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The ability to learn new tasks rapidly is a prominent characteristic of human behaviour. This ability relies on flex-
ible cognitive systems that adapt in order to encode temporary programs for processing non-automated tasks.
Previous functional imaging studies have revealed distinct roles for the lateral frontal cortices (LFCs) and the ven-
tral striatum in intentional learning processes. However, the human LFCs are complex; they house multiple dis-
tinct sub-regions, each of which co-activates with a different functional network. It remains unclear how these
LFC networks differ in their functions and how they coordinatewith each other, and the ventral striatum, to sup-
port intentional learning. Here, we apply a suite of fMRI connectivity methods to determine how LFC networks
activate and interact at different stages of two novel tasks, in which arbitrary stimulus-response rules are learnt
either from explicit instruction or by trial-and-error. We report that the networks activate en masse and in syn-
chrony when novel rules are being learnt from instruction. However, these networks are not homogeneous in
their functions; instead, the directed connectivities between them vary asymmetrically across the learning
timecourse and they disengage from the task sequentially along a rostro-caudal axis. Furthermore, when nega-
tive feedback indicates the need to switch to alternative stimulus–response rules, there is additional input to
the LFC networks from the ventral striatum. These results support the hypotheses that LFC networks interact
as a hierarchical system during intentional learning and that signals from the ventral striatum have a driving in-
fluence on this system when the internal program for processing the task is updated.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Humans have a remarkable ability to learn new tasks rapidly. We
often perform them near flawlessly based on instruction, observation,
mental simulation, or the outcomes of individual attempts. These inten-
tional forms of learning involve flexible cognitive systems, which rapid-
ly adapt to encode temporary programs for processing non-automated
tasks in a controlled manner.

There is a wealth of evidence for the role of the lateral frontal cortex
(LFC) in coding for these temporary programs (Duncan, 2001). For
example, at the resolution of multi-unit electrophysiology, populations
of neuronswithin the primate LFCs represent task-relevant information,
including the stimuli, responses, and rules that constitute the task
(Freedman et al., 2001;Miller and Cohen, 2001). They can adapt rapidly,
switching from representing one aspect of a task to another in a
fraction of a second (Stokes et al., 2013). At the regional-anatomical

scale, neuropsychological research has shown that frontal lobe damage
leads to cognitive inflexibility; that is, the inability to learn new behav-
iours or to override those that are habitual (Gaffan and Harrison, 1988;
Halsband and Freund, 1990; Halsband and Passingham, 1982; Petrides,
1985, 1990, 1997). Furthermore, functional magnetic resonance imag-
ing (fMRI) has demonstrated that thehuman LFCs are strongly activated
during a variety of tasks that require the intentional control of thoughts
and actions (Duncan and Owen, 2000; Fedorenko et al., 2013) including
when tasks are being performed based on instructed rules (Rowe et al.,
2007; Zhang et al., 2013). Most relevantly, when simple cognitive tasks
are being performed in the scanner, the LFCs respondmore at the begin-
ning of the experiment, when stimulus–response rules are novel
(Fig. 1), with little or no response towards the end, when they are rou-
tine (Boettiger and D'Esposito, 2005; Erika-Florence et al., 2014; Toni
and Passingham, 1999; Toni et al., 2001).

Although it is well established that the LFCs are involved in inten-
tional learning, the mechanisms by which they interact and adapt are
not yet fully understood. This is in part because the functional organisa-
tion of the human LFCs is often conceptually simplified to enable
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experimental tractability (Passingham and Wise, 2012). For example,
classic studies focused on mapping functional dissociations across
large-scale dorsal-ventral and anterior–posterior axes within the LFCs.
However, data-driven analyses have shown that the LFCs aremore com-
plex than this (Hampshire and Sharp, 2015); they contain multiple,
functionally distinct sub-regions, which each co-activate with a differ-
ent large-scale connectivity network (Beckmann and Smith, 2004;
Dosenbach et al., 2006, 2008; Erika-Florence et al., 2014; Hampshire
et al., 2012b; Laird et al., 2011; Smith et al., 2009). Three of these LFCnet-
works (Fig. 2) include brain regions that are known to play particularly
flexible roles in cognition (Duncan, 2001; Duncan and Owen, 2000;
Fedorenko et al., 2013) and that are implicated in learning (Toni and
Passingham, 1999; Toni et al., 2001). One network includes the anterior
insular/inferior frontal operculum, the anterior cingulate cortex and the
temporal-parietal junction bilaterally (AIFO network). Another includes
the inferior frontal sulcus, the inferior parietal cortex and the ventral cau-
date bilaterally (IFS network). The third includes the lateral frontopolar
cortex, the posterior dorsolateral prefrontal cortex and the superior pari-
etal cortex bilaterally (LFPC network). It remains unclear how these net-
works differ in their functions and how they coordinate with each other
to support controlled modes of behaviour such as intentional learning.

The ventral striatum has also been implicated in the learning of novel
tasks and is richly connected to several LFC regions. However, it also reli-
ably dissociates from the LFCs under some cognitive conditions
(Hampshire et al., 2012a). For example, it has been reported that
parameters from computational simulations of model-based and model-
free reinforcement learning predict regional brain activations within the
LFCs and the ventral striatum respectively (Glascher et al., 2010). More
broadly, the ventral striatum has been implicated in the processing of
task feedback, particularly reward prediction errors (O'Doherty et al.,
2003; Schonberg et al., 2007; Seymour et al., 2004). Based on this, it has
been proposed that the LFCs and the ventral striatum carry distinct learn-
ing signals (Glascher et al., 2010). However, less is known about how the
LFCs and ventral striatum interactwhen these learning signalsmust be in-
tegrated: for example, when feedback signals the requirement to modify
the temporary internal program for performing the task.

