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Abstract 

Building and evolving Grid applications is complex. Component-based development has emerged as an 
effective approach to building flexible systems, but there is little experience in applying this approach to Grid 
programming. This paper presents our experience with reengineering a high performance numerical solver 
to become a component-based Grid application. The adopted component model is an extension of the generic 
Fractal model that specifically targets grid environments. The paper provides qualitative and quantitative 
evidence that componentisation has improved the modifiability and reusability of the application while not 
significantly affecting performance. 

 

   
1. Introduction 
 
As Grid technologies are becoming widely available, managing the complexity of building and 
evolving Grid applications is becoming increasingly important. Component-based development 
has emerged as an effective approach to building complex software systems; its benefits include 
reduced development costs through reusing off-the-self components and increased adaptability 
through adding, removing, or replacing components. Naturally, applying component-based 
development to Grid programming is currently attracting much interest. Examples of component 
models applicable to this field include CCA (Common Component Architecture) [11], CCM 
                                                 
1 This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265). 
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(Corba Component model) [20], and the emerging GCM (Grid Gomponent Model) [12], 
currently under development within the CoreGRID European project. Despite this growing 
interest, there is still little experience in applying components to Grid computing, and developers 
are not provided with adequate guidance and support.  

The main aim of this work is to present our experience with applying component-based 
development to the domain of high performance scientific applications running on the Grid. 
Specifically, the work describes how a numerical solver, originally implemented as distributed 
object application, was reengineered into a component-based application. The adopted 
component model extends the generic Fractal model [9], similarly to the GCM. The model is 
implemented on top of the ProActive middleware [21]. We show that componentisation has 
increased the modifiability of the application without any significant negative effects on 
performance. Another aim of this work is to present the process that underpinned the 
reengineering effort. This is a general architecture-based process that can be applied for 
transforming any object-based system to a component-based system. 

The rest of this paper is structured as follows. Section 2 provides background on the 
numerical application, called Jem3D, and the distributed object platform on which it is built. 
Section 3 presents our approach to reengineering this application, which comprises a general 
componentisation process and a Grid-enabled component model. Section 4 then describes our 
componentisation experience and the resulting system. Section 5 provides some performance 
results, and section 6 discusses related work. Finally, section 7 concludes the paper. 
 
2. Background on Jem3D 
 
This section provides background on Jem3D, the application at the focus of this paper, and the 
ProActive library, the distributed object platform used by Jem3D. 
 
2.1. Jem3D overview 

 
Jem3D is a numerical solver for the 3D Maxwell’s equations modelling the time domain 
propagation of electromagnetic waves [6]. It relies on a finite volume approximation method 
operating on unstructured tetrahedral meshes. At each time step, the method evaluates flux 
balances as the combination of elementary fluxes computed through the four facets of a 
tetrahedron. The complexity of the calculation can be changed by modifying the number of 
tetrahedra in the domain. This is done through setting the mesh size; i.e., the triplet (m1×m2×m3) 
that specifies the number of points on the x, y, and z axes used for building the mesh. 
Parallelisation relies on dividing the computational domain into a number of subdomains; the 
domain division is controlled by another triplet (d1×d2×d3) that determines the number of 
subdomains on each axis. Since some facets are located on the boundary between subdomains, 
neighbouring subdomains must communicate to compute the values of those border facets. The 
original Jem3D builds on the ProActive library, outlined next. 

 
2.2. The ProActive library 
 
The ProActive library is a Java middleware for parallel, distributed, and concurrent programming 
[21]. The ProActive core supports a uniform programming model based on remotely accessible 
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active objects. Each active object has its own thread of control and decides in which order to 
serve incoming method calls, which are stored in a queue of pending requests. Remote method 
calls on active objects are asynchronous with automatic synchronization. This is achieved via 
automatic creation of future objects combined with a synchronization mechanism known as wait-
by-necessity. The library includes a set of high-level services, such as weak migration, security, 
and fault tolerance. 

Two key features of ProActive are its support for typed group communication and 
descriptor-based deployment. Group communication enables triggering method calls on a group 
of active objects with compatible type, dynamically generating a group of results. Invoking a 
group of active objects takes exactly the same form as invoking one active object, which 
simplifies the programming of applications with similar activities running in parallel. Moreover, 
group invocations incorporate optimisations that make them more efficient than sequentially 
invoking a set of objects. Descriptor-based deployment enables deploying distributed 
applications anywhere without having to modify the source code. References to hosts, protocols 
and other infrastructure details are removed from the application code, and specified in XML 
descriptor files.  

