
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

STAT5 in Cancer and Immunity

Murphy, J. and Rani, A.

 

This is an author's accepted manuscript of an article published in the Journal of 

Interferon & Cytokine Research, December 2015, ahead of print. 

doi:10.1089/jir.2015.0054.

The final publication is available from Mary Ann Liebert Inc. Publishers

http://dx.doi.org/10.1089/jir.2015.0054

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://dx.doi.org/10.1089/jir.2015.0054
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


1

STAT5 in cancer and immunity

Aradhana Rani1 and John J Murphy1

1Department of Biomedical Sciences, University of Westminster, London, United Kingdom

Correspondence to: Aradhana Rani, A.Rani@westminster.ac.uk; John J Murphy, 
J.Murphy@westminster.ac.uk

ABSTRACT

Signal transducers and activators of transcription 5 (STAT5a and STAT5b) are highly 

homologous proteins that are encoded by two separate genes and are activated by Janus-

activated kinases (JAK) downstream of cytokine receptors. STAT5 proteins are activated by 

a wide variety of hematopoietic and non-hematopoietic cytokines and growth factors, all of 

which use the JAK-STAT signalling pathway as their main mode of signal transduction. 

STAT5 proteins critically regulate vital cellular functions such as proliferation, 

differentiation and survival.  The physiological importance of STAT5 proteins is underscored 

by the plethora of primary human tumours that have aberrant constitutive activation of these 

proteins, which significantly contributes to tumour cell survival and malignant progression of 

disease. 

STAT5 plays an important role in the maintenance of normal immune function and 

homeostasis, both of which are regulated by specific members of IL-2 family of cytokines, 

which share a common gamma chain (γc) in their receptor complex. STAT5 critically 

mediates the biological actions of members of the γc family of cytokines in the immune 

system. Essentially, STAT5 plays a critical role in the function and development of Tregs and 

consistently activated STAT5 is associated with a suppression in antitumour immunity and an 

increase in proliferation, invasion and survival of tumour cells. Thus, therapeutic targeting of 

STAT5 is promising in cancer.
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The Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway 

represents an extremely rapid membrane to nucleus signalling system mediating cytokine 

signals in mammals [1, 2]. It was studies on the interferon (IFN) receptor signalling that led 

to the discovery of the JAK-STAT pathway [3]. The JAK–STAT signalling is induced by 

engagement of a ligand (eg. cytokine) to its corresponding transmembrane receptor. This 

leads to dimerization of the receptor and thereby activation of receptor-associated JAKs, 

which subsequently phosphorylate tyrosine residues present in the cytoplasmic domain of the 

receptor. Phosphorylated tyrosine residues serves as docking sites for the src-homology2 

(SH2) domains in STATs. The STATs are then phosphorylated by activated JAKs at a single 

tyrosine residue in the C terminus. Tyrosine-phosphorylated STATs form homo or 

heterodimers via reciprocal phosphotyrosine (pTyr)-SH2 interactions and are immediately 

translocated to the nucleus where they bind to palindromes of the general form TTC(N2–

4)GAA, termed γ activated sequences (GAS). The STATs are dephosphorylated by nuclear 

tyrosine phosphatases and exported to the cytoplasm to efficiently continue the 

phosphorylation-dephosphorylation cycle. Although recent studies on the STAT proteins 

have demonstrated constitutive energy and transport factor independent shuttling of STATs 

between the nucleus and cytoplasm [4, 5], it is due to the specific conformation of tyrosine 

phosphorylated dimers that enables retention in the nucleus and the binding of STzATs to 

respective GAS sequences [4]. Recent studies have suggested a role for dephosphorylated 

STAT in the nucleus in maintaining the stability of transcriptionally repressed 

heterochromatin [6]. 

STATs and protein structure

 The first STATs to be cloned by Darnell and co-workers were the IFN-inducible 91-kDa 

STAT1and the 113-kDa STAT2 proteins [3, 7]. The remaining five STATs were identified 

subsequently. There are seven STAT proteins in mammals, STAT1, STAT2, STAT3, 

STAT4, STAT5a, STAT5b and STAT6, with molecular masses between 75 and 95 kDa and 

all are mapped to 3 chromosomal clusters being indicative of a common ancestral gene [8]. 

Out of the seven STATs,  STATs 1, 3, 5A, and 5B can be activated by an array of cytokines 

including growth factors (EGF, PDGF, Hepatocyte growth factor, insulin-like growth factor, 
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colony stimulating factor–1, Erythropoietin) and hormones (Prolactin, Growth hormone, 

Insulin) as well as downstream of some G-protein coupled receptors [1, 9, 10]. STATs 2, 4 

and 6 are activated by a smaller subset of cytokines (IFN-α, IL-12 and IL-4/IL-13 

respectively). 

All STAT proteins contain a conserved common structure containing the following domains: 

the N terminal domain (NTD), coiled-coil domain (CCD), src homology-2 (SH2) domain, 

linker domain (LD), DNA binding domain (DBD) and a transactivation domain (TAD) at the 

extreme C-terminus [11]. The conserved N-terminal domain is involved in protein-protein 

interactions [12], and allows for cooperativity  in dimer-dimer interactions and/or to form 

tetramers that can then bind to non consensus sites [13-15].  The NTD is conserved among 

the STATs, and it is 91% similar in the human STAT5a and STAT5b. Crystallographic 

studies on N-terminus of STAT4 revealed that it is composed of eight helices with a hook-

like structure, which promote oligomerization of STAT dimers [16] and binding to tandemly-

linked GAS sites [14, 17, 18]. Loss of cooperative STAT binding to tandem GAS sequences 

was observed due to mutation of a conserved tryptophan at position 37 to alanine (W37A), in 

