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Abstract 

Fragmentomics features of cell‑free DNA represent promising non‑invasive biomarkers 
for cancer diagnosis. A lack of systematic evaluation of biases in feature quantification 
hinders the adoption of such applications. We compare features derived from whole‑
genome sequencing of ten healthy donors using nine library kits and ten data‑process‑
ing routes and validated in 1182 plasma samples from published studies. Our results 
clarify the variations from library preparation and feature quantification methods. We 
design the Trim Align Pipeline and cfDNAPro R package as unified interfaces for data 
pre‑processing, feature extraction, and visualization to standardize multi‑modal feature 
engineering and integration for machine learning.
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Background
Cell-free DNA (cfDNA) is naturally shed into body fluids (e.g., blood, urine, and cerebro-
spinal fluid) via various biological processes [1, 2]. These fragments are relatively short 
in length (~ 167 bp) and short-lived (half-life of ~ 30 min) and reflect the physiological 
condition and disease progressing in the host [1, 3]. Utilizing cfDNA from peripheral 
blood plasma for non-invasive diagnostics has been reported as applicable in various 
clinical regimes, such as non-invasive prenatal testing (NIPT) [4], urinary tract infection 
monitoring [5], and genotyping to enable targeted therapy [6]. One of the earliest and 
broadest applications of liquid biopsy is to detect somatic mutations in cell-free DNA 
shed by tumors into the bloodstream. Minimal residual disease (MRD) detection com-
monly utilizes matched tumor tissue for a priori information and often relies on targeted 
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approaches such as whole-exome and capture-panel sequencing (i.e., tumor-informed) 
[7–12].

However, access to tumor material can be challenging, and the design and optimiza-
tion of sequencing panels can lead to long turnaround times, posing challenges for clini-
cal applications. In contrast to tumor-informed methods, there is a growing focus on 
tumor-naive strategies, which have better accessibility and are more feasible for clinical 
practice as tumor tissue is not required. Accompanied by endeavors to search for better 
tumor-naive methods, the research field is witnessing an upsurge in multi-modal artifi-
cial intelligence (AI) methods for cancer detection, among which cfDNA fragmentation 
patterns are one of the most promising biomarkers [13–18].

The length of the cfDNA fragments is an informative fragmentomic feature. Plasma 
cfDNA exhibits specific biological patterns shaped by the physiological conditions in 
blood circulation. Circulating tumor DNA (ctDNA) has been reported to be shorter 
than cfDNA fragments derived from healthy tissue [17], a finding which was validated 
with patient-derived mouse model and signal enrichment by selection of shorter DNA 
fragments [13, 14]. In addition, interrogation of sequencing coverage in specific genomic 
regions could also help detect cancer. Various studies reported that coverage and frag-
ment length patterns in transcription factor binding sites (TFBS) and transcription start 
sites (TSS) could inform cancer detection [15, 16, 18–20].

Furthermore, various studies have investigated and exploited the motif landscapes of 
cfDNA to detect cancer signal. Jiang et al. reported that patients with hepatocellular car-
cinoma exhibited a higher fraction of adenine (A) or thymine (T) relative to cytosine (C) 
and guanine (G) at the 5′ ends of fragments compared to samples from healthy donors 
[21]. The biological mechanisms were elucidated by studying roles of deoxyribonucle-
ase 1 (DNASE1), deoxyribonuclease 1 like 3 (DNASE1L3), and DNA fragmentation fac-
tor subunit beta (DFFB) in the cfDNA fragmentation processes [22]. Fragment motif is 
increasingly demonstrating its effectiveness in detecting cancer signal as part of multi-
modal approaches [23–26].

Unlike solid tissue specimens, there is minute quantity of cfDNA molecules in plasma 
(5–10 ng/mL) and usually an even lower amount of ctDNAs in the early stage patients 
[1, 27]. Data derived from cfDNA reflects a comprehensive and heterogeneous spectrum 
of information from the entire human body [28]. Importantly, considering the specific 
property of cfDNA molecules, the fragmentomic features might be easily biased by 
external factors introduced in various pre-analytical, lab experimental and analytical 
steps, including sample collection [29, 30], cfDNA extraction [31], library preparation, 
data trimming, genome alignment, and how the fragmentomic features are computa-
tionally calculated. The differences caused by the enzymatical and chemical settings in 
library kits, adapter trimming, local and global genome alignment strategies, and the 
extraction of biological features become unneglectable in the cfDNA study field [1, 27, 
32–34] and software originally designed for analyzing solid tissue sequencing data is 
suboptimal for cfDNA, raising significant concerns when developing multi-modal AI 
models for cancer detection [27, 34]. An interpretable and robust feature engineering 
process is essential, given its pivotal role in creating effective AI models [35].

However, despite being broadly recognized by the research community as a possi-
ble confounder, research studies that comprehensively measure how various library 
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preparation protocols and computational pipelines impact the fragmentomic markers 
are lacking. The calculation of fragmentomic features (e.g., fragment length and motif ) 
requires deeper understanding of library structures and cfDNA-specific considerations. 
Using fragment length as an example, previous tools designed for tissue sequencing 
might not work for cfDNA sequencing data [36, 37]. User-friendly software tailored for 
cfDNA data analysis is in urgent need.

For this purpose, we investigated and demonstrated the various biases affecting 
cfDNA analysis by examining the paired-end (PE) sequencing data of cfDNA fragments 
We collected plasma specimens from 10 healthy donors and extracted cfDNA using 
the QIAsymphony DSP Circulating DNA Kit (QIAGEN). This was followed by library 
preparation (Fig. 1a), sequencing, bioinformatic analysis (Fig. 1b), robust feature extrac-
tion with cfDNAPro (Fig. 1c), and controlling for batch effects (Fig. 1d). We report the 