 
2.3. Jem3D architecture 
 
Figure 1 shows the runtime structure of the original Jem3D (a 2×2×1 domain division is 
assumed); the main elements of the architecture are outlined next. 
 








 
 

Figure 1. Jem3D Architecture 
 

Subdomains correspond to partitions of the 3D computational domain; they perform 
electromagnetic computations and communicate with their closest neighbours in the 3D grid. 
Moreover, they send partial solutions with a predefined frequency to the main collector. The 
main collector is responsible for monitoring and steering the computation by interacting with the 
subdomains. The monitoring and steering functionality is used by one or more steering agents, 
which are dynamically registered with the main collector. The application includes a command-
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line agent and a graphical agent with visualisation capabilities. Steering agents communicate 
with each other to ensure that only a single agent at a time has the right to control the 
computation. Finally, the launcher is responsible for obtaining the input data, creating the main 
collector and the subdomains, setting up the necessary connections between them, initialising 
them with the necessary information, and starting the computation. Communication between the 
entities relies on the asynchronous remote invocation and group communication mechanisms 
provided by ProActive. 

The original Jem3D application suffers from limited modifiability and limited reusability of 
its parts. This can be largely attributed to two factors. First, the application lacks reliable 
architectural documentation, which is essential for understanding and evolving complex software 
systems. Jem3D has been subjected to successive changes by multiple people without 
corresponding updates to the architectural information. Second, the application parts are tightly 
coupled together. Indeed, as in most object-oriented applications, the code includes hard-wired 
dependencies to classes, which limits the reusability of classes, increases the impact of changes, 
and inhibits run-time variability. For example, changing the subdomain implementation requires 
updating the source code of both the main collector and the launcher and rebuilding the whole 
application. As another example, although the Jem3D parallelisation follows a typical geometric 
decomposition pattern [18], no part of the application can be reused in other contexts where this 
pattern is applicable. To address such modifiability and reusability limitations, Jem3D was re-
engineered into a component-based system.  
 
3. Approach 
 
This section presents our approach for addressing the modifiability and reusability limitations of 
Jem3D. The approach consists of a general componentisation process and the use of the 
Fractal/ProActive component technology, discussed in the following two sections. 

 
3.1. Componentisation process 
 
The purpose of the componentisation process is to transform an object-based system to a 
component-based system. The process assumes that the target component platform allows 
connecting components via provided and required interfaces, and that it minimally supports the 
same communication styles as the object platform (e.g., remote method invocation, streams, 
events). Figure 2 shows the main activities and artefacts defined by the componentisation 
process. Note that the activities do not necessarily proceed sequentially. For example, the activity 
“Restructure Original System” may start when an initial component architecture is designed, and 
it may be revisited when an updated architecture is available. The activities are explained next. 
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Figure 2. Componentisation process 
 
 
Recover Original Architecture 
The goal of this activity is to produce an architectural description of the original system, serving 
as the basis for understanding and transforming the system. The activity uses as input the source 
code, documentation, build files, and any other software artefacts. It consists in analysing the 
source system, extracting architecturally significant information, and documenting different 
views of the architecture. At a minimum, the documentation must include a run-time view 
describing executing entities (e.g., distributed objects, objects, processes), communication paths, 
and interactions over those paths (e.g., sequences of remote method invocations). 
 
Design Component Architecture 
The goal of this activity is to design the target component architecture using as input the original 
architecture. The component architecture specifies a set of components, their relationships, and 
the interactions among them and builds on the target component model. The activity can be 
divided into four steps: 

 
• Define initial architecture. The executing entities of the original architecture are used as 

candidate components to form an initial component architecture. 

• Refine component selection. Candidate components are decomposed into smaller components 
or integrated into larger components, and their relationships and interactions are updated 
accordingly. These changes are driven by modifiability and performance concerns. 
Decomposition is typically used to increase the reusability of components and the flexibility 
of the architecture, whereas  integration is used to reduce performance overheads. 

• Specify component interfaces. By analysing and organising the interactions between each 
component and its environment, this step identifies provided and required interfaces. 
Multiple interfaces for each component are defined in order to reduce dependencies. 
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• Refine architecture using available component model features. The component architecture is 
adapted to exploit all the available features provided by the target component model, such as 
hierarchical composition in Fractal, or implicitly-accessed, container services in CCM. 