STAT1, STAT4, STAT5a and STAT5b [15, 16], and furthermore in a loss of cytokine-

induced phosphorylation of the critical tyrosine residue in the SH2 domain of STAT4 only 

[19]. Thus, the NTD serves a common function for all STAT proteins, which is to facilitate 

cooperative binding to tandemly-linked sites, and a selective role in the receptor-mediated 

activation of STAT4. Recently, an alternative more thermodynamically stable dimer interface 

for NTD interactions was determined, which identifies a conserved phenylalanine residue 

(F77 in STAT1, and F81 in STAT5) as being the critical residue [20]. As with W37A, 

mutation of this residue in STAT1 and STAT5 leads to a loss of tetramer, but not dimer 

formation on DNA [4]. Other functions of the NTD include its role in promoting protein-

protein interactions such as binding of CBP/p300 to STAT1, receptor domains and PIAS 

family proteins [19, 21, 22].

The CCD binds to other transcription factors and coactivators [16, 23] and is implicated in 

nuclear translocation and retention of STAT3 [24] as well as nuclear export of STATs [25]. 

The DBD, as the name suggests, mediates the binding of STATs to target sites with the 

canonical  GAS sequence TTCN3-4GAA and defines the binding specificity [26-28], although 

the same is not the case with STAT2 [29]. Immediately following the DBD is a linker 

domain, which connects the DBD and the SH2 domain. The highly conserved SH2 domain 
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interacts reciprocally with phosphorylated tyrosine residues on receptors, and thus has a role 

both in receptor docking and STAT dimerization [11]. The STAT family of proteins are 

phosphorylated at tyrosine and/or serine residues except STAT2, which is not known to be 

serine phosphorylated [30-32].  The variable TAD at the C- terminus is critical for 

transcriptional activation and interacts with additional co-factors [33]. The C-terminus of 

STAT1, STAT2, STAT5a, STAT5b and STAT6 interact with CBP/p300 [22, 34-36]. 

Recently it was proved that the DNA replication factor MCM5 which interacts with the C-

terminus of STAT1 is essential for STAT1-mediated transcriptional activation [37]. STATs 

have also been shown to associate with AP1, IRF-1, NF-kB, Sp1, c-Jun, USF-1, Pu.1 and 

also with the glucocorticoid receptor [38-40]. 

STAT5

The transcription factor STAT5, was initially identified as a prolactin activated ovine 

mammary gland factor (MGF) [41]. Studies directed at IL-3 induced signal transduction and 

cloning, led to the discovery of two highly related isoforms, STAT5a and STAT5b [42, 43]. 

STAT5a is the major STAT5 isoform in the mammary gland, whereas STAT5b is the major 

STAT5 isoform in the liver. While STAT5a is mainly responsible for PRL dependent 

mammary gland development and function [44], STAT5b is required to maintain normal 

sexually dimorphic GH responses [45]. In humans, the genes for STAT5a and STAT5b map 

to chromosome 17q11.2, share 91% homology at the amino acid level and differ primarily at 

their C terminus [8, 42, 43, 46]. Obvious structural differences between the two forms of 

STAT5 include an additional 12 amino acids on the carboxy-terminus of STAT5a, which 

gives rise to a slightly shorter STAT5b and a 5 residue abbreviation of the STAT5a 

phosphotyrosyl tail segment between the SH2 and TAD domains. 

Modulation and regulation of STAT5 function

 STAT5 can be activated by a diverse group of cytokines, which include prolactin, growth 

hormone, erythropoietin (Epo), thrombopoietin (Tpo), granulocyte-macrophage colony-

stimulating factor (GM-CSF), epidermal growth factor (EGF), IL-2, IL-3, IL-5, IL-7, IL-9 

and IL-15 [47, 48] and requires specific kinases (Table 1). The STAT5 signalling pathway is 

a transient and tightly regulated process, although less is known of the signals leading to its 

inactivation. The duration of activation of STAT5 is evident within minutes of cytokine 
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stimulation and disappears a couple of hours later. However, it is found to be constitutively 

active in numerous primary human tumors, leukemias, and myeloproliferative disorders 

(MPDs) [49]. STAT5 function is regulated by post-translational modifications, members of 

SOCS family, PIAS family, caveolins, phosphatases and various protein-protein interactions. 

STAT5 signalling is mediated by mechanisms that involve direct and indirect manipulation of 

STAT5 activity. STATs can be post-translationally modified by acetylation, ubiquitylation, 

glycosylation, ISGylation, sumoylation and the most common being phosphorylation [50, 

51]. Post-translational modification can lead to STAT5 being either positively or negatively 

regulated.

Tyrosine phosphorylation

STAT5 is activated by tyrosine phosphorylation at position 694 and 699 for STAT5a and 

STAT5b respectively and can be negatively regulated by dephosphorylation. Tyrosine 

phosphosphorylation is crucial for STAT5 activity and can be phosphorylated by receptor 

associated JAKs as well as non-receptor Src kinases. Unlike JAKs, activation of STAT5 by 

Src kinases, leads to the translocation of only STAT5b into the nucleus [52]. Recent studies 

suggest a role for the src family of kinases (SFK)-STAT5 pathway in transformations and 

malignancies [53]. While a number of protein tyrosine kinases have been shown to 

phosphorylate STAT5, the phosphatases responsible for STAT5 dephosphorylation in-vivo 

remain elusive, despite a number of studies on candidate protein tyrosine phosphatases (PTP), 

including SHP-1, PTP1B, SHP-2, CD45, T-cell PTP (TC-PTP) and phosphatase 2A, which 

have been shown to dephosphorylate STATs in vitro [54-58]. Overexpression of PTP1B 

leads to dephosphorylation of STAT5 [57]. SHP-2 is a STAT5a phosphatase involved in 

dephosphorylation of the tyrosine-phosphorylated STAT5a in the cytoplasm [20]. Recently it 

has been shown that the small dual-specificity phosphatase “VHR (Vaccinia H1 Related)” 

dephosphorylates tyrosine-phosphorylated STAT5, subsequently inhibiting STAT5 function 

