 narrow subvolumes within the layers. In the

case of SCA, we placed the soma in the middle of SR ± 5% of the layer thickness. In the case of

PPA, we placed the cells in the lower part of the layer, from 2% to 10% of the layer.

Cell orientation. Once we decided the soma positions, we oriented the neuronal morphol-

ogies to follow the curvature of the hippocampus and other additional constraints. For all the

cells, we aligned their y-axis with the radial axis of the hippocampus, and this allowed us to com-

pute the placement scores and select the morphologies that best fit the space. Cells may show a

preferential orientation around the radial axis. For interneurons, the experimental evidence for

a specific orientation in the transverse-longitudinal plane is scarce, and we applied a random

rotation around the radial axis to avoid any bias in the orientation. On the contrary, literature

has reported a particular orientation for pyramidal cell axons. Pyramidal cells normally have 2

main branches, roughly parallel to the transverse axis, one towards the subiculum and one

towards the CA3. There is also a thinner branch that is roughly parallel to the longitudinal axis

[118,135]. To take this into account, we rotated the pyramidal cells so that their axons were par-

allel to the transverse axis and the most complex branch points closer to subiculum.

Morphology selection. Once we identified the cell positions, we selected the morphologies that

most closely matched a set of rules to ensure correct neurite targeting. We distinguished 2 types of

rules: strict and optional ones (see later in this section). Optional rules are shown in S6 Table, while

we used only one strict rule, i.e., dendrites and axons should be below the top of SLM.
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For each soma position, we have a candidate pool of morphologies to be selected. The can-

didate pool is computed as follows. For each soma position, we consider the radial axis passing

through it and compute the relative position of the soma and the layer boundaries. For each

morphology, we associate a score Ŝ that describes how well the rules are matched. If Ŝ ¼ 1 we

have a perfect match, Ŝ ¼ 0 the rules are not matched and the morphology is excluded from

the pool. The score combines a score for “optional” rules Î and “strict” rules L̂.

Ŝ ¼ Î � L̂ ð3Þ

Î combined all the scores from the n “optional” rules Ij as follows:

Î ¼
P

j I
� 1
j

n

� �� 1

ð4Þ

The use of a harmonic mean allows us to penalize low scores for a particular rule heavier

than a simple mean, but still “to give it a chance” if other interval scores are high. If some

optional score is close to zero (< +0.001), the aggregated optional score would be zero. If there

are no optional scores or if optional scores are ignored Î ¼ 1.

Each rule Ij is computed as follows:

I ¼ max
minða"; r"Þ � maxða#; r#Þ
maxða" � a#; r" � r#Þ

; 0

� �

ð5Þ

Where (a",a#) is the interval of the dendrites, axon or dendritic tuft (when applicable) corre-

sponding to the rules. It corresponds to the interval as defined above that needs to be shifted

by the soma position y0 of the morphology in the circuit.

ða"; a#Þ ¼ ða"
0
; a#

0
Þ þ y0 ð6Þ

(r",r#) is the interval of the target region along the radial axis passing through y0. This interval

corresponds to the rules expressed as relative intervals in the table above, converted to μm.

The numerator represents the overlap of the 2 intervals, while the denominator normalizes

the overlap by the largest interval among (a",a#) and (r",r#). In this way, only a perfect overlap

receives a score of 1, while if one interval is larger than the other, the score is lower than 1.

L̂ combines all the scores from the “strict” rules Lk as follows:

L̂ ¼ min
k
Lk ð7Þ

If there are no strict scores L = 1.

Given the multiple constraints described above, 2.6% soma positions could not have any

associated morphologies, and they were ignored. This resulted in fewer neurons than

expected. However, validation of the cell composition and densities reassured us that this

discrepancy is not significant. In fact, lower densities occurred mainly at the border of the

circuit where the particular distorted shape of the layers makes the cell placement more

complicated.

Circuit sections

We defined a series of sections of the circuit to be used in analyses and simulations. In particu-

lar, we defined nine cylinders equally spanned from position 0.1 to 0.9 along the longitudinal

axis, in the middle of the transverse axis (0.5) and with a radius of 300 μm. In addition, we

defined 47 consecutive nonoverlapping transverse slices of thickness of 300 μm.
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Synapses

Local synapse anatomy. To derive the connectome, we adapted the algorithm described

in [40]. The first part of the algorithm finds all potential synapses (appositions or touches)

among cells based on colocalization of presynaptic axon and postsynaptic cells. We allowed all

the possible connections between m-types with the exception of AA cells that can form con-

tacts only with PC. We allow synapses to occur on soma and dendrites, with the following 2

exceptions: PC-PC connections only occur on dendrites [43] and AA cells make synapses only

on AIS of PCs [136]. Initially, SCA, Ivy, and BS were found to make too many synapses on the

PC soma compared to the data reported in literature [76,79,136,137]. Since the number of

expected synapses on the soma is relatively low, and since the tool does not allow us to prune

synapses on specific compartments, we decided not to allow SCA, Ivy, and BS to make synap-

ses on PC somas.

An apposition occurs when the presynaptic axon is within a threshold distance (maximum

touch distance) from the postsynaptic cell. In the somatosensory cortex microcircuit, this dis-

tance was set to 2.5 μm and 0.5 μm for synapses on PCs and INTs, respectively [27]. However,

when we applied the same thresholds to the hippocampus, we could not match some of the

experimental data. In particular, compared to experimental data there were too many connec-

tions among PCs and too few between PCs and INTs [138]. Using a grid search approach, we

found that maximum touch distances of 1.0 μm and 6.0 μm for synapses on PCs and INTs

respectively represent the minimum values that guarantee a sufficient number of synapses to

match experimental data [138] and a certain room for the subsequent pruning step.

The second part of the algorithm discards synapses (pruning) in order to match experimen-

tal data on bouton densities (mean and standard deviation) and numbers of synapses per con-

nection (mean). As experimental data were available for only a few pathways, we had to make

additional assumptions for the uncharacterized pathways. According to [40], the number of

appositions per connection can be used to predict the number of synapses per connection. We

plotted the number of appositions as found by the model and the number of synapses for char-

acterized pathways, and found that we can describe a good relationship among the 2 by split-

ting the data points into 2 groups (I-I connections and the rest) and fitting them separately

(y = 0.1096x for I-I, R ¼ 0:401; p ¼ 0:325; y ¼ 1:1690x for the rest, R = 0.267, p = 0.828) (S13

Fig). For mean bouton density, we applied an average bouton density from characterized path-

ways to uncharacterized ones. Finally, the standard deviation of bouton density is estimated

from the mean bouton density for the given pathway and the coefficient of variation (CV) esti-

mated from a well-characterized pathway which we can generalize to all the other pathways.

For somatosensory cortex, [40] used a CV of 0.32. For the hippocampus, the best source is

[139], which reported that the 64 PV postsynaptic cells receive 99 boutons from PVBC. They

also reported that 51 neurons received 1 synapse, while 13 neurons received from 2 to 4 synap-

ses, for a total of 99 to 51 = 48 synapses. So, the 13 neurons have on average 48/13 = 3.69 syn-

apses per connection. We estimated the standard deviation to be 1.08 by considering 51

neurons with 1 synapse, and 13 neurons with 3.69 synapses. The resulting coefficient of varia-

tion is then 1.08/1.55 = 0.70. We scanned several CVs between these 2 extremes and checked

how well the resulting connectomes matched experimental data on several parameters. We

obtained the best results with a CV of 0.50, and we applied it to all the pathways.

As reported in [40], a bouton may form synapses onto 2 different postsynaptic neurons and

we need to take this into account to better use data on bouton density to constrain the connec-

tome. We used the value of 1.15 for synapses per bouton.

