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Abstract: Construction projects’ unsatisfactory performance has been linked to factors
influencing individuals’ well-being and mental alertness on projects. Drowsiness is a
significant indicator of sleep deprivation and fatigue, so being able to identify the cognitive
and physical preparedness of workers on site to engage in construction tasks is important.
As a consequence of the strenuous nature of the work involved in construction, long work
hours, and environmental conditions, drowsiness is commonplace and has received less
attention despite being a leading cause of accidents occurring on-site. Detecting drowsiness
is essential for determining the safety and well-being of site workers. This study presents a
vision-based approach using an improved version of the You Only Look Once (YOLOv8)
algorithm for real-time drowsiness exposure among construction workers. The proposed
method leverages computer vision techniques to analyze facial and eye features, enabling
the early detection of signs of drowsiness, effectively preventing accidents, and enhanc-
ing on-site safety. The model showed significant precision and efficiency in detecting
drowsiness from the given dataset, accomplishing a drowsiness class with a mean aver-
age precision (mAP) of 92%. However, it also exhibited difficulties handling imbalanced
classes, particularly the underrepresented ‘Awake with PPE’ class, which was detected
with high precision but comparatively lower recall and mAP. This highlighted the necessity
of balanced datasets for optimal deep learning performance. The YOLOv8 model’s average
mAP of 78% in drowsiness detection compared favorably with other studies employing
different methodologies. The system improves productivity and reduces costs by prevent-
ing accidents and enhancing worker safety. However, limitations, such as sensitivity to
lighting conditions and occlusions, must be addressed in future iterations.

Keywords: construction; deep learning; drowsiness; construction safety; computer vision;
accident; Yolo

1. Introduction
As ensuring safety is paramount in all infrastructure projects, there is a pressing

requirement for implementing on-site safety regulations and protocols. This is essential
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to enhancing the well-being and security of construction workers, as highlighted in the
works of [1,2]. This can be ascribed to the fact that the construction site is one of the most
hazardous environments, with several safety concerns stemming from the intricate and fluid
interaction that exists between employees, materials, equipment, and the actual execution of
construction tasks [3,4]. Fatigue stands out as a prominent contributor that jeopardizes the
health, safety, and overall welfare of individuals working within the construction industry.
Fatigue, which results from lack of sleep, negatively impacts a person’s well-being, ability
to function at work, and safety [5,6]. As indicated by prior research conducted by the
National Safety Council, every single surveyed construction worker exhibited at least one
case of susceptibility to workplace fatigue, a condition that can result in hazardous work
environments and heightened injury hazards [5]. In total, 71% of construction industry
employers who responded to the survey claimed that their employees’ lack of sleep had
an effect on productivity, and 45% of respondents said that weariness was to blame for
safety-related incidents [5,6]. The vision-based drowsiness detection system has broad
applications in the construction industry. It can be integrated into existing safety protocols,
enabling real-time alerts to supervisors or workers when drowsiness is detected [3,4].

Drowsiness is an indication of fatigue, which can have a substantial negative impact
on a person’s well-being, productivity, and ability to stay safe. Fatigue is a difficult
ergonomic/safety “issue” in several sectors such as manufacturing [7], construction [8,9],
and others [9], since it reduces productivity and raises the likelihood of accidents. These
consequences could result in decreased performance, decreased production, deficiencies in
the quality of the work, and human errors.

Construction tasks often entail heavy workloads, uncomfortable working postures,
and long working hours, making construction employees susceptible to weariness and
drowsiness [8,9]. We emphasize the significance of drowsiness research by highlighting
the long-term consequence of unchecked fatigue as leading to chronic fatigue symptoms
and reduced immune abilities. It has also been pointed out that these outcomes have
been highlighted with reduced quality of life, socioeconomic disruption to way of life,
increased absenteeism, etc. However, while drowsiness holds significant implications
for the well-being of workers and project performance, its detection among construction
workers is low [10]. Traditional methods, including using an on-site sleepiness assessment
to combat fatigue, typically rely on a visual examination carried out by a trained observer.
This is despite the fact that drowsiness is becoming an increasingly significant topic in the
fields of health, safety, and well-being research [11]. These approaches do not effectively
grasp the interconnectedness of numerous risk elements and the diversity in the tasks
undertaken [5,6].

Despite its severity, numerous serious workplace mishaps continued to have been
linked to insufficient sleep. Still, a common challenge is that people often do not com-
prehend their level of fatigue, its effects, or both. Previous studies such as those [3] have
discovered that adults need 8 h of sleep daily to be fully restorative. Yet, most only receive
7 h, leaving them with a sleep deficit. Therefore, it is imperative to develop innovative
methods to identify drowsiness on site [12]. This is critical to reducing the likelihood
of accidents on site as drowsiness impairs attention, reaction time and judgement. The
employment of innovative methods to identify the fatigue state through drowsiness has
further been postulated to be vital to avert falling from heights [13], slow reflexes leading
to collisions with equipment [14], workers inability to operate machinery [15], poor de-
cision making [16], inefficient work performance [9], and elevated stress levels, amongst
others [17].

Therefore, observation of risky situations and action is necessary for construction safety
and health to eliminate possible risks quickly [18]. However, such observations become
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ineffective and laborious when using subjective and manual assessment methods. Such
manual assessments of the worker’s safety conditions are laborious and error prone since
they depend so much on the inspector’s physical condition and level of knowledge [19].
This has required the development of inventive digital methods that make use of computer
vision and deep learning.

In recent times, computer vision methods have emerged as a reliable and automated
means of conducting field observations, extracting safety-related insights from images and
videos recorded on the site. These approaches are seen as useful replacements for manual
observational methods, which take a lot of time and are not very trustworthy [16,19]. The
current surge in interest and uptake of computer vision can be attributed to its capability for
automated and continuous monitoring of construction sites. By taking pictures or videos
of a construction scene, computer vision may reveal a wealth of information about it, such
as the locations and behaviors of project entities and the circumstances of the site [20]. This
has the potential to enable a quicker, more precise, and all-encompassing comprehension
of complex construction activities [13]. As a consequence of this, computer vision has been
integrated into a number of distinct parts of the construction industry, such as the tracking
of progress, the evaluation of productivity, the identification of defects, and the automation
of documentation [19,21–23].

With the aim of overcoming the constraints associated with traditional manual meth-
ods for detecting drowsiness as a fatigue indicator, this research employed computer vision
and deep learning techniques. This enabled the early identification of signs of drowsiness,
offering a potent approach to accident prevention and the enhancement of on-site safety.
This study contributes to improved health, safety, and well-being on construction sites
by developing a vision-based approach using an improved version of the You Only Look
Once (YOLOv8) algorithm for real-time drowsiness detection in construction workers. The
approach was based on the preparation of datasets, the training of deep learning models,
and the evaluation of the models using testing images. Specifically, the awakeness pose
estimate dataset is acquired from photographs and videos recorded on actual and non-
actual construction building sites. Subsequently, critical key points encompassing complete
equipment body postures are delineated and labelled within the collected images. The
results of the experiments demonstrated that the suggested methodology framework can
rapidly and accurately anticipate the whole drowsiness postures of construction workers.
The model displayed significant precision and efficiency in detecting drowsiness from the
provided dataset. It achieved a mean average precision (mAP) of 92% and an inference
speed as low as 0.4 ms for preprocessing and 7.5 ms for inference. Both of these figures
are quite low. However, it also exhibited difficulties in handling imbalanced classes, par-
ticularly the underrepresented ‘Awake with PPE’ class, which was detected with high
precision but comparatively lower recall and mAP. This highlighted the necessity of bal-
anced datasets and appropriate hyperparameters for optimal deep-learning performance.
The YOLOv8 model’s mAP of 78% in drowsiness detection compared favorably with other
studies employing different methodologies.