[59]. The phosphorylation of VHR is required to activate its phosphatase activity toward 

STAT5 [59]. The possibility of other unidentified nuclear phosphatase(s) that 

dephosphorylates STAT5 still exists. Nevertheless, phosphorylated STAT5 proteins are 

known to be targeted for degradation via the ubiquitin-mediated proteasomal degradation 

pathway [60, 61]. 
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Serine phosphorylation

In addition to tyrosine phosphorylation, STAT5a and STAT5b are also induced to undergo 

serine phosphorylation [1]. Phosphorylation of serine residues is independent of tyrosine 

phosphorylation. Mutational studies on mouse Stat5 genes and the development of phospho 

specific antibodies helped to identify serine phosphorylation sites in a conserved PSP motif 

of Ser725 for STAT5a and Ser730 for STAT5b [62]. Serine phosphorylation at the S725 and 

S779 residues of STAT5a cooperate to negatively regulate PRL-induced transcription of ß-

casein in the absence of costimulation of the glucocorticoid receptor [63]. The biological and 

physiological implications of STAT5 serine phosphorylation are not completely understood, 

though a study on expression of p21-activated kinase (Pak1), a serine/threonine protein 

kinase, showed that it associates with STAT5 and phosphorylates STAT5a at serine position 

S779 and thereby stimulates ß-casein promoter activity [64]. Clark et al have identified a 

novel STAT5a serine phosphorylation at S127/128 which is critical for ERBB4-induced 

STAT5a stimulation and phosphorylation at S779 is regulated by ERBB4 expression in 

mammary glands [65]. 

Friedbichler et al in 2010 demonstrated that serine phosphorylation plays an improtant role in 

leaukemogenesis [66]. More recently, it has been shown that serine phosphorylation leads to 

nuclear transport of STAT5 in BCR-ABL induced disease (chronic myeloid leukemia) [67]. 

Glycosylation

STAT5 can be post-translationally modified by glycosylation. A study on HC-11 mammary 

epithelial cells has reported glycosylation of STAT5a by O-linked N acetyglucosamine (O-

GlcNAc) following STAT5 activation and the glycosylated form is mainly found in the 

nucleus of hormone-induced cells [68]. The glycosylation occurs at the N- terminal threonine 

T92 position [68]. A mutation at T92 led to loss of STAT5 glycosylation and thereby its 

ability to bind the transcriptional coactivator CBP. Studies done by Nanashima et al went 

onto demonstrate that STAT5a was modified by O-GlcNAc in the Hirosaki hairless rat 

(HHR) and was identified in the nucleus [69]. Additionally, the glycosylated STAT5a was 

shown to bind to the STAT5-responsive element with an enhanced affinity. 
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SUMOylation and PIAS

SUMO is an ubiquitin-related molecule and protein-SUMO conjugation (Sumoylation) has 

been found to have various functions, including positive and negative regulation of STAT 

transcriptional activity. There are three forms of SUMO peptide, namely SUMO1, SUMO2 

and SUMO3, and they consist of around 100 amino acids, which are added to a consensus 

sumoylation site ( KXE). SUMOylation is catalyzed by SUMO-specific E1, E2, and E3 

ligases and can be reversed by SUMO-specific proteases (SENPs). Sumoylation has been 

shown to modify protein function by altering the function, localization and extent of 

ubiquitination [70]. ICA512 which is a catalytically inactive member of the receptor protein 

tyrosine phosphatase (PTP) family, mediates the binding of PIASy to STAT5 and 

sumoylation of ICA512 regulates its binding to STAT5 [71]. Recently, Van-Nguyen et al 

have shown that the activity of STAT5 is inhibited upon active SUMOylation of STAT5. 

This was due to an absence of SENP1 and thus, SENP1 played a role in the SUMOylation 

and regulation of STAT5 transcription during lymphoid development [72].

Originally discovered as negative regulators of STAT signalling, the mammalian protein 

inhibitors of activated STATs (PIAS) family consists of 5 members, PIAS1, PIAS3, PIASxα, 

PIASxβ and PIASY [21]. Although several molecular mechanisms have been proposed to 

explain transcriptional regulation by PIAS proteins, the ones of interest for STAT5 are: PIAS 

may repress transcription by inhibiting the DNA-binding activity of STAT5 or PIAS may 

regulate transcription by promoting sumoylation of STAT5. Thus, it was observed by 

Rycyzyn and Clevenger, that overexpression of PIAS3 in CHO cells represses STAT5 

transcriptional activity [73]. Recently, a functional role for the E3 ubiquitin ligase c-Cbl was 

demonstrated in differentiation of osteoblasts and that blocking c-Cbl activity, downregulates 

STAT5 ubiquitination and promotes bone regeneration [74]. 

Transcriptional co-activators of STAT5

A number of proteins are known to interact with STAT family members and interaction of 

STAT5 with additional proteins including transcription factors and co-activators regulates its 

activity. Transcriptional initiation requires the interaction of STAT5 with the initiation 

complex in addition to co-regulatory proteins. These co-activators mainly interact with the 
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TAD of STAT5, although they are also known to interact via the CCD and SH2 domains. The 

interaction of STAT5 with other nuclear factors presents a regulatory mechanism that 

determines greater potency of signalling and/or greater selectivity of target genes [35]. One of 

the first studied factors was CBP which is the binding protein for cAMP response element 

binding protein (CREB). CBP and p300 interact with the TAD of STAT5 [75]. Nuclear 

receptor co-activator 1 (NCoA-1) binds to the TAD domain of STAT5a and is essential for 

the transcriptional activity of STAT5a [76]. N-myc interacting protein (Nmi) is another 

STAT5 interacting protein that augments the recruitment of CBP/p300 to STAT5 [35]. The 

glucocorticoid receptor (GR) has been reported to interact with the N terminus of STAT5 and 

is required for many functions exerted by either transcription factors [77]. GR binds to 

STAT5a and has a physiological significance in the expression of  milk protein genes [78]. A 

list of some of the known protein interactions with STAT5 are listed in Table 2.