Here, we address these questions by applying a combination of fMRI
analysis methods to examine LFC network activity and connectivity

across consecutive stages of two stimulus–response learning tasks.
First, we use a combination of precisely controlled contrasts and analy-
ses of global network synchrony to test the hypothesis that LFC
networks are more active and functionally interconnected during the
simplest form of intentional learning, in which stimulus–response
rules are applied based on explicit instruction at the start of each learn-
ing block with no reinforcement from feedback. Then, we use focused
regions of interest (ROI) and psychophysiological interaction (PPI)
analyses to test the hypothesis that striatocortical connections are en-
gaged when the stimulus–response rules are being established based
on feedback (O'Doherty et al., 2003; Schonberg et al., 2007; Seymour
et al., 2004). Finally, we apply dynamic causal modelling (DCM) with
Bayesian model selection to test whether LFC sub-regions interact in a
hierarchical manner during learning from instruction and to examine
how negative feedback impacts on striatocortical interactions during
learning by trial and error.

Materials and methods

Participants

17 healthy participants (7 female and 10 male) aged 19–27 years
completed Study 1 and 14 participants (5 female and 9 male) aged
20–35 years completed Study 2. All participants were right handed
English speakers with normal or corrected to normal eyesight. Volun-
teers were excluded if they had a history of neurological or psychiatric
illness, were taking psychoactive medications or did not meet MRI safe-
ty criteria. The local research ethics board approved this study. Partici-
pants gave informed consent prior to entering the fMRI scanner.

Task designs

In Study 1 (Fig. 3a), participants were presented with a simple dis-
crimination rule for 4 s (e.g. yellow shapes = left button response and
orange shapes = right button response) followed by a sequence of
coloured shapes. There were 4 compound stimuli per rule, constructed
from 2 exemplars per dimension. There was no feedback post response.
Stimuli were presented in randomised order at a rate of 1 per 1.7 s with

Fig. 1. Paradigms that are used to probe LFC function often treat learning effects as nuisance variables. This can lead to overly static interpretations of LFC function. For example, one prom-
inent hypothesis states that a sub-region of the right inferior frontal gyrus (pIFG) is involved in the effortful cancellation of dominantmotor responses. The Stop Signal Task is designed to
probe motor inhibition processes and shows significant activation within this region. However, the pIFG is most active when the task is initially being learnt. Other LFC sub-regions, in-
cluding the anterior insula inferior frontal operculum (AIFO), inferior frontal sulcus (IFS) and posterior dorsolateral prefrontal cortex (pDLPFC), show similar learning effects. Behavioural
performancemeasures correlate with changes in functional connectivity between these LFC sub-regions. These results (Erika-Florence et al., 2014) indicate that distributed LFC networks
work in a coordinated manner to support novel tasks. As a task becomes automated, the involvement of these networks diminishes.
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1/3 of trials showing fixation as opposed to a stimulus, which allowed
activation during discriminations to be estimated relative to fixation.
Presentation continued for 3 min, subsequent to which a new rule
was presented; therefore, activations related to rule learning were not
confounded by the total time spent in scanner or on task. Rules always
changed across dimensions; i.e. if one rule related to shape then the
next related to colour and all exemplars were replaced when the rules
changed; this design ensured that the previously learned stimulus–
response mappings did not have to be overridden. There were a total
of four rule slides, each followedby a 3min sequence of discriminations.
Study 2 (Fig. 3b) used a variant on the design of Study 1 with the same
rules and stimuli (Fig. 3c). However, the participants had to derive the
rule based on feedback as opposed to explicit instruction with a rule
slide. Feedback was presented centrally on the screen as either the
word ‘Correct’ in green or ‘Incorrect’ in red after a random 50% of trials,
which allowed activations related to rule novelty and feedback to be es-
timated separately. The duration of each block was reduced to 2.5 min
based on the rapid learning effects observed in Study 1. Behavioural out-
lier values (defined as N2.5 SDs from themean)were winsorised within
condition for both studies to ensure they did not distort the results.

Data acquisition

Responses were made on an MRI compatible button box using the
index and middle fingers of the right hand. Tasks were programmed

in Visual Basic and stimuli were projected on a screen, visible via a mir-
ror, at the end of the scanner bore. Brain images were collected using a
3 Tesla Siemens Scanner. A T2 weighted echo planar image depicting
blood oxygenation level dependent (BOLD) contrast was acquired
every 2 s. The first 10 images were discarded to account for equilib-
rium effects. Images consisted of 32 ∗ 3 mm slices, with a 64 × 64
matrix, 192 × 192 mm field of view, 30 ms TE, 2 s TR, 78° flip angle,
0.51 ms echo spacing, and 2232 Hz/Px bandwidth. A 1 mm resolution
MPRAGE structural scan was also collected for each individual with a
256 × 240 × 192 matrix, 900 ms TI, 2.99 ms TE and 9° flip angle. Data
were pre-processed using a standard pipeline in SPM8 (Statistical
Parametric Mapping, Welcome Department of Imaging Neuroscience).
Specifically, they were slice-timing and motion corrected, spatially
warped onto the standard Montreal Neurological Institute template
using the structural scan, and spatially smoothed with an 8 mm full
width at half maximum Gaussian kernel.

Univariate analysis

FMRI data were analysed at the individual participant level in
SPM8 using general linear models (GLMs). In Study 1, discrimination
trials were modelled using six predictor functions, each consisting of
event timings convolved with the canonical haemodynamic response
function. These included the onsets and durations of all discrimina-
tion trials broken down into 6 × 30 second ‘learning stages’ arranged

Fig. 2. a)& b) In a previous study (Parkin et al., 2015)we applied spatial ICA to decompose the LFCs into functionally distinct sub-regions in a data-drivenmanner. The timecourses of these
sub-regions were used in seed analyses to characterise their cortically and sub-cortically distributed functional networks. One network (red) included the AIFO. Seed analyses identified
the anterior cingulate cortex/pre-supplementarymotor area (ACC) and temporal parietal junction (TPJ) bilaterally. A second network (green) included the IFS. Seed analysis identified the
caudate nucleus bilaterally and a region extending from the superior occipital lobe into the inferior parietal cortex (IPC). A third network (blue) included the lateral frontopolar cortices
(LFPC). Seed analyses identified the pDLPFC and superior parietal cortices bilaterally (PC). c) 10mm radius spherical regions of interest were defined based on peak coordinates from the
ICA and seed analyses. These ROIs were formed into a two-tier network model, with the lower tier consisting of intra-network connections and the upper tier consisting of connections
between different LFC sub-regions.
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contiguously to estimate neural activation at a coarse grain as rules
transitioned from novel to familiar. For example, the first predictor in-
cluded all discriminations from the first 30 s after definition of each of
the four rules. The second predictor captured trials within the next
30 s, etc. A seventh predictor captured the onset and duration of the
four rule definition events. Six additional predictors were included to
capture noise due to head movements. These were the translations
and rotations in the x, y and z planes.