Fig. 1 Overview of the study. a Plasma samples were collected from 10 healthy donors, cfDNA was extracted 
using QIAsymphony DSP Circulating DNA Kit (QIAGEN) [41], and independent sequencing libraries were 
made using 9 different kits (Fig. 2 and Additional file 1: Fig. S1). PE 150 bp whole‑genome sequencing 
was performed on Illumina NovaSeq 6000 sequencer. b Trimming and alignment of data. The Trimming 
Alignment Pipeline (TAP) built using Nextflow [42], designed for library‑specific sequencing data trimming 
and cfDNA‑specific alignment. All generated bam files were downsampled to 1 × coverage. c cfDNAPro R 
package was written for cfDNA feature calculation and visualization. It offers utilities for extracting fragment 
length, fragment end motif, copy number, and single nucleotide variations from whole‑genome sequencing 
data of cfDNA. In addition, cfDNAPro allows integrated analysis of features, such as gene location annotation 
on CNV plot, and separating length or motif distribution by mutations. d Healthy and cancer plasma samples 
were collected from seven published studies (n = 1182, Additional file 2: Table S5). For each patient, when 
multiple samples are available, only sample from earliest timepoint was kept. PCA analysis revealed the batch 
effects across datasets
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biases originating from individual samples and library kits and clarified the batch effects 
among healthy plasma samples derived from published studies. In this paper, we present 
Trim Align Pipeline (TAP), a new Nextflow pipeline for library-specific trimming and 
cfDNA-optimized alignment. We also implemented the cfDNA-specific feature extrac-
tion methods as “cfDNAPro” R [38] package, providing a user-friendly ensembled tool 
for comprehensive and reproducible analysis of cfDNA sequencing data. The feature 
analysis utilities include not only individual fragment length, motif, copy number aberra-
tion (CNA), and single nucleotide variations (SNV) feature, but also cross-feature anal-
ysis, for example, comparing the length profiles of fragments with and without SNVs. 
In comparison to existing tools, such as FinaleToolkit [39] and cfDNApipe [40] (Addi-
tional file  2: Table  S4), TAP and cfDNAPro address the need for library-specific data 
pre-processing, as well cross-feature analysis in the cutting-edge cfDNA fragmentomic 
researches. This underpins reproducible and robust research towards multi-modal AI 
for disease detection. Our study proposed a one-stop solution for processing sequenc-
ing data, from FASTQ files to fragmentomics features. We wish TAP and cfDNAPro to 
provide a catalyst for further improvements in the implementation and development of 
cfDNA biomarkers.

Results
Different library kits exhibited variations in sequencing data properties

We collected plasma specimens from 10 healthy donors and extracted cfDNAs using 
QIAsymphony DSP Circulating DNA Kit (QIAGEN) [41]. In our study, the general cri-
teria for selecting library kits are as follows: (a) it should be simple to perform capture as 
the targeted assay is still more sensitive than WGS for the same cost; (b) it should have 
molecular barcodes; (c) it should be broadly used by the research community. Thus, we 
chose these nine library kits: ThruPLEX Plasma-Seq (PlasmaSeq) [45] and ThruPLEX 
Tag-Seq (Tag_seq) [46] are the kits constantly used by the in-house experiments. Thru-
PLEX Tag-Seq HV (Tag_seq_HV) [47] is a newer version of Tag_seq; it accepts larger 
volume of plasma DNA as input which facilitates analysis when the samples are less 
concentrated. Based on previous experiences [53], SureSelect XT HS (XTHS) [43] could 
achieve high sensitivity with low input and is more amenable to capture than ThruPLEX 
kits. However, it does not have dual sample barcodes, which suffers from index hopping 
issues. In contrast, SureSelect XT HS2 (XTHS2) [44] has dual sample barcodes and dual 
molecular barcodes and easy capture steps for targeted sequencing. NEBNext Enzymatic 
Methyl-seq (EM_seq) [48] is popular in methylation studies in the cfDNA research area. 
Multi-omics AI combining different features (e.g., fragmentomics and methylome) is 
broadly studied. We wish to evaluate the fragmentomics features derived from this EM_
seq kit to offer guidance for multi-omic studies. Kapa HyperPrep (KAPA_HyperPrep) 
[51] and NEBNext Ultra II DNA Library Prep Kit for Illumina (NEBNext_Ultra_II) [52] 
are broadly used by the research community. To further increase the diversity, we have 
also added Watchmaker DNA Library Prep Kit for Fragmented Double-Stranded DNA 
(Watchmaker) to the analysis pool.

We made 9 different libraries (Fig.  2, Table  1, and Additional file  1: Fig. S1) from 
10 healthy donors, followed by PE 150 bp sequencing using Illumina NovaSeq 
6000 sequencer (Fig.  1a). Then, we processed sequencing data with 10 different 
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trimming-alignment routes (Table  2), with all generated bams being downsampled to 
1x (Fig. 1b). We calculated descriptive metrics of the bam files to evaluate the inherent 
properties exhibited by different library kits (e.g., the fraction of unmapped reads, mito-
chondrial reads, GC content) (Fig. 3 and Additional file 1: Fig. S2).

Previous studies revealed that the fragmentation pattern of cell-free mitochondrial 
DNA differs from chromosomal DNA [16], and cancer samples have elevated fragments 

Fig. 2 Amplicon structure of different library kits. All libraries are made from double‑stranded cfDNA 
fragments. Kits within the same grey rectangle have the same supplier. a XTHS [43] and b XTHS2 [44] (Agilent 
Technologies, Inc.). c PlasmaSeq [45],d Tag_seq [46], and e Tag_seq_HV [47] (Takara Bio Inc.). f A library 
(denoted by “EM_seq” in the manuscript) was made using EM_seq [48] (New England Biolabs), libraries before 
enzymatic C to T conversion were sequenced. g A library (denoted by “Watchmaker” in the manuscript) 
prepared with adapters from EF 2.0 Library Preparation and Universal Adapter System [49] (Twist Bioscience), 
and enzymes from Watchmaker [50] (Watchmaker Genomics). h KAPA_HyperPrep kits (Roche) [51]. i 
NEBNext_Ultra_II DNA Library Prep Kit for Illumina (New England Biolabs) [52]. The nucleotide sequences of 
P5/P7 adapter, i5/i7 adapter and i5/i7 stem are shown in Additional file 1: Fig. S1
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from mitochondria [14, 58]. We found that the Watchmaker has a median of 0.03% mito-
chondria reads, which is 4.4 times higher than the median of all library kits (Fig. 3b). This 
observation is consistent across all analyses routes (Additional file  1: Fig. S2a), which 
strongly implies the inherent biochemical property of Watchmaker shaped the result. 
XTHS, XTHS2, Tag_seq, and Tag_seq_HV have a higher number of unmapped reads. 
XTHS seems to be more variable across donors (Fig. 3c).

In terms of the number of mismatches between sequenced reads and reference 
genome (Fig.  3d), Tag_seq, Tag_seq_HV, and NEBNext_Ultra_II have more mis-
matched nucleotides while XTHS2 and PlasmaSeq have fewer. These metrics are 
useful for evaluating the suitability of a kit for studying mutations together with the 

Table 1 Library kit characteristics. Further information about extension temperature, extension 
time, and amplification enzyme is shown in Additional file 2: Table S7

a DNA input recommended by manufacturers
b Estimated based on internal laboratory settings. More “£” signs mean higher cost
c Estimated according to in-house protocols
d PCR cycles used in this study
e The library was sent for sequencing before enzymatic conversion
f Adapters were from The Twist EF 2.0 Library Preparation and Universal Adapter System, and enzymes were from 
Watchmaker DNA Library Prep Kit for Fragmented Double-Stranded DNA