Interaction of STAT5 to DNA binding sites

The STAT5 proteins interact directly with specific DNA elements through the DNA binding 

domain in the center of the STAT5 structure along with cooperation of all the other domains. 

The SH2 domain of STAT plays a vital role in the dimerization [79], and gene regulation of 

STAT5 may be influenced by the pattern of STAT5a and STAT5b pairing as homo or 

heterodimers [80-82]. It is known that DNA binding requires dimerization, which is mediated 

by phosphotyrosyl-SH2 domain interactions between two STAT5 proteins. STAT5 forms 

supramolecular complexes (dimer-dimer or higher) on target sites containing two or more 

neighbouring STAT binding sites [4, 15]. 

STAT dimers can undergo tandem linkage through their N terminal domains when bound to 

closely spaced GAS sites [17]. STAT5a and STAT5b exhibit differences with respect to their 

tissue distribution [42, 43]. Park and Waxman in 2001 were able to prove that 

heterodimerized (STAT5a-STAT5b) and homodimerized (STAT5b-STAT5b) STAT5 

complexes play distinct roles in the sexually dimorphic responses of the liver to growth 

hormone [83]. It has previously been reported that cytokines cause tyrosine phosphorylation 

and DNA binding of predominantly one STAT5 protein (STAT5a) despite ample expression 

of both forms of STAT5 in certain cell contexts [84]. One study reported different DNA 

binding specificities for STAT5a homodimers versus that of STAT5b homodimers due to a 

single amino acid change in DNA binding domains of the two proteins [85]. However, 

generally there are no significant differences in DNA binding specificity between STAT5a 
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and STAT5b [86-88]. The consensus STAT5a and STAT5b binding sites that have been 

defined in vitro are TTCYNRGAA and TTC(T/C)N(G/A)GAA [86, 89]. The STAT5 

alignment matrix prepared by Fung et al also favours the consensus GAS motif 

TTC(T/C)N(G/A)GAA [90]. 

Previous studies have established a role of the N terminal domain of STAT proteins in 

formation of tetrameric complexes [16, 18]. STAT5 tetramer formation does not require high 

affinity sites, and binding of STAT tetramers to weak binding sites produced even more 

stable complexes than single dimers bound to high affinity sites [15, 16]. Purified STAT5a 

has a higher DNA binding affinity and could bind to chromatin in the tetrameric form 

compared to STAT5b which preferentially bound to chromatin as dimers [86]. Tetramer 

competent STATs could have a wider range of potential DNA binding sites [15, 86]. The 

importance of tetramerization of STAT5 was shown for the transcriptional activation of 

CD25 promoter [4, 15]. Tetramerization of STAT5 has been associated with leukemogenesis 

[91]. A constitutively active STAT5a mutant (cS5F) increased the abundance and stability of 

STAT5 tetramers compared to the unmutated form and N terminal mutations directed at only 

tetramer formation failed to induce leukaemia, suggesting that tetrameric STAT5 complexes 

may regulate a different subset of target genes some of which drive tumorigenesis [91]. A 

recent study, in STAT5a-Stat5b double knock-in (DKI) mice that form dimers but not 

tetramers, identified genes regulated by STAT5 tetramers, in addition to defining the 

consensus sequences required by dimers versus tetramers [92]. The study shows that 

tetramerization is critical for normal immune function. 

BIOLOGICAL FUNCTIONS OF STAT5

Despite sharing ~96% homology at the protein level, both Stat5 proteins have overlapping 

and distinct functions. Generation of single and double KOs and transgenic mice for STAT5a 

and Stat5b proteins has greatly enhanced the understanding of the biological roles of these 

proteins. Indeed, most studies investigationg the role of STAT5 in immunity were performed 

on the “STAT5 null mice” that still retained a residual protein lacking the N-terminal domain 

of STAT5, also denoted as the STAT5a/b ΔN/ΔN [44, 93, 94]. However, more recent data have 

been derived from the analysis of STAT5 null mice presenting with a complete deletion of 

the STAT5a/b gene locus, also denoted as STAT5a/b fl/fl, lck-cre and the STAT5a/b null/null 
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mice. The difference between the mouse models STAT5a/b ΔN/ΔN  and STAT5a/b null/null are 

strong and implies classified roles for the N terminal truncated STAT5. 

Role of STAT5 in immunity

STAT5a/b are crucial regulators of the immune system. An initial understanding of its role 

came through knock out mice generated in 1998 which was enhanced upon, by the next 

generation of null mice generated a few years later in 2004 . Thus, the implications of the role 

of STAT5 are derived from two generations of STAT5 ΔN /null mice [94, 95]. 

Studies from the first generation of KO mice (STAT5a/b ΔN/ΔN)

Most studies that investigated the role of STAT5A/B in lymphopoiesis employed the 

STAT5A/ΔN, STAT5B/ΔN and the STAT5A/BΔN/ΔN mice. These STAT5A/ΔN and STAT5B/ΔN 

mice (as well as STAT5A/BΔN/ΔN mice) were viable and revealed surprisingly mild 

phenotypes in the development and function of T and B lymphocytes. The phenotype of the 

STAT5A/BΔN/ΔN mice was expectedly, more severe than either of the single KOs 

(STAT5A/ΔN or STAT5B/ΔN ) alone, and not only showed reduced proliferation of 

splenocytes but also splenomegaly along with reduced number of NK cells and activated 

phenotype of T cells [96].