Event-related fMRI data for Study 2weremodelled in the sameman-
ner as Study 1 with the following exceptions. Onsets and durations for
stimuli with responses were again broken down into 30-second learn-
ing stages; however, they formed 5 predictor functions as each learning
block (i.e. period of timewhen the rulewas applied)was 2.5 as opposed
to 3 min long. Also, in Study 2 learning was driven by feedback as op-
posed to explicit instruction; therefore, the positive and negative feed-
back events were included in the model as two additional predictor
functions and there was no rule definition predictor.

Whole brain maps depicting parameter estimates for the experi-
mental predictor functions were exported for group level random
effects analyses. Analyses of nodes within the LFC networks were con-
ducted using focused regions of interest (ROIs) with the MarsBaR tool-
box (Brett et al., 2002), which calculates the average value from all
voxelswithin the ROI. ROIs (Fig. 2)were predefined in a recently report-
ed study (Parkin et al., 2015) in the followingmanner. First spatial inde-
pendent component analysis was conducted on a volume restricted to
the lateral frontal cortices. This generated a detailed functional decom-
position of the LFC volume. Then ROIs were defined at the peak bilateral
coordinates for each component and their activation timecourses were
extracted. The timecourses were regressed together onto each voxel in
the brain. This seed analysis identified a set of brain regions that were
representative of the networks that each LFC ROI co-activated with.
Supplementary voxel-wise group level analyses were carried out in
SPM8 and, unless reported otherwise, used cluster correction with

initial voxelwise thresholding at p b 0.01 uncorrected followed by
family wise error FWE cluster correction for the whole brain mass at
p b 0.05.

Functional connectivity analyses (undirected graphs)

Task-related changes in network connectivity were examined using
two types of analyses, each of which provides a different insight into
network interactions. First, phase synchrony analyses were applied
to timecourse data extracted from each ROI using MarsBaR. Notably,
unlikemore established fMRI functional connectivitymethods (e.g. psy-
chophysiological interactions), phase synchrony analysis scales effi-
ciently with the number of reciprocal connections, thereby allowing a
global connectivity timecourse to be estimated from an entire set of net-
work nodes. The phase synchrony timecoursemay then be examined in
relation to psychological conditions. This approach has proven sensitive
to connectivity changes related to cognitive conditions in a previous
study examining the same LFC networks (Parkin et al., 2015).

The timecourse data were high pass filtered at 60 s and an instanta-
neous measure of phase estimated by applying the Hilbert transform
(Laird et al., 2002). Phase synchrony across time was then estimated
using the Kuramoto Order parameter (Hellyer et al., 2014). Essentially,
a timecourse representing the phase synchrony was calculated by tak-
ing the exponent of the phase multiplied by the square root of −1 for
each data point, providing a complex representation with magnitude
of one and argument dependent on phase angle. The absolute of the
mean of this representation across the timecourses at each time point,
provides a convenient measure of phase co-ordination:

R tð Þ ¼ 1
N

XN

n¼1

eiΘn tð Þ

Fig. 3. a) In Study 1 participants learnt novel discrimination rules from explicit instruction. Initially, a slidewas presentedwith a discrimination rule. Subsequently, a sequence of coloured
shapeswas presented for 3min and the participantwas required to respondwith the relevant buttonpress as quickly and accurately as possible. After 3min a new rule slidewas displayed
followed by another sequence of coloured shapes. b) In Study 2, there were no rule slides. Instead, feedback indicating whether the previous response was correct or incorrect was pre-
sented randomly after 50% of trials. Therefore, participants were required to derive the discrimination rules by a process of trial-and-error. c) The two studies used the same stimulus sets.
d) In Study 1, response times followed a non-monotonic decrease when stimulus–response rules were being learnt from instruction. Specifically, there was a rapid decrease in RT from
stages one to three, followed by a small increase in RT then a more gradual decrease. e) In Study 2, a similar non-monotonic decrease was also evident in RTs when stimulus-response
rules were being learnt by exploration with feedback. (***p b 0.001, **p b 0.01, *p b 0.05 two tailed significance).
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where R is a vector representing the level of phase synchrony be-
tween N timecourses (ROIs or voxels) at each time point (t) and Θ
represents the N ∗ t matrix of instantaneous phases. 1 = fully syn-
chronous and 0 = fully asynchronous timecourses. The model
from the participant's SPM GLM, including all psychological events,
movement parameters and the constant term, was regressed onto
the synchrony timecourse R. Parameter estimates from the regres-
sion model were collated for group level analysis to determine
whether there were consistent task-related changes in connectivity
across the networks. This analysis was repeated with timecourses
extracted from all voxels within the brain in order to determine
whether the learning manipulations evoked a global change in low
frequency synchrony.