Local synapse physiology. The methodology for the design of the synapse models, the

extraction of the parameters, and their implementation is described in detail in [34] with the
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only exception of increasing the sample size of the number of pairs (i.e., 10,000 pre-post neu-

rons) to increase the robustness of the calibration (see below). In brief, synapses were modeled

with a stochastic version of the Tsodyks–Markram model [23,140,141], featuring multivesicu-

lar release [142]. We used sparse data from the literature (S13 and S14 Tables) to parameterize

the model in a pathway-specific manner. We aimed at characterizing the physiological proper-

ties of synapses like PSC rise and decay time constants, receptor ratios (NMDA/AMPA), and

STP profiles, which can be directly input into the model after some corrections (e.g., for cal-

cium concentration, temperature, and liquid junction potential). We set the synaptic reversal

potential (Erev) to 0 mV for AMPA and NMDA receptors, and to −80 mV for GABAA recep-

tors; τrise = 0.2 ms for AMPA and GABAA and 2.93 ms for NMDA receptors [76,143–149].

We sampled 10,000 connected pairs from the circuit and replicated paired recordings in sil-

ico to calibrate NRRP (the number of vesicles in the release-ready pool) and peak synaptic con-

ductance to match in vitro PSC CVs and PSP amplitudes, respectively ([34,142]). Because of

the sparsity of experimental data, at the end of this exercise, we only had 6 and 14 pathways

(out of 130) with calibrated NRRPs and synaptic peak conductances, respectively. For the

uncharacterized pathways, we had to generalize the values found.

As in a previous study, the release probability of the synapses scales nonlinearly with the

extracellular calcium concentration, enriching their dynamical regime even further [27]. The

scaling of the release probability is made using a Hill function with 3 possible coefficients

(steep, intermediate, and shallow). NMDA/AMPA receptor ratios are pathway dependent.

Physiological evidence about release probability scaling and NMDA/AMPA ratios exists only

for a minimal number of pathways. Thus, as the last step, we grouped the characterized path-

ways into 22 classes based on neurochemical markers, STP profiles, and peak synaptic conduc-

tances and used class average values predicatively for the remaining uncharacterized pathways.

Schaffer collaterals (SC)

SC synapse anatomy. In the case of Schaffer collaterals, we did not model presynaptic

CA3 pyramidal cells, and their axons, but directly the synapses on the postsynaptic neurons.

For this reason, we followed an approach different from the one used for CA1 internal synap-

ses, and we used the tool Projectionizer (Table 1), already adopted to model thalamo-cortical

and cortical-thalamic projections [27–29]. In brief, the generation of projections was a multi-

step workflow as described below.

The number of CA3 PCs was constrained considering the physiological ratios between CA3

PCs and CA1 PCs, as reported by [5], an approach consistent with the rest of the cell composi-

tion. Having estimated the number of presynaptic neurons (i.e., 267,238), we determined the

number of afferent synapses on CA1 PCs to be 20,878 (the average of the range reported in

Table 22 of [5]), and the number of afferent synapses on interneurons to be 12,714 (the average

of the range reported in Table 26 of [5]). Details on the experimental data used to constrain SC

anatomy are reported in S15 Table.

To connect CA3 PC axons (i.e., SCs) with CA1 neurons, for each region in CA1, we gath-

ered all the dendrite segment samples in the voxelized atlas. Neuron somas were not consid-

ered viable targets. Each region-wise candidate segment pool was then subsampled. Each

region was assigned a number of synapses based on the synapse distribution (i.e., SLM: 0.3%,

SR: 67.9%, SP: 7.1%, SO: 24.7%) and the total afferent synapses. The drawing from the pool

was done with replacement, and sampling was weighted by the segment length not to oversam-

ple short segments. The sampled segments were considered as candidates for placing synapses.

For each sampled segment, a random synapse position was chosen along the segment. Then,

the candidate synapses were randomly assigned to each of the CA3 PCs presynaptic neurons.
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Finally, synaptic physiology parameters were drawn from distributions with specific means

and standard deviations (see section SC physiology). To match the average number of SC on

PC and INT, the workflow was run separately for SC to PC and SC to INT.

SC physiology. To define the synaptic parameters, we distinguish 2 pathways: SC-PC and

SC-INT. In both cases, we used the Tsodyks–Markram model parameters estimated by [53]

(S17 and S18 Tables), since we did not have experimental traces to estimate the parameters (as

done with the internal synapses). We also set the NMDA/AMPA ratio, rise and decay time

constant for NMDAR according to available data (S17 and S18 Tables). The remaining param-

eters were not available, and we optimized them using two-steps procedure that is schemati-

cally reported in S19B Fig. In the first step, we set placeholder values for rise and decay time

constant for AMPAR, and optimized maximum synaptic conductance and NRRP, while in the

second step, we optimized the AMPAR time constants. In each step, we aimed to match a set

of experimental measures that depend on the considered pathway. We used a grid search and

selected the model parameters that minimized a cost function defined as follows:

error ¼
X jxmodi � x

exp
i j

xexpi
ð8Þ

Where xexp is the experimental value we want to match, and xmod is the value produced by the

model. Because of the strong parameter interdependence, after each step, the other step was

rerun in order to verify if both held true. The cycle ended when the 2 steps converged toward a

satisfactory solution (i.e., model and experiments are not statistically different). As done for

the definition of the internal CA1 synaptic parameters, we ran all the steps selecting 10,000

random pairs of pre- and postsynaptic neurons.

Definition of SC-PC synaptic parameters. To constrain the peak synaptic conductance,

NRRP, rise and decay time of AMPA and NMDA receptors, we aimed to match mean, CV, rise

and decay time constant, and half-width of the PSP as reported in [50] (S17 Table). We set up

the simulations to best approximate the same experimental conditions (2.0 mMMg2+ and 2.0

mM Ca2+).

Definition of SC-INT synaptic parameters. To constrain the peak synaptic conductance

and NRRP, we used [54] as a reference. The authors distinguished between cannabinoid recep-

tor type 1 negative (CB1R-) basket cell (BC) and CB1R+ BC. Each cell type has a very distinc-

tive response to SC stimulation, measured as the ratio between EPSC from SC to BC and the

EPSC from SC to PC (EPSCBC/EPSCPC) (S18 Table). We considered the CB1R- and CB1R

+ BC to be representative respectively of all the CB1R- and CB1R+ INTs. We considered

CB1R+ INTs to include PPA, CCKBC, and SCA, while CB1R- INTs the rest, according to the

molecular marker profiles reported on www.hippocampome.org [7,8].

Following this strategy, we treated the 2 populations, CB1R- and CB1R+ INTs, separately,

and we optimized the peak synaptic conductance and NRRP to match the corresponding EPSC

ratio. We set up the simulations to best reproduce the experimental conditions (i.e., 1.3 mM

Mg2+, 2.5 mM Ca2+, and NMDAR blocked). For each combination of parameters, we simu-

lated 1,000 voltage-clamp experiments (neurons clamped at −85 mV as in the experiments)

where we stimulated with a single spike one SC connected to one PC and one interneuron. For

each of the 1,000 triplets SC-PC-interneuron, we have simulated 100 trials to have a sufficient

number of traces to compute robust statistics of EPSCs. PSC ratios were computed only when

there was a PSC in both PC and INT of the triplet. For each triplet, the mean PSC values were

computed.

