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  Abstract 

Uncertainty in decision-making for patients’ risk of re-admission arises due to non-

uniform data and lack of knowledge in health system variables. The knowledge of the 

impact of risk factors will provide clinicians better decision-making and in reducing the 

number of patients admitted to the hospital. Traditional approaches are not capable to 

account for the uncertain nature of risk of hospital re-admissions. More problems arise 

due to large amount of uncertain information.  Patients can be at high, medium or low 

risk of re-admission, and these strata have ill-defined boundaries. We believe that our 

model that adapts fuzzy regression method will start a novel approach to handle 

uncertain data, uncertain relationships between health system variables and the risk of 

re-admission. Because of nature of ill-defined boundaries of risk bands, this approach 

does allow the clinicians to target individuals at boundaries. Targeting individuals at 

boundaries and providing them proper care may provide some ability to move patients 

from high risk to low risk band. In developing this algorithm, we aimed to help potential 

users to assess the patients for various risk score thresholds and avoid readmission of 

high risk patients with proper interventions. A model for predicting patients at high risk 

of re-admission will enable interventions to be targeted before costs have been incurred 

and health status have deteriorated. A risk score cut off level would flag patients and 

result in net savings where intervention costs are much higher per patient. Preventing 

hospital re-admissions is important for patients, and our algorithm may also impact 

hospital income.  
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Chapter 1 

1. Introduction 

Hospital management has undergone great changes over the past 20 years. This has led to 

substantial shifts in demand for hospital care facilities and notable changes in the type of 

facilities required. The distribution of healthcare use across a population tends to be highly 

skewed, with small number of people accounting for health care resources (Nuffield Trust, 

2011).Admission of a patient is a costly event, and a patient who is frequently admitted 

could be classified as a high risk patient. Health care managers are facing a set of challenges 

for e.g ageing and chronic illness are becoming more prevalent, budgets becoming 

increasingly tight, and a relatively small number of high risk patients accounts for a large 

fraction of healthcare costs.  NHS has recognized that an increasing number of patients are 

being readmitted to hospitals soon after their discharge. Literature suggests that a small 

number of patients could be classified as ‘high risk’ and these patients end up using large 

amount of hospital resources (Billings et al., 2006; Billings et al. 2012; Billings et al., 2013; 

Lewis, 2015).Patients at high risk of readmission accounts for high cost in future.  

If,these high cost patients could be identified earlier and offered better support and 

preventive care that might be possible to improve their health outcomes and experience 

of care. Emergency readmissions are rising in England and many other countries. 

Unplanned hospital readmissions have been considered as a marker of poor health system 

performance. One of the fundamental mechanisms underlying hospital re-admissions is 

their definitions in literature. One of the definitions of re-admission is the number of 

patients who experience unplanned re-admission within 30 days of the initial admission 

(Billings et al., 2013). Another definition is the number of patients identified at high risk of 

readmission within the next 12 months (Billings et al., 2006). Department of Health (DH) 

in England have provided guidance for restricting payments for readmissions within 30 

days of discharge from a previous readmission (Blunt et al., 2014). This policy for non-

payment is based on the idea that readmissions are preventable. Unplanned hospital 

readmissions are common, expensive and often preventable (Gruneir et al., 2011). Many 
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hospitals lack practical tools to identify patients at risk of unplanned readmission (Bradley, 

et al., 2012; Bradley et al., 2013). 

Multiple hospital admissions represent a particular challenge to health care sector 

involved in identification of effective methods for hospital resource management (Corrigan 

and Martin, 1992). If, these high cost patients could be identified earlier and offered better 

support and preventive care then it might be possible to improve their health outcomes 

and experience of care (Georghiou  et al., 2013). 

Risk stratification can also be used to assess the future utilisation of hospital resources by 

patients, and therefore can aid in the planning of healthcare resources (Thomson et.al., 

2013). An approach of risk stratification into high, medium or low is adapted in our 

framework. This stratification can be uncertain. Risk stratification can assist healthcare 

professionals in identifying individuals who are likely to be high service users (Adrion et al., 

2015). Providing better care to high risk individuals can aid in making large net savings for 

the health service as a whole (Adrion et al., 2015). There are clear advantages in reducing 

unnecessary readmissions to the NHS. Researchers have undertaken in-depth research 

into emergency readmissins and potential financial impact on healthcare decisions. 

Readmission are widely seen as a problem and in UK, as readmission rates are considered 

as one of the indicators of quality of care. Readmission to patients are both common and 

costly, evidence on strategies adopted by hospitals to avoid readmission is limited. Higher 

readmission rates are associated with lower patient statisfaction and are estimated to cost 

NHS billions per year in hospital payments (NHS England, 2015). Given these demanding 

circumstances, health care mamagers are naturally attracted to any intitative that 

improves that quality of care while simultaneously reducing overall costs (Lewis, 2015; 

Georghiou et al., 2013). Majority of hospitals reported having objectives to reduce 

readmission, quality improvement teams focused on readmissions. Specific practices 

considered to be important for for preventing readmissions were implemented by fewer 

hospitals.  

Mutiple factors increase the chance of readmission for patients discharged from hospital. 

Several studies have also suggested that patient characteristics such as age, sex, medical 

history and comorbidity are correlated with early readmission. Researchers also 

investigates that the quality of care does affect the risk of readmisson with 30 days of 
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discharge (Ashton et. al., 1996). Unplanned hospital readmissions are more likely to be a 

possible marker for quality of care. Readmission happens to patients within a total 

healthcare system, involving care in hospitals, primary care and care at home. Therefore, 

it is important for health care managers to work with patients and their representatives to 

audit early unplanned readmissions to improve the quality of patient care 

According to previous studies, logistic regression and classification & regression trees have 

been developed to identify patients at high risk of re-admission. In fact, due to uncertain 

nature of binary observations, probability distribution cannot be always considered for 

these types of data. Current probbaility distribution methods may not be appropriate, as 

it cannot handle range of values for risk of readmission (high, medium or low). Due to ill-

defined boundaries of risk of readmission, as patients may move from high to medium and 

medium to low risk of readmission logistic regression may not be useful. 

 Research data includes large amount of imprecise observations. More problems will arise 

when there is an ambiguity in the degree to which an event occurs especially when the 

relationship between explanatory& response variable are uncertain. (Dom et al., 2008; 

Shapiro, 2005; Rosma, et al., 2008). 

Traditional approaches are not capable to account for the complex action of uncertainty 

in risk of hospital re-admissions (Coppi, 2008). Three basic sources of uncertainty are 

considered:  

1. Uncertainty in the relationship between response and explanatory variables.  

2. Uncertainty about the relationship between the observed data and the universe of 

possible data.  

3. Uncertainty in the observed value of the variables (Coppi, 2008). 

There are attempts to construct a fuzzy regression model based on the possibility of 

success. These possibilities can be defined in linguistic terms as high, medium or low risk 

of re-admission. However, the borderlines of stratification (high, medium or low) are not 

crisp and number of readmitted patients’ near the borderlines is uncertain. Additionally, 

relationship between variables is uncertain and it is not modeled in traditional methods. 

This uncertain nature of re-admission and uncertain relationship cause other difficulties.  
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As risk of re-admission is uncertain and knowledge about patient’s re-admission risk of 

readmission is imprecise, fuzzy modelling techniques provide a good concept for dealing 

with such type of uncertain information.(Bisserier et al., 2010) states that fuzzy regression, 

a type of conventional regression analysis, has been proposed to evaluate the functional 

relationship between independent and dependent variables in a fuzzy environment 

(Bisserier et al., 2010).In the present study, the possibilistic approach with a new, revisited 

methodology is proposed for predicting risk of re-admission of a patient. 

The main aim of this thesis is to provide a framework for predicting patients at high risk of 

re-admission. This framework is depicted in a model, and this model is implemented in an 

algorithm. Our proposed algorithm adapts fuzzy regression method to predict likelihood 

of patients at risk of re-admission.   

Figure 1 shows the map of the thesis and interdependence among various chapters. In 

chapter 1 and chapter 2, the background and literature review for our thesis is described. 

Research aim and research objectives are described in chapter 1. 
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The background and literature review chapter describes and reviews current 

methodologies based on literature. Current literature describes classical regression 

techniques, fuzzy regression methods and fuzzy techniques in predictive models.  Our 

model is based on the theory of fuzzy regression methods described in current literature. 

Fuzzy regression methods are used to handle uncertainty in health system variables and 

uncertain relationship between risk factors and risk of admission. There may be a problem 

of multi-collinearity in health system variables which could be solved by fuzzy regression 

method. Theoretical study of fuzzy regression method is described with background, 

advantages and limitations in chapter 4.   

Predictor variables for patient’s re-admission are identified after studying various articles. 

Risk factors for a patient’s re-admission are also studied in the literature review. Risk scores 

are used to stratify risk of readmission into high, medium or low. Therefore, risk scores of 

different models are compared and discussed in literature review. An approach of risk 

stratification into high, medium and low risk is adapted to identify high-risk individuals and enable 

proper interventions for high-risk patients.  Because our model’s performance is compared 

and evaluated with other methods, a comparison of various models using performance 

evaluation methods is done in literature review.  

Once predictor variables are identified, a conceptual framework for identifying patients at 

risk of re-admission is developed as in chapter 6 and implemented using our novel 

algorithm. This novel algorithm adapts fuzzy regression method for predicting patients at 

risk of re-admission and identifying risk factors responsible for likelihood of re-admission. 

This novel algorithm handles uncertainty in risk of re-admission. Also, the algorithm could 

be further extended to handle uncertainty and multi-collinearity problem within health 

system variables.  

Our algorithm as described in chapter 6 is experimented in chapter 7. Chapter 7 consists 

of different sets of experiments where we have handled uncertain data variables 

compared different models, and implemented fuzzy regression method. Fuzzy 

membership function for risk of re-admission is also described in the experiments. For our 

research work, we have focused on triangular and trapezoidal membership function. For 

the experiments, health system data variables are analysed. Data analysis includes steps 
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such as selection of independent & dependent variables, fuzzification of response variable, 

outlier detection and handling multi-collinearity problem. Model validation is done in 

chapter 7, where different models are compared and evaluated using model calibration 

and discrimination techniques. Models involved in comparison with fuzzy regression 

method are logistic regression, decision tree, and neural network methods. 

Conclusion of overall thesis is given in chapter 9. Research limitation and novel elements 

of the research are described in this chapter.  The limitations of the research are identified 

and future work is proposed to address those limitations.  

1.1 Overview of Risk Prediction Models 

According to literature, different authors have explored the predictive power of various 

types of model for risk prediction. These papers have sought to use models for different 

outcomes (for example hospitalisation, cost etc.) which makes comparison difficult. For 

instance, Adjusted Clinical Groups (ACGs) and Diagnostic Clinical Groups (DCGs) based on 

age, gender, and diagnoses were designed to predict future costs for the individuals in 

need of hospital resources. ACGs and DCGs uses ICD9-CM diagnosis to classify patients 

with special attention paid to individuals with expensive chronic conditions (Johns Hopkins 

ACG, 2014). Our focus is on a range of different models, which have been used in NHS to 

identify people at high risk of re-admission to hospital (Billings et al., 2013). We have 

studied models used for risk prediction over past years in the UK such as Patient at Risk of 

Re-admission (PARR), PARR++, Combined Predictive Model (CPM) and ACGs. These models 

are used for predicting events such as unplanned hospital re-admissions which are 

undesirable, costly and potentially preventable (Billings et al., 2006, Billings et al., 2013). 

Predictive models work by combining information at patient level to identify potential co-

variates that are associated with a future event- such as likelihood of re-admission to 

hospital.  

ACG-based models were specifically calibrated to identify patients with risk of future 

hospitalization. ACG based models focus on unanticipated hospitalization, and are used to 

estimate future resource utilization for sub-groups within a population (Johns Hopkins 

ACG, 2014). The ACG system is a suite of tools which draw on demographic, diagnostic, 

pharmacy and utilisation data from primary and secondary care. Currently, there are 
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different kind of models use for risk prediction for e.g PARR, CPM and ACGs. ACG models 

were developed based on US healthcare data. For ACGs system developed in John Hopkins 

University licensing arrangement is required. ACGs system predicts likelihood of 

readmission and likely cost of a patient in the coming year (Johns Hopkins ACG, 2014). 

 Of the various models in use in England the PARR tool has gained popularity. This is 

probably because of the data to run PARR is easily available and software to estimate risk 

scores was distributed evenly. PARR1 and PARR2 tools that identify high risk patients use 

inpatient data to produce a ‘risk score’ showing a patient’s likelihood of re-hospitalisation 

within the next 12 months (Billings et al., 2006, Corrigan and Martin, 1992) and (King’s 

Fund , 2006; Foot et al., 2014) developed a number of predictive tools for the prediction 

of patients who are at high risk of re-admissions. (King’s Fund , 2006) developed these 

stratification models: 

 The Patients at Risk of Re-hospitalisation (PARR1) tool: a software tool that uses 

inpatient data on prior hospitalisations for certain ‘reference conditions’ to identify 

patients at risk of re-hospitalisation within a year. 

 The Patients at Risk of Re-hospitalisation (PARR2) tool: a software tool that uses data 

on any prior hospitalization to predict risk of re-hospitalization. It extracts information 

from Hospital Episode Statistics (HES) data using criteria that are known to be risk 

factors in future admissions to hospital.  

 The Combined Predictive Model: a model that uses inpatient, outpatient, Accident & 

Emergency (A&E) and General Practitioner (GP) data to stratify populations according 

to their risk of admission. The combined model takes primary and secondary care data 

for entire patient population and stratifies those patients based upon their risk of 

emergency admission in the next 12 months (King’s Fund , 2006). 

 

Such tools can be used to identify patients for an appropriate intervention in order to 

improve health outcomes, and to allocate resources efficiently. If the system is able to 

identify those patients who are at the highest risk of re-admission, more intensive 

resources can be focused on them leading to efficient allocation of resources and 

facilitating better planning of services (King’s Fund , 2006; NHS England:, 2015).The 

stratification of patients can be illustrated using Kaiser Permanente’s triangle below in 
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figure 2. At the top of the triangle are the individuals who are most at risk of emergency 

admission. Predictive models attempt to target individuals at the top of triangle to prevent 

them from being readmitted. However, decision makers are not sure whether this is the 

most appropriate area of triangle on which to concentrate resources. It may be useful to 

identify individuals in the lower two strata who are likely to move into the high risk level. 

The borderlines of these risk stratifications are not crisp, and individuals near the 

boundaries can move from low level to high level. Evidence is weak as to which strata an 

intervention is applied to get best results. Existing predictive models seek to establish 

relationships between set of variables in order to predict future outcomes. Most predictive 

models that focus on regression techniques are able to identify patients at risk of 

readmission (Billings et al., 2006, Bottle et al., 2006, Billings et al., 2013). As an alternative 

to regression, researchers have applied various machine learning methods especially 

Artificial Neural Network (ANN) and support vector machines (SVMs). Initial results from 

these have been promising (Bottle et al., 2006; Bottle, et al., 2014). However, the users of 

these models are unable to know how exactly these models predict risk and thus the 

relationships between inputs and outputs. In contrast, decision tree methods show the 

relation between predictor variables. As the status of the individuals near the borderlines 

of risk stratification triangle is uncertain, we have adapted fuzzy regression method in our 

research, which is shown in detail in later chapters. 
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Figure 2 Risk stratification triangle as developed by Kaiser Permanente (King’s Fund, 

2006). 

1.2 Research Aim 

The aim of this research is “To develop a novel framework for handling uncertainty and 

fuzziness in predictive models for health care services, to enable efficient health care 

resource utilization”.  

Research Objectives 

The specific objectives of the research are: 

 To develop a framework that identifies individuals at risk of readmission within 

12months of    discharge. This framework will identify significant predictors for 

risk of re-admission, and identify patients at high risk of readmission. 

 To develop a model which is implemented in a novel algorithm. This novel 

algorithm will capture the uncertain nature of risk of readmission and stratifies 

patients at high, medium or low risk. It will adapt fuzzy techniques (Fuzzy linear 
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regression), so that it can handle uncertainty in risk of readmission. Additionally, 

the algorithm will also handle problem of multi-collinearity that occurs among 

health system variable. 

 To produce a risk score from this model for readmitted patients, and percentage of 

patients with a re-admission within 12 month of discharge period in different risk 

bands. To measure the area under the receiver operating characteristic curve, 

together with   Positive Predictive Value (PPV) and sensitivity for a range of risk 

thresholds.  

1.3 Research Motivation 

Risk of re-admission of a patient can be viewed as a fuzzy event because it can take values 

other than 0 and 1, and also unplanned re-admissions do not have clear cut boundaries. 

The principal of stratifying patients according to risk is relevant and useful in order to 

improve health outcomes and to facilitate better planning of resources. Tradtional model 

such as PARR used statistical techniques such as logistic regression to predict future 

outcomes. 

In statistics, linear regression analysis is a powerful method for studying the linear 

relationship between one response variable 𝑌 (dependent variable or output variable) and 

a set of explanatory variables 𝑋1, , , , , , , , 𝑋𝑃 (independent variables or input variables) 

(Dirusso et al., 2002).Classical statistical regression has many applications, problems may 

occur in some situations. Linear Regression method is extremely sensitive to outliers. 

Other situations are:  

 Imprecise Information 

 Uncertain data 

 Vagueness in the relationship between input and output variables. 

In recent years, there is a growing literature that formalizes the linear regression model in 

fuzzy domain, in which model parameters and/or data are fuzzy, or imprecise or vague 

(Dirusso et al., 2002). Abundance of vague observations in healthcare studies, motivate us 

to think about a proper model in a fuzzy environment. These are the situations fuzzy 

regression was meant to address. 
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1.3.1 Uncertainty 

Any decision making statement is either true or false. Uncertainty in decision-making arises 

due to the non-uniform data and lack of knowledge in data characteristics. Due to lack of 

knowledge, we can only estimate to which degree they are true or false. In our research 

context, uncertainty can be defined with respect to risk of re-admission of patients. 

1.3.2 Vagueness 

Vagueness theory can account for all those approaches in which statements (such as “risk 

of re-admission is high”) are true to some degree. Stratification of risk of re-admission can 

be done in linguistic terms such as high, medium or low risk of re-admission, but these 

have ill-defined boundaries. These ill-defined boundaries of linguistic categories can be 

referred to as vagueness and can be captured with membership functions in fuzzy sets.  

 1.3.3 Imprecision 

(Bosc, 1995) Null set denotes the lack of information about a value. At times, it is known 

that a missing value belongs to a more limited set of values (possibly, a range of values), 

which are known as disjunctive values (Motro, 1995). Null and disjunctive values both 

express imprecision.   

 

1.4 Research Contribution 

The main contribution of this work is both conceptual and practical.  The contribution 

refers to the development of a conceptual framework that adapts novel approach for the 

prediction of response variable based on fuzzy regression method. Patients can be 

stratified into risk bands, which range from high to low depending on their risk scores. 

Percentage of patients re-admitted in a high risk band can be evaluated with the help of 

risk score threshold value.  Health care and social interventions could be better targeted 

at individuals who are at high risk of re-admission and most in need of hospital resources. 

The research is novel in the sense that it is the first study that handles linguistic variable 

risk of re-admission, which can be defined by a fuzzy set with range of values as high, 

medium or low risk. The methodology proposed here is original in the sense of designing 

and developing a framework that models uncertainty in risk of re-admission of a patient. 
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Traditional methods of prediction such as logistic regression are not able to account for 

uncertain nature of risk of hospital re-admissions.  

Our model is based on a framework that identifies significant predictor variables as risk 

factors to predict patients at risk of admission. The knowledge of the impact of risk factors 

will provide clinicians better decision-making and will help in reducing the number of 

patients re-admitted to the hospital.  

The other important contribution is the design and development of a novel algorithm that 

adapts fuzzy regression method. This algorithm deals with uncertain data and uncertain 

relationships between risk factors and risk of re-admission. It estimates the unknown 

dependency between the independent health system variables and the response variable. 

We believe that this will start a novel approach to handle uncertain data, and uncertain 

relationships between health system variables and the risk of re-admission using the 

possibility approach with revisited methodology.  

1.5 Research Impact 

Various risk stratification models aimed at identifying individuals at risk of hospital 

readmission have been developed, using healthcare data.  Risk stratification tools are 

designed to identify those individuals who are at high risk of experiencing an adverse 

future outcome, such as readmission with 12 months or 30 days of discharge. It could be 

beneficial to identify these high risk individuals and provide interventions to reduce 

hospital readmissions. We will identify patients at high, medium or low risk with the help 

of risk scores. A higher risk score will imply higher probability of future re-admission than 

lower risk score. This could lead to net savings in costs incurred for hospital services. Such 

an approach relies on the ability to identify appropriate patients. Targeting individuals at 

boundaries and providing preventive care to such patients may help in proper utilization 

of hospital resources. Risk stratification tool is ever completely accurate, and there are 

very likely chances that high risk indivuals may move to medium or low risk bands. 

Borderlines of risk stratification are not crisp, and boundaries for high, medium and low 

risk of readmission is not clearly defined. This may lead to poor clinical decision making, 

and hospital resources may not be properly utilized.  
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High costs may be incurred for treating patients at boundaries, which are ill-defined, and 

strategies designed to improve the impact of treatment could worsen consumption of 

health care facilities. Some of the individuals may face a problem that they are offered an 

intervention to prevent an event which they were actually not going to experience. They 

might go through over treatment, which may increase their anxiety levels and result in 

unnecessary side effects. On the other hand, patients who are actually in need of resources 

might not receive any these services.  Effective risk stratification tool is the one where 

benefits to the population outweigh the costs for hospital services. 

Patients at risk of re-admission could be identified with consideration of significant 

variables.  A model for predicting patients at high risk of re-admission will enable 

interventions to be targeted before costs get incurred and health status gets deteriorated. 

In developing this algorithm, we aim to help potential users to assess the patients at 

various risk score thresholds and design proper interventions for individuals who are at 

high risk. A risk score cut off level would flag patients at high risk and where intervention 

costs are much higher per patients. Because of nature and ill-defined boundaries (high, 

medium or low) of risk of readmission this approach does allow the user some ability to 

compensate for number of patients at high risk of re-admission. Preventing hospital re-

admissions is important for patients, and our algorithm may also impact hospital income.  

Hospital re-admissions are also used as indicator of quality of care. The validity of hospital 

re-admissions as an indicator of quality of care depends on the extent that hospital re-

admissions are avoidable. 

1.6 Research Challenges 

 For our research, Hospital Episode Statistics (HES) data is used. There are about 

300 variables in HES data base. Understanding of each and every variable and its 

impact on hospital readmission is a challenge. To deal with HES variables, we have 

done study of all available information on HES data. Statistical analysis (chi-square) 

is done to understand significance of variables in patient’s readmission. 

 Data collected from Hospital Episode Statistics datasets is challenging to deal due 

to size and complexity of the dataset. Because of complex coding of data items, 
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missing data, duplicates and other data issues lot of analysis is required to produce 

meaningful information that are free from errors. 

 Due to difficulty in handling of dataset and license problem in MATLAB, fuzzy 

regression method was difficult to implement in MATLAB. R was used because it 

was more user friendly with easily available open source package for 

implementation of fuzzy regression method. 

 Because of non-uniform data and lack of information about data, there is difficulty 

in making sharp and clear distinctions in the real world. Risk of re-admission can 

be defined in linguistic terms which result in ill-defined boundaries. This can be 

solved by representing risk of re-admission by fuzzy membership function. 

 Missing and inaccurate data (coding in diagnostic fields) was a problem, as model 

is dependent on these fields. These data limitations tend to give error in prediction 

of the model.  

 

 

 

   

 

 

 

 

 



27 
 

   Chapter 2 

2. Literature Review 

2.1 Introduction 

 (Lewis, 2015)states that the number of unplanned re-admissions in the UK National Health 

Service (NHS) and in several other developed countries’ hospitals has been rising for many 

years. The NHS in England is the publicly funded healthcare system for England.It believes 

in the long-held ideal that good healthcare should be available to all, regardless of wealth 

(NHS England, 2015). It deals with over 1 million patients in every 36 hours. An essential 

strategy of NHS is to provide is to improve care and services for high cost patients. 

 (Hasan et al., 2010) states that studies about hospital re-admissions have focussed on 

specific conditions or populations and generated complex prediction models.  

Our focus is on range of risk prediction models, which have been used in NHS to identify 

people at high risk of re-admission to hospital. The predictive model seeks to establish 

relationships between sets of variables in order to identify patients at risk of re-admission 

(Billings et al., 2013). (Curry et al., 2005; NHS England,2015; Lewis, 2015; Purdy, 2010) 

forecasts risk of future event based on the identified relationships between nunber of 

factors and increased rates of readmission. 

Risk of re-admission is an uncertain event which has important economic implications for 

efficient hospital resource utilization. This health care problem deserves modelling of all 

relevant uncertain information involved in the real decision-making process (Hojati et al., 

2005, Pourahmad et al., 2011).The literature review consists of various sections. Sub 

section reviews the literature on predicting unplanned hospital resource utilization, 

predictors for risk of re-hospitalisation, data mining and machine learning techniques and 

fuzzy methods. Data mining and machine learning technques and fuzzy methods are 

included in chapter 3.  
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2.2 Methods 

2.2.1 Literature Search 

We developed a search strategy to identify studies that measured the proportion of re-

admission deemed avoidable. We searched databases such as pubmed, medline, web of 

science etc for papers published from 1965 to 2015. Full text versions of citations were 

retrieved for complete review. The references of all included studies were reviewed to 

identify other eligible analyses. Data abstracted from each study included basic study 

information (publication, year, and journal). This study is not without limitations. Although, 

we did a comprehensive search of the peer reviewed literature, we did not include 

unpublished results or studies from the grey literature such as reports and doctoral 

dissertations. Some of the reports included in our research are from Nuttfield Trust, and 

Health Services and delivery research which are relevant for our thesis. 

2.2.2 Study Selection 

Search strategy for the systematic review was conducted in the electronic database from 

1965 till 2015. Keywords used were “patient re-admission”, “hospital re-admission”, “risk 

of re-admission”, “risk stratification”, “unplanned admission”,” uncertainty”, “chronic 

illness”, “rehospitalisation”, “risk factors”, “Data mining”, “Machine learning”, “Fuzzy 

methods”, “fuzzy regression”, “Machine learning Algorithm”,” predictive modelling. In all 

searches a filter was used for systematic review. Systematic reviews were hand searched. 

Articles were independently screened for titles and abstracts for inclusion. Exclusion 

criteria were unpublished abstracts and dissertations. The abstract of each article was 

reviewed for inclusion in the sample. In situations when inclusion could not be determined 

by abstract review then full text articles were reviewed. Full text copies of most of the 

potentially relevant papers were retrieved and checked formally for eligibility. Thus, the 

final sample included articles reporting studies of hospital re-admissions.  
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2.3 Unplanned re-admissions and hospital resource utilization.  

Staff and managers in hospitals and other health care settings are under pressure and are 

concerned for effective use and management of scarce resources (Chan et al., 2011). 

Unplanned hospital admission is increasingly recognized as a significant contributor to 

rising health care costs (Pourahmad et al., 2011). Some of the studies for predicting 

unplanned re-admissions are mentioned in Table 1 of Appendix 1. Health services are a 

vital part of the NHS for millions of people, and they comprise approximately £10 billion of 

NHS budget (Foot et al., 2014). For several years, the NHS has recognized that an increasing 

number of patients are being readmitted to the hospital. Patient’s re-admissions to 

hospitals are associated with increased costs to the hospitals. Re-admissions to hospitals 

are being used as indicator of quality of care (Briefing NHS Confederation, 2011). Health 

care services collect and analyse detailed readmission data to understand disease, clinical 

practices, patient characteristics and factors driving readmission trends (Sg2, 2011) One of 

the fundamental mechanisms underlying hospital re-admissions is their definitions in 

literature (Billings et al., 2013; Bottle et al., 2014; Kansagara et al., 2013). Identifying 

patients at risk of readmission within 12 months is selected as the time period of 12 

months may give clinicians and healthcare managers to contact and high risk patients. It 

also allows time to initiate behavioural and treatment changes. Selection of shorter time 

frame may improve the accuracy of the prediction but decrease usefulness of prediction 

(Au et al., 2012). 

2.3.1 Hospital re-admissions as an indicator of quality of care. 

 Information about care is important as it helps us to assess how health and social services 

can be co-ordinated in ways to provide higher quality and more efficient care. Hospital 

readmissions are indicator of quality of care (Briefing NHS Confederation, 2011; van 

Walraven et al., 2011). In many healthcare systems, the unplanned readmission to a 

hospital has become indicator of quality of care which measures how many patients are 

readmitted to hospitals after they have been discharged (Kossovsky et al., 2000). 

Implementing the methods to provide interventions for patients at risk of readmission may 

help end variations in quality of care and finances that cost NHS billions (Appleby et al., 
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2012; Department of Health, 2012). Yet, there is a shortage of information about the care 

that people receive at the time of re-admission. High quality patient care and sound 

financial management go hand in hand (Department of Health, 2012). The validity of 

hospital readmissions depends on the extents that they are avoidable (Purdy, 2010). As 

the number of avoidable hospital readmissions increases, the cost required to avoid one 

readmission will decrease. Some these readmissions are avoidable, while at other times 

they are unavoidable due to the development of new conditions or severe chronic 

conditions (Purdy, 2010). In most case, these unplanned hospital readmissions indicate 

bad health outcomes for patients. Unplanned hospital readmissions are a problem for 

health care systems as they are costly and lead to bad quality of care (Briefing NHS 

Confederation, 2011). (Sg2, 2011) estimates that total penalties associated with 30 days of 

emergency readmissions would potentially cost NHS trusts £584 millions in lost income. 

Therefore, many healthcare organizations use risk prediction models to target 

interventions aimed at preventing hospital readmissions. 

The trend of unplanned admissions, which is possibly related to poor patient care, places 

financial pressures on hospitals and on nation health care budgets  (Sharon et al., 2004; 

Friedmann et al., 2001; Hensher et al., 1999). The majority of studies in the papers 

reviewed look at risk of unplanned hospital re-admissions (Parker et al., 2003).   The main 

aim of study is to identify people at risk of re-admission whose health outcomes may 

improve by direct use of intensive resources. The issue is that a small number of patients 

could be classified as high risk patients who are using a large amount of resources (King’s 

Fund, 2006; Georghiou, et al., 2013; Lewis, 2015). The identification of readmitted patients 

may also provide information of the severity of condition and the quality of care provided 

for them. The focus is on identifying ‘high risk’ patients for whom an appropriate 

intervention would improve care and prevent future re-admissions. Assessment of the 

selected predictive variables may help support the development of plans that potentially 

mitigate the risk of re-admission (Fialho et al., 2012).Therefore, studies for identifying 

predictors for hospital re-admissions are considered. 
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2.4 Predictors of hospital re-admissions 

Collection of the predicted variables is not so complex in hospitals and their assessment 

may help in support of the development of healthcare management plans that potentially 

mitigate the risk of re-admission. Studies for identifying potential predictors is mentioned 

in next section, and significant predictors are listed in Table 1.  Previous studies have 

examined different variables that are assessed at discharge and that are considered to be 

predictive of re-admission (Fialho et al., 2012) as shown in Table 1. Some of the variables 

included in PARR case finding algorithm are age 65-74, age 75+, sex, ethnicity, previous 

admission for a reference condition, number of emergency admission in previous 90,180 

and 365 days, number of non-emergency admissions in previous 365 days, average 

number of episodes per spell for emergency admission, and diagnostic cost 

groups/hierarchical condition category (Curry et al., 2005; Au, et al., 2012). Table 1 lists 

predictor variables and their corresponding authors and published papers. Variables 

selected for the highest predictive power include patient, demographic characteristics and 

health system variables. These variables are selected on the basis of our hypothesis that a 

good predictive value can be achieved, and the variables chosen should be independent of 

correlation. We have done a comparison of predictor variables. We have selected final 

model variables as severity illness, prior hospitalization, comorbidity, overall demographic 

and patient characteristics and health system variables. (Billings et al., 2006, Billings et al., 

2012, Billings et al., 2013) created a set of variables on previous hospital use and diagnostic 

history for hospital episode statistics data for triggering admission. 

 Several risk factors are also assessed for likelihood of re-hospitalization and are considered 

to be significant for predicting high risk patients Current literature has examined risk 

factors for unplanned re-admission that relate to health care factors, patient 

characteristics such as age, gender, home living situation and stage of illness, factors 

related to the patient or a combination of all these (Bisserier et al., 2010; Chan et al., 2011). 

The various risk factors for patients’ re-admission are shown in Table 2 of Appendix 1. A 

number of factors are associated with increased rates of readmission. Age is one of the 

potential predictors of readmission (Purdy, 2010; Philbin et al., 1999; Gruneir et al., 2011). 

Data on the impact of ethnicity on readmission is limited. Being from minority ethnic group 

is associated with a higher risk of readmission (Bottle et al., 2006; Purdy, 2010). For each 
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of the predictive models, patient comorbidities were identified using ICD-9 and ICD-10 

codes from the hospitalizations in the past 12 months. Charlson index was computed using 

ICD-10 codes (Au et al., 2012; Aylin et al., 2010). Higher leveles of morbidity in population 

are associated with higher levels of readmission, and readmission rates are correlated with 

chronic illness(Bottle, et al., 2006; Purdy, 2010). 
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 Table 1 Predictor variables for risk of re-admission. 
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Age(yr)+   √ √ √ √ √ √ √ √ √ √   

 Gender   √ √     √ √   √ √ √   

Height/ Weight (BMI)               √         

Indigenous status   √                     

Marital status   √ √           √       

Comorbid illness √ √ √ √         √ √     √   

Charlson  comorbidity index √   √ √               

  

Mental health comorbidity     √                 
  

Ethnic  origin √     √     √       √   

Insurance √                       

Hospital Location type √ √       √       √     

Index of Multiple deprivation 

band for the place of residence       √               

  

Discharge to a skilled care √       √               

Previous hospital discharge √     √                 
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2.5 Summary 

In this chapter, we found the literature on unplanned admissions. We considered a 

substantial amount of published literature and found number of studies that met the 

eligibility criteria. Currently, an available published study shows literature on unplanned 

admission, predictors for hospital re-admission and hospital readmissions as indicator of 

quality of care. We conducted a systematic literature review of studies that measured the 

proportion of re-admission that are avoidable.Previous studies have examined different 

variables that are assessed at discharge, and risk factors that are considered to be 

predictive of re-admission. In the next chapter, we have examined studies for data mining 

and mahine learning methods. 
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Chapter 3 

3. Data Mining and Machine Learning Methods 

3.1 Introduction 

Literature suggests a number of different regression models in order to target patients at 

high risk of re-admission (Billings et al., 2013;Demir, 2014).The outcome of linear 

regression is the actual value whereas logistic regression produces a predicted probability 

between 0 or 1 for an event, such as admission(Zhao et al., 2003, Meenan et al., 2003).Use 

of either method is valid, and logistic regression can only be used as long as the variables 

are appropriately transformed in order to build such a model. Recently, data mining and 

machine learning techniques are used for developing models to solve healthcare problems. 