Library kit Label in 
paper

Provider DNA 
 inputa

Sample 
barcode

Molecular 
barcode

Costb Processing 
 timec

PCR  cyclesd

SureSelect 
XT HS

XTHS Agilent 
Technolo‑
gies

10–200 ng Single Single (i5) £££  ~ 4 h 16

SureSelect 
XT HS2

XTHS2 Agilent 
Technolo‑
gies

10–200 ng Unique 
dual

Dual ££££  ~ 4 h 14

ThruPLEX 
Plasma‑
Seq

PlasmaSeq Takara Bio 1–30 ng Unique 
dual

No ££££  ~ 2 h 9

ThruPLEX 
Tag‑Seq

Tag_seq Takara Bio 1–50 ng Unique 
dual

Dual ££  ~ 2 h 7

ThruPLEX 
Tag‑Seq 
HV

Tag_seq_
HV

Takara Bio 5–200 ng Unique 
dual

Dual ££  ~ 2 h 16

NEBNext 
Enzymatic 
Methyl‑
seqe

EM_seq New 
England 
Biolabs

10–200 ng Unique 
dual

No £££££  ~ 2 h 10

Watch‑
maker DNA 
Library 
Prep Kit for 
Frag‑
mented 
Double‑
Stranded 
 DNAf

“Watch‑
maker” in 
figures and 
texts

Twist 
Bioscience 
and
Watch‑
maker 
Genomics

0.1–500 ng Unique 
dual

Dual ££  ~ 4 h 9

Kapa 
HyperPrep

KAPA_
HyperPrep

Roche 10–50 ng Unique 
dual

Dual £££££  ~ 22 h 10

NEBNext 
Ultra 
II DNA 
Library 
Prep Kit for 
Illumina

NEBNext_
Ultra_II

New 
England 
Biolabs

0.5–1000 ng Unique 
dual

No £  ~ 2 h 8
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Table 2 Trimming‑alignment parameter settings [54–57]. The version numbers of software used are 
shown in Additional file 2: Table S2
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Unique Molecular Identifier (UMI). In addition, we analyzed the Mean GC content 
per read (Fig.  3e). XTHS, XTHS2, Tag_seq_HV, and KAPA_HyperPrep have higher 
GC content while PlasmaSeq, Tag_seq, EM_seq, and NEBNext_Ultra_II are lower. 
The standard deviation (SD) of GC content of reads was shown in Fig.  3f. XTHS2, 

a See Methods, Fig. 2, and Additional file 1: Fig. S1 for a detailed trimming strategy
b See Methods and Additional file 1: Fig. S3 for a detailed “proper pair” filtering explanation
c In the manuscript, the “TrimBwamem2LengthPrior” was referred to as “optimized” trimming-alignment parameter settings 
with prior knowledge of fragment length distribution
d Although in our study non-proper pair reads were not discarded, we still recommend setting the length prior to minimize 
the potential issues in other data analyses which might interact with the proper pair flags

Table 2 (continued)

Fig. 3 Sequencing data statistics. The metrics of each library kit group were compared with the median 
values (i.e., the median value of each donor across all library kits). a Raw sequencing coverage. All samples 
were downsampled to 1 × as indicated by horizontal dash line. Statistics shown in other panels were 
based on downsampled BAM files. b The fraction of mitochondrial reads. c Fraction of unmapped reads. d 
Fraction of mismatched bases. e Mean GC content per read. f Standard deviation (SD) of GC content of reads. 
Wilcoxon test (two‑sided) was used for all statistical comparisons. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 
0.001, ****: p ≤ 0.0001
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Watchmaker, and KAPA_HyperPrep have higher SD while PlasmaSeq, Tag_seq_HV, 
and NEBNext_Ultra_II have lower SD. In addition, XTHS and KAPA_HyperPrep kit 
tend to have a broader distribution. The results strongly indicate the heterogeneity in 
sequencing data introduced by different library kits.

Analytical settings and ambiguity over the definition of a “fragment” affect fragment 

length

To comprehensively evaluate the analytical impacts on length profiles, we designed ten 
different trimming-alignment routes (Table  2), coupled with two calculation schemes 
(i.e., “With problematic fragment length calculation” and “With correct fragment length 
calculation”).

Our study addressed the ambiguity in defining cfDNA fragments from PE sequencing 
data. This is essential as aligners and data processing tools adopt various definitions of a 
“fragment” in paired-end sequencing data, raising concerns in previous study [36]. For 
properly paired reads with overlapping sequences, there are two scenarios: (1) an ambig-
uous case occurs when there are sequence-through issues. We propose that the cfDNA 
fragment is the region between the left boundary of the forward strand and the right 
boundary of the reverse strand (Fig. 4a); this function is implemented in the cfDNAPro 
R package (Fig. 7a). In contrast, a problematic way to extract the fragment length is the 
region between the outermost boundaries (Fig. 4c). (2) A more straightforward case is 
when the fragments are longer than the read lengths. In this case, the cfDNA fragment is 
defined as the entire region read pairs cover (Fig. 4b).

For clarity purposes, six out of the ten settings are shown in Fig. 4. Results from all 
analytical settings are shown in Additional file  1: Fig. S6. In the absence of a correct 
length calculation (i.e., without using the curation step implemented in cfDNAPro R 
package) (Fig. 4d–i), the effect of library-specific trimming (Fig. 4e, g, i) can be observed 
as artifacts (highlighted by black triangles) that are attenuated in contrast to those with-
out trimming (Fig. 4d, f, and h). For example, when the calculation is problematic, there 
is a paucity of reads below 150 bp in XTHS, EM_seq, and PlasmaSeq. Peaks around 140 
bp in Watchmaker, Tag-Seq HV, and KAPA_HyperPrep are no longer present with the 
correct calculation of fragment lengths (Additional file 1: Fig. S7). Additionally, for those 
(Fig. 4d and e) with Bowtie2 default settings, profiles were highly heterogeneous, regard-
less of trimming. We further quantified the fraction of ambiguous read pairs in bam files 
and found that library-specific trimming could reduce the abundance of ambiguous sce-
narios, which correlates with the artifacts in fragment length profiles (Additional file 1: 
Fig. S10).

When correct fragment length calculation is applied, alignment profiles improve 
across most conditions. While Bowtie2 default settings remain problematic (Fig.  4j 
and k), the remaining settings yield homogenous and expected fragment length distri-
butions, highlighting the robustness of the curation step. We also compared the fea-
ture distributions across different dimensions: fragment length distribution of each 
healthy donor with each trimming-alignment parameter was shown in Additional 
file 1: Fig. S4 (problematic length calculation) and Additional file 1: Fig. S5 (correct 
length calculation), respectively. For each library kit, a comparison of the ten trim-
ming-alignment combinations is shown in Additional file 1: Fig. S7; in addition, for 
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each library kit, an intra-individual comparison of fragment lengths can be found in 
Additional file 1: Fig. S8, while using the optimized parameter setting (i.e., “TrimB-
wamem2LengthPrior”), individuals showed highly similar length profiles. For each 
individual, an inter-kit comparison could be found in Additional file 1: Fig. S9: simi-
larly, when using the optimized parameter setting and the correct fragment length 
definition implemented in cfDNAPro, library kits exhibited similar fragment length 
distributions.