Next, psychophysiological interaction (PPI) analyses were car-
ried out (Friston et al., 1997) between individual pairs of regions
in order to determine whether task-related changes in functional
connectivity differed for specific network connections. PPIs were
conducted using SPM8 in the following standard manner. BOLD acti-
vation timecourses were extracted from bilateral masks composed
of 10 mm radius spheres within the seed region using the Volume
of Interest (VOI) function, which extracts the first eigenvector across
all voxels within the ROI. The neural signal underlying the BOLD
response was estimated using the SPM deconvolution function
prior to being interacted with psychological timecourses to produce
the PPIs. The physiological, psychological and psychophysiologi-
cal timecourses were re-convolved with the canonical hemodynam-
ic response function to produce a set of three predictors. These,
together with movement parameters, were fitted with a GLM onto
each target ROI. Mean parameter estimates for the PPI predictors
were extracted for each seed-target PPI model using the MarsBaR
ROI toolbox. These data were exported for group-level analyses in
SPSS.

Effective connectivity analysis (directed graphs)

Dynamic causal modelling was conducted in SPM12 using bilin-
ear deterministic models (Friston et al., 2003). These generative
models for fMRI use Bayesian model inversion to optimise both
neuronal interactions and the neurovascular forward model (hrf)
at each region to maximise the log-model evidence (accuracy,
corrected for complexity). In Study 1, each model was fitted to
time-course data from three ROIs. Timecourses were extracted
using the VOI function from masks composed of bilateral 10 mm ra-
dius spheres based at the peak coordinates from the ICA for the three
LFC ROIs (Fig. 2). The ROIs were reciprocally connected and self
connected (A matrix). The driving input for all models (C matrix)
was a Task contrast that included the durations for all events at all
learning stages (stimulus–response events during Stages 1–6 all
weighted as 1). Models varied with respect to the target of the mod-
ulatory input (B matrix), which was a Novelty contrast (entire dura-
tion of Stages 1–6 weighted as 3 2 1 −1 −2 −3). The most optimal
model was selected using Bayesian model selection with fixed ef-
fects analysis. The fixed effects approach is most appropriate be-
cause one can assume that healthy controls have consistent
network architecture (Stephan et al., 2010). However, it should be
noted that Bayesian model selection with random effects analysis
also favoured the same models. In Study 2, all models built on the
optimal model from Study 1 analysis with the modulatory input
adapted to account for the reduced number of learning stages (dura-
tion of Stages 1–5 = 2 1 0 −1 −2). An additional ventral striatum
region was included, consisting of the caudate ROIs bilaterally and
a timecourse of negative feedback events formed an additional
input to the models. The models varied in terms of whether feedback
was a driving or modulatory input and the nodes/connections that
this input targeted.

Results

Behavioural analyses

In Study 1 (learning from instruction), performance measures were
averaged across sequences and within each of six consecutive thirty-
second stages. (Averaging in this manner was valid as there was no
significant difference between the response time measures of the four
sequences). Participants performed the task with N97% accuracy at all
stages. Repeated measures analysis of variance (ANOVA) with Stages
1–6 as the factor showed a significant learning effect with RTs decreas-
ing as the discriminations became routine (F(5,75) = 15.13 p b 0.001).
Mean RTs did not reduce monotonically with learning; instead, Stage
3 showed a small early minimum. Post-hoc analysis of just the latter
five stages confirmed this effect with a significant cubic within-subject
contrast (F(1,15) = 4.54 p = 0.005). Pairwise t-tests confirmed that
Stage 3 RTs were significantly faster than those of Stages 1, 2, 4 or 5
whilst Stage 1 was slower than all five others (Fig. 3d).

In Study 2, (learning from feedback) performance measures were
sorted into five consecutive 30-second stages (Stages 1–5). Participants
received an average of 18.3 negative feedback events across the session
(Inline Supplementary Fig. S1). A repeatedmeasures ANOVAwith Stage
(1–5) as the factor showed a significant main effect of stage on errors
(F(4,52) = 20.254 p b 0.001). The response time data were examined
with a further repeatedmeasures ANOVAwith Stages 1–5 as the factor.
There was a significant reduction in RTs with learning (F(4.52) = 9.01
p b 0.001) and a similar non-monotonic decrease in RTs to Study 1;
however, the minimum occurred earlier, in Stage 2. Post-hoc analysis
of the latter four stages indicated a significant quadratic within-
subject contrast (F(1,13) = 5.703 p = 0.033). Pairwise comparisons
showed significant differences between the RTs in Stage 1 and all subse-
quent stages (Fig. 3e). However, the non-monotonic effect was subtler
than for Study 1, because Stage 2 did not differ significantly from Stages
3–5 in the pairwise comparisons.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2015.11.060.

Analysis of activation magnitudes: between-network comparison of the
effects of learning

Analyses of regional activation magnitudes focused on the two-tier
network model (Fig. 4a). For completeness, voxelwise analyses are re-
ported in the inline supplemental materials (Inline Supplementary
Figs. S2 & S3). Activities of the three LFC networks were examined
across the six stages of Study 1 to determine whether they differed in
their sensitivities to learning from instruction. Parameter estimates
were averaged across all ROIs for each network at each learning stage
and the resultant data were examined using repeated measures
ANOVAwith the conditions Stage6 andNetwork (3). Therewas a signif-
icant positive effect of condition (T contrast averaged across conditions)
indicating that the LFC networkswere generallymore active during task
than at rest (t=3.709 p b 0.001 one tailed). Therewere significantmain
effects of Stage (F(5,80) = 2.4 p = 0.044) and Network (F(2,32) = 4.632
p = 0.017), and a significant Stage ∗ Network interaction (F(10,160) =
4.787 p b 0.001), indicating that the networks had different sensitivities
to learning from instruction. When the mean network activation levels
were plotted for each stage to determine the basis of the interaction
(Fig. 4b), the IFS and LFPC networks followed a smooth decline in acti-
vationwith learningwhereas the AIFO network showed consistent acti-
vation across the learning stages.

Inline Supplementary Figs. 2 and 3 can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2015.11.060.

