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Abstract: Mechatronic and soft robotics are taking inspiration from the animal kingdom to create
new high-performance robots. Here, we focused on marine biomimetic research and used innovative
bibliographic statistics tools, to highlight established and emerging knowledge domains. A total
of 6980 scientific publications retrieved from the Scopus database (1950–2020), evidencing a sharp
research increase in 2003–2004. Clustering analysis of countries collaborations showed two major
Asian-North America and European clusters. Three significant areas appeared: (i) energy provision,
whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational
soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this
scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision,
which presently hinders operation autonomy. In the research environment, identifying natural
processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks
while, at the same time, the natural designs must increasingly inform to optimize energy consumption.

Keywords: marine biomimetics; bibliographic statistics; energy provision; biomaterials; locomotor
designs; optimal energy consumption

1. Introduction

We are experiencing a “robotics revolution” [1] under the paradigm of mechatron-
ics, which combines mechanical, computer, telecommunications, and control engineering,
all multidisciplinarily integrated for the creation of autonomously operating robots [2].
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An entirely new class of flying, walking, and swimming robots is currently under develop-
ment [3]. Unprecedented robotic capabilities are being implemented, likely contributing to
the next industrial era in worldwide economies, including the marine sector [4].

The term biomimicking refers to the use of Nature as inspiration for the design
and development of technological systems, as a promising methodology to generate a
new breed of autonomous machines [5,6]. In the last decades, marine mechatronic is
taking inspiration from several animal phyla to create mobile robots [7–9]. To give a few
examples, salamanders [10], insects [11], birds [12], swimming robo-tuna, -salmon, -manta,
and -jellyfish (respectively by [13–16] and their walking counterparts as the 6-legged
Crabster CR200 and Silver 2, or robo-lobsters [17,18], have been created. Additionally,
SCUBA droids [19], remotely controlled through immersive 3D visual interfaces [20],
are biomimicking human functionalities to be used for remote in situ operations [21].

Marine robotic development is subjected to energy provision and traditional tools
for that task are batteries, chemical fuel cells and (super)capacitors [22]. New biologically-
inspired reactors such as microbial fuel cells (MFC) and other bioelectrochemical systems
(BES) are being proposed as reservoirs to powering robotic platforms [23,24]. MFC and
BES are biologically catalyzed electrochemical systems, in which microorganisms perform
the oxidation and reduction of raw chemical substrates (as nutrients) at the electrodes,
to generate energy for motion, sensing and computation [25,26].

In this scenario, environmental sciences benefit from such a development in robotics,
including the biomimicking sector, to provide new data picturing the complex changes in
natural and human-impacted ecosystems [27]. Robotics provide a generous contribution to
a breakthrough in “Earth System Science”, embracing the idea that geosphere, hydrosphere,
atmosphere, and anthroposphere are interconnected into global change frameworks [28,29].
Therefore, new robotic solutions are increasingly capable of operating without human
supervision across ecosystems and under virtually any habitat condition [30] in a coop-
erative and intercommunicating mode [31–34]. Robots are being used for a wide range
of agricultural, industrial, and broad environmental activities, e.g., [35–37], including
forefront deep-sea and extra-terrestrial operational scenarios, e.g., [31,38–40]). For exam-
ple, in the oceanic domains, robots’ data-gathering provides long-lasting time series on
species presence and their abundances and environmental data in geographically and
three-dimensionally extended water column-seabed scenarios [21,31,40]. This highly inte-
grated spatiotemporal monitoring is finally opening new possibilities to understand how
environmental processes shape life responses in cause-effects relationships, e.g., [41,42].

Here, we used innovative bibliographic statistics tools for information content met-
rics and mapping as the traditional survey approaches, based on some studies selected
from the literature, often do not fully represent the state of the art of a specific scientific
domain. They produce a bias, caused by the arbitrary choice of the discussed studies,
that do not offer a comprehensive background for theory development [43,44]. As a conse-
quence, many surveys are based on the systematic study of the literature, across different
scientific domains, like building engineering [45], business and marketing [46], waste
management [47] and medicine [48]. The statistical approach proposed in this work is
based on [49–51] and aimed to highlight the most promising bio-inspired robotics marine
research areas, identifying temporal trends, some established and emerging research tar-
gets, and the degree of international cooperation. We focused on marine biomimetics for
three main reasons: (i) ocean exploration is challenging and the exploration and monitoring
require the development of innovative platforms technologies, also fulfilling the needs for
space research, e.g., [52,53]; (ii) underwater organisms show unique adaptations to extreme
conditions, which could be of inspiration for entirely novel robotic developments; and fi-
nally, (iii) marine organisms have dynamic reactions when they perceive the presence of
current platforms [54–59] as remotely operated vehicles (ROVs), autonomous underwater
vehicles (AUVs) and internet operated vehicles (IoVs) as crawlers, so that the biomimetic
development will improve the exploration capability, to picture biodiversity to an extent
never attained before.
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2. Materials and Methods
2.1. Database Search

The Scopus database was consulted on 27 August 2020 and used to retrieve biblio-
graphic records related to biomimicking for 1950–2020. The search was restricted to scientific
publications written in English, avoiding biomedicine and agricultural oriented results.