Upon studying the lymphoid development in STAT5A/BΔN/ΔN double mutant mice, there was 

a subtle reduction in T and B cell numbers, which was accompanied by a complete lack of 

natural killer (NK) cells and CD4+CD25+ suppressor T cells. 

STAT5A/ΔN deficient T cells presented a reduction in the expression of cytokine receptor IL-

2Rα and this was confirmed by the finding that its expression was upregulated by the 

cytokine IL-2 [97]. Studies on STAT5A/ΔN and STAT5B/ΔN mice demonstrated defects in T 

cell proliferation and function [98]. While splenocytes from STAT5A/ΔN mice showed partial 

impairment in IL-2 mediated proliferation, STAT5B/ΔN mice showed even more severe 

defect in proliferation [98, 99]. STAT5A/BΔN/ΔN mice caused impaired proliferation in 

response to IL-2 and halted cell-cycle progression to mature T cells [94, 96, 100]. Both Stat5 

proteins regulate TCR-mediated proliferation of CD4 T cells [96], and a greater defect was 

observed in STAT5B/ΔN than in STAT5A/ΔN mice with regard to reduced number of natural 

killer (NK) cells, suggesting that STAT5a and STAT5b play an unequal role in normal NK 
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cell development [96]. NK cells are absent in STAT5A/BΔN/ΔN mice and there is no cytotoxic 

activity in presence or absence of IL-12 or IL-15 [96]. A role for STAT5 in the survival and 

differentiation of memory CD8 T cells was confirmed by studies using the STAT5A/ΔN and 

STAT5B/ΔN mice, which had reduced numbers of CD8+ T cells from splenocytes and 

transgenic expression of STAT5 resulted in an increase in the number of CD8+ T cells [101]. 

It was studies on allergic late-phase reactions that led Kagami et al to demonstrate that 

STAT5A/ΔN and STAT5B/ΔN mice had reduced CD4+ T cell infiltration along with 

diminished eosinophil recruitment. This was due to defective STAT5 functions in these mice, 

leading to a reduction in antigen mediated proliferation of splenocytes and T cells and a 

subsequent decline in the antigen induced T cell infiltration in the airways [102]. The role of 

STAT5 in T helper cell differentiation was defined on studies using the STAT5A/ΔN mice. 

Th2 cell differentiation from antigen-stimulated splenocytes was significantly decreased in 

STAT5A/ΔN mice suggesting that STAT5a regulates T helper cell differentiation. The 

impairment in Th2 cell differentiation was detected in the presence of high concentrations of 

IL-4, which was restored upon retrovirus-mediated expression of STAT5b. Although 

Friedrich et al noted that STAT5b is a mediator of IL-4 induced cell proliferation [103], a 

role for IL-4 mediated activation of STAT5 was dismissed due to no phosphorylation of 

STAT5a even in the absence of STAT6. There was also an impairment in the development of 

Tregs (CD4+CD25+) in the STAT5A/ΔN mice and a depeletion of the Tregs from 

spelenocytes of these mice did not impair differentiation into Th1 or Th2 cells. Thus, 

STAT5a is essential for the differentiation into Th2 and development of Tregs. 

Additionally, mice deficient in STAT5a/5b demonstrated reduced numbers of peripheral B 

cells and of B-cell precursors in the bone marrow [104].

Studies from the second generation of STAT5 KO mice (STAT5a/b null/null)

Most recent data have been derived from the analysis of STAT5-null mice, in which the 

entire STAT5a/5b locus was flanked by LoxP sites and further deleted by the CRE-mediated 

recombination (using the Cre/Lox technology) [95]. The differences between the two mouse 

models (STAT5A/BΔN/ΔN  and STAT5a/b null/null ) are strong. For instance, STAT5a/b null/null 

lack CD8+ T lymphocytes and failed to develop T, B and NK cells [105, 106]. Moreover, B-

cell development is abrogated at the pre-pro B cell stage in the bone marrow of STAT5a/b 



12

null/null mice when compared to the previous truncated version of STAT5A/B/ΔN/ΔN mice. 

These studies lead to an important conclusion of the differences between the two generations 

of KO mice. The truncated versions of STAT5 proteins expressed in the STAT5A/B/ΔN/ΔN 

mice are able to compensate and to a large extent not only resucue B cell development, but 

also support the development of CD8+ T cells. It is now well known that the truncated 

versions of STAT5 can bind to a fraction of the STAT5 target genes within the nucleus, 

thereby activating or repressing them. 

The first evidence of the role of STAT5 in CD8+ T cell differentiation came with studies on 

STAT5b-CA mice which exhibited increased numbers of CD8+ T lymphocytes. This was 

confirmed when Park et al, proved, that strong TCR signals led to a repression in the IL-7R 

which subsequently led to a downregulation of CD8 expression [107]. According to the co-

receptor model, high affinity TCRs differentiate into CD4+ T cells while low affinity TCR’s 

lead to differentiation and expression of CD8+ T cells. Interestingly, the molecular basis of 

this CD8 T cell differentiation was due to a dependance on STAT5 signalling and was 

determined by expressing Runx3, the master regulator for CD8 T cells [108].  Thus, STAT5 

signalling is required in mature CD8+ T cells for the expression of the CD8 master regulator 

Runx3 and CD8 . 