Network activities were then examined across the five stages of
learning by trial and error. Parameter estimates were averaged across
all ROIs for each network and examined using repeated-measures
ANOVA with the conditions Stage 5 and Network (3). There was a
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significant positive effect of condition (t = 4.828 p b 0.001), and a sig-
nificant main effect of Stage (F(4,52) = 13.795 p b 0.001) but not of
Network (F(2,26) = 2.062 p = 0.147). There was a significant Stage ∗
Network interaction (F(8,104)=4.647 p b 0.001), indicating that the net-
works had different sensitivities to learning from feedback. When the
parameter estimates were plotted separately at each stage of the task
(Fig. 4c) it was evident that the activation response to discriminations
declined most rapidly for the LPFC network, which showed a strong
peak in the first stage and least rapidly for the AIFO network, which
was active in the third learning stage.

Within-network comparison of the effects of learning

Further analyses were conducted to determine whether there were
differences in the sensitivities of the ROIs within each network to learn-
ing by instruction. A linear rule-novelty contrast was estimated across
stages for each ROI (Stages 1–6weighted as 3 2 1−1−2−3). Contrast
estimateswere examined in three separate one-way repeatedmeasures
ANOVAs in which the condition was ROI (6). There was a significant
effect of ROI in the IFS network only (IFS network F(5,80) = 4.84
p b 0.001; AIFO network F(5,80) = 1.18 p N 0.3; LFPC network
F(5,80) = 2.19 p = 0.063). T-tests showed that this effect related to a
lack of sensitivity to novelty within the caudate but not the IFS or IPC
ROIs (Fig. 5a).

A rule-novelty contrast was then estimated for each ROI during
learning from feedback (Stages 1–5 weighted as 2 1 0 −1 −2) and
these data were examined in three separate one-way repeated mea-
sures ANOVAswith the condition ROI (6). There were significant effects
of ROI within the AIFO network (F(5,65) = 10.07 p b 0.001) and the IFS
network (F(5,65) = 4.085 p = 0.003) but not the LFPC (F(5,65) = 0.908
p = 0.481). T-tests showed that, unlike learning from instruction,
there were significant effects of novelty within all IFS network ROIs in-
cluding the caudate bilaterally. There were also significant effects of

novelty within the AIFO network ROIs with the exception of the TPJ
(Fig. 5b).

Network activations during feedback

Parameter estimates for the negative feedback events were extract-
ed from each ROI. These data were analysed in a GLM with condi-
tions Network (3) ∗ ROI (6). There were significant effects of
Network (F(2,26) = 3.601 p = 0.042) and Network ∗ ROI
(F(10,130) = 8.199 p b 0.001). When T-tests were conducted on data av-
eraged across all nodes of each network there were significant effects of
Feedback within all three networks (AIFO t = 4.74 p b 0.001; IFS t =
4.00 p = 0.002; LFPC t = 2.67 p = 0.019). ANOVAs focused on each
network showed significant main effects of ROI within the AIFO net-
work (F(5,65) = 12.641 p b 0.001) and the LFPC network (F(5,65) =
4.512 p b 0.001) but not the IFS network (F(5,65) = 2.103 p = 0.076).
Post-hoc t-tests examining the basis of the differences showed signifi-
cant effects for all ROIs with the exception of the left TPJ, the left parietal
cortex and the bilateral frontopolar cortices (Fig. 5c). Examining param-
eter estimates for positive feedback events using a network ∗ ROI GLM
of the same design showed no significant main effects or interactions
(all p N 0.1). T-tests conducted on each individual ROI also showed no
significant effects of positive feedbackwithin any ROI even at the liberal
uncorrected and one-tailed threshold of p b 0.05. Therefore, effects of
positive feedback were not examined further in this study.

Analysis of phase synchrony

Phase synchrony analyses were conducted between all ROIs to de-
termine whether the effects of learning on activation magnitudes
were accompanied by changes in the global functional connectivity of
LFC networks (Hellyer et al., 2014; Parkin et al., 2015). In the analysis
of learning from instruction, the psychological predictor functions,

Fig. 4. a) Placement of the LFC network regions of interest. b) The IFS and LFPC networks showed smooth downwards curves in task-related activation as the stimulus–response rules
transitioned from novel to familiar. By contrast, the AIFO network still showed significant task-related activation at the sixth and final stage of the learning process. c) All three networks
showed decreases in task-related activation as the rules transitioned from novel to familiar during learning by exploration with feedback. The LFPC showed the sharpest decline, with a
large early peak, whereas the AIFO showed the slowest decline, with significant activation through the third stage. The networks also showed significant activation during negative feed-
back (left bar).
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movement parameters and constant term were regressed together
onto the global phase synchrony timecourse of the network ROIs. The
resultant parameter estimates were examined at the group level using
repeated measures ANOVA with Stages 1–6 as the condition. There
was a significantmain effect (F(5,80)=6.12 p b 0.001),whichwasdriven
by greater phase synchrony in the earlier learning stages followed by a
smooth downwards curve as rules became familiar (Fig. 6a). Height-
ened phase synchrony was also evident when rules were being defined
(t = 2.11 p = 0.05). Repeating the analyses with the phase synchrony
timecourse calculated across data from all voxels within the brain
showed a significant main effect of Stage (F(5,80) = 3.24 p = 0.01) and
a significant effect of rule definition (t= 2.67 p b 0.05) (Fig. 6b). There-
fore, there was a global increase in brain functional connectivity when
novel rules were being learnt from instruction.

ROI data during learning from feedback were analysed in the same
manner. One outlier value was winsorised as it was N2.5 SDs from the
mean. There was a significant effect of Novelty (F(4,52) = 2.622 p =
0.045); however, heightened network synchrony was only evident in
the first learning stage (t = 3.134 p = 0.008) (Fig. 6c). Furthermore,
negative feedback events were associated with a significant decrease
in network synchrony (t = −2.618 p = 0.021). Notably, this network
desynchronisation occurred in conjunction with a significant global in-
crease in network activation (Fig. 6d), thereby uncoupling the phase
and magnitude effects.