To identify relevant publications, the following keywords were used in the combined
fields of title, abstract and keywords (per publication): TITLE-ABS-KEY (bioinspired OR
bioinspiration OR “biologically-inspired” OR biophysics OR bionics OR biomimicking
OR biomimics OR biomimetics OR biomimic OR biomimetic OR bio-mimicking OR bio-
inspired OR “microbial fuel cell” OR “bio fuel cell” OR bioenergy OR bio-energy) AND
(marine OR sea OR underwater OR water OR ocean OR exocean OR exo-ocean OR astrobi-
ology OR moon OR moons OR “planets” OR deep-sea OR deepsea OR acid-mine-drainage)
AND (design OR cybernetics OR robot OR mechatronic OR vehicle OR engineering OR
mechanical OR technologies OR materials) AND NOT (agricultural OR agriculture OR
tumour OR orthopaedic OR fouling OR pharmacology OR medicine OR tumor OR an-
tibiotics OR lubricants OR lubricant OR dentist OR dentistry OR dental OR dentin OR
surgical OR bone OR surgery OR disease OR clinic OR clinical OR “biomedical device” OR
biomedicine OR solution OR endoprosthesis OR trauma OR orthopaedic OR surgery OR
“in vitro” OR drug OR anticoagulant OR inflammatory OR “oil spill” OR saliva OR salivary
OR therapy OR healing OR wound OR europium OR urban OR megacity OR megacities
OR child OR children OR dietary OR nurse OR “medical imaging” OR tomography OR
“magnetic resonance” OR x-ray OR nutrition OR pregnancy OR “body water” OR nursing
OR infancy OR “comparative study”) AND PUBYEAR >1950.

The publications resulting from the query were validated in order to avoid false
positives, especially in the cases were the singular and plural forms of a term might bear a
different meaning.

2.2. Bibliometric Mapping and Clustering

This study is based on the latest advancements in science mapping, to provide the
most comprehensive and systematic review of bio-inspired robotics marine research. While
a traditional narrative review may base its findings on 50–200 studies subjectively chosen by
a researcher, this study uses the entire Elsevier Scopus database with a statistically formal
approach that has slimmed down a list of 6980 articles on since 1950. The results are robust
and reproducible, which infers the reliability of the offered methodology. This is a modern
and quantitative way of reviewing a subject area [60]. A general quantitative description
of the bibliographic records was conducted, based on all the publications returned by
the query. A word cloud of country names with different font sizes as a proxy of the
number of publications (based on co-authors affiliations), was constructed. The number of
publications for a single country was computed considering all the co-authorships of each
published item.

Bibliometric maps were created on retrieved publications, using the VOSviewer
software version 1.6.5.0. The software was specifically developed for creating, visualizing
and exploring science’s bibliometric maps [61]. A term-map, also called co-word map, is a
two-dimensional representation of a research field. The larger the number of publications
in which two terms occurring in titles, abstracts and keywords, co-occur, the stronger the
terms are related [49–51,62]. In a term-map, strongly related terms are located close to each
other, and the weaker the relationship is between terms, the bigger the distance is between
them [63]. For this purpose, VOSviewer uses a clustering technique that can be seen as
a kind of weighted variant-of-modularity-based clustering [64,65]. After the clustering,
terms that belong to the same domain of knowledge have the same color. Only terms
occurring at least eight times were extracted from the retrieved publications and a subset
of more relevant labels was displayed in the maps to avoid text overlapping.

Before starting with the analysis in VOSviewer, a thesaurus was created to ensure
consistency for different term spelling and synonyms. As an example, “biomimetic”,
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“biomimetic approach”, “biomimicry” or “biomimetic system” were listed as synonymous
with “biomimetic”. Another example was “energy”, “energy production”, “energy source”
or “power” substituted with “energy” or “microbial fuel cells”, “microbial fuel cells tech-
nology”, “MFC”, “MFCs”, “MFC system”, and “MFC technology” all named as “microbial
fuel cells”. A final example was represented by “fish robot”, “robot fish” or “robotic fish”
collectively named as “robotic fish”. For the scope of this paper, we prepared three types of
maps: (i) a term-clustering map; (ii) a term-year map, and (iii) a term-citation map.