 
Restructure Original System  
The goal of this activity is to restructure the original code to make it match closely the target 
component architecture, while avoiding any dependencies on the target component platform. 
Specifically, the activity involves implementing and testing an interface-based version of the 
system in which entities communicate as much as possible via explicitly identified 
provided/required interfaces. The motivation for the activity is to validate a large part of the 
target architecture at an earlier time. Moreover, the activity makes the migration to the 
component platform easier than it would otherwise be. The activity can be divided into the 
following steps: 

  
• Align code with component architecture. This step ensures that the code includes classes 

which correspond to all intended components, and that these classes implement all interfaces 
provided by their corresponding components. 

• Add dependency injection mechanism. Supporting configurable connections requires a 
uniform mechanism for injecting references to required interfaces into objects. Such 
mechanisms are provided by most component models, and are manifested as standard 
methods for accepting and managing interface references. This step ensures that all classes 
corresponding to intended components support an injection mechanism, thus making their 
dependencies explicit  and externally modifiable.  

• Use injection mechanism. This step modifies the classes so that they invoke collaborating 
classes only through injected references. Moreover, the step modifies any “injector” code 
that supplies a class with references to required objects to use the uniform injection 
mechanism.  

 
Implement Component-based system 
The goal of this activity is to implement and test the new component-based system. It uses as 
inputs the component architecture and the restructured, interface-based version. It typically 
involves minor changes for repackaging classes as component implementations. It may also 
involve changes for exploiting features of the component model that were unavailable in the 
original object platform. 
 
3.2. Fractal/ProActive 
 
Fractal/ProActive is a parallel and distributed component model that specifically targets Grid 
applications [7]. Fractal/ProActive conforms to the generic Fractal model [9] and extends it with 
a number of features that support Grid programming. Fractal/ProActive is implemented on top of 
the ProActive library [21]. Fractal and the Fractal/ProActive-defined extensions are examined in 
turn next.  
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Fractal components are runtime entities that communicate exclusively through interfaces of 
two types: client interfaces that emit operation invocations and server interfaces that accept 
them. Interfaces are connected through communication paths, called bindings. Fractal 
distinguishes primitive components from composite components formed by hierarchically 
assembling other components (called sub-components). This hierarchical composition is a key 
Fractal feature that helps managing the complexity of understanding and developing component 
systems. Another important Fractal feature is its support for extensible reflective facilities. 
Specifically, each Fractal component contains a controller that embodies control behaviour 
associated with the component. The controller exposes a set of interfaces for inspecting and 
reconfiguring internal features of the component. Fractal defines a basic set of controller 
interfaces that can be extended as necessary. The basic set includes interfaces for managing the 
bindings of client interfaces, modifying the set of sub-components, and suspending/resuming 
component activities. Finally, Fractal includes an architecture description language (ADL) for 
specifying configurations comprising components, their composition relationships, and their 
bindings. 

The Fractal/ProActive model extends Fractal in the following ways. Primitive components 
are specialised to obtain the properties of remotely accessible active objects. Composite 
components can contain multiple active objects and can be distributed over different machines. 
Component communication relies on asynchronous method invocations. A multicast 
communication style is also supported, analogous to the group communication mechanism in 
ProActive. Specifically, the model defines a specialisation of Fractal interfaces, called multicast 
interfaces, that enable treating a set of invocations as a single invocation. As with standard 
interfaces, multicast interfaces can have a client or server type. Finally, the component model 
supports configurable component deployment based on the deployment descriptors provided by 
ProActive. 
 
4. Componentising Jem3D 
  
Jem3D was componentised using the approach presented earlier. Most of the effort was spent on 
the architecture recovery activity because of the undocumented and degraded structure of the 
system. The run-time view of the original architecture was described using UML object 
diagrams—such as the one in Figure 1—and UML interaction diagrams. During the component 
architecture design, the launcher entity (an executing Java program) was decomposed into a 
subdomain factory component and an activator component; the former is assigned the 
responsibilities for creating, initialising, and connecting the subdomains, and the latter the 
responsibilities for obtaining the input data, passing them to the factory, and starting the 
computation. The reason for the decomposition was to make the factory reusable beyond Jem3D. 
A later iteration of the activity grouped the factory and the subdomains into a composite domain 
component, exploiting the hierarchical composition feature of Fractal/ProActive. Implementing 
the interface-based version served to increase confidence in the new component architecture and 
drastically simplified the final component-based implementation. The component-based 
implementation involved wrapping classes to form Fractal components and replacing a large part 
of the injector logic with Fractal ADL descriptions, as seen next.  

