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Simple Summary: This study aims to test a suitable deep learning method for micronucleus 

detection in images acquired for cytokinesis block micronucleus assay. This study has reached a 

mean average precision of >90%.  

Abstract: The cytokinesis block micronucleus assay is widely used for measuring/scoring/counting 

micronuclei, a marker of genome instability in cultured and primary cells. Though a gold standard 

method, this is a laborious and time-consuming process with person-to-person variation observed 

in quantification of micronuclei. We report in this study the utilisation of a new deep learning 

workflow for detection of micronuclei in DAPI stained nuclear images. The proposed deep 

learning framework achieved an average precision of >90% in detection of micronuclei. This proof 

of principle investigation in a DNA damage studies laboratory supports the idea of deploying AI 

powered tools in a cost-effective manner for repetitive and laborious tasks with relevant 

computational expertise.  These systems will also help improving the quality of data and 

wellbeing of researchers. 

Keywords:  MN, genome instability, DAPI, cancer diagnostics, MN detection, Artificial 

Intelligence 

 

 

 

1. Introduction  

DNA damage induced genomic instability is a defining characteristic of human cancers 

and several other diseases and therefore is at the centre of biochemical, molecular, and 

clinical investigations of human diseases [1]. By products of cellular metabolism, 

replication errors and external sources such as environmental factors and 

chemotherapeutic drugs promote damage to the double helix. The array of cellular 

responses activated post DNA damage and outcomes of cell division provide clues 

about proper cell function and faithful transmission of the genome to daughter cells. 

Failure to recognise and remove DNA defects is associated with disease pathogenesis, 

particularly in oncogenesis. Micronuclei (MN) are extranuclear bodies originating from 

chromosome fragments or whole chromosomes that lag in anaphase during cell 

division. A common effect of mitotic dysfunctions that consequently lead to whole 

chromosome mis-segregation during cell division is MN [2–6].  MN are not included in 

the daughter nuclei and serve as valuable biomarkers to evaluate genome integrity. 

However, experiments require a strenuous process of scoring thousands of binucleated 

cells and manual counting of MN either directly through the microscope or from the 
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images. This method to study genome instability in a reproducible and reliable manner 

is time and resource demanding. 

 

Cell detection and tracking has been an age-old problem since the inception of 

microscopes. Visual inspection by eye has been the common method for detection and 

counting of cells which is often time consuming and prone to human errors. With the 

advent of technology, computer vision and automation are being introduced in every 

aspect of research. Extensive research validates the application of Artificial Intelligence 

(AI) in detection of cells infected in malaria, tuberculosis, and several use cases [7–15]. 

However, the adoption of these methodologies in the assessment of DNA damage 

responses have been comparatively limited. Several research labs around the world 

depend on manual counting for analysis of genome instability data. This lack of 

adoption of AI tools may be attributed to lack of awareness, unavailability of necessary 

resources and a scepticism about the abilities of AIs in general. Answering these factors 

forms the motivation of this study, where we try to show the efficacy of a deep learning 

system and elaborate on the cost benefits of adopting such a system in a laboratory 

setting. Automation and streamlining the studies of genome instability is what the 

authors believe holds the potential to accelerate the work being done in research labs by 

many folds.  

 

 

2. Related Work 

 

ML has been used in the domain of medical sciences to cater to several use cases ranging 

from COVID-19 detection from chest X-rays [11] to diabetic retinopathy [12]. Efficient 

methods to study DNA damage as well as integration of ML has the potential to yield 

reliable results and decrease turnaround times in low-resource academic research and 

hospital settings. Proof of concept genotoxic studies   [16–24], have tried to capitalize on 

several statistical models to detect nuclei; these studies have been of limited use due to 

lack of differentiation between cell types for detections [19]. Studies have attempted to 

use off-the-shelf ML algorithms and tools like Cell Profiler to perform segmentation of 

cell nuclei in microscopic cell images [20]. Caicedo et al. suggested that the algorithms 

they tested faced difficulties in detecting tiny objects like MN as they tended to be 

confused with debris and artefacts which comprise a good portion of objects [20]. 

Bahreyni Toossi et al. [24] attempted to detect increased frequency of micronuclei 

(abbreviated as MNi in the article) on Giemsa-stained inverter CBMN assay. This four-

staged process which exhibited a sensitivity of 82% involved the segmentation of nuclei, 

detection of the binucleated cell (BN) followed by estimation of the whole cell with an 

assumption of non-existent cytoplasm and the detection of MNi within each BN.  