Data mining algorithms are applied in variety of healthcare problems. (Liu et al., 2006) 

applied data mining algorithms to predict inpatient length of stay in geriatric hospital 

treatment. Literature on application of data mining andmachine learning algorithms in 

various healthcare domain areas is studied.(Zernikow et al., 1999) studied the accuracy of 

two LOS prediction models, namely a multiple linear regression model (MR) and an 

artificial neural network (ANN) for outlier detection in the hospital admission. More 

literature on data mining and machine learning algorithms is included in chapter 3. 

There are number of studies that compare the performance of regression trees and logistic 

regression for predicting outcomes. (Austin, 2007; Bottle, et al., 2014) compared the 

performance of logistic regression method with ANNs, Support vector machines (SVMs) 

and decision trees. The machine learning methods tend to be slower than Logistic 

regression (LR), given their complexities, often need an expert as an operator to make 

decision on implementation issues (Bottle et al., 2006; Demir, 2014). In this section, we 

have defined machine learning methods such as artificial neural network (ANN), logistic 

regression (LR), neuro-fuzzy, and fuzzy regression methods in areas of healthcare research. 

3.2 Logistic Regression methods 

There are attempts to create risk prediction models using descriptive statistics including 

univariate and multivariate analysis, and validating these models on a sample of dataset. 

Basic descriptive statistics were conducted on prediction techniques.  
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In one of the studies by (Rasmusson et al., 2013)a multivariate analysis was performed to 

predict heart failure re-admissions. Univariate logistic regression analyses were performed 

to investigate factors that were significantly associated with increased risk of re-

admission(Moran et al., 2013).. Multi-variable logistic regression analyses were performed 

using a stepwise selection of variables to evaluate for statistical differences between those 

patients with re-admission and those without re-admissions.(Su et al., 2013)applied cox-

regression on the data to solve the prognosis view of the re-admission risk prediction 

problem.(Kansagara et al., 2011) reported the c-statistic, with 95% confidence interval to 

describe the model discrimination. The c-statistic, which is equivalent to the area under 

the receiving operating characteristic curve, is the proportion of times the model correctly 

discriminates a pair of high and low risk individuals. 

Logistic regression is a widely used statistical method in healthcare research (Concato et 

al., 2001)Logistic regression is a kind of generalized linear regression model that is widely 

used for prediction of the probability of occurrence of an event(Lin et al., 2010). 

We have chosen a subset of logistic regression for illustrative purpose. We are interested 

in identifying those variables that contributed most to the predictions of readmissions 

within 30-day discharge. Logistic regression models were constructed to identify such 

variables, and estimating probability of readmission within 30 days by creating risk score 

ranging from 0.01-1.00. Significance of variables responsible for risk of readmission was 

evaluated using statistical tests for e.g pearson correlation coefficient. Logistic regression 

was considered to calculate the probability of an event given risk factors. We also carried 

out univariate analysis to identify variables significantly associated with readmission. All 

variables with value of p<0.05 were included in our multiple regression model. As we have 

large dataset of potential independent variables for our analysis, and inclusion of all 

variables may decrease the precision of estimated coefficients and predicted values. 

Secondly, we also want to include as few variables as possible. Therefore, we followed 

multivariate logistic regression with backward elimination method to select most potential 

variables to be included for analysis. 

 Multi variable analysis using a stepwise logistic regression model was used to identify 

independent risk factors for a 30-day re-admission (Billings et al., 2006). Demographic, 

clinical and social variables were obtained at baseline and included in a multivariable 
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logistic regression analysis to identify predictors of early re-hospitalisation (Muzzarelli et 

al., 2010). The logistic regression analysis identified independent predictors for re-

admission to the Intensive care unit (ICU). Patient factors association with hospital re-

admission was fitted with multivariable logistic regression models for each of the patient 

factors using data from validation dataset (Hasan et al., 2010). Variables are often selected 

for inclusion in logistic regression models using some form of the backward or forward 

stepwise regression technique (Billings et al., 2006) 

3.3 Artificial Neural networks 

In the last decade, the use of data mining techniques has become widely accepted in 

medical patients (Tu, 1996). Prediction techniques are useful in many areas of healthcare 

research. Amongst the methods used for outcome prediction, artificial neural networks 

(ANNs) are powerful tools to use in the simulation of various nonlinear systems and they 

have been applied to both risk evaluation and prognosis of medical science (Tu, 1996). The 

ANN models used had three layers, one input layer, one output layer, and one hidden layer. 

Each layer consists of a set of nodes that stimulate humans’ neurons. (Tu, 1996)ANN 

developed a typical neural network consists of three nodes that are arranged in three 

layers (input, hidden, output). In a neural network, predicting an outcome is based on the 

values of some predictor variables. Neural networks can be developed with multiple 

hidden layers but there is no advantage of doing so. As stated by (Tu, 1996) each node in 

the input layer is usually connected to each node in the hidden layer, and each node in the 

hidden layer is connected to each node in the output layer. 

 ANN models are used to evaluate the relationship between subjective patient QOL 

(Quality of Life) assessments and QOL assessments made by pharmacists and nurses 

(Takehira et al., 2011). QOL parameters were modelled with ANN using the scores given by 

patients regarding health related QOL as input variables.(Tan-Nai Wang et al., 2013)  

(Wang et al., 2013) trained an ANN model to predict cancer patient’s five-year 

sustainability. The artificial neural network used in this study was a multilayer perceptron 

(MLP) ANN and the number of hidden neuron was set as ranging from 5to 15. The ANN 

was developed using the structure of multi-layer perceptron (MLP) with back-propagation 

(a supervised learning algorithm) (Lundin et al., 1999). A better understanding of the 
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“hidden” layers in neural networks enables to create models that incorporates the best 

features of neural networks (Ottenbacher et al., 2004). 

3.4 Decision trees 

A decision tree is a set of if-then clauses (nodes) with a tree like structure, with each leaf 

being a decision on the expected outcome (Bottle et al., 2006; Bottle et al., 

2014).Classification and regression trees (CART) methods are important at identifying 

important interactions in the data and in identifying clinical sub groups of subjects at very 

high or very low risk (Demir, 2014; Auble et al., 2005). (Lemon et al., 2003) has adapted 

classification trees to identify a subgroup of patients with an observed rate of discharge or 

serious medical complications before discharge. (Austin, 2007) describes a model with 

decision tree, which decides the most significant independent variable in each stage of 

predicting depending variable. An ensemble of single decision trees is known as random 

forests. Decision tree finds the data features that are most important. In single decision 

trees we find data features that best splits the data into classes, and is repeated recursively 

until data has been split into homogeneous groups. While in random forests during 

learning tree nodes are split using a random subset of data features. In random forests, all 

single decision trees contribute to produce a final answer (Ali et al., 2012). 

 Data driven methods, such as classification and regression trees (CART) have been used 

to identify risk of adverse outcomes (Demir, 2014; Tsein et al., 1998).  Classification tree-

based models is powerful and is known to be a data-intensive approach that works well 

with large datasets (Freidmann et al., 2001). One of the important advantages of this 

approach is that tree-based methods are adept at identifying important interactions 

between predictor variables. 

3.5 Fuzzy neural networks in predictive models 

Uncertainty characteristics of data is a challenging problem for modelling (Dom et al., 

2008; Zadeh, 2005). In past decades many soft-computing based techniques were 

proposed. Different levels of hybridization on soft computing techniques were also 

proposed. Among them fuzzy neural network (FNN) based systems are promising due to 

their capability of modelling data uncertainties (Chen & Wang, 2012). Fuzzy neural network 

has gained popularity in medical applications (Steimann, 2001). FNN based systems use 
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fuzzy rules, whose input, antecedent and consequent fuzzy sets use membership function 

(MF). 

3.6 Fuzzy regression method in predictive model 

Fuzzy linear regression may be used as an alternative to statistical linear regression model 

due to vague relationship among variables and poor model specifications (Kim et al., 1996) 

Classical regression techniques make rigid assumptions about the statistical properties of 

the model e.g. the normality of error terms and predictions. These assumptions are 

difficult to justify unless a sufficiently large dataset is available (Kim et al., 1996) In classical 

statistical regression model, which uses a linear function to express the relationship 

between a dependent variable 𝑦 and the independent variables 𝑥1, ………𝑥𝑛 the 

parameters are crisp numbers and the error terms are present due to measurement errors 

(Kim et al., 1996; Tanaka, 1989). 

On the other hand, (Shapiro, 2005) defines fuzzy regression as a method to estimate the 

deviations between observed and estimated values. Fuzzy regression gives rise to a 

possibility distribution that account for the imprecise nature or vagueness of our 

understanding of a phenomenon (Shakouri G & Nadmi, 2009). Fuzzy linear regression is 

used to express the uncertain relationships between system target values and their 

characteristics, and the interrelationship among characteristics (Tanaka , 1987). 

We consider two cases: First, when only the dependent variable is fuzzy. Secondly, when 

both dependent and independent variables are fuzzy. The aim of the fuzzy regression 

approach is to determine the functional relationships that lead to the development of a 

programming model (Sener et al., 2011;Tanaka, 1989; Ramli, et al., 2011). The fuzzy 

regression approach determines the spreads and the centre values of the regression 

parameters to estimate uncertain relationship. H € [0, 1] is represented as measure of 

goodness of fit and is selected by the decision maker (Hojati, et al., 2005), where H 

represents the minimum degree of certainty acceptable. The purpose of goodness of fit of 

a regression model is to know how well a model fits a given set of data, or how well it will 

predict future set of observations. 
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3.7 Comparative analysis of different algorithms Literature on comparative 

analysis of different algorithms. 

In section 3.7, a literature review of various data mining and machine learning techniques 

in healthcare applications is done. A brief of summary of different algorithms with benefits 

and disadvantages is represented in Table 2. 
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Author(s) Algorithm Type of Dataset Benefits Limitations 

(Abbod et al., 
2007) 

(Razi & Kuriakose, 
2005) 

(Ramesh et al., 
2004) 

(TU, 1996) 

(Ottenbacher et 
al., 2004) 

Artificial Neural 
Network(ANN) 

Cancer dataset 

Paediatric Trauma 
Patient data set 

-Can model high dimensions. 

-Can model non-linearity. 

-Functional relationship between 
Independent and dependent variables 
are unknown. 

-Performs well for few attributes. 

-Needs a lot of data. 

-Non-Transparent. 

Training depends on cost function. 

-Great computation burden. 

(Ottenbacher et 
al., 2004) 

(Razi & Kuriakose, 
2005) 

(Dom et al., 2008 
)(TU, 1996) 

(DI-Russo, 2002) 

(Su et al., 2006) 
(Pourahmad et al., 
2011) 

 

Logistic 
regression 

Smoker data set 

Cancer data set 

HES data set 

Paediatric Trauma 
Patient data set 

SLE(Systematic 
LupusErythenalosis) 
dataset. 

Stroke Patients data 
set 

-Easy to construct 

-Ability to perform 

‘optimal’ input variable 

 selection. 

-Ability to explain 

relationship between 

response and input 

 variables. 

-Easy to understand. 

 

-Unable to handle linguistic terms as 
low, medium or high. 

-Dependent variable has to be binary/ 
dichotomous (0 and 1). 

-Unable to handle vague nature of 
binary observations. 

-Inability to handle ambiguity and vague 
relationship between independent and 
dependent variable. 
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 (Abbod, et al., 
2006;Dom et al., 
2008; Gorzalczany, 
& Piasta, 1999) 

Fuzzy-Neural Cancer dataset 

Veterinary Medicine 
data set  

Human Medicine 
data set 

-Needs transparent data. 

-Can model non-linearity. 

-Able to handle fuzzy, linguistic data. 

 

-Cannot support high dimension 
problems. 

-Inadequate ability in explaining 
relationship between response and 
input variables. 

(Dom et al., 2008; 
Hojati et al., 2005; 
Pourahmad et al., 
2011; Mccauley-
Bell et al., 1999) 

 

Fuzzy-
Regression 

Cancer data set. 

Cumulative Trauma 
disorders disease 
data set 

SLE (Systematic 
Lupus Erythenalosis) 
dataset. 

 

-Ability to perform optimal’ input 
variable Selection. 

-Suitable for variables governed by 
vague and ambiguous relationship. 

-Easy to understand. 

-Adaptable to other nonlinear 
prediction problems. 

-Able to handle vague observations.-
Scalable. 

-Sensitive to outliers. 

-Multi-collinearity. 

 

Table 2 Literature review on comparative analysis of data mining algorithms. 



43 
 

3.8 Comparison of Model table 

For our research, comparison and evaluation of proposed model with existing 

models is vital. Therefore, studies are included with model evaluation methods. 

Model discrimination can be described with the help of c statistics with 95% 

confidence intervals. Comparison of various models according to literature is 

described in Table 3.  

The performance of the model is assessed using overall performance measures, 

discrimination, and calibration. Traditional statistical approach is to quantify how 

close are predictions to actual outcome, using R-square and brier score. R-square 

is defined as the proportion of variation in the response variable that can be 

explained by predictors in the model (Gerds et al., 2008). Brier score is a quadratic 

scoring rule where the squared difference between actual and binary outcome is 

calculated.  Overall performance of the model is quantified by measuring the 

distance between predicted and actual outcome. The distance between predicted 

and actual outcome is to quantify the overall model performance. These distance 

between predicted and actual outcome are related to the goodness-of-fit of the 

model. Better models have smaller distances between predicted and actual 

outcomes. Performance can be measured by discrimination and calibration. 

Discrimination measures how much the system can discriminate between the cases 

of readmitted patients”1”, and not-readmitted patients “0”. Discrimination can be 

assed using ROC curves. Calibration measures how close are the estimates to 

“probability of outcome”. It refers to agreement between predicted and actual 

outcomes. Recently, several new measures have proposed to assess the 

performance of the model. These are performance measure such as c-statistics for 

outcome of an event, which are refinements of discrimination measures. The c-

statistics describes how well the model can rank “cases” and “non-cases” patients, 

but is not an actual function of predicted probabilities (Cook, 2007). Because this 

measure is solely based on ranks, it is less sensitive than measures based on the 

likelihood or other global measures of model fit. This characteristic makes it a poor 

choice for the selection of variables to be used in the predictive model. Using c-

statistics for model selection could naively eliminate established risk factors from 
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risk prediction scores. As novel risk factors are identified, their dependence on c-

statistics to evaluate their utility as risk predictors are not well-defined. 

In our study, we have used model discrimination method for comparison and 

evaluation of proposed model with existing models. Therefore, we have reviewed 

studies with model evaluation methods in table 3. Different models with c-statistics 

are compared in this table. C-statistics as described above is equivalent to the area 

under receiver operating curve, is defined as proportion of times the model 

correctly discriminates a pair of high and low risk individuals. We also abstracted 

other operational characteristics such as sensitivity, specificity and predictive 

values for risk score cut-offs. A c-statistics of 0.50 indicates that the model performs 

no better than a chance, a c-statistics of 0.70-0.80 indicates modest or acceptable 

discriminative ability, and a c-statistics of greater than 0.80 indicates good 

discriminative ability  (Kansagara et al., 2013). Selection of risk score cut off value 

is important in risk prediction models. It is rather difficult to define the optimal 

threshold. In ROC curves, we select a range of cut-offs for a sensitivity and 

specificity pairs. Risk threshold varies from (high-low) score, where low risk 

threshold may help in providing treatment to patients at risk of readmission at very 

early stage but may also lead to too many false positives. If the cost of treatment is 

not very high, then we can select low-risk threshold. On the other hand, if over 

treatment is quite harmful and expensive then we should use a higher cut-off 

before a treatment decision is made. 
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Author Model 
Used 

No of 
Patients 

Re-
admissi
on 
within 
no of 
days 

Rate of re-
admission of 
patients 

Range 
of Risk 
Scores 

Model discrimination 

(Billings et 
al., 2013) 

Logistic 
Regression 

576868 30 days 59.2% Positive 
Predictive 
Value 

0-1 ROC Curve with value of 
0.70 

(Fialho et 
al., 2012) 

 26,655 
of which 
19,075 
are 
adults 
where 
age>15 

 Sensitivity 
0.68±0.02, 
specificity 
0.73±0.03 

 AUC of 0.72±0.04, Rate of 
Risk of re-admission 4-
11% 

(Howell et 
al., 2009) 

Case 
finding 
algorithm 

 12 
months 

Sensitivity 
44.7%, 
Specificity 
37.5%, 

Risk 
thresho
ld of 
50. 

Roc 0.65 

(Billings et 
al., 2006) 

Case 
Manageme
nt 

Age>65 12 
months 

Sensitivity 
0.543,Specificit
y 0.722  

Risk 
thresho
ld of 
50. 

area under receiver 
operating curve 68.5% 

(Philbin 
and 
Disalvo, 
1999) 
 

 42,731, 
subgrou
p 9,112 

   P<0.10, Independent 
variables P<0.05 

(Ottenbac
her, et al., 
2004) 

Logistic 
Regression 

9584 , 
with 
51.6% 
females 

3-6 
months 

Rate of risk re-
admission 
18.3%.  

 Area under ROC curve 
0.68, Significant variables 
P<0.05,goodness of fit 
chi-square =11.32(df =8, 
P= 0.22) 

 

Table 3 Comparison of Models for risk of re-admission. 
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3.9 Summary 

In this chapter, other systematic reviews including data mining methods in health 

care such as artificial neural network, logistic regression, and fuzzy methods are 

described. As our proposed modelling approach uses fuzzy methods therefore 

detailed literature review of fuzzy methods is done. Literature on fuzzy methods 

includes study on fuzzy sets and membership function, fuzzy linear regression and 

fuzzy logistic regression methods. The risk factors in our existing models are also 

explained. We grouped studies based on list of predictors as given in various 

articles for patient’s re-admission. Our study has limitations as although we used a 

clear and sensible search strategy, we may have missed some relevant publications. 

However, given the large number of studies included in our review, it is unlikely 

that overall conclusions would change meaningfully if any missed studies were 

included. The reviews of literature for this research has been built up based on the 

data mining and machine learning techniques for predictive modelling in 

healthcare resource utilization. Thus, based on this literature review we propose a 

framework which adapts fuzzy regression approach for predicting patients at high 

risk of re-admission. In chapter 4, we discuss a theoretical study for the proposed 

framework. 
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Chapter 4 

4. Theoretical Study 

4.1 Introduction 

In this study, an exploratory research approach is employed to develop a 

framework for healthcare resource utilization. The framework is developed from 

synthesis of the literature reviews on existing prediction techniques specifically 

used for health care described in chapter 2&3. Guidelines given by the researchers 

on data mining and machine learning techniques in healthcare were the basis of 

the theoretical study and methodology in development of the framework. 

Research data includes large amount of imprecise observations.  The delivery of 

healthcare services and quality of care depends on the availability of quality data. 

The goal of Poor knowledge about data, inaccurate and insufficient data can lead 

to increased costs, inefficiencies and poor financial performance. A clinical decision 

support system designed based on inaccurate or incomplete data, can give wrong 

clincal advice. These issues will have impact on payment, and may go much further 

than just finance. Furthermore, poor quality data inhibits clinical research, health 

information exchange, and quality measurement intiatives. 

Problems will arise when there is an ambiguity of events or the degree to which an 

event occurs especially when the relationship between explanatory & response 

variable are vague (Shapiro, 2005; Dom et al., 2008). Fuzzy regression is useful 

when the available data is very limited or imprecise and when variables interact in 

uncertain manner (Vasant et al., 2002). Therefore, understanding of theoretical 

study behind the development of framework is important. Although knowledge of 

terms such as uncertainty, vagueness and imprecision is important for the 

proposed methodology, in our research we are using the term ‘uncertainty’ as the 

basis of our proposed framework. 

In real world where theres is a substantial information, there is a great deal of 

uncertain or unknown information. Since health care system have some partially 

unknown parameters grey system theory is adapted to deal with such problems. 
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Because of the disturbance from both inside and outside and limitation of the 

current level of information grey system, rough set theory, fuzzy theories have 

gained popularity. The basic characteristic of uncetain system is incomplete or 

inaccurate information. A system which contains known values and uncertain 

unknown values is called a grey system (Zheng, 1993). Grey system theories 

became popular to deal with its ability to deal with the systems that have partially 

unknown parameters (Kayacan , et al., 2010). Rough sets theory studies uncertain 

system with accurate math methods (Liu & Sheng, 2012). The main idea of rough 

set is using the known knowledge base to describe and deal with the inaccurate 

and uncertain knowledge approximately. Compared with other theories, fuzzy 

theory is more suitable for human reasoning and natural language system. More 

detail explaination of fuzzy set theory is expalined in chapter 4. 

This chapter describes the theoretical study for the framework. The component of 

this chapter includes study on concepts involved in proposing the framework. In 

the coming sections, elaboration of each component of the theoretical study is 

given. Later, three chapters (chapters 6, 7and 8) focus on the development of the 

framework, experiments and model validation based on this study. As data analysis 

plays an important role in the development of a framework, therefore detailed data 

analysis is given in chapter 5 

4.2 Fuzzy methods 

Fuzzy modelling techniques provide good concepts for dealing with uncertain 

information (Zadeh, 2005). A number of predictive models have been developed to 

predict patients at high risk of re-admission. Current predictive models use 

statistical regression techniques like classification & regression trees and logistic 

regression for predicting patients at risk of re-admission. In classical regression, 

parameters are assumed to be random variables with probability distribution 

function (Demir, 2014). Fuzzy regression is different from conventional regression 

techniques. Unlike statistical regression modelling that is based on probability 

theory, fuzzy regression is based on possibility theory and fuzzy set theory. 

(Beliakov, 1996; Zadeh, 2005). In fuzzy regression, the coefficients are subject to 

possibislitic approach, which tries to minimize the whole fuzziness of a model by 
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minimizing the total spreads of its fuzzy coefficients (Pourahmada, 2011). The fuzzy 

regression model is adapted when available data are uncertain or data available 

interacts in an uncertain manner. If this uncertainty is represented as randomness, 

this approach - combining randomness and fuzziness - leads to fuzzy randomness 

(Möller et al., 2002). The description of data uncertainty allows consideration of 

randomness and fuzziness together. (Shakouri et al., 2009) introduced a new 

approach based on non-equality possibility index, by which a minimum degree of 

acceptable uncertainty is found. (Hojati et al., 2005) reviewed the relevant articles 

on fuzzy regression and provided a new method for computation of fuzzy 

regression that is simple and gives good solutions. (Chen & Hsueh, 2009) developed 

an FRM model using the least-squares method based on the concept of distance. 

However, this method is sensitive to outliers. Therefore, (Yang & Liu, 2003) 

proposed new types of robust fuzzy least square algorithms (RFSLA) with a noise 

cluster for interactive fuzzy linear regression models. (D’Urso et al., 2013) proposed 

fuzzy linear regression model based on the Least-Median Squares –Weighted Least 

Square (LMS-WMS) estimated procedure. This procedure deals with data 

contaminated by outliers due to measurement errors. To handle the outlier 

problem, (Hung & Yang, 2006) proposed an approach to detect outliers. To handle 

the outlier problem, (Hojati et al., 2005) applies goal programming (GP) for 

estimating the linear regression parameters. (Hong et al., 2004) introduced the 

technique of regularization as a way of controlling the smoothness properties of 

the regression function. All the above mentioned approach cannot be used to deal 

with nonlinear problems. (Su et al., 2013) proposed non-linear regression model 

using Fuzzy Expectation Maximization (EM) algorithm based on maximum 

likelihood strategy. 

4.2.1 Fuzzy logic and fuzzy set theories 

The purpose of the study was to establish a roadmap which may help to forecast 

the future developments of fuzzy technology in healthcare (Abbod, et al., 2006). In 

recent literature a simple search for word “fuzzy” was used as a part of fuzzy sets 

or fuzzy logic (Abbod et al., 2006). Fuzzy logic theory and applications have vast 

literature. With regards to document literature, we can classify the development 
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of  fuzzy theory and applications as having different phases: Phase 1 as concept of 

fuzzy theory as a tool for decision making, phase 2 as application of fuzzy theory in 

medical applications, and phase 3 where advances in fuzzy set theory and a few 

applications were developed (Vasant et al., 2002).The modern trend in medical 

applications problem deserves modelling of all relevant vague or fuzzy information 

involved in real decision making problems (Vasant, et al., 2002). Because of the 

inherent uncertainty in medical applications (Abbod, et al., 2007) developed an 

algorithmic solution. Currently, fuzzy technique is very much applied in the field of 

decision making. (Zadeh, 2005) referred to fuzzy set theory which was started by 

him in 1965. Fuzzy logic is based on fuzzy sets, linguistic variables, possibility 

distributions, and fuzzy rules (Shakouri G & Nadmi, 2009). Rules of healthcare 

include words like ‘high risk’ or ‘severe pain’ that are difficult to formalize and to 

measure. However, traditionally, mathematics uses crisp (well defined properties) 

i.e properties that are either true or false (Phuong & Kreinovich, 2001).When 

relationship among variables is complex, it cannot be always captured by 

traditional modelling techniques (Solomatine & Shrestha, 2009). Fuzzy logic based 

modelling approach has a significant potential to tackle the uncertainty problem 

and to model complex functional relationship (Lohani et al., 2006). Other 

advantages of fuzzy logic is its flexibility and tolerance to imprecise data (Zadeh, 

2005)  

4.2.2 Fuzzy sets and membership functions 

Fuzzy set theory was first established by (Zadeh, 1965). He proposed the concept 

of fuzzy set which is useful in dealing with classes of problems where there is no 

sharp transition from membership to non-membership (Kim et al., 1996). Zadeh’s 

fuzzy set theory, is a potential tool for dealing with uncertainty and imprecision. 

The characteristic of fuzzy sets is that the range of value of the membership relation 

is in the closed interval [0,1] of real numbers (Takeuti & Titani, 1984) .The theory 

of fuzzy sets provides a systematic framework for dealing with fuzzy quantifiers, 

such as many, few, most and linguistic variables like tall, small, high , low, old etc. 

A fuzzy set is a class of objects with a continuum of grades of membership (Zadeh, 

2005).A fuzzy set is characterized by a membership function which assigns to each 
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object a grade of membership function between zero and one. The ordinary 

identification of membership function aims to identify the relation between 

underlying distribution and fuzzy data obtained from it. 

Since the introduction of fuzzy set theory by Zadeh in 1965 several attempts to 

establish relationship between the grades of membership and the classical 

probabilities measures have been made (Beliakov, 1996; Zadeh, 2005).Hence, it is 

not so significant to discuss the detailed shape of membership function. 

Membership functions have the forms of triangle-shaped, bell shaped and 

trapezoid-shaped functions (Bellman et al.,, 1970; Tanaka et al.,, 1989). A 

membership function is a curve or shape that defines how each input space is 

mapped to a membership value (or degree of membership function) between 0 and 

1. The curve or shape is known as a membership function and is often designate as 

µ. The output axis shows the transition from high to medium, and medium to low. 

The shape of membership function defines the transition from high to medium or 

medium to low. At the same time, patient can be at high or medium risk of 

readmission but to a different degree of certainty.  Example is given in chapter 4. 

There can be diverse shapes for membership functions for e.g trapezoidal, 

triangular, Gaussian membership functions etc. However, it is not so significant to 

discuss the detailed shape of membership function. Selection of the shape of 

membership function is based on the simplicity and easy to compute. Straight lines 

form the simplest membership function. Both triangular and trapezoidal 

membership functions are easy to compute. (Tamaki et al., 1998; Li et al., 2012) 

adopted the trapezoidal shape including triangular shape as the function of the 

membership function 

We have chosen to adapt trapezoidal membership functions, which includes 

traingular membership function as the function shape of the membership function.  

Definition1: Fuzzy sets as introduced by (Zadeh, 1965), are given by membership 

functions𝜇𝐴: 𝑋 → [0,1], where the value 𝜇𝐴(𝑥) indicates the degree to which the 

element 𝑥 ∈ 𝑋 belongs to the fuzzy set A .The theory of fuzzy set provides a 

framework for dealing with linguistic variables such as high, medium or low.  
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In other words, a fuzzy set 𝐴 in 𝑋  is a set of ordered pairs   

𝐴 = {(𝑥, 𝜇𝐴(𝑥))},       𝑥 ∈ 𝑋                   (1.1) 

 

Where 𝜇𝐴(𝑥) is the grade of membership of 𝑥 in 𝐴 and 𝜇𝐴: 𝑋 → [0,1] is called the 

membership function. 

A membership function is a curve that defines how each point in the input space is 

mapped to a membership value (or degree of membership) between 0 and 1. Our 

research uses triangular membership function and trapezoidal membership 

function which is shown in figure 3 and figure 4. 

Definition2: A trapezoidal fuzzy number𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is said to be 

trapezoidal fuzzy number if its membership function is given by𝜇𝐴(𝑥), where 𝑎1 ≤

𝑎1 ≤ 𝑎3 ≤ 𝑎4   where 𝑎1, 𝑎2, 𝑎3, 𝑎4,   are element of fuzzy numbers as shown in 

figure 3. 

 

𝜇𝐴(𝑥) =

{
 
 

 
 
               0                   𝑥   ≤ 𝑎1 𝑜𝑟 𝑥 > 𝑎4

𝑥 − 𝑎1
𝑎2 − 𝑎1

             𝑎1 ≤ 𝑥 ≤ 𝑎2

   1                     𝑎2 < 𝑥 < 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
            𝑎3 < 𝑥 < 𝑎4

         

}
 
 

 
 

        (1.2) 
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Figure 3 Trapezoidal membership function. 

The interval 𝑎2 to 𝑎3  is known as the core. If 𝑎2 is equal to 𝑎3 , fuzzy number is 

referred to as “triangular” fuzzy number (TFN) which is defined in Definition 3. A 

fuzzy number is a number that has fuzzy properties, examples of which are the 

notions of “high”, “relatively high”, “low”, “very low”. The generalistic 

characteristic of a fuzzy number can be represented as shown in Definition 3. 

Definition3: A triangular fuzzy number A is defined as a triplet  1 2 3, ,a a a

membership function µ𝐴(𝑥) can be defined as 

 

 µ𝐴(𝑥) =  

{
 
 

 
 

𝑥 − 𝑎1
𝑎2 − 𝑎1

, 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑥 − 𝑎3
𝑎2 − 𝑎3

, 𝑎2 ≤ 𝑥 ≤ 𝑎3

      0    ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,       

                        (1.3) 

 

Where𝑎1 ≤ 𝑎2 ≤ 𝑎3; the elements of the fuzzy numbers are real numbers and its 

membership function µ𝐴(𝑥)  is the regular function, showing that the membership 

degree to the fuzzy set, 𝑎2 represents the value for which  µ𝐴(𝑎2) =  1,  and 𝑎1 and 

𝑎3 are the most extreme values on the left and right of the fuzzy number𝐴 (Li, et 

al., 2012) as shown in figure 4    
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Figure 4 Triangular membership function. 

For the proposed, fuzzy linear regression model the membership functions are 

determined by three points namely the centre point, left end and right end point.  

Figure 4 shows the membership function of the data with membership function, 

centre(𝑎2)and two end points as (𝑎1) and(𝑎3). As indicated, the salient features 

of triangular fuzzy number (TFN) are its centre, its left and right spread. When the 

two spreads are equal, the TFN is known as symmetrical TFN (STFN). 

Definition4. An interval-valued triangular fuzzy number is a fuzzy interval𝐴𝐿 , 𝐴𝑈, 

shown in figure 7, where both the lower-bound 𝐴𝐿 = (𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿) and the upper 

bound 𝐴𝑈 = 𝑎1
𝑈, 𝑎2

𝑈 , 𝑎3
𝑈are triangular fuzzy numbers and 𝑎1

𝐿 ≤ 𝑎2
𝑈 (Li, et al., 2012; 

Wei & Chen, 2009) which is shown in figure 5. 

 

Figure 5 Interval valued triangular membership function. 
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Definition5: An interval valued trapezoidal fuzzy number as shown in figure 6 can be 

represented by, 

𝐴 = [𝐴𝐿 , 𝐴𝑈] =  [(𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿 , 𝑤𝐴
𝐿), (𝑎1

𝑈, 𝑎2
𝑈, 𝑎3

𝑈, 𝑎4
𝑈, 𝑤𝐴

𝑈)] where (𝑎1
𝐿 ≤ 𝑎2

𝐿 ≤

𝑎3
𝐿 ≤ 𝑎4

𝐿), 𝑎1
𝑈 ≤ 𝑎2

𝑈 ≤ 𝑎3
𝑈 ≤ 𝑎4

𝑈 , 𝐴𝐿 denotes the lower IVFN and 𝐴𝑈denotes the 

upper IVFN. (Li, et al., 2012), Where 0 ≤ 𝑤𝐴
𝐿 ≤ 𝑤𝐴

𝑈 ≤ 1 and 0 ≤ 𝑤𝐵
𝐿 ≤ 𝑤𝐵

𝑈 ≤ 1 

 

 

Figure 6 Interval valued trapezoidal membership function 

.    