2.3. The Term-Year Map

For the term-year map, the color of a term indicates the average publication year of all
the publications in which the term occurs. As for the previous term-citation map, we used
colors that range from blue (mean year term presence 2011 or earlier), through yellow
(2014), to red (2016 or later). Therefore, blue terms mainly occur in older publications,
while red terms are in more recent publications.

2.4. The Term-Citation Map

In the term-citation map, the color of a term is determined by the average citation im-
pact of the publications where the term occurs. The number of citations of each publication
is divided by the average number of citations of all publications appearing in the same
year, to avoid biases related to the age of a publication (older publications are expected
to be more cited). This produces a publication’s normalized citation score range from 0 to
2.5. In the map, the colors are assigned according to the score, ranging from blue (average
score of 0) to green (average score of 1.25) to red (average score of 2.5). Therefore, a blue
(cold) or red (hot) term indicates low and high average citation impacts, respectively [66].

2.5. Statistical Analyses

The mean values of the average publication year or term-citation map for each
group obtained by the cluster analysis was tested on the null hypothesis of the same
median (Kruskal-Wallis Test) being the distributions not normal (Shapiro-Wilk Test) and
homoscedastic (Levene Test); Mann-Whitney pairwise comparisons and Bonferroni cor-
rected Post Hoc Test were applied. Basic statistics were performed using the software
PAST [67].

3. Results
3.1. Journals, Subject Categories and Countries

A total of 6980 publications were retrieved from the Scopus database encompassing
70 years (i.e., 1950–2020). The selected pool of scientific references includes 63.1% of
them are research papers, while the remaining 36.9% are distributed in this way: 23.7% of
conference papers, 8.9% reviews, 3.1% book chapters, and 1.3% is of miscellaneous origin
(e.g., letters to editors, short communications, notes). The query results showed that a total
of 146 journals published at least eight or more papers in the field of biomimicking.

The top ten journals, in terms of the number of papers, are reported in Table 1, and the
top three are the following: Bioresource Technology (1991; n = 167; 2.39%) Bioinspiration and
Biomimetics (2006; n = 147; 2.11%) and Proceedings of SPIE the International Society for Optical
Engineering (1963; n = 107; 1.53%). Early biomimicry papers were published in general
engineering/electronics journals, and then as the field developed, more papers were
published in dedicated biomimetics journals as they came into existence. The complete list
of publications numbers per subject category is reported in Table A1, Appendix A.
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Table 1. The top ten journals, in terms of year of official foundation, number of papers (n) published
from 1950 to 2020 on biomimicking along with their relative frequency (%).

Rank Journal Year n %

1 Bioresource Technology 1991 167 2.39
2 Bioinspiration and Biomimetics 2006 147 2.11

3 Proceedings of SPIE the International
Society for Optical Engineering 1963 107 1.53

4 ACS Applied Materials and Interfaces 2009 105 1.50
5 Journal of Bionic Engineering 2004 80 1.15
6 Langmuir 1985 70 1.00
7 Environmental Science and Technology 1967 48 0.69
8 Advanced Materials 1989 46 0.66
9 Biomass and Bioenergy 1991 46 0.66

10 Water Science and Technology 1969 45 0.64

In Figure 1, the number of biomimicking publications produced within the time
interval 1950 to 2020 is shown to highlight the temporal trends. Before 2004, the total
number of publications was low (350; 5.0%), then it drastically and continuously increased
with a sharper slope until 2019, with data for 2020 being incomplete (as per the date of
the query).
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Figure 1. Temporal trend in biomimicking publications. Publications in the time interval 1950 to 2020, with n being
the number of papers issued per year. One should note that data for publications of 2020 are not represented since
underestimated (i.e., the search was conducted on August 2020, and not all published items for that year were included in
the Scopus database).

As represented by the grouping of the papers in the top subject categories, the publi-
cation is reported in Table 2. Only the first ten categories are reported, as they account for
90.4% of the total available papers.
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Table 2. Number (n) of publications per each subject category as a different discipline.