Psychophysiological interactions

As described above, the contrast of rule novelty during learning from
instruction showed no significant increase in caudate activation levels
during early relative to late learning stages (Fig. 5a); however, it was
still possible that the region could have had stronger functional connec-
tivity with the IFS during those early stages. This possibility was tested
using PPI analysis, which provides a focused method for examining
task-related changes in functional connectivity between pairs of brain
regions (Friston et al., 1997). A PPI model was constructed with the
Novelty contrast (Stages 1–6weighted as 3 2 1−1−2−3) as the psy-
chological predictor, the average of the IFS ROI timecourses as the

physiological predictor and their interaction as the PPI. T-tests of the
resultant parameter estimates showed no significant PPI effect within
the caudate ROIs (both p N 0.2 Fig. 7a). For comparison, robust PPIs
were evident when regressing the same set of predictor functions
onto the IPC ROI timecourses (both p b 0.001 2-tailed), which form
part of the same IFS network.

Applying the same PPI analysis to data during learning by explora-
tion with feedback also showed no significant effect of Novelty on func-
tional connectivity between the IFS and caudate. However, when a PPI
model was generated using the timecourse of negative feedback events
interactedwith the IFS activation timecourse, therewas a significant PPI
effect (left t = 2.625 p = 0.021 right t = 2.496 p = 0.027 Fig. 7b). For
comparison, there was no significant effect when regressing the same
set of predictor functions onto the IPC ROI timecourses (left t = 0.288
p N 0.5 right t = −0.377 p N 0.5). Thus, although there was a global
decrease in functional connectivity across the LFC networks during the
reception of negative feedback, the IFS-caudate connections showed a
significant increase. Furthermore, there was a double dissociation be-
tween corticocortical and corticostriatal connectionswithin the LFC net-
work, with the former being sensitive to rule novelty and the latter to
negative feedback.

Dynamic causal modelling

Learning from instruction generated significant effects in terms
of the activation magnitudes, phase synchrony and PPIs of LFC net-
works; therefore, a pertinent questionwas how learning-related chang-
es in network connectivity propagated across the LFC nodes. To address
this question, we compared eight dynamic causal models (DCMs) that
instantiated alternative hypotheses regarding LFC functional organisa-
tion. The analyses applied standard bilinear and non-stochastic DCMs,
which included directional functional connectivities between nodes
(Amatrix), psychological modulators of the strengths of the directional
connections (B matrix) and driving inputs of psychological events
(C matrix) to network nodes. Models were fitted to the activation
timecourses extracted from the AIFO, IFS and LFPC ROIs, collapsed
across hemisphere, to form three nodes. Caudate ROIs were not

Fig. 5. a) Task and Novelty effects for each region of interest during learning from instruction. Notably, the caudate ROIs showed no significant effects of task or novelty whereas the rest of
the IFS network was significantly activated by either one or both contrasts. b) During learning from feedback, there were significant effects of task relative to fixation and of rule novelty
throughout all three networks. In contrast to learning by instruction, these effects were evident within the caudate (highlighted) and the AIFO network ROIs. c) Negative feedback gen-
erated heightened activationwithin all three networks including the caudate ROIs. (***p b 0.001, **p b 0.01, *pb 0.052-tailed significance. Error bars report the standard error of themean).
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included in this analysis because they showed neither task nor learning
related activations or connectivities when performing discriminations
in Study 1.

The timecourses for the Task and Novelty contrasts formed the psy-
chological inputs to the DCMs. The hypotheses under investigation
pertained to how task-related interactions between LFC regions varied
as a function of learning stage. Therefore, the Task timecourse was ap-
plied as a driving input to all three nodes in all eight models and the
three nodes had reciprocal connections. Novelty formed themodulatory
input and differed with respect to the targeted connections. Three
models represented the hypothesis that changes in functional connec-
tivity during learning from instruction were driven by one LFC sub-
region. Therefore, Novelty modulated both efferent connections from
just one of the nodes. Another two models represented the hypothesis
that learning has a general effect on network connectivity with no
specific LFC source. Therefore, either all of the between node connec-
tions or none of those connections were modulated by Novelty. Finally,
three models represented the hypothesis that the learning effects are
propagated via a hierarchical arrangement of LFC sub-regions. There-
fore, the AIFO → IFS and IFS → LFPC connections were modulated in a
posterior-to-anterior model, LFPC → IFS and IFS → AIFO connections
were modulated in an anterior-to-posterior model, or both sets of con-
nectionsweremodulated together. Bayesianmodel selectionwith fixed
effects analysis determined which model provided the best balance be-
tween model complexity and fit to the fMRI timecourses. The results

favoured the three hierarchical models and the anterior–posterior
model in particular (Fig. 8a). This model accounted for 17% of the vari-
ance on average, substantially above the proposed criteria of 10% for
good DCMmodel fit (Stephan et al., 2010).

The analyses of activation magnitudes and PPIs had demonstrated
that learning by explorationwith feedback involved additional striatum
activation and frontostriatal interactions that were not evident when
learning from instruction. Therefore, 17 dynamic causal models were
compared to determine the causal basis of these effects. All models
built on the anterior–posterior architecture identified in the analysis
of Study 1. They included the caudate ROIs as a fourth node and the neg-
ative feedback events as an additional psychological timecourse. The
hypotheses under examination pertained to the target of negative feed-
back within this network. Therefore, all models had bidirectional con-
nections between the caudate and the other three nodes but they
varied with respect to the target of the feedback timecourse.