To optimize rise and decay time constants of AMPAR, we aimed to match the EPSP-IPSP

latency as reported by [55] (S17 Table). We set up the simulations to reproduce the same
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experimental conditions (1.3 mMMg2+, 2.5 mM Ca2+, and NMDAR blocked, with and with-

out inhibition). For the sake of simplicity, we optimized the parameters of PVBC given their

important role in feedforward inhibition [54,55] and then generalized the resulting parameters

to the other INTs. To identify a feedforward loop SC-PV-PVBC, we proceeded as follows: (1)

randomly select 1 PVBC; (2) select 1 PC connected to the PVBC; (3) select 200 SC fibers that

innervate the PVBC. A simultaneous stimulation of 200 SC fibers is necessary to trigger an AP

in PVBC; and (4) check whether at least one of these SC fibers also innervates the PC. If this is

not the case, we repeat the procedure. We selected 1,000 SC-PC-PVBC triplets. For each trip-

let, we simulated 35 trials (different seeds). Each trial was 900 ms long, with spikes simulta-

neously delivered to the 200 SC fibers at 800 ms. We then made an average of the included

voltage traces for each triplet and computed the EPSP with and without the inhibition. We

derived the IPSP trace by subtracting the trace with inhibition from the trace without inhibi-

tion (S19E1 Fig). Traces with EPSP or IPSP failures, without PC or INT spikes, or more than 1

spike were excluded from the analysis. Since some parameter combinations led to few valuable

traces and this could bias the result, we included the number of surviving traces in our cost

function (Eq 8), where xmod becomes the number of usable traces and xexp the total number of

traces (i.e., 35,000).

SC validation. The reconstruction of the SC were validated against the results of [56] on

input-output (I-O) characteristics of SC projections in vitro. We set up the simulations to

mimic the same experimental conditions (slice of 300 μm, Ca2+ 2.4 mM,Mg2+ 1.4 mM, 32˚C)

(Fig 4A). As in the experiment, we randomly selected 101 SP neurons in the slice. We ran-

domly chose 350 SC inputs to activate simultaneously, evoking an AP at t = 1,000 ms. This

input was able to make all the 101 neurons spike corresponding to 100% of input/output (Fig

4B). We activated a different percentage of the 350 SC fibers, ranging from 5% to 100%, and

quantified the number of spiking neurons. We repeated the protocol by blocking the GABAer-

gic synapses and repeated each condition (with and without GABAR) in 5 different slices. We

computed the Pearson correlation coefficient R in control conditions to assess the linearity of

IO curve in control condition (with GABAR).

Cholinergic modulation

To build a model of the effects of cholinergic release, we began by collecting and curating liter-

ature findings from bath application experiments in which ACh, carbachol (CCh), or musca-

rine were used. We extracted data on their effects on neuron excitability (membrane potential,

firing rate, S19 Table), synaptic transmission (PSP, PSC, S20 Table), and network activity

(extracellular recordings, S21 Table). We subsequently verified that the other experimental

conditions (such as cell type, connection type and mouse versus rat provenance) did not pro-

duce further data stratification.

Since for each experiment, data was available for both control and drug-applied conditions,

we estimated the relative amount of depolarizing current at different concentrations of ACh.

For sub-threshold data, we computed the cell type-specific amount of current causing a change

in the resting membrane potential equal to the mean value reported in the experiments. For

supra-threshold data, we computed the amount of current needed to increase the firing rate

from the baseline frequency to the frequency in ACh conditions.

The data points show a dose-dependent increase in depolarizing current. To describe this

effect, we fitted a Hill function assuming the ACh-induced current at control condition is zero

(R2 = 0.691, N = 28).

Idepol ¼
0:567ACh0:436

1000:436 þ ACh0:436
ð9Þ
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where Idepol is the depolarizing current (in nA) and ACh is the neuromodulator concentration

in μm (Fig 5A and 5C).At the synaptic level, the data points show a dose-dependent decrease

in the amplitude of the voltage/current response to pre-synaptic stimulation for all pathways

analyzed (S20 Table). Since ACh affects synaptic transmission principally at the level of release

probability [23,60,61], we used the Tsodyks–Markram model [23,140,141] and introduced

scaling factor to make the parameter USE (neurotransmitter release probability) dependent on

ACh concentration with a Hill function fitted to experimental data (R2 = 0.667, N = 27).

UACh
SE ¼

1:0ACh� 0:576

4:541� 0:576 þ ACh� 0:576
USE ð10Þ

Where USE is the release probability (without ACh), and UACh
SE is the release probability with

the dependency on ACh concentration (Fig 5B and 5D).

As a control, we verified that the values of PSP or PSC are proportional to USE.

For each network simulation, we applied these equations to compute the effect of ACh con-

centration on cells and synapses. In particular, we inject the same amount of depolarizing cur-

rent (Eq 9) to all the cells and apply the same USE scaling factor (Eq 10) to all pathways

including Schaffer collaterals. All the simulations shown in Fig 5E–5K were run on the cylin-

der microcircuit with the extracellular calcium concentration set to 2 mM and a duration of 10

s. To disregard the initial ramping activity, we used the last 9 s of the simulation to compute

correlation metrics.

MOOC circuit

We built a CA1 microcircuit as part of an MOOC on edx platform (https://www.edx.org/

learn/neuroscience/ecole-polytechnique-federale-de-lausanne-simulating-a-hippocampus-

microcircuit). This microcircuit shared many features with the current full-scale model of

CA1, but there are a series of differences which need be considered. (1) The model uses a sim-

plified volume as described in [27]. In particular, we defined an hexagonal prism of side

243 μm, surrounded by 6 other equivalent prisms to minimize boundary effects. (2) The net-

work consists of 18K neurons, 20M internal synapses, and 34M afferent synapses. (3) Minor

differences could also be observed at the level of the connectome and synaptome due to differ-

ences in volume, size, and cell orientations.

Simulation

Model instantiation and execution. For running the hippocampus simulations, the

NEURON simulator is used and leverages the CoreNEURON optimized solver for improved

efficiency [150]. The model is instantiated using existing scripting methods for NEURON to

construct the components of the virtual tissue and add support constructs such as stimuli and

reports. Users can use the introspection feature of NEURON to adapt parameters based on

certain features and identifiers. Once all components have their final values, the data structures

are serialized to disk so that they can be loaded by the CoreNEURON solver into optimized

data structures. This results in a 4 to 7× reduction in memory utilization by CoreNEURON,

allowing larger simulation on the same hardware. The memory layout can better utilize hard-

ware features such as vectorized instructions and can have a 2 to 7× improvement to execution

time.

Simulation experiments. For simulations in Section Model simulations, spike time, intra-

cellular membrane potential, and extracellular voltage were recorded and analyzed.

CA1 spontaneous synaptic release. The aim of these simulations was to discover whether

spontaneous synaptic release in the intrinsic circuit would be sufficient to induce rhythmic
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activity in CA1. So for these simulations, the stochastic synaptic release was enabled for each

model intrinsic synapse and the SC input disconnected for the entire period simulated, typi-

cally 10 s. In vitro CA1 spontaneous synaptic release rate mPSPs are generally estimated from

recording postsynaptic events (S22 Table), which is the summation of presynaptic release from

the many converging axons. To determine what presynaptic rate parameter value to assign to

the synapse models, we ran single neuron simulations for a range of mean presynaptic release

rates. We verified that the presynaptic rate range produced a postsynaptic rate range that

included ranges reported in literature (S20A Fig). We ran circuit simulations using this pre-

synaptic rate range with both in vitro- and in vivo-like calcium concentrations. All other

parameters remained constant across simulations.

CA1 random synaptic barrage. The aim of these simulations was to discover whether

random synaptic activity of the intrinsic circuit would induce oscillatory activity in CA1.

Therefore, in these simulations, SC input was connected while stochastic synaptic release for

intrinsic and extrinsic synapses was disabled for the entire period simulated, typically 10 s. SC

spike times were generated independently for each input implemented using a Poisson ran-

dom process with a constant (homogeneous) mean firing rate (Hz). To match the input firing

rate of SC input that was able to generate regular theta activity in their CA1 model, we down-

loaded and analyzed example afferent input data provided with their Fig 5 of [22]. While [22]

quoted 0.65 Hz as the critical input rate of synaptic barrage required to generate theta activity,

we found their actual spike data had a much lower rate approximately 0.14 Hz (approximately

64k spikes, the summation of their “proximal” and “distal” afferent sources arrived per second

from approximately 450k afferents). To cover this range, we ran simulations with constant

random spiking rates of 0.05 to 0.60 Hz and repeated these simulations at in vitro- and in

vivo-like calcium levels. All other parameters remained constant across simulations.