The subsequent sections of the document are organized as follows: Section 2 delves
into a thorough review and discussion of previous research; Section 3 offers an extensive
depiction of the proposed methodology; Section 4 showcases the outcomes achieved
using deep learning techniques. The fifth and concluding section of the paper presents a
summary of the research’s core content, underscores its implications, addresses limitations,
and outlines potential avenues for future exploration.
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2. Construction Workers Well-Being
The construction industry exerts a profoundly influential effect on the economic pros-

perity of every country, as demonstrated by its impressive USD 10 trillion addition to
the global gross domestic product (GDP), as reported by [19]. Nevertheless, because of
the large number of accidents and fatalities that occur within the industry, its influence
is negatively impacted as a direct result. This highlights an urgent need to improve its
workforce’s health, safety, and well-being operations. A worker’s performance suffers
due to fatigue in the workplace, which is a multifaceted construct [23]. It is the product of
continued action and is influenced by psychological, socioeconomic, and environmental
factors [6]. Recent evidence suggests that improved operational practices that have en-
hanced workers’ wellness and safety are influenced by studies on improving the well-being
of workers [15,23,24].

Despite the fact that working on a construction site while feeling overly fatigued could
be risky, just 75% of construction employees believed that it was, but 98% of construction
employers concurred [5]. In addition, there was a disparity between the percentage of
employees (78%), who believed that driving when fatigued is risky and the percentage of
employers (96%), who agreed with this sentiment. Most construction employees (76%),
who identified job demands as a risk factor for weariness, indicated they were affected
by them. The number two spot was taken by lengthy commutes, with 46% of workers
considering this a contributing factor. Working during nighttime or in the early morning
hours ranked third at 46%, following factors such as receiving less than 7 to 9 h of sleep per
night (41%), working 50 or more hours per week (28%), and working shifts lasting 10 h or
more (27%). This was followed by obtaining less than seven to nine hours of sleep per night.
According to the findings of a report compiled by the National Safety Council on “Fatigue
in Safety-Critical Industries—Impacts, Risks & Recommendations” [5]. The challenge this
demonstrates is the disparity between workers’ responses in subjective assessment of their
state of fatigue and actual readiness to engage in construction tasks. Recent evidence by
Financial Times [25], revealed that between 400 and 500 workers died due to the 2022 world
cup projects. This indicates how dangerous infrastructure delivery can turn out when the
fatigue assessment is only left to subjective measures.

2.1. Unsafe Behavior in the Construction Sector

As per the findings of Yu et al. [8], about eighty percent of construction accidents are
the result of risky practices carried out by workers. This can include unsafe behavior on the
part of individuals, unsafe behavior on the part of teams, and unsafe practices in relation
to machines, equipment, and robots [1,2]. Unsafe behavior, often driven by fatigue or the
pressure to meet deadlines, can lead to a higher incidence of workplace accidents and
fatalities in the construction industry. When workers are fatigued, their decision-making,
attention to detail, and ability to follow safety protocols deteriorate. This increases the
likelihood of errors, injuries, and accidents. The long-term impact of such behavior is a
potentially higher number of workers’ compensation claims, lawsuits, and damage to the
industry’s reputation. The future of the construction industry depends on ensuring that
worker safety is prioritized and that steps are taken to reduce accidents, which ultimately
requires addressing fatigue and unsafe behavior [13,19]. Fatigued workers are less produc-
tive due to reduced focus, slower reaction times, and an increased likelihood of making
mistakes. In the construction industry, which often operates under tight deadlines, this
can lead to delays, poor-quality work, and increased rework. Over time, continued unsafe
behavior and fatigue will result in more project delays and cost overruns, affecting the
bottom line of construction firms and the industry as a whole. If this issue is not addressed,
it could hinder the industry’s growth and development, impacting the global competitive-
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ness of construction companies [15,23]. On the other hand, the introduction of robots and
automation can create new job opportunities, especially in fields such as robotics mainte-
nance, programming, and data analysis. These roles tend to require more specialized skills,
which can lead to higher-paying jobs. However, workers may need to undergo training or
education to transition into these new roles, and not all workers may have access to the
resources to upskill. Due to the restrictions associated with traditional methodologies, it has
been difficult for project and construction managers to monitor workers’ unsafe behaviors;
as a result, innovative applications are being launched to increase the efficiency and efficacy
of unsafe behavior monitoring. This involves the development of technologies such as
motion capture technologies [8], computer vision and deep learning [26], and wearable
robots [13]. As stated by Yu et al. [8], some examples of unsafe behavior on construction
sites are sleeping on sills and pulling trolleys on stairs. Others include drowsiness, working
at heights without proper fall protection, improper use of tools and equipment, disre-
garding safety guidelines and procedures, etc. However, most incidents can be reduced
with increased alignment and obedience to required safety principles and guidelines [27].
Unsafe behavior on construction sites can often be attributed to factors such as fatigue,
lack of training, and insufficient safety measures. While safety programs are integral, they
must be backed by legislation to ensure effective implementation. Governments play a
critical role in enforcing safety standards, particularly through regulations such as OSHA
(Occupational Safety and Health Administration) guidelines, which mandate the use of
safety equipment and proper training for all workers. Moreover, laws regarding minimum
age requirements for workers are essential to ensure that individuals engaged in hazardous
tasks are physically and mentally capable of handling the demands of the job. In addition,
labor laws that regulate wages, working hours, and safety standards contribute to reducing
risks associated with unsafe working conditions. These legal frameworks, in conjunction
with technological innovations, such as real-time drowsiness detection systems, are pivotal
in enhancing safety and minimizing risks on construction sites [11]. Although governing
laws and safety regulations, such as OSHA-1926.28(a) [28], typically place the responsibility
on employers to enforce, monitor, and uphold proper safety protocols, as highlighted by
Nath et al. [27], employees often neglect to adhere to these regulations on the job site.
This disregard can stem from a lack of awareness regarding safety measures, discomfort
associated with wearing personal protective equipment (PPE), and the belief that PPE
hampers their job performance. Vision-based and sensor-based automated PPE compliance
monitoring technologies are the two primary types of this type of monitoring technology
now available. In approaches that are based on sensors, a sensor will be installed, and the
signals it produces will be analyzed. As an example, one approach could involve affixing
RFID tags to individual pieces of personal protective equipment (PPE) and positioning
a scanner at the workplace’s entrance to read these tags. This would help to ascertain
whether employees are complying with the mandatory PPE requirements.

The ever-changing and intricate characteristics of construction projects almost certainly
increase workers’ dangers on the job. Without systematic and comprehensive safety and
health management procedures in place on construction worksites, it is unfeasible to
completely eradicate occupational risks, as emphasized by Seo et al. [18]. These measures
encompass safety planning, worksite analysis, prevention and control of hazards, as well
as safety and health training. Consequently, it becomes necessary to implement actions like
monitoring unsafe practices. Monitoring risky situations and behaviors during construction
is crucial to identifying them and acting quickly to avert further safety and health problems
by removing them from the causal chain [9]. In the practice of construction, site observations
and inspections are frequently utilized in order to determine the level of risk that is linked
with ongoing projects and the present state of the site. Observational methods are costly
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and time consuming due to the fact that they require supervisors or safety employees to
manually make and record observations. According to Seo et al. [18], one of the limitations
of manual observation is that it cannot provide timely access to information that is either
incomplete or incorrect. While fatigue affects workers universally, the extent to which
it is recognized and addressed can vary geographically due to cultural, regulatory, and
environmental factors. In this study, the focus is on the construction industry in developing
countries, where the prevalence of fatigue-related accidents remains a significant safety
concern. This geographic focus reflects the particular challenges faced by workers in
high-risk sectors in this region, where factors such as long working hours, environmental
conditions, and inadequate safety systems contribute to fatigue-related incidents.