It was Zhu et al, who in 2003 first suggested a role for STAT5 in Th2 differentiation, by 

ectopically expressing activated STAT5[109]. This led to a skewing of the cells from Th1 to 

Th2 fate. These studies demonstrated that expression of STAT5 ectopically, suppressed Th1 

and Th17 differentiation, while promoting Th2 cell differentiation by suppressing the 

production of IFNy. Thus, both STAT5a and STAT5b regulate Th2 cell differentiation. In 

brief, IL-2 regulates Th2 cell differentiation by upregulating GATA3 and an upregulation in 

the IL-4R due to the binding of STAT5 to the promoter of the IL4r [110]. IL-2 via STAT5 

augments and regulates the expression of IL12rb2 and Tbx21, leading to an enhancement in 

Th1 responses as well [111].

Previous work on the STAT5A/BΔN/ΔN mice had demonstrated that Treg numbers were 

reduced in these mice and that activation of STAT5 led to an increase in Tregs. However, 

further work using the STAT5a/b null/null  mice established that conditional deletion of STAT5 

in double positive thymocytes, resulted in decreased numbers of CD8+ T and a failure to 

develop into Tregs [105]. Most importantly, none of the surviving tregs had the deleted 

STAT5 protein, which goes on to support its role in the development of Tregs. This 
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observation was confirmed using STAT5b-CA mice lacking the IL-2Rb, which suggested 

that STAT5 played a crucial role in rescuing Treg development in the IL-2Rb negative mice. 

At the same time, these studies also went onto reveal the binding sites of STAT5 on the 

Foxp3 promoter, which is master regulator of Tregs [112]. 

Role in haematological malignancy

STAT5 activation has been found in blood malignancies (HTLV-1 dependent leukaemia, 

Erythroleukemia, Acute lymphocytic leukaemia (ALL), Acute myelogenous leukaemia 

(AML), Chronic myelogenous leukaemia (CML), megakaryocytic leukaemia (ML)  and 

Hodgkins lymphoma [113-116] and human tumours (breast, prostate, ovary, head and neck 

cancers) [117, 118]. STAT5 has also been shown to be constitutively activated in cutaneous 

lymphomas, while dysregulated expression of a C-terminally truncated form of Stat5 in 

Sezary Syndrome was associated with a loss of IL-2-induced gene expression [119]. 

Although both the STAT5 isoforms have been involved in human cancers and tumors, the 

exact role of each isoform in a specific cancer has not yet been illustrated. 

With the prominent role played by STAT5 in the development, differentiation and survival of 

lymphoid cells, it is no wonder then that it is involved in hematologic malignancies. ALL is a 

neoplastic disease of both children and adults characterised by acquired genetic alteration, 

chromosomal alterations and translocations are factors that lead to the diagnosis and 

prognosis of the disease. Studies on the ABL oncogene demonstrated that the STAT5a/b 

null/null cells are refractory to transformation by the Abelson oncogenes and subsequently fail 

to induce lymphoid leukemia, whereas STAT5A/B/ΔN/ΔN-derived cells are readily 

transformed [105]. Multi-lineage leukemia was also observed in mice expressing the 

constitutively active STAT5a/b which was due to the tetramerization capability of STAT5a/b 

in these mice [91]. Thus, although the truncated version of STAT5 is deficient in the 

tetramerization domain, they are able to compensate for the loss by binding to oncogenic 

tyrosine kinases (eg ABL oncogene). Xia et al, demonstrated that the naturally occurring 

truncated forms of STAT5 were responsible for blood cell cancers and was the main cause 

for the relapse of the cancer [120]. The role of STAT5 in ALL was confirmed when, 

Nakayama et al, found that STAT5b-CA mice developed symptoms closely related to human 

pre-B ALL [121]. Another set of studies also demonstrated that a transgenic STAT5-CA 
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mouse presented with loss of p53 and concurrent initiation of B cell leukemia [122]. Lessons 

learnt from a limited study of human samples also supported the evidence and that STAT5 

was constitutively activated in more than 60% of frozen ALL samples [123, 124]. 

A classic example of the complex nature of the cascade of signalling pathways that can be 

activated by a single oncogenic protein in cancers is that of signalling mediated through the 

Bcr-Abl tyrosine kinase, which also induces constitutive STAT5 activation in CML [117]. 

Studies on mice suggested that Stat5 was not required for the induction of BCR-ABL-

induced CML-like leukemia [104]. In contrast, recent studies showed that STAT5 is required 

for the development of leukemia upon introduction of BCR-Abl [105]. In the absence of 

STAT5a, the incidence of CML was reduced [125]. Serine phosphorylation of STAT5 is 

essential for leukemogenesis and serine phosphorylation of STAT5a is necessary for nuclear 

localization of STAT5 in BCR-Abl+ cells and that formation of tetramers rather than dimers 

is associated with leukemogenesis  [66, 91]. Furthermore, a recent study demonstrated that 

BCR-ABL1 aftects STAT5A/B differentially.  Using a BCR-ABL positive cell line, STAT5B 

RNAi knock down led to sensitization of leukemic cells to treatment by imatinib [126], and 

STAT5A attenuation enhanced the basal oxidative stress and DNA damage of normal CD34 

positive and CML cells. Attenuation of STAT5a also resulted in the inhibition of growth in 

CD34 positive CML cells from imatinib resistant patients [127]. 

CML is a clonal hematopoietic stem cell (HSC) malignancy characterized by chromosomal 

translocation and the hallmark oncogenic event is the formation of the mutant BCR-ABL and 

activation of STAT5 [115]. Indeed, BCR-ABL1 is crucial for the survival and proliferation of 

leukemic cells in chronic stage CML and Hochhaus  et al showed that  BCR-ABL1-targeting 

drugs have posititive response in many patients with Philadelphia chromosome positive (Ph+) 

CML [128]. Imatinib was one of the most successful drugs with therapeutic implications in 

leukemia. Dasatinib is another drug with huge implications in leukemia. 