Themodels were analysed in five families to compare hypotheses at
the complementary levels of like and individualmodels. A family of four
models represented the hypothesis that negative feedback has a driving
as opposed tomodulatory impact on the LFC networks. Therefore, feed-
back had a driving (C matrix) input to either the caudate or one of the
three LFC nodes. An individual model represented the null hypothesis
that negative feedback has a negligible impact on LFC networks. There-
fore, feedback had no driving or modulatory targets. Another family of
three models represented the hypothesis that feedback modulates

Fig. 6. a) In Study 1, analysis of ROI phase synchrony showed an increase in network functional connectivity when processing novel rules. b) This effect was also evident when examining
phase synchrony across all voxels within the brain. (Error bars report the standard error of the mean). c) In contrast to learning from instruction, there was only an increase in network
phase synchrony at the first stage during learning by exploration with feedback. Unexpectedly, there was also a decrease in network phase synchrony during the reception of negative
feedback. d) In Study 2, the phase synchrony effects were uncoupled from the activation magnitude effects during learning by exploration with feedback. (Error bars report the standard
error of the mean).
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interactions between the caudate and just one of the LFC regions. There-
fore, feedback targeted (B matrix) bidirectional connections between
the caudate and one or other of the LFC nodes. A fourth family of three
models represented the hypothesis that feedback modulates multiple
connection pathways between the caudate and LFC in parallel. There-
fore, feedback targeted all connections to, from, or bi-directionally
with the caudate. The final family of sixmodels represented the hypoth-
esis that negative feedback modulates a specific directional connection
between the caudate and the LFC. Therefore, feedback targeted one of
the individual afferent or efferent connections between the LFC nodes
and the caudate. Bayesian model selection with fixed effects analysis
clearly favoured the first family of models and the model in which neg-
ative feedback was a driver of caudate activation in particular (Fig. 8b).
This model accounted for 21% of the variance.

Discussion

This study provides novel insights into themechanisms and network
interactions that support intentional learning. We found that the LFC
networks activated enmasse and in synchronywhen simple discrimina-
tion rules were initially being learnt. They then transitioned towards a
low activation and asynchronous state when those same discrimina-
tions were routine. This was the case even when the rules were unam-
biguous, having been defined based on explicit instruction at the start of
the learning block. These results accord with the hypothesis that LFC
networks work together to support a temporary internal program that
enables tasks to be performed at the earliest stages of learning.

LFC networks form a functional hierarchy

The LFC networks were not recruited in a uniform manner depen-
dent on the overall level of cognitive demand; instead, they were
engaged in different combinations and interacted in alternative connec-
tivity states across the stages and types of learning. For example, when
analysing the magnitude of activations, it was evident that the LFC net-
works disengaged from the task in a step-wise manner as learning
progressed, with the LFPC showing the most rapid decrease in activa-
tion and AIFO showing the slowest decrease. These results accord with
the hypothesis that LFC networks conform to a functional hierarchy.
The analyses of dynamic causal models tested this hypothesis in a
more formal manner by comparingmodels in which different combina-
tions of directed connections were modulated by learning stage. Bayes-
ian selection strongly favoured the model in which the connections
were modulated along a rostral to caudal axis. This rostro-caudal
model replicates the network dynamics that are observed during rela-
tional reasoning (Parkin et al., 2015), suggesting that the hierarchical
change in causal information flow may be common across reasoning
and rule-learning tasks.

Several researchers have proposed that the human LFCs house a
hierarchical system, the levels of which support increasingly high
order cognitive processes. This proposal is primarily based on studies
that have compared the regional activations of the LFCs during the per-
formance of increasingly complex cognitive tasks or that characterised
cognitive impairments in patients with focal LFC lesions (Badre, 2008;
Badre et al., 2009; Hampshire et al., 2007; Koechlin et al., 2003;
Ramnani and Owen, 2004). Notably, it has been suggested that the
LFPCs sit at the apex of this hierarchy and support relational integration,
whereby cognitive processes of other LFC regions are combined to form
higher-order products. In accordancewith this view, the LFPCs aremore
active during tasks that require cognitive processes to be sequenced or
integrated (Vendetti and Bunge, 2014) including spatial planning
(Hampshire et al., 2013;Williams-Gray et al., 2007) relational reasoning
(Bunge et al., 2009; Christoff and Gabrieli, 2000; Christoff et al., 2001,
2009; Parkin et al., 2015; Wendelken et al., 2008) and contingency re-
versal learning (Hampshire and Owen, 2006). Our results demonstrate
that this hierarchy extends to include the broader functional networks
that each LFC sub-region is associated with.

However, it should be noted that the discrimination rules applied in
the current study involved no higher-order relations. Furthermore, the
stages in Study 1 only differed according to the novelty of those rules;
that is, there were no sequencing, feedback-contingency or integration
demands to process. Therefore, although the LFPC network is recruited
during relational integration and may make a unique contribution to
such processes (Parkin et al., 2015), this is unlikely to be its only cogni-
tive role because it is also involved in the simplest of discrimination
tasks when the stimulus–response rules are novel. Instead, LFC net-
works may be recruited step-wise as a variety of cognitive demands in-
crease, whilst the flow of information between them varies dependent
on the type of process that they are supporting.

Functional dissociations and interactions between frontal and striatal
network nodes

The most striking dissociation was between cortical and subcortical
components of the LFC networks. Specifically, frontoparietal regions
were sensitive to the simplest form of intentional learning in which
rules were explicitly instructed. In contrast, the ventral caudate regions
only showed significant activation during the task in which rules were
derived via a process of trial-and-error; they were particularly active
during the reception of negative feedback and showed no significant ac-
tivity during the reception of positive feedback. This pattern of results
accords with complementary roles for cortical and sub-cortical compo-
nents of the LFC networks inmaintaining/applying and updating the in-
ternal task program respectively.

Fig. 7. a) Psychophysiological interaction of the IFS ROI timecourse with the rule novelty
contrast showed greater functional connectivitywith the IPC but not the caudate ROIs dur-
ing learning by instruction. 7b) Psychophysiological interaction of the IFS ROI negative
feedback event timecourses showed a significant increase in function connectivity with
the caudate but not the IPC ROIs during learning by exploration with feedback. (Error
bars report the standard error of the mean).
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The analysis of connectivity in Study 2 provided further insights into
the interactions between frontal and striatal components of the LFC net-
works. For example, during negative feedback there was heightened ac-
tivation and decreased functional connectivity across the cortical nodes
of the LFC networks. A tentative explanation for this finding is that the
exploration of alternative discrimination rules is a chaotic process that
requires the destabilisation of one internal program to allow the forma-
tion of another. This process may be reflected at the network level by a
desynchronisation and resynchronisation of the frontoparietal regions
that represent the internal program. The PPI analyses support the
view that the caudate-IFS connections played a role in this process. Spe-
cifically, the global decrease in network synchrony during negative
feedback was accompanied by a significant increase in functional con-
nectivity between these regions. Thus, cortical and striatal connections
of the IFS network were doubly dissociated by their sensitivities to
learning stage and learning type.