2.2. Fatigue Amongst Construction Workers

The majority of the jobs that site employees perform in the construction industry are
repetitious and physically taxing. According to Ray and Teizer [9], people who perform this
kind of job in abnormal postures put unnecessary strain on their body parts, which can lead
to weariness and drowsiness, both of which can result in injuries or, in the most extreme
situations, permanent disability. In accordance with ref. [22], fatigue is characterized as a
shift in task performance resulting from the initial mental and/or physical exertion that is
so demanding on the worker’s comfort that it hinders their ability to meet the demands
placed on their cognitive functioning. As previously mentioned, occupational fatigue has a
variety of components, including both physical and mental fatigue.

Physical fatigue is a decrease in one’s capacity to perform a physical task due to earlier
physical activity [6,24,25]. Fatigue may be especially problematic in the built environment
since it reveals discomfort, impaired motor function, and decreased strength capability.
After completing physical duties for an extended amount of time, a person becomes
physically exhausted, which eventually affects their capacity to conduct physical tasks
successfully [23]. Also, performing mental tasks for a prolonged time causes mental
tiredness, which reduces a person’s cognitive capacity. Conversely, Ibrahim et al. [23] argue
that there are limitations to different means of measuring fatigue. Anwer, Li et al. [21]
present an account of fatigue measurement using subjective and physiological metrics.
However, it is difficult to assess fatigue on the job site due to the building site’s dynamic
nature and the wearable sensors’ intrusive nature. Contemporary approaches to detect
and track physical fatigue typically hinge on invasive monitoring of brain activity, such
as employing electroencephalography (EEG), or recording sleep habit diaries to evaluate
whether the worker possesses the requisite capacity prior to commencing their tasks. When
workers are fatigued, their ability to accurately comprehend job-related information that
could potentially endanger them becomes more challenging. This heightened difficulty in
comprehension elevates the risk of accidents occurring in that specific work environment.
According to ref. [22], there have been very few occupational applications directly related
to the detection of physical exhaustion in the most physically demanding occupations.
Some examples of these occupations are construction, manufacturing, and agriculture.
Sleep deprivation is a key factor contributing to fatigue, especially in industries where
workers are subject to long hours and intense working conditions. Research has shown
that workers operating under such conditions, often for minimum wages, are more likely
to experience fatigue due to insufficient rest [9,13]. The financial strain of low wages may
further discourage workers from taking necessary breaks or seeking medical attention for
fatigue-related issues, creating a vicious cycle [4,7]. Studies have consistently demonstrated
that sleep deprivation impacts cognitive function, reaction times, and overall health, making
it a critical factor in workplace safety. In the construction sector, where workers are exposed
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to physical exertion, long shifts, and high-risk environments, the impact of sleep deprivation
can be especially severe, contributing to increased accident rates [15].

2.3. Drowsiness of Workers in the Construction Industry

Sleep deprivation can be brought on by a wide variety of circumstances, such as the
choices one makes in their lifestyle, the effects of stress, bad sleeping habits, and sleep
disorders like sleep apnea and restless legs syndrome. Whatever the cause may be, sleep
deprivation and a lack of sleep can have a negative impact on performance, which in turn
raises the risk of accidents for both the worker and others in the workplace [3]. The major
consequence of drowsiness on construction sites is its likelihood of leading to accidents
or wrong decision-making, affecting project performance and the risk of chronic health
challenges [9].

According to Seo et al. [18], carrying out job safety observations and inspections is
one of the most popular methods that is utilized in the construction industry to evaluate
ongoing operations. These actions are included in a more comprehensive safety and health
monitoring category. During the observation, the human observer serves to detect and
eliminate the potential causes of accidents (i.e., unsafe conditions and acts) by watching
workers perform a specific task (i.e., safety observation) or visually inspecting the work area
and work equipment (i.e., safety inspection) with a checklist [12]. This is accomplished by
observing workers as they carry out a particular task (also known as “safety observation”)
or by visually inspecting the workspace and the equipment that is used for the job (also
known as safety inspection) [8].

Questions have been raised about the quality of sleep needed to remove drowsiness;
previous studies have postulated that adults need 8 h daily to be fully restorative. Yet, most
only receive 7 h, leaving them with a sleep deficit [22]. Sleep deprivation occurs when an
individual gets less sleep than is necessary for complete recovery. Serious or ongoing sleep
deprivation can harm the person experiencing it and anyone else affected by their behavior.
While increased attention is paid to task-specific and known risks, it has been identified as a
significant reason why the number of fatalities that occur in the construction industry keeps
rising. One example of this is the failure to take into account unknown or conspicuous
dangers, such as drowsiness [23]. Effective elimination of safety and well-being risks on
sites depends on preventive strategies for easily identified and known risks and not easily
perceived or recognized risks such as drowsiness [27,29,30].

Studies performed in the past have also investigated the connection between a lack of
situational awareness and tiredness while on the job. Drowsiness in workers can have a
significant impact on their situational awareness, which can cause difficulties for workers
in recognizing, perceiving, and analyzing hazards, as well as in making projections and
establishing control [31]. Therefore, effective identification of indicators of fatigue, such
as drowsiness, is imperative. Ibrahim et al. [23] identified the recognition of hazards as
the awareness that a situation might be dangerous, with two forms of hazard recognition
being predictive and retrospective. This study takes a predictive approach to fatigue
recognition, utilizing drowsiness as an indicator. It aims to build a vision-based strategy by
employing an upgraded version of the You Only Look Once (YOLOv8) algorithm for real-
time drowsiness detection in construction workers. The retrospective technique analyzes
data from past safety incidents to prevent future recurrences, whereas the predictive
approach forecasts future working scenarios and predicts safety threats.

Previous development in this area has revealed that by leveraging deep learning algo-
rithms, mental alertness due to drowsiness can be effectively measured compared to other
less-effective methods, such as physiological metrics. This has been demonstrated by [32],
who utilized pressure sensors to measure subject fatigue, and a combination of deep learning
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algorithms and biomechanical analysis was employed to provide a non-intrusive method
of monitoring the physical exhaustion of the complete body while the construction process
was taking place. Other methods of determining mental exhaustion entail constructing a
model that can objectively identify the level of mental weariness in construction workers
based on data from the wearable electroencephalogram sensors that were administered to
15 participants [33]. It is becoming increasingly common to apply computer vision techniques
in safety monitoring in addition to sensor-based methods [12,34].

A multi-sensor data monitoring system is required because of the complex nature of
the factors contributing to fatigue development. In order for technological approaches to
the measurement of physical fatigue to be effective, the system must be able to predict
physical fatigue (before it has a negative impact on productivity or safety), measure and
monitor physical fatigue in the operational environment, and enable intervention when
deficits are discovered or foreseen with the use of appropriate interventions [35]. According
to Mariam et al. [11], one of the obvious measures for detecting physical weariness in the
workplace is to ask the worker to rate their perceived level of physical fatigue. However,
the practice has shown that the majority of workers report incorrectly in order to avoid
being replaced on duties. Hence, self-reported fatigue is largely limiting in predicting
construction workers’ mental alertness and cognition.

Drowsiness is imperative to be measured amongst construction workers for a couple
of reasons; due to hazardous weather, use of mobile equipment, several work sites needing
travel, and unpredictable and demanding schedules mandating extra work hours, risks on
construction sites may be increased [9]. All of these might heighten fatigue and exhaustion.
These factors strain human physiology and can cause weariness that impairs performance
and increases worker risk [11]. When performance and decision-making are impaired, this
not only puts the worker at safety risk but places the tasks being conducted at risk, which
can have a monumental effect on the structure’s integrity. While previous studies have
given valuable contributions to the impact of fatigue on workers’ operations, little is still
known about identifying drowsiness as an early indicator of mental and physical fatigue.