Onishi et al identified and characterized a constitutively active STAT5 mutant that induces 

certain properties of malignant cells [129] and studies have identified the cause of the 

constitutive activation as being dependent on its specific role in a specific malignancy. 

Interestingly, constitutive activation of STAT5 is at times due to its induction by 

constitutively active JAK2. Indeed, the constitutive activation of STAT5 in some 
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myeloproliferative disorders is due to the JAK2 V617F mutation [130, 131]. And constitutive 

activation of STAT5 is also observed in myelodysplastic syndrome (MDS) and in 

myeloproliferative diseases, such as polycythemia vera (PV), where there is associated 

dysregulation of the upstream activating kinases, JAK1 or JAK2 [132, 133]. However, in 

AML, constitutive activation of STAT5 is driven by FLT3. FLT-3 and c-KIT gene mutations 

lead to STAT5 activation in leukemias as noted in these studies [134, 135]. Thus, activated 

FLT3 has the potential to transform hematopoietic cells and activates STAT5 in primary 

AML cells. 

Thus, a STAT5a/b targeting molecule in combination with other therapeutic agents as well as 

imatinib/dastinib could be used in leukemia.

Role in breast cancer

The STAT5 proteins are not only critical in hematopeoitic malignancies, but also in several 

other cancers and tumours. It presumably plays complex opposing roles in breast cancer (BC) 

and summarised below are the studies in breast cancer cell lines, animal models of breast 

cancer as well as human BC samples.

In studying the role of STAT5 in breast cancer, it is only justified to enlist that STAT5 plays 

an important role in proliferation, survival and terminal differentiation of the mammary gland 

[95, 136, 137]. These functions are made possible by upregulating the pro-survival genes 

(bcl-xl), as well as genes for proteins found in milk, beta-casein and whey acidic protein [95, 

138, 139]. STAT5 is a promoter of tumorigeneis in rodent mammary gland and the presence 

of STAT5a is required for the development of oncogene-induced mammary cancers in mice 

[140-142]. Knockout studies on mice indicate that a loss of STAT5a delays tumorigenesis 

and hemizygous loss of the STAT5a allele led to a delay in tumours initiation and formation 

[141, 142]. Additionally, constitutive activation of STAT5a or over expression of STAT5 led 

to the mammary tumours within 8-12 months [143]. In this study, it was noted that truncated 

STAT5 (carboxy terminal truncation) overexpression led to a poorly differentiated mammary 

tumour. Thus, it could be speculated that the poor differentiation was due to the wtSTAT5 

being inhibited and that the carboxy terminal truncated STAT5 plays an important role in 

malignancy and tumour formation. Again, Vafaizadeh et al, using a lentiviral infection 

system, created a constitutively active STAT5 (cS5-F) which upon expression, led to 
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epithelial hyperproliferation and ER+ PR+ adenocarcinomas [144]. Nonetheless, STAT5 also 

has a protective role in BC cells and although STAT5B is constitutively active in human BC 

cell lines, over expressing a dominant negative variant of STAT5 leads to an induction of 

apoptosis in luminal BC cell lines [145]. Recent work by Caffarel et al, using the constitutive 

active JAK2-V617F mutant and expressing it in MCF-7 BC cells, led to a more invasive form 

of BC in xenografts [146]. 

Thus, while knockout studies on mice and BC cell lines indicate that a loss of STAT5 delays 

tumorigenesis, this is not the case in humans. Infact, one of the most notable findings from 

clinical studies was done using immunohistochemistry to the tyrosine phorpshoryakted 

protein and it was observed that while 40% of all breast cancers displayed activation of 

STAT3 alone, only 7% of them showed STAT5 activation. Of the tumors that presented with 

activated STAT5, more than 80% had activation of STAT3 as well. Furthermore, an analysis 

of the pathological features of these tumors revealed that cancers displaying activation of 

STAT5 were more likely to be highly differentiated, low grade tumors. Additionally, they 

were less likely to form metastases to lymph nodes. All of these properties of tumors with 

activation of both STAT3 and STAT5 reflected a more favorable clinical outcome than 

tumors displaying activation of STAT3 alone. Indeed, patient survival was significantly 

prolonged when tumors displayed gene expression signatures consistent with activation of 

STAT3 and STAT5 rather than STAT3 activation alone [147]. In another study by Yamashita 

et al, STAT5 was defined as a strong prognostic molecular marker in ER-positive breast 

cancer. In this study, they studied the expression of STAT3 and STAT5 in more than 500 

breast cancer tissues by immunohistochemical techniques and observed that in ER positive 

patients having Stat5 positive tumours had significantly increased overall survival, thereby 

suggesting that expression of Stat5 is helpful in selecting patients who could possibly benefit 

from endocrine therapy [148]. These findings thus correspond to the notion that normally 

STAT5 promotes differentiation of mammary epithelium. Moreover, they also suggest that 

tumors with activation of STAT5 (or both STAT3 and STAT5) may be more susceptible to 

cell death induced by chemotherapeutic agents, which could also contribute to a more 

favorable prognosis. Various other studies go onto define the protective role of STAT5 in 

breast cancer pathogenesis. STAT5 expression and activation when studied in breast cancer 

samples showed a gradual loss of STAT5 activity during cancer progression [149]. Activated 

STAT5 was associated with a favorable prognosis in breast cancer patients [150]. Peck et al 

showed that a loss of pSTAT5 from the nucleus predicts for a poor clinical outcome along 
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with the possibility of failure to respond to endocrine therapy in ER+ve breast cancer patients 

[151]. Interestingly, the expression of Bcl6 is inhibited by prolactin mediated activation of 

STAT5 in breast cancer [152]. Again, it has been shown that the STAT3 and STAT5 

signaling pathway is integrally involved in endocrine resistance and more so in the growth 

factor-stimulated cases [153].