Discipline n

Engineering 2985
Materials Science 1707

Chemistry 1402
Chemical Engineering 1290
Environmental Science 1259

Computer Science 1193
Biochemistry, Genetics and Molecular Biology 1152

Physics and Astronomy 1109
Energy 896

Mathematics 525
Others 1438

Authors that published at least one paper focused on biomimicking, were affiliated
to a total of 100 countries (see Table A2 for the complete country list). Figure 2 shows
the word cloud chart representing the countries (in blue text), where the larger font size
represents a higher number of publications: China (24.1%, n = 2183), United States (18.9%,
n = 1714), United Kingdom (5.0%, n = 451), India (4.2%, n = 384), Germany (4.0%, n = 364),
Japan (3.7%, n = 339), South Korea (3.2%, n = 294), Italy (2.7%, n = 241), and Australia (2.6%,
n = 234).
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Figure 3 displays the countries’ color-coded collaborative clustering, with two dif-
ferent major groups: Asia-North America (USA and Canada; green) versus Europe (red).
The partnership between USA and China (and Hong Kong) is evidenced by the association
of both with Canada and Commonwealth countries, as Australia (but not New Zealand).
The United Kingdom and Germany are the core for the European cluster in association
with Spain, France, and Italy, plus Asian countries of Singapore and India. However,
the patchy distribution of the collaborations (same color but no connections) of satellite
countries around both red and green clusters indicates occasional, temporally sparse and
non-sustained collaborations (i.e., below the 50 linkages).

Sensors 2021, 21, 3778 7 of 22 
 

 

Figure 3 displays the countries’ color-coded collaborative clustering, with two differ-
ent major groups: Asia-North America (USA and Canada; green) versus Europe (red). The 
partnership between USA and China (and Hong Kong) is evidenced by the association of 
both with Canada and Commonwealth countries, as Australia (but not New Zealand). The 
United Kingdom and Germany are the core for the European cluster in association with 
Spain, France, and Italy, plus Asian countries of Singapore and India. However, the 
patchy distribution of the collaborations (same color but no connections) of satellite coun-
tries around both red and green clusters indicates occasional, temporally sparse and non-
sustained collaborations (i.e., below the 50 linkages). 

 
Figure 3. Clustering of the countries’ collaborations and their reciprocal links. Clustering is based 
on the authors’ addresses. Different colors represent different countries’ clusters (only the first 50 
linkages in terms of relevance were illustrated). 

3.2. The Term-Clustering Map Identifying Major Research Areas 
The outputs of term-clustering map analysis are presented in Figure 4. Three major 

color-coded groups are identified based on the differential level of interconnection be-
tween each cluster and among the clusters. 

 
Figure 4. Term-map analysis based on biomimicking publications. Different colors represent the 
terms belonging to different clusters. Terms are represented by a circle (node), whose diameter 
and the label size represent the number of publications, where that term appears. Top 100 linkages 
were represented. 

Figure 3. Clustering of the countries’ collaborations and their reciprocal links. Clustering is based on the authors’ addresses.
Different colors represent different countries’ clusters (only the first 50 linkages in terms of relevance were illustrated).

3.2. The Term-Clustering Map Identifying Major Research Areas

The outputs of term-clustering map analysis are presented in Figure 4. Three major
color-coded groups are identified based on the differential level of interconnection between
each cluster and among the clusters.
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In Figure A1, the clusters are enlarged, to show the connections among their elements
better. The terms grouped in the three clusters can be summarized and hence named as
energy provision (red), biomaterials (green), and design and control (blue).

According to the most relevant terms, the red cluster identifies the biologically-based
energy solutions (see also Figure A1A). The four top-ranked terms concerning the averaged
normalized citation were: “energy” (9635), “microbial fuel cell” (7398), “wastewater” (5663),
and “electricity” (4103). The terms refer to processes based on “bio-energy” production
(“enzyme”, “biocathode”, “biocatalyst”, “biofuel”), centred on bacteria (“bacterium”, “cul-
ture” and “microbe”) and the utilization of microbial communities’ metabolism, to sustain
that energy provision (e.g., “microbial fuel cell”, “bioenergy” and “energy” in general),
with special attention to aerobic and anaerobic solutions (i.e., “chemical oxygen demand”,
“oxygen reduction” and “anaerobic condition”). That cluster is also related to energy provi-
sion based on electricity production (i.e., “biocathode”, “bioelectricity”, “electrical energy”,
“electrode”, “battery”, “coulombic efficiency”, and “conversion”), including new renewable
ways for its production (i.e., “gas”, “hydrogen”, “photosynthesis”). Industrial procedures
(e.g., “wastewater” and “water quality”, as well as “waste”, “contamination”, “residue”,
“metal” and “emission”) are also included. Operational factors affecting microbial energy
provision by “microbial fuel cells” in different marine deployment areas are also evidenced
(i.e., “marine sediment”, “sediment microbial fuel cells” and “benthic microbial fuel cells”),
as is “ecosystem” in general.