4.3 Preliminary Theory 

In statistics, linear regression analysis is a powerful method for studying the linear 

relationship between one response variable 𝑌̂ (dependent variable or output 

variable) and a set of explanatory variables 𝑋1, , , , , , , , 𝑋𝐾 (independent variables or 

input variables) (D’Urso , et al., 2013).Classical statistical regression has many 

applications, problems may occur in some situations. Linear Regression method is 

extremely sensitive to outliers. Other situations are:  

 Imprecise Information 

 Uncertain data 

 Vagueness in the relationship between input and output variables. 
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In recent years, there is a growing literature that formalizes the linear regression 

model in fuzzy domain, in which model parameters and/or data are fuzzy, or 

imprecise or vague (D’Urso , et al., 2013). Abundance of vague observations in 

healthcare studies, motivate us to think about a proper model in a fuzzy 

environment. These are the situations fuzzy regression was meant to address. 

4.3.1 Approaches of Fuzzy Regression analysis 

Fuzzy regression has been proposed to evaluate the complex relationship between 

dependent and independent variables in a fuzzy environment. Fuzzy modelling 

techniques provide good concepts for dealing with uncertain information (Bisserier 

et al., 2010). Fuzzy regression is different from conventional regression technique 

in the sense that it is a non-statistical method and is based on possibility theory. 

This methodology is appropriate for dealing with uncertain and vague information 

in systems. This section provides an introduction to fuzzy linear regression. The 

topics include motivation, the components of Fuzzy Regression (FR), fuzzy 

numbers, membership functions, and fuzzy output. In order to adapt fuzzy 

regression method in our proposed methodology, it is vital to understand 

preliminary theory concepts which are as follows: 

There are two approaches to fit the fuzzy regression analysis.  

Possibilistic Model: The first one is possibilistic approach introduced by Tanaka. 

According to this approach, fuzzy regression coefficients are estimated by 

minimizing the total spread of its fuzzy coefficients, subject to including the data 

points of each sample within a specified data interval (D’Urso et al., 2013; Shapiro, 

2005). 

The second approach is the Least Square (LS) approach which minimizes the 

distance between the output of the model and the observed output, based on their 

modes and spreads. The estimation procedure consists of finding the linear model 

which best approximates the observed data in a given space, taking into account 

the fuzziness of data (Chen & Hsueh, 2009; Pourahmada, 2011; Arslan, 2011). 

There are three ways to develop a fuzzy regression model: 
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Case1: Independent variables(x) are numbers (=crisp), and response variable(y) is 

fuzzy. 

Case 2: Independent variables(x) are fuzzy, and response variable(y) is also fuzzy. 

Case3: Models where the relationship of the variables is fuzzy. 

4.4 Fuzzy Linear Regression methods 

(Tanaka, 1989)first proposed a study of fuzzy linear regression (FLR) model. Indeed, 

unlike statistical regression based on probability theory, fuzzy regression is based 

on possibility theory and fuzzy set theory. By classical statistical technique, the 

observations of either the response variable or the explanatory variables follow 

certain probability distributions (Beliakov, 1996). Fuzzy regression can be classified 

into two distinct areas, the first proposed by (Tanaka, 1989) minimizes the total 

spread of the output, is called possibilistic Regression. The second approach, is 

proposed by (Diamond, 1988), minimizes the total square error of the output and 

is called the Fuzzy Least Square method.     

The advantage of Tanaka’s possibilistic model is in its simplicity in programming 

and computation (Tanaka, 1989)while Fuzzy Least Square Estimation [FLSM] is 

good for minimizing errors between the given observed and estimated values 

(Tanaka, 1989).  The possibilistic regression analysis uses a fuzzy linear system as a 

regression model whereby the total estimated vagueness of the estimated values 

of the dependent variables is minimized (Pourahmada, 2011) (Tanaka, 1989).   

Case1: Independent variables(x) are numbers (=crisp), and response variable(y) is fuzzy. 

The linear regression model is the most frequently used form in regression analysis 

for expressing the relationship between one or more explanatory variables and 

response. Fuzzy linear regression analysis was proposed by (Tanaka, 1989) to 

determine the fuzzy linear relationship: 

𝑌̂ = 𝐴0𝑋0 + 𝐴1𝑋1 + 𝐴2𝑋2 +⋯+ 𝐴𝐾𝑋𝐾                                 (1.4) 

Where each regression coefficient 𝐴𝑗  , 𝑗 = 0,… . . , 𝑘, was assumed to be symmetric 

triangular fuzzy number with centre 𝛼𝑗 (having membership =1) and half 

width 𝑎𝑗 , 𝑎𝑗 ≥ 0. This can be shown with the help of figure 7 
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Figure 7 Triangular membership function with centre 𝛼𝑗 

           

To model binary relationship between a binary response variable and a set of 

explanatory variables, let the input –output data consist of observations 

(𝑥𝑖0 , 𝑥𝑖1, … . . 𝑥𝑖𝑘 , 𝑌𝑖̂), 1 ≤ 𝑖 ≤  𝑚,                    (1.5) 

Where 𝑥𝑖𝑗  𝑗 = 0,1, … . , 𝑘 are real crisp values in R and 𝑌𝑖̂ is a fuzzy observation 

detecting the status of each case relative to binary response categories i.e it takes 

two labels: approximately 1 or approximately 0 instead of 1 or 0. 

4.4.1. Example of application of fuzzy methods in health care. 

(Nagar & Srivastava, 2008)proposed an adaptive technique in the prediction of 

dichotomous response variable by combining fuzzy concept with statistics logistic 

regression. (Dom et al., 2008)developed a learning system for the prediction of 

dichotomous response variable by combining fuzzy concept with classical 

regression technique. In this model, fuzzy linear regression and logistic regression 

theories are combined to produce an adaptive fuzzy regression model. Their study 

was applied to fuzzy independent variables of risk factors in multiple logistic 

regression model (MLRM). The purpose of the study done by (Dom et al., 2008) is 

to present the use of fuzzy regression models in the prediction of oral cancer 

susceptibility as a function of demographic profiles and risk habits. (Ozdamar et al., 

2005) developed a multivariate fuzzy linear regression (FLR) model for predicting 
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aggregate annual LOS. (Dom et al., 2008) adapted fuzzy regression method to 

predict the length of survival of AIDS patients based on their CD4, CD8 and viral 

load counts. As people have their interests in their health recently, fuzzy regression 

application in medical health domain has been one of the most active research 

areas. (Kunjunninair, 2012) developed a weighted fuzzy rule based clinical decision 

support system for the diagnosis of heart disease.  (Tsipouras et al., 2008) and 

Setiawan et.al (2009) have developed a fuzzy decision support system for diagnosis 

of coronary artery disease. (Ponzo et al., 2016) uses fuzzy regression discontinuity 

designs to evaluate the impact of cost sharing on the use of health services. (Sener 

et al., 2011) describes fuzzy multi-objective programming approach (Setiawan, 

2014) that incorporates imprecise information in QFD (Quality Function 

Deployment) tool to determine the level of fulfillment of design requirements. 

(Abbod et al., 2007) studied Neuro-fuzzy modelling system (NFM) in health care. 

The study shows that lack of transparency of artificial neural networks can be 

overcome by a neuro-fuzzy modelling system. The study also proves that Neuro-

Fuzzy model outperforms other models such as Bayesian Belief Network and 

conventional statistical methods in its accuracy. 

4.4.1 Advantages of fuzzy regression methods 

 Fuzzy regression is useful in estimating the relationship between independent 

and dependent variables when the available data is uncertain and imprecise. 

(Shapiro, 2005). 

 The fuzzy linear regression is an alternative to statistical linear regression in 

estimating regression parameters when statistical model is with poor model 

specification due to uncertain relationship among variables (Ozdamar et al., 

2005). 

 Fuzzy regression gives better performance in case of imprecise and uncertain 

data (Beliakov, 1996; Möller et al., 2002) 

4.4.2 Limitations of fuzzy regression methods 

Some of the limitations of fuzzy regression models are: 
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 The fuzzy linear regression may tend to become multi collinear as more 

independent variables are collected (Shapiro, 2005; Kim, et al., 1996). 

 The original fuzzy regression model was extremely sensitive to outliers (D’Urso 

, et al., 2013; Shapiro, 2005; Peters, 1994) 

 There is no proper interpretation of the fuzzy regression interval (Shapiro, 

2005). 

4.5 Least square estimation method 

The fuzzy least squares approach, which is proposed by (Diamond, 1988), is an 

extension of the ordinary least squares based on a new defined distance on the 

space of fuzzy numbers. Diamond (1988) was the first to implement fuzzy least 

square regression (FLSR) using distance measures and his methodology is the most 

commonly used. Given triangular fuzzy numbers (TFNs), it provides a measure of 

the distance between two fuzzy numbers based on their centre, left spread and 

right spread. The definition of a function which describes well the distance between 

two fuzzy numbers is somehow difficult (Pourahmada, 2011). An obvious way to 

bring fuzzy regression (FR) more in line with statistical regression is to model fuzzy 

least square regression (FLSR) along the same lines. The linear least-squares 

technique for m pairs of real crisp numbers (𝑥𝑖 , 𝑦𝑖),1 ≤ 𝑖 ≤ 𝑚, consists of finding 

𝑎, 𝑏€ 𝑅 such that the sum 

𝑟(𝑎, 𝑏) =  ∑(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2                   (1.6) 

will be minimized. In the case of fuzzy data,𝑢 = 𝐴1 + 𝐴2 𝑣, 𝑢, 𝑣 € 𝐸, we seek 

numbers 𝐴1 and 𝐴2 such that the distance between observations and estimations 

will be minimized. 

4.6 Interval-valued Fuzzy numbers  

In real life, a person may assume that an object belongs to a set of certain degree, 

but there may be uncertainty about the membership degree of an object belonging 

to a set. When something is uncertain, such as measurement, use of fuzzy sets 

which represents uncertainty by numbers in the range [0,1] makes more sense than 

conventional sets (Chen & Lai, 2011; Bellman & Zadeh, 1970) and (Zadeh, 1965) 
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were the first to introduce the theory of fuzzy sets in problems of decision making 

as an effective approach to treat vagueness, lack of knowledge, and ambiguity 

inherent in decision making process (Li, et al., 2012; Zadeh, 2005). (Zadeh, 1965) 

and (Yager, 1986)  extended the concept of fuzzy sets and adopted interval valued 

fuzzy numbers (IVFNs) for handling uncertainties arising from incomplete, vague or 

imprecise information. Because uncertain is an attribute of information, it appears 

to be a more applicable method for health care systems to handle such health 

system variables by using IVFNs. In fuzzy set theory, it is often difficult to identify 

any opinion as a number in the interval [0, 1]. Therefore, to represent the degree 

of certainty of opinions by interval value fuzzy numbers is more appropriate. 

4.6.1 Variable selection and multi-collinearity 

Multi-collinearity is the situation in which two or more input variables in a multiple 

regression model are highly correlated. (Coppi, 2008) extended the robust fuzzy 

regression model to deal with multi-collinearity problem in input variables.  

Variable selection is always a focus of much research in machine learning tasks 

including classification and regression prediction. The term ‘features’ refers to the 

attributes, properties and characteristics of input variables. An appropriate variable 

selection enhances the effectiveness and domain interpretability of a prediction 

model. In traditional regression framework, several procedures have been 

suggested for choosing suitably the set of explanatory variables. The most common 

methods include forward selection technique, backward elimination technique and 

stepwise procedure (D’Urso  et al., 2013). 

In fuzzy regression, a model could be established by using more than one 

independent variable. However, large number of variables could lead to problems 

like correlation among variables which makes the fuzzy regression model multi-

collinear. The idea is to include as many independent variables as possible but at 

the same time avoiding co-linearity problem in input data variables.  

In our research we have conducted experiment to show the multi-collinearity 

problem among variables. In chapter 6, detailed algorithm for multi-collinearity 

problem is discussed. In our algorithm, an Interval Valued Fuzzy Number approach 

is proposed for dealing with multi-collinearity problem in health system variables. 



62 
 

4.7 Summary 

The purpose of this thesis is to propose a framework which adapts fuzzy regression 

methods to predict patients at risk of re-admission. In order to develop a 

framework, theoretical study on fuzzy regression methodology plays an important 

role. In this chapter, we have described, fuzzy regression method with its 

limitations and advantages. Fuzzy regression method estimates the uncertain 

relationship among dependent and independent variables. This method deals with 

uncertain and imprecise data. Therefore, understanding of concepts such as 

vagueness, imprecision and uncertainty is also essential. In order to develop a 

methodology, dealing with uncertain data is also required. Variable selection is 

always of focus in development of a model. Significant independent variables act 

as input for a predictive model. Therefore, data analysis for significant input 

variables and dependent variable is also vital for any model. In the next chapter, 

detailed analysis of data is done. 
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Chapter 5 

5. Data analysis and Preparation 

5.1 Introduction 

This chapter contains a brief outline of how the data was prepared and 

manipulated for our research. Data analysis was based on the algorithm called 

PARR (patients at risk of re-hospitalisation) which identified patients who are likely 

to be at risk and therefore require interventions. The algorithm used data from 

1999/2000 to 2005/2006 of England hospital inpatient episode statistics data. A 

random sample of patients with an emergency inpatient triggering admission in 

2004/2005 were analysed of having a re-admission in the following twelve months 

(i.e. upto end of 2005/2006) by the PARR algorithm. Selection of variables for our 

proposed approach was similar to the variables obtained from PARR1 or PARR2. 

Significant variables for re-admission in the next 12 months were obtained by 

analysing the patient’s previous years of hospitalisation data from 1999/2000 to 

2003/2004 prior to the triggering of re-admission in 2004/2005.  

5.2 Data Preparation 

This section contains a brief outline of data preparation and manipulation for the 

research work. Data is extracted from MySQL workbench using SQL queries from 

the Hospital Episode Statistics (HES) database. Each record in the HES database is 

episode based, which represents period of time a patient is under care of a 

particular consultant. A patient may have more than one episode in a spell. Many 

spells finish with this episode, but if the patient moves to the care of another 

consultant, a new episode begins. However, admission date for each new episode 

in a spell will remain be equal to the episode start date of the first episode within 

that spell. Episode numbers increase by 1 for each new episode until the patient is 

discharged. If the same patient returns for a different spell in hospital, epiorder is 

again set to 01.  Admissions are calculated by counting the number of times 

epiorder is 01. 
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This chapter describes the process of extraction and manipulation of 109,243 

admission records. Data is extracted using MySQL workbench and imported in SPSS 

for manipulation and preparation. Input variables are recoded to obtain 

independent and dependent variables. Statistical analyses were carried out on this 

dataset to derive significant independent variables from which we could predict a 

subsequent re-admission. Predictive models are generally built on a data set 

consisting of dependent variables (re-admission) and a range of independent 

variables from records of patient in previous years.  The dependent variable is 

fuzzified using the triangular or trapezoidal membership function. Fuzzy variable 

“risk of readmission” is derived after fuzzifying response variable “re-admission”.  

This derived fuzzy variable is a response variable for our proposed model. Risk of 

readmission can have a range of values from high, medium to low risk of 

readmission.  For performing statistical analysis, the dataset was divided into 

training set and testing dataset. This chapter focuses on the processes that were 

carried out before the application of the predictive modelling techniques. 

5.3 HES Data 

Each of the HES year data tables for financial years (April to March) 1999/2000 to 

2005/2006 contained millions of records representing individual episodes of 

inpatients in England during these years. The data had to be prepared and analysed 

for future analysis. MySQL queries were used to extract a sample of 100,000 

emergency admissions that started and ended in 01/04/2004 and 31/03/2005. The 

same software was used to extract the next emergency admission which was within 

1, 6 and 12 months of the discharge date of the triggering re-admission for these 

patients. MYSQL was used to extract prior hospitalization data for these patients in 

the five years leading up to their triggering re-admission date. All of the variables 

defined in this section were derived for later use in predictive modelling. This 

means data for about 100,000 patients was in one file with all required variables. 
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Figure 8 Time frame for the HES data in algorithms 

 

5.3.1 Data Sample 

Approximately 3.5 million records of emergency inpatient admissions that started 

and ended in 2004/2005 within England were extracted. A random sample was 

selected from total population of 3.5 million records. SQL query A was used to 

extract a sample of 3.5 records of emergency admissions that started and ended in 

2004/2005. SQL exhibit A returns data for the last episode (given by discharge 

methods 'dismeth' other than 4 (died), 8 (not applicable: patient still in hospital) 

and 9 (not known: a validation error)) of all emergency inpatient admissions (given 

by admission methods 'admimeth' of 21, 22, 23, 24 or 28 which all stand for 

emergencies) that started and ended between 01/04/2004 and 31/03/2005. This 

includes patients who have a valid sex code of 1(male) and 2 (female), valid date of 

birth, and valid discharge date. Data excluded were patients with invalid date of 

birth or invalid triggering admission date, or invalid discharge date. 

However, we only wanted to work with a smaller sample of these records to predict 

readmission so SQL exhibit B was used to take a random sample of records.  The 

episode key 'epikey' is an eight-digit number which identifies a patient's episode of 

care and the random sample of 109,243 were selected by choosing all of those 

records from the 3.5 million whose episode key ended in 01, 31 or 61, and with 

valid discharge dates. After running SQL exhibit B on a sample of 3.5 million records 

(extracted after SQL exhibit A), we received a sample of 109,243 records. 

Epikey is the unique record identifier that is created by HES system. The digit stores 

a decimal number of 8 or 9 digits but can be upto 14 digits. We need a sample of 
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record from overall records to carry out the analyses. To select a sample of records, 

I have randomly chosen records which ended in 01, 31 and 61. These codes (01, 

31,61) are just last two digits of unique record identifier and they are chosen 

randomly to give a sample of records. After selection, sample of record returned is 

109,504. This sample is slightly different from 109,243. This is due to the fact that 

further 261 records were removed, as these records did not have valid discharge 

dates. 

The final sample size is of 109,243 records as patients with invalid discharge dates 

and missing values are removed from the final sample. Missing values are treated 

using is.na function in R. Missing values and system missing values are interpreted 

as NA. In R, missing values are treated using is.na function. In our analysis, missing 

values are ignored using is.na functionThe extracted data for the 109,243 included 

the variables which gave us the information like the age at start of admission, 

gender, triggering admission date, discharge date and diagnostic conditions. 

This includes patients who 

 had a valid sex code of 1(male) or 2(female) 

 had a valid date of birth 

 had a discharge method of other than 4 (patient died), 8 (not applicable: patient 

still in hospital) or 9 (Not known: a validation error) for their triggering 

admission 

 had a valid discharge date. 

5.4 Data Preparation and Manipulation 

A random sample of 109,243 of these records is used to create the variables in this 

section which are used in the model from which we could predict a subsequent re-

admission. 

5.4.1 Variables used in the Analysis 

All of the variables were derived from HES data to predict re-admission of sample 

of patients taken from 2004/2005. 
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5.4.2 Independent variables 

Independent variables (such as age, gender, ethnic origin etc.) are created and 

used to predict the dependent variable (i.e. whether the patient has a re-

admission). The following independent variables were created by looking at the 

data from triggering admission. 

In stage 1, binary variables were derived for gender and age at admission. Binary 

variables are added to the file with the sample of 109,243 records. The variables in 

HES data were re-coded by using “recode” function. The variable “sex” was 

denoted in HES data as males by 1 and females by 2. This was transformed into 

variable sex_recoded by using recode into different variable so that males are 

recoded as 1 and female were recoded as 0. 

The variable ‘start age’ in the HES dataset gives us the age (in years) at the start of 

the current episode. Patient’s age at the time of triggering admission was split into 

groups and binary variables were created to show which group a patient was in. 

Binary variables for age on admission were derived to indicate whether patient was 

young, not so young, less old or old. The start age variable was used to determine 

the age at start of the triggering admission. 

The following binary variables were created to group the patients.  

5.4.3 Patient characteristic and demographic variables 

 Gender of the patient 
o Sex (1=Male, 0=Female) 

 

 Age of the patient 

 

Age bands are defined so that the patients could be divided into age groups for 

creating and manipulation of age variable. Age groups are defined for creating 

binary variables for age. Input variables are coded as binary variable for 

implementing various algorithms (Fuzzy regression, logistic regression, decision 

tree and Neural network). 

Start age in HES data dictionary defines age of a patient at start of episode. For 

patients under 1-year-old, special codes in the range 7001 to 7007 apply. Patients 
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under age of one year are considered as very young and patients with age greater 

than 1 year are young patients. For our analysis, we have considered patients within 

age band of 0-18 as young but further they can be classified as very young and 

young. In our analysis, we are concerned only for young patients. Patients could be 

classified as young, and not so young. As in our research, we are not fuzzifying input 

variables therefore, we have not considered young and not so young bands. 

Four binary variables for age on admission were created to indicate whether the 

patient fell into one of the age groups listed above. For example, those who were 

aged 16 on admission had the binary variables aged_0_17 set to 1 and the other 

four binary variables for the age groups set to 0.  

o Age 0 to 17 (1 = yes, 0 = no) 

o Age 18 to 39 (1 = yes, 0 = no) 

o Age 40 to 64 (1 = yes, 0 = no) 

o Age 65 to 74 (1 = yes, 0 = no) 

o Age 75 plus (1=yes,0=no) 

 

 Ethnic origin of the patient 
 

The variable ethnos in the HES dataset gives us the ethnic origin code for the 

patient. There are many different codes used to represent different ethnic origin 

groups. However, patients that were white were coded into the variable of white = 

1 and those who were non-white were coded as white =0. 

o White (1=yes, 0=no) 

o Black (1=yes, 0=no) 

o Mixed (1=yes, 0=no) 

o Asian (1=yes, 0=no) 

o Other or unknown (1=yes, 0=no) 

5.4.4 Deriving the dependent variable 

Stage 2 involves joining the results from stage 1 to the tables of data for 2004/2005 

and 2005/2006 to extract the date of the next emergency admission within 1 
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month, 6 months (180 days) and 12 months (365 days) of the discharge date of the 

triggering admission. Each of the109, 423 records were recoded into binary 

variables called Re-admission_30, Re-admission_6, and Re-admission_12. These 

variables were recoded for whether or not they had a re-admission within 30 days, 

6 months or 12 months.  Those records that did have a re-admission within 180 

days were recoded as 1 and those that did not have a re-admission the variable was 

set to 0. Similarly, binary variables were also coded if the patient had re-admission 

within 12 months. 

The dependent variable created are: 

 Re-admission within 12 months (1=yes, 0=No) 

The following 2 binary variables were also created as we wish to look at re-

admission within different time frames (specifically 30 days, 6 and 12 months). 

Additionally, these two variables are created to test our algorithm. But our main 

focus is on readmission within 12 months. 

 Re-admission within 30 days (1=yes,0=no) 

 Re-admission within 6 months (1=yes,0=no) 

 

5.4.5 Deriving the remaining independent variables 

State 3 involved joining the results achieved after stage 2 to the data for years 

1999/2000-2004/2005 to extract data on the previous episodes for in-patient 

admissions in the five years prior to their triggering admission date. 

Patients with chronic and most common diseases were considered for our analysis. 

The HES data contains 14 diagnosis fields labelled as diag_nn for each of the 

episodes. The value of nn will range from 1 to 14, and not all 14 fields have values. 

Variables were created for each of the conditions to record whether each of the 

inpatient admissions had the condition in the current admission or in previous five 

years. Each of the diagnostic variables has to be scanned for all admissions in the 

five-year time to check for the conditions.  
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Each of the binary variables was coded as 1 if the patient had the condition or 0 

otherwise.  

 Alcohol abuse 

 Anaemia 

 Angina 

 Atrial fibrillation 

 Cancer 

 Cerebrovascular disease (CVD) 

 Congenital disability 

 Congestive Heart failure (CHF) 

 Connective tissue disease/rheumatoid arthritis(CTDRA) 

 Chronic obstructive pulmonary disease(COPD) 

 Development disabilities 

 Diabetes 

 Drug abuse 

 HIV/AIDS 

 Hypertension 

 Injury from fall 

 Ischaemic heart disease(PVD) 

 Renal failure 

 Respiratory function 

 Sickle cell anaemia 

Conditions are identified in the HES data by ICD 10 codes. ICD 10 stands for 

International Classification of Diseases Tenth Edition. This method of condition 

classification is standard for recoding health problems and conditions in health 

data. Table A3.1 in Appendix 3 contains a list of the ICD 10 codes for the conditions 

used in this thesis. 

There is one variable (severity index) related to this section which calculates the 

Charlson Comorbidity Severity Index(CCSI) for each triggering admission as 

mentioned in Appendix 3. The CCSI is widely used to indicate how severe conditions 
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are. The comorbidity severity index score allocates severity scores to diseases. 

Charlson score designed for breast cancer survival was used, as it gives modest 

benefits overall. Weights assigned to each comorbid conditions are more stable in 

Charlson score designed for breast cancer. Modified Charlson coded and adjusted 

weights may give better fit and discrimination, but its weights are less consistent 

across all patient groupsFor each of the 109,243 rows of data it was recorded 

whether the patients had any of the conditions at any time during previous five 

years (Table A3.2 of Appendix 3). This was incorporated into this analysis by 

summing up the total severity of conditions that the patient had in the triggering 

admission and in the 5 years prior to that point.   

Severity index score is calculated by summing up all conditions and multiplying by 

weighing factor to produce the total severity score (Calculation method is shown 

in Appendix 3 with conditions given in Table A3.1). For example, if the patient was 

flagged as having congestive heart failure (which carries a severity weight of 1) and 

HIV (which carries a severity weight of 6) only during their last five years then they 

would have a total severity weight of 7. Patients with higher total severity index 

scores either had more severe conditions or just had multiple conditions. 

Another variable which was included was whether the patient had a current or 

prior emergency admission for a reference condition (1 = yes, 0 = no) in the 

previous five years.  The reference conditions are those which are thought of as 

being more likely to result in re-admissions and are defined using the Healthcare 

Resource Group (HRG) codes within Table A3.3 in Appendix 3. 

5.4.6 Patients Prior Hospital Utilisation 

In our research, we are considering prior hospital utilisation for patients in the last 

5 years prior to the triggering admission date. Dependent variable is calculated for 

patient’s readmission in the past 30 days, 6 months or 12 months, as this has helped 

us in giving readmissions in different periods. Readmission within 30- days helps us 

in understanding the chances of readmission within short time after discharge, and 

if it could be avoided by providing better interventions. To evaluate patients at risk 

of readmission within 30, 6 or 12 months, we evaluate independent variables based 
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on past 5 year’s historical data.  The following numerical variables were based on 

the prior hospital utilisation for the patients in the last five years prior to the 

triggering admission date in 2004/2005.  

 

 Number of re-admission in the previous 30 days. 

 Number of re-admissions in the previous 6 months. 

 Number of re-admission in the previous 12 months. 

 Average number of episodes per spell for patient’s re-admission. 

5.5 Statistical Analyses 

Differences between patients readmitted and those not readmitted were analysed 

using chi-square univariate tests. Patient dataset with independent variables and 

dependent variable for all years from 1999/2000 to 2004/2005 was joined with 

approximately one million records. The relevant variables were based on a broad 

range of measures used in the novel algorithm. These included number of 

admissions to the hospital according to a time interval prior to current admission 

(30,180 or 365 days), number of episodes per spell in the prior admissions, a range 

of diagnostic categories and diagnostic groups. The reduced number of variables 

ultimately included in the algorithm is based on the significant predictors based on 

statistical analyses. Predictive models are generally ‘trained’ on a data set 

consisting of dependent variables (Readmitted patients in hospitals) and a range of 

independent variables from record of patient in previous years. Among the patients 

in the sample dataset, univariate analyses was carried out to determine which 

patient characteristics and health outcomes had significant impact for hospital re-

admission. Significance of variables responsible for risk of readmission was 

evaluated using statistical tests for e.g pearson correlation coefficient. Logistic 

regression was considered to calculate the probability of an event given risk factors. 

We also carried out univariate analysis (chi-square) to identify variables 

significantly associated with readmission. All variables with value of p<0.05 were 

included in our multiple regression model. All patients with significant or borderline 

statistical relationship with rehospitalisation at the univariate level (p ≤ 0.05) were 
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entered as independent variables in the predictive model for re-admission.  The p 

value ≤ 0.05 was considered statistically significant.  

 

 

Figure 9 Age 75+ at admission and re-admission within 12 months 

 

 

Figure 10 Presence of a reference condition and re-admission within 12 months 
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Figure 11 Total severity index score and re-admission within 12 months 

 

 

Figure 12 Number of emergency admissions 

A figure 12 show that patients are more likely to have a re-admission if they are 

aged 75 or over in their triggering admission as re-admission (the pink shaded area) 

is more prevalent in the aged 75 or over group.  Figures 10, 11 and 12 suggest that 

patients are more likely to have a re-admission if they have a reference condition, 

a high severity index total score or more admissions in the previous 12 months.   



75 
 

5.6 Data Quality  

Amongst the sample of 109,243 patients with re-admissions in 2004/2005 there 

were no duplicate records for the same patient having re-admission starting on the 

same date. All of the duplicate records for the unique HES Id were removed from 

the dataset. There were also no missing (also known as null) values in the data 

fields. When recording historical information such as the number of previous 

admissions, duplicate entries for the same admission were ignored to ensure that 

the admission was counted only once. 

5.6.1 Data Pre-processing 

The dataset was partitioned into two sections as all predictive models are 

constructed on a training dataset and validated or tested for performance on a 

validation dataset. Therefore, the full dataset of 109,243 rows was randomly split 

using a random selection so that 60% of the rows (65,547) were used for the 

training dataset and the remaining 40% of rows (43,698) were used for the 

validation dataset. 

5.6.2 Removing outliers from the dataset 

Unusual or extreme observations (outliers) for interval or continuous (non-binary) 

variables are usually removed from training datasets prior to the application of 

predictive algorithms to ensure that the models are built using stable and 

consistent data.  Therefore, the extreme top and bottom 0.1% of values for the 

interval variables were removed from the training dataset.  

There are more statistical approaches for detecting outliers. One such single 

dimensional method is Grubb’s method which calculates a Z value as the difference 

between the mean value and query value divided by the standard deviation for the 

attribute. Mean value and standard deviation are calculated from all attribute 

values including the query value.  One of the simplest outlier detection techniques 

used is box plot to prinpoint outliers in univariate or multi-variate datasets. Other 

oulier detection methods could be proximity-based techniques, which are based 

on distance-based measures such as Euclidean distance and Mahalanobis distance. 

P-Plots can also be used to detect outliers in the dataset.Outliers are not removed 
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from the validation dataset as each of the models should be tested on actual data 

to determine their true performance. 

5.6.3 Selecting the important independent variables to predict re-admission 

Before running the predictive modelling algorithms, each of the independent 

variables in the training dataset were examined to see if they appeared to have a 

relationship with the dependent variable.  Although it is persuasive to use all the 

independent variables in the modelling process, it is often more beneficial to use 

those variables which are the best in predicting the dependent variable.  Reducing 

the number of variables reduces the likelihood of multi-collinearity.  Multi-

collinearity occurs when two or more independent variables are highly correlated 

with each other.  This results in the model building algorithm not knowing which 

independent variable to include in the analysis.  Therefore, we look for 

independent variables that are highly correlated with the dependent variable and 

which are not highly correlated with any other independent variable. A set of 

experiments to identify multi-collinearity problem in significant variables is 

explained in chapter 7.  

5.7 Fuzzy variables 

Definition: A fuzzy variable is characterised by triplet (𝑋,𝑈, 𝑅(𝑋; 𝑢)), in which 𝑋 is 

the name of the variable, 𝑈 is a universe of discourse (finite or infinite set); 𝑢 is a 

generic name for the elements of 𝑈 and  𝑅(𝑋; 𝑢) is a fuzzy subset of 𝑈 which 

represents a fuzzy restriction on the values if u imposed by 𝑋. The universe of 

discourse defines a set of upper and lower bounds for the values of the fuzzy sets 

used to describe the concepts of the fuzzy variable 

A fuzzy variable is a variable with (labels of) fuzzy sets as its values. Complete 

definition of fuzzy variable can be seen in footnote of next page. Reason for 

introduction of fuzziness in the variables is due to incomplete knowledge, missing 

values in observed data, and rejection of some observed data. Additionally, 

guessing of non-observed relations among variables leads to fuzziness in the 

environment. Similarly, risk of re-admission can be classified into high, not very 



77 
 

high, somewhat low or low risk of re-admission.  The transition from high risk of re-

admission to low risk of re-admission can be shown by gradual transition from high 

to low, which can be shown by fuzzy set with degree of membership. These 

features and the ability to deal with linguistic terms could explain the reason of 

applying fuzzy methods in healthcare problems.  

Risk of re-admission can be shown with the help of membership function 𝜇𝐴(𝑥), 

where 𝜇𝐴(𝑥)   denotes the membership function MF of degree of membership of 

𝑋 in fuzzy set 𝐴, where 𝑋  is readmission of a patient and 𝜇𝐴(𝑥) gives membership 

function for 𝑋  which represents “risk of readmission”. Membership functions have 

been defined in detail in chapter 3. Risk of re-admission can be categorized into 

“high”, ”medium” or “low” risk  re-admission, which can be represented by 

membership functions. . In our research, we have used triangular and trapezoidal 

membership function. Triangular and trapezoidal membership functions for low, 

medium or high risk of re-admission is shown as in Figures 13 to Figure 15.  

𝜇𝐿(𝑥) = {

0    𝑓𝑜𝑟 𝑥 = 0
1    𝑓𝑜𝑟 𝑥 = 1

1 − 𝑥     𝑓𝑜𝑟 0 < 𝑥 < 1
                  1.7}    for low risk of readmission 

 

 

Figure 13 Triangular membership function for low risk of re-admission 
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1    

𝜇𝑀(𝑥) =

{
 
 

 
 

0               𝑓𝑜𝑟 𝑥   ≤ 𝑥1
𝑥 − 𝑥1
𝑥2 − 𝑥1

      𝑓𝑜𝑟 𝑥1 ≤ 𝑥 ≤ 𝑥2

𝑥3 − 𝑥

𝑥3 − 𝑥2
   𝑓𝑜𝑟 𝑥2 < 𝑥 < 𝑥3

0                  𝑥 ≥ 𝑥3 }
 
 

 
 

                  (1.8) 

                                                             For medium risk of readmission 

 

 

Figure 14 Triangular membership function for medium risk of re-admission. 
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                              𝜇𝐻(𝑥) = {

1      𝑓𝑜𝑟 𝑥 = 0
0     𝑓𝑜𝑟 𝑥 = 1

1 − 𝑥    𝑓𝑜𝑟 0 < 𝑥 < 1
}             For high risk of readmission                     

 

 

Figure 15 Triangular membership function for high risk of re-admission 

 

Dependent variable (Risk of readmission) is fuzzified using triangular membership 

function. Readmitted patients can be at high, medium or low risk. Membership 

function defined for patients at risk of readmission is e.q(1.7), e.q(1.8), and e.q(1.9). 