Recently, a convolutional neural network was deployed to detect mononucleated cells, 

binucleated cells, polynucleated cells, mononucleated cells with MN [17].  

 

Interestingly, it was apparent that deep learning models tended to perform well for 

detecting and segmenting nuclei of varying sizes and shapes in microscopic images [19]. 

Several studies [17, 24]  focused on detecting cells followed by identification of MN. The 

results of manual scoring showed that such an approach may lead to underestimation of 

the number of MN [25]. Therefore, the authors of current study use object detection for 

the scoring of MN instead of a two staged method used in earlier studies. In this study, a 

deep learning-based object detection model was used to detect MN in microscopic 

images. Object detection deals with detection of instances of semantic objects in digital 

images and includes both localization and classification of objects in an image.  The 

novel aspects of this paper also include the release of a large, annotated dataset of 

CBMN assay images (available upon request to corresponding authors), which the 

authors believe will help in future studies in this domain and identification of new AI 
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powered methods for the detection and counting of MN from microscopic CBMN assay 

images. 

 

 

3. Materials and Methods 

 

                                                    3.1 Preparation of slides and the dataset 

  

                                                    3.1.1 Cell lines and culture conditions  

Osteosarcoma cell line U-2 OS (American Type Culture Collection, HTB-96™) and U-2 

OS T-Rex used in this study were grown as monolayers in T25 and T75 flasks at 37˚C 

with 5% CO2 in a humidified atmosphere. Cells were cultured in Dulbecco’s modified 

Eagle’s medium supplemented with 10% fetal bovine serum and 1% penicillin-

streptomycin (P/S) antibiotic (Tetracycline-free serum). Cells were passaged with trypsin 

and viability was assessed with 0.4% trypan blue solution and the cell density was 

determined using Denovix Cell DropTM cell counter. Images utilised in the study were 

obtained from micronuclei experiments of 2 doctoral researchers in the genome 

engineering laboratory. 
 

                                                    3.1.2 Reagent for DNA damage assay 

Aphidicolin, the DNA polymerase inhibitor was purchased from Sigma and dissolved in 

DMSO at a concentration of 3 mM.  

 

                                                    3.1.3 Micronucleus assay  

U-2 OS wild type and T-Rex variants were grown on Poly-D-Lysine coated coverslips 

(Corning, #354086) in 12-well plates and individually treated with three concentrations 

[0.1 µM, 0.2 µM, 0.4 µM] of aphidicolin for 24 hrs. Cell culture medium was 

supplemented with 2 µg/ml of cytochalasin B (Sigma-Aldrich, #C6762) 16 hrs prior to 

fixation to block cells at cytokinesis stage of cell division. Cells were fixed with PTEMF 

buffer [20 mM PIPES (pH 6.8), 10 mM EGTA, 0.2% triton X-100, 1mM MgCl2 and 4% 

formaldehyde] for 10 minutes at RT and mounted with prolong gold antifade mounting 

medium containing DAPI. Slides were dried, and edges of coverslips sealed and stored 

at 4   C until further analysis 

  

                                                    3.1.4 Scoring of MN 

Slides were analysed with an upright fluorescent microscope (Olympus BX41) equipped 

with an Elite Micropix camera (Micropix Ltd). Images were acquired at 100x using 

Cytocam software Version 2.0 (Micropix). Over 1600 DAPI-stained binucleated cells 

were analysed and distinct MN in the vicinity of these cells were scored manually. 

Binucleated cells were scored for MN in the presence and absence of aphidicolin, which 

is extensively used to assess replication stress in cultured cells. 

 

3.1.5 Manual Annotation of MN 

 
A dataset containing 1642 images were manually annotated for the study and will be 

released publicly upon request. (CBMNA2021). The images were captured at a 

magnification of 100 x with an overall magnification of 1000x. Bounding boxes were 

used as a method of data annotation as shown in figure 1. The online tool of Logy.ai was 

used and a total of three annotators annotated each image. The annotators were 

requested to enclose the whole micronuclei within the bounding box without including 

the surrounding objects. There was no restriction imposed on the size or the number of 

bounding boxes. A detection was considered as a ground truth only if two or more 

annotators agreed and the final bounding box corresponding to that nucleus was 
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selected as the intersection of the bounding boxes [26].  The annotators were doctoral 

researchers skilled in detecting micronuclei and had at least 2 years of experience. 