The biomaterials (green) cluster (see also Figure A1B) has a relevant aspect concerning
the development of nature-inspired composites for both energy provision (green items
close to the red cluster; see above) and new robotic functionalities (green items close to the
blue cluster; see below). The analysis related to the four top-ranked terms for this cluster
concerning the averaged normalized citation shows the following: (i) “device” (4007);
(ii) “membrane” (3953); (iii) “temperature” (2528); and (iv) “fabrication” (2280). In the left
part of this cluster, there are terms mainly related to energy provision as, e.g., for “charge”,
“conductivity”, “salt”, “ion”, “cation”, “sulphate”, “pH value”, “acid” and “tempera-
ture”. On the central and right part, terms are related to new biomimicking composites
(e.g., “polymer”, “fibre”, “composite material”, “biomimetic membrane”, “biomimetic
superhydrophobic surfaces”) at different size scales (e.g., “nanostructure”, “film”), cable
to operate under different conditions (e.g., “resistance”, “aqueous medium”, “pressure”,
“permeability”, “superhydrophobicity”). Interestingly, animal “biomimetic” approaches
appear within this cluster side at the level of specific solutions as “mussel”, “gecko”, “bee-
tle”, for membrane functionalities related to, e.g., adhesion (i.e., “adhesive”). In this cluster
right half there are also items as “tissue” (i.e., “skin” and “shell”), or “polymer” whose
engineering is bio-inspired (e.g., “silk”, “spider silk”, “cellulose”), along with “fabrication”
methods (e.g., “lipid” and “lipid bilayer” or “biological material” as “peptide” and “pro-
tein”) for “permeability” (with “pore” and “porosity”), “absorption” and “suspension”
functionalities in “liquid water” “fog”, “aqueous medium” or “ice”.

The design and control (blue) cluster (see also Figure A1C) has terms dealing with
robotic “design” and “model” within all types of platforms (including the biomimicking
ones), dedicated to the “environmental monitoring” as well as the “exploration” of the
“marine environment”, “river”, “lake” and all “aquatic environments” in general, including
also space research (“Mars”). The analysis related to the four top-ranked terms concerning
the averaged normalized citation indicates the following: “design” (10857), “model” (7452),
“robot” (4625) and “fish” (3698). This cluster encompasses the system control, actuators
and computational features (i.e., “neural network”, “genetic algorithm”, and “algorithm”).
This cluster shows a high level of elements interconnection at the level of prototype and
platforms design for autonomous robotic animal-inspired solutions (“animal” and “robotic
fish”, exemplified by “shark”, “jellyfish”, and “squid”). The method developments for
underwater motility (“thrust” and “propulsion”) likely discriminate underwater vehicles
from robots adopting more biomimicking solutions for locomotion. Advanced motility
systems (e.g., “walking” and “swimming”) by biomimicked appendages (e.g., “wing”,
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“leg” and “fin”) appear related to hydrodynamic simulations (e.g., “particle image ve-
locimetry”, “analytical model” and “mathematical model”), with a higher relevance in
term of interconnection than “autonomous underwater vehicle”.

3.3. Publication Trends: Years and Citation Rate

The term-year map based on “biomimicking” papers (Figure 5) presents a temporal
trend where energy provision (red cluster of Figure 4) at the level of fuel cells and design
and control (blue cluster of Figure 4) at the level of the design itself shows the most recent
field of research. Also, the different levels of elements interconnection for each of the
three recognized clusters (see Figure 4) are a proxy of the robotic field’s maturation level.
Control and propulsion methods appear as the oldest (within the blue cluster), biomimetic
designs have an intermediate age, and membranes engineering are the newest (along with
bioenergy sustained solutions). The different maturation level of the research scenario
within each of the three clusters is also visible for citations ranges (Figure 6). The four
top-ranked terms for the red cluster (energy provision) in terms of averaged citation
rate are: “ionic liquid” (3.72), “biochar” (2.92), “water splitting” (2.91), and “battery”
(2.41). These four items for the green cluster (biomaterials) are: “salt” (4.01), “biomimetic
superhydrophobic surface” (3.00), “gecko” (83.56), and “metal ion” (2.84). The four top-
ranked terms for the blue cluster (design and control) are: “filter” (1.77), “gravity” (1.07),
“environmental monitoring” (1.07), and “insect” (1.00).
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Considering the mean values of the average publication year for the three groups
obtained by the cluster analysis (see Figure 4), the red cluster (energy provision) showed
a more recent mean value (2014.4), followed by the green one (biomaterials; 2014.3) and
the blue one (design and control; 2013.3). Considering the mean values of the average
normalized citation rate for the three groups obtained by the cluster analysis (see Figure 4),
the red cluster (energy provision) showed a higher normalized citation rate (1.46), followed
by the green one (biomaterials; 1.30) and the blue one (design and control; 0.56). For both
the publication years and citation trend, the goodness of the data was tested on the null
hypothesis of the same median, being the distributions not normal (Shapiro-Wilk test;
p < 0.05) and homoscedastic (Levene Test; p > 0.05); Kruskal-Wallis rejected the null hy-
pothesis of equality of median. Mann-Whitney pairwise comparisons Bonferroni corrected
post-hoc test showed a significant difference (p < 0.001) between all the clusters.