For any value of X, where X is readmission and 𝜇𝐴(𝑥)  denotes degree of 

membership function MF of X in fuzzy set A. 𝜇𝐴(𝑥) gives “risk of readmission”. Risk 

is categorized into “high, medium or low “risk of readmission is shown above with 

membership functions as 𝜇𝐻(𝑥), 𝜇𝑀(𝑥) and 𝜇𝐿(𝑥). Membership function for high 

risk of readmission means 𝜇𝐻(𝑥) value is 0 (Not readmitted) has a membership 

value of 1 while outcome value that equals 1(Readmitted) has a membership value 

of 0. An outcome X in between[0,1] has a membership value that equals to 1-X. 

Similary, membership function can be defined for medium and low risk of 

readmission. 
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𝜇𝐿(𝑥; 𝑥1, 𝑥2, 𝑥3) = 𝑚𝑎𝑥 (min (
𝑥 − 𝑥1
𝑥2 − 𝑥1

, 1,
𝑥3 − 𝑥

𝑥3 − 𝑥2
) , 0)       (1.9) 

 

        

𝜇𝑀(𝑥; 𝑥2, 𝑥3, 𝑥4) = 𝑚𝑎𝑥 (min (
𝑥 − 𝑥2
𝑥3 − 𝑥2

,
𝑥4 − 𝑥

𝑥4 − 𝑥3
) , 0)    (1.10) 

    

  

𝜇𝐻(𝑥; 𝑥3, 𝑥4, 𝑥5) = 𝑚𝑎𝑥 (min (
𝑥 − 𝑥3
𝑥4 − 𝑥3

, 1,
𝑥5 − 𝑥

𝑥5 − 𝑥4
) , 0)         (1.11)  

 

 

For given values of (𝑥; 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) as (0.4; 0.0,0.2,0.5,0.7,0.8), and using 

e.q(1.9), e.q(1.10) and e.q(1.11) we get: 

 

𝜇𝐿(𝑥; 𝑥1, 𝑥2, 𝑥3) = 𝑚𝑎𝑥 (min (
0.4 − 0.0

0.2 − 0.1
, 1,
0.5 − 0.4

0.5 − 0.2
) , 0)  = 0.33 

 

        

𝜇𝑀(𝑥; 𝑥2, 𝑥3, 𝑥4) = 𝑚𝑎𝑥 (min (
0.4 − 0.2

0.5 − 0.2
,
0.7 − 0.4

0.7 − 0.5
) , 0) = 0.66 

   

 

𝜇𝑀(𝑥; 𝑥2, 𝑥3, 𝑥4) = 𝑚𝑎𝑥 (min (
0.4 − 0.5

0.7 − 0.5
, 1,
0.8 − 0.4

0.8 − 0.7
) , 0) = 0 

 

 

 

Our problem is to fuzzificate all real values of the variable x. In case of risk of 

readmission for a given value of X, for example Xn, risk of readmission can belong 
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to one or more MF. We calculate the value of Y for each of the membership 

function to which Xn belong. The value of MF lies between 0 and 1. For example, in 

our case we have membership functions for high, medium and low risk of 

readmission for a given value of Xn. The degrees of membership to each MF (Y 

values) for Xn as 0.4 can be, for 0.33 for the MF for low risk of readmission and 0.4 

for MF for medium risk of readmission. Similarly, we can fuzzificate all values for 

any variable 

5.8 Summary 

A model that is poorly specified due to missing important input variables or 

inclusion of unnecessary variables will have a low fitting. Therefore, data analysis 

is an important part of building a model. Data preparation and manipulation plays 

an important role to increase the predictive power of a model.   

In our proposed framework, a model is established by using more than one 

independent variable and one response variable. A large number of variables could 

lead to problems and poor model performance. Therefore, performing analysis on 

data has provided us a way to select significant independent variables for our 

model. The idea is to include as many significant independent variables as possible 

and at the same time checking for correlation among input variables. The next 

chapter describes the framework designed and developed for predicting likelihood 

of re-admitting patients to the hospital. Independent variables assessed during the 

data analysis act as input variables for predicting response variable (risk of re-

admission) in our framework. 
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Chapter 6  

6. Development of a Framework adapting Fuzzy Regression 

Method 

6.1 Introduction 

This chapter describes a framework to predict patients at likelihood of re-admission 

in the next 12 months of their discharge. The proposed framework is designed and 

developed to capture the uncertain nature of risk of re-admission. Figure 16 gives 

the proposed approach to represent the uncertainty in risk of readmission. 

Uncertainty in risk of readmission may be due to two reasons. 1. Uncertainty in 

output or response variable (risk of readmission). 2. Uncertain relationship 

between health system input variables and output variable. Fuzzy regression 

method with triangular or trapezoidal membership function is used to show 

uncertainty in decision making. Our proposed framework is based on theoretical 

study of fuzzy regression methods, fuzzy sets and interval-valued fuzzy numbers. 

Therefore, before developing the framework, preliminary theory of fuzzy 

regression methods is described. Our model is developed based on our proposed 

framework to determine significant input variables in order to predict patients at 

likelihood of readmission within 12 month of discharge.  Our model is implemented 

in an algorithm to identify patients and stratify them into various risk threshold 

levels. A fuzzy regression method is adapted to develop our algorithm that uses the 

selected input variables to evaluate the response variable (risk of readmission). We 

have also tested our model to identify patients at risk of readmission within 30 

days, 6 months and 12 months. During the development of the model, each of the 

independent variables in the framework was examined to select potential predictor 

variables. Potential predictor variables will be used as covariates in the 

development of an algorithm to predict high risk individuals. Input variables to the 

model may be uncertain due to lack of information or missing values of the dataset. 

Therefore, it becomes important to handle uncertain input health system variables. 
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Problem may occur when two or more independent variables are highly correlated 

with each other. This makes it difficult to identify which independent variables to 

include in the analysis. In order to handle multi collinearity problem concept of 

Interval value fuzzy numbers (IVFN) is used. In the algorithm1.1 we have shown 

how to handle multi collinearity problem.  

 

Figure 16 The proposed approach for capturing uncertainty in risk of admission 

 

Overall chapter 6 is divided into various sections. First section describes the 

preliminary theory for the development of a framework. In second section, a 

framework is described to select significant independent variables from health 

system variables. Our novel algorithm that uses predictor variables to identify 

patients at risk of re-admission is described in next section (section 6.3.2). A part of 

algorithm to handle uncertain data and multi-collinearity problem is shown in more 

detail in the algorithm (1.1). In section 6.3.5, model validation techniques are 

discussed which are discussed in more detail in chapter 8. Finally, summary of the 

chapter is given.   

6.2 Preliminary theory of proposed framework 

Fuzzy sets introduced by Zadeh in 1965 were used to represent and manipulate 

data and information which possess uncertainties. Fuzzy numbers are numbers 

that can be defined in linguistic terms, for example ‘around 50 percent’, ‘a relatively 

high’, ‘very tall’. (Shapiro, 2005). A fuzzy number can be a triangular fuzzy number, 

or trapezoidal fuzzy number which is explained in detail in chapter 3. The general 

characteristic of the fuzzy number can be represented as a membership function 

as shown in figure 17. A membership function is a curve that defines how each 
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point in the input space is mapped to a membership value (or degree of 

membership) between 0 and 1. In our thesis, we have considered the triangular 

and the trapezoidal membership function. Examples of membership function 

diagrams are shown in detail in chapter 4. 

6.2.1 Fuzzy Linear Regression 

In recent years, there is growing literature that formalizes the linear regression 

model in a fuzzy domain, in which model parameters and/or data are uncertain. 

The linear regression model is the most frequently used form in regression analysis 

for expressing the relationship between one or more explanatory variables and 

response. In the classical statistical technique, the observations (response variable 

or the explanatory variables) are required to follow certain probability distributions 

(Billings, et al., 2006; Austin, 2007; Kim, et al., 1996). Regression analysis is a 

fundamental method to model crisp relationship between the dependent and 

independent variables based on given data. On the other hand, for fuzzy output 

case (Tanaka , 1987)proposed a possibilistic regression approach.  Fuzzy regression 

analysis is a possibilistic regression analysis which is based on possibility concepts.  

Possibility regression analysis uses a fuzzy linear system as a regression model. The 

advantage of Tanaka’s possibilistic regression is in its simplicity in computation. 

Fuzzy linear regression analysis was proposed by Tanaka et al to determine the 

fuzzy linear relationship: 

     

𝑌̅ = 𝐴0 + 𝐴1𝑋1+.… . 𝐴𝑛𝑋𝑛                (1.12) 

 Where 𝑌̅ is the fuzzy output,𝐴𝑗, 𝑗 = 0,1,2, ,3, , , , 𝑛 is a fuzzy coefficient, and 𝑋 =

 𝑋𝑖, , , , , 𝑋𝑛is an n-dimensional non-fuzzy input vector. The fuzzy components were 

assumed to be a triangular fuzzy numbers (TFNs). Coefficients of the equation can be 

shown by a membership function (MF),𝜇𝐴(𝑎), a representation of which is shown in figure 

17 
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Figure 17 Triangular Membership Function 

 

The basic idea of possibilistic regression was to minimize the total spread of the 

membership function, subject to including all the given data (Shapiro, 2005).  

There may be two general ways to develop a fuzzy regression model. We focus in 

our study on the models where the input variables are crisp and response variable 

is fuzzy.  

Case 1: Independent variables (x) are numbers (=crisp) and response variable(y) is 

fuzzy.  

Solving fuzzy regression method using linear programming 

The fuzzy linear regression model can now be re-written as: 

 

𝑌̅ = (𝛼0, 𝑐0) + (𝛼0, 𝑐0)𝑋0 + (𝛼1, 𝑐1)𝑋1+.… . (𝛼𝑛, 𝑐𝑛)𝑋𝑛    

 

In the following linear programming problem (LP), estimate 

    

𝐴𝑗 = (𝛼𝑗, 𝑐𝑗) 

  



86 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 =  ∑(𝑐𝑗

𝑛

𝑗=0

∑𝑥𝑖𝑗)

𝑛

𝑖=1

 

 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝛼𝑗𝑥𝑖𝑗 + (1 − ℎ)

𝑛

𝑗=0

∑(𝑐𝑗𝑥 𝑥𝑖𝑗

𝑛

𝑗=0

≥  𝑌𝑖 

 

∑𝛼𝑗𝑥𝑖𝑗 + (1 − ℎ)

𝑛

𝑗=0

∑(𝑐𝑗𝑥 𝑥𝑖𝑗

𝑛

𝑗=0

≤  𝑌𝑖 

 

Where 𝑎𝑗 ∈ 𝑅, 𝑐𝑗 ≥ 0 , 𝑗 = 1,2, … . 𝑛 

𝑥𝑖0 = 1, 𝑖 = 1,2, … . 𝑘 

0 < ℎ < 1 

 

Where 𝐽 the total fuzzinessof is the fuzzy regression model and h value is the 

threshold level that determines the degree of fitness of the fuzzy linear model to its 

data.The above Linear Programming problem was solved for different input variable 

sets.The central value αj   together with the corresponding half-width cj of each 

fuzzy variable obtained for inputvariable (Age) is evaluated using MATLAB 

6.2.2 Fuzzy Logistic Regression 

In contrast to fuzzy linear regression, there have been few articles on fuzzy non-

linear regression. It is mentioned that over the last few years there have been a few 

attempts to combine fuzzy regression models and logistic regression. 

(Pourahmada, 2011) introduced and applied a new term called possibilistic odds 

and then, developed a possibilistic-based regression in which the observations of 

the dependent variables are reported as a real number in [0, 1] representing the 

possibility of belonging to category 1. (Takemura, 2004) used a fuzzy logistic 
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regression model in which input data, output data and parameters were all 

represented by Linear Regression fuzzy numbers. 

In some practical studies, the response variable is measured by linguistic terms 

such as very low, low, medium, high, and very high, rather than by precise numbers. 

In traditional statistics, in order to regress a binary response variable with two 

categories on a set of explanatory variables𝑋 = 𝑥1, 𝑥2, , , , 𝑥𝑛, a binary logistic 

regression model was used. When the response variable is evaluated by linguistic 

terms, the binary response variable cannot be defined precisely. Therefore, 

probability of success cannot be calculated. A novel approach to this problem, 

which was initially proposed by (Taheri et al., 2008) and (Pourahmada, 2011) is to 

rate the possibility of success for each observation by defining a proper fuzzy 

number for each term of the linguistic variable. These fuzzy numbers should be 

defined in such a way that their support covers the whole range of [0, 1].  In our 

research, we have mostly focused on fuzzy linear regression methods, but in future 

work fuzzy logistic regression method can be adapted. 

6.3 Framework for identifying patients at risk of re-admission 

The proposed framework has been designed and developed to meet the specific 

objectives defined in chapter 1. Specific objectives of the research are to develop a 

framework thatidentifies patients at risk of readmission within 12 months. Our 

framework includes a model to identify high risk individuals and stratifying patients 

into high, medium and low risk of re-admission. To achieve our second objective as 

stated in chapter 1, we have designed and developed a novel algorithm which 

adapts fuzzy regression method to identify patients at high, medium and low risk 

of re-admission. As shown in figure 2 above from PARR, patients are stratified into 

high, medium and low risk of re-admission with crisp boundaries. However, the 

boundaries of risk of re-admission are not crisp, and targeting individuals at 

borderlines can avoid hospital readmissions.  It is often difficult to represent degree 

of certainty of patients at high, medium or low risk of re-admission.  With proper 

healthcare interventions, patients can move from high to medium and medium to 

low risk boundaries. Risk of re-admission with non-crisp boundaries can be 

represented with fuzzy membership function 
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 As risk of re-admission is uncertain, methods adapting fuzzy regression method 

provide a good approach for dealing with such type of uncertainty. Risk factors 

(clinical, social, patients’ characteristics and demographic characteristics) are used 

in determining patients at high risk of re-admission. A novel algorithm is used to 

identify risk factors, and risk of re-admission of a patient is evaluated as a response 

variable. The various risk factors for patients’ re-admission as derived from 

literature review are shown in table 4. 

Table 4 Risk factors for risk of re-admission. 

 

 

Additionally, the relationship between predictor variables (patient characteristic 

and disease) and response variable (risk of re-admission) is uncertain. Linguistic 

nature of risk of re-admission can also be defined by the fuzzy set for risk of re-

admission. Both uncertainty in risk of readmission, and uncertain relationship 

between response & predictor variables can be modelled by fuzzy regression 

methods. If input variables are also fuzzified, the algorithm may be computationally 

intensive in evaluating uncertain relationship among variables. As a result, a large 

of number of fuzzy rules will make the algorithm computationally slow. Therefore, 

in our algorithm we have fuzzified only the response variable. In our approach, we 

have modelled crisp inputs with non-crisp output. Description of health system 

variables and selection of independent & dependent variables is given in next 

section. In addition, there may be a problem of multi-collinearity among various 

Risk factors for re-admission of a 
patient 

Independent or Response variable 

Age Independent variable 

Severity of illness Independent variable 

Type of care Independent variable 

Morbidity/comorbidity Independent variable 

Functional disability Independent variable 

Prior admission Independent variable/Response variable 
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variables. An algorithm adapting fuzzy regression method with Interval valued fuzzy 

numbers (IVFN) is proposed to treat multi-collinearity problem. The framework for 

identifying patients at risk of re-admission is depicted in figure 18. 

Figure 18 depicts the framework using health system variables to identify patients 

at risk of readmission to the hospital. A model is developed within our framework 

to identify potential predictors for readmission. Using fuzzy regression method we 

develop our model to identify and stratify readmitted patients at various risk 

threshold levels.  Identification of patients at risk of re-admission is an expected 

outcome of the algorithm. Before design and development of algorithm, significant 

independent variables are checked to see if they have relationship with risk of re-

admission. Although, we have a large set of input variables, it is beneficial for us to 

determine significant independent variables. Significant predictor variables are 

used as potential covariates for our algorithm. As an output of the algorithm, 

significant independent variables as risk factors responsible for risk of re-admission 

are also determined.  
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Patient 
characteristic

Prior 
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ADMISSION OF A PATIENT
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Patients Young

Functional 
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Figure 18 The framework for identifying patients at risk of re-admission 

The framework shown above is implemented and verified with these three 

important steps: 

1. Data preparation & pre-processing. 

2. Design and development of the model implemented in the proposed algorithm. 

3. Assessing the model performance 

Each of the steps are discussed in more detail in next section. Model performance 

is described briefly in this chapter and is discussed in more detail in chapter 7. 

6.3.1 Data Preparation and processing 

This section contains a brief outline of how the data were prepared and processed 

for this thesis. The data source used in this project was Hospital Episode Statistics 

(HES) data containing individual episodes of care over financial years (1999/2000 

to 2004/2005). Each record in the inpatient part of the database is a finished 

consultant episode. Approximately 3.5 million inpatient admissions that started 

and finished in 2004/2005 within England were included in our study. The extracted 
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data for the 109,243 records included the variables which gave us the information 

like the age at start of admission, gender, triggering admission date, discharge date 

and diagnostic conditions, Charlson comorbidity index(CCSI).  The following binary 

variable (“Readmission_12”) was created for each of the sample of 109,243 

emergency admissions that started and ended in 2004/2005 to see if the patients 

had a subsequent emergency admission within 12 months of the discharge date of 

the triggering admission.  A set of variables based on patient’s prior utilisation were 

created and these data were combined with data on patient’s characteristics and 

diagnostic conditions. Predictive models are generally ‘trained’ on a data set 

consisting of dependent variables (Readmitted patients in hospitals) and a range of 

independent variables from record of patient in previous years. For performing 

statistical analysis, a chi-square univariate analysis was carried out to determine 

which patient characteristics and health outcomes had significant impact for 

hospital re-admission. We also look for independent variables that appear to have 

relationship with dependent variable. Table 5 below shows the final independent 

variables included in the analysis. These variables were used as inputs to the fuzzy 

regression model to predict re-admission within 12 months.  

Patient characteristic variables for e.g age, gender and ethnicity are normally 

correct. Admission date We have used diferent variables for our model for e.g age, 

alcohol abuse, anaemia, angina, drug abuse, average number of episodes per 

emergency admission spell etc as shown in table 5. When a patient is diagnosed 

with an alcohol or drug related disorder, the diagnosis is often complex, as these 

conditions are susceptible to both psychological and physiological signs, symptoms 

and manifestations and cormobidities. 

ICD-10-CM codes provided for these diagnoses is based on ICD-9-CM codes, which 

may be complex. In ICD-9 the details focused more on timelineof the patient’s use 

of the alcohol or drug involved, while ICD-10 –CM requires understanding of 

pyschological or behavioural impact.  This may lead to huge variability in NHS trust. 

Various diagnosis variables are based on ICD-10 codes.Disease presence and 

diagnostic history are based on ICD codes in any diagnostic field (primary or 

secondary) in discharge data. Therefore, they are subject to variability. ICD-10 
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provides with combination codes with dependence codes, thereby inducing 

inconsistency in the dataset. Reference conditions are given by HRG codes, which 

specifies the presence of complicated medical conditions 

 

Independent variable  Independent variable 

Age 75 and over at admission  Drug abuse 

Alcohol abuse  Injury from fall 

Anaemia  Ischaemic heart disease 

Angina  Mild Liver disease 

Atrial fibrillation  
Number of emergency admissions 

within the previous 3 years 

Average number of episodes per 

emergency admission spell 
 

Number of emergency admissions 

within the previous 6 months 

Average number of episodes per non 

emergency admission spell  

Number of nonemergency 

admissions  within the previous 3 

years 

Cancer 
 

Reference condition in the 

previous 3 years 

Congestive heart failure (CHF)  Renal Failure 

Chronic obstructive pulmonary 

disease (COPD) 
 Respiratory infection 

Connective tissue 

disease/rheumatoid arthritis 
 Severity index total score 

Development disabilities  Sickle cell disease 

Diabetes  White 

 

Table 5 List of variables included in the model. 
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6.3.1.1 Fuzzification of response variable 

As stated above dependent variable “Re-admission” is created from HES variables 

to see if the patients had subsequent readmisision in the next 12 months.  In the 

classical set theory we could say that re-admission of patient is either admitted (1) 

or not (0), but for risk of re-admission we consider degree of membership to a fuzzy 

set. A ‘membership function’ --a possibility distribution-- is the main aspect of fuzzy 

set theory. The function describes the possibility (degree) to which a measurable 

value “re-admission” belongs to a particular linguistic term like “risk of “re-

admission”. Fuzzy set that represents “risk of re-admission” does not comprise only 

two elements “yes” (1) or “no”(0) as it does in the case of classical set theory. 

Rather, it constitutes an array or range of points, a possibility distribution that fills 

the interval between “0” and “1”. A range of values for “risk of re-admission” can 

be [high, medium, low] that lies in the interval of [0,1] Schematically, the main step 

is fuzzification which is establishing a membership function with links between 

some values that are not necessarily ordinal, but are associated with a 

phenomenon. Similarly, fuzzification of re-admission is done by establishing a 

triangular membership or trapezoidal membership function which maps ordinal 

values of risk of re-admission as shown in figure 19 and figure 20. Due to their 

simple formulas and computational efficiency, both triangular and trapezoidal MFs 

are used extensively. Due to simplicity and computationally efficient, we have used 

trapezoidal membership function uncluding traingular membership function for 

our research. 

Membership function 𝜇𝐿(𝑥) is for low risk of re-admission, 𝜇𝑀(𝑥) is for medium 

risk of re-admission, and 𝜇𝐻(𝑥) is for high risk of re-admission, where 𝑥 is 

readmission and 𝜇(𝑥) is a membership function for 𝑥, representing risk of 

readmission. Xh is the value of X, which corresponds to membership function for 

high risk of readmission, XL is the value of X, which corresponds to low risk of 

readmission, and XMax is the mode of X, which corresponds to the maximum value 

of membership functions. Similarly, membership functions for high, medium or low 

risk of re-admission are used for trapezoidal membership function. 
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Figure 19 Triangular membership function for [high, medium and low] risk of re-

admission. 

 

 

2  

 

Figure 20 Trapezoidal membership function for [high, medium and low] risk of re-

admission 

 

                                                           
         2  The  process of translating the measured numerical values into fuzzy linguistic values is called    
           fuzzification. 
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6.3.2 Algorithm Outline and Descriptions (I) 

Hospital risk of re-admission of patients tend to be uncertain due to unexpected 

variations in the data, patients’ characteristics, demographic variables and health 

system variables. Significant independent variables (patients’ characteristics and 

demographic characteristics) from health care data helps in identification of risk 

factors responsible for predicting patients at risk of readmission. Traditional 

models are available to identify patients at likelihood of readmission within 12 

month of discharge. However, these models fail to deal with uncertainty in the risk 

of readmission of a patient. In addition, uncertain relationship exists between input 

variable and response variable. In our algorithm, prediction of “risk of re-

admission” is predicted by evaluating the relationship between “risk of re-

admission” and “risk factors”. Uncertainty in model prediction of response variable 

may arise from a number of sources including estimation of input values and 

interpretation of predicted outcome of a model. Of these, uncertainties due to 

estimation of input values can be handled with regression method. Uncertainties 

that arise from the interpretation of the predicted outcome can be dealt with fuzzy 

sets.  However, handling uncertain input health variables with fuzzy membership 

functions may increase the computational complexity of the algorithm. Therefore, 

we have dealt with crisp inputs variables. In our approach, we have adapted fuzzy 

regression method to handle crisp inputs and fuzzy output. Details of the algorithm 

is shown in figure 21, and are described here. 

The first stage is data preparation and processing stage. It is divided into different 

steps including identification of membership function and handling of uncertain 

data. In the first stage, a fuzzy membership function is defined as a triangular or 

trapezoidal membership function, with risk of re-admission as a fuzzy set {high, 

medium or low}. 

Then we deal with health system variables such as patient characteristics. Data 

preparation and processing is carried out for cleaning and manipulating of health 

system variables. As, we are dealing with risk of readmission as a response variable, 

we fuzzify the response variable to represent it in linguistic terms as high, medium 

or low risk.  
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In the second stage, the solution approach is more elaborate and important. At this 

stage, the patient at risk of re-admission is identified as response variable and other 

health system variables (such as patient and disease characteristics) are identified 

as input variables. Regression analysis is carried out to identify the relationship 

between and independent variables and risk of readmission. Significance of 

independent variables is determining by p-value. If p-value is less than 0.05, then 

we can reject the null hypothesis that no relationship exists between independent 

variables and dependent variables. Using the Chi square  analysis, relationship 

between independent and response variables are identified. The relationship 

cannot be mapped always linearly.  

In traditional regression framework, several procedures have been suggested for 

choosing set of explanatory variables. A model could be established by using more 

than one independent variable. However, a large number of independent variables 

could lead to a problem of correlation among variables which makes the prediction 

model multi-collinear. The idea is to include as many independent variables as 

possible but at the same time avoiding co-linearity. Traditional models fail to deal 

with uncertainty in these risk factors. In addition, uncertain relationship exists 

between data variables. In many cases, non-linear relationship exists between 

predictor and outcome variables. In our research, we have only dealt with fuzzy 

linear regression analysis. When reducing a non-linear relationship to linear we 

need to follow following steps 

1. Identify the functional relationship in a form containing three terms. 

2. Make one of the terms to be a constant. 

3. Remove unknown constants from the coeffiecient of one of the variable terms. 

4. Compare with the standard from of linear equation Y= mX+C, where m is the 

slope of the line and c is the vertical intercept value. 

In order to handle the problems of data uncertainty and of multi-collinearity, an 

approach with an Interval value fuzzy number is shown in fig 22. This can be 

explained in three different stages which is explained in algorithm 1.1 
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In the third stage, Fuzzy linear regression analysis is carried out by solving fuzzy 

regression coefficient using linear programming in R. The upper and lower bound 

of the response variable is evaluated with the help of fuzzy regression method. This 

forms a fuzzy set (𝑦̅ ,𝑦 ) and value lies in the fuzzy set {high risk, medium risk, low 

risk} of re-admission. 

Identify Independent 
and dependent 

variables.

Identify relationship between 

risk factors and risk of 

readmission 

Is 

relationship 

linear

Fuzzy linear Regression 

analysis

Compute Upper and Lower 

bounds of fuzzy membership 

functions

Output

Data PreparationData collection

Yes

NO

Identify functional 

relationship.

Fuzzification of Data

Identify Risk factors for risk for 

re-admission

Carry out linear 
Transformation.

Data Analysis

Stage 1

Stage 3

Stage 2

Check for multi-
collinearity 

problem

NO

Yes Solve by Interval -

valued Fuzzy 

Number (IVFN)

 

Figure 21 An algorithm adapting fuzzy regression method 
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6.3.3 Checking Multi-collinearity 

In a traditional regression framework, several procedures have been suggested for 

choosing a set of explanatory variables. A model could be established by using more 

than one independent variable. A large number of independent variables could 

lead to a problem of correlation among variables which makes the prediction 

model multi-collinear. The problem of multi-collinearity may make the model more 

complex. In order to make computation simple, we have avoided co-linearity 

problem in health variables by using interval-valued fuzzy numbers.  

In order to handle data uncertainty and multi-collinearity problem, an approach 

with an interval valued fuzzy number is shown in fig 22. This can be explained in 

three different stages in algorithm 1.1 
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Identify Risk factors

Identify relationship 
between risk factors and risk 

of 
re-admission.

Check for 
multicollinearity 

problem

Solve by Interval -
valued Fuzzy 

Number (IVFN)

Evaluate  risk factors

Degree of similarity 
between risk factors 

Yes

Fuzzy Linear 
Regression

No

Data Preparation

Stage I

Stage 2

Stage 3

 

Figure 22 A Proposed approach to handle multi-collinearity problem between risk 

factors 

6.3.4 Handle multi collinearity problem   

Stage I: In this stage, preparation of data is done for fuzzy regression analysis. Data 

preparation includes identification of uncertainty in data variables (such as 

patient’s characteristics and disease characteristics). Significant independent and 

response variables are identified for fuzzy regression approach. Fuzzy membership 

function is identified and fuzzification of data is done to make data suitable for 

carrying out fuzzy regression analysis. We would like to include all the variables in 
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our model, but a large of number of variables may increase the problem of multi-

collinearity. Reducing the number of variables may help in increasing the predictive 

power of model. Risk factors responsible for risk of re-admission are identified by 

analysing significant input variables. 

Stage II: This stage involves steps to check for multi-collinearity problem. If multi-

collinearity does not occur in data variables then the fuzzy linear regression analysis 

is carried out. The problem arises when there is multi-collinearity among risk 

factors. This can be solved by using Interval value fuzzy numbers with triangular or 

trapezoidal membership functions.  Risk factors are identified using fuzzy 

regression model with interval-value fuzzy numbers. 

Stage III:   Finally, area of two interval valued fuzzy numbers has been used to 

calculate the degree of similarity between lower fuzzy numbers and upper fuzzy 

numbers in the Interval - value fuzzy numbers. Once the degree of similarity is 

found, it can be used in ranking of risk factors at an individual level. 

6.3.5 Solving Fuzzy regression methods 

According to Tanaka’s possibilistic regression the response variable Y can be 

written as (Arulchinnappan & Rajendran, 2011; Rosma, et al., 2008; Fialho, et al., 

2012) 

𝑌̅ = 𝐴0 + 𝐴1𝑋1+.… . 𝐴𝑛𝑋𝑛                 (1.12)             

 Where 𝑌̅ is the fuzzy output,and 𝑋 =  𝑋𝑖 …… .𝑋𝑛 is the real valued input vector of 

independent variables and each regression coefficient 𝐴𝑗 , 𝑗 = 0,1, … . . 𝑛 was 

assumed to be an symmetric triangular fuzzy number with centre 𝛼𝑗 and half width 

𝑐𝑗 , 𝑐𝑗 > 0. (Arulchinnappan & Rajendran, 2011; Rosma, et al., 2007; Fialho, et al., 

2012) 

The Fuzzy Regression equation is considered for a single input variable. This can be 

further extended to multiple risk factors with multiple variables. 

𝑌 =  𝐴0 + 𝐴1𝑋1……… . . (1.13) 

Where  𝑌 =  (𝑦, 𝑦) , 𝐴0 = (𝑎 , 𝑎) , 𝐴1 = (𝑏 , 𝑏) and 𝑦 is the lower bound and 𝑦 is 

the upper bound of fuzzy regression equation (𝑎, 𝑎) and(𝑏, 𝑏) are regression 
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coefficients of lower and upper bound regression equations. Regressing the 

equation and then multiplying the whole equation by ∑ 𝑋𝑖
𝑛
𝑖=1  in order to solve the 

equation and find values for upper bound and lower bound regression coefficients. 

∑𝑌𝑖 = 𝑛

𝑛

𝑖=1

𝐴0 +𝐴1∑𝑋𝑖                        (1.14)

𝑛

𝑖=1

 

∑𝑋𝑖

𝑛

𝑖−1

𝑌𝑖 = 𝐴0∑𝑋𝑖 + 𝐴1∑𝑋𝑖           (1.15)

𝑛

𝑖=1

𝑛

𝑖=1

 

Substituting the values of the upper and lower bound values in equation (1.14) 

gives equation (1.15) and (1.16).  

∑𝑌𝑖 = 𝑛

𝑛

𝑖=1

𝑎 + 𝑏∑𝑋𝑖                               (1.15)

𝑛

𝑖=1

 

∑𝑌𝑖 = 𝑛

𝑛

𝑖=1

𝑎 + 𝑏∑𝑋𝑖                               (1.16)

𝑛

𝑖=1

 

Substituting the values of the upper and lower bound values in equation (1.15) 

gives equation (1.17) and (1.18).  

∑𝑋𝑖

𝑛

𝑖−1

𝑌𝑖 = 𝑎∑𝑋𝑖 + 𝑏∑𝑋𝑖           (1.17)

𝑛

𝑖=1

𝑛

𝑖=1

 

∑𝑋𝑖

𝑛

𝑖−1

𝑌𝑖 = 𝑎∑𝑋𝑖 + 𝑏∑𝑋𝑖           (1.18)

𝑛

𝑖=1

𝑛

𝑖=1

 

Solving these equations and calculating the values of Lower bound and upper 

bound values using a program gives the values as: 

Substituting the values of the upper and lower bounds derived from above program 

in equation (1.17) and (1.18), will give upper and lower bound equations that 

identifies the relationship between risk factors and risk of re-admission of a patient. 

Similarly, this equation can be extended for multiple risk factors and regression 

coefficients as𝐴0, 𝐴1, 𝐴2, …… . . 𝐴𝑛 can be evaluated for upper and lower bounds. 

The value of the fuzzy output   lies in the set(𝑦, 𝑦). 
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Solving Interval Valued Fuzzy Numbers (IVFNs)  

In the proposed methodology, the theory of interval valued fuzzy sets deals with 

uncertainty and multi-collinearity in risk factors. IVFN have been adopted to handle 

uncertainties in risk factors arising from incomplete and imprecise information 

(Hung & Yang, 2006). In this approach, interval valued fuzzy sets are used to 

represent degree of membership of a function, a similarity measure to calculate 

degree of similarity between Interval value fuzzy numbers is used. In order to find 

degree of similarity, fuzzy weighted mean method and interval valued fuzzy 

number are used in this study. On the basis of similarity measure calculated 

between IVFN, it helps in analysis and ranking of risk factors in uncertain 

environment 

An interval value fuzzy set  

  

𝐶 =  {(𝑥, [µ𝑐
𝐿(𝑥), µ𝑐

𝑈(𝑥)])| 𝑥𝜖𝑋}                       (1.19) 

Where  0 ≤ µ𝑐
𝐿(𝑥) ≤ µ𝑐

𝑈(𝑥) ≤ 1 and the membership grade µ
𝐶
(𝑥) of the element 

𝑥 belongs to the interval valued fuzzy set 𝐶  which   can be represented by the 

interval.  

where µ𝑐
𝑈(𝑥) denotes upper bound of IVFN and µ𝑐

𝐿(𝑥)  denotes lower bound of 

IVFN. Assuming two interval valued fuzzy sets as a set 𝐴  and 𝐵 has two elements, 

where the other one as upper fuzzy number 𝐴𝑈and the lower fuzzy number as𝐴𝐿. 