Thus, there appears to be a fine interplay of functional roles between STAT3 and STAT5 in 

the various breast cancer subtypes. STAT5 expression corresponds to better prognosis for 

patient survival by an increase in epithelial cell differentiation and delaying metastasis [154].

 Another aspect of STAT5 biology concerns its specificity for a specific breast cancer 

subtype and its role in endocrine resistance. In premenopausal women which are 

predominantly hormone responsive tumors or ER+ve tumors, increase in prolaction was 

associated with increased cancer rick [155].  STAT5 was found to be constitutively activated 

in ER+ ve tumours [156], and mice studies went onto demonstrate that CA-STAT5 led to the 

development of tumors in the mammary gland [157].

In 2012, Adrian Britschgi et al demostarted the fine cross talk between signalling pathways 

and that suppressing the PI3K/mTor pathway, led to an activation of the JAK2/STAT5 

pathway and circumvented the efficancy of the PI3K/mTor inhibition [158]. However, dual 

inhibition of the PI3K/mTor pathway led to a robust response with cancer cell apoptosis and 

reduction in tumor growth, leading to an increase in the overall survival. This strategy of 

combined targeting is thus a strategy to combat triple-negative breast cancer (which is 

characterized by the absence of expression of estrogen and progesterone as well as 

ERBB2/HER2 receptors), a particularly aggressive and currently incurable disease.

There remains no doubt with the conflicting studies in mice, BC cell lines and human tumour 

samples, that STAT5 plays a complex role in breast cancer. It appears to have a dual role 

dependant on the stage of tumour preogression- promoting tumour progression in the early 

stages of tumour formation while inhibiting their potential to metastasize. It could also be 

argued that STAT5A/B plays conflicting roles in human and mouse cancer tumorigenesis. 

Tang et al, on a study in BC cell lines, have reported the differential activity of STAT5a and 

STAT5b  in inducing survival and inbiting cell migration [159]. 
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Additionally, new mouse models need to be created and studied to delineate the role of 

STAT5 in BC. There is now a demand to create models where STAT5 could be knocked out 

or overexpressed in the tumour once they are formed, so as to help study its role in later 

stages of cancer progression. Another caveat to studies in breast cancer lies in the various 

subtypes of breast cancer and the complexity of the developmental process involved in the 

mammary gland. The role of STAT5 is thus context specific and targeting STAT5 could not 

only be beneficial in a subset of the breast cancer cell types but also on the stage of the 

tumour development/progression and as a combination drug.

Conclusion and future prospects

The JAK-STAT5 pathway has been associated with proliferation, survival, differentiation as 

well as apoptosis. Activation of STAT5 is dependent on the phosphorylation, acetylation, 

SUMoylation as well as ubiquitination states. The importance of tetramerization for normal 

immune functions is well understood and several cancers have shown a dependence on the 

cancer-promoting actions of STAT5. 

While hematopoietic malignancies have been studied in some detail, it is the role of STAT5 

in solid cancers and tumours, its regulation of the immune system and the anti-tumour 

response elicited which warrants further research. In brief, STAT5, by expanding regulatory 

T cells which promote tumours and cancers by inhibiting anti-tumour activity, leads to the 

progression of cancers and tumours. This very role of STAT5 could be exploited for its use as 

a therapeutic target.

Indeed, several small molecule drugs targeting the cytokine signalling as well as JAK 

inhibitors have shown promise. Discovery of small molecule therapeutic drugs to target 
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STAT5 are in progress, although a STAT5 specific inhibitor is not yet available for use in 

clinical trials. The challenge to effectively target the JAK-STAT5 pathway for cancer therapy 

remains and needs extensive research and study. 
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Table 1: Effector molecules and the kinases involved in signalling of STAT5

Ligands                   JAK's  and non JAK kinases

IL-2 JAK1, JAK3, Fyn, Lck, Hck, Tec, 
SykIL-3 JAK2, Fyn, Hck, Lyn

IL-4 JAK1, JAK3

IL-5 JAK2, Btk

IL-7 JAK1, JAK3, Lyn

IL-9 JAK3

IL-10 JAK1, Tyk2

IL-15 JAK1, Lck

IL-21 JAK3

IL-22 JAK1, Tyk2

IL-27 JAK1, JAK2, Tyk2

EGF JAK1, EGFR, Src

EPO JAK2, Src Family

GH JAK2, Src Family

GM-CSF JAK2, Hck, Lyn

Insulin JAK2, IR, Src

Leptin JAK2

PDGF JAK1, PDGFR, Src

PRL JAK2, Src

TPO Tyk2, JAK2, Lyn
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Abbreviations: EGF, epidermal growth factor; EPO, erythropoietin; GH, growth hormone; 
GM-CSF, granulocyte macrophage-colony stimulating factor); PDGF, platelet-derived 
growth factor; PRL, prolactin; TPO, thrombopoietin; IL, interleukin; JAK, Janus kinase; 
STAT, signal transduction and activation of transcription; TYK, tyrosine kinase. Compiled 
from [161-163].

Table 2: Protein interaction partners of STAT5

Protein Interacting domain
BRCA1 and BRCA2 not determined

Caveolin not determined

CBP/p300 transactivation domain of STAT5a

CPAP SH2 domain of STAT5

CrkL SH2 domain of CrkL

ERK transactivation domain of STAT5a

ERα transactivation domain of STAT5

Ligand/CypB N terminus of STAT5

NcoA-1/SRC-1 transactivation domain of STAT5a

Nmi coiled-coil domain of STAT5

Oct1 transactivation domain of STAT5

p100 transactivation domain of STAT5

SMRT coiled-coil domain of STAT5

STAP-2/BKS transactivation domain of STAT5

TRβ1 non-determined 
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