2.4. Computer Vision Techniques and Deep Learning in Construction

The field of computer vision is one that draws from several disciplines; it investigates
the ways in which computers can gain significant knowledge from viewing digital images
or videos. Deep learning approaches have recently attracted a lot of interest in the field
of computer vision due to their capacity to acquire valuable features on their own from
enormous volumes of annotated training data [27]. This ability has contributed to the
increased popularity of deep learning techniques. The reason for this is that approaches of
deep learning have the capability of improving themselves by studying their past errors. It
intends to automate tasks that, from an engineering point of view, the human visual system
is unable to execute [36,37]. According to Seo et al. [18], computer vision-based safety and
health monitoring require the capture of photos or videos of the construction sites where
the activity to be monitored is taking place. This is a prerequisite for the monitoring process.
For the purpose of obtaining the 2D imaging data (sometimes referred to as 2D videos or
sequential images), which is important for computer vision-based monitoring, the photos
or videos may serve as low-cost alternatives.

Considered to be one of the most essential components of computer vision is the
criteria for recognizing object tracking on building sites [18,22]. Several parameters that
need to be considered include frame rate, outdoor application capabilities, reliable reading
range, object localization capability, and 3D modelling capacity. Second, in order to verify
the identities of the workers and determine whether or not they are licensed to carry out
the work, we utilize facial detection and recognition methods. These procedures help us
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determine whether or not the workers are authorized to carry out the task. CNN enables
the automatic recognition of a large variety of objects contained inside an image, which
is a vital step for ongoing study. These stages essentially consist of face detection and
recognition, object detection and tracking, as well as object detection and tracking [23,38].
Face detection is required before moving on to the next step of face recognition. According
to Cha et al. [32], the classification of facial recognition performed by computers requires
images that are up close and solely show the face. Computer vision approaches are more
versatile and adaptable than sensors because they do not require workers to wear additional
equipment [38,39].

This was made much simpler by the development of new algorithms such as Faster
R-CNN, which are able to recognize and keep track of resources such as people, plants, and
equipment, as well as identify personnel who are behaving in a risky manner [38,40,41].
According to Fang et al. [12], action recognition is the most important aspect of computer
vision-based systems. These systems make use of manually constructed features (such
as shapes) in images or videos. Image representation systems that are used to recognize
human behaviors are able to extract information from images, such as shapes and temporal
motions, which are used to do so. In order to correctly identify and evaluate a wide range
of actions, the action identification features must contain extensive information. Classifier
tools (such as Support Vector Machines [SVM]), temporal state–space models (such as
Hidden Markov models [HMM] and conditional random fields [CRF]), and detection-based
techniques (such as bag-of-words coding) can all be used to assess such properties [12].
Due to the advantageous trade-off between model correctness and inference speed, the
You Only Look Once (YOLO) series algorithm models 30–32 are recommended for use in
real-time applications [13,40].

Edge detection on images was one of the key methods that was utilized for excavator
pose estimates in the early days [15]. Also, ref. [19] employed silhouette-based tracking
algorithms to extract binary images from videos captured by stationary security cameras
to estimate trolley movement along the crane jib. These algorithms relied on the films
captured by the cameras. Refs. [20,41] employed a non-rigid equipment posture estimation
based on construction pictures and videos to establish a model for detecting equipment
parts using support vector machines (SVMs) and histogram-oriented gradient (HOG).
This model was developed for detecting equipment parts using support vector machines
(SVMs) and histogram-oriented gradient (HOG). By incorporating the k-means method-
ology, background subtraction algorithm, and the part-based posture estimation method,
Soltani et al. [31] improved it and produced more accurate findings. In another study con-
ducted by Soltani et al. [31,41], the time and coordinate systems of multiple cameras and
the real-time location system (RTLS) were synchronized. This allowed the RTLS to combine
the data from those sources, which allowed the researchers to extract two-dimensional
equipment poses and estimate the three-dimensional poses of excavators.

Deep learning strategies have been increasingly popular for use in a variety of occu-
pations within the construction sector. These jobs include the monitoring of construction
sites and the health inspection of civil infrastructures. These jobs were created to address
challenges that were previously resolved using normal computer vision methods. Convolu-
tional neural networks, also known as CNNs, are a type of neural network that is frequently
utilized in deep learning approaches [34,42]. According to Fang et al. [12], approaches
to deep learning that are based on CNN are effective for computer vision and pattern
recognition. Concrete crack detection using CNN-based approaches has been used for civil
infrastructure health inspection; the results showed that CNN is superior to other computer
vision methods [19,30].
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An algorithm for deep learning was developed with the help of a faster Region-Based
Convolutional Neural Network (Faster-RCNN), which was used to identify four distinct
types of sewer pipe failures. This highlights the benefits of using deep learning algorithms
for analyzing images and videos in even more detail. LeNet-5 is a CNN model that was
constructed by LeCun and his colleagues that deciphers handwritten digits. The dataset
that was used to build the model was produced by the mixed National Institute of Standards
and Technology. CNN models are able to efficiently and automatically identify attributes
from static images [12,22]. This capability is achieved by stacking several convolutional
and pooling layers.

Fang et al. (2018) [12] created two algorithms based on Faster-R-CNN and CNN mod-
els that are used to (1) recognize the presence of employees and (2) decide the harness that is
fastened to them in an effort to solve the problem of workers working at heights forgetting
to wear their harnesses. This was conducted in order to address the problem of workers
working at heights and forgetting to wear their harnesses. Similar to this, Fang et al. [12]
developed a deep learning method to automate the process of inspecting the use of personal
protective equipment (PPE) by steeplejacks in aerial works. Nath et al. [27] constructed
three deep learning (DL) models built on You Only Look Once (YOLO) architecture to
verify the PPE compliance of employees and [30] completed an automated examination of
large-scale bridge constructions just using photos. The selection of YOLOv8 for drowsiness
detection was driven by several key advantages over alternative object detection models.
First, YOLOv8’s single-stage detection architecture enables real-time processing with an
inference speed of 7.5ms, crucial for timely drowsiness alerts in construction environments.
Second, YOLOv8’s anchor-free detection approach improves accuracy for detecting subtle
facial features and head movements indicative of drowsiness, while reducing computa-
tional overhead compared to two-stage detectors like R-CNN. Additionally, YOLOv8’s
enhanced backbone with CSPDarknet offers superior feature extraction capabilities particu-
larly beneficial for distinguishing between alert and drowsy states under varying lighting
conditions common on construction sites. The model’s efficient architecture also allows
deployment on standard hardware, making it practically viable for on-site implementation.
These characteristics make YOLOv8 particularly suited for our application compared to
alternatives such as R-CNN or earlier YOLO versions (which lack YOLOv8’s architectural
improvements for fine-grained feature detection).

Other applications of deep learning include the application of two CNN models with
an extremely high level of accuracy to recognize safety harnesses worn by workers to
prevent falling from heights [12]), the recognition of unsafe behaviors [42], the estimation of
the poses and activities of construction employees [19,43], and the recognition and tracking
of equipment [26]. On the other hand, CNN has served as the foundation for virtually all
of the effective algorithms that have been created for the purpose of image categorization,
object detection, and visual tracking. Because of this, their use in the construction industry
for use cases involving visual detection has been further promoted. The findings of these
studies offer valuable insights into improving building processes through the application
of deep learning and computer vision techniques. Even though the relevant research is
still in its early stages, the current state of the art implies that deep learning and computer
vision techniques offer substantial potential for monitoring, even for fatigue-associated
instances such as drowsiness. This is despite the fact that the relevant research is still in its
early stages.

3. Methodology
In this study, we elaborate on developing and implementing a vision-based model

that is adeptly trained on a substantial corpus of visual data, encompassing both videos
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and still images. This methodology has been widely used in similar studies that were
conducted in the construction industry [30,35]. The dataset for this study was collected
using a convenience sampling method due to logistical and resource constraints. Thirteen
operatives were selected from construction sites actively involved in tasks relevant to
the study’s objectives. The selection process prioritized accessibility and willingness to
participate, ensuring that participants were available and capable of providing the required
data within the study’s timeframe. To engineer a rich and varied dataset, video footage
acquired from the above sources was systematically processed to generate additional
image data, thus enhancing the density of our dataset. These activities were primarily
aimed at simulating indicators of drowsiness, thereby promoting a model attuned to early
recognition of potential safety hazards.