CA1 bath concentration of extracellular calcium and potassium ions. The aim of these

simulations was to discover whether tonic depolarization of the intrinsic circuit led to the

emergence of oscillatory activity in CA1. Hence, stochastic synaptic release was disabled for

each model intrinsic synapse and SC input disconnected for the entire period simulated, typi-

cally 10 s. We modeled the bath effect of calcium as explained previously and the effect of

extracellular potassium ion (K+) concentration as an constant current injected into the somatic

compartment of each neuron (115% to 140% relative to each neuron’s rheobase current) [27].

Simulations for this range of injected currents were repeated for a range of calcium concentra-

tions between in vitro- and in vivo-like levels. All other parameters remained constant across

simulations.

CA3 theta oscillatory input. The aim of these simulations was to discover whether regu-

lar theta activity delivered via SC input to the intrinsic circuit would induce theta activity in

CA1. So for these simulations, SC input was connected while stochastic synaptic release for

intrinsic and extrinsic synapses was disabled for the entire period simulated, typically 10 s. SC

spike times were generated independently for a subset of input axons (typically 15,000) using a

Poisson random process with a sinusoidal (inhomogeneous) firing rate (Hz) using the Ele-

phant software package functions [151]. Here, the individual mean rate of firing (cell fre-

quency, 0.1 to 0.4 Hz) defines the offset and amplitude that was sinusoidally modulated over

time to represent theta-band (4 to 10 Hz) oscillation (signal frequency). Simulations spanning

the range of combinations of cell frequency and signal frequency were repeated at in vitro-

and in vivo-like calcium levels. All other parameters remained constant across simulations.

Medial septum input. In this set of simulations, we aimed to study how MS input can

induce theta oscillations in CA1. All the simulations run on the cylinder microcircuit with the

extracellular calcium concentration set to 1 mM (in vivo-like level). All the neurons received a

background depolarization, expressed as a percentage of the voltage threshold. Since the
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background depolarization is not completely known during theta oscillation, we tested values

from 100% (threshold) to 130%. Above 130%, we observed non-physiological behaviors of the

cells. The sinusoidal hyperpolarizing current injected in PV+ interneurons can be described

by 3 parameters: frequency, mean, and amplitude. To reduce the parameter space to be

scanned, we considered only the frequency of 8 Hz, an intermediate value in the theta range (4

to 12 Hz). In addition, we setmean = -amplitude. The disinhibition amplitude is unknown

and we tested values in a range that produces physiological hyperpolarization in the PV+ inter-

neuron models (0.1 to 0.5 nA). We scanned also different acetycholine concentrations which

are biological plausible (0 to 5 μM). The simulations ran for 20 s and disinhibition started at

time 10 s.

Propagation of oscillatory inputs. To examine whether CA3 gamma oscillations propa-

gated to CA1, we aimed to reproduce the in vitro slice experimental results in [89]. During

these CCh-induced gamma oscillations, the time course of CA3 spiking activity did not follow a

pure sinusoidal waveform, so we had to create a custom inhomogeneous rate function. We did

this by first manually reconstructing the probability of discharge of CA3 pyramidal cells over

time and then mapped a smoothed version of these values from phase (radians) to time (sec-

onds) coordinates to create a temporal rate function modulated at the reported gamma fre-

quency of 31 Hz. The spike trains were generated from this custom rate function using the

Elephant software package [151]. Since the circuit did not model the topography of SC connec-

tions to CA1 neurons, it did not constrain how many active SCs project to the simulated slice.

Therefore, we ran multiple simulations varying the number of activated SC axons with overall

mean rate matching the reported average firing rate of CA3 PCs [89]. To mimic the same exper-

imental conditions, we simulated a slice circuit with extracellular Ca2+ 2 mM andMg2+ 2 mM.

The effect of bath application of 10 μM CCh effect on CA1 neurons was modeled using the

approach described earlier (see section Cholinergic modulation). These simulations ran for 5 s,

during which stochastic synaptic release for intrinsic and extrinsic synapses was disabled, with

SC input applied 2 s to 5 s. All other parameters remained constant across simulations.

In a final set of simulations, we studied how the CA1 circuit responds to CA3 oscillatory

input covering a broad range of frequencies (0.5 to 200 Hz). We simulated an oscillatory input

at CA3, with 4 different signal strengths (0.1, 0.2, 0.4, and 0.8 Hz, as mean firing rate) and spike

trains were generated using Elephant [151]. We measured the spiking response of CA1, check-

ing if it was constant regardless of the oscillation frequency of CA3. Then, we computed the cor-

relation between CA3 and CA1 and within CA1 neurons using the metrics explained below in

section Correlation, with 10,000 randomly selected cell pairs (CA3-CA1 or CA1-CA1, respec-

tively). All spike train correlation measurements were repeated using standard covariance and

cross-correlation functions. All the simulations run on the cylinder microcircuit with the extra-

cellular calcium concentration set to 2 mM and a duration of 6 s. We used 1 s of activity (i.e.,

from 3 s to 4 s of simulation time) to compute gains and correlation metrics.

Analysis

Simulations showed an initial transient due to variable initiation and it appeared as an initial

high activity of the network. This transient lasted for few ms, but we normally discarded the

first 1,000 ms in all the simulation analyses to be sure that the parameters converged into a sta-

ble regime.

LFP analysis. For all simulations where extracellular voltage was recorded, the LFP analy-

sis was performed in the same way unless otherwise stated. The raw extracellular voltage signal

was estimated from multiple locations (channels) in the circuit model to mimic experimental

electrode positions of a linear probe (e.g., Fig 2C). Following a standard electrophysiological
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processing protocol (e.g., [152]), the raw extracellular signal was divided into 2 components

using 6th-order Butterworth filtering implemented in the Elephant package (doi:10.5281/

zenodo.1186602; RRID:SCR_003833) [151]: a low-pass filtered signal (<400 Hz cutoff)

referred to as the LFP and a high-pass filtered signal (>400 Hz). Here, we analyzed the low-

pass filtered LFP signal only. In the case of simulations reproducing the results of [89], LFP

was band-pass filtered between 10 and 45 Hz to match their analysis protocol focusing on CA1

low gamma-band oscillations. Typically, the first second of recording was discarded to elimi-

nate onset transient artifacts. The remaining signal was detrended and tested for stationarity

before being analyzed further (see section Statistical analysis). For time-frequency analysis,

this detrended signal was then downsampled from 2,000 (1,000/0.5 ms) to 400 Hz. The down-

sampled LFP signal was next filtered into separate frequency bands: delta (1 to 3 Hz), theta (4

to 12 Hz), and gamma (30 to 120 Hz). A multitaper method was used to estimate PSD of the

downsampled LFP signal with a frequency resolution of 1.5 Hz ([153], mtspec package:

https://pypi.org/project/mtspec/). To estimate the spatiotemporal LFP spectral response, a

complex Morlet wavelet transform (CWT) was applied with n_cycles = 7 for 1 to 150 Hz range

in steps of 0.25 Hz using the Elephant package function and reported in decibel (dB) units

[154]. To identify cross-laminar source-sink relationships, CSD analysis was applied to the

theta-band filtered signal across all channels of the virtual electrode using the Elephant pack-

age function for KCSD1D method [155].