4. Discussion

Our results pointed out that the main emerging fields of marine biomimicking robotic
research are the provision of energy via microbial fuel cells, biomaterials for the devel-
opment of not yet fully operational soft-robotic solutions, and a more classic bioinspired
design and control, associated with a multiplication of locomotion solutions. In this sce-
nario, one central aspect is the lack of long-lasting energy provision, which to date con-
ditions robots’ operation autonomy. Energy generation could represent a solution via
internal systems in a homeostatic interaction with the surrounding environment. For this
reason, marine bio-inspiration is becoming increasingly oriented toward the identification
of metabolic processes by which living organisms obtain energy from their environment
and the natural designs allowing the optimization of energy consumption.

4.1. The Temporal Trends in Biomimicking Robotics Research

Biomimicking robotic research has poor development prior to 2000 (i.e., only 123
out of 6980 are publications related to this subject prior that year, constituting 1.76% of
the total retrieved with the query). From 2003–2004 onwards, a sharp increase occurred,
which is still lasting today without signs of saturation (see Figure 1). Since 2000, there
has been an increasing interest in developing technological products for the maritime and
offshore industries and science, with marine robotics enabling the execution of increasingly
complex industrial and military missions [37]. After 2004, U.S. military research [68] and the
industrial innovation in Europe and Asia [69] broadly stimulated general robotic research.
At the same time, in 2004, the U.S. Commission on Ocean Policy evaluated that a large part
of the U.S. marine infrastructure was obsolete, which advocated for research toward its
renewal [70].

More recent research developments are related to efforts for energy provision and
storage (see next section). For example, the advent of microbial fuel cells (MFC) contributed
to the publication peak in 2016 [71] and added new perspectives for energy supply, espe-
cially after the appearance of the miniaturized supercapacitive MFC [72]. Also, membrane
separation technology and biosorbents are some of the branches that developed quickly
after the 2000s due to the interest in purification and recovery of strategic metals from
complex matrices, e.g., [73,74]. The latest advances in electrodialysis have provided clues
on the control of electron transfer during the treatment of different materials using MFC,
e.g., [75]. In the past five years, using biocatalysts in electrode materials led to significant
improvements in efficiency compared to abiotic anode [76]. Bioelectrochemical systems
(BES), anode surface modifications with nanomaterials, and bacterial gene modifications
are becoming prevalent approaches to improve MFC performances [77]. In this last decade,
biofuel production technologies contributed to energy provision research and new nano-
materials or nanotechnologies [22,77], including actions taken to improve memory storage
capacity in robotic applications for data exchange [23,78].
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Another reason justifying the recent growth in robotic biomimicry research is space
exploration. Such an exploration is not only oriented to Mars, but it actually includes
the sub-surface oceans of Europa and Enceladus and other icy moons as equivalents to
deep-sea terrestrial environments [38,53,79,80]. Proposed applications plan to use vectors
to carry biomimicking probes for their delivery into specific terrestrial, atmospheric and
aquatic environments, orienting biomimicking research toward the design of the structural
hardware and toward the emulation of specific behavioral aspects. Platforms operative
cooperation is biomimicked considering the example of sociality in insects [81–83]. For in-
stance, behavioral biomimicking is being used as a reference to build swarms of travelling
platforms with differential distribution of tasks in the atmosphere of Mars (e.g., the flying
bees for Mars [84]).

4.2. Biomimicking Energy Provision

Our results on the biomimicking design for energy provision in the underwater
environment (red cluster; see Figure 4) evidenced its relationships with the conditioning
needs of locomotion functionalities. That biomimicking is only partially developed at the
level of metabolism-inspired functionalities, with microbial fuel cells (MFCs) becoming a
hot topic in the recent literature developments (see the previous section and Figure 5).

Using MFCs to produce and distribute energy is provided by the electrolytic mediators
through an external circuit. So this design is far to be seen as an equivalent of metabolism
in living organisms since it is not diffused throughout the robotic structures. However,
robotic systems powered by MFCs are usually termed ‘gastrobots’, which means robots
with a stomach [23,85]. So, organ-like structures are being conceived to provide energy,
exploiting metabolic reactions to power, e.g., motility. Such an energy system often requires
a pulsed or opportunistic behavior to perform tasks and sub-tasks because the energy
supply cannot support a continuous mode operation [23,78].