Similarly, for fuzzy set  𝐵, the lower fuzzy number is    𝐵𝐿and the other upper fuzzy 

number is𝐵𝑈. IVFN fuzzy sets can be represented as 

 𝐴 = [𝐴𝐿 , 𝐴𝑈] =  [(𝑎1
𝐿 , 𝑎2

𝐿 , 𝑎3
𝐿 , 𝑎4

𝐿; 𝑤𝐴
𝐿), (𝑎1

𝑈, 𝑎2
𝑈 , 𝑎3

𝑈, 𝑎4
𝑈; 𝑤𝐴

𝑈)]               (1.20) 

𝐵 = [𝐵𝐿 , 𝐵𝑈] =  [(𝑏1
𝐿 , 𝑏2

𝐿 , 𝑏3
𝐿 , 𝑏4

𝐿; 𝑤𝐵
𝐿), (𝑏1

𝑈, 𝑏2
𝑈, 𝑏3

𝑈 , 𝑏4
𝑈; 𝑤𝐵

𝑈)]                 (1.21)     

Where 0 ≤ 𝑤𝐴
𝐿 ≤ 𝑤𝐴

𝑈 ≤ 1 

 0 ≤ 𝑤𝐵
𝐿 ≤ 𝑤𝐵

𝑈 ≤ 1 

Where  (𝑎1
𝐿 ≤ 𝑎2

𝐿 ≤ 𝑎3
𝐿 ≤ 𝑎4

𝐿), 𝑎1
𝑈 ≤ 𝑎2

𝑈 ≤ 𝑎3
𝑈 ≤ 𝑎4

𝑈  ,  

If 𝑎1
𝐿 = 𝑎1

𝑈 
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𝑎2
𝐿 = 𝑎2

𝑈     

𝑎3
𝐿 = 𝑎3

𝑈        

𝑎4
𝐿 = 𝑎4

𝑈        

    And 

𝑏1
𝐿 = 𝑏1

𝑈  

𝑏2
𝐿 = 𝑏2

𝑈     

𝑏3
𝐿 = 𝑏3

𝑈        

𝑏4
𝐿 = 𝑏4

𝑈        

    And 

𝑤𝐴
𝐿 = 𝑤𝐴

𝑈 = 𝑤𝐴  

𝑤𝐵
𝐿 = 𝑤𝐵

𝑈 = 𝑤𝐵  

then the interval valued fuzzy numbers can be regarded as generalized fuzzy 

numbers. The multi-collinearity problem can be solved based on the degree of 

similarity between two interval valued fuzzy numbers.  Degree of similarity 𝑆(𝐴, 𝐵) 

can be evaluated by calculating the areas 𝐴(𝐴)and 𝐴(𝐵) of the trapezoidal fuzzy 

numbers. Area of the two fuzzy numbers can be evaluated as where 𝑎1, 𝑎2, 𝑎3, 𝑎4,   

are element of fuzzy number 𝐴 and 𝑏1, 𝑏, 𝑏3, 𝑏4, elements of fuzzy number 𝐵 

𝐴(𝐴) =  
1

2
 𝑤𝐴 (𝑎3 − 𝑎2 + 𝑎4 − 𝑎1)                      (1.22) 

 𝐴(𝐵) =  
1

2
 𝑤𝐵 (𝑏3 − 𝑏2 + 𝑏4 − 𝑏1)                     (1.23) 

       

The larger the value of  𝑆(𝐴, 𝐵)  , the more the similarity measure between two 

trapezoidal fuzzy numbers.                 

6.3.6 Outlier Treatment 

Outliers in general may represent problematic data, but in our case the outliers are 

values. Domain knowledge is very important in determining how one should handle 

these extreme values.  Unusual or extreme observations (outliers) for interval or 

continuous (non-binary) variables are usually removed from training datasets prior 
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to the application of algorithms to ensure that the models are built using stable and 

consistent data. Outliers are not removed from the validation dataset as each of 

the models should be tested on actual data to determine their true performance. 

6.3.7 Assessing the model performance 

A framework which utilises model that adapts fuzzy regression method to capture 

uncertainty in risk of re-admission is proposed in this chapter. As explained above, 

fuzzy regression method was developed with significant variables extracted from 

HES data. Our proposed framework deals with uncertain nature of “risk of re-

admission”, and uncertain relationship between risk of readmission and input 

variables. Traditional methods such as logistic regression have been developed to 

predict patients at high risk of re-admission. In classical regression model, patient 

is either readmitted or not, which is depicted as yes (1) or no (0).  It is beneficial to 

validate the generalization of the proposed algorithm with traditional methods, 

and compare results of the proposed approach and classical models. 

6.4 Summary 

The proposed framework in this chapter helps to account for the uncertain nature 

of risk of re-admission. Because of nature and ill-defined boundaries of risk bands, 

this approach does allow the user to identify individuals at high risk of re-admission.  

Fuzzy regression method is chosen due to its flexibility in handling uncertain data. 

Patients at risk of re-admission could be identified with consideration of significant 

variables. Risk scores can be evaluated and thresholds can be set at higher levels 

for patients who have a history of previous admissions and are at risk of future re-

admissions which is shown in chapter 8. Descriptions of the prediction 

measurements used such as accuracy, discriminations, calibration and area under 

the receiver operating characteristic curve are described in sections of chapter 8. 

The fuzzy regression model was experimented on Hospital episode statistics 

dataset as a part of the validation exercise to check on the generalization of the 

algorithm in predicting patients at risk of re-admission which is shown in chapter 8.  
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Chapter 7  

7. Experiments for model adapting fuzzy regression method. 

7.1 Introduction 

The main aim of study is to identify people at risk of re-admission on whom use of 

direct intensive resources may improve health outcomes. The issue is that a small 

number of patients could be classified as high risk and use a large amount of 

resources. The identification of readmitted patients may also mask any variation in 

the severity of condition and the quality of care provided for them. Risk of re-

admission of a patient is uncertain because it can take the values other than 0 and 

1. As stated above, risk of re-admissions can be stratified into high, medium or low 

risk of readmission with ill-defined boundaries. A problem may arise in prediction 

due to the uncertain nature of risk of re-admission of a patient. Risk of readmission 

is an output variable that depends on the significant input variables.  

We have conducted various experiments before starting with actual 

implementation of fuzzy regression method. Throughout this thesis, we are using 

different terms as uncertainty in risk of readmission, uncertainty in health 

variables, and uncertain relationship among dependent& independent variables. 

We have experimented to test for uncertainty in healthcare data variables, and 

uncertainty in decision making to make sure that fuzzy regression method can be 

implemented.In this chapter, we will demonstrate the various experiments carried 

out to show the feasibility of our algorithm. 

Before implementing fuzzy regression method, we have carried out experiments to 

make sure that our proposed methodology is valid. Initially, we started with 

MATLAB but later on, we faced difficulty in finding licensed package for fuzzy 

regression method in MATLAB.  A part of the algorithm could be implemented with 

MATLAB, where we can represent input variables and output variables with 

membership function. 
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This chapter lists all the experiments carried out in order to validate our proposed 

method. The set of experiments conducted are as follows: 

1. To represent the uncertainty in risk of re-admission. 

2. To handle uncertain health system variables. 

3. To assess risk factors for patients at risk of re-admission. 

4. To develop and test algorithm adapting fuzzy regression method with significant 

input variables. 

5. To conduct an experiment to compare different models. 

 In the first experiment (section 7.2) surface viewer plot is generated as shown in 

figure 23 which is helpful in understanding how the system is going to behave for 

the entire range of values in the input space.  This experiment implements part of 

the algorithm, and shows how the system behaves for entire range of values. It is 

not clear, or is uncertain, to say what kind of relationship exists between 

dependent and independent variables. For e.g., increase in input variable may lead 

to increase in output variable, whereas in other cases with more than one input 

variable surface viewer may show another kind of relationship. This kind of 

relationship becomes complex to understand. In first experiment, we have 

explained in detail for uncertainty in risk of re-admission, and uncertain 

relationship in health system variables. 

We have also experimented on uncertainty in health variables. It becomes 

confusing to understand which variable is fuzzified - input or output. Input variables 

can be represented with triangular or trapezoidal membership functions. Although, 

it may be interesting to fuzzify input variables, we found no reason to do so. Also, 

if we fuzzify one input variable then why not the other one. If all input variables are 

fuzzified, then it increases the computational complexity of the algorithm. It 

becomes ambiguous to understand which rules to include in the analysis. 

Therefore, in our model we have only fuzzified response variable. 

In the second experiment (section 7.3) P-Plot is used to understand whether data 

variables are normally distributed or not. The plot is a graph of the empirical 
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Cumulative Distributed Function (CDF) values plotted against the theoretical CDF 

values.  It may happen that input variables are not-normally distributed, which 

indicates that correlation and regression cannot always be applied to the dataset. 

  

In order to validate, in experiment 4 (Section 7.5), we have implemented our model 

in an algorithm using fuzzy regression method. In order to carry out full 

implementation, we have to go for licensed package. Therefore, we have decided 

to start implementation in R due to easily available open source packages for fuzzy 

regression method and its ease of use. We have explained in detail in last 

experiment the final implementation of fuzzy regression method in R. 

In experiment 5(Section 7.6) we have done experiment to compare fuzzy regression 

method with other traditional methods (logistic regression, neural network, 

decision tree). Comparison of the prediction performance of different data mining 

methods is evaluated with the help of ROC curves. Implementation of these 

methods is done with the help of open source R packages.More detailed validation 

of the different methods is given in chapter 8.  

In our research, we have used a machine learning technique based on the concept 

of fuzzy regression method to develop our framework. The use of the above 

method is appropriate since we are dealing with uncertain data, and since the 

explanatory variables interact in uncertain manners. To evaluate the performance 

of our algorithm we tested the model adapting fuzzy regression method on HES 

dataset.  

Experiments are conducted using HES data obtained from NHS information centre 

for health and social care for the period 1999/2000 to 2005/2006. Records were 

extracted of all NHS hospital admissions in England for emergency inpatient 

admissions that started and ended between 1/04/2004 and 31/03/2005. The next 

emergency admission which was within 12 months of the discharge date of the 

triggering admission for these patients was also extracted. All of the variables were 

derived for use in predictive modelling methods. Chi square and Regression analysis 

was carried to see the significance of each and every independent variable. The 

variables tested were based on a broad range of measures used in the algorithm 
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which predicts readmission in the following year. These measures included the 

number of admissions to the hospital; number of episodes per spell in prior 

admissions; prior utilisation of hospital resources in the last 12 months; and a range 

of diagnostic categories. The reduced numbers of variables ultimately included in 

this model were selected based on their impact on overall model performance. 

Potential covariates for the risk prediction model that uses HES are age, emergency 

admission, history of admissions in the prior five years, the number of admissions 

in the past 6 & 12 months prior to current admission, and severity index score.  

Although it is appealing to use all independent variables in the development of 

model, problem arises when there is multi-collinearity within data variables.Risk 

prediction model could encompass a set of risk factors such as age, severity of 

illness, comorbidity, prior admission and other factors for e.g., type of care and 

functional disability. Fuzzy regression method with interval-valued fuzzy numbers 

is used to solve this problem of multi-collinearity. Degree of similarity between risk 

factors is found using interval-valued fuzzy numbers. In experiment 3 (section 6.3), 

we have assessed various risk factors using triangular and trapezoidal fuzzy 

numbers. 

Predicted outcome “re-admission” is a binary outcome and can be evaluated using 

logistic regression, but “risk of re-admission”, due to its linguistic behaviour, can be 

modelled by fuzzy regression method.  

7.2 Experiment to represent uncertainty in risk of re-admission  

The following experiment is conducted to understand uncertainty in risk of 

readmission of a patient. Conceptually, we have described above that “risk of 

readmission” is uncertain, as boundaries of risk stratification are not crisp. 

Response variable (risk of re-admission) will be represented by a range of values 

from high, medium to low risk. From our dataset, we have derived variables as 

Readmission_12.  In our model, we are interested in “risk of readmission”, which is 

a fuzzy variable. Fuzzy membership function is appropriate to represent uncertain 

nature of predicted outcome. Therefore, representing risk of readmission with 

triangular membership function is useful. Additionally, there can be uncertain 
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relationship between input health variables and “risk of re-admission”.  In this 

experiment, we have tested membership function of response variable for varying 

input variables.  

7.2.2 Methodology  

The framework to predict patients at high risk of re-admission is described in 

chapter 6. The proposed framework includes an algorithm to identify likelihood of 

re-admission. In this experiment, we have tried to test part of the algorithm with 

MATLAB. This section of the algorithm steps is described in figure 21.It shows the 

algorithmic steps for the experiment carried out. Details of the algorithm are 

described in different stages as given below.  

The first stage of the experiment is data preparation and processing.  Significant 

Iindependent variables are selected .The dependent variable derived from data set 

is Readmission_12. A sample of trained dataset is used for the analysis. Risk of 

readmission can be defined in linguistic terms [high, medium or low], and can be 

represented with a fuzzy set [high, medium or low]. We are using triangular 

membership function for this experiment. Response variable is fuzzified using a 

fuzzy membership function. Input variables used are age, number of previous 

admissions, and severity of illness. In second stage of the experiment, the risk of 

re-admission is the response variable. Selected health system variables (such as 

patient and disease characteristics) are treated as input variables. Relationship is 

evaluated between response variable and independent variables. The type of 

relationship among variables is also checked for linearity. In the third stage, fuzzy 

linear regression analysis is carried out by solving fuzzy regression coefficient using 

the linear programming method.  

We did not have package of fuzzy regression method in MATLAB therefore, 

evaluation of method is done in JAVA and then program is imported into MATLAB. 

The upper and lower bound of the response variable is evaluated with the help of 

fuzzy regression method which is shown above in equation (1.17) and equation 

(1.18) in chapter 6. This forms a fuzzy set (𝑦, 𝑦)and its value lies in the fuzzy set 

[0,1] of risk of re-admission. 
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7.2.3 Results  

Risk of re-admission can be represented by fuzzy membership function. 

Uncertainty in risk of re-admission is shown with the help of triangular membership 

function. It shows membership function for fuzzy set [high, medium and low] risk 

of re-admission.  Output variable (risk of re-admission) which lies in range of [0, 1] 

varies depending on input variables as shown in surface viewer plot. 

Figure 23 shows the surface viewer plot of the fuzzy membership function for the 

input variables affecting the output variable. The surface viewer plot is evaluated 

for one to two input variables as age, severity of illness and output variable as risk 

of re-admission. The number of inputs can be increased from one to four. The x and 

y axes plot the input variables such as age and severity of illness and response 

variable is on z axis as risk of re-admission. The plot described how the varying input 

variables affect response variable of risk of re-admission. Output variable (risk of 

re-admission), shown in figure 23, can have range of values in a set [0, 1] for varying 

input variables 

Figure 24 represents the fuzzy membership function depending on the input 

variables. It represents the triangular fuzzy membership function for training the 

data sets. It shows that the variation in input variables affects the output of the 

function. It also shows the rules for the various input factors. The decision will 

depend on the variation in input factors. The red line corresponding to the input 

factors shown can be moved to compute the effect on output. As, we have 

conducted this experiment for a sample of a small dataset, we have tested for the 

uncertain relationship between response variable and input variables. Input 

variables are represented by membership function, but we did not find it useful. 

There is no reason to represent some of the input variables with membership 

function. Additionally, varying the input variables results in large number of fuzzy 

rules making the algorithm computationally slow. 

While evaluating fuzzy regression method we have fuzzified the response variable. 

In this experiment, output is represented by bold blue lines. The fuzzy set with 

range of values can be defined as {high, medium or low} risk of re-admission. The 



111 
 

output that we receive as a result of fuzzification can be mapped to values in a fuzzy 

set as shown with bold lines in figure 24. It shows the output variable for two and 

three input variables.. It gives the degree of membership for the output variable 

(risk of readmission). Once the input variables are fed into the system, we have to 

define the membership function for the output variable. For a given value of x, the 

value of response variable can be evaluated. Degrees of membership function for 

output variable will lie between 0 and 1. For e.g if we consider three values of 

membership function , the degree of membership to each MF(Y values) for input 

variables can be for example 0.6 for the MF low, 0.4 for MF normal and likewise. In 

case, we have more than one input, the degree of membership for output variable 

will be minimum value of degree of membership for different inputs. The blue lines 

represent the risk of readmissionThis is only representing the membership 

function.The intersection point between different triangles is calculated.The values 

of the bold lines of each MF is evaluated for the membership function, which gives 

us the value for risk of readmission. The output values are evaluated by calculating 

the point at which a line would balance the triangles. 

We used MATLAB for another experiment (based on IVFNs and explained later). 

However, results obtained were not very clear. Moreover, to get the clear 

identification of results, fuzzy regression method package was not available. Hence 

we did not use MATLAB for carrying out further analysis.  

Considering the above, we have implemented fuzzy regression method in R which 

is explained in detail in experiment 6.5. 
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Figure 23 shows the surface viewer plot of the input-output surface of the fuzzy. 

 

 

 

 

 

 

 

 

 

Figure 24 The triangular membership function plots after training dataset 

     7.3 Experiment to understand nature of health system variables. 

A sample of data from the HES dataset was extracted. Before applying any 

algorithm, it was important to understand the nature of the data variables. This 

experiment was conducted to check whether data is normally distributed or not. If 

the data variables are not normally distributed then traditional techniques such as 

1-sample t test, 2-sample t-test, and one –way ANOVA cannot be always applied. 

Additionally, it gives us the idea for the type of relationship that exists among 

health system variables. Most of the relationship among health system variables 
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can be captured by linear relationship. Not all data can be captured by linear 

relationships. The type of relationships among variables can be linear or non-linear.  

It may be complex to understand the type of relationship between independent 

variable and dependent variable. 

Regression Analysis can be used to assess the associations between risk of re-

admission and independent variables. The test for normal distribution is conducted 

through Probability-Probability Plot. Purpose of p-p plots is to test for whether data 

is normally distributed, and to check for outliers in the dataset. (P-P) plot will be 

approximately linear if the specified theoretical distribution is the correct model.  

7.3.2 Method and Results 

The test for normal distribution is conducted through Probability-Probability Plot 

(P-P) on a sample of the extracted dataset. The plot is a graph of the empirical CDF 

values plotted against the theoretical CDF values.  The plot will be approximately 

linear if the specified theoretical distribution is the correct model. The P-P Plot 

indicated that all data is not normally distributed. Insufficient data discrimination –

and therefore an insufficient number of data values might become the reason for 

uncertainty in the data variables.  It is apparent by regression analysis that strong 

and statistically significant relationship exists between some variables, but other 

variables have a weak relationship.  Also, correlation between some variables is not 

statistically significant. Figure 25 shows the P-P Plot of severity of illness variable, 

which is deviated from the straight line. It shows that linear relationship does not 

exist and data cannot be captured by just correlation and regression. Similarly, it is 

shown for P-P Plot for age variable in figure 26. In figure 27, P- P Plot of comorbidity 

variable is shown, which is U-shaped. This type of relationship also cannot be 

captured by just correlation and regression.  As the data is not normally distributed, 

correlation and regression techniques may not be always appropriate. This 

experiment helped us in clarifying that on this dataset, liner regression techniques 

cannot be always applied. Alternately, other type of data mining methods (such as 

Logistic regression, neural network, decision tree, fuzzy regression methods) can 

be considered for such type of data. Considering the above, we have adapted fuzzy 
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regression method to estimate the relationship between health system variables. 

A summary of results is provided in table 6 with significance value. Independent 

variables are significant if p-value <0.05. As, we could see that all variables have p-

value <0.05, therefore they are considred to be significant for predicting risk of 

readmission. 

 

 

 

Parameter Standard 
Error 

Significance 

Age 75 plus at admission (0) 0.0121 <.0001 

Average number of 
episodes per emergency 
admission spell 

0.0153 <.0001 

Number of emergency 
admissions within the 
previous 5 years 

0.00633 <.0001 

Number of emergency 
admissions within the 
previous 6 months 

0.0225 <.0001 

Reference condition in the 
previous 5 years (0) 

0.0135 <.0001 

Severity Index 0.00891 <.0001 

White (0) 0.0102 <.0001 

Alcohol (0) 0.0254 <.0001 

Cancer (0) 0.0198 <.0001 

CTDRA (0) 0.0341 <.0001 

Development disability (0) 0.0568 0.0019 

Diabetes (0) 0.0179 0.0068 

Drug abuse (0) 0.0452 0.0002 

Injury from fall (0) 0.0166 <.0001 

Mild Liver Disease (0) 0.0619 0.0163 

Number of emergency 
admissions within the 
previous 6 months 

0.0276 <.0001 

Number of non-emergency 
admissions  within the 
previous 12 months 

0.0100 <.0001 

Congenital disability (0) 0.0327 <.0001 
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Table 6 Significant independent variables for predicting re-admission within 12 

months. 

 

Figure 25The P-Plot of severity of illness variable 

 

 

Figure 26 The P-Plot of age variable 
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7.4 Experiment for assessing risk factors using Interval-Valued Fuzzy 

Numbers (IVFNs) 

In risk prediction model, independent variables are used as input variables for 

predicting patients at risk of readmission. A large number of input variables may 

improve the predictive power of the model, but may increase the problem of multi-

collinearity in data variables. Risk factors include age, severity of illness, reference 

condition, etc. in risk prediction model. Fuzzy regression method with interval-

valued fuzzy numbers is an attempt to treat uncertainty and multi-collinearity in 

risk factors. Risk factors can be assessed and ranked by finding degree of similarity 

in interval-valued fuzzy numbers. We have used triangular and trapezoidal 

membership functions for assessing risk factors. This experiment is an attempt to 

assess risk factors using interval-valued fuzzy numbers. 

7.4.2 Methodology and Results 

In order to handle uncertainties in an effective manner (Zadeh, 1965), developed 

the theory of fuzzy sets and utilized this theory to model uncertainty or lack of 

Figure 27 The P-Plot of comorbidity variable. 
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knowledge in decision making for a variety of problems. The fuzzy set is an effective 

method to deal with imprecise linguistic terms based on a range of values. Decision 

makers find it difficult to handle uncertainties arising due to lack of knowledge or 

incomplete information. Experts often find it difficult to identify an opinion as a 

number in the interval [0, 1]. Therefore, to represent degree of certainty of 

opinions, fuzzy sets with interval valued fuzzy numbers (IVFN) is used in the 

analysis. Risk of readmission is represented by fuzzy membership functions. 

Membership functions are triangular or trapezoidal membership functions with 

symmetric shape and equal spread.  In order to handle multi-collinearity problem 

and assess similarity between risk factors an interval value fuzzy number is used. 

Interval value fuzzy numbers is shown with trapezoidal membership functions and 

are used to solve multi-collinearity problem between independent variables. 

Degree of similarity between fuzzy numbers is calculated by evaluating the area of 

fuzzy numbers. 

A sample of trained dataset from HES dataset is used for this experiment. Risk 

factors are selected as input variables for implementation in this experiment. We 

have used fuzzy toolbox in MATLAB to conduct this experiment. In this experiment, 

we have shown trapezoidal fuzzy membership function to treat multi collinearity 

problem. Plots show the trapezoidal membership function. In this experiment, we 

have shown the methodology and how we can represent risk of re-admission as 

trapezoidal membership function.  

The proposed method provides a useful way to handle risk factors in a complex and 

uncertain environment. Fig 28 and Fig 29 represent the trapezoidal fuzzy 

membership function. These figures show how the variation in input variables 

affects the output of the function. This is one of the experiment in which we are 

assessing degree of similarity between input variables using interval-value fuzzy 

number. Results show how input variables can be shown with membership 

functions. With trapezoidal membership function as value of µ approaches 1 slope 

increases and as value of µ approaches 0 the value of slope decreases. The 

decreasing slope of membership function help us in understanding of patients at 

low risk of readmission and increasing slope at high risk of readmission. 
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The fuzzy set encompasses a range of output values, and bold lines represent a 

value from the fuzzy set. The output for membership function is depicted by bold 

blue lines. The range of values from high to low risk of re-admission can be mapped 

to values with the help of bold lines.  

 

Figure 28 Trapezoidal membership function plot for the inputs specified 

 

 

Figure 29 Trapezoidal membership function plot for the inputs specified 

 

Potential covariates or predictors associated with patients’ re-admission are 

assessed. Uncertainty in decision making can be represented with the help of 
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interval valued fuzzy numbers. The relationship between risk of re-admission and 

risk factors associated with it are shown with the help of regression equations and 

degree of similarity is evaluated with the help of areas of interval-valued fuzzy 

numbers (IVFN) as shown in algorithm 1.1. Risk factors responsible for risk of re-

admission can be evaluated and ranked with the help of Interval-valued fuzzy 

numbers. Through this innovative fuzzy regression approach using interval valued 

fuzzy number, it is appropriate to deal with multi-collinearity among variables.  

We have represented interval-valued fuzzy numbers with trapezoidal membership 

function. Full implementation of fuzzy regression method with interval-valued 

fuzzy number is explained in next experiment. 

7.5 Experiment to develop and test adapted fuzzy regression 

algorithm. 

The experiment on HES dataset was started with input variables fed into the system 

and the output was recorded and measured. The number and choice of input 

variables was done on the basis of analysis as explained in chapter 5. Fuzzy 

regression implementation is done using FRBS (Fuzzy rule-based systems) package 

in R based on the concept proposed by Zadeh. Fuzzy regression methods are 

important to tackle problem of uncertainty, and they are commonly used for 

identification and regression tasks. We focus on learning from data with learning 

methods of classification and regression.  

The model in our implementation is 𝑌 → ∫(𝑋1… . , 𝑋𝑛) where the output function 

is a linear combination of the input variables. Here 𝑋𝑖 and 𝑌 are the input and 

output variables. The model performs learning methods in order to construct FRBS 

for regression tasks from data. The frbs. learn () method and the predict () method 

are used to construct FRBS models and perform fuzzy regression respectively. 

Internal functions are invoked through frbs. learn (). In our method, we choose 

fuzzy variable to be “re-admission_12” and the shape of the membership function 

to be “TRAPEZOID”. This is depicted in figure 30. For sensitivity and specificity 

analysis, we have used ROCR package which is helpful in estimating performance 

measures and plotting these measures over a range of cut-offs.  
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The sensitivity, specificity, accuracy values and area under the receiver operating 

characteristic curve (AUC) for input variables are experimented. The descriptions 

on accuracy, sensitivity, and specificity are given in chapter 7. These terms are 

briefly reviewed here. Accuracy refers to the probability to correctly classify 

outcome. Sensitivity refers to the probability to predict positive outcome when 

true state is positive. And, finally specificity refers to the probability to predict 

negative outcome when true state is negative. The interpretation of results and 

ROC curve is detailed in chapter8. 

7.5.1 Fuzzy Regression Experiment on input variable sets 

The fuzzy regression models were fed with significant input variable sets. The 

following variables were used for the model: 

1. Age group  

2. Gender 

3. History of previous admissions 

4. Severity of Illness score 

5. Charlson Comorbidity Index 

6. Reference Conditions 

7. Source of admission 

7.5.2 Fuzzy membership function 

Fuzzy membership function for “risk of re-admission” is shown in figure 30, which 

shows a range of values that lies in the interval of [0, 1]. The transition from high 

to low risk of re-admission is shown by fuzzy set with degree of membership 

function. High risk of re-admission is shown by membership function represented 

by “green line”, medium risk of re-admission by “red line” and low risk of re-

admission by “blue line”.  
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Figure 30 Trapezoidal membership function for Risk of Re-admission 

 

The performance of a prediction model is commonly evaluated in terms of its 

calibration and discrimination abilities. Calibration measures how close the 

predictions made by a specific model are to the real outcome. This is usually done 

by determining whether there are any statistical significant differences between 

the real outcome and the predicted outcome. Discrimination, on the other hand, 

measures how well the two classes in the data set are separated. Calibration and 

discrimination were described in detail in chapter 8. These measurements are used 

at this point to differentiate the prediction abilities of the different models. The 

prediction performance of our proposed model were measured and then 

compared with the prediction performances of other validation models in Chapter 

8. 

The sensitivity, specificity, accuracy values and area under the receiver operating 

characteristic curve (AUC) for input variable sets experimented are presented next. 

The descriptions on sensitivity and specificity are given in Chapter 8. The area under 

the receiver operating characteristic curves was calculated. The receiver operating 

characteristic curve is shown in Figure 31. 
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         Figure 31 ROC curve for fuzzy regression method. 

    

7.5.3 Results 

The performance of the model is shown with the help of ROC curve in the figure 31 

above. The receiver operating curve in the figure illustrates the trade-offs for users 

between sensitivity (true positives) and 1-specificity (false negatives) for the 

algorithm. True positives (sensitivity) and false positives (1-specificity) are 

evaluated at different risk scores (0-100). For our model based on fuzzy regression, 

sensitivity is 58.8% at the risk score of 50. The specificity of the model is the 

percentage of records that actually did not have re-admission within 12 months 

that were correctly predicted not to have re-admission by the model (true 

negatives). The specificity for our model is 87.4%.  

In model validation, sensitivity and positive predictive value is evaluated for risk 

score of 40 and above as explained in more detail in chapter 8. The positive 

predictive value will give the percentage of records that the model predicts will 

have a re-admission that actually did have the re-admission. 

This shows that fuzzy regression model performs well with addition of significant 

independent variables.  The area under curve (AUC) is 0.735, which indicates a 
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73.5% probability that a randomly selected patient with future re-admission will 

receive a higher risk score than a randomly selected patient who will not have a 

future re-admission. More detailed analysis of sensitivity and positive predictive 

value is shown in chapter 7. The performance of the model is shown in terms of the 

percentage of patients with re-admission within 12 months. Addition of significant 

variables may increase the predictive power of model which will depend on the 

over-fitting measures of the model. 

7.6 Experiment on comparison of different Models 

A number of predictive models and tools have also been developed for the 

prediction of patients who are at high risk of re-admission (Rosma et al., 2008; 

Krumholz et al., 1997). These studies tend to produce conflicting results where 

factors associated with unplanned re-admissions vary widely in statistical 

significance and, as a consequence, the predictive model and the tool may not 

provide sufficiently accurate predictions. Most predictive models have focused on 

regression techniques, although there is an emerging interest in machine learning 

algorithm. Details of study on logistic regression, classification tree and neural 

network can be found in Appendix 3.  

7.6.1 Methods 

Prediction of outcomes is usually done using logistic regression with records of 

patients from HES dataset. We have implemented logistic regression method in R 

using glm () method. We have fitted the logistic regression model that includes both 

explanatory variables and response variable. For this part of analysis, we have used 

five years of data from 1999 to 2004 with triggering admission year data for 

2004/2005.  For logistic regression, potential covariates were used as input 

variables and the outcome predicted is modelled as a linear combination of 

predictor variables. Re-admission of patients which is a predictor variable, is 

converted to a categorical variable as “re-admission_12”. Re-admission_12 is “0” if 

patient is readmitted and “1” if patient is not readmitted within 12 months of the 

discharge date. A series of logistic regressions were conducted to identify those 
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variables that contributed most to the likelihood of re-admission with 12 months of 

discharge.  

As an alternative to logistic regression methods, researchers have applied various 

machine learning methods, especially ANN and decision trees.  Several studies have 

tried to compare the performance of previous predictive models (Bottle, et al., 

2014) (Bottle et al., 2006) A number of studies have compared the predictive ability 

of decision trees with regression analysis and Artificial Neural Network.   

There are a number of ways to implement machine learning methods in SAS, R and 

MATLAB. We have implemented decision trees in R using rpart package which 

includes rxDTree function. This function provides the ability to estimate decision 

trees on very large datasets. Decision trees provide easy to interpret models, and 

are helpful in predicting patients’ characteristics that are associated with high risk 

of re-admission. Decision tree and logistic regression offer an appealing output that, 

unlike ANNs, shows the relation between predictor variables. Details of significant 

variables identified with ROC curves is depicted in chapter 8.We concentrate on the 

standard feed forward ANNs using neuralnet package in R. Such models are usually 

trained using back-propagation algorithm (Bottle et al., 2006(Bottle et al., 2014). 

The dataset was randomly split into training (60%) and validation dataset (40%). 

This was done, in the first phase to select the best model features and in a second 

phase to assess its algorithm. Variables were removed one after the other and 

performance after each removal was evaluated. The best combination of significant 

variables that gave the best performance were selected. Significance of 

independent variable for risk of readmission was evaluated based on the 

performance of the model. The most significant predictive variables identified were 

then tested on validation set. Classifier used in our model is feedforward neural 

network with varying number of neurons in one hidden layer and with one neuron 

on the output layer. In our research, we have used one hidden layer as the standard 

choice. The number of nodes in the hidden layer should be of the order of square 

root of the number of variables in the model. ANN is trained using back propagation 

algorithm. All independent variables were fed into the neural network, and 

performance of the model was evaluated. Model was trained using 
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backpropagation. Variables were removed one after the other and performance 

after each removal was evaluated. The best combination of significant variables that 

gave the best performance were selected. Significance of independent variable for 

risk of readmission was evaluated based on the performance of the model. The 

most significant predictive variables identified were then tested on validation set. 

Neuralnet will return object of class nn which is a list containing candidate 

covariates responsible for predicting likelihood of re-admission. 

7.6.2 Results 

Traditional measures such as sensitivity and specificity are used to estimate the 

area under the receiver operating characteristic (AUROC) curve. The performance 

of the various models is compared based on ROC curve where values can range 

from 0.500 to 0.900. Another measure such as positive predictive value is used to 

predict percentage of those patients at risk of re-admission. The AUROC curve for 

logistic regression is 0.723. Similarly, AUROC for classification tree, and neural 

network is evaluated which comes out to be 0.715 and 0.699. Results of these 

models with their comparison is summarized in following table: Commonly used 

classification using AUC for a diagnostic test is summarized below. 