For simulations that generated regular theta oscillations, spike-LFP phase coupling and

theta waveform analyses were performed. To quantify phase preference of neurons during sta-

ble periods of theta oscillations (defined as at least three 2 s periods of theta in [77]), the Hilbert

analytic transform of single channel theta-band signal (unless otherwise stated in SP) was cal-

culated to estimate the instantaneous phase using the Elephant package function. The instanta-

neous phase was used to assign a (theta) phase angle to individual spike times for a period over

2 consecutive theta cycles (0 to 720 degree period) with trough of theta cycle set as 0 degrees

[77]. For each neuron, the resultant (summed) vector angle for its spike train was used to

determine the preferred phase of firing and the vector norm estimated the degree of phase

locking (see section Statistical analysis). To quantify waveform asymmetry, we measured the

asymmetry index for a low-pass LFP signal filtered in 1 to 80 Hz range [75]. To identify peak

and trough locations, we used z-score thresholding, as the Hilbert method yielded too many

spurious locations, and from this we computed the duration of rise (trise) and decay (tdecay) for

each oscillation. The asymmetry index per oscillation was calculated from log(trise/tdecay).
Correlation. To have a quantitative measurement of correlations between spike trains, we

mainly used the spike time tiling coefficient (STTC) and the mean spike-spike correlations,

computed for a defined number of cell pairs (normally 10,000, for robustness) as the histogram

of intervals between all spike times of 2 different cells. For both STTC and spike-spike correla-

tions we used a bin size of 10 ms, considering 1 s of simulated activity.

To verify the results obtained with the STTC method, we computed with the same input

data the correlation using standard covariance and cross-correlation functions. All correlation

analyses have been done with the Elephant library [151].

Statistical analysis

To calculate the slopes in linear fits to the appositions data, we used least-squares solution

from the python toolbox (numpy.linalg.lstsq function).

For the fitting of experimental data points of cholinergic modulation, we used the nonlinear

least squares solution (scipy.optimize.curve_fit function). Values are expressed as

R2 coefficients.
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For LFP analysis, the augmented Dickey–Fuller (ADF) unit root test was used to determine

whether a single channel continuous signal was stationary before analyzing its spectral proper-

ties (statsmodels.tsa. stattools.adfuller function). To determine whether

single neurons were phase-locked, the Rayleigh Test of randomness of circular data was used

to reject the null hypothesis that phase angles of a spike train were uniformly distributed [156].

To compare with empirical results (e.g., [77]), phase analysis results were described by

mean ± angular deviation in degrees.

Statistical comparison methodology

Our statistical comparisons between the model and experimental data were guided by the

experimental data availability. To streamline the process, we performed statistical comparisons

at an aggregate level rather than conducting comparisons for each individual cell type or

pathway.

There are 2 main reasons to perform statistical comparisons at an aggregate level. Firstly,

there may be a lack of data available at a granular level, such as for cell composition validation.

Secondly, for certain parameters, such as bouton density, because we used a multi-objective

optimization approach to match experimental data at an aggregate level, it is more appropriate

to validate at an aggregate level as well. For these comparisons, we typically use Pearson’s cor-

relation coefficient (scipy.stats.pearsonr). Values are expressed as (Pearson correla-

tion coefficient, p-value).

In cases where we needed to compare a large number of features for a metric, such as in

morphology cloning validation, we used similarity scores in addition to correlation analysis.

However, in other cases, when only a mean and standard deviation value were available for

comparison, as in Schaffer collateral comparison, we used a z-test or t test. Values are

expressed as p-value.

Finally, if the experimental data had a very small sample size, such as in the case of popula-

tion synchrony, we did not perform any statistical and we relied only on qualitative

assessments.

Visualization

Brayns. Hippocampus circuit and simulations were visualized using Brayns software and

its internally developed web interfaces: WebBrayns and Brayns Circuit Studio (Table 1).

Brayns is a visualization software based on ray tracing techniques. It allows rendering 3D

scenes and producing high-quality images and videos. Brayns offers programming interfaces

in C++ and Python that make it highly customizable, while its web-based interfaces allow the

interactive exploration of the scene and make the platform accessible to a wider community

(no programming skills needed). In order to create high-quality, high-resolution visuals,

Brayns makes use of different rendering engines, like Intel OSPRay (CPU-based ray tracing

library, https://www.ospray.org/) or NVIDIA Optix (GPU-based ray-tracing framework

https://developer.nvidia.com/rtx/ray-tracing/optix).

The capability of Brayns to render large-scale models, like the whole hippocampus circuit,

is key to supporting scientific visualization needs and providing insight on scientific aspects

that otherwise are very complex to analyze (e.g., signal propagation at circuit level).

The morphology collage images were also produced with Brayns. A set of clipping planes

were used to determine the locations of the slices. For each plane, a second, parallel plane was

placed 100 μm further from the origin to create a slice of 100 μm thickness. Then, for each

slice and for each neuron morphological type, a small set of neurons of the chosen morpholog-

ical type and physically located inside the volume determined by the slice were picked and
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rendered with Brayns together with the polygonal meshes that define the outline of CA1 layers.

The set of neurons displayed in every slice was chosen in a way to maximize its physical distri-

bution within the slice (S11A Fig).

Some of the morphology collage images were post-processed with media design tools (e.g.,

Adobe Illustrator, Adobe Photoshop) to match the visual style of other figures.

NeuroMorphoVis. NeuroMorphoVis (NMV, see Table 1) was used to visualize single

morphologies [157]. NMV is a Blender plug-in that allows the visualization and analysis of

neuronal morphology skeletons that are digitally reconstructed. NMV presents many features,

including the manual repair of broken morphology skeletons and the creation of accurate

meshes that represent the membranes of the morphologies.

Model and code availability

The entire model, its components, and the source data can be explored and downloaded from

hippocampushub.eu. The entire circuit can be also downloaded from Harvard Dataverse

(doi:10.7910/DVN/TN3DUI). Code and input data to reproduce both main and supplemen-

tary figures are also available from Harvard Dataverse (doi:10.7910/DVN/UGOQWE).

List of assumptions

General.

• This list is not exhaustive. We describe the assumptions that are specific to this work and the

ones that could be revised in subsequent refinements.

• We do not list here the assumptions that are already included in and derive from the adop-

tion of specific other models (e.g., [27]; animal models).

• Certain assumptions involve the exclusion of specific features. For example, gap junctions,

rare cell types, glial cells, vasculature, are excluded from the current datasets and model.

• In addition to the preceding point, certain limitations were imposed by both data quality

and accessibility.

Data.

• Most of the data came from the dorsal CA1. We approximated the entire CA1 using data

from dorsal CA1.

• We mixed data from different labs, experimental conditions, and animal models. We

assumed that the inter-data sets variability is less than the intra-individual variability.

Volume.

• We approximated the layer anatomy by dividing the overall CA1 volume into parallel layers

with a fixed ratio between their thicknesses. The ratio was taken from the analyses of slice

reconstructions from dorsal CA1 of adult rats. We presumed that any potential error intro-

duced by this approximation was comparatively smaller than the inherent noise present in

the original atlas.

Morphologies.

• We considered the reconstructed cell morphologies to be fairly complete.
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• One PC reconstruction showed an axon with a length of 3,646 μm and an extension of

1,325 μm along the transverse axis. We deemed this axon to be relatively complete within the

CA1 and therefore used it as a prototype for all the PCs. We presumed that using other

axons would introduce a larger problem into connectivity with relatively little gain in

diversity.

• We treated PCs as 1 homogeneous cell type.

• SP_PVBC and SP_CCKBC were classified as 2 separate classes.

• We defined PV+ cells as SP_PVBC, SP_BS, SP_AA, CCK+ cells as SP_CCKBC, SR_SCA,

SLM_PPA and SOM+ (somatostatin) cells as SO_OLM, SO_BS, SO_BP, SO_Tri.

• Scaling and cloning compensated for the small sample size [27].

Electrical types.