Biochemical applications simulating metabolism in robots have been developed but
not yet coupled into biomechanics designs. Under this aspect, the challenge is linked
to the power density that microbial fuel cells can output: computation, locomotion and
interaction, especially in harsh environments, are extremely energy demanding for the
bigger robots, and novel approaches are required to reduce such energy demands [86].
The energy density (per unit of mass) is still insignificant compared to standard fuels like
gasoline or Li-ion batteries, so a combination of different technologies is still required
for the autonomy of robotic systems [23,78]. However, the electricity produced by the
microbial fuel cell can be further stored in a capacitor for burst-mode power delivery [23].
Also, a microbial fuel cell can be transformed into a microbial electrolysis cell (MEC) [87] to
produce ancillary biofuel (hydrogen energy) eventually. This type of cell may be the biotic
substitute for traditional batteries to supply the required voltage. Combining these two
types of microbial cells may be suited for almost entirely self-sustained motility of small
weights [77].

To achieve sufficient energy performances and maintain control over physio-chemical
variations (homeostasis) is challenging, such that few results have been transferred into
the industry [22]. The main limiting factor is the energy requirement. Nano-research is
vital to lighten the mechanical structure and “organs”, but when it comes to working with
bare microbial fuel cells, volumetric energy density is an essential parameter for mobile
applications [22] due to the limited spaces available inside the devices. Even if a higher
gravimetric energy density than a metal-based fuel cell is generated, smaller volumetric
energy density will limit the application range of those cells alone [22,88]. From this
viewpoint, MFC relying on organic cathode materials with a low mass density might
demonstrate limited performances [24].
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In this scenario, the metabolism-inspired functionalities for energy provision sus-
taining marine platforms autonomous operability has still poor connectivity within the
overall energy provision research scenario (e.g., “benthic fuel cells” and “sediment fuel
cells” appearing as separated in the red cluster; see Figure A1A). The U.S. Naval Research
Laboratory has used sediment MFC to harvest energy from the seafloor for low-power
consuming applications like meteorological buoys [89]. Biosensors powered by MFC have
drawn increasing interest due to their sustainability and cost-effectiveness, with several
applications for water quality monitoring [90,91], which can be used in aquatic robots.
MFC-based biosensors are being used to detect metals such as copper, chromium, and zinc,
as well as organic compounds [91], although there is a need to improve their sensitivity,
as they have high detection thresholds.

In the next future, the design of efficient and effective metabolic engineering ap-
proaches will increasingly benefit from artificial intelligence (AI) methodologies [92]. AI can
picture retrobiosynthesis (a reverse engineering-like approach, where metabolism can be
disentangled in terms of originating reactions and their relationship) approaches, high-
lighting key reaction rules present in biological systems [93]. Moreover, machine learning
techniques are used to incorporate genomic data for predicting the optimal feed substrate
of MFCs [94], while machine learning can be used for modelling and controlling the
temperature inside those cells [95].

4.3. Biomimicking Materials for Robotics

Biomaterials biomimicking is the replication of biological processes at the molecular
level with human-made materials [96]. In this context, our results indicated that the terms
in this cluster (green; see Figure 4) have an identity related to the creation of new solutions
at scales ranging from macro to micro. Biomimicry is used to solve conflictual engineering
problems across very different multi-functional materials size ranges to merge flexibility
and resistance [97,98]. The existence of that cluster in our analysis as separated from that of
the design and control (see the next section) indicates that robots planning and construction
is still conceived along two independent lines: one using traditional materials in large sizes
mechanically-designed platforms and one looking for new functionalities at the level of
membrane and surfaces for soft robotic frontline applications.

The implementation of bio-inspired materials at nanoscales is a research field parallel
but still poorly connected to robotic mechanical design. Microfabrication of membranes is
not yet at a sufficient level of technological development to have substantially impacted
the published literature we analyzed and therefore does not appear prominently within
the green cluster. The rightmost terms (“gecko”, “beetle”, etc.), which may point toward
the design of bioinspired systems (blue cluster), resulted instead primarily for the micro
properties of the bioinspired mechanism, e.g., adhesion [99], or the properties of fabrication
process of the animals, e.g., spider silk [100,101]. Another example is represented by the
study of marine organisms’ biomacromolecules (e.g., hyaluronic acid, chitin and chitosan,
peptides, collagen, enzymes, algal polysaccharides). Reef fish mucus, marine adhesives and
structural coloration are biomimicked to recreate adhesives, collagen, or coating-antifouling
materials [102–104].