AUC Range Classification 

0.9 < AUC < 1.0   Excellent 

0.8 < AUC < 0.9   Good 

0.6 < AUC < 0.7   Not good 

0.7 < AUC < 0.8   Worthless 

 

7.7 Summary 

A classical regression technique is an estimation method which is normally used in 

finding crisp relationship between dependent and independent variables. The 

proposed approach which adapts fuzzy regression is based on Tanaka’s possibilistic 

approach. The experiment is conducted on the HES dataset. In our methodology, a 

fuzzy regression model minimizes the uncertainty of the estimated values for the 
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dependent variables. The fuzzy regression model was experimented and proved to 

be useful for selecting independent variables for identifying high risk patients. The 

next chapter will enhance the results of these experiments.  Four different models 

were constructed and validated on similar datasets as a part of validation exercises. 

Discussion and comparison of different models with significant input variables is 

shown in chapter 8. 
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Chapter 8  

8. Model Validation 

8.1 Introduction 

The main aim of this chapter is to do model assessment and validation. This work 

consisted of assigning a combination of predictor variables to predict patient at risk 

of readmission. Models assess patients falling into one of the two classes as being 

readmitted or not readmitted. This could be assessed using discrimination 

performance. This chapter focuses on description of different performance 

measures such as ROC curve, risk score, risk threshold, sensitivity, specificity and 

accuracy of models. This is a function of true positive ratio verses false positive 

ratio, which is shown using AUROC curves. The true positive rate and true negative 

rate corresponds to the sensitivity, and specificity of the problem. In our model, 

true positive rate represents the case where the patient was correctly being 

classified as being readmitted, and true negative rate represents the patients which 

are being classified as being not readmitted. We have also utilised true positive and 

false positive rate to calculate the percentage of patients predicted to have a re-

admission that were predicted correctly. 

In this chapter, we have compared different models based on their performance. 

Several studies have tried to compare the performance of previous predictive 

models. A number of studies have compared the predictive ability of decision trees 

with regression analysis and Artificial Neural Network for multiple input variables. 

Predictive ability can be compared using the area under ROC. We have compared 

and evaluated Decision Tree, Logistic Regression, and Neural Network models with 

the help of ROC curves. We have also validated fuzzy regression method with the 

help of ROC curves. All these techniques use values of one or more independent 

variables to predict whether a patient had a re-admission (the dependent binary 

variable). For each and every technique, significant independent variables are also 

described. Addition of significant input variables may add to the predictive power 
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of the model. Detailed description of different techniques with their significant 

independent variables and performance of these models is given in this chapter. 

8.2 Model Validation 

Model validation is a major part of research work. The essential aim of this thesis 

is to develop a framework to predict patients at risk of re-admission. In achieving 

this objective, this framework utilises predictive model which adapts fuzzy 

regression algorithm. Fuzzy regression method is chosen due to its flexibility in 

handling imprecise data. As a part of the validation exercise, the fuzzy regression 

model was experimented on HES dataset to check the generalization of the 

algorithm. It is vital to prove that the proposed predictive model is an accurate and 

reliable model. This was done by comparing the predictive performance of the 

proposed model with the predictive performance of existing methods. Artificially 

intelligent prediction technique such as logistic regression and neural network are 

used for validation with fuzzy regression method. Logistic regression prediction 

model is used to validate the proposed model adapting fuzzy regression method 

since logistic regression is a commonly used method for predicting binary output. 

Comparison of the results on the prediction abilities of the proposed and validation 

models in terms of percent accuracy, discriminations and calibration are done later 

in this chapter. Detail descriptions of performance measures are explained in this 

chapter. 

8.3 Model Performance 

Measurements for risk prediction model used are accuracy, discriminations, 

calibration and area under the receiver operating characteristic curve. 

Discrimination is the ability of risk score to differentiate between patients who 

experience a re-admission event during the study and those who do not. Common 

measures of discrimination are sensitivity, specificity, and percent accuracy (Billings 

et al., 2006; Rosma et al., 2008). This measure is quantified by calculating the area 

under the receiver operating curve (AUROC) statistic. Advantages and drawbacks 

of different models including prediction ability and prediction interpretations were 

also analysed. 
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The performance of the model can be measured with a positive predictive value 

(PPV) for a risk threshold and an area under the ROC curve (‘c-statistics’). A recent 

literature review of predictive risk models for 12 month re-admissions documented 

c-statistics ranging from 0.50 to 0.72. The area under the Receiver-Operating-

Characteristic Curve (ROC) is normally used to depict the graphical representation 

of discrimination.  

A good diagnostic test is one which has small false positive and false negative rates 

across a range of cut off values. The larger the area, the better the diagnostic test 

is. An ideal test will have an area under receiver operating characteristic (AUC) of 1 

because it achieves both 100% sensitivity and 100% specificity. A bad diagnostic 

test is one where the only cut offs that make the false positive rate low have a high 

false negative rate and vice-versa.   

Traditional measures of performance, such as the sensitivity, mask the potential 

value of models in targeting preventive interventions which are described below. 

8.3.1 Risk Threshold 

The sensitivity and specificity of the model can be traded off against each other by 

varying the threshold of risk used to define them. An overall cut-off level/threshold 

can be set for the full range of intervention strategies. 

8.3.2 Risk Scores 

Risk score is determined by observing the trade-off between true positives and 

positive predictive value.  (Lewis, 2015) This can be explained as the false positives 

can be increased or decreased at the expense of increasing or decreasing false 

negatives. It is observed that if risk threshold decreases number of false positive 

increases while decreasing false negatives. On the other hand, increasing risk score 

threshold decreases false positives and increases false negatives. A risk score closer 

to 0 indicates a very low chance of re-admission, while a score closer to 100 

represents a very high chance of re-admission. Any individual with a risk score of 

50 or above is predicted to have a re-admission and the others (those with risk 

scores of less than 50) are predicted not to have a re-admission. A series of data 

mining algorithms were conducted to identify those variables that contributed 
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most to prediction of re-admissions. Prediction of re-admission can be described 

by creating ‘risk scores’ of 0-100 describing the estimated probability of re-

admission within 12 months of discharge. The three techniques of logistic 

regression, classification trees and neural networks were used to produce a 

probability (between 0 and 1) of obtaining an outcome of an event. All three 

techniques use values of one or more independent variables to predict whether a 

patient had a re-admission (the dependent binary variable). 

8.3.3 ROC Curve 

The c-statistic, or area under the receiver operating characteristic (ROC) curve is 

considered in diagnostic testing (Cook, 2007). Diagnostic test characteristics of ROC 

curves, such as sensitivity and specificity are relevant to discriminating readmitted 

patients verses non-readmitted patients. Discrimination is more of interest when 

classification into one of the two classes of readmitted and not-readmitted is the 

goal. Discrimination is measured using ROC curve, or c statistics. In diagnostic 

setting, already determined outcome and the estimated classification are 

compared. The ROC curve and its associated c-static are sensitivity and specificity 

for each value of measure of the model. Measures of discrimination are common 

but they ignore random nature of outcome. In risk stratification, the outcome is not 

yet known, and readmitted patient’s status can only be estimated as probability or 

risk. Calibration is a measure of how well predicted probabilities or risk match with 

actual observed risk. In particular novel risk factors which contribute to overall risk 

prediction becomes an important question. When the average predicted risk in 

subgroup of patient actually matches with the readmitted patient, then we say that 

model is well calibrated. The c-static is equivalent to the probability that measure 

or predicted risk is higher for readmitted patients than not-readmitted patients 

We measured accuracy of predictive models in a number of ways. The plot of an 

ROC curve shows the sensitivity on the x-axis and ‘1 minus the specificity’ on the y-

axis. We present estimates of the area under the receiver operating characteristic 

(ROC) curve, which shows the trade-off between true positive (sensitivity) and false 

negatives (1-specificity) at all possible thresholds. The positive predictive value 

(PPV) is defined as the percentage of those at-risk patients identified by the model 
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as being at risk. Descriptions on false positive, false negative, true positive and true 

negative rates are summarized in next section.  

The area under ROC curve (AUROC) provides a way to measure the accuracy of a 

diagnostic test. The larger the area, the more accurate the diagnostic test is. AUROC 

can be measured by the following equation:  

𝐴𝑈𝐶 = ∫𝑅𝑂𝐶(𝑡)𝑑𝑡

1

0

 

where t = (1 – specificity) and ROC (t) is sensitivity.  

In short, AUROC curve is a good tool to select possible optimal cut-point for a given 

diagnostic test. 

8.3.4 Sensitivity, Specificity and Accuracy 

This section will focus on sensitivity, specificity and accuracy in the context of 

patients’ re-admission. Sensitivity is a related concept, which measures the 

percentage of people who experienced a re-admission and are correctly identified 

by the model as being at risk. Specificity is defined as the proportion of people who 

did not experience a re-admission and were correctly identified as being at low risk. 

Calculation of sensitivity, specificity and accuracy is explained below with the help 

of table 7. 

 Predicted Output 

 

Observed Output 

 Negative Positive 

Negative a (True Negative) b (False Positive) 

Positive c (False Negative) d (True Positive) 

Table 7 Conditions of terms used in the discrimination measurements. 

 

Table 8 shows that the total number of patients (T) as given by a + b + c + d. 

Discrimination measures of our proposed model can be described as below. The 

number of patients who actually did not have a re-admission was a + b and the 
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number who actually had a re-admission was c + d.  The number of patients who 

were predicted not to have a re-admission was a + c and the number predicted to 

have a re-admission was b + d.  The following five measures are used in this project 

to show how accurately the models predict re-admission. 

 The percentage accuracy in classification is the percentage of patients that are 

correctly predicted as to whether or not they had a re-admission and is given by 

the formula (a + d) / T. 

 The sensitivity of the model is the percentage of patients that actually had a re-

admission that were correctly predicted and is given by d / (c + d). 

 The specificity of the model is the percentage of patients that actually did not 

have a re-admission that were correctly predicted and is given by a / (a + b). 

 The positive predictive value is the percentage of patients predicted to have a 

re-admission that were predicted correctly and is given by d / (b + d). 

 The negative predictive value is the percentage of patients predicted not to 

have a re-admission that were predicted correctly and is given by a / (a + c). 

 

Table 8 Discrimination measures for Fuzzy regression Model. 

 

 

Measure Description Calculation 

Accuracy Probability to correctly Classify outcome.  𝑎

𝑎 + 𝑏 + 𝑐 + 𝑑
 

Sensitivity Probability to predict positive outcome 
when true state is positive. 

𝑎

𝑐 + 𝑑
 

Specificity Probability to predict negative outcome 
when true state is Negative. 

𝑎

𝑎 + 𝑏
 

Positive 
Precision 

Probability to correctly classify outcome 
predicted to be positive. 

𝑑

𝑏 + 𝑑
 

Negative     
Precision 

Probability to correctly classify outcome 
predicted to be negative. 

𝑎

𝑎 + 𝑐
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The prediction performances of the proposed model and the traditional model are 

described based on the values of sensitivity, specificity and accuracy described 

above in Table 7 and Table 8. 

8.4 Validation Exercise 

This section contains an overview of the predictive modelling techniques used in 

our research. Three techniques of logistic regression, classification trees and neural 

networks were compared to predict the likelihood of re-admission. The outcome is 

obtained between 0 and 1, which is the scenario of re-admission. The value is then 

multiplied by 100 to give the risk score of re-admission. A risk score closer to 100 

represents a very high risk of re-admission. An individual with a risk score of 50 or 

above are predicted to have a high risk of re-admission. Patients with a risk score 

of less than 50 are predicted to have low risk of re-admission.   

All three techniques use values of one or more independent variables (either binary 

or continuous in nature) to predict whether a patient had a re-admission (the 

dependent binary variable). This section describes the three techniques. 

8.4.1 Fuzzy Regression Model Validation 

The model validation is done based on the framework developed in chapter 6. Our 

proposed model adapts fuzzy regression method which models uncertain 

relationship between health variables and risk of re-hospitalization of patients.  

Following (Tanaka & Watada, 1989), our proposed model included a fuzzy output, 

and a non-fuzzy input vector. Our fuzzy regression algorithm has used the linguistic 

term “risk of re-admission”. Crisp output “re-admission” is fuzzified using the 

membership function. This process is known as fuzzification. A membership 

function is used to quantify a linguistic term “risk of re-admission” into “high, 

medium and low“risk of re-admission.We have used triangular and trapezoidal 

membership function. Fuzzy regression method models the relationship between 

significant independent variables and response variable “risk of re-admission”. 
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8.4.1.1 Significant independent variables included in the fuzzy regression model 

The derived model uses a small set of variables which includes: 

 Patient’s age 

 Whether current admission was an emergency admission (defined in HES as an 

admimeth from 21-28) 

 Whether there had been an admission in the past 6 months and 12 months. 

 History of admissions in the prior five years (from prior HES diagnostic field). 

 Charlson comorbidity severity index (CCSI) used in calculation of total severity 

index score.  

 Reference conditions (Reference_condition) calculated using HRG codes 

8.4.1.2 Dependent Variable 

As shown in chapte4, dependent variable “risk of re-admission” is a fuzzy variable. 

Fuzzy variables are used for representing imprecise numerical quantities in a fuzzy 

environment.  Risk of re-admission can be represented by linguistic variable.  A 

linguistic variable is generally decomposed into a set of linguistic terms of “high, 

medium or low” risk of re-admission.  Membership functions are used in the 

fuzzification of crisp output to fuzzy linguistic terms. The transition from high risk of 

re-admission to low risk of re-admission can be shown by gradual transition from 

high to low, which is shown by fuzzy set with degree of membership in figure 19 and 

20.  The form of membership function such as triangular, trapezoidal membership 

function used in our research. 

The dataset was partitioned into two sections as all the predictive models are 

constructed or built on training dataset and then the performance of the model is 

validated or tested using a validation dataset. Therefore, the full dataset of 

109,245 rows was randomly split using a random selection so that 60% of the rows 

(65,547) were used for the training dataset and the remaining 40% of rows (43,698) 

were used for the validation dataset. 

Unusual or extreme observations (outliers) for interval or continuous (non-binary) 

variables are usually removed from training datasets prior to the application of 



135 
 

predictive algorithms to ensure that the models are built using stable and 

consistent data. Therefore, the extreme top and bottom 0.1% of values for the 

interval variables were removed from the training dataset. This accounted for 655 

rows and left 64,892 rows remaining in the dataset. Outliers are not removed from 

the validation dataset as each of the models should be tested on actual data to 

determine their true performance. The performance of the model is tested on the 

validation set.  

The model correctly classified 72.5% of the 64,892 in the training dataset correctly 

as to whether the patient had an emergency readmission within 12 months. The 

model correctly classified 72.5% of the 64,892 cases in the training dataset 

correctly as to whether the patient had an emergency readmission within 12 

months.  This is known as the percentage accuracy and the corresponding value 

from the validation data set was 71.6%.   

For our model validation, we have divided our dataset into training and validation 

dataset. Of the 64,892 training set records 23,245 actually had a re-admission and 

the remaining 41,647 did not. The sensitivity of the model is the percentage of 

records that actually had a re-admission within 12 months that were correctly 

predicted to have   a re-admission by the model (known as true positives). For a risk 

threshold of 50, of the 23,245 training dataset patients that actually had a re-

admission within 12 months, 58.8% (13,668) were correctly predicted as having re-

admission. 

The specificity of the model is the percentage of records that actually did not have 

a re-admission within 12 months that were correctly predicted not to have a re-

admission by the model (these are also known as true negatives. Of the 41,647 

training dataset patients that actually did not have a re-admission within 12 months, 

87.4% (36,339) were correctly predicted as not having a re-admission.  

The positive predictive value is the percentage of records that the model predicts 

will have a re-admission that actually did have the re-admission. The positive 

predictive value for the training dataset of the analysis showed that 72.02% (13,668) 

of the 18,976 patients predicted to have a re-admission actually did. The positive 

predictive value for fuzzy regression method is better than logistic regression 
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method. The negative predictive value shows that 79.1 %( 36,339) of the 45,916 

patients predicted not to have a re-admission within 12 months were predicted 

correctly. 

Figure 32 shows the percentage of patients flagged by the algorithm as being likely 

to have a re-admission that actually went onto have the re-admission. The 

horizontal axis shows the risk score threshold and this refers to the cut off level by 

which a person is predicted as having a re-admission. Figure 32 shows the effect 

that varying the risk score threshold level has on the percentage of flagged patients 

who were readmitted. Higher risk score threshold result in higher percentages of 

flagged patients actually having re-admissions. The model used in this thesis (the 

blue and red lines) for percentage of flagged patients in 6 months and 12 months, 

and green line for percentage of flagged patients  in 30 days. At risk score threshold 

of 50, the percentage of flagged patients who were readmitted within 12 months 

appears to be better than the percentage of flagged patients in 6 months and 30 

days. The reason that percentage of patients flagged by 12 months is better that 

readmission within 30 days because less than one tenth of patients are readmitted 

within 30 days of discharge. 

 As shown in Figure 32 percentage of patients flagged within 6 months and 12 

months appears at risk score threshold of 85 appears to be similar. 

Our model tested on validation set, and it gives almost similar results as in training 

set as shown in figure 33. Comparison of our model result is done with PARR1 model 

also, which is shown in detail in Appendix 5. As compared with PARR model our 

model gives better result in terms of percentage of flagged patients.  
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Figure 32 The percentage of patients flagged by the fuzzy regression model 

 

 

Figure 33 The percentage of patients flagged by the fuzzy regression model by 

training and validation set 
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8.4.1.3 Conclusion of Fuzzy Regression Model. 

The findings are similar and compared with other models which are explained in 

later sections with high numbers of previous admissions being a strong predictor 

of re-admission. As described in later sections, all three classification tree, logistic 

regression models and fuzzy regression models are similar in ability to extract 

factors that are significant in predicting re-admission. Fuzzy regression model 

found less independent variables that are significant in predicting re-admission as 

opposed to 19 found by logistic regression models. Details of significant 

independent variables identified by logistic regression is given in section 8.4.2.1 

The variables found to be significant in the tree model were also found to be 

significant in the fuzzy regression model proving that these were highly significant 

in both models. The factor of age, which is highly significant in the fuzzy regression 

but is not significant in classification tree model, returns to be significant again in 

the logistic regression model. However, the factor of age still plays a more 

significant role in the fuzzy regression model. In the next section, we have 

compared our model with traditional methods (logistic regression, neural network, 

and decision tree). 

8.4.2 Logistic Regression 

Logistic regression predicts the probability of the outcome (re-admission) occurring 

given actual values of the independent variables. The general form for the logistic 

regression equation showing the probability of the outcome occurring is given by 

equation below 

 

𝑃(𝑅) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑛𝑋𝑛
1
𝑛 )

                  (1.21)       

 

The terms used in the above equation are as follows 

 P(R) is the probability of re-admission 

 R is the outcome of re-admission 
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 e is the nature logarithm base 

 β0 is the intercept or constant term in the regression equation 

βn are the coefficients (weightings) for the n independent variables used to 

predict the dependent variable 

 Xn are the n independent variables used to predict the dependent variable 

 

The parameters above are all determined by fitting a model (with the independent 

variables that are most helpful in predicting re-admission) to the observed data so 

that the error between the actual observed outcomes and predicted outcomes are 

minimised. 

A stepwise logistic regression procedure is used when assessing which 

independent variables are important (or are significant) in predicting the 

dependent variable.  The stepwise model works by initially trying to include all the 

independent variables to predict the dependent variable.  Then a process begins 

whereby all the independent variables that are above the significance threshold of 

0.05 (i.e. those that are unimportant in predicting re-admission) are excluded one 

by one.  This process continues until all that remain are significant predictors.  Each 

time a variable is excluded the variables that have previously been excluded are 

retested in case they warrant re-inclusion into the model. All independent variables 

which have a significance value of less than 5% in adding to the predictive ability of 

the model are used.  The performance of the model is then validated using the 

validation dataset.  

The Wald statistic is used in logistic regression to identify independent variables 

that are significant predictors in a model.  It tells us whether the βn coefficient for 

the nth independent variable is significantly different from zero.  If it is significantly 

different from zero then the independent variable adds to the predictive ability of 

the model and it has a significant value of less than 0.05. 

Exp(βn) in logistic regression is the change in odds of the outcome (re-admission) 

occurring given a unit change in the nth independent variable with all other 

independent variables being controlled for.  For binary independent variables such 

as gender, the odds ratio tells us how much more likely a patient is to have a re-
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admission if they are male compared to female while all other factors are 

controlled.  For continuous variables such as the average number of episodes per 

spell in the previous 3 years, the odds ratio tells us the increased chances of re-

admission for a one unit increase in the number of episodes per spell. More details 

of logistic regression can be found in section 2.1 of Appendix 2. 

 8.4.2.1 Significant independent variables included in the Logistic regression model 

The following output (Table 6) shows the independent variables that were found to be 

significant (at the 5% level) in predicting re-admission within 12 months.  These were 

the only independent variables which added significantly to the predictive power of the 

model. 
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Parameter Estimate (β) 
Standard 
Error 

Wald Significance Exp(β) 

Age 75 plus at admission 
(0) 

-0.2222 0.0116 366.43 <.0001 0.641 

Average number of 
episodes per emergency 
admission spell 

0.1936 0.0152 162.09 <.0001 1.214 

Average number of 
episodes per non-
emergency admission 
spell 

0.1270 0.0206 38.15 <.0001 1.135 

Number of emergency 
admissions within the 
previous 5 years 

0.1999 0.00746 717.67 <.0001 1.221 

Number of emergency 
admissions within the 
previous 6 months 

0.2071 0.0152 186.57 <.0001 1.230 

Number of non-
emergency admissions  
within the previous 5 
years 

0.0274 0.00423 42.01 <.0001 1.028 

Reference condition in 
the previous 5 years (0) 

-0.1267 0.0131 93.67 <.0001 0.776 

Respiratory Infection (0) -0.1005 0.0173 33.62 <.0001 0.818 

Severity Index 0.0709 0.00954 55.28 <.0001 1.074 

White (0) -0.0856 0.00956 80.24 <.0001 0.843 

Alcohol (0) -0.2095 0.0245 73.13 <.0001 0.658 

Cancer (0) -0.0822 0.0204 16.18 <.0001 0.848 

CTDRA (0) -0.1458 0.0345 17.91 <.0001 0.747 

Development disability 
(0) 

-0.1701 0.0570 8.92 0.0028 0.712 

Diabetes (0) -0.0873 0.0176 24.64 <.0001 0.840 

Drug abuse (0) -0.2283 0.0442 26.63 <.0001 0.633 

Injury from fall (0) 0.1278 0.0159 64.99 <.0001 1.291 

Ischaemic heart disease 
(0) 

-0.0320 0.0155 4.26 0.0390 0.938 
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Table 9 Significant Independent variables included in logistic regression model. 

The estimate (β) column in Table 11 shows the coefficients that are used in the 

model to predict whether a record will fall into the category of having a re-

admission or not.  Positive β values mean that an increase in that independent 

variable will lead to an increase in the chances of re-admission.  Negative β values 

mean that an increase in that independent variable will lead to a decrease in the 

chances of re-admission.   For example, as the coefficient for the variable 'average 

number of episodes per emergency admission spell' is positive (0.1936) then an 

increase in this variable will mean an increase in the chances of re-admission.  For 

another example, as the variable 'age 75 plus at admission (0)' is negative (-0.2222) 

then the nearer to zero this value is then the smaller the chances are of a re-

admission. 

The column titled Exp (β) represents the odds ratios for each of the independent 

variables.  For binary independent variables the odds ratio tells us the chances of 

someone having a re-admission when being in one group compared to the other.  

The table 12 shows that if a patient is aged under 75 on admission then the chances 

of re-admission are reduced by a factor of 0.64 compared to those aged 75 or over, 

with all other factors being controlled for.  Another example is that those not 

admitted due to injury from a fall are 1.29 times more likely to have a re-admission 

than those admitted for this reason, with all other factors being controlled for. 

For continuous variables such as the number of emergency admissions within the 

previous 5 years the odds ratio is 1.22 and means that for each extra emergency 

admission that the patient has, the odds of a re-admission increases by 1.22, while 

all other factors are being controlled.  

The independent variables which increase the chances of a re-admission are if the 

patient is in one or more of the following groups: 

 Age 75 plus at admission 

 Are of White ethnic origin 

 Having a high total severity index score 

 Having a high average number of episodes per emergency admission spell 
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 Having a high average number of episodes per non-emergency admission spell 

 Having a high number of emergency admissions within the previous 5 years 

 Having a high number of emergency admissions within the previous 6 months 

 Having a high number of non-emergency admissions within the previous 5 years 

 Having any of the following 

 Respiratory Infection 

 Alcohol abuse 

 Cancer 

 Connective tissue disease/rheumatoid arthritis (CTDRA) 

 Development disability 

 Diabetes 

 Drug abuse 

 Ischaemic heart disease 

 An admission for a reference condition 

 Having an admission for some other reason than an injury from a fall 
 
The Wald value is an indication of how important the independent variable is in the 

predictive ability of the model.  The higher the Wald value the more influence the 

variable has in the model.  The four variables with the largest Wald values and 

therefore the greatest ability to predict the dependent variable are:  

 Number of emergency admissions within the previous 5 years (717.67) 

 Age 75 plus at admission (366.43) 

 Number of emergency admissions within the previous 6 months (186.57) 

 Average number of episodes per emergency admission spell (162.09) 

 
8.4.2.2 Logistic Regression Model Performance 

The method of logistic regression uses a stepwise process whereby the most useful 

independent variables in terms of predicting the dependent variable are included 

in the model and the insignificant predictors are left unused.  All independent 

variables which have a significance value of less than 5% in adding to the predictive 

ability of the model are used.   
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Of the 64,892 training set records, 23,245 actually had a re-admission and the 

remaining 41,647 did not. The sensitivity of the model is the percentage of records 

that actually had a re-admission within 12 months that were correctly predicted to 

have   a re-admission by the model (known as true positives). Of the 23,245 training 

dataset patients that actually had a re-admission within 12 months, 41.2% (9,576) 

were correctly predicted as having re-admission. 

The specificity of the model is the percentage of records that actually did not have 

a re-admission within 12 months that were correctly predicted not to have a re-

admission by the model (these are also known as true negatives). Of the 41,647 

training dataset patients that actually did not have a re-admission within 12 

months, 90.3% (37,607) were correctly predicted as not having a re-admission. 

The positive predictive value is the percentage of records that the model predicts 

will have a re-admission that actually did have the re-admission. The positive 

predictive value for the training dataset of the analysis showed that 70.3% (9,576) 

of the 13,616 patients predicted to have a re-admission actually did, which is not 

as better as fuzzy regression which  with positive predictive value of 72.02% 

(13,668) 

The negative predictive value is the percentage of records that the model predicts 

will not have a re-admission that actually did not have the re-admission. The 

negative predictive value for the training dataset of this analysis showed that 73.3% 

(37,607) of the 51,276 patients predicted not to have a re-admission were 

predicted correctly. 

Fig 41 shows the percentage of patients flagged by the algorithm as being likely to 

have a re-admission that actually went on to have the re-admission. The horizontal 

axis shows the risk score threshold and this refers to the cut off level by which a 

person is predicted as having a re-admission. The output from logistic regression 

gives us the percentage chance that a person will have a re-admission. Fig 41 shows 

the effect that varying the risk score threshold level has on the percentage of 

flagged patients who were re-admitted. Higher risk score threshold result in higher 

percentages of flagged patients actually having re-admissions. The model used in 

this thesis (the blue and red lines) for percentage of flagged patients in 6 months 
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and 12 months, and green line for percentage of flagged patients  in 30 days. The 

percentage of flagged patients who were readmitted within 12 months appears to 

be better than the percentage of flagged patients in 6 months and 30 days. As 

shown in figure 41, percentage of patients flagged within 12 months and 30 days 

at risk score threshold of 40 appears to be quite similar, whereas percentage of 

patients flagged within 6 months is not as better as readmission in 12 months.  

 

Figure 34 Percentage of patients flagged by the logistic regression model 

8.4.3 Decision Tree  

Classification tree model predicts one attribute (the dependent variable) given 

other attributes (the independent variables). Classification is the process of 

assigning a discrete value (or class such as whether the patient has a re-admission) 

as accurately as possible to an unlabelled and previously unseen record. Each time 

we receive an answer to a question we can ask a further question until we can be 

fairly confident that a patient will or will not have a re-admission.  For example, we 

might first ask if the patient is aged 75 or over.  If the answer is yes, then we may 

ask another question enquiring if the patient is male.  If the answer is again yes, the 

next question might enquire about the number of times that the patient has been 

admitted in the previous 5 years.  If this value is over 5 then the model might give 
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us a risk score of say 90% that the patient will have a re-admission in the next 12 

months.  We can therefore formalise rules that predict a patient’s chances of re-

admission.  This type of model is known as a classification tree (Razi & Kuriakose, 

2005; Austin, 2007) because patients are given risk scores of re-admission by the 

answers to several layered questions.  These layers can be viewed visually as having 

a tree structure with  

 a root node by which the data is initially split 

 internal nodes representing questions to which the data is interrogated and 

split by.   The higher up the tree a question is asked, the more likely it is to play 

a decisive role in predicting re-admission. 

 branches representing a split from a question node (e.g. under 75 years of age 

or 75 and over), and 

 terminal nodes (leaves or leaf nodes) which define an output class that allows 

us to classify a patient by their risk of re-admission. 

More details of theoretical study can be found in section 3.2 of Appendix 3.Our 

focus is on the classification tree model which was fitted to the dataset.  The same 

training and validation datasets which were used in the logistic regression analysis 

were used here for model performance comparison purposes. Therefore, the input 

dependent and independent variables used in the classification tree model were 

the same as those used in the logistic regression model. 

 

 

 

 

 

 

 

 

 

Table 10 Settings used for the classification tree model 

Tree algorithm used C4.5 

Maximum number of branches from a node 4 

Maximum depth of tree 4 

Minimum number of observations in a leaf 250 

Observations required for a split search 600 
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8.4.3.1 Significant independent variables included in the model 

 The classification tree shows the following significant factors in table 8 predicting 

re-admission (the variable names as shown in the tree are displayed along with the 

relative importance in model. 

 

Table 11 Settings used for the classification tree model. 

 

All of the above factors were also significant in the logistic regression model.  The 

number of emergency admissions in the previous 5 years is the single most 

important predictor to the model, having a relative importance which is 4 times 

higher than the next most important factor (severity index).  It is interesting to note 

that factors such as age and ethnic origin which were significant in predicting re-

admission in the logistic regression model are not significant in this model. 

However, the general characteristics for patients who are readmitted or not are 

summarised below. 

Factor Factor name in tree Relative 
importance in 
model 

The number of emergency 
admissions within the 
previous 5 years 

NumberOfEMAD_within_5years 1.000 

The severity index total 
score for conditions in the 
current admission and in the 
previous 5 years 

Severity_Index 0.246 

The number of emergency 
admissions within the 
previous 6 months 

NumberOfEMAD_within_6months 0.068 

Whether the patient had a 
reference condition in the 
current admission or in the 
previous 5 years 

Ref_condition_prev_5_yrs 0.060 
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8.4.3.2 Factors that increase the chances of re-admission 

The number of emergency admissions in the previous 5 years is the most dominant 

factor in predicting a re-admission, with larger numbers of previous admissions 

greatly increasing the chances of a return to hospital. Number of previous re-

admissions act as a strong and accurate predictor. Patients with 4 or more previous 

admissions will have a re-admission, and with 6 or more previous admissions being 

a particularly strong and accurate predictor. Recent history is important in 

predicting the chances of re-admission as the likelihood of a return to hospital 

increases if the patient has had 5 emergency admissions in the previous 5 years and 

at least 1 of these was in the previous 6 months.  Re-admission chances are 

increased if the patient has had severe conditions or many conditions in the 

previous 5 years and presence of a reference condition also increase the chances 

of re-admission.   

8.4.3.3 Classification tree model performance 

Both classification tree and logistic regression models are similar in able to extract 

factors that are significant in predicting re-admission. Classification tree found only 

five independent variables that are significant in predicting re-admission as 

opposed to 19 found by logistic regression models. The 5 variables found to be 

significant in the tree model were also found to be significant in the regression 

model proving that these were highly significant in both models.  

This analysis focuses on the classification tree model which was fitted to the 

dataset.  The same training and validation datasets which were used in the logistic 

regression and fuzzy regression analysis were used here for model performance 

comparison purposes.  Therefore the input dependent and independent variables 

used in the classification tree model were the same as those used in the logistic 

regression model.   

The sensitivity of the model shows that 43.7% (10,158) of the 23,245 patients that 

actually had a re-admission within 12 months were correctly predicted to have the 

re-admission.    The specificity of the model shows that 89.5% (37,274) of the 

41,647 patients that actually did not have a re-admission within 12 months were 

correctly predicted not to have the re-admission.   
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The positive predictive value shows that 69.9% (10,159) of the 14,531 patients 

predicted to have an emergency re-admission within 12 months actually did so.  

This value is not quite as good as that obtained from the logistic regression 70.3%. 

The negative predictive value shows that 74.01% (37,274) of the 50,361 patients 

predicted not to have a re-admission within 12 months were predicted correctly. 

Fig 35 shows the effect that varying the risk score threshold level has on the 

percentage of flagged patients who were readmitted. Higher risk score threshold 

result in higher percentages of flagged patients actually having re-admissions. The 

model used in this thesis (the blue and red lines) for percentage of flagged patients 

in 6 months and 12 months, and green line for percentage of flagged patients  in 

30 days. The percentage of flagged patients who were readmitted within 12 

months appears to be better than the percentage of flagged patients in 30 days and 

6 months. As shown in figure 42 percentage of patients flagged within 30 days, 6 

months and 12 months appears to be similar at risk score threshold of 40. With 

increasing threshold between 50 to 70 risk score threshold, percentage of 

readmitted patients flagged within 30 days and 6 months appears to be similar, 

while percentage of patients flagged for readmission within 12 months is still better 

than readmission_6 or readmission_30. 
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Figure 35 The percentage of patients flagged by the classification tree model 

8.4.4 Neural Network Validation 

Neural networks (DI-Russo, 2002; Lin, et al., 2010)are dynamic nonlinear models 

that are used to predict the value of a dependent variable given several 

independent variables.  When predicting the dependent variable the model also 

gives the probability of obtaining the outcome (which would be re-admission in this 

scenario).   