Fig. 4 Fragment length definition and analytical impacts. The definition of “fragment length” in this study 
in ambiguous (a) and straightforward (b) scenarios. c A problematic way to calculate “fragment length.” 
Median distribution of all donors is shown; each facet shows different trimming‑alignment parameters 
(Table 2). d–i Fragment length distribution with problematic length calculation. j–o Fragment length profile 
with correct fragment length calculation. Black triangles depict areas with artifacts. Fragment lengths 
were calculated using the callLength() implemented in cfDNAPro (Fig. 7a). p Fragment length distribution 
(median of all donors) of four ranges (50–59 bp, 100–150 bp, 151–220 bp, and 300–380 bp) calculated using 
TrimBwamem2LengthPrior settings. q For each donor using each library, sum of fraction in length ranges are 
shown. ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001
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Different library kits exhibit variations in fragment length distribution across different 
regions (Fig. 4p). We inspected four length ranges (i.e., 50–99 bp, 100–150 bp, 151–220 
bp, and 300–380 bp) captured by various library kits derived from the optimized ana-
lytical settings in Fig. 4o. Tag_seq_HV tends to capture higher proportion of fragments 
in 50–99 bp region. While PlasmaSeq has lower fraction of 50–99 bp and 100–150 bp 
fragments, it captures a higher number of 151–220 bp fragments. Furthermore, EM_
seq, Watchmaker, and NEBNext_Ultra_II have a higher fraction of fragments in the di-
nucleosome region (300–380 bp). Our findings strongly suggest the choice of library kits 
should be carefully considered when comparing the fragment length signals between 
healthy control and cancer cohorts.

Library kits exhibit inherent biases in motif profiles

To evaluate the frequency of various fragment motif across healthy donors, library kits, 
and trimming-alignment parameters, we defined eight types of fragment motif including 
two categories. First, mono-nucleotide at various positions relative to the aligned frag-
ment: “umono” at upstream, “smono” at the start, “emono” at the end, and “dmono” at 
downstream positions (Fig. 5a). Second, k-mers (k ≥ 1) instead of single base: upstream 
(u), start (s), end (e), and downstream (d) (Fig. 5b). Throughout this study, s3 motifs were 
analyzed (i.e., the three bases at the start (s) of each fragment). For clarity purposes, only 
the results with the correct fragment definition are shown in Fig. 5c–h. Results with and 
without correct fragment length calculation, using ten analytical settings, were shown in 
Additional file 1: Figs. S16 and S17.

Trimming reduced the biases in motifs starting with A and C in Tag_seq (e.g., Fig. 5e 
vs h highlighted by black triangles). The optimized setting (Fig. 5h) achieves a relatively 
homogenous and expected motif distribution. We quantified the fragment starting with 
A, C, G, and T and found significant variations across different library kits (Fig.  5i). 
We further calculated the pairwise correlation between s3 motif distributions (Fig. 5j) 
and the correlation between each library kit and the median s3 motif distribution of all 
donors analyzed using an optimized setting (Fig. 5k). XTHS and XTHS2 are highly simi-
lar, as well as PlasmaSeq and Tag_seq.

The s3 motif distribution of each healthy donor with each trimming-alignment 
parameter was shown in Additional file 1: Fig. S11 (problematic length definition) and 
Additional file  1: Fig. S12 (correct length calculation). A comparison of various trim-
ming-alignment combinations for each library kit is presented in Additional file 1: Fig. 
S13. In addition, for each library kit, a comparison of motifs between healthy donors can 
be found in Additional file 1: Fig. S14. Using the optimal parameter setting (i.e., “TrimB-
wamem2LengthPrior”), individuals displayed highly similar profiles; for each individual, 
a comparison between library kits is available in Additional file 1: Fig. S15.

To check if inter-donor and inter-library batch effects exist, we performed PCA of 
fragment length and s3 motif distributions retrieved from optimized parameter set-
tings (i.e., TrimBwamem2LengthPrior). The results indicated that while fragment length 
is less affected by library preparation methods (Fig. 6a), the motifs are highly clustered 
based on the libraries (Fig. 6b). This phenomenon is consistent with previous observa-
tions (Fig. 4o, Additional file 1: Fig. S9b, Fig. 5h, and Additional file 1: Fig. S15b). Inter-
donor variations affected fragment length and s3 motifs less (Additional file 1: Fig. S31).
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Harmonization attenuates batch effects in WGS data from the research community

We collected 430 healthy plasma samples from seven studies, which used various DNA 
extraction and library kits (Fig. 1d). We analyzed fragment length and s3 motif (Addi-
tional file  1: Fig. S20 and Additional file  1: Fig. S21) of these samples together with 
potential bias factors: PCA was performed and grouped by library kit (Fig. 6d–e), DNA 
extraction kit (Additional file 1: Fig. S22a, c, and e), sequencing platforms (Additional 
file 1: Fig. S22b, d, and f ), study group (Additional file 1: Fig. S23a, c, and e), data source 

Fig. 5 Fragment end motif definitions and variation comparison. a–b Definitions of eight types of motifs. 
c–h Line plots showing “s3” motifs frequency with and without correct fragment definition. c–e Panels on 
the left are results derived from analyses without trimming steps. f–h The right panels are the results of 
library‑specific adapter trimming. All results shown here are those with correct fragment definition (Fig. 4a). 
Black triangles highlighted examples of abnormal s3 motifs regions for Tag_seq and Watchmaker. i Sum 
of fractions of motif starting with A, C, G, and T in h. j Pairwise correlation between lines in h. k Correlation 
between each donor’s motif profile and the median s3 motif distribution across all donors. ns: p > 0.05, *: p ≤ 
0.05, **: p ≤ 0.01, ***: p ≤ 0.001, ****: p ≤ 0.0001
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(Additional file 1: Fig. S23b, d, and f ), gender (Additional file 1: Fig. S24a, b, and c), and 
age (Additional file 1: Fig. S24 d). For samples with raw data available (Mouliere et al. 
[13], Santonja et al. [53], Ulz et al. [20], Zviran et al. [59], Peneder et al. [15]), we applied 
our optimized analytical settings to trim and align the FASTQ files and extracted s3 
motif and length features using cfDNAPro. For those from FinaleDB (Jiang et  al. [17] 
and Cristiano et al. [14]), we derived the features based on the alignment coordinates of 
fragments retrieved from the database [60]. Batch effects were observed in the published 
datasets (Fig.  6d–e). We conducted harmonization of the input data using the Com-
Bat_seq() function from the sva R package (version 3.50.0) [61]. The ComBat() method 
in sva package adjusts for known batch effects using an empirical Bayesian framework 
[62]; ComBat_seq() [63] implements an improved model based on the “ComBat” frame-
work, which uses a negative binomial regression to model the input count matrix, and 
estimates parameters representing the batch effects. The adjusted data preserve the 
integer nature of the input while removing the known batch effects. It can preserve the 
signals from biological variables (e.g., case or control) specified by users in the adjusted 