The striatum comprises a functionally heterogeneous set of struc-
tures. The regions of interest analysed here were centred on mid-
ventral sub-regions of the caudate nuclei and were localised by their
functional connectivity profiles in another study (Parkin et al., 2015).
These ROIs were proximal to the peak activation coordinates within
the striatumduring negative feedback. As demonstrated by the analyses
of dynamic causal models, these regions up-regulate the LFC networks
during the reception of negative feedback, thereby promoting explor-
atory behaviours. Notably though, increases in the activation of the ven-
tral striatum have been reported to relate to expectancy violation
during feedback (Glascher et al., 2010; O'Doherty et al., 2003), that is,
as opposed to the feedback valence per se. In accordance with these
findings, we have also previously reported activation within a similar
region during the control condition of a novel reversal-learning task,
when exploratory behaviours were cued by the presentation of new
stimulus sets with no prior negative feedback event (Hampshire et al.,
2012a). Interestingly, caudate activation in that study was only evident
in response to negative feedback events if they triggered a subsequent

change in behaviour (Hampshire et al., 2012a). More broadly, increased
activation and connectivity of the ventral striatum has been reported
during problem-solving conditions that are not cued by negative feed-
back; for example, spatial planning (van denHeuvel et al., 2005) and re-
lational reasoning (Parkin et al., 2015).

Together, these results indicate that the striatocortical circuit is
involved when a temporary internal program that is used to perform
the task, is modified. That is, in contrast to processing feedback or re-
ward expectancy violations per se. As a further test of this hypothesis,
we conducted an analysis of the activation within the caudate nucleus
during presentation of the rule definition slide in Study 1. It is important
to note, that there were few of these events in the study; therefore, we
have limited power to examine this condition. Nonetheless, it is infor-
mative that this was the only condition in Study 1 to produce significant
caudate activation (left t = 1.88 p = 0.03; right t = 2.40 p = 0.009).
This result provides tentative evidence that this region of the ventral
striatum is involved when the internal task program is being formed/
updated, even under conditions where there is no feedback.

Non-monotonic learning effects

Unexpectedly, the learning-related decreases in response times in
both studies were not monotonic. During learning from instruction,
the early minimum occurred in the third of the thirty-second stages.
The non-monotonic effect was not evident in the magnitude or phase
synchrony timecourses; however, it coincided with the stage at which
network phase synchrony ceased to be greater in the contrast of dis-
criminations vs. fixation. We therefore suggest that these behavioural
effects are an emergent property of the transition from intentionally
controlled to routine modes of task performance. Put another way,
once the task becomes routine, it is no longer necessary to actively
maintain a model for performing it and the LFC networks disengage.
The subsequent gradual decline in RTs may reflect the continued

Fig. 8. a) In Study 1, Bayesianmodel selectionwith fixed effects analysis favoured a dynamic causalmodel inwhich rule noveltymodulated top-down connections from the LFPC to the IFS
and from the IFS to the AIFO. b) In Study 2, Bayesian model selection with fixed effects analysis favoured the family of models in which negative feedback was a driving input. Model 1, in
which the driving input was via the caudate ROI provided the best explanation of the data.
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consolidation of the discrimination mappings in habitual stimulus–re-
sponse pathways.

During learning by exploration, the early minimum occurred sooner
than that observed during learning from instruction andwas less robust.
Onemight have predicted the opposite pattern of resultswith the learn-
ing effects of Study 1 being delayed by the duration of the exploration
phase in Study 2. However, we suggest that learning by exploration
with feedback is a fundamentally different process; it engages addition-
al striatocortical circuits and involves powerful reinforcement learning
mechanisms. The requirement for these additional processes may ini-
tially slow RTs but they may also work to accelerate the consolidation
of new behaviours. In accordance with this view, the analysis of activa-
tion magnitudes not only showed additional recruitment of regions
within the striatum during the early stages of learning, there were
also significant learning effects within the AIFO network. Moreover,
the RT minimum in Study 2 again coincided with the stage at which
LFC network phase synchronywas no longer greater for discriminations
relative to fixation. A future challenge will be to determine how these
non-monotonic RT effects emerge from the shifting balance between
the neural systems that support controlled and routine modes of
behaviour.

Summary

Our results support the hypothesis that the neural components
supporting behavioural-control comprise a hierarchical set of networks
that include nodes within the lateral frontal cortices. These networks
are active and synchronous when novel tasks are being intentionally
processed; however, they are dissociable by their sensitivities to the
stage and type of learning. Their directed connectivity varies asymmet-
rically and hierarchically across different stages of the learning process.
Furthermore, when negative feedback indicates the need to initiate ex-
ploratory behaviour, there is an increase in driving inputs from the cau-
date. A future research question is whether directional network
interactions always conform to this hierarchy, or whether the lateral
frontal cortex is engaged in a diverse repertoire of configurations to sup-
port different cognitive demands. Another question for a larger scale co-
hort study is whether these network dynamics underpin individual
differences in learning ability or adaptability. From a clinical-transla-
tional perspective, we have reported that the functional connectivity
of LFC networks is impacted in patients who suffer sports-related trau-
matic brain injuries (Hampshire et al., 2013) and have observed that
patients with Parkinson’s disease, who suffer abnormal striatum
function, show slowed acquisition of contingency reversal learning par-
adigms (Williams-Gray et al., 2008). Therefore, a sensible future direc-
tion is to determine whether the connectivity effects observed here
during simple intentional learning can provide clinical-diagnostic
markers in populations that suffer from cognitive impairments.
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