• We assumed only 4 e-types: classical accommodating (cAC), bursting accommodating

(bAC), and classical non-accommodating (cNAC) for interneurons, and classical accommo-

dating for pyramidal cells (cACpyr).

Cell composition.

• For a given cell type, we assumed that all the expected cells in CA1 are located in the layers

for which we had the corresponding morphological reconstructions.

• Trilaminar cells and radiatum-retrohippocampal cells in SO had the same proportion.

• To compensate for the lack of some inhibitory types, we increased the interneurons to match

the expected E/I ratio of 11:89 [5]. In doing so, we assumed that matching E/I ratio was more

important that maintaining the expected number of cell types present in the model.

Cell positioning.

• The cell somas could have been located in any point of the layers (random placement).

• Cells had a principal axis that was parallel to the radial axis and perpendicular to the layers.

• Lacking precise evidence, we allowed random rotations around the y-axis for the

interneurons.

Connectome.

• Axo-axonic cells contacted only pyramidal cells.

• We did not allow SCA, Ivy, and BS to form synapses on PC somas to prevent the number of

somatic synapses from far exceeding expected values. In doing so, we assumed that the

exclusion of few synapses would result in a smaller error compared to the one generated by a

large number of somatic synapses.

Single-cell models.

• The considered electrical features were the ones that described most of the behavior of the

cells [35].
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• We considered channels to be uniformly distributed in all dendritic compartments except

KA and Ih.

• We applied the same currents of pyramidal cells to interneurons with exceptions supported

by experimental evidence.

Synapse model.

• Synapses between A and B had the same parameters.

• Synapses between m-types A and B had parameters extracted from the same distributions

(truncated Gaussian).

• Generalization: the synapse type and dynamics were defined, first of all, by pre- and postsyn-

aptic m-type.

• The NMDA/AMPA ratio was kept constant through all compartments of a given neuron.

Network.

• The action potential was propagated stereotypically from AIS to synapse with a fixed velocity

of 300 mm/s [27].

• In slices, neurons preserved their integrity. We did not model cut neurons.

Schaffer collaterals (SC).

• SC synapses were uniformly distributed along the transverse and longitudinal axes.

• SC synapses could have been placed at all locations on the target neuron (except on the

soma), including apical tuft dendrites.

• While [54] measured EPSC only on basket cells, then divided into cannabinoid receptor type

1 negative (CB1R-) and positive (CB1R+), we applied the experimental measurements to all

interneurons, dividing them into 2 categories according to their positivity/negativity to CB1

markers, as reported in https://hippocampome.org/php/markers.php.

• STP parameters (i.e., U, D, F, in the Tsodyks–Markram model [23]) were uniform for all

interneurons, and they followed the values identified by [53].

Acetylcholine (ACh).

• The dose-response curves for cholinergic modulation was homogeneous for all cell and syn-

apse types.

• The dose-response was well described using the Hill equation.

• ACh, CCh, and muscarine had the same effects on neuronal excitability and synaptic

transmission.

• The change in membrane excitability caused by ACh was assumed to be equivalent to a

tonic current injection at the soma.

• Perisynaptic effects of volumetric transmission (i.e., non-synaptic release) of ACh was

neglected.
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Software used

Table 1 lists the software used in the paper.

Supporting information

S1 Appendix. Example of model improvement: steps to add a new cell type to the model.

(PDF)

S1 Fig. Workflow for creating new single-cell models. Black rectangles represent the differ-

ent building blocks, and the blue labels are the processes between blocks.

(PDF)

S2 Fig. Workflow for adding new single-cell models to the network model. Black rectangles

represent the different building blocks, the green boxes are the configuration files, and the blue

labels are the processes between blocks.

(PDF)

S3 Fig. Scientific publications on hippocampus progressively increase. Counts per year of

the number of publications based on a Pubmed search for “hippocampus—cornu Ammonis—

CA1—CA2—CA3” from 1900-present indicates the large size of the neuroscientific commu-

nity researching hippocampus.

(PDF)

S4 Fig. Circuit building workflow. Simplified workflow of the circuit building. Boxes repre-

sent the different building blocks, while blue labels are the operations between blocks.

(PDF)

S5 Fig. Validation of cloning. Validations of cloning methods with a similarity metric (differ-

ences between median values divided by variance). (A) The mean scores for 21 unique mor-

phometrics averaged across m-types shown for basal and apical dendrites, and axons in each

row. (B) The same scoring grouped by m-types instead of metrics for basal and apical den-

drites. Since inhibitory neurons did not have apical dendrites, we show its score only for pyra-

midal cells. (C) Similar to B, but calculated for axons. Excitatory and inhibitory axons are

grouped separately.

(PDF)

S6 Fig. Increasing morphological diversity. (A) Persistence diagrams of original (blue),

repaired (green), and cloned (red) dendrites. Persistence diagrams encode the start (y-axis)

and end (x-axis) radial distances of all dendritic trees in the respective populations of neurons.

(B) Persistence diagrams of normalized radial distances (to one) from original (blue), repaired

(green), and cloned (red) dendrites. (C) Persistence images are the Gaussian averages of the

respective persistence diagrams (B) from original (top), repaired (middle) and cloned (bottom)

dendrites. Calculations are computed for the all cell groups. For more detailed analyses, see S7

and S8 Figs.

(PDF)

S7 Fig. Persistent images for the basal and apical dendrites of each m-type. (A) Persistent

images averaged across each m-type for original morphologies and for their cloned counter-

parts with respect to the basal dendrites, and (B) their differences. (C) The same process

applied for apical dendrites which was only present in the excitatory cell group (e.g., pyramidal

cells). Note that the radial distance is synonymous with Euclidean distance and should not be

mixed with hippocampal radial axis.

(PDF)
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S8 Fig. Persistent images for the axons of each m-type. Persistent images averaged across

each cell type for (A) original axons, (B) cloned versions, and (C) their difference.

(PDF)

S9 Fig. Validation of single-cell models. (A) Graphical illustration of the back-propagating

action potential protocol. In a pyramidal cell model, the soma is stimulated to elicit an AP,

which is then measured at different distances from the soma. (B) In silico measurements

(black dots) are reported and compared with experimental data from Golding and colleagues

(red dots and whiskers, indicating mean and standard deviation). (C) Graphical illustration of

the postsynaptic potential attenuation protocol. Dendrites on the apical trunk of a pyramidal

cell are stimulated with bi-exponential currents; then, PSP’s amplitudes are measured as it

travels toward the soma. (D) In silico measurements of PSP attenuation (black dots) are

expressed as a ratio between the PSP measured in the dendrite and the one measured in the

soma. Pyramidal cell models are compared with experimental data from Magee and Cook.

The 2 distributions have been fitted with exponential equations, resulting in the following

space constants: τmodel = 155.6 μm and τ experiment = 235.2 μm.

(PDF)

S10 Fig. CA1 atlas overview. (A) Original atlas. (B) Smoothed atlas. (C) Upper and lower

shells. (D) Centerline through the volume. (E) Planes normal to the centerline. (F) Longitudi-

nal, transverse, and radial coordinates. (G) Orientation vectors. (H) Layer assignment.

(PDF)

S11 Fig. Cell placement. A pyramidal cell (PC) is used to illustrate the cell placement in CA1

volume. (A) We set a density profile for each cell type. In the case of PC, we set an uniform

density in stratum pyramidal (SP). (B) We randomly identify soma positions matching the

given cell density. (C) For each soma position, we assign a morphology and orient it using the

vector fields. For PC, we align the main axis of the dendrites with a vector (red arrow) parallel

to the radial axis, while we align the axon to a vector (green arrow) parallel to the transverse

axis. Furthermore, the more complex branch of the axon points to the Subiculum. (D) We

select a morphology that respects a set of rules. In the case of PC, we specify 2 rules regarding

the dendrites.