Fig. 6 Principal component analysis of length and motif features derived from healthy samples. For each 
plot, 95% confidence area surrounding the group mean value was shown by ellipses. a The PCA analysis of 
fragment lengths. b PCA analysis of fragment s3 motifs. c The number of healthy plasma samples derived 
from published studies. d PCA analysis of fragment lengths and grouped by library kit. e PCA of s3 motifs of 
samples from various studies and grouped by library kit. f PCA of harmonized s3 motifs
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data. Our results indicate this is a potential method for removing batch effects (Fig. 6f, 
Additional file 1: Figs. S27 and S28), but it is subject to further evaluation in different 
study designs before the adoption of batch-effects removal. We also analyzed data with-
out samples from FinaleDB due to its different processing pipeline [60], and the results 
are consistent with those analyzed with FinaleDB (Additional file 1: Figs. S25, S26, S29, 
and S30). To further inspect if the harmonization process could preserve cancer signals, 
we collated sWGS data from 752 cancer patients (Additional file 2: Table S5). We strati-
fied the cancer samples into three categories based on the tumor fraction (TF) inferred 
using ichorCNA [64]: [0, 0.03), [0.03, 0.1), and [0.1, 1]. Square brackets indicate bound-
ary inclusivity, while parentheses indicate boundary exclusivity. As expected, the can-
cer signals were preserved during harmonization (Additional file 1: Figs. S32 and S33). 
Early-stage cancers with low TF and the differences between these samples and healthy 
control are subtle; adoption of the harmonization should subject to specific context of 
different studies.

cfDNAPro R package ensures standardized fragmentomic multi‑feature extraction

In light of the highlighted inconsistencies and uncontrolled analytical factors in the 
earlier sections, we hereby present the open-access R package “cfDNAPro” in which 
we implemented various cfDNA feature extraction and visualization utilities based on 
this study. For example, cfDNAPro offers utilities for independent features analysis (e.g., 
fragment length, motif, SNV, and copy number). In addition, we also developed func-
tions for cross-feature analysis, such as analyzing the length profile of fragments with 
and without SNVs. The core functions are sample-oriented and can be stratified into 
three categories: pre-processing, feature extraction, and feature visualization (Fig.  7a). 
Details functions implemented in cfDNAPro is provided in Table S3. Each section con-
tains functions whose outputs can be piped into the next to reduce memory require-
ments (details see Methods).

cfDNAPro offers cfDNA-specific feature extraction methods—essentially the QC 
step implemented in readBam() function, which helps attenuate potential biases intro-
duced during various steps (Fig.  4). Moreover, we implemented methods for annota-
tion of mutations of each cfDNA fragment sequenced, defining three categories based 
on the reference and fragment base status (Fig. 7b): (1) concordant overlap (CO), where 
both reads support the same variant base; (2) single read overlap (SO), where only one 
read contains the variant; (3) discordant overlap (DO), where reads disagree. To illus-
trate how filtering by CO, SO, and DO scenarios can potentially improve the detection 
of mutation signatures, we removed the DO substitution from the 96 single base sub-
stitution (SBS) profile in a lung sample. This adjustment increased the cosine similarity 
between the cancer sample and SBS4 (COSMIC tobacco smoking signature), from 0.63 
to 0.69 (Fig. 7h and Additional file 1: Fig. S19).

Depending on the Bioconductor [65] and Tidyverse ecosystems in R, cfDNAPro is 
designed to (Fig. 7) support combinatory analysis of cfDNA biological features, mak-
ing the process more integrative, intuitive, and straightforward. To demonstrate the 
utility, we conducted analyses on fragment length (Fig. 7c), fragment length catego-
rized mutation-carrying status (Fig.  7d), motif frequency (Fig.  7e), motif frequency 
stratified by mutation status (Fig. 7f ), and CNA annotated with mutation information 
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(Fig. 7g). By standardizing data analysis, cfDNAPro mitigates the analytical impacts 
on downstream model building.

Figure  7 cfDNAPro as an integrated framework for multi-modal analysis. a Sche-
matic overview of the cfDNAPro architecture. b Three types of SNV mutation overlap 

Fig. 7 cfDNAPro as an integrated framework for multi‑modal analysis. a Schematic overview of the 
cfDNAPro architecture. b Three types of SNV mutation overlap scenarios used for mutation quality control 
in cfDNAPro: Concordant overlap (CO), Single read overlap (SO), and Discordant overlap (DO). c Fragment 
length analysis using the callLength() and plotLength() with highlight length regions of interest. d Combining 
the length and mutation features. e‑f s3 motif frequency plots with and without fragment stratification by 
carrying mutations or not. g Copy number analysis methods integrated with mutational annotation. Copy 
number gain, neutral and loss bins were highlighted using orange, grey and blue colours respectively. 
Bin(s) overlapped with the PKHD1L1 gene are highlighted with the number of mutated fragments and total 
number of fragments overlapping the gene region. h Trinucleotide single base substitution (SBS) profile of a 
lung cancer patient, stratified by mutationstatus at individual genomic loci. DO substitutions are highlighted 
with light yellow patterned lines
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scenarios used for mutation quality control in cfDNAPro: concordant overlap (CO), 
single read overlap (SO), and discordant overlap (DO). c Fragment length analysis 
using the callLength() and plotLength() with highlight length regions of interest. d 
Combining the length and mutation features. e–f s3 motif frequency plots with and 
without fragment stratification by carrying mutations or not. g Copy number analysis 
methods integrated with mutational annotation. Copy number gain, neutral, and loss 
bins were highlighted using orange, gray, and blue colors, respectively. Bin(s) over-
lapped with the PKHD1L1 gene are highlighted with the number of mutated frag-
ments and total number of fragments overlapping the gene region. h Trinucleotide 
single base substitution (SBS) profile of a lung cancer patient, stratified by mutation 
status at individual genomic loci. DO substitutions are highlighted with light yellow 
patterned lines.

Discussion
ctDNA as a non-invasive biomarker for disease detection has gained rapid translational 
implementation in clinical settings (e.g., cancer early detection [66] and minimal resid-
ual disease detection [9, 67]). Despite an increasing number of studies have reported its 
clinical feasibility, the minute quantity of total cfDNA molecules and usually an even 
lower amount of ctDNAs in the early stage patients [1, 27] in plasma raised a higher 
requirement for cancer signal enrichment and noise attenuation. Here, we comprehen-
sively evaluated the experimental (i.e., library preparation) and analytical (i.e., trimming, 
alignment, and feature extraction) impacts on the length and motif profile. Moreover, 
we present two analytical tools: TAP (a Nextflow pipeline for library-specific trimming 
and cfDNA-specific alignment) and cfDNAPro (an R package for feature extraction and 
visualization).