Figure 3 shows the static structure of the resulting component-based Jem3D using a UML 
component diagram (multicast interfaces are represented as stereotyped UML interfaces with 
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special notation). The runtime configuration consists of multiple subdomains, logically arranged 
in a 3D mesh, with each subdomain connected to its neighbours via multicast interfaces. The 
runtime configuration also includes a dynamically varying number of steering agents. The main 
collector is connected to the current set of agents via a multicast interface. A multicast interface 
is also used to connect each agent to all other agents. 
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Figure 3. Component-based Jem3D structure 

 
The initial configuration of Jem3D is described using the Fractal ADL, as seen in Figure 4 

(pseudocode is used for brevity). Note that the ADL is not used to express the configuration of 
subdomains, which depends on the dynamically-determined domain division. Since allowable 
configurations follow a fixed, canonical structure in the form of a 3D mesh, a parameterised 
description would be useful for automatically generating subdomain configurations. However, 
the Fractal ADL includes currently no variability mechanisms for expressing such descriptions. 
The ADL does include a simple parameterisation mechanism, which is used to configure the 
factory with the required subdomain implementation.  
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Figure 4. Initial configuration in the ADL 

 
Evaluation 
We now examine whether the new, component-based Jem3D addresses the modifiability and 
reusability limitations of the original system. Owning to the componentisation process, the new 
system has gained reliable architectural documentation, which facilitates understanding and 
evolving the system. Moreover, an important part of the architecture—i.e., the initial component 
configuration—is captured in the ADL. As a result, the component platform can automatically 
enforce architectural structure on implementation, which helps reduce future architectural 
erosion. The use of provided and required interfaces as specified by the component model 
minimizes inflexible, hard-wired dependencies and allows flexible configuration after 
development time. Considering the scenario of changing the subdomain implementation, this can 
now be achieved simply by replacing a name in the ADL description (i.e., the SubDomainImpl 
name in Figure 4). Moreover, the domain component now serves as a reusable unit of 
functionality that supports the geometric decomposition pattern. Specifically, the component 
accepts as input the subdomain implementation and the domain division and embodies the logic 
to create and manage the runtime subdomain configuration. 

 
 
5. Performance results 
 
To assess the impact of componentisation on performance, we conducted experiments with the 
aim to compare execution times of the object-based and the component-based Jem3D versions. 
The experiments were performed on Grid’5000, a French experimental Grid platform currently 
featuring 2000 processors distributed over 9 geographical sites [10]. The sites host locally 
administered clusters connected through 1Gb/s links. Each experiment involved running the two 

Component ConsoleSteeringAgent  
definition = SteeringAgentImpl 

Component MainCollector  
definition = MainCollectorImpl 

Component Activator  
definition = ActivatorImpl 

Component Domain 
Interface …    // interfaces omitted  
Component SubDomainFactory  
   Definition=FactoryImpl (SubDomainImpl)                     

  
// bindings within composite 
// interfaces names omitted  
Binding This to SubDomainFactory 
Binding SubDomainFactory to This 
 

// bindings among top-level components 
// interface names omitted  
Binding ConsoleSteeringAgent to MainCollector 
Binding MainCollector to ConsoleSteeringAgent  
Binding Activator to MainCollector 
Binding Activator to Domain 
Binding MainCollector to Domain 
Binding Domain to MainCollector 
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Jem3D versions for a given mesh size on the same number of processors allocated on up to 3 
clusters of Grid’5000. Table 1 shows the mesh size and total number of processors used for each 
experiment.  
 

Table 1. Jem3D experiments 
Experiment Mesh size Number of Processors 

1 41×41×41 20 
2 81×81×81 70 
3 201×201×201 130 
4 201×201×201 138 
5 201×201×201 258 
6 241×241×241 258 
7 241×241×241 308 