(PDF)

S12 Fig. Validation of cell placement. (A) Validation of the cell placement. A subset of cells

from each m-type is displayed within each of the 100 slices of 100 μm thickness equally

spanned along the longitudinal axis. (B) Cell composition is sampled in different subvolumes

(9 cylinders of 300 μm of radius equally spanned along the longitudinal axis) and compared

with desired composition from Bezaire and Soltesz (R = 0.999998, p< 0.0001). (C) Total cell

density in CA1, in the layers SLM + SR, SP, pyramidal cell density in SP, total cell density in

SO. Neuron density validation is intrinsic (PC in SP) and extrinsic (the rest). The density is

sampled in different subvolumes (9 cylinders of 300 μm of radius equally spanned along the

longitudinal axis). Experimental values can be found in S5 Table.

(PDF)

S13 Fig. Prediction of the number of synapses per connection from the number of opposi-

tions per connection. We compare the available data on the number of synapses per connec-

tion of a given pathway to the corresponding number of appositions per connection. Data can

be grouped in 2 sets and fit separately (purple line y = 0.1096x for I-I, red line y = 1.1690x for

the rest). The fitting lines can be used to predict how much the appositions should be pruned
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to match or predict synapses per connection. Experimental values can be found in S9 Table. E:

excitatory neuron, I: inhibitory neuron.

(PDF)

S14 Fig. Bouton density and synapses per connection. (A) Mean and STD of bouton density

values per individual m-type. (B) Mean synapses per connection for each m-type pair. Experi-

mental values are given in square brackets. (C) Comparisons of mean and STD of synapses per

connection for experimental data points and corresponding values in the model. Experimental

values in panels A and C can be found respectively in S7 and S9 Tables.

(PDF)

S15 Fig. Connection probability. (A) Connection probability with respect to the intersomatic

distance within and between Excitatory (E) and Inhibitory (I) groups. (B) Mean connection

probability for each type pair. Non-existing connections are left blank and experimental obser-

vations are shown with square brackets. (C) Comparison of experimental and model connec-

tion probabilities within E/I group pairs. Only pairs of neurons with a maximum inter-

somatic distance of 500 μm were considered. Experimental values can be found in S8 Table.

(PDF)

S16 Fig. Convergence on neurons and neuron groups. (A) Indegree distribution for neurons

in this model. The inset shows the distribution on logarithmic scale. (B) Number of synapses

made on an average postsynaptic cell from each afferent m-type group. Colorbar in log-normal

scale. (C) Mean and STD of synapses made onto an average neuron for each m-type. (D)

Number of synapses made onto each neurite type for excitatory and inhibitory classes (Megias

and colleagues).

(PDF)

S17 Fig. Divergence of neurons and neuron groups. (A) Outdegree distribution for neurons

in this model. The inset shows the distribution on logarithmic scale. (B) Number of synapses

made by an average neuron from presynaptic m-type to postsynaptic group. (C) Comparison

of divergence per m-type with the available experimental values. (D) Prediction of synapse

divergence broken down into efferent synaptic group. SO_Tri divergence differs significantly

from the experimental data. This could be explained by a morphological reconstruction which

is not representative of the entire class or other factors that favor the connections between

SO_Tri and interneurons beyond chance. (E) Percentage of synapses made onto individual

layers or outside the CA1 mesh. For SR_SCA, the discrepancy between model and experiment

can be explain by different morphological subtypes used in the 2 cases. In the experiment of

Pawelzik and colleagues, the morphology is well confined in SR, while in the morphology used

in the model also invades SP and SO. For D and E, hatched bars indicate the experimental val-

ues. Experimental values in panels C–E can be found respectively in S11 and S12 Tables.

(PDF)

S18 Fig. Prediction and validation of synapses. (A) Example of in silico paired recording

experiment between a PC (purple morphology) and a PVBC (light blue morphology), synapses

between PC axon and PVBC dendrites in SO are depicted as yellow spheres. The presynaptic

neuron is stimulated with a step current to elicit an action potential. Somatic recordings of

EPSP and EPSC are depicted on the right. Each gray line represents one of the 35 trials, while

the average response is shown in light blue. (B) Prediction of the PSP amplitudes (B) and PSC

CVs (C) for the 130 possible pathways. (C) The combinations with bold borders indicate path-

ways that have been validated (panels C and D). Validation of PSP amplitudes (C) and PSC

CVs (D). Dots represent mean values and whiskers the standard deviation of experimental
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(horizontal, in red) and model (vertical, in black) data. The dashed gray line indicates the diag-

onal (i.e., the target). Experimental values can be found in Ecker and colleagues.

(PDF)

S19 Fig. Schaffer collaterals anatomy and physiology. (A) The distribution of the number of

synapses per connection (1.0 ± 0.2 synapses/connection), the y-axis has a logarithmic scale. (B)

The distribution of efferent synapses made by a single SC (34,135 ± 185 synapses). (C) Scheme

of the workflow used for the fitting of SC! PC and SC! INT synapses. On the right, targets

that are used for the 2 steps for the fitting of SC! PC and SC! INT. (D) Fitting results of SC

! PC synapses. Each plot reports the distribution of one PSP feature (rise time, tau decay, and

half-width in D1, D2, and D3, respectively) computed over the 10,000 pairs of pre and postsyn-

aptic neurons. On top, experimental (in red) and model (in black) mean and standard devia-

tion values are reported with a dot and a bar, respectively. (E) Fitting results of SC! INT

synapses. E1 shows the average PC EPSPs in control conditions (black line) and when gabazine

is applied (no GABA, gray line). The difference between the 2 is the IPSP induced by the feed-

forward inhibition (blue line). The inset shows the EPSP-IPSP latency, which is the difference

between the onset of the IPSP and of the EPSP. E2. The EPSP-IPSP latency distribution of the

1,000 randomly selected PCs. Experimental values for panels D and E2 can be found respec-

tively in S17 and S18 Tables.

(PDF)

S20 Fig. Spontaneous synaptic release alone did not generate sustained theta oscillations

in the CA1 model. (A) Relationship between spontanteous presynaptic release and postsynap-

tic events rates for pyramidal cells EPSPs (left) and IPSPs (right). (B) Relationship between cal-

cium level and spontaneous presynaptic release rate for stratum pyramidale LFP responses

peak frequency (left) and theta band power (right) shows weak theta power across all simula-

tion experiments. (C–H) Example: 0.001 Hz presynaptic spontaneous release rate (cylinder cir-

cuit). (C–E) 2 mM calcium. (C) LFP and theta-band filtered LFP extracellular recordings from

stratum pyramidale show irregular activity. (D) PSD shows multiple noisy peaks 1–20 Hz with

the highest peak just below theta range. (E) Morlet complex wavelet spectrogram shows inter-

mittent episodes of theta-band activity but these were associated with wide-range frequency

response. (F–H) 1 mM calcium. (F) LFP and theta-band filtered LFP extracellular recordings

show irregular activity but much smaller amplitude than for 2 mM calcium. (G) PSD shows

multiple noisy peaks across a wider frequency range several orders of magnitude less than for

2 mM although the highest peak is just within theta-band. (H) Wavelet spectrogram shows a

slightly more sustained period of theta and delta-band (1–3 Hz) activity but with more irregu-

lar, higher frequency events than 2 mM calcium.

(PDF)

S21 Fig. Extrinsic random synaptic activity at low levels generated noisy beta but not theta

oscillatory activity in the CA1 model. For each panel: LFP and theta filtered LFP traces (far

left), PSD (middle left), wavelet spectrogram (middle right), CSD (far right) (A). Poisson rate

0.05 Hz. PSD shows broad and noisy peak power located in beta frequency band (13–25 Hz)

(B). Poisson rate 0.10 Hz. (C). Poisson rate 0.60 Hz. PSD shows little power within theta and

beta band.