This study advances the research field in two aspects: it elucidates the bias factors 
introduced to the data in various steps, serving as an essential reference for researchers 
in study design; it offers a standardized and scalable one-stop solution for data analysis. 
Our results add the missing blocks in the current research community and provide criti-
cal foundation for future study [29, 31].

To inspect the inherent characteristics of library preparation methods, we chose 9 kits: 
XTHS and XTHS2 from Agilent Technologies; PlasmaSeq, Tag_seq, and Tag_seq_HV 
from Takara Bio; EM_seq and NEBNext_Ultra_II from New England Biolabs; Watch-
maker from Twist Bioscience and Watchmaker Genomics; and KAPA_HyperPrep from 
Roche. We evaluated the properties of each kit based on their practical (Table  1) and 
experimental considerations (Fig. 3).

We discussed the various aspects of experimental concerns, e.g., DNA input, cost, and 
processing time. PlasmaSeq, Tag_seq, and Watchmaker have relatively lower amounts of 
required DNA input, which indicates the suitability of these kits for samples with a lim-
ited quantity of cfDNA available, for example, finger-prick dry blood spots [68].

Regarding the whole-genome sequencing data generated from various library kits, we 
found several significantly distinct metrics across libraries that are not negligible. For 
example, Watchmaker had more mitochondrial reads (Fig. 3b and Additional file 1: Fig. 
S2a), different library kits generated variable fractions of unmapped reads through dif-
ferent analytical routes we implemented (Fig.  3c and Additional file  1: Fig. S2a). The 
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unmapped reads can be used for downstream analysis in microbial studies [69–71]. 
While these metrics can inform disease detection, issues caused by batch effects should 
be considered during the study design phase. When choosing which kit to use, we rec-
ommend comprehensively evaluating the scope of the study and candidate library prep-
aration protocols. For example, when aiming at mutation or mismatch analysis, XTHS2 
might an appropriate choice (Fig. 3d); similarly, when cost or experiment time become 
import factors to be evaluated, the information in Table  1 could inform the decision-
making process.

Moreover, distinct amplicon structures (Fig. 2 and Additional file 1: Fig. S1) necessitate 
library-specific trimming. Without this strategy, the results are incongruous (Figs. 4 and 
5), rendering downstream feature integration impractical.

To extensively examine analytical impacts, we designed various combinations of 
trimming and alignment parameter settings (Table  1). To inspect the fragmentomic 
features of multiple kits, we first clarified the definition of a “fragment” in read align-
ment (Fig. 4a–c) because there is not a standardized way to calculate fragment length, 
which leads to inconsistencies [36]. We refer to this (Fig. 4a) as a “curation” step, which is 
implemented in the cfDNAPro R package (Fig. 7a).

We found that analytical settings affect fragment lengths more significantly than the 
choice of library kits (Fig. 4d–o, Additional file 1: Figs. S4, S5, and S7–S9). Without a 
correct fragment length calculation, trimmed data still exhibit issues, particularly in 
the 150 bp range (i.e., read length): Tag_seq_HV aligned with Bwamem2 demonstrated 
thresholding problems, as indicated by black triangles in Fig.  4i. Different library kits 
show variations in different length ranges (Fig. 4p and q).

While adopting optimal processing parameters (i.e., “TrimBwamem2LengthPrior” in 
Table 2) and standardized feature extraction methods (Figs. 5b and 7a), fragment lengths 
from different library kits and individuals exhibited a relatively homogeneous distribu-
tion. PCA analysis further revealed a subtle clustering effect based on the library kits 
(Fig. 6a); in contrast, fragment motif is more significantly affected by the library kits than 
fragment lengths (Fig. 5c–k, Additional file 1: Figs. S11–S16). PCA analysis revealed an 
apparent kit-wise clustering effect, which strongly indicates the necessity of quality con-
trol and harmonization of motif quantification, especially when the training and testing 
data for machine learning models are derived from different protocols (Fig. 6b).

Our results on community healthy plasma data indicate the existence of batch effects 
across these studies. The experimental impacts on the results could not be eliminated by 
using the same standardized processing pipeline (Fig. 6d–e, Additional file 1: Figs. S22 
and S24). The batch effects in published studies could be a combination of various fac-
tors. We analyzed several factors: study (datasets/author names), extraction kit, library 
kit, sequencer, data source (NRLAB/EGA/FinaleDB), gender, and age. Based on our 
analysis, study, extraction kit, and library kit factors are closely linked with each other; 
thus, in the PCA analysis, all of these factors present clustering effects; the sequencer 
factor might be confounded by study, extraction kit, and library kit, thus less informa-
tive. Data source, gender, and age did not show obvious batch effects.

We discussed data harmonization of the features extracted from different stud-
ies (Fig. 6f, Additional file 1: Figs. S32 and S33). The harmonization could preserve the 
ctDNA signals while attenuating batch effects. From a practical point of view, in studies 
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combining various datasets, the “datasets” might be an appropriate variable to harmo-
nize against because they represent the variations derived from any factors specific to 
individual studies. However, whether or not to adopt such harmonization should be sub-
ject to specific study designs.

To achieve standardized and reproducible quantification of cfDNA, we implemented 
the TAP pipeline for library-specific trimming and alignment. Considering the broad 
user community and comprehensive infrastructural supports for bioinformatics [38, 65], 
we developed the biological feature extraction and visualization as an R package called 
cfDNAPro. Both are available on GitHub. cfDNAPro has been serving the user commu-
nity since 2021.

Within cfDNAPro, we developed various functions for multi-modal feature extrac-
tion, such as the readBam() function for reading bam files and curation, readLength() 
and plotLength() for length analysis, and readMotif() and plotMotif() for motif analysis. 
Moreover, by integrating an optional mutational annotation feature into the readBam() 
function, we introduce a comprehensive method for annotating fragments that overlap 
with a priori variant loci generated by external means. Our approach could ascertain 
if either one or both paired-end reads support the variant base (Fig. 7b). Recognizing 
fragments with inconsistencies gauges the noise associated with a given locus. Users can 
filter mutated cfDNA fragments based on their mutational categories, enabling them 
to derive trinucleotide mutation counts via callTrinucleotide() and visualize the sub-
stitution frequencies via plotTrinucleotide(). By integrating fragment-specific metrics, 
such as length and end context, with the fragment’s mutational status, our method sets 
a new standard for comprehensive cfDNA data analysis (Fig.  7d, f, g, and h). We also 
implemented plotCNV() as a modern way to visualize CNAs with gene annotation util-
ity depending on ggplot2 and ggrepel R packages [72, 73] which gives the flexibility to 
customize the plot using ggplot syntax (Fig. 7g). In addition, cfDNAPro includes essen-
tial functions frequently used in the research area, such as downsampling bam files and 
summarizing bam statistics. We plan to regularly add support for other analyses and vis-
ualizations, such as nucleosome position calling and coverage signature analysis of frag-
ments. We anticipate that cfDNAPro and the data reported in this study will improve 
the efficiency and reproducibility of cfDNA fragmentomics analyses and lay a solid foun-
dation for further methodological development for cancer detection in the study field. 
For example, when building multi-modal AI for cancer screening, these practices would 
be encouraged: (1) using a reproducible and correct trimming, alignment, and feature 
extraction pipeline. (2) Avoiding using biomarkers that are easily biased by experimental 
procedures. Robust features against various biases should be adopted. Feature harmoni-
zation might be considered when it fits in the study design. (3) Adopting machine learn-
ing models that are resilient against batch effects.

