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Flight plans lifecycle
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▸ Between D-15 and D-7: Aircraft assignment
▸ D-1 : Operation plan definition
▸ Up to 3 hours prior departure: Flight plans will be updated, and pre-tactical actions implementation

Between D-15 and D-7

Aircraft assignment

  

D-1

Operation plan definition

  

Up to 3h prior departure

Update flight plan
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Dispatcher3
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▸ Dispatcher3, a CleanSky 2 innovation action, uses machine learning techniques to support 
pre-departure processes

▸ Dispatcher3 is composed of three layers:
▹ Data infrastructure
▹ Predictive capabilities
▹ Advice capabilities

▸ Flights might experience discrepancies between their plan and execution due to many factors
▹ In particular, demand-capacity imbalances leading to ATFM regulations.

▸ Euro-centric approach
▸ We will focus on flights from Vueling

https://dispatcher3.eu/

https://dispatcher3.eu/
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ATFM regulations
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▸ Current work predicting ATFM regulations usually focuses on the network, or on specific OD pairs 

▸ Early indication of potential disruptions at the flight level  is important to plan and implement 
pre-tactical actions to minimise the potential propagation of these disruptions.
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ATFM regulations - Analysis
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Non-regulated Vs Regulated Type of delay Distribution minutes of delay
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Outcome of the system

7

▸ Combination of machine learning models to create higher level interpretable predictions for D-1 
▹ Different levels of granularity
▹ Take into account different scenarios (flexibility for D-1)
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Data availability
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▸ Data challenges: Available traffic
▹ Ideal pre-tactical traffic:

D-24 hours

Pre-tactical traffic
  

D-12 hours

  

D-3 hours

  

After D-3 hours

Tactical traffic
  

? ?

▸ Assumption:
▹ Airline has access to pre-tactical traffic
▹ Static pre-tactical traffic

▸ Datasets used:

Data source Description

Eurocontrol DDR (ALLFT+) ‘Extension’ of R&D data containing more detailed information

METAR Forecasted historical weather information at the airports
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Methodology - Input features
Static features Dynamic features

Time of departure (hourly discretization) ATMAP score at departure/arrival airport (numerical)

Size departure airport (small, big, medium) Temperature at departure/arrival airport (numerical)

Size arrival airport (small, big, medium) Wind speed at departure/arrival airport (numerical)

Visibility at departure/arrival airport (numerical)

‘Normalized’ congestion at departure/arrival (in the day of operations)

‘Normalized’ congestion at departure/arrival(within the hour of 
departure/arrival)

Highest ‘normalized’ Occupancy Count (OC) within crossed sector

Highest ‘normalized’ Entry Count (EC) within crossed sector
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Methodology - Individual models
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Models / Algorithms

Probability ATFM delay (yes VS no) Random Forest Classifier

Type of delay (airdrome VS airspace) Decision Tree Classifier

Amount of delay (zero VS non-zero delay) Decision Tree Classifier

▸ Algorithms used for the individual models:
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Methodology - Confidence metric
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▸ Visual higher level interpretable information easier to be processed by the duty-manager

▸ Predictions inside percentile(90) of TN (or TP) -> Model sure about the prediction

▸ Example:
▹ Prediction prob. ATFM delay = 0.87 -> Model very sure about the need of a regulation 
▹ Prediction type of delay = 0.59 -> Uncertain prediction for aerodrome regulation 
▹ Prediction amount of delay = 0.17 -> Model sure about the delay is going to be zero
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Methodology - Delay distribution
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▸ Machine learning models produce probabilistic outputs
▸ Distribution of delay to better assess the impact/severity of the expected delay

▹ Regression: Estimate severity (exact minutes)
▹ Classification: Estimate impact (uncertainty/spread possible delay)
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Evaluation - Individual models
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F1-score
Harmonic mean of the 

precision and recall

Precision
Proportion of positive 

identification correctly 
identified

Accuracy

Fraction of predictions right

Recall
Proportion of positive 

samples correctly identified
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Evaluation - Delay distribution
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▸ How close is the prediction to the actual ATFM delay?
▹ Compute the difference of minutes between ground-truth and the expected value from distribution

▸ How sure is the model about the expected delay?
▹ Compute dispersion of predicted values
▹ The more sure the model's prediction, the fewer bars will be present on the chart
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Results - Individual models
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Prob. ATFM delay 
 (yes vs no)

Accuracy 0.88

F1-score 0.87

Type of delay                         
(Airdrome vs Airspace)

Accuracy 0.87

F1-score 0.86

Amount of delay                    
(zero vs non-zero delay)

Accuracy 0.71

F1-score 0.66
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Results - Delay distribution
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▸ Actual delay VS Predicted delay: 9,14 minutes
▹ Mean difference between actual delay and expected value from the distribution

▸ Average dispersion of the prediction: 22,35 minutes
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Case study - No ATFM delay
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Case study - No ATFM delay
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VLG
LEBG
LEBL
04:50
…

No delay: 92%
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Case study - No ATFM delay
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Case study - No ATFM delay
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VLG
LEBL
LFPO
05:45
…

No delay: 54%

Zero: 86%

Airdrome: 61%
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Case study - ATFM delay
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VLG
LIQR
LFPO
08:24
…

ATFM delay: 94%

Non-zero: 96%

Airdrome: 86%
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Case study - ATFM delay

2020

VLG
LEBL
EDDM
10:32
…

ATFM delay: 99%

Non-zero: 87%

Airspace: 56%



Airline Operations Study Group  Sergi Mas-Pujol

Conclusions
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Benefits:
▸ Models can be used to identify ATFM regulation pre-tactically
▸ Individual models between 70% and 90% accuracy 
▸ Impact/severity can be assessed with distribution of possible delay (mean error of 9 minutes with 

dispersion of 22 minutes)
▸ Models can be improved even further

Drawbacks:

▸ Assumed airlines have access to network information (M1 traffic)
▸ Assumed a static pre-tactical flight plan has been defined for each flight
▸ The less accurate individual model is the zero VS non-zero delay
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Future development
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▸ Feature selection analysis (e.g PCA, SHAP values)

▸ Fine-tune less accurate models

▸ Release predictions according to specific time horizons 

▸ Integrate other data sources (e.g. network weather information)

▸ Provide additional information about the network status

▸ Validate the proposed representation of the predicted information with experts in the field
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THANKS!
You can find me at: 
▸ sergi.mas.pujol@upc.edu