The drowsiness detection model was trained to identify specific visual indicators that
were simulated and recorded in our dataset. These indicators included yawning patterns,
slower blinking rates, lethargic head movements, and visible signs of fatigue in the eyes.
The selected operatives included a mix of roles commonly found on construction sites, such
as supervisors, skilled laborers, and machine operators. While the sample was not ran-
domly selected, efforts were made to include individuals with varying levels of experience
to reflect the diversity of skill levels in the workforce. During the data collection phase,
construction operatives were specifically instructed to simulate these drowsiness behaviors,
ensuring the model was trained on these key visual cues that are commonly associated
with fatigue in construction workers. These indicators were chosen based on their observ-
able nature and their established relationship with drowsiness states, enabling the model
to effectively distinguish between alert and drowsy conditions in real-time monitoring
scenarios with each of these activities is a well-documented precursor of drowsiness, a state
of potential risk in the challenging working conditions of the construction industry [34].
Data collection used dual-purpose cameras to simultaneously capture still images and
video recordings. To ensure the accuracy and relevance of our drowsiness simulations, we
conducted preliminary interviews with construction safety experts and site supervisors to
identify the typical signs of drowsiness observed among workers on-site. This consultation
process was instrumental in refining our selection of behaviors, allowing us to align our
simulations more closely with real-world indicators of fatigue prevalent in construction
environments. Data were collected over a three-week period, with each participant ob-
served and monitored during their regular work shifts. All participants provided informed
consent before data collection commenced. Confidentiality was maintained by anonymiz-
ing the data, ensuring that individual identities and specific worksite details could not be
traced. This process involved removing any personal identifiers such as names, job titles,
and site-specific details from the dataset. Each participant was assigned a unique code
to facilitate data analysis while maintaining anonymity. For example, instead of using a
participant’s real name, identifiers like “Participant 1” were applied. Data were securely
stored in encrypted digital formats and accessible only to the research team. Digital data
were stored on password-protected devices, with backup copies maintained on a secure,
encrypted cloud storage platform.

Following the simulation of drowsiness behaviors, we implemented a validation step
wherein we compared video recordings of these simulated actions with real-life video
footage and other documented instances of drowsiness in workplace settings. A panel
of safety experts was enlisted to review these recordings, confirming that the simulated
behaviors accurately represented actual fatigue-induced actions commonly observed on
construction sites. We acknowledge that individual responses to fatigue can vary signif-
icantly based on factors such as age, physical health, and specific work conditions. To
address this variability, we ensured that our data collection included a diverse sample
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of operatives, varying in age, experience, and background. This diversity was crucial
in capturing a broader range of fatigue responses, thus enhancing the robustness of our
findings. Furthermore, we incorporated advanced machine learning techniques to manage
individual variations in fatigue expression. Specifically, the YOLOv8 model was trained
using a weighted approach, which prioritized the detection of common drowsiness mark-
ers while maintaining flexibility to identify subtler differences in fatigue levels among
individuals. This approach allowed for a more nuanced understanding of drowsiness de-
tection within the context of construction worker safety. The data comprised 1.5 h of video
footage recorded at 1080 × 1920 resolution with 28 frames per second. Figure 1 presents
the flowchart of model training, validation, and testing procedures. This is conducted in
order to accomplish the goals of the study.
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3.1. Dataset Extraction

The process of dataset extraction involved the meticulous extraction of still images from
the recorded videos. These images were subsequently employed as inputs to the Yolov8
model. We set the interval between the extracted frames at 36 s to maintain consistency
and ensure an evenly spaced data distribution. This interval was chosen after a series of
experimental observations, aiming to maximize the quality and representativeness of the
data whilst minimizing redundancy, as shown in refs. [35,36]. Utilizing the robust OpenCV
algorithm, these frames were converted into still images, yielding approximately 149 images.
In addition to this, we also incorporated self-captured images, thereby increasing the depth
and variety of our dataset, resulting in a total of 605 distinct images.

Given the variance in image resolutions within our drowsiness image dataset, we un-
dertook a rescaling operation to standardize the resolution of all images to 416 × 416 pixels.
The 416 × 416 image resolution was chosen for its optimal balance between computational
efficiency and feature extraction, ensuring high accuracy in detecting drowsiness-related
visual cues while maintaining real-time processing capability.

In the scheme, 605 images were classified into four distinct categories: ‘Awake with
PPE’, ‘Awake without PPE’, ‘Drowsy with PPE’, and ‘Drowsy without PPE’. Table 1
shows the distribution of the images. To ensure data validity, the image acquisition pro-
cess followed a structured protocol where each operative was recorded under consistent
lighting conditions and at similar distances from the camera, using a 16MP camera with
1080 × 1920 resolution.

Inter-rater reliability was established through independent verification of the drowsi-
ness classifications by three qualified safety professionals with over five years of construc-
tion site experience. The study’s methodology, dataset preparation, annotation process,
and model configuration have been detailed to ensure transparency and reproducibility.
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The use of well-documented libraries like OpenCV, along with deterministic settings, min-
imizes variability and enhances reliability. However, reproducibility may be influenced
by differences in environmental factors such as lighting and worker attire. Adapting the
dataset to new contexts would require additional fine tuning and validation to maintain
reliability and validity.

Table 1. Distribution of the dataset.

Class Numbers Included

Awake with PPE 98
Awake without PPE 121
Drowsy with PPE 159
Drowsy without PPE 227

In the course of our experiment, we utilized a random data partitioning approach,
in which we allocated seventy percent of the dataset to training, fifteen percent to vali-
dation, and fifteen percent to testing. The purpose of this split is to evaluate the model’s
performance in a way that is both reliable and preventative of overfitting.

3.2. Computation Specifications

The construction operatives’ drowsiness detection framework was built, leveraging
hardware and software resources. We utilized Keras, and OpenCV libraries, owing to their
capabilities in implementing and optimizing deep learning architectures [44]. Python 3.9, a
dynamic and high-level programming language that is well-known for its readability and
convenience of use in scientific computing, was used in conjunction with these libraries.
Our model architectures, namely the YOLOv8 by Ultralytics, were trained without using
high-performance Graphics Processing Units (GPUs) [45]. Rather, we relied on an 11th Gen
Intel® CoreTM i7-11800H @ 2.30 GHz 2.30 GHz computer, equipped with 16 GB of RAM.
The Jupyter Notebook was the development environment of choice during model training
and evaluation. All the data for our study were collected using a 16MP camera, further
attesting to our commitment to maintaining high-quality data.

3.3. Evaluation Metrics

In assessing the performance of our machine learning model, we have elected to
employ a set of computational metrics designed to offer nuanced insights into the efficacy
of the model. These metrics are particularly relevant in object detection and classification
and are grounded in the calculation formulas derived from the datasets at our disposal.
The maximum number of batches, denoted as ‘Max batches’, is calculated as the product of
the number of classes and a factor of 2000. Moreover, the steps are determined by a range
between 80% and 90% of the maximum batches. The filter parameter is determined by
multiplying the value obtained from adding the number of classes to 5 by a factor of 3.

Max batches = number of classes × 2000 (1)

Steps = (Max batches × 0.8, Max batches × 0.9) (2)

Filters = (number of classes + 5) × 3

These calculations inform the analysis of the model’s performance in classifying
objects. The model’s effectiveness in correctly predicting a positive class is denoted as a
True Positive (TP). In contrast, its ability to correctly predict a negative class is signified as a
True Negative (TN). Conversely, an incorrect prediction of a positive class is termed a False
Positive (FP), and an incorrect prediction of a negative class is regarded as a False Negative
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(FN). These are fundamental metrics retrieved from the output of the object detection
algorithm [37].

Precision, the ratio of True Positives to the sum of True Positives and False Positives,
measures the model’s capacity to correctly predict positive instances Aich et al. [38]. Con-
versely, recall is computed as the ratio of True Positives to the sum of True Positives and False
Negatives, offering a measure of the model’s aptitude in accurately identifying all positive
instances. Mathematically, these are represented according to Equations (1) and (2) [39].