Conclusions
This is the first systematic study comparing the fragmentomics results from dif-
ferent lab experimental and analytical approaches. Different library kits exhibited 
variations in sequencing data properties and fragmentomic feature profiles. The 
analytical approaches can affect fragment lengths, and the inherent properties of 
various library kits bias the motif profiles. This information is pivotal for building 
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multi-modal AI models for cancer detection, especially when conducting multi-
center studies and integrating data derived from various protocols. We proposed 
optimized solutions to those challenges and developed TAP for library-specific trim-
ming and cfDNA-specific alignment to accelerate research and ensure robust data 
pre-processing. We also developed an open-access R package called “cfDNAPro,” 
which implements cfDNA-specific feature extraction methods, e.g., fragment length, 
motif, mutations, and copy number aberration. More importantly, it provides a uni-
fied framework for conducting multi-feature studies, unlocking the possibility of 
orchestrating multi-modal feature integration and uncovering innate relationships 
across biomarkers. The evaluation of experimental and analytical impacts, alongside 
collated healthy plasma datasets from various studies, the TAP, and the cfDNAPro 
package, are essential resources for advancing the understanding of cfDNA biolog-
ical features. Our study accelerates the adoption of best practices in reproducible 
science and provides a roadmap for future cfDNA multi-modal features integration 
research.

Methods
Sample collection, cfDNA extraction, and library preparation

Plasma samples from 10 healthy donors were obtained from BioIVT stored at − 80 
°C until DNA extraction. The blood processing protocol is provided by BioIVT: (A) 
blood is collected into EDTA tubes. (B) The whole blood collected undergoes two 
centrifugations: (1) 1600 g for 10 min to separate the plasma from the whole blood 
within 1 h of collection, then immediately (2) taking the plasma from (1), run a 2nd 
centrifugation at 8000 g for 10 min. (C) Collect the supernatant from (2) and trans-
fer (without disturbing the pellet) to new 2-mL tubes. Discard the pellet. Freeze to 
− 20 °C. Shipped to the lab with dry ice. Stored in the lab at − 80 °C.

cfDNA was purified from 3.8 to 4.1 mL of plasma using the QIAsymphony DSP 
Circulating DNA Kit (QIAGEN). To assess extraction efficiency, a non-human 
spike-in control (an amplicon of 170 bp derived from Xenopus tropicalis) was added 
to the lysis buffer during cell-free DNA extraction, following the method described 
by previous studies [53, 74]. The extracted cell-free DNA was quantified by digital 
PCR and then stored at − 80 °C until further use. cfDNA quantification by dPCR of 
human RPP30 locus and also by Agilent cfDNA TapeStation is shown in Additional 
file 2: Table S6.

Around 750–1000 haploid genome copies (around 3.3 ng) of plasma DNA were 
used for library preparation. The libraries were prepared following manufacturer 
guidelines. The library kits used in this study include XTHS and XTHS2 from Agi-
lent Technologies; PlasmaSeq, Tag_seq, and Tag_seq_HV from Takara Bio; EM_seq 
and NEBNext_Ultra_II from New England Biolabs; Watchmaker from Twist Biosci-
ence and Watchmaker Genomics; and KAPA_HyperPrep from Roche (Fig.  2). The 
number of amplification cycles varied according to the manufacturer’s recommen-
dation, as detailed in Table 1. Donor a and c in XTHS and donor c and j in EM_seq, 
NEBNext_Ultra_II, and KAPA_HyperPrep were excluded from the analyses due to a 
lack of DNA materials (Additional file 2: Table S1).



Page 20 of 27Wang et al. Genome Biology          (2025) 26:141 

Library‑specific adapter trimming

Due to the differences in the amplicon structures of various libraries, we adopted a 
library-specific trimming strategy: first, a single Unique Molecular Identifier (UMI) and 
single sample barcode: XTHS. Adapters were trimmed using Trim Galore! [75] (Fig. 2a).

Second, dual UMI and dual indices: XTHS2 (Fig.  2b), Tag_seq (Fig.  2d), Watch-
maker (Fig.  2g), and KAPA_HyperPrep (Fig.  2h). Both kits have “dark bases” (or 
referred to as “stem sequences” or “skipped bases” by kit manufacturers) between 
UMI and cfDNA fragments. XTHS2 was trimmed using AGeNT [76] software sup-
plied by Agilent Technologies. Tag_seq was trimmed using an in-house tool “tag-
trim,” which identifies the stem sequence from 3′ end of sequences and removes all 
bases after. Watchmaker and KAPA_HyperPrep are trimmed by directly removing a 
specific length of bases (i.e., UMI + “skipped bases”). Third, dual UMI and dual sam-
ples barcodes but without any intervening sequences between the i5 UMI and cfDNA 
fragments: Tag_seq_HV (Fig. 2e). Trimming was conducted using Trimmomatic [77] 
software according to the library kit user manual. Moreover, when there is no UMI 
but with dual sample barcodes: PlasmaSeq, EM_seq, and NEBNext Ultra II, adapters 
were trimmed using Trim Galore! [75] (Fig. 2c, f, and i).

Sequencing data alignment

Libraries were sequenced using Illumina NovaSeq 6000 (PE150 bp). We utilized Bow-
tie2 (version 2.5.1) and Bwamem 2 (version 2.2.1) to align the PE sequencing data. 
For Bowtie 2, the default settings, “–local” and “–local –soft-clipped-unmapped-tlen” 
options were used in various iterations. For bwamem2, the default setting and “-I 
167,1000” were used in different analytical routes in Table 2. Trimming and library-
specific alignment steps are implemented as the TAP pipeline available on GitHub; 
the pipeline utilizes singularity containers to meet high data analysis reproducibil-
ity and scalability standards for users. A schematic overview of the TAP is shown in 
Additional file 1: Fig. S18. Version number of software and tools integrated into TAP 
is available in Additional file 2: Table S2. Resulting BAM files were downsampled to 
1 × to match the lowest coverage of the data.

Handling of healthy plasma whole‑genome sequencing data from studies

For data from NRLAB and EGA: Mouliere et  al. [13], Santonja et  al. [53], Ulz et  al. 
[20], Zviran et  al. [59], Peneder et  al. [15]. The sequencing data (i.e., FASTQ) files 
were trimmed and aligned using TAP pipeline with optimal parameter settings (i.e., 
“TrimBwamem2LengthPrior”), BAM files were downsampled to 1 × to match the 
lowest coverage of the data collated.