(PDF)

S22 Fig. Extrinsic random synaptic activity fails to induce oscillatory spiking response in

the CA1 circuit. (A) Sample histograms of CA3 input spike time input (top) and output post-

stimulus response of CA1 pyramidal and interneurons for a range of CA3 Poisson rates. (B)

Spiking input–output relationship between CA3 input spike rate and mean output spiking
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rates of pyramidal cells (left) and interneuron types (right). (C) Pyramidal cell cross-correla-

tion histograms (CCH) for different CA3 input spike rates both lack evidence of oscillatory

response to randomly timed extrinsic afferent EPSPs.

(PDF)

S23 Fig. Tonic depolarisation induces spiking oscillations at 2 mM but not 1 mM calcium

for a narrow percentage of relative rheobase across circuit scales. (A) At 120% rheobase, for

1 mM calcium sparse and uncoordinated spiking but at oscillatory peaks occur at 2 mM in

pyramidal cell cross-correlation histograms (CCH) in all sizes of circuit. (B) For 2 mM cal-

cium, increasing level of tonic depolarization degrades the strength of oscillation for all sizes of

circuit suggesting the resonance effect is limited to a narrow range of tonic depolarization.

(PDF)

S24 Fig. Tonic depolarisation generates theta-band oscillations across circuit scales at 2

mM extracellular calcium concentration. Example: 2 mM calcium, 120% rheobase depolari-

zation (recording electrode in SP). For each panel: LFP and theta filtered LFP traces (far left),

PSD (middle left), Wavelet Spectrogram (middle right), CSD (far right). (A) Cylinder circuit.

(B) Slice circuit. (C) Full circuit.

(PDF)

S25 Fig. LFP theta waves are highly asymmetric for an extrinsic excitatory oscillatory stim-

ulus. Top panel: 1 s example traces of 1–80 Hz filtered LFP from stratum pyramidal SP (3)

electrode with estimated locations of theta peaks and troughs shown. Bottom panel: estimated

rise times (trough to peak time) (far left), estimated decay times (peak to trough time) (middle

left), calculated theta wave asymmetry index (middle right), and scatter plot of rise and decay

times (n = 71 total waves). Example: 8 Hz signal frequency, 0.4 Hz cell frequency, 2 mM cal-

cium, full circuit.

(PDF)

S26 Fig. Population synchrony of pyramidal cells does not match experimental theta

trough (“theta-”) and fast-spiking interneurons recruitment lower than experimental lev-

els although better for SP_AA than SP_PVBC independent of circuit scale. Example: 2 mM

calcium, 0.4 Hz cell frequency, and 8 Hz modulation frequency.

(PDF)

S27 Fig. LFP theta waves are nearly symmetric for an extrinsic inhibitory oscillatory stimu-

lus. Top panel: 1 s example traces of 1–80 Hz filtered LFP from str pyramidal SP(3) electrode

with estimated locations of theta peaks and troughs shown. Bottom panel: estimated rise times

(trough to peak time) (far left), estimated decay times (peak to trough time) (middle left), cal-

culated theta wave asymmetry index (middle right), and scatter plot of rise and decay times

(n = 79 total waves). Example: 8 Hz signal frequency, 1 μM ACh, depolarisation = 120%, 2 mM

calcium, cylinder circuit.

(PDF)

S28 Fig. Population synchrony of pyramidal cells matches experimental theta trough

(“theta-”) and fast-spiking interneurons SP_AA and SP_PVBC experimental matches

theta peak (“theta+”) for increased stimulus amplitudes. Example: 120% depolarisation,

1 μM ACh.

(PDF)

S29 Fig. Propagation of gamma oscillation from CA3 to CA1. Gamma oscillation (31 Hz)

robustly propagates to CA1 when there is a sufficient amount of SC input. (A) Shows wavelet
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spectrograms of LFPs recorded in simulations where CA1 neurons were driven by oscillating

input via different numbers of Schaffer collaterals, but no CCh was applied. (B) Shows the

wavelet spectrograms of the same simulations, but with simulating the effect of 10 μM CCh. A

wide range of the number of SC inputs is able to induce strong gamma oscillation in CA1 both

in the case of CCh application and without CCh, but CCh seems to increase the number of

inputs needed for stable gamma oscillation, probably due to its weakening effect on synapses.

(PDF)

S1 Table. List of abbreviations and acronyms.

(PDF)

S2 Table. Key feature comparison of realistic large-scale hippocampal network models

with multicompartmental HH model neurons. For reasons of space, this is a non-exhaustive

list of features.

(PDF)

S3 Table. Cell composition, counts, and densities. Values were obtained combining multiple

data sets. See section Cell composition of Methods for details.

(PDF)

S4 Table. Morpho-electrical composition. Percentage of electrical types (e-types) for each

morphological type (m-type). Last column indicates the number of traces used to estimate the

percentages. See section Morpho-electrical compositions of Methods for more details. BS indi-

cates both SP_BS and SO_BS.

(PDF)

S5 Table. Neuron density validation.

(PDF)

S6 Table. Placement “optional” rules.

(PDF)

S7 Table. Bouton density.

(PDF)

S8 Table. Connection probabilities per m-type pair and other related parameters.

(PDF)

S9 Table. Number of synapses per connection.

(PDF)

S10 Table. Experimentally available data for divergence of synapses per m-type.

(PDF)

S11 Table. Available data on the divergence of synapses for different m-types to excitatory

and inhibitory groups within CA1.

(PDF)

S12 Table. Laminar distribution. Data for SO_Tri comes from the Sprague Dawley rat data

set (see section Experimental procedures).

(PDF)

S13 Table. Presynaptic dynamics parameters.

(PDF)
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S14 Table. Postsynaptic dynamics parameters.

(PDF)

S15 Table. Schaffer collaterals anatomy experimental data. N.: number of animals, n.: num-

ber of synapses.

(PDF)

S16 Table. Schaffer collaterals layer profile. N.: number of animals.

(PDF)

S17 Table. Schaffer collaterals physiology experimental data for SC!Exc synapses. UoM:

Units of Measurement, R.: region, n.: number of cells.

(PDF)

S18 Table. Schaffer collaterals physiology experimental data for SC!Inh synapses. UoM:

Units of Measurement, R.: region, n.: number of cells.

(PDF)

S19 Table. Curated data set on neuronal excitability changes caused by cholinergic modu-

lation.

(PDF)

S20 Table. Curated data set on synaptic transmission changes caused by cholinergic modu-

lation.

(PDF)

S21 Table. Network effects of ACh.

(PDF)

S22 Table. Summary of estimated rates of spontaneous synaptic release in rat CA1. TTX

used to inactivate fast sodium channels in all experiments except Hajos and Mody. D: Days,

M: Months.

(PDF)

S23 Table. Phase tuning of rat CA1 m-types.

(PDF)

S24 Table. Long-term discharge rates of rat CA1 neurons in vivo during theta periods.

(PDF)

S25 Table. Resources and simulators used in validating the current CA1 model. cav: cal-

cium-voltage scan. osc control: oscillatory, ms: medial septum, SC: Schaffer collateral, N: Neu-

ron, CN: CoreNeuron.

(PDF)
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Giacalone, Kerem Kurban, Sára Sáray, Alexis Arnaudon, Cristina Colangelo, Thomas Dele-

montex, András Ecker, Lida Kanari.

Funding acquisition: Tamás F. Freund, Audrey Mercer, Alex M. Thomson, Michele Migliore,
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138. Takács VT, Klausberger T, Somogyi P, Freund TF, Gulyás AI. Extrinsic and local glutamatergic inputs

of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons. Hippocam-

pus. 2012; 22(6):1379–1391. https://doi.org/10.1002/hipo.20974 PMID: 21956752
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