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

A further measure of model performance, the average precision (AP), is a function
of the relationship between precision and recall rates within a given data sample. This
measure incorporates the intersection over union and assesses the model’s ability to identify
an object correctly. The average precision (AP) is calculated as the mean of recall rates with
precision ranging from 0 to 1, as shown in Equation (3).

AP = N∑k = 1P(k)∆r(k) (5)

In this context, “N” denotes the total number of images included in the dataset that was
utilized for the calculation. P(k) signifies the precision rate for image k, and ∆r(k) denotes
the difference in recall rate from image (k − 1) to image k. The AP is then calculated for each
class and averaged to yield the mean average precision (mAP) for all classes combined.

Accuracy, which describes the frequency with which the model correctly classifies a
data point, is computed as the ratio of the sum of True Positives and True Negatives to
the total count of True Positives, True Negatives, False Positives, and False Negatives [38].
Symbolically, this is expressed as follows in Equation (4):

A =
TP + TN

TP + TN + FP + FN

However, it is important to note that accuracy has limited utility as a performance
metric in object detection due to the negligible relevance of True Negatives. Instead, we
focus our evaluation on recall and precision measures and construct a precision–recall
curve to visualize the trade-off between these two metrics [40]. A model exhibiting high
recall and low precision suggests a high volume of detections, most of which are incorrectly
labelled. Conversely, a model characterized by high precision and low recall indicates a
lower volume of detections, most of which are correctly labelled.

3.4. YOLOV8 Model

The YOLOv8 model, a renowned member of the YOLO model lineage, has earned its
reputation through its profound capabilities for joint detection and segmentation [27,41]. It
shares its architectural construct with its predecessor, the YOLOv7 model, encompassing
distinct components such as a backbone, head, and neck [42]. However, the YOLOv8 model
distinguishes itself with its novel architecture, fortified convolutional layers that comprise
its backbone, and a significantly enhanced detection head as shown in Figure 2. These
advancements render it an optimal choice for real-time object detection tasks. Comple-
menting this, the YOLOv8 model also extends support for state-of-the-art computer vision
algorithms, particularly instance segmentation. This attribute enables the model to detect
multiple objects within a single image or video proficiently. The model operationalizes the
Darknet-53 backbone network, a notable improvement over the network used in YOLOv7
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in terms of speed and precision [43]. A distinct feature of YOLOv8 is its adoption of an
anchor-free detection head for predicting bounding boxes, further enriching its detection
capabilities [42,46].
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3.5. Dataset Labeling

Two file extensions—.jpeg for images and.txt for text—are used by the YOLO family
to identify objects. A text file is utilized to keep track of the labels, object types, and
coordinates of their bounding boxes; in contrast, the picture file merely contains images.
The image object count is proportional to the row count in the text file. Manually annotating
drowsiness on the collected images is labour intensive and time consuming. As such, we
harnessed the capabilities of LabelImg, an interactive graphical image annotation tool [40].
The labelling tool was instrumental in easing the dataset creation process, allowing for the
seamless importation of a series of images. This was followed by the manual delineation of
bounding boxes around objects of interest within each image. The identified objects were
then classified according to a predefined list of classes specifically curated for this research:
‘Drowsiness with PPE’, ‘Drowsiness without PPE’, ‘Awake with PPE’, and ‘Awake without
PPE’. The repetitive process of drawing bounding boxes and assigning class labels was
undertaken for all objects within each dataset image. Upon completion, the LabelImg
tool facilitated the exportation of annotations as text files in the YOLO format. These files
contained critical information, including the coordinates of each bounding box and the
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corresponding label attributed to the enclosed object. Such annotated data serve as an
invaluable ground truth for training the detection algorithms, empowering them to identify
and classify details within novel, unseen images accurately.

4. Results
The principal aim of the experiment conducted herein was the detection of construc-

tion operatives’ drowsiness with high precision and, in real-time, leveraging the YOLO-v8
model to train our datasets. This section elucidates the training process, the variety of hy-
perparameters employed, the optimization methods adopted, and the results of the model’s
performance. The implementation utilized the YOLOv8s architecture (sourced from the
base model ‘yolov8s.pt’) with modifications to accommodate our four-class detection prob-
lem. The model architecture maintained its original backbone structure while adapting
the classification head to our specific use case. The selection of optimal hyperparameters
was conducted through a systematic grid search approach, evaluating multiple parameter
combinations using 5-fold cross-validation on the training dataset.

The hyperparameter optimization process explored learning rates between 0.001 and
0.05, batch sizes ranging from 8 to 32, and image sizes from 416 to 640 pixels. Momentum
values were tested between 0.937 and 0.97, while weight decay was evaluated from 0.0005
to 0.005. This comprehensive search across 108 different combinations revealed that a
learning rate of 0.01, batch size of 16, and image size of 416 × 416 pixels yielded the
highest mean average precision (mAP@50) while maintaining computational efficiency.
The momentum coefficient of 0.937 and weight decay of 0.0005 were selected based on their
superior performance in preventing overfitting while ensuring stable convergence.

The final training protocol implemented these optimized parameters over 600 epochs
with an early stopping patience of 50 epochs to prevent overfitting while ensuring adequate
model convergence. To enhance model robustness and generalization, mosaic augmentation
was employed with overlap mask enabled and a mask ratio of 4:1. The optimization strategy
centered on Stochastic Gradient Descent (SGD), with the learning rate maintained at 0.01
throughout training. A warm-up period of 3.0 epochs was implemented with a momentum
of 0.8 and a bias learning rate of 0.1 to ensure stable initialization as detailed in Table 2.

Table 2. Optimized model configuration and training parameters.

Parameter Category Parameter Value Search Range/Justification

Optimization

Learning Rate (lr0) 0.01 Tested: [0.001, 0.01, 0.05]; best convergence rate
Final Learning Rate (lrf) 0.01 Matched to initial learning rate
Momentum 0.937 Tested: [0.937, 0.95, 0.97]; YOLOv8 recommended
Weight Decay 0.0005 Tested: [0.0005, 0.001, 0.005]; best regularization

Warm-up Configuration
Warm-up Bias LR 0.1 Default value; reliable start
Warm-up Epochs 3.0 Default value; stable initialization
Warm-up Momentum 0.8 Default value; consistent performance

Computational efficiency was enhanced through the implementation of automatic
mixed precision (AMP), while resource utilization was carefully managed through con-
trolled worker thread allocation to prevent memory saturation. The ‘deterministic’ param-
eter was set to true, ensuring reproducible behavior from PyTorch, cuDNN, and CUDA,
with a fixed random seed of 0. While the selected configuration demonstrated strong
performance, it is important to acknowledge that these parameters may not represent the
global optimum. Future work could explore broader parameter ranges, finer granularity in
parameter values, or alternative optimization strategies such as Bayesian optimization.
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One of the integral performance metrics deployed was the box loss metric. This metric
assesses the proximity of the model’s predicted bounding boxes to the actual objects within
the dataset. A value close to 1 for this metric indicates a consistent improvement in the
model’s ability to generalize and accurately delineate the identified objects in the dataset as
shown in Figure 3.
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The YOLO-v8 model underwent training with the drowsiness dataset for 600 epochs,
with a batch size 16. The early stopping mechanism activated after 119 epochs due to a lack
of observed improvement in the previous 50 epochs in adherence with the specified patient
setting. The overall training phase spanned roughly 0.3 h on a Jupyter Notebook, with the
best results manifesting at epoch 69.