 

 
 

Figure: 1. Image of Logy.AI annotation portal used for annotating micronuclei. The 

annotators were required to draw boxes over the image. Each box was then assigned to a 

class using the right panel. Only one class was used in this study: micronucleus.   

                                                    3.2 Deep learning workflow 

The overall methodology can be broken down into multiple steps, (step 1) these steps 

include the preparation of the slides to be observed under a microscope and capturing 

the images of the slides at a certain magnification, (step 2) annotating the captured 

images, (step 3) training the AI models based on reference annotation  on a part of the 

annotated data (Train and Validation Set) followed by (step 4) inference results from the 

AI models on a completely new set of microscopic images (Test Set).  

 

Logy.AI Auto ML platform (LaiAMLP v1.0) was used as part of this study.  It is a cloud 

based end-to-end no-code platform for building ML models.  LaiAMLP is a scalable web 

server built on python-3.7 and NGINX which uses TensorFlow v1.15 to train deep 

learning models based on the input data and corresponding ground-truth. LaiAMLP can 

be accessed over any standard browser like Chrome, Safari, or Edge. The intuitive 

interface of LaiAMLP is specifically designed to eliminate the need of any technical 

expertise.  Post preparation of data (step 1), it is uploaded to LaiAMLP where it can then 

be staged for annotations (step 2). LaiAMLP provides a simple drag and drop interface 

to create boxes on the regions of interest, here MN as shown in figure 1c.   

 
Once the data is annotated it is split into training, validation and testing sets as per the 

requirements. LaiAMLP then initiates the ML training process (step 3) and continuously 

provides learning statistics and on-the-go annotations on the test set at a regular number 

of epochs and produces a readily deployable ML model as a TensorFlow-Serving-

Container which is a snapshot of the learned parameters that can then be immediately 

used for generating (step 4) inferences. These ML models can be easily integrated into 

the workflow of a data heavy laboratory processing 1000s of images per second. 
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Figure 2. Faster RCNN flow diagram. Faster R-CNN consists of two main components: a 

Region Proposal Network (RPN) and a Fast RCNN Classifier.    

 

 

3.2.1 FasterRCNN 

               

Faster RCNN runs on a unified and more economical framework and shares the results 

of feature extraction with both the region proposal and classification steps [27]. This 

decreases the computational need without a trade-off in performance. Additionally, it 

can be more accurate as it uses the same CNN for both region proposal and object 

detection, avoiding errors that can be introduced by different architectures. The RPN is 

responsible for generating a set of potential object regions in the image, called region 

proposals. These regions are then passed to the Fast RCNN Classifier, which is 

responsible for classifying each region as containing an object or not. The RPN outputs a 

set of region proposals. It works by sliding a small CNN window, called an anchor, over 

the entire feature map, and for each location and generates multiple region proposals, 

each with a different scale and aspect ratio. Each region proposal is then passed through 

the Fast RCNN Classifier, which is also implemented as a CNN. The detector takes the 

region proposal and a feature map extracted from the image, and it applies a set of 

convolutional and pooling layers to extract features from the region proposal. These 

features are then passed through a fully connected layer that generates a score for each 

class, indicating the likelihood that the region proposal contains an object of that class. 

The reason for selecting Faster RCNN for this study was due to its established 

superiority in detection of the smaller objects [28]. Micronuclei are often smaller in size 

hence this architecture was selected as per the results of Huang et al. [28]  

 

 

 

 

 

 

Data Flow 

 
Faster RCNN (figure 2.0) has two stages: region proposal network (RPN) and Fast RCNN 

Classifier [27]. The image is first resized while maintaining the aspect ratio with a 

minimum dimension of 600 and a maximum dimension of 1024 with all the 3 colour 

channels. The resized image (A) is then fed into a Resnet-101 [27, 29] feature extractor (B) 

to create a feature map extracted from an intermediate layer of Resnet-101 of size 14x14 