Neural networks are very good models for finding patterns between the dependent 

and independent variables by learning from the dataset and displaying the 

relationship between the variables. The multiple independent variables (in this 

project, the characteristics and hospitalisation history of the patient) all exist 

separately in individual neurons (nodes or cells) in the input layer of the neural 

network. The dependent variable (the binary variable showing if a patient had a re-

admission or not) exists in the output layer of the network.  Between the input and 

output layers there exists at least one (usually one or two) hidden layers.  The input 

and output layers are connected by synapses (arcs) which join the input cells within 

the input layer to nodes within the hidden layer(s), which in turn connect to the 

output layer as a combination of merged factors.  These arcs have weights which 
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enable us to determine the significance that the independent variable has on 

predicting the dependent variable.  When the dataset values for the independent 

variables are used to train the neural network model the weights are optimised in 

order to give the best fitting model which is most accurate in classifying new 

records correctly as to whether or not they had a re-admission. Details of 

theoretical study of neural network model is found in section 2.3 of Appendix 3. 

It focuses on the neural network model which was fitted to the dataset.  Neural 

networks with 1 hidden layer with between 2 and 25 neurons in each layer were 

constructed and the settings which gave the best performance in terms of positive 

predictive value and percentage accuracy in classification within the training and 

validation datasets are shown in Table 9 

 

Table 12 Settings used for the neural network model. 

 

8.4.4.1 Significant independent variables included in the neural network model 

Figure 36 shows blue and red boxes which represent the sign and size of the 

weighting from each of the 9 neurons in the hidden layer within the neural network 

to the output variable (re-admission within 12 months). Blue boxes (H11, H13, H14, 

H16 and H18) represent positive weightings with the dependent variable and red 

boxes (H12, H15, H17 and H19) represent negative weightings.  The size of the box 

reflects the magnitude of the weight with boxes H17 and H14 having the largest 

impact on the dependent variable.  The actual weightings are shown in Table 10. 

Number of hidden layers 1 

Number of hidden neurons 9 

Network architecture Multilayer Perceptron 
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Figure 36 Blocks representing weightings on arcs between neurons. 

 

 

 

 

 

 

Table 13 Weightings on arcs between neurons.  

The blue box at nodes H11, H13, H14, H16 and H18 all represent positive weights 

to the dependent variable, which means that positive input values to these hidden 

nodes increase the chances of re-admission as the positive input when multiplied 

by the positive output weight results in a positive (increased) chance of re-

admission, while negative input values decrease the chances of a return to hospital 

as the negative input multiplied by the positive output weight results in a negative 

(decreased) chance of re-admission.  Therefore any of the 26 independent variables 

that have positive weights to these 5 boxes increase the chances of re-admission 

while those with negative weights decrease the chances of re-admission. As hidden 

neuron H14 has the highest positive weight with the dependent variable we shall 

consider the most important independent variable inputs to this neuron and see 

Neuron Weighting Neuron Weighting Neuron Weighting 

H11 
0.439 

H14 
0.757 

H17 
-0.831 

H12 
-0.566 

H15 
-0.318 

H18 
0.305 

H13 
0.436 

H16 
0.617 

H19 
-0.389 
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which of the variables make re-admission more and less likely.  The 5 independent 

variables with the largest absolute weights going to node H14 are shown in Table 

16.  Any variable with a positive weighting increases the chances of re-admission 

while those with negative weightings decrease the chances of re-admission. 

 

 

 

Table 14 Variables with the largest absolute weights going to node H14. 

 

Therefore, the following factors increase the chances of re-admission 

 Having a high severity index 

 Having higher numbers of emergency and non-emergency admissions in the  

 previous 5 years. 

 Not having renal failure 

 Being aged 75 or over on admission 

 

Most of these factors were also found to be significant in the other two models. 

7.4.4.2 Performance of Neural Network Model 

The sensitivity of the model at a risk threshold of 50 shows that 40.01% (9,330) of 

the 23,245 patients that actually had a re-admission within 12 months were 

correctly predicted to have the re-admission. The specificity of the model shows 

that 89.9% (37,440) of the 41,647 patients that actually did not have a re-admission 

within 12 months were correctly predicted not to have the re-admission.   

Variable Weighting Absolute 
weighting 

Severity Index 1.006 1.006 

Number of non-emergency admissions 
within the previous 5 years 0.583 0.583 

Number of emergency admissions within 
the previous 5 years 0.556 0.556 

Renal Failure (0) 0.506 0.506 

Age 75 plus at admission (0) -0.490 0.490 
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The positive predictive value shows that 69% (9,228) of the 13,537 patients 

predicted to have an emergency re-admission within 12 months actually did so.  

This value is not quite as good as that obtained from the logistic regression and 

fuzzy regression analysis at 72.02%, and 70.3%. The negative predictive value 

shows that 72.9% (37,440) of the 51355 patients predicted not to have a re-

admission within 12 months were predicted correctly. 

 

Figure 37 The percentage of patients flagged by the neural network model 

Figure 37 shows the effect that varying the risk score threshold level has on the 

percentage of flagged patients who were readmitted. Higher risk score threshold 

result in higher percentages of flagged patients actually having re-admissions. The 

model used in this thesis (the blue and red lines) for percentage of flagged patients 

in 6 months and 12 months, and green line for percentage of flagged patients  in 

30 days. The percentage of patients flagged in 12 months at risk score threshold of 

40 appears to be better than patients admitted in 6 months and 30 days.  As shown 

in figure 44 at risk score of 60 or above percentage of patients flagged within 30 

days months and 6 months appears to be similar. At higher risk score of 90 or 

above, readmission within 30 days, 6 month and 12 months is quite similar. 
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8.4.4.3 Conclusion of Neural network  

The findings are similar to those of found in the previous two models with high 

numbers of previous admissions being a strong predictor of re-admission. The 

factor of age, which was highly significant in the logistic regression but was not 

significant in classification tree model, returns to be significant again in the neural 

network model. However, the factor of age still plays a more significant role in the 

regression model than in the neural network model. 

8.4.5 Comparison of different Models 

A number of predictive models and tools have also been developed for the 

prediction of patients who are at high risk of re-admission (Austin, 2007; Rosma, et 

al., 2008; Krumholz, et al., 1997). These studies tend to produce conflicting results 

where factors associated with unplanned re-admissions vary widely in statistical 

significance and, as a consequence, the predictive model and the tool may not 

provide sufficiently accurate predictions. Most predictive models have focused on 

regression techniques, although there is an emerging interest in machine learning 

algorithm. 

Several studies have tried to compare the performance of previous predictive 

models. A number of studies have compared the predictive ability of decision trees 

with regression analysis and Artificial Neural Network. Predictive ability can be 

compared using the area under ROC.  

The results show that fuzzy regression models provide better prediction in 

comparison to logistic regression models, decision tree and neural network model 

where the data is binary or categorical. Logistic Regression Models show better 

results than Neural Network. This is represented by area under ROC curve in figure 

38. 

The performance of the model is shown with the help of ROC curve in the figure 

38. The receiver operating curve in the figure 38 illustrates the trade-offs for users 

between sensitivity (true positives) and 1-specificity (false negatives) for the 

algorithm. True positives (sensitivity) and false positives (1-specificity) are 

evaluated at different risk score (0-100). At risk score 50 sensitivity and specificity 
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are evaluated. Sensitivity of the model is the percentage of records that actually 

had re-admission as per the model, which is 58.8% for fuzzy regression algorithm. 

The specificity of the model is the percentage of records that actually did not have 

re-admission within 1, 6 and 12 months that were correctly predicted not to have 

re-admission as per the model (true negatives). For fuzzy regression model, the 

specificity is 87.4%. A table summarizing the sensitivity, specificity and PPV for 

different models is given here: 

Method Sensitivity Specificity PPV 

Fuzzy Regression 58.8% 87.4% 72.02% 

Logistic Regression 41.2% 90.3% 70.3% 

Decision Tree 43.7% 89.5% 69.9% 

Neural Network 40.01% 89.9% 69% 

Table 15 : Summary the sensitivity, specificity and PPV for different models. 

The figure 38 shows that fuzzy regression model performs well with addition of 

significant independent variables. Area under curve (AUC) is 0.735 which is slightly 

higher than logistic regression (AUC 0.723), and better than decision tree (AUC 

0.715). Neural network shows the least performance with AUC 0.699. Area under 

ROC curves for different models with confidence interval values is given below: 

Method AUC  Confidence Interval 

Fuzzy Regression 0.735 95% CI:73.85%-89.88% 

Logistic Regression 0.723 95% CI:72.43%-86.54% 

Decision Tree 0.715 95% CI:71.56%-87.24% 

Neural Network 0.699 95% CI:69.83%-87.54% 

Table 16 Area under ROC curves for different models with confidence interval 

values. 
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Figure 38 Comparison of ROC curves for different models 

Figure 39 shows the percentage of patients flagged by the algorithm as being likely 

to have a re-admission that actually went onto have the re-admission.  The 

horizontal axis shows the risk score threshold and this refers to the cut off level by 

which a person is predicted as having a re-admission.  Figure 46 shows the effect 

that varying the risk score threshold level has on the percentage of flagged patients 

who were readmitted.  Higher risk score thresholds result in higher percentages of 

flagged patients actually having re-admissions.  The fuzzy regression performed 

better than other models such as logistic regression, decision tree and neural 

network model in our experiments. At risk score of 40 or above, the percentage of 

patients flagged by fuzzy regression model appears to be better than logistic 

regression method, decision tree, and neural network. Although at risk score of 40 

and 50, percentage of flagged patients by neural network appears to be quite 

similar to decision tree, is not as good as fuzzy regression models. The percentage 

of patients flagged as readmitted by logistic regression and classification tree 

model is almost similar. In conclusion, neural network model does not perform as 

good as other models. 
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Figure 39 Comparison of the percentage of patients flagged by the neural network 

model. 

8.5 Benefits of Predictive Models 

There are a wide range of predictive models available to the NHS in England for 

forecasting health and social care outcomes. Most of these models aim to predict 

readmissions within time frame, however they differ in terms of time period they 

predict and whether they predict single or multiple readmissions. For example, 

models predict readmissions within 12 months of discharge but models could also 

be developed for shorter and longer time frames. In order to compare different 

models, it is important that their predictions are based on the same source of 

healthcare data. The term predictive model or risk prediction model are used 

interchangeably to implement the algorithm or the computational steps to 

evaluate individuals at risk of readmission. We have implemented various 

algorithms such as logistic regression, decision tree and neural network to make 

predictions about their readmission. These models forecast patients at risk of 

readmission using risk scores. Technically, PARR and PARR+ models are usually 

logistic regression models, but decision tree and neural network models are 
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developed and implemented for comparison and evaluation purpose. Our model 

implements fuzzy regression algorithm to estimate individuals at likelihood of 

readmission. 

Predictive risk models can be useful in predicting occurrence of readmission that 

following benefits to the healthcare community. 

 By predicting such events, it is possible to provide preventive care that can help 

in improving health status and quality of care to the high risk individuals. 

 By providing preventive care, it can aid in general net savings after taking into 

account the success rate of interventions and its cost. 

 Predictive risk models are developed by analyzing historical data and 

correlations between outcome of an event and a range of predictor 

(explanatory variables) from prior data.  Significant predictor variables may 

include age, gender, and a range of diagnostic variables. Clinicians may benefit 

from understanding a range of predictor variables responsible for outcome of 

an event, and in targeting individuals for whom intervention may reduce or 

delay hospital readmission. 

8.6 Summary 

In this chapter, different risk prediction models are compared. These models tend 

to produce results with significant factors associated with re-admissions. All of the 

methods tend to find factors that are significant in predicting re-admission. The 

method of logistic regression uses a stepwise process whereby the most useful 

independent variables in terms of predicting the dependent variable are included 

in the model and the insignificant predictors are left out. All of the factors 

significant in the logistic regression model were also significant in classification tree 

model. Classification tree, neural network and fuzzy regression method found less 

significant independent variables as opposed to 19 factors found in logistic 

regression. The factor of age, which was highly significant in the logistic regression 

but was not significant in classification tree model, returns to be significant again 

in the fuzzy regression model. Two of the factors which were significant in all 

models are previous admissions and severity of illness. Addition of significant 
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independent variables may increase the predictive power of the model. These 

models were also compared for area under ROC curves, where fuzzy regression 

method (with AUROC as 0.735 fuzzy) outperforms other methods.  
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Chapter 9  

9. Conclusions and Future work 

9.1 Conclusion 

The overall aim of this research was to develop a framework that can be used for 

the prediction of risk of re-admission of a patient within 12 month of discharge. 

Risk of readmission can be stratified into high, medium or low risk of readmission. 

Boundaries of risk stratification is not crisp, and proper intervention can aid in 

movement of patients from high risk to medium or low risk band. Readmission of a 

patient can be defined in a set as [0, 1], where re-admitted is ‘1” and not-

readmitted is “0”. Uncertainty in decision making can be defined as a degree of 

opinion of a readmitted patient belonging to a set [0, 1]. Traditional techniques are 

not able to deal with uncertain type of information. In our case, the response 

variable is governed by uncertain relationship among response variable and 

explanatory variables. A framework adapting fuzzy linear regression method was 

proposed to provide solution to the problem described. 

We will revisit research objectives and verify whether they have been successfully 

fulfilled. Basically there were three objectives: development of a framework and a 

model that predicts patients at risk of re-admission, development of novel 

algorithm that captures uncertainty in “risk of re-admission”, and performance 

evaluation of the developed model. In the process, we also identified significant 

independent variables for the proposed model.  This framework was developed to 

deal with uncertainty in risk of re-admission. The overview of the framework 

developed to achieve these objectives was described in chapter 5 of the thesis 

whereby a full description of steps followed was provided. In chapter 5, we have 

described the development of proposed novel algorithm which adapts fuzzy 

regression method. This algorithm was based on fuzzy linear regression method 

with inclusion of significant risk factors. Independent variables were assessed with 

the help of statistical analysis. More detailed description of health system variables 
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and significant risk factor for identifying patients at risk of re-admission is given in 

chapter 4. 

The proposed fuzzy regression model was developed as a machine learning 

algorithm that can be used to identify patients at risk of re-admission. This 

algorithm has been developed and validated on Hospital Episode Statistics (HES) 

dataset and validated using validation dataset. The validation exercise was 

performed by constructing other models like decision tree, artificial neural 

network, and logistic regression models that were also tested on the same dataset. 

The model performances were measured by area under receiver operating curve 

(ROC). The explanatory power of the model, which refers to its ability to explain 

certain dependencies in the data, was investigated using statistical analyses. The 

percentage of patients flagged to have re-admission within 12 months is predicted 

using positive predictive value, at varying risk threshold levels. 

The findings show that: 

 

 The fuzzy regression model, artificial neural network and logistic regression 

model exhibit significant similar prediction ability based on similar dataset 

extracted from HES data. 

 The fuzzy regression, neural network and logistic regression prediction models 

exhibit better prediction ability when significant input variables are included in 

the model. 

 The proposed fuzzy regression model has an advantage over artificial neural 

network because of its ability to explain the associations between the predictor 

variables and predicted outcome. The discussion on associations is explained in 

chapter 5 and chapter 7. 

 Both, the fuzzy regression model and logistic regression model are able to 

interpret the associations between input predictor variables and response 

variables. However, logistic regression model is not able to handle uncertain 

response variable, and uncertain relationship between response variable and 

predictor variables. We overcame this limitation in our fuzzy regression based 

proposed algorithm, as it handles uncertainty in risk of re-admission. 
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 Our proposed prediction model is better than classical prediction model when 

prediction performance is considered. Prediction performance is evaluated 

and compared in chapter 7.The proposed framework using novel algorithm is 

highly recommended because of its good performance in predicting patients 

at risk of re-admission. It also has the ability to capture uncertain nature of re-

admission and handle uncertain response variable. 

 We used risk scores ranging from (0-100) for patients readmitted within 12 

months discharge period using HES data. Patients can be stratified into various 

risk bands from high to low according to these risk scores. This would help us 

in identification of percentage of patients flagged by the model at various risk 

threshold levels. The performance of predictive model could be compared and 

evaluated with the help of area under receiver operating curve, specificity and 

sensitivity at a risk score threshold value. We captured and compared results 

of our proposed model with other traditional models. By risk stratification, 

interventions could be targeted for individuals who are most in need of 

hospital resources. 

 

The outcome of this research contributes towards a better understanding of risk of 

re-admission. 

As a conclusion, the proposed fuzzy regression model is highly recommended to be 

used as an aid to predict patients at risk of re-admission.  

The extensive experiment and validation exercises carried out for this research 

work has led to the comparison with other risk prediction models. The information 

may serve as the guide for future prediction modelling as well as providing 

foundation for setting up of a computer based prediction tool. 

9.2 Limitation of Studies 

The research mainly concentrated on design and development of a framework to 

predict patients at risk of re-admission using HES dataset. This framework is a step 

towards handling uncertain information. However, there are a number of issues 
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regarding the dataset and a proper way to handle uncertain information. We have 

tried to address some of the limitations of our research here: 

 The research has relied on historical data from HES (Hospital Episode Statistics) 

data for past five years from 1999/2000 to 2004/2005 for triggering admission in 

2004/2005. There were concerns for missing episodes, which affected the results 

of the predictive model. Also, the data collected has quality and consistency issues. 

The data was missing date of birth and discharge dates for the patients. 

 Outlier detection problem: As for graphical analysis there is a lack of tools that 

address the outlier problem in fuzzy framework. When outliers exist in the data, 

the interval obtained by using fuzzy linear regression or logistic regression becomes 

too large and thus result in erroneous power. 

 In our framework we have modelled non-crisp output as “risk of re-admission” 

which can be represented by linguistic variable “high, medium or low” risk of re-

admission. We have modelled response variable with membership functions as 

triangular and trapezoidal membership functions. Significant input variables could 

also be modelled with membership functions.  It is difficult to represent all input 

variables with membership functions in a fuzzy environment. Consideration of 

membership functions of input variables could increase computational complexity 

of our algorithm. 

 In our research, we have adapted fuzzy regression method to estimate unknown 

dependency between risk of re-admission and input variables. The dependency 

between response variable “risk of re-admission” and independent variables can 

be masked by different fuzzy rules. In addition, relationship between input 

variables is unknown, therefore significant number of fuzzy rules could be 

generated. A large of number of fuzzy rules would make our algorithm 

computationally intensive and slow.  

This is explained with the help of small example. The investigation on health system 

variables is done with a single input variable fed into the system and the output 

was recorded or measured. Eventually, the number of input variables fed into the 

system can be increased to two, three and four etc. Each input predictor variable 

can be represented by a fuzzy membership function. For a two input variable 
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system, where fuzzy relationship between variables is considered a number of fuzzy 

rules will be generated. In the first case, if we consider fuzzy rules for two input 

variables out of all input variables (for e.g 8 input variables), the number of possible 

combinations of input set will be 8c2, which will be 28 input sets to consider. 

Following, if 3-variables are considered with fuzzy membership function, then the 

total number of input sets to be experimented will be 56 (8c3). Similarly, if 4-input 

variables are represented with fuzzy membership function, and fuzzy relationship 

between variables is considered there will be total of 70 (8c4) input fuzzy sets. 

Increasing the number of input variables with fuzzy membership functions will 

increase possible number of input sets. Using all possible input sets will require 

extensive computational time and expensive resources.  

 We have considered uncertainty in the form of fuzziness in “response variable”. But 

there could be other types of uncertainties present in variables which we have not 

considered. As for example, uncertainty may be in the form of randomness. These 

other types of uncertainties may be considered simultaneously along with 

fuzziness. 

9.3 Novel elements of Research 

Our research is novel in the sense that it is the first study that handles linguistic 

uncertainty between high, medium and low risk of readmission.Traditional 

methods of prediction such as logistic regression are not able to account for 

uncertain nature of risk of hospital re-admissions.  

The proposed model helps to account for the uncertain nature of risk of re-

admission. It also allows to stratify patients into different risk bands and targeting 

interventions at individuals who will benefit most. The model can be used to set 

risk scores and thresholds for patients who are at risk of future re-admissions. 

 Patients at risk of re-admission could be identified with consideration of significant 

variables. Selection of independent variables as potential covariates helps in 

recognizing important risk factors to predict likelihood of re-admission. This 

proposed model based on significant risk factors selected by the novel algorithm 

predicts patients at high risk of re-admission. The knowledge of the impact of risk 
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factors will provide clinicians better decision-making and reducing the number of 

patients re-admitted to the hospital.  

The other important novel element is the design and development of an algorithm 

that adapts fuzzy regression method. This algorithm estimates the unknown 

dependency between the independent variables and the response variable. We 

believe that this will start a novel approach to handle uncertain nature of outcome 

of an event using the possibilistic approach. This model could be a new approach 

to modeling uncertainty in risk of re-admission, and can help in better decision 

making.  

9.4 Future Work 

We plan to apply the fuzzy linear regression method with more datasets by 

including more significant health system variables for predicting patients at risk of 

admission and stratifying them from high to low risk of re-admission. We wish to 

visualize the results to check the impact of these significant risk factors in risk of 

admission of a patient. We can further investigate the risk of re-admission with 

input variables using statistical techniques. Response variable may be influenced 

by one or multiple risk factors, therefore statistical methods such as multivariate 

analysis could be used. 

The relationship between the response variable and risk factors may not always be 

linear. Therefore, we can propose another algorithm adapting fuzzy logistic 

regression method with non-linear to linear transformations. The fuzzy regression 

method could be further improved with least square estimates. Fuzzy least square 

estimate can be used to estimate the errors, and unknown dependency between 

risk of admission and explanatory variables. 

Based on proposed framework, we plan to develop a prototype adapting our novel 

algorithm for predicting patients at risk of re-admission. A predictive tool can be 

designed with the use of HES datasets for stratification of patients into high, 

medium and low risk of re-admission. By using risk prediction tool, it would be 

possible to identify those patients who are most in need of hospital resources and 

stratify them according to complexity of utilisation of resources. 
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This model for identifying high risk patients will enable GPs and Clinical 

Commissioning Groups (CCGs), to target specific groups of patients and enable 

clinicians to offer better preventive care for high risk individuals. On the basis of 

proposed model, a tool could be developed to predict such high risk events. It will 

be important for local NHS organizations to consider the potential role of these 

tools as improving the health of their population. It will also be important in 

identifying individuals who can be benefit by tests and treatment. Our approach is 

useful for CCGs in moving patients from high to medium, or medium to low risk by 

offering interventions to avoid readmissions 
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 Appendix 1 

Authors(s) Objective Methodology 

(García-Pérez 
et al., 2011; 
Billings et al., 
2013) 

Identify risk factors for 
hospital re-admission. 

Logistic Regression 

(Chan et al., 
2011) 

Identifies  admission and 
unplanned re-admission of 
COPD patients 

Univariate analyses, includes t-
tests and chi-square tests. 
Multivariate analyses, uses 
logistic regression. 

(Demir et al., 
2008) 

To determine the risk of 
unplanned re-admission.  

Phase-type distribution and 
transition modelling framework. 

(Marcantonio 
et al., 1999) 

Identify high risk of re-
admission. 

A case-control design, the 
Cochrane Mantel-Haenszel chi-
square to assess bivariable 
associations and conditional 
logistic regression model to 
determine independent 
associations with re-admission. 

(Brunetto, A. 
T. et al, 2010) 

To identify the pattern and 
risk of unplanned hospital 
admissions in a dedicated 
phase I clinical trials unit. 

Logistic Regression model was 
applied to define the baseline 
characteristics associated with 
the unplanned admissions. 

(Byrne et al., 
2010) 

To examine in-hospital 
mortality and its predictors 
in all elderly patients  

Admission case mix system for 
Elderly (ACME) that uses 
multivariate logistic regression 
model by adjusting the 
univariate predictors of 
outcome. 

(Corrigan and 
Martin, 1992) 

To identify multiple 
hospital admissions, 
relationship of patient and 
health system 
characteristics associated 
with re-admission. 

Predictive Model using 
regression model to predict 
likelihood of re-admission. 

Table 1 Studies for predicting unplanned admission. 
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Table 2 Risk Factors for Risk of Re-admission. 

 

 

 

 

 

 

 

 

 

 

Risk factors for 
admission of a 
patient 

Response 
variable 

Authors 

Age Independent 
variable 

(Brunetto, A. T. et al, 2010 ; Chan , et 
al., 2011; Corri gan and Martin, 1992; 
Marcantonio et al., 1999) 

Severity of illness Independent 
variable 

(Brunetto, A. T. et al, 2010) 

Type of care Independent 
variable 

(Pearson et al., 2002) 

Morbidity/comorbidi
ty 

Independent 
variable 

(Marcantonio et al., 1999; Bisserier et 
al., 2010) 

Functional disability Independent 
variable 

(Bisserier et al., 2010) 

Prior admission Independent 
variable/Respons
e variable 

(Bisserier et al., 2010 ; Marcantonio et 
al., 1999) 
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Appendix 2 

A2.1 Hospital Episode Statistics (HES) Data base: Conditions used in this 

Thesis 

For each of the conditions in TableA1.1 binary variables are created to record 

whether each of the patients involved in 109,243 triggering emergency admissions 

had the condition in the current admission in in the previous five years. 

If the patient had the condition during this period then they were allocated a value 

of 1 for the condition.  For example, if a patient had cancer at one point in either 

the triggering admission or in the previous 5 years then they were coded as having 

cancer = 1.  It was also recorded as to whether each patient had any of the 

reference conditions shown in Table A1.3.  If the patient had any of the reference 

conditions the variable of reference_condition was set to 1, else it was 0. 

The Charlson comorbidity severity index allocates severity scores to diseases (as 

shown in Table A1.2).  This was incorporated into this analysis by summing up the 

total severity of conditions that the patient had in the triggering admission and in 

the 5 years prior to that point.  The following formula was used in Access to work 

out the severity index for patients.  All the condition variables are binary in nature.  

Therefore, if the patient had the condition the corresponding variable is set to 1.  

The sum of all conditions at the same severity weighting is calculated and then 

multiplied by the weighting to produce the severity total score.  Patients with 

higher total severity index scores either had more severe conditions (such as HIV 

or Metastatic Cancer) or just had multiple conditions. 

Severity_Index = 

(([IschaemicHD]+[CHF]+[PVD]+[CVD]+[Mental]+[COPD]+[CTDRA]+[Peptic_Ulcer]+[

Liver]+[Diabetes_without_comps])*1)+(([Hemiplegia]+[RenalFail]+[Diabetes_with

_comps]+[Cancer_lower_form])*2)+([Mod_Sev_Liver]*3)+(([Metastatic_Cancer]+

[HIV])*6) 

Additional numerical variables were created to record the number of previous 

emergency and non-emergency admissions that the patients had in the 1 month 
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(30 days), 6 months (180 days), and 12 months (365) prior to their triggering 

admission date.  The average number of episodes per emergency admission and 

non-emergency admission spells in the 5 years prior to their triggering admission 

were also created for these patients.  It was important here to exclude all duplicate 

episodes for the patients.  Therefore previous admissions that started on the same 

day were only counted once. 

 

Condition ICD 10 codes 

Alcohol abuse F10, K70 

Anaemia D50, D64, D539, D639 

Angina I20 

Asthma J45-J46 

Atrial fibrillation I471, I48 

Cancer All codes beginning with C, D00-D48 

Cerebrovascular disease (CVD) I60-I67, I69, G45, H340, R298, R470 

Congenital disability Q00-Q99 

Congestive heart failure (CHF) I50, I110, I130 

Connective tissue 

disease/rheumatoid arthritis 

(CTDRA) 

M32-M36, M05, M06, M08, I39, I528, 

I418, I328, J990, G737 

Chronic obstructive pulmonary 

disease (COPD) 

J43-J44 

Development disabilities F70-F89 

Diabetes E08-E14, G632, H360, H280, O24 

Drug abuse F11-F16, F18-F19, K71 

HIV/AIDS B20-B24 

Hypertension I10-I15 
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Injury from fall W00-W19 

Ischaemic heart disease I21-I25 

Mild Liver disease K703, K743-K746, K760, K769 

Mental illness F00-F09, F17-F69, F90-F99 

Peripheral vascular disease (PVD) I700-I702, I71-I72, I731-I739, I709, 

I792, I771, R2 

Renal Failure N18-N20, Z940 

Sickle cell disease D57 

Respiratory infection J02, J93, J85, J81, J32, J90, J86, J96, 

J393, R091, R098, J869, J998, J840-

J841, J04-J06, J20-J21, J384-J387 

 

  Table A2.2 – Conditions and their associated ICD 10 codes 

The condition categories of Ischaemic heart disease and mental illness in Table A2.2 

above were added in place of Myocardial Infarct and Dementia, which were 

included in the actual Charlson comorbidity severity index measure.  These two 

added categories were deemed to be similar in nature to the original conditions 

and were used instead to be consistent with the conditions used in Table A2.1 
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Condition Charlson 

Comorbidity 

Severity Index 

ICD 10 codes 

Ischaemic heart 

disease 

1 I21-I25 

Congestive heart 

failure (CHF) 

1 I50, I110, I130 

Peripheral vascular 

disease (PVD) 

1 I700-I702, I71-I72, I731-I739, I709, 

I792, I771, R2 

Cerebrovascular 

disease (CVD) 

1 I60-I67, I69, G45, H340, R298, R470 

Mental illness 1 F00-F09, F17-F69, F90-F99 

Chronic obstructive 

pulmonary disease 

(COPD) 

1 J43-J44 

Connective tissue 

disease/rheumatoid 

arthritis (CTDRA) 

1 M32-M36, M05, M06, M08, I39, 

I528, I418, I328, J990, G737 

Peptic Ulcer 1 K25-K28 

Mild Liver Disease 1 K703, K743-K746, K760, K769 

Diabetes without 

complications 

1 E100, E10l, E106, E108, E109, E110, 

E111, E116, E118, E119, E120, E121, 

El26, E128, El29, E130, E131, E136, 

E138, E139, E140, E141, E146, E148, 

E149 

Hemiplegia 2 G041, G114, G801, G802, G81, G82, 

G830-G834, G839 

Renal Failure 2 N18-N20, Z940 
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Diabetes with 

complications 

2 E102-E105, E107, E112, E115, E117, 

E122-E125, E127, E132-E135, E137, 

E142-E145, E147 

Cancer 2 All codes beginning with C, D00-D48 

Moderate to severe 

Liver Disease 

3 I850, I859, I864, I982, K704, K711, 

K721, K729, K765, K766, K767 

Metastatic Cancer 6 C77-C80 

HIV/AIDS 6 B20-B24 

 

Table A1.2 – Conditions with Charlson comorbidity severity index weightings and ICD 10 codes 

In Table A1.3 references are made to >69, >49, <70 etc.  These refer to the patient's 

age.  Therefore as an example, 'Chronic Pancreatic Disease <70' means patients that 

have chronic pancreatic disease that are under 70 years of age.  There are also 

references to w cc and w/o cc.  These stand for with complications and without 

complications.  Therefore, as another example, 'Epilepsy >69 or w cc' refers to patients 

with Epilepsy who were either over 69 years of age or had complications. 
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Condition HRG code 

Multiple Sclerosis or other CNS Demyelinating Cond A18 

Epilepsy >69 or w cc A29 

Bronchiectasis D16 

Cystic Fibrosis D17 

Chronic Obstructive Pulmonary Disease or Bronchiti D20 

Asthma >49 or w cc D21 

Fibrosis or Pneumoconiosis D26 

Other Respiratory Diagnoses >69 or w cc D33 

Complex Elderly with a Respiratory System Primary D99 

Heart Failure or Shock >69 or w cc E18 

Heart Failure or Shock <70 w/o cc E19 

Coronary Atherosclerosis >69 or w cc E22 

Arrhythmia or Conduction Disorders >69 or w cc E29 

Angina >69 or w cc E33 

Complex Elderly with a Cardiac Primary Diagnosis E99 

Large Intestinal Disorders >69 or w cc F36 

Chronic Pancreatic Disease <70 G25 

Inflammatory Spine, Joint or Connective Tissue Dis H25 

Skin Ulcers J38 

Diabetes with Hypoglycaemic Emergency >69 or w cc K11 

Diabetes with Hyperglycaemic Emergency >69 or w cc K13 

Diabetes with Lower Limb Complications K17 

Complex Elderly with an Endocrine or Metabolic Sys K99 

Kidney or Urinary Tract Infections >69 or w cc L09 

Cystic Fibrosis P02 

Blood Cell Disorders P23 

Cardiac Conditions P25 

Peripheral Vascular Disease >69 or w cc Q17 

Coagulation Disorders S04 

Red Blood Cell Disorders >69 or w cc S05 

Red Blood Cell Disorders <70 w/o cc S06 

Senile Dementia T01 
 

Table A1.3 – Reference conditions and their HRG code 

 

 

 

 



176 
 

Appendix 3 

3.1 Logistic Regression 

Logistic regression predicts the probability of the outcome (re-admission) occurring 

given actual values of the independent variables.  The general form for the logistic 

regression equation showing the probability of the outcome occurring is given by 

equation A2.1 below 

 

𝑃(𝑅) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑛𝑋𝑛
1
𝑛 )

        (𝑨𝟑. 𝟏) 

 

The terms used in the above equation are as follows 

 P(R) is the probability of re-admission 

 R is the outcome of re-admission 

 e is the nature logarithm base 

 β0 is the intercept or constant term in the regression equation 

 βn are the coefficients (weightings) for the n independent variables used to 

predict the dependent variable 

 Xn are the n independent variables used to predict the dependent variable 

 The parameters above are all determined by fitting a model (with the 

independent variables that are most helpful in predicting re-admission) to the 

observed data so that the error between the actual observed outcomes and 

predicted outcomes are minimised. 