For data from FinaleDB: Jiang et  al. [17] and Cristiano et  al. [14]. FinaleDB pro-
cessed the sequencing data with a pipeline reported by Zheng et al. [60]. The align-
ment coordinates of fragments stored in tab-separated values (TSV) were provided 
for each sample. We downloaded the TSV files from FinaleDB and converted to bam 
files and downsampled to 1x. Fragment length between 100 and 220 bp were extracted 
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using readBam() and callLength() functions in cfDNAPro. s3 motifs were calculated 
using readBam() and callMotif() functions in cfDNAPro.

cfDNAPro implementation

cfDNAPro is built using R. It is available via GitHub, Bioconductor, and Anaconda 
repositories (see Code availability). The package was designed and tested using R ver-
sion 4.1.0 and is compatible with R version 4.1.0 (or later) on multiple operating systems 
(Windows/macOS/Linux). R was chosen due to its open-source nature, general prefer-
ence, and availability of infrastructural data structure (e.g., GRanges, GAlignmentPairs) 
for genomic data analysis within the bioinformatics community.

The architecture of cfDNAPro could be stratified into three categories: the first sec-
tion is responsible for data curation (i.e., ensuring the correct fragment length calcula-
tion) and contains one primary function: readBam(). It will first check if the input Bam 
file contains paired-end reads, then import them into a GAlignmentPairs object and 
transform them into fragments (i.e., from paired reads to fragments). This gets stored 
in a GRanges object for optimum storage efficiency. Data quality control and alignment 
curation (Fig. 4) are implemented in this step. Furthermore, annotations are added to 
the GRanges object as meta columns, e.g., fragment length and fragment start motif, to 
facilitate fragment selection based on the meta information of each fragment. The read-
Bam() function also provides an optional feature for annotating user-provided mutation 
loci with fragment-level specifics. This results in additional meta columns encompass-
ing details about the count of fragments supporting the reference allele, the number of 
fragments favoring the alternative allele, and the determination of whether paired-end 
reads encompass the mutation site. A priori mutations are read from tab-separated for-
mat lists, obtained from matched tumor samples or alternative sources. De novo muta-
tion lists can be generated using the pileupMismatches() function, which leverages 
Rsamtools::pileup(), and then used as a mutation file in the readBam() function.

The second section consists of feature extraction. cfDNAPro offers utilities to extract 
various biological features from the annotated GRanges object exported by the read-
Bam() function. The features are stored in a Tibble object [78], e.g., fragment length, i.e., 
callLength(), and fragment motif, i.e., callMotif() and callTrinucleotide(). Copy number 
extraction method callCNV() depends on the QDNAseq package and stores results in 
QDNAseqCopyNumbers object [79]. In addition, summariseBam() is also available for cal-
culating descriptive statistics such as the number of reads, number of mapped reads, num-
ber of reads mapped to mitochondrial sequences, and the overall coverage of a bam file.

The final section is responsible for the feature visualization. Various plots are available, 
such as the fragment length distribution, plotted by function plotLength(), the fragment 
end motif frequencies, as plotted by plotMotif(), frequency of single nucleotide mutation 
classified by their trinucleotide context callTrinucleotide(), and copy number plots, plotted 
by plotCNV(). All visualization functions depend on the ggplot2 R package because ggplot2 
offers state-of-the-art utilities and mature ecosystems [72]. This means the resulting visu-
alization object could be modified further by users within ggplot2 ecosystem.
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Quality control and curation of alignments

We implemented the two essential steps, i.e., “QC” and “curation” (Fig. 7a). Specifically, 
in QC steps: (1) reads mapping qualities less than 30 were discarded; (2) reads must 
be paired. Of note, by default, cfDNAPro does not impose filtration by “proper pair”; 
(3) no duplicate; (4) no secondary alignment; (5) no supplementary alignment; (6) no 
unmapped reads.

Regarding the “proper pair” mentioned in QC criteria (2) above, although filtering 
by “proper pair” is a common quality control step in the next-generation sequencing 
data analysis, we do not recommend the same filtration in cfDNA sequencing data: 
this “proper pair” is assigned to each read pair by aligners. For example, the bwa-
mem algorithm assumes fragment length as a normal distribution and infers the mean 
and standard deviation by default: “The maximum distance x for a pair considered 
properly paired (SAM flag 0 × 2) is inferred by the software, and for mapping Illu-
mina short-insert reads to the human genome, x is about 6–7 sigma away from the 
mean fragment length.” While this assumption works for most of the traditional tissue 
sequencing data, it does not fit the scope of cfDNA fragmentomic research, as cfDNA 
lengths are not normally distributed (e.g., the di- and tri-nucleosome peak). Thus, fil-
tering by “proper pair” will lead to the potential loss of fragments in the di-nucleotide 
region (Additional file 1: Fig. S3).

Following the QC step, cfDNAPro curates the coordinates of the fragments, which 
ensures the correct definition of a fragment (Fig. 4a and b): (1) remove read pair seq-
name discordance; (2) remove read pair without strand info; (3) only keep inwardly 
directed read pairs; (4) the start of the forward read as the new start position; (5) 
end of the reverse strand read as the new end position; (6) remove out-of-bound 
fragments.

Fragment length and motif analysis

Fragment lengths were extracted using the cfDNAPro package (version 1.7.2) described 
above with the following code: result <—cfDNAPro::readBam(bamfile, genome_label = “hg38”, 
curate_start_and_end = TRUE) |> cfDNAPro::callLength(genome_label = “hg38”).

Although cfDNAPro supports eight types of motifs (Fig.  5a and b), all fragment end 
motifs were “s3” motifs, i.e., the first three bases of each fragment. The code used was res
ult <—cfDNAPro::readBam(bamfile, genome_label = “hg38”, curate_start_and_end = TRUE) 
|> cfDNAPro::callMotif(genome_label = “hg38”, motif_type = “s”, motif_length = 3).

Only fragments between 50 and 450 bp were kept for downstream analyses. For results 
without alignment curation (i.e., analyses with problematic fragment length calculation), 
the “curate_start_and_end” parameter was set to FALSE.

Statistical tests

The statistical tests were done using R (version 4.3.2) [38]. The metrics between dif-
ferent groups (https:// zenodo. org/ recor ds/ 15221 979) in Fig.  3 were compared using 
the stat_compare_means() function implemented in the ggpubr package (version 0.6.0) 
[80], which depends on the wilcox.test (i.e., Wilcoxon signed rank test, two-sided) util-
ity in the stats package (version 4.3.2) [38]. The PCA analysis was performed using the 

https://zenodo.org/records/15221979
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prcomp() function in the stats package (version 4.3.2) [38]. Feature harmonization was 
performed using Combat_seq() function [62, 63] in sva R package (version 3.50.0) [61]. 
PCA results were visualized with the factoextra package (version 1.0.7) [81]. The group 
mean points were shown, and ellipses surrounding each cluster was 95% confidence 
area around group mean points.
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