4.1. Performance of the Yolov8

When subjected to cropped images of operatives, the accuracy of the YOLOv8 model in
categorizing the images into classes—Awake with PPE, awake without PPE, Drowsy with
PPE, and Drowsy without PPE—was recorded as 64%, 43%, 83%, and 95%, respectively.
Interestingly, the model displayed greater proficiency in detecting classes characterized
by drowsiness with or without PPE than classes depicting Awake with or without PPE.
Notably, the class ‘Awake without PPE’ was misclassified as ‘Drowsy without PPE’ 56%
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of the time, indicating a propensity for false positive detection in the model as detailed in
Figure 4. This observation may be attributable to the imbalance in the dataset composition.
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threshold, with the drowsiness dataset, is illustrated in Figure 5.
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Figure 5. Performance of YOLO-v8 on the drowsiness dataset based on (a) precision, (b) recall and
(c) mAP at the 50 IoU threshold.
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From the evaluation metrics obtained on the validation drowsiness dataset, as summa-
rized in Table 3, we discern that the overall precision approximated 87%, with a recall of 73%
and a mAP at the 50 IoU threshold of 78%. When delving into the class-wise performance,
we note that the model detected ‘Awake without PPE’ with 96% precision, 64% recall, and
67% mAP at the 50 IoU threshold. The ‘Awake with PPE’ category had a precision of 80%,
recall of 57%, and 68% mAP at the 50 IoU threshold. For the ‘Drowsy without PPE’ class,
the precision was 77%, a recall was 88%, and the mAP at the 50 IoU threshold was 84%. The
‘Drowsy with PPE’ class exhibited a precision of 96%, recall of 83%, and 92% mAP at the
50 IoU threshold. The compelling contrast between the model’s proficiency in discerning
drowsiness from being awake reiterates the significance of a balanced dataset in improving
model performance.

Table 3. Validation outcomes on the drowsiness dataset.

Metrics

Class Precision Recall F1 mAP@50

All 0.87 0.73 0.79 0.78
Awake without PPE 0.96 0.64 0.77 0.67
Awake with PPE 0.80 0.57 0.67 0.68
Drowsy without PPE 0.77 0.88 0.82 0.84
Drowsy with PPE 0.96 0.83 0.89 0.92

The model’s performance correlation with respect to the precision of the dataset
and corresponding confidence level is encapsulated in the precision–confidence Curve
(PCC curve) depicted in Figure 6a. This curve exhibits a gradual ascent until it peaks at
1.00 accuracy and 0.855 confidence, maintaining this level after that. The recall–confidence
curve (RCC) in Figure 6b elucidates the inverse relationship between the recall of the dataset
and confidence. The distinct behaviors observed in both these curves further underscore
the complexity and intricacies involved in achieving high precision and recall in object
detection tasks. Both metrics have been shown to have a relationship that is inversely
proportional to the another.
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4.2. Discussion

This study’s objective was to discern the viability of the YOLOv8 model in detecting
drowsiness among construction operatives with significant accuracy and in real time.
Our findings reveal promising outcomes, with the YOLOv8 model displaying remarkable
precision in the images and an inference speed reaching 0.4 ms for preprocessing, 7.5 ms
for inference, 0.0 ms for loss calculation, and 1.7 ms for postprocessing per image in the
drowsiness dataset. Furthermore, the model achieved a notable mean average precision
(mAP) of 92% in the drowsiness detection task.

Despite these encouraging results, examining the model’s performance exposes a
shortcoming in handling imbalanced classes. The underrepresented class, ‘Awake with
PPE’, was detected with high precision, but comparatively, it demonstrated a lower recall
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and mAP in the testing dataset. This disparity in performance across various classes
reinforces the need for a balanced dataset and well-chosen hyperparameters to ensure
optimal performance in deep learning-based object detection tasks [34].

The performance of the YOLOv8 model was also compared with similar works in the
field, as indicated in Table 4. Our mAP of YOLOv8 detecting drowsiness was 78%, which
compares favorably with other studies employing different methodologies for similar or
related object detection tasks. For instance, Wang et al. [43] employed the R-CNN model to
detect safety hazards and reported an mAP of 92.55%. On the other hand, Lee et al. [35]
utilized the YOLOACT model for detecting construction worker presence, hardhat usage,
and safety vest usage, with reported mAPs of 64.3%, 77.2%, and 62.3%, respectively. Our
results substantiate the potential of YOLOv8 for real-time detection tasks, with the added
advantage of computational efficiency.

Table 4. A general comparison between the YOLOv8 model and other related work.

Reference Domain Methodology mAP (%)

Proposed Drowsiness Yolo-v8 78
Lee et al. (2023) [35] Worker YOLOACT 64.3
Lee et al. (2023) [35] Hardhat YOLOACT 77.2
Lee et al. (2023) [35] Safety vest YOLOACT 62.3

Comparing our YOLOv8 implementation (78% mAP) with YOLOACT’s varying
performance across different tasks (64.3% for worker detection, 77.2% for hardhat detection,
and 62.3% for safety vest detection) demonstrates our model’s superior capability in
detecting complex human states. The improved performance can be attributed to YOLOv8’s
enhanced feature extraction capabilities, which are particularly beneficial for detecting
subtle facial and postural changes indicative of drowsiness. However, it should be noted
the contrast in our aim as the detection tasks and datasets differ significantly as seen in
similar studies [47].

5. Implications of the Study
5.1. Drowsiness as an Indicator of Fatigue

Given the propensity of most fatigue measurements to be subjective, an algorithm to
identify drowsiness helps to easily measure workers’ readiness and cognition to be involved
in construction tasks. This also helps workers to be aware of the effects of sleep deprivation
and what they can do on a personal level to sleep better and be more physically ready for
laborious construction tasks. This proactive approach is equally applicable in other sectors,
such as transportation, where it could lead to a substantial reduction in accidents, promot-
ing safer travel conditions for all road users. Furthermore, integrating such systems with
existing vehicle technology could enhance overall traffic management and safety protocols.
The healthcare industry, especially in high-stakes environments like emergency rooms
and critical care units, demands high levels of alertness from professionals. By employing
drowsiness detection technologies, hospitals can monitor staff fatigue levels, facilitating
timely breaks and ensuring optimal staff performance. This not only protects patient safety
but also contributes to the mental well-being of healthcare providers, fostering a healthier
work environment. In manufacturing environments, where workers often operate heavy
machinery or engage in repetitive tasks, drowsiness can lead to accidents that not only
endanger workers but also disrupt production lines. Implementing a drowsiness detection
system in these settings can enhance safety protocols and reduce the frequency of work-
place injuries. Moreover, fostering a culture of safety through regular monitoring can lead
to increased employee morale and retention, positively impacting overall productivity. The
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mining industry operates under inherently dangerous conditions where fatigue can signifi-
cantly impair worker judgment and reaction times. Utilizing drowsiness detection systems
in this sector could mitigate risks associated with fatigue-related accidents, ensuring that
workers remain alert during critical tasks. Additionally, these systems can be integrated
with existing monitoring technologies to provide comprehensive safety solutions tailored
to the unique challenges of mining operations. The implications of drowsiness detection
technology extend far beyond the construction industry, with potential applications across
various sectors where worker fatigue is a critical concern. By adapting and implementing
such systems in diverse environments, industries can enhance safety protocols, improve
productivity, and promote overall worker well-being.