(C). A number of feature extractors are available publicly. Resnet 101 was used as this 
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architecture and feature extractor combination is known to work well for small-sized 

detection. The extracted features boxes are used to predict class-independent box 

proposals (D). The number of box proposals was set to 100, in order to achieve a balance 

between speed and accuracy [27, 28] . The box proposals are used to crop features from 

the feature map (E).  The cropped feature maps are then fed to the softmax classifier 

which predicts the class of the box and provides refinements related to position and size 

of the green boxes in F. Each box proposal is rated between 0-1 for each class which is 

called the objectness score. The class with the highest value is assigned to that box 

proposal. Furthermore, a minimum threshold is also used as an eligibility criterion to 

classify a box proposal, the selection of these thresholds is based on the value that gives 

the best performance. The green boxes in F depict the boxes which got classified into 

available classes while the other box proposals were discarded. These classified boxes 

are then mapped on the image to show the detections (G). As the features are not 

computed twice for these two stages, Faster RCNN [27]   runs faster than its 

counterparts [28], hence the name.   

 

 
3.2.2 Training Configuration 

 

 

Data augmentation is used to improve the robustness of the model. The images of the 

dataset are rotated, flipped and cropped before feeding into the training phases. This 

allows the model to understand the morphology of the object being detected irrespective 

of its angle or position. For this study, random horizontal flips were used for data 

augmentation. It was deemed enough due to the general random distribution of 

micronuclei in an image. A gradient descent optimizer with momentum was used for 

the training process for support in noisy data distribution and for overcoming shallow 

local minima. Learning decay was also used due to its efficiency in process of finding 

local minima and preventing overshooting that often takes place in the training process. 

A variable learning rate also assisted us to speed up learning process in the initial phases 

where a higher learning rate is used, and a lower learning rate is used towards the end 

to emulate fine adjustments.  

 

 

3.3 Training the AI model 

 

A dataset containing 1642 manually annotated images was used for this study 

(CBMNA2021). The images were captured at a magnification of 100 x with an overall 

magnification of 1000x. The training was carried out by LaiAMLP. The model used for 

this study is a modified version of Faster-RCNN coupled with coco-resnet-101 [27] for 

feature extraction. The images annotated contained only one label namely micronucleus. 

The training was performed on a TensorFlow (a python library) implementation of the 

Faster RCNN architecture. The agenda of the training process is to minimise a loss 

function which depicts the error in prediction in comparison to the ground truth. On 

each iteration of training, the weights/parameters in the network are adjusted to 

minimize loss of function. The adjustment in these weights lead to a combination of 

equations which when given an image, output a set of rectangular coordinates with their 

objectness scores respective classes, here the micronucleus. These coordinates are then 

mapped on the image to show the detections during inference.  

  

                                                   3.3.1 Method of evaluating the proposed flow: 

 

The authors aim to showcase the inherent ability of the proposed model to learn and 

identify morphological features of MN. Instead of just mentioning results for one such 
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instance with a predefined dataset distribution into train, validate and test sets, a n-fold 

validation approach was chosen. A n-fold validation study helps us gauge the 

performance of the framework instead of showing results for one instance. Thus, 

generated results should be considered to hold a more generic value showcasing the 

learning ability of this framework in the task of MN detection.  For a 3-fold validation 

(n=3), the annotated dataset is divided into 3 parts randomly of equal size. Two parts are 

used for training purposes and the results are quoted on tests on the third part. The 

training part is divided into training set (90%) and the validation set (10%). Each part is 

tested once with the other two being used for training. The results shown here are an 

average of 3 cross-validation results. 

 

3.3.2 Evaluation metrics 

 

Intersection over union (IoU) is used to measure the overlap between the predicted 

object boundary and the ground truth object boundary to decide if the predicted object 

boundary is true positive or false positive or false negative. In this experiment the IoU 

threshold was set to 0.5 empirically. The annotations done by the annotators where their 

decisions coincided were identified for IoU threshold selection. We observed that the 

IoU of 0.5 was sufficient to ensure that boxes drawn by different annotators denoted the 

same object. The same margin was hence also given to the AI models in detecting 

micronuclei.  

 

 

A)                                                              B) 

 
 
Figure 3.  A and B are 2 different images annotated by 2 different annotators. The red 

box are the annotations done by annotator-1 and the blue boxes are by annotator -2. The 

IoU for these boxes were calculated over all the annotations. The average of those values 

was used to determine the IoU threshold of 0.5 used for the AI model.  

Precision, recall and mean average precision (mAP) were used as metrics to gauge the 

results of this study. mAP is a popular metric to gauge the performance of an object 

detection model. It is calculated by finding the area under the precision-recall curve and 

averaging over all the classes. 