The – 2 log likelihood (-2LL) value in logistic regression tells us how much 

information remains unexplained (in terms of predicting re-admission) after the 

model has been fitted.  Therefore, it is a measure of how well the model actually 

works.  If after fitting the model the -2LL value is large then the model does not fit 

the data very well as there are large amounts of re-admissions that could not be 

predicted correctly.  However, if the -2LL is small then the model works well.  The 

formula for -2LL is given by equation A2.2 below 
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−2𝐿𝐿 = −2∑(𝑅𝑖 ln 𝑃(𝑅𝑖) + (1 − 𝑅𝑖)ln(1 − 𝑃(𝑅𝑖)))

𝑛

𝑖=1

              (𝐀𝟑. 𝟐) 

       Where 

 Ri is the actual observed outcome (i.e. re-admission or not) for the ith 

person 

 P(Ri) is the predicted probability that re-admission occurs for the ith person 

 ln is the natural logarithm 

 n is the number of observations (patients) in the sample 

 

To assess the success of the fitted model its -2LL figure is compared to a baseline 

(intercept only) -2LL figure.  The -2LL baseline figure represents a very basic model 

in which the only value used to predict re-admission is the intercept (β0) term in 

equation A2.2.  Therefore, as all the βn values are 0 in the baseline model no 

independent variables are used to predict re-admission.   

The value of -2LL obtained when using the more sophisticated model with the 

inclusion of the independent variables is called the new (intercepts and covariates) 

-2LL figure. Therefore the improvement (in terms of how much the new 

sophisticated model adds in explaining re-admission over the baseline model) is 

given by the Chi-square likelihood ratio shown by equation A2.3 below 

 

𝜒2 = (−2𝐿𝐿(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)) − (−2𝐿𝐿(𝑛𝑒𝑤))                   (𝑨𝟑. 𝟑) 

 

If this value is large enough then the addition of the independent variables has 

added to the predictive power of the model.  In which case, the model will have a 

significance value of less than 0.05. 

There are three separate measures that are used in logistic regression to assess 

how well the model fits the data in terms of the variation that can be explained in 

the dependent variable by the independent variables.  The first measure is the 
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Hosmer and Lemeshow R square (𝑹𝑳
𝟐) figure, which is given by equation A2.4 

below 

 

𝑅𝐿
2 =

𝐶ℎ𝑖 𝑠𝑞𝑢𝑎𝑟𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑟𝑎𝑡𝑖𝑜 (𝜒2)

−2𝐿𝐿(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
                   (𝑨𝟑. 𝟒) 

 

This measures the proportion of the unexplained information in the baseline model 

that was explained by the new model and it varies in value between 0 and 1.  A 

value close to 1 indicates that the new model was extremely good at being able to 

explain the variation in re-admission across patients in the dataset. 

 

The second measure is the Cox and Snell R square (𝑹𝑪𝑺
𝟐 ) value which is given by 

equation A2.5 below 

 

𝑅𝐶𝑆
2 = 1 − 𝑒

(
1
𝑛
((−2𝐿𝐿(𝑛𝑒𝑤))−(−2𝐿𝐿(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒))))

                  (𝑨𝟑. 𝟓) 

 

The third measure is the Nagelkerke R square (𝑹𝑵
𝟐 ) value which is given by equation 

A2.6 

 

𝑅𝑁
2 =

𝑅𝐶𝑆
2

1 − 𝑒
−(
(−2𝐿𝐿(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒))

𝑛
)
                                              (𝑨𝟑. 𝟔) 

 

In equations A2.5 and A2.6 the n stands for the number of patients in the sample 

and e is the nature logarithm base. 

The Cox and Snell R square and Nagelkerke R square values are usually similar in 

value to the Hosmer and Lemeshow R square value and they all give a measure as 

to the predictive power of a model. 
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-2 Log Likelihood Likelihood 

ratio Chi-

Square 

Degrees 

of 

freedom 

Significance 

Intercept 

only 

Intercept and 

covariates 

83486.044 72116.839 11369.2051 19 <.0001 

 

Table A3.1 Likelihood Ratio Test for Global Null Hypothesis: BETA=0 

 

Table A2.1 shows the significance level for the model performance is 0.0001 which 

means that the addition of the independent variables has added to the predictive 

power of the model.  Therefore the model with the independent variables included 

is better than our naïve model where all observations were assigned to the group 

of no re-admission.  The Hosmer and Lemeshow value of 0.14 suggests that the 

inclusion of the independent variables has added some predictive ability to the 

model.  The value for Hosmer and Lemeshow varies between 0 and 1 with 0 

meaning that the variables have added no predictive ability whatsoever.  However, 

as our figure is significantly different from zero we can conclude that the inclusion 

of the additional variables has helped in this model. 

The Cox and Snell R square and Nagelkerke R square figures give us two slightly 

different measures for the amounts of variation which is explained in the 

dependent variable (re-admission within 12 months) by the independent variables.  

The two figures for this analysis are 0.16 and 0.22 respectively indicting that 

between 16% and 22% of the variation in re-admission within 12 months within the 

69,342 training set records can be accounted for by the significant independent 

variables. 

2.2 Classification trees 

Classification is the process of assigning a discrete label value (or class such as 

whether the patient has a re-admission) as accurately as possible to an unlabeled 

and previously unseen record.  This is achieved by a classification tree model, which 
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predicts one attribute (the dependent variable) given other attributes (the 

independent variables). 

The classification trees used in this thesis are mainly constructed using the C4.5 

algorithm which is also known as Entropy reduction.  The steps involved in the C4.5 

algorithm are shown below 

Step 1: Calculate the purity or amount of information we would require to 

correctly classify a class (re-admission) of a new instance (patient) using the initial 

dataset.  This is known as entropy (information or info) and is a measure of how 

pure the initial dataset is.  The entropy value ranges from 0 to 1 and if all the 

instances (observations) in the initial dataset belong to one class the entropy or 

additional information needed to specify the class of a new instance would be 0.  If 

half the instances belong to class 1 and the other half belong to class 2 in the initial 

dataset then a great deal of extra information would be required to correctly 

classify a new instance based on the initial dataset (in this situation the entropy 

would be equal to 1).  The following equation is used to calculate the initial purity 

of the dataset D in respect to the binary dependent variable of re-admission 

𝐼𝑛𝑓𝑜(𝐷) = −∑((𝑓𝑟𝑒𝑞(𝐶𝑙𝑎𝑠𝑠𝑖, 𝐷)/|𝐷|)

2

𝑖=1

× 𝑙𝑜𝑔2(𝑓𝑟𝑒𝑞(𝐶𝑙𝑎𝑠𝑠𝑖, 𝐷)/|𝐷|))        (𝑨𝟑. 𝟕) 

 

Classi refers to each of the class outcomes of the dependent variable (in this 

example these would be re-admission and non-re-admission), freq(Classi,D) is the 

number of times that class i occurs in the training dataset and |D| refers to the 

number of rows in the dataset.  If for example a dataset contained 100 patients, of 

which 80 did not have a re-admission (NR) and 20 did have a re-admission (R) then 

|D| = 100, freq(NR,D) = 80 and freq(R,D) = 20. 

Once the information value is calculated for the initial dataset we have a baseline 

model which the performance of further more sophisticated models can be 

compared against.  If the information value for the initial dataset is near 1 then we 
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would hope that the more sophisticated models (using the independent variables) 

would reduce this figure. 

Step 2: Test each attribute (independent variable) to determine which one is the 

best to define as the root node and to initially split the data by.  This is achieved by 

selecting each attribute in turn and placing it at the root of the tree and 

determining the average entropy (pureness) value at child nodes immediately 

following the initial split.  The best attribute to split on will be the one that causes 

the highest gain in information from the initial information value.  (i.e. the greatest 

gain corresponds to the greatest reduction in information needed to correctly 

classify the class attribute).  Gain in information is calculated as the initial entropy 

value before the data were split minus the new average value.  Therefore we split 

by the attribute which creates the purest child nodes and highest information gain 

for the model. 

 If the independent variable is binary then there are only two possible branches 

from a node when splitting on that variable.  If the independent variable is 

continuous then threshold values at which to split the data are determined.  For 

example, the number of admissions in the previous 5 years is a continuous variable 

which may range from say 0 to 10.  This variable would be examined to find the 

best cut off values for predicting re-admission and then the observations would be 

split into two or more groups (e.g. under 2 admissions, 2 to 5 admissions and over 

5 admissions).  Therefore, classification trees treat continuous data like discrete 

data by forming groups. 

The information value of the model after splitting by each variable is recorded using 

the formula 

 

Info var i (T) = ∑ ((|𝑇𝑖|/|𝑇|) × 𝐼𝑛𝑓𝑜(𝑇𝑖))
𝑛
𝑖=1                    (𝑨𝟑. 𝟖) 

 

Where var i is the ith independent variable used to split the data by, n is the number 

of child nodes formed from the split and Ti represents each subset of data following 

the split.  The information value obtained from splitting the data by each of the 
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independent variables should be recorded.  The independent variable which has 

the smallest information value should be used to split the data as this will result in 

the largest information gain over the baseline model. 

Step 3: The process in steps 1 and 2 is repeated recursively for each child node 

created from the previous split, using only those instances that reach the node.  If 

at any time all instances at a node have the same classification (i.e. entropy of 0), 

stop developing that part of the tree as the node is totally pure and is a leaf node.  

Alternatively, we stop when the data cannot be split any further, even if the leaf 

node is impure.   

The secondary tree algorithm which is briefly used in this project to confirm the 

robustness of the results from the C4.5 algorithm is called CART or Gini reduction.  

This method is similar to the C4.5 algorithm but instead of using the entropy 

formula a slightly different measure (the Gini measure) is used to determine the 

the best variable to split the data by and the pureness of the dataset at each split. 

2.3 Neural networks 

Neural networks are very good models for finding patterns between the dependent 

and independent variables by learning from the dataset and displaying the 

relationship between the variables.  Figure A2.1 shows a typical neural network 

with four independent variables in the input layer, one dependent variable in the 

output layer and one hidden layer consisting of two hidden nodes.  This type of 

neural network is called a feed forward multilayered perceptron neural network as 

the learning takes place from the input layer to the output layer as values flow 

through the model.  The arrows in Figure A2.1 indicate the direction of the flow of 

the data through the model 
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Figure A3.1 – A neural network with one hidden layer 

 

In Figure A2.1 there are ten synapses or arcs and each of these carries a weight.  

Weights are defined as Wij which means the weight on arc from node i to node j 

with i = 1, 2, 3, 4, 5 and 6 and j = 5, 6 and 7. 

The input data values received through the four input nodes for the independent 

variables used in this model are transformed so they lie between 0 and 1.  

Therefore any binary input variables can remain as they are, but those that are 

continuous or categorical and take values greater than 1 or less than 0 are 

transformed to the [0,1] range.  Equation A2.9 shows the transformation function 

that is used to transform the input variable values to [0,1]. 

 

𝑛𝑒𝑤 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒

=  
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑎𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
    (𝑨𝟑. 𝟗) 

 

The terms in equation A2.9 are defined as follows 
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 new input value is the transformed input value for that variable in the interval [0,1] 

 original input value is the original input value for that variable 

 minimum value for that variable is the smallest value in the dataset for that variable 

 the range of input values for that variable is the difference between the largest and 

smallest values in the dataset for that variable. 

After scaling the input values for nodes 1 to 4 to lie in the range [0,1], the input to 

hidden nodes 5 and 6 are calculated by summing the product of each input value 

by the weightings on the synapses to the hidden nodes.  Therefore the general 

formula to calculate the input to nodes 5 and 6 is shown below 

 

𝐼𝑛𝑝𝑢𝑡 𝑡𝑜 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑜𝑑𝑒 𝑗 =  ∑𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 𝑖 ∗ 𝑊𝑖𝑗

𝑛

𝑖=1

           (𝑨𝟑. 𝟏𝟎) 

 

The terms in equation A2.10 are defined as follows 

 Input to hidden node j is the computed input value that arrives at node j 

 i refers to input node number i which ranges from 1 to n.  In Figure 3.1 n = 

4 as there are four input nodes joined to hidden nodes 5 and 6. 

 Input value i is the input value arriving at node j from node i. 

 Wij is the weight on the arc from node i to node j. 

Once the input to each hidden node is calculated it needs to be transformed so it 

lies between [0, 1] before it can be passed to the next layer.  The function used to 

transform the value is called the sigmoid function, which is given by equation 

(A2.11) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑗 =  𝑓(𝑖𝑛𝑝𝑢𝑡 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗)

=  
1

1 + 𝑒−𝑖𝑛𝑝𝑢𝑡 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗
               (𝑨𝟑. 𝟏𝟏) 
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The terms in equation A2.11 are defined as follows 

 Output from node j is the transformed value in the interval [0,1] that is 

passed to the next layer 

 Input to node j is the combined input to node j from the previous layer 

 e is the nature logarithm base 

Using the same process defined above, the transformed output from the hidden 

nodes then get combined with the weights to the output layer before the final 

predicted output is obtained by using the sigmoid transformation function on the 

combined input to the output node.  This output (which is in the interval [0, 1] gives 

us the probability of the outcome occurring (i.e. re-admission for the patient). 

While the neural network model is being constructed using the dataset values the 

weights on the synapses which result in the minimum error between the observed 

and predicted outcome variable are obtained using the process of 

backpropagation.  Backpropagation works by feeding the set of observations into 

the model for the first patient and the output value probability of re-admission is 

obtained.  The predicted output value is then compared with the actual output 

value in the dataset and an error value is obtained.  This output error is then 

propagated back through the network and all of the synapse weights are amended 

to reduce the error as much as possible.  This process is carried out multiple times 

with data values for other patients until the weightings are optimal. 

Neural networks are seen as having a wow factor as they mimic the human brain.  

The results from neural networks are often extremely good because of the 

nonlinear nature of the models.  However, as the models are very complicated it is 

often difficult to comprehend the results from neural networks. 
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Appendix 4 

Code Extracts 

SQL exhibit A: Code used to obtain the full 3,500,058 last episodes of emergency 

admissions that started and ended in 2004/05 

select row_ind, endage, startage, mydob, dob_cfl, ethnos, hesid, sex, admi_cfl, 

admidate admission_date, 

str_to_date(concat(left(admidate,2),'/',left(substring(admidate,3),2),'/',right(admidat

e,4)),'%d/%m/%Y') admidate_date,disdate discharge_date, 

str_to_date(concat(left(disdate,2),'/',left(substring(disdate,3),2),'/',right(disdate,4)),'

%d/%m/%Y') disdate_date , dis_cfl, admimeth, dismeth, spelbgin, epiend, epistart, 

speldur, spelend, epidur, epiorder, epie_cfl, epis_cfl, epistat, diag_01, diag_02, 

diag_03, diag_04, diag_05, diag_06, diag_07, diag_08, diag_09, diag_10, 

diag_11, diag_12, diag_13, diag_14, resgor, epikey, right(epikey,2) epikey_L2C, 

disdest, provspno, resha, hatreat, resladst, oacode6, ward91, resro, rotreat, 

hrgorig, postdist 

from HES0405.data0405 

where admimeth in ("21", "22", "23", "24", "28") 

and admi_cfl in ("0") 

and sex in ("1","2") 

and dob_cfl in ("0") 

and dismeth not in ("4","8","9") 

and 

str_to_date(concat(left(admidate,2),'/',left(substring(admidate,3),2),'/',right(admidate,4)

),'%d/%m/%Y') between '2004-04-01' and '2003-05-31'; 

 

SQL exhibit B: Code used to obtain a sample of 109, 243 of the full 3,500,058 last 

episodes of emergency admissions that started and ended in 2004/05  

 

select row_ind, endage, startage, mydob, dob_cfl, ethnos, hesid, sex, admi_cfl, 

admidate admission_date, 

str_to_date(concat(left(admidate,2),'/',left(substring(admidate,3),2),'/',right(admidat
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e,4)),'%d/%m/%Y') admidate_date,disdate discharge_date, 

str_to_date(concat(left(disdate,2),'/',left(substring(disdate,3),2),'/',right(disdate,4)),'

%d/%m/%Y') disdate_date , dis_cfl, admimeth, dismeth, spelbgin, epiend, epistart, 

speldur, spelend, epidur, epiorder, epie_cfl, epis_cfl, epistat, diag_01, diag_02, 

diag_03, diag_04, diag_05, diag_06, diag_07, diag_08, diag_09, diag_10, 

diag_11, diag_12, diag_13, diag_14, resgor, epikey, right(epikey,2) epikey_L2C, 

disdest, provspno, resha, hatreat, resladst, oacode6, ward91, resro, rotreat, 

hrgorig, postdist 

from HES0405.data0405 

where admimeth in ("21", "22", "23", "24", "28") 

and admi_cfl in ("0") 

and sex in ("1","2") 

and dob_cfl in ("0") 

and dismeth not in ("4","8","9") 

and 

str_to_date(concat(left(admidate,2),'/',left(substring(admidate,3),2),'/',right(admidate,4)

),'%d/%m/%Y') between '2004-04-01' and '2005-03-31' 

and right(epikey,2) in ("01","31","61"); 

 

A4.1 Learning step: Generate an FRBS model 

object.reg <- frbs.learn(data.train, range.data, method.type, control) 

 ## Predicting step: Predict for newdata 

res.test <- predict(object.reg, data.tst) 

## Display the FRBS model 

summary(object.reg) 

## Plot the membership functions 

plotMF(object.reg) 

 

data(Sample_HES) 
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## Shuffle the data 

## then split the data to be training and testing datasets 

Sample_HES Shuffled <- Sample_HES [sample(nrow(Sample_HES)), ] 

Sample_HES Shuffled[, 14] <- unclass(Sample_HES huffled[, 14]) 

tra. Sample_HES <- Sample_HES Shuffled[1 : 6000, ] 

tst. Sample_HES <- Sample_HES Shuffled[6001 : nrow(Sample_HES Shuffled), 1 : 13] 

real. Sample_HES <- matrix(Sample_HES Shuffled[106 : nrow(Sample_HES Shuffled), 

14], ncol = 1) 

## Define range of input data. Note that it is only for the input variables. 

range.data.input <- apply(Sample_HES [, -ncol(Sample_HES)], 2, range) 

method.type <- "FRBCS.W" 

control <- list(num.labels = 7, type.mf = "TRAPEZOID", type.tnorm = "MIN", 

type.snorm = "MAX", type.implication.func = "ZADEH") 

## Learning step: Generate fuzzy model 

object.cls <- frbs.learn(tra. Sample_HES, range.data.input, method.type, control) 

## Predicting step: Predict newdata 

res.test <- predict(object.cls, tst.Sample_HES) 

## Display the FRBS model 

summary(object.cls) 

A4.2 Plot the membership functions 

plotMF(object.cls) 

data(ROCR.SampleHES) 

pred <- prediction( ROCR. SampleHES $predictions, ROCR. SampleHES $labels ) 

pred2 <- prediction(abs(ROCR. SampleHES $predictions +  

                        rnorm(length(ROCR. SampleHES $predictions), 0, 0.1)),  
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        ROCR.s SampleHES $labels) 

perf <- performance( pred, "tpr", "fpr" ) 

perf2 <- performance(pred2, "tpr", "fpr") 

plot( perf, colorize = TRUE) 

plot(perf2, add = TRUE, colorize = TRUE) 

Confidence Interval Using R 

library(gdata) 

library(ggplot) 

library(pROC) 

data(Sample_HES) 

png("ROC Curve_5.png") 

roc(Sample_HES $outcome, Sample_HES$Predictor) 

roc(outcome ~ Predictor, Sample_HES) 

# Smooth ROC curve 

roc(outcome ~ Predictor, Sample_HES, smooth=TRUE) 

# more options, CI and plotting 

roc1 <- roc(Sample_HES $outcome, 

Sample_HES $Predictors, percent=TRUE, 

            # arguments for auc 

            partial.auc=c(100, 90), partial.auc.correct=TRUE, 

            partial.auc.focus="sens", 

            # arguments for ci 

            ci=TRUE, boot.n=100, ci.alpha=0.9, stratified=FALSE, 

            # arguments for plot 

            plot=TRUE, auc.polygon=TRUE, max.auc.polygon=TRUE, grid=TRUE, 
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            print.auc=TRUE, show.thres=TRUE) 

 

  roc2 <- roc(Sample_HES $outcome, Sample_HES$predictor2, 

              plot=TRUE, add=TRUE, percent=roc1$percent) 

 

## Coordinates of the curve ## 

coords(roc1, "best", ret=c("threshold", "specificity", "1-npv")) 

coords(roc2, "local maximas", ret=c("threshold", "sens", "spec", "ppv", "npv")) 

ci(roc2) 

sens.ci <- ci.se(roc1, specificities=seq(0, 100, 5)) 

sens.ci 

plot(sens.ci, type="shape", col="lightblue") 

plot(sens.ci, type="bars") 

plot(roc2, add=TRUE) 

dev.off() 

A4.3 Function for surface viewer plot 

function [ output ] = FLP_3DMFplot( FuzzySet, FuzzyRules, FS1, FS2, N ) 

% FLP_3DMFplot Plots the crisp output surface vs two of the fuzzy sets 

%   The function creates a surface plot of the crisp output with the fuzzyy 

%   set feature 1 (FS1) along the X axis, the fuzzy set feature 2 (FS2) 

%   along the y axis and the crisp output on the z axis. The data and 

%   labels used to generate the chart are returned from the output of the 

%   function. 

% 

% Input 
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% FuzzySet - a FuzzySet object generated by FLP_LoadFuzzySets 

% FuzzyRules - a fuzzy rules object generated by FLP_LoadFuzzyRules 

% FS1 - the number of the fuzzy set to plot on the x axis 

% FS2 - the number of the fuzzy set to plot on the y axis 

% N - the NxN size of the meshgrid to create for the crisp output 

% 

% Output 

% output -  a struct object with the data and chart labels 

% 

% This section creates the grid of each N evenly spaced points (ESP) across  

% the range of FS1 and FS2 in the FLP CrispInput format. This is 

% accomplished for FS1 by appending a list of the ESP's N times while 

% circularly shifting the position of the ESP's by one for each append. 

% When this is concatenated with N replicates of the FS2 ESP's it 

% represents the complete set of points on the surface. 

X1 = (FuzzySet.Range(FS1,1):(FuzzySet.Range(FS1,2)-FuzzySet.Range(FS1,1))/(N-

1):FuzzySet.Range(FS1,2))'; % the ESP's for FS1 

I1 = (1:N)'; % the position index of the ESP's 

X1C = repmat(X1,N,1); % the list to append (store) the values 

I1C = repmat(I1,N,1); % the list to append (store) the indexes  

for i = 1:(N-1) % shift and store the ESP values and indexes 

    X1 = circshift(X1,1); 

    X1C(i*N+1:i*N+N,1) = X1; 

    I1 = circshift(I1,1); 

    I1C(i*N+1:i*N+N,1) = I1; 
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end 

X1 = circshift(X1,1); % shift them back into the starting position 

I1 = circshift(I1,1); 

% Replicate the FS2 ESP's N times 

X2 = (FuzzySet.Range(FS2,1):(FuzzySet.Range(FS2,2)-FuzzySet.Range(FS2,1))/(N-

1):FuzzySet.Range(FS2,2))'; 

I2 = (1:N)'; 

X2C = repmat(X2,N,1); 

I2C = repmat(I2,N,1); 

NC = size(X1C,1); % the number of combinations 

CrispInput = zeros(NC,FuzzySet.Count-1); 

% Look thru the fuzzy sets and create the CrispInput table. For fuzzy sets 

% other than FS1 or FS2, use the mean value for the set 

for i = 1:FuzzySet.Count-1 

   if i == FS1 

        CrispInput(:,i) = X1C; 

   elseif i == FS2 

        CrispInput(:,i) = X2C; 

   else 

        CrispInput(:,i) = repmat((FuzzySet.Range(i,2)-FuzzySet.Range(i,1))/2,NC,1); 

   end 

end 

 

% Calculate the crisp output based on the FLP functions 

AntMemberGrades = FLP_Fuzzification(FuzzySet, CrispInput); 
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ConsqMemberGrades = FLP_FuzzyRuleEval(AntMemberGrades,FuzzyRules); 

[CrispOutput, OutputMF, X] = FLP_DeFuzzification(ConsqMemberGrades, FuzzySet, 

100); 

 

% Map the crisp output into a mesh grid 

CrispOutputGrid = zeros(N,N); 

for i=1:NC 

    CrispOutputGrid(I1C(i),I2C(i)) = CrispOutput(i); 

end 

 

% Store the data and labels for the crisp output plot 

output = struct('X',X1, ... 

                'Y',X2, ... 

                'Z',CrispOutputGrid, ... 

                'xlabel', FuzzySet.Set{FS1}, ... 

                'ylabel',FuzzySet.Set{FS2}, ... 

                'zlabel',FuzzySet.Set{end}, ... 

                'title', 'Crisp Value Output Visualization'); 

% Plot the crisp output on a surface chart 

surf(output.X, output.Y, output.Z);  

xlabel(output.xlabel); 

ylabel(output.ylabel);  

zlabel(output.zlabel); 

title(output.title); 

end 
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5.2   Function for membership function 

function [ mf ] = FLP_trapzMF( x,tparms ) 

% FLP_trapzMF Calculates the value of the trapezoidal membership function at 

% each point x.  

% Input 

% x - a column vector of values 

% tparms - a vector with the a, b, c, & d trapezoidal parameters 

% Output 

% a columnar vector with membership function values 

mf = zeros(size(x,1),1); % preformat the output with zeros 

a = tparms(1); % get the trapezoidal parameters 

b = tparms(2); 

c = tparms(3); 

d = tparms(4); 

% Use logical indexing to identify where each x value falls within the 

% trapezoidal function 

idx1 = x(:,1) > a & x(:,1) < b; 

idx2 = x(:,1) >= b & x(:,1) <= c; 

idx3 = x(:,1) > c & x(:,1) < d; 

% Replicate the scalar parameters to vectors to facilitate a "vectorized" 

% calculation of the membership function 

a = repmat(a,size(x,1),1); 

b = repmat(b,size(x,1),1); 

c = repmat(c,size(x,1),1); 

d = repmat(d,size(x,1),1); 
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% Calculate and assign the membership function for each range 

res = (x-a) ./ (b-a); mf(idx1,1) = res(idx1,1); 

mf(idx2,1) = 1; 

res = (d-x) ./ (d-c); mf(idx3,1) = res(idx3,1); 

end 

 

A4.3 Function for fuzzification 

function [ output ] = FLP_Fuzzification( FuzzySet, CrispInput ) 

% FLP_Fuzzification Calculates the fuzzy antecedent membership grades 

% 

% This function converts each of the crisp input values to a fuzzy 

% membership grade for each item in the set. For example, if there are 10 

% crisp input values and five items in a set, the resulting output is a 10 

% by 5 matrix with the membership grades for each item being in a column 

% and the rows being each crisp value. If there are multiple sets in the 

% FuzzySet, the output will be a cell array with each cell containing the 

% matrix of membership grades for that set. 

% 

% Input 

% FuzzySet - a FuzzySet object generated by FLP_LoadFuzzySets 

% CrispInput - a CrispInput object generated by FLP_LoadCrispInput 

% 

% Output 

% output - the antecedent membership grades 

% 
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output = cell(FuzzySet.Count-1,1); % pre-allocate the output 

for i = 1:FuzzySet.Count % loop through each set 

    if ~strcmp(FuzzySet.Set{i,1},'Output') % do not calculate grades for the Output set 

     

        mfArray = zeros(size(CrispInput,1),FuzzySet.ItemCount(i,1)); % initialize the 

membership grade output matrix 

      for j = 1:FuzzySet.ItemCount(i,1) % loop through each item in the set 

            mfArray(:,j) = FLP_trapzMF(CrispInput(:,i),FuzzySet.Parms{i,1}(j,:)); % calc the 

membership grades for each CrispInput        

        end 

        output{i,1} = mfArray; % store the grades to a cell array     

    end 

  end 

end 

 

function [ output ] = FLP_LoadFuzzySets( file_dir ) 

 

A4.4 Function to load fuzzy sets from csv file of dataset 

% FLP_LoadFuzzySets Reads Fuzzy Sets from comma delimited text file 

 

%   This function reads in a CSV delimited text file containing the details 

%   of the fuzzy set and formats the detail in the form of a structure 

%   array 

% Input 

% file_dir - the path and filename of the CSV file 
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% 

% Output 

% output -  a FuzzySet object 

% 

% read the CSV file 

fid = fopen(file_dir); 

fid_read = textscan(fid, '%s %s %d %d %d %d','delimiter',','); 

fclose(fid); 

% ***** Section to create a unique list of the sets ***** 

input_ct = size(fid_read{1,1},1); % get the number of input records to check 

sets{1,1} = fid_read{1,1}{1,1}; % add the first set label to the variable to hold the 

unique list of sets 

for i = 2:input_ct % loop thru the remaining records 

    find_set = fid_read{1,1}{i,1}; % read the next set label 

    find_set_row = find(strcmp(find_set,sets)); % try to find the set label in the unique 

list  

    if size(find_set_row,1) == 0 % if the result of the find is blank, add it to the unique 

list 

        sets{size(sets,1)+1,1} = find_set; % add the label to the unique list 

    end     

end 

 

% Confirm the Output set was listed last in the text file 

if ~strcmp(sets{end,1},'Output') 

    fprintf('ERROR LOADING FUZZY SETS: The input file must end with the "Output" 

set items\n\n'); 
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    output = []; 

    return 

end 

 

input_ct = size(sets,1); % get the number of sets to check 

% pre-allocate collection statistics 

items = cell(input_ct,1); 

item_count = zeros(input_ct,1); 

parms = cell(input_ct,1); 

range = zeros(input_ct,2); 

 

for i = 1:input_ct % loop thru the each set 

    find_items = sets{i,1}; % read the set label 

    find_item_rows = find(strcmp(find_items,fid_read{1,1})); % find the rows with 

items from the set  

    if size(find_item_rows,1) > 0 % if there are items in the set, create a list of items 

        items{i,1} = {fid_read{1,2}{find_item_rows,1}}'; % add the items to the list 

        item_count(i,1) = size(items{i,1},1); 

        a = double(fid_read{1,3}(find_item_rows,1)); % get the a parameters 

        b = double(fid_read{1,4}(find_item_rows,1)); % get the b parameters 

        c = double(fid_read{1,5}(find_item_rows,1)); % get the c parameters 

        d = double(fid_read{1,6}(find_item_rows,1)); % get the d parameters 

        p_combined = [a,b,c,d]; 

        parms{i,1} = p_combined; 

        range(i,1) = min(parms{i,1}(:,1)); % get the minimum of the range for the set 
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        range(i,2) = max(parms{i,1}(:,4)); % get the maximum of the range for the set 

    end     

end 

% store the output in a structure array 

output = struct('Count',size(sets,1), ... 

                'Set',{sets}, ... 

                'Items',{items}, ... 

                'ItemCount', {item_count}, ... 

                'Parms',{parms}, ... 

                'Range',{range}); 

end 

function [ output ] = FLP_LoadCrispInput( FuzzySet, file_dir ) 

% FLP_LoadCrispInput Reads Crisp Input from comma delimited text file 

%   This function reads in a CSV delimited text file containing the crisp 

%   input values and creates a matrix with the values in a column 

%   corresponding to the order of the sets in FuzzySet. The first row of 

%   the CSV file should contain a header row that matches the name of the 

% Input 

% FuzzySet - a FuzzySet object generated by FLP_LoadFuzzySets 

% file_dir - the path and filename of the CSV file 

% Output 

% output -  a CrispInput object 

% 

% The number of columns for this input is variable based on the number of 

% fuzzy sets in the data (N-1 for the output). Create a format string that  



200 
 

% will read in the set count and create a file format specification 

input_spec = '%s'; 

N = FuzzySet.Count - 1; 

for i = 1:N-1 

    input_spec = strcat(input_spec,' %s'); 

end    

% read the CSV file 

fid = fopen(file_dir); 

fid_read = textscan(fid, input_spec, 'delimiter',','); 

fclose(fid); 

in_ct = size(fid_read{1,1},1)-1; % the number of crisp input values to be read 

output = zeros(in_ct,N-1); % pre-allocate the output 

 

for i = 1:N 

    find_set_row = find(strcmp(fid_read{1,i}{1,1},FuzzySet.Set)); % find the set 

number 

    if isempty(find_set_row) % if unable to find match return error message 

        fprintf('ERROR LOADING CRISP INPUTS: Unable to find matching set for "%s" 

column\n\n',fid_read{1,i}{1,1}); 

        output = []; 

        return; 

    end 

    output(1:in_ct,find_set_row) = str2num(char(fid_read{1,i}{2:end,1})); % read the 

values and place in set number column 

end 

end 



201 
 

A4.5 Fuzzy Regression Using R 

library(gdata) 

library(gplots) 

library(frbs) 

library(ROCR) 

 ## Input data: Using the Sample_HES dataset 

## then split the data to be training and testing datasets 

 frbsData <- read.csv ("D:/ Sample_HES.csv") 

 data.train <- frbsData$ Sample_HES. dt[1 : 6000, ] 

 data.tst <- frbsData$ Sample_HES. dt[6000: 109423, 1 : 14] 

 real.val <- matrix (frbsData$ Sample_HES dt[6000: 109423, 14], ncol = 1) 

## Define interval of data 

range.data <-apply(data.train, 2, range) 

## Set the method and its parameters, 

method.type <- "WM" 

control <- list(num.labels = 15, type.mf = "TRAPEZOID", type.defuz = "WAM",  

type.tnorm = "MIN", type.snorm = "MAX", type.implication.func = "ZADEH", 

name = "sim-0")  
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Appendix 5 

A5.1 Comparison of results with PARR 

Figure A5.1 shows the percentage of patients flagged up by the algorithm as being 

likely to have a readmission that actually went onto have the readmission.  The 

horizontal axis shows the risk score threshold and this refers to the cut off level by 

which a person is predicted as having a readmission.  The output from fuzzy 

regression gives us the percentage chance that a person will have a readmission 

and by default we assign anybody with a value equal to or above 50% to the 

predicted group of readmission = 1 (yes) and anybody who has a score of below 

50% to the predicted group of readmission = 0 (no).  This risk score threshold can 

be altered so that anybody who has a score of equal to or more than say a 40% 

chance of readmission is assigned the predicted value of readmission = 1 (yes) or is 

assigned to the readmission = 0 (no) group if they have a risk score of less than 40%.  

Figure A5.1 shows the effect that varying the risk score threshold level has on the 

percentage of flagged patients who were readmitted.  Higher risk score thresholds 

result in higher percentages of flagged patients actually having readmissions.  The 

model used in this thesis (the red and yellow lines in Figure A5.1) appears to be 

better than that used in the 2006 paper (the green line in the figure A5.1).    
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Figure A3.1 Comparison pf percentage of patients flagged by Fuzzy regression   

models and PARR 2006 
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