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p —lignt plans lifecycle

» Between D-15and D-7: Aircraft assignment
» D-1:0Operation plan definition
» Upto 8 hours prior departure: Flight plans will be updated, and pre-tactical actions implementation
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Between D-15 and D-7 D-1 Up to 3h prior departure

Aircraft assignment Operation plan definition Update flight plan
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p Dispatcners

» Dispatcherd, a CleanSky 2 innovation action, uses machine learning techniques to support
pre-departure processes

» Dispatcherdis composed of three layers:
> Datainfrastructure
> Predictive capabilities
> Advice capabilities

https://dispatcherd.eu/

»  Flights might experience discrepancies between their plan and execution due to many factors
> In particular, demand-capacity imbalances leading to ATFM regulations.

»  Euro-centric approach

»  We will focus on flights from Vueling
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p ATFM regulations 4.9

»  Current work predicting ATFM regulations usually focuses on the network, or on specific OD pairs

» Earlyindication of potential disruptions at the flight level isimportant to plan and implement
pre-tactical actions to minimise the potential propagation of these disruptions.

0.8 probability of regulation |

Probability of delay

Minutes of delay
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p ATFM regulations - Analysis B
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p Outcome of the system

» Combination of machine learning models to create higher level interpretable predictions for D-1
> Different levels of granularity
> Take into account different scenarios (flexibility for D-1)
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p Data avallability

» Data challenges: Available traffic
> |deal pre-tactical traffic:

D-24 hours D-12 hours D-3 hours

Pre-tactical traffic ? ?

»  Assumption:
> Airline has access to pre-tactical traffic
> Static pre-tactical traffic

» Datasets used:

Data source Description
Eurocontrol DDR(ALLFT+) ‘Extension’ of R&D data containing more detailed information
METAR Forecasted historical weather information at the airports
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p Methodology - Input features d.2.

Static features Dynamic features
Time of departure (hourly discretization) ATMAP score at departure/arrival airport (numerical)
Size departure airport (small, big, medium) Temperature at departure/arrival airport (numerical)
Size arrival airport (small, big, medium) Wind speed at departure/arrival airport (numerical)

Visibility at departure/arrival airport (numerical)

‘Normalized’ congestion at departure/arrival (in the day of operations)

‘Normalized’ congestion at departure/arrivallwithin the hour of
departure/arrival)

Highest ‘'normalized’ Occupancy Count (OC)within crossed sector

Highest ‘'normalized  Entry Count (EC) within crossed sector
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p Methodology - Individual models

» Algorithms used for the individual models:

Models / Algorithms

Probability ATFM delay (yes VS no) Random Forest Classifier

Type of delay (airdrome VS airspace) Decision Tree Classifier

Amount of delay (zero VS non-zero delay) Decision Tree Classifier
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p Methodology - Confidence metric

» Visual higher level interpretable information easier to be processed by the duty-manager
» Predictions inside percentile(90) of TN (or TP)-> Model sure about the prediction

»  Example:
> Prediction prob. ATFM delay = 0.87 -> Model very sure about the need of a requlation

> Prediction type of delay = 0.59 -> Uncertain prediction for aerodrome regulation | Prob.ATFM |
> Prediction amount of delay = 0.17 -> Model sure about the delay is going to be zero | Airdrome |
| Zerodelay |
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) Methodology - Delay distribution & e

» Machine learning models produce probabilistic outputs

»  Distribution of delay to better assess the impact/severity of the expected delay
> Regression: Estimate severity (exact minutes)

> Classification: Estimate impact (uncertainty/spread possible delay)

Predicted probability of ATFM delay (minutes)
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—valuation - Inaividual models d.9.

Accuracy Recall Precision

Proportion of positive Proportion of positive
samples correctly identified identification correctly
TP+TN

o » _ TP .. . TP
Accuracy = rprTNiFPIFN ecoll= grrry

Fraction of predictions right

Fl1-score
Harmonic mean of the
precision and recall

__ o Precision*Recall
F1 score = 2Precision+Recall
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—valuation - Delay distribution

» How close is the prediction to the actual ATFM delay?

> Compute the difference of minutes between ground-truth and the expected value from distribution
»  How sure is the model about the expected delay?
> Compute dispersion of predicted values

> The more sure the model's prediction, the fewer bars will be present on the chart

Predicted probability of ATFM delay (minutes)
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) Results - Individual models d.9.

Prob. ATFM delay Type of delay Amount of delay
(yes VS No) (Airdrome vs Airspace) (zero vs non-zero delay)
Accuracy 0.88 Accuracy 0.87 Accuracy 0.7
Fl-score 0.87 Fl-score 0.86 Fl-score 0.66
Confusion matrix (%) Confusion matrix (%) Confusion matrix (%)
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p Results - Delay distribution d.2.

» Actual delay VS Predicted delay: 9,14 minutes
> Mean difference between actual delay and expected value from the distribution

» Average dispersion of the prediction: 22,35 minutes

Predicted probability of ATFM delay (minutes) Predicted probability of ATFM delay (minutes)
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p Case study - No ATFM delay Ao
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p Case study - No ATEM delay
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p Case study - ATFM delay d..

[ Airdrome: 86% ]
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p Case study - ATFM delay d..
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p Conclusions

Benefits:
» Models can be used to identify ATFM requlation pre-tactically
» Individual models between 70% and 90% accuracy
» Impact/severity can be assessed with distribution of possible delay (mean error of 39 minutes with
dispersion of 22 minutes)
» Models can be improved even further

Drawbacks:

» Assumed airlines have access to network information (M1 traffic)
» Assumed a static pre-tactical flight plan has been defined for each flight
» Theless accurate individual model is the zero VS non-zero delay
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p —uture development

» Feature selection analysis(e.g PCA, SHAP values)

» Fine-tune less accurate models

» Release predictions according to specific time horizons

» Integrate other data sources(e.g. network weather information)
»  Provide additional information about the network status

» Validate the proposed representation of the predicted information with experts in the field
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You can find me at:
> sergi.mas.pujol@upc.edu \