                                                    

                                                    4. Results 

Micronuclei, the well-studied biomarker of genome instability can be induced due to 

dysfunctional genes and genotoxic agents. For imaging of MN, U-2OS cells were 

cultured with low concentrations of aphidicolin known to induce replication stress, the 

key driving factor of chromosome instability in dividing cells. The presence of 

binucleated cells represent cytokinesis block and aphidicolin treated cells displayed 

increased number of MN as compared to untreated cells (Fig 4). Little to no cellular 

debris were identified in the areas analysed under microscope. Three or more MN were 

excluded from scoring to avoid artefacts du1642e to catastrophic cellular events such as 
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necrosis. To further ensure the specificity of our results, only DAPI-stained binucleated 

with distinct micronuclei in the vicinity were scored (Fig 5). 

 

 

Figure 4. Formation of micronuclei after aphidicolin-induced replication stress.  

Representative images in grey scale indicate nuclei of human osteosarcoma cells 

cultured in the presence or absence of 0.1, 0.2 and 0.4 µM DNA polymerase inhibitor 

aphidicolin. Binucleated cells indicate cytokinesis block by the addition of 

cytochalasin B, red arrows indicate micronuclei. 

 

 

 
 

Figure 5. Scoring of micronuclei in a cytokinesis-block micronucleus assay. Cells were 

cultured on coverslips and treated with 0.1- 0.4 µM aphidicolin for a period of 48 hrs 

before staining with DNA binding blue, fluorescent dye DAPI. Representative grey scale 

images indicate cells blocked at anaphase stage of cell cycle with 2 daughter nuclei of 

similar size in proximity to each other. Red boxes indicate, micronuclei identified by 

manual/ AI scoring. 

 

Overall, the proposed workflow for deep learning framework proposed here exhibited 

acceptable performance in the detection of MN.  This being an object detection task, 

mAP was considered as the primary metric. The AI model was able to reach a mAP of 

0.93 at a confidence threshold (objectness score) of 0.9, a higher threshold can be 

correlated with a higher confidence. The results are as follows: sensitivity: 86%, 

precision: 78%; mAP: 0.93(93%). From figure 6, it is evident that the mAP, sensitivity, 

and specificity remained almost the same or increased as the threshold was increased, 

which signifies the reliability of the AI decisions. 
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Figure 6.  Graph depicting the model performance using metrics like mAP, precision, 

and sensitivity (y-axis) against the confidence threshold (x-axis: objectness score) of the 

detection (0.1-1, on a scale of 0 being least confident to 1 being most confident). 

5. Discussion                         

In vitro and in vivo cytogenetic tests are used in epidemiological studies and in the 

investigation of biomarkers of human diseases. The widely used micronucleus test 

method requires manual scoring of MN. Previous studies [19] have discussed the 

difficulty faced by researchers in the detection of MN in fluorescent CBMN assay 

images. These results were broadly driven by the difficulty of differentiating MN from 

debris, other artefacts, and human error.  
 

The proposed method in this study was able to detect MN with a high efficacy. Sample 

preparation methodologies used in the study ensured the minimum occurrence of 

debris/artefacts. Further studies will be required to assess the performance of the model 

under scenarios of excess debris in samples. For object detection use cases, mAP is the 

integrated score that tells the complete story of an object detection model. The authors 

were not able to find another study that talked in terms of this metrics. Thus, the 

sensitivity and precision metrics have been included in the results to get a sense of the 

performance of the proposed framework.  Bahreyni Toossi et al reported a sensitivity of 

82% for MN detection in the detected BN [24]. The current study yielded similar 

sensitivity scores in a more challenging environment of detecting individual MN on the 

images of a slide instead of detecting the presence of MN in a detected cell image 

compared to previous reports [24].  

 

The AI model was trained with relatively small data however the results presented here 

show potential to decrease the amount of manual work currently undertaken by 

researchers working in laboratories involved in delineating the link between genomic 

instability and molecular basis of diseases. Such methodologies when integrated will 

play an essential role in standardizing and speeding up the process of detection and 

counting of MN. Improvements have been observed in previous AI studies with 

enhanced data quality and size. The proposed AI model was also tested on a similar 

public dataset BBBC0391, and exhibited potential to detect the MN in these images 

however the accuracy cannot be commented in this study. 