5.2. Enhanced Construction Health, Safety and Well-Being

With an improved method of identifying drowsiness, risks associated with fatigue
are reduced as against using subjective measures which workers can easily manipulate.
This helps avoid risk to the worker, the client and the contractor. Although the created
computer vision approach cannot identify drowsy workers with 100% accuracy, it offers
project managers various advantages in their daily work. To begin with, safety behavior
can be observed without disrupting those who are at work. Secondly, a variety of operating
areas can be simultaneously observed, which can cut down on the expense and duration
of inspections. It provides a way to lessen hazards on site as a system in place to monitor
persons with physical fatigue from being a danger to themselves and their teammates. To
implement the proposed drowsiness detection methodology in real-world construction
environments, we have devised a phased approach. The initial phase involves the initiation
of a pilot program at selected construction sites. This will necessitate collaboration with
site managers to install the requisite hardware, including strategically positioned cameras
designed to capture the facial and eye movements of workers engaged in various tasks. The
primary focus during this phase will be on high-risk areas where fatigue-related accidents
are most likely to occur. Our drowsiness detection system will be integrated into the
existing safety protocols of the construction sites. For instance, upon detecting signs of
drowsiness, the system is programmed to trigger real-time alerts for both supervisors and
workers, prompting immediate intervention to mitigate risks. This integration process will
include comprehensive training for site personnel on the functionalities of the system and
the establishment of clear protocols for responding to alerts effectively. Following the pilot
implementation, we will establish a feedback loop that facilitates continuous monitoring
of the system’s effectiveness. Data collected during this phase will undergo thorough
analysis to refine algorithms and enhance detection accuracy over time. We recognize
that construction sites present diverse challenges, including varying lighting conditions,
weather influences, and worker attire (such as personal protective equipment, PPE), all of
which may affect the accuracy of facial and eye feature detection. Therefore, developing
adaptive algorithms capable of performing reliably under these differing environmental
conditions will be critical. Furthermore, we are aware that the use of video surveillance may
raise privacy concerns among workers. It is essential to address these concerns proactively
by ensuring compliance with relevant legal regulations and establishing clear guidelines
regarding data use and worker consent.

The deployment of cameras and other necessary hardware may encounter logistical
challenges, such as installation feasibility and ongoing maintenance. To mitigate these
issues, we will collaborate closely with construction teams to identify optimal camera
placements that maximize coverage while minimizing disruption to ongoing work activities.
Although our current focus is on the construction sector, we believe that the methodology
can be adapted for application in other high-risk industries, including manufacturing,
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transportation, and healthcare. This adaptability could contribute significantly to mitigating
fatigue-related accidents across a broader range of work environments. Future iterations of
the drowsiness detection system may incorporate wearable devices capable of monitoring
physiological signals, such as heart rate and sleep patterns, thereby providing a more
comprehensive assessment of worker fatigue. Additionally, we plan to develop a real-time
analytics dashboard that aggregates data from the drowsiness detection system. This
dashboard would serve as a valuable tool for site managers, offering insights into worker
fatigue trends over time and facilitating proactive management of worker safety and health.

6. Conclusions and Limitation of Study
The findings of this research are particularly significant in two respects.

• Firstly, this pioneering work may pave the way towards safer and smarter construction
sites by enabling real-time identification and intervention for drowsiness detection.

• Secondly, because this study was one of the initial deployments of the most recent
YOLOv8 model in the construction sector, it provides vital insights into the field of com-
puter vision research, regarding the resilience and usability of this advanced approach.

Implementing effective safety measures, such as real-time drowsiness detection, can
significantly reduce the economic costs associated with workplace accidents. Accidents
often lead to project delays, increased insurance premiums, and potential legal liabilities,
all of which can strain financial resources. By minimizing the likelihood of fatigue-related
incidents, construction firms can enhance productivity and operational efficiency, leading
to cost savings.

The primary beneficiaries of this study are construction workers, as it will highlight the
risks associated with fatigue caused by sleep deprivation and low wages. Addressing these
issues could lead to improved working conditions, better policies on rest and breaks, and
safer environments, reducing the risk of accidents and injuries. Construction employers
and contractors can also benefit from the study’s findings by recognizing the importance of
worker health and safety. Understanding the links between fatigue, sleep deprivation, and
performance can encourage them to implement strategies like better scheduling, adequate
rest periods, and higher wages, which could enhance productivity, reduce accidents, and
improve job satisfaction. Occupational health and safety professionals can use the study’s
findings to develop more effective risk management strategies. By focusing on fatigue
and its impact on workers’ health and performance, they can adjust safety protocols to
minimize fatigue-related risks.

The generalizability of the methodology is significantly influenced by the specific
characteristics of each work environment. Factors such as the nature of the tasks performed,
the physical demands placed on workers, and the typical work schedules can impact the
effectiveness of the detection system. To enhance this, prioritizing testing and validating
the methodology in diverse settings to assess its robustness and adaptability is crucial.
Moreover, construction sites and other working environments can present varying lighting
conditions, weather influences, and differences in worker attire that may affect detection
accuracy. Although the study has developed adaptive algorithms, their efficacy in handling
extreme variations remains an area for subsequent studies. The performance of the model
may also be contingent upon the quality and representativeness of the training dataset.
If the dataset fails to encompass a wide variety of worker behaviors and environmental
conditions, the system may struggle to generalize effectively to novel situations. Addition-
ally, individual variations in fatigue responses pose a challenge. Workers exhibit differing
fatigue expressions based on factors such as age, health status, and personal experiences.
While the study’s methodology accounts for some of these variations, it may not fully
capture the complete spectrum of fatigue indicators across diverse worker populations.
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Investigating the ethical implications and privacy concerns associated with the de-
ployment of drowsiness detection systems in the workplace is essential. Research could
focus on developing guidelines and frameworks for ensuring worker privacy while main-
taining the effectiveness of safety monitoring systems. Exploring the use of advanced AI
and machine learning techniques to improve the accuracy and efficiency of drowsiness
detection systems can be a promising area for future research. This could include the devel-
opment of predictive models that anticipate fatigue based on work patterns, environmental
factors, and individual worker characteristics. The deployment of cameras in construction
environments could lead to apprehensions among workers about constant monitoring and
potential misuse of recorded data. To address these concerns, stringent privacy protocols
will be implemented. This includes ensuring compliance with local and international data
protection regulations. This process involves transparently communicating the purpose
of the monitoring, the types of data collected, how the data will be used, and the mea-
sures taken to protect privacy. Providing workers with the option to opt in or opt out
of the monitoring program will further respect their autonomy. Anonymizing collected
data to prevent identification of individual workers and ensuring that access to the data
is restricted to authorized personnel only must be ensured. Recognizing that attitudes
toward surveillance and privacy can vary across different cultural contexts, engagement
with workers and stakeholders in each specific environment will be critical. Understanding
their perspectives and concerns will foster trust and ensure that the system is perceived as
a tool for enhancing safety rather than as an invasive monitoring mechanism. While the
primary goal is to enhance safety and prevent accidents, vigilance regarding the ethical
implications of this approach is necessary. The possibility of misinterpreting data leading
to false positives could create undue pressure on workers. Establishing protocols that
differentiate between genuine safety concerns and normal fluctuations in behavior that may
not indicate drowsiness is essential. Discussions with ethics boards and stakeholder groups
will be necessary to navigate the complexities of implementing this methodology ethically.

7. Areas for Further Studies
• The enhancements to the proposed system will primarily revolve around improving

drowsiness detection. This can be achieved by augmenting the training datasets
with more diverse data, thus enabling the model to learn from a richer variety of
instances. Further research could also consider implementing the model on a video-
based inspection system and developing a timed alarm system to proactively alert
supervisors of potential safety risks.

• Given the supervised learning techniques employed in this study, exploring the
possibility of combining supervised and unsupervised learning methods could result
in the development of a more intelligent system, heralding the beginning of a new era
of safety management in the construction sector.

• As a recommendation for future research, a comprehensive survey or longitudi-
nal study could be conducted to specifically investigate the effects of chronic sleep
deprivation—such as sleeping for only two hours daily—on workers’ cognitive func-
tion, decision-making abilities, physical performance, and safety. Such a study could
include variables such as reaction times, error rates, accident occurrences, and overall
productivity, along with a demographic breakdown of workers’ health, age, and the
nature of their job.

• More studies are also needed to examine the integration of drowsiness detection
systems with wearable devices that monitor physiological signals such as heart rate
variability, skin temperature, and galvanic skin response. This multi-modal approach
could enhance the accuracy of fatigue assessments by combining behavioral indicators
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with physiological data, providing a more comprehensive understanding of worker
fatigue levels. Investigating the development of adaptive algorithms that can adjust to
the unique environmental conditions of different workplaces would be valuable.
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