 
Figure 5 shows the execution times for each experiment. We distinguish two kinds of 

execution time: (1) initialisation time, the time spent after deployment of the ProActive runtime 
and before the start of the calculation, and (2) computation time, the time spent performing the 
calculation. One can observe that execution times for the two versions are similar. As regards 
initialisation times, this result was unexpected as the component-based version creates a larger 
number of entities (e.g., the domain and factory components). Moreover, creating components is 
more costly than creating distributed objects due to the need to maintain extra meta-information. 
Initialisation times are similar probably because Fractal/ProActive incorporates optimisations 
absent from the ProActive library. Computation times are similar because the costs of subdomain 
communications are similar. This can be attributed to that the cost of remote object invocation 
outweighs any small overhead incurred by the component model. The domain component does 
impose an overhead on communications between the main collector and subdomains, but such 
infrequent communications have little impact on the calculation time. In summary, the results 
provide evidence that componentisation has no adverse impact on the performance of the Jem3D 
application. 
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Figure 5. Comparison of execution times 
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6. Related work 
 
As mentioned earlier, there is little experience in applying component based development to Grid 
computing. Most related work to ours is that associated to the CCA (Common Component 
Architecture) [11]. CCA is a component model for high-performance scientific computing that 
has been applied to a large range of application domains [8]. CCA components are dynamically 
connected through provides and uses ports. The main difference with Fractal is that CCA lacks 
hierarchical composition as a first-class part of the model. Ccaffeine [4] is an implementation of 
CCA that supports parallel computing. Ccaffeine-based components interact within a given 
process using CCA ports; parallel instances of Ccaffeine-based components interact across 
different processes using a separate programming model, typically MPI. XCAT3 [14] is another 
CCA implementation that supports components distributed over different address spaces and 
accessible as collections of Grid services compliant to OGSI (Open Grid Services Infrastructure). 
In [19], CCA/Ccaffeine is used to componentise simulation software for partial differential 
equations. Components are produced by creating thin wrappers over existing numerical libraries. 
A simple process for converting such libraries to components is presented in [5]; the process 
involves first grouping provided and used library functions to provides and uses CCA ports, and 
then deciding how ports are associated to components. 

Beyond grid computing, several researchers have reported experiences with componentising 
large software systems. [15] describes the componentisation of operating system software for 
MPSoC (multi-processor system on chip) platforms. Componentisation relies on a lightweight 
Fractal implementation that targets embedded systems software. Other case studies have 
concentrated on componentising programmable controller software [17] and real-time 
telecommunication software [3]. Such work provides evidence of the positive effect of 
componentisation on modifiability but does not focus on the componentisation process. 

Turning now to work related to the componentisation process, [1] describes re-engineering 
an existing Java program to obtain a implementation based on ArchJava. ArchJava is an 
extension of Java with language constructs that express components, ports, and connections. The 
adopted re-engineering process includes activities for identifying the source and target 
architectures, refactoring the original program, and then migrating it to the ArchJava 
environment. The process is thus similar to the one presented in this paper, but it is specific to 
ArchJava.  

[16] and [13] present reengineering methods for migrating from object-oriented systems to 
component-based systems. The methods rely on clustering techniques, metrics, design rules, and 
heuristics. Both these methods address only a part of the proposed process—that is, the 
component architecture design activity—and they can be accommodated within our process. [2] 
presents a tool that transforms industrial C++ code to a proprietary variant of CCM. Engineers 
need only to specify how class methods are factored into provided interfaces, and the tool 
generates component-based code that preserves the original functionality. Manual tuning of the 
generated code is also typically necessary. This tool cannot assist  in architectural enhancements 
of the original system. Similar transformation technology can be applied within the proposed 
componentisation process for supporting the migration from the restructured object-oriented 
version to the final component-based system. 
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7. Conclusion 
 
This paper has presented a case study in reengineering a scientific application into a component-
based, grid-enabled application built on Proactive/Fractal. The transformation from an object-
based to a component-based system has followed a general componentisation process, reusable 
in other contexts. The paper has provided qualitative evidence that componentisation using 
Fractal/ProActive is beneficial to the modifiability and reusability of the application. The paper 
has also provided quantitative evidence that componentisation has no adverse effect on 
performance. 

There are two main directions for future work. First, we plan to apply the componentisation 
process and the Fractal/ProActive component technology to other applications in diverse 
domains. Such work will enable a more complete assessment of their usefulness and usability, 
and generate further suggestions for improvement. Second, we plan to add support for dynamic 
reconfiguration in the component-based Jem3D application in order to accommodate variations 
in the availability of underlying resources. Supporting reconfiguration will involve the 
introduction of manager components that build on the reconfiguration primitives already 
provided by the component model (e.g., connect or disconnect components), without requiring 
any change to existing code. 
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