 

As the pace of sequencing genomes increases, the quantities of raw data produced by 

next generation sequencing methods has increased massively [18]. Over the past 4 

decades many bioinformatics tools have been developed that enable the analysis and 

investigation of sequenced data. ML techniques could be utilised to further enhance 

existing bioinformatics tools and to develop entirely new classes of bioinformatics tools 

that leverage auto-ml platforms such as Logy.AI for investigation of genome instability. 

In theory, any repetitive activity which involves a human having to analyse images and 

                                                           
1 https://bbbc.broadinstitute.org/BBBC039 
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count specific shapes - or more generally patterns (which could also include textual 

genetic sequences) - could benefit from being automated using an ML platform like 

Logy.AI. In fact, this may indeed become a necessity as data volumes continue to 

increase and human resources remain in short supply. By using no code ML training, the 

writing of custom application specific software is eliminated. The advantages of this 

include reduced costs, reduced IT infrastructure, and reduced IT training costs as non-

programmer bio-scientists can train an AI’s without learning to code. AI model training 

by LaiAMLP was performed on an Intel®Xeon @ 2.70GHz machine (aws p2.xlarge [31]) 

with an NVIDIA®Tesla K80 [32] with 12 GB of memory running Ubuntu 18.04 [33] 

optimised for deep-learning. It took 4 hours to train each model. The total computational 

cost of training the model was ~10USD*2. The resultant model can be run on a personal 

computer and the running cost post the creation of the AI model is thus very minimal. 

This demonstrates that platforms like LaiAMLP are very cost effective in building such 

AI models on demand for labs of all sizes and domains.  

 

There are several issues in manual counting and annotation of micronuclei in fluorescent 

CBMN assay images. There is also the additional problem of researcher bias in 

identification of artefacts leading different results. However, the bias present in a 

researcher can also be passed on to the ML (known as machine bias) [19]. Thus, it is 

encouraged to use more than one human during training the AI, providing a ‘consensus’ 

of what is positive and negative. In addition, after the AI has been trained, it is still 

important to randomly sample ‘counted’ images to determine accurate counting, and  

‘tweak’ the AI if required, essentially providing more learning opportunity and thus 

more future accuracy. Regular testing of the workflow is essential to ensure the 

performance of the system to acceptable standards and thresholds.  

 

 

 

 

 

6. Limitations and Future Scope 

 
This study has attempted to explore a new way of outsourcing some skills to carefully 

crafted AI models to ease the work of researchers and increase the speed of research. 

There are a few perceived limitations to this study which opens doors for future 

research. The dataset used is still small, repeating this study with larger-sized data will 

help establish the efficacy of such a system and to shed light on the overall time saved 

and gauge the performance of a human-AI duo system in detecting micronuclei.  Blur 

objects around the parent nuclei constituted a major portion of cases where the model 

faced difficulties in differentiating between micronuclei and a possible artefact. A 

possible solution could be to use bigger boxes to include the colouring of the 

neighbouring nuclei during annotations enabling the model to use colour intensity of 

the surrounding nuclei to rule out such artefacts. Colour intensity of MN are similar to 

that of the neighbouring nuclei and are not too far from the parent nuclei while 

artefacts/debris on the other hand exhibit a relatively different colour intensity.  The 

authors believe that this will be a very important future scope to explore: to include the 

surrounding/contextual information in the conventional detection process.  

7. Conclusion 

                                                           
2 The price mentioned here only comprises the computational cost of AWS as on 11th 

July 2021.  
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In the current work, we demonstrate how advancements in the field of computer 

science, especially in AI [34, 35], can be leveraged in genome instability studies to build 

viable tools. The presented work is fully working in terms of functional proof of concept 

and is intended to provide motivation to encourage further work in building such AI 

powered tools. The AI models proposed here were able to achieve convincing results for 

the detection of MN in CBMN assay images with a mean average precision of > 90%. 

There is a potential use of this as a suggestive tool to speed up the counting of MN 

which is predominantly carried out manually today.  

 

ML techniques could be utilised to further enhance existing bioinformatics tools and to 

develop entirely new classes of bioinformatics tools that leverage AI as well as research 

in biological sciences. In theory, any repetitive activity which involves a human having 

to analyse images and count specific shapes- or more generally patterns not limited to 

images could benefit from being automated using AI. The sheer speed of building and 

deploying such cost-effective systems will play a pivotal role in revolutionising modern 

research. This will aid the professionals to work on more pressing matters and let the 

machine do the mundane tasks both more accurately and reliably.  
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