Therefore, this cluster belongs to the bottom-up approach to biomimicking: the quest
here is to create new materials, technologies and devices, which replicate specific biological
solutions. Those solutions have to be intended as the building blocks for further gen-
eral applications (e.g., gecko adhesion for vertical locomotor functionalities). Moreover,
technology can rarely grant a perfect mimicking of the natural solution. In those cases,
the phenomena are abstracted at a high level, eventually instantiating concrete products
with still low diffusion in robotics applications [98].
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4.4. Biomimicking Design and Control

The design and control cluster (blue; see Figure 4) highlighted that most robotic appli-
cations mimic innovative automated body motions in associations with the morphology of
different types of aquatic animals. That quest for improved locomotion highlights the need
to move beyond the state of the art of traditional robotic platforms [2,105]. The result is
creating biomimetic underwater drones with thrusters-independent swimming capability,
as a step forward compared to the more conventional designs such as autonomous under-
water vehicles (AUVs) and gliders [106]. This is confirmed in our results (see Figure A1C)
by the relevance of terms we identified in our survey, all related to animal morphological
models (i.e., “jellyfish”, “shark”, “fish”, “squid”, and even “insect”) with different levels of
association with mobility (“manoeuvrability”, “propulsion”, “thrust”, “mobile robot”, etc.).
Also, terms like “actuators” and “sensors” and their linksappear related to locomotion
effectiveness rather than generic functionality.

Interestingly, our research revealed how mobility functionalities are prioritized over
manipulation (i.e., robot having appendages to interact with objects). The “manipulation”
term appears only on the far-right side of the biomaterial cluster (see previous section
and Figure A1B,C). By considering the vast amount of research in robot manipulation
and robotic grippers [107,108], and the huge bioinspired efforts carried out in creating
artificial hand prosthesis [109–111], it is surprising that marine robotics manipulation is
underrepresented, and this may be a promising area for future developments, especially
concerning bio-ecological and industrial applications.

Two reasons could lie beyond that situation. First, locomotion efforts are still far
from being completed and satisfactory, and therefore no attention is directed toward
underwater bioinspired manipulation. This appears less probable due to the high request
for innovative grippers and manipulators employed in the underwater domain [112,113].
A second reason seems more realistic: if we consider the usual bioinspired path, peculiar,
smart, or novel biological solutions should be identified by life scientists and eventually
proposed to engineers. We believe this path is presently underexploited, and that additional
research into animals/systems that could be used as a reference for novel bioinspired
grippers and arms would be profitable. The oil industry historically developed underwater
robotic manipulators to work on metal components. Still, for biological applications such
as sampling delicate/fragile species, innovative solutions in soft robotics are required,
e.g., [114,115].

AI is not apparent in the design and control cluster, since its development is very recent.
An AI-related key question emerging from this cluster is which combination of sensorial
technologies allows full autonomy in robotic functionalities. A promising research field is
within the hardware devices for underwater vision. It is clear that marine animals evolved
several solutions to adapt their vision system to the underwater environment [116], and sev-
eral attempts were performed into bio-inspired underwater vision. Examples span from
the biomimicking of vision to guide vehicles as the use of underwater light polarization-
sensitivity (by shrimps [117]), to the neuro-model driving anguilliform-swimming devices
(by lamprey [116]), and celestial compass-based approaches (by ants [118]). Also, non-light
oriented approaches were implemented as the use of turbulence and pressure changes to
reconstructs 3D panoramas (i.e., seal whiskers [119]) or the sensing of weak electric fields
near objects (muddy water fishes [120]).

Other applications of AI are related to swarm intelligence [121,122], neural simula-
tion [123,124], and evolutionary computing [125] for controlling fleets of vehicles. Similarly,
neural networks are often used to detect and localize underwater objects [126,127], fins sen-
sors can inform the design of control systems of fin-driven robots [128], while bio-inspired
algorithms are applied for localizing odour or chemical sources by underwater robots [129].
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4.5. Limitations of Our Bibliographic Meta-Analysis

There are some limitations in the term-map analysis regarding both the production
and the interpretation of results. There are mainly two kinds of limitations: those generated
by the data and those imposed by the map. For the first aspect, during the creation of the
bibliometric dataset, the record’s availability could have been somehow limited mainly
due to the arbitrary keywords’ choice for the primary search. Also, regarding this aspect,
synonyms and homonyms represent another kind of problem that could arise. Although
this problem was solved with an accurate manual thesaurus polishing by merging the
synonymous terms (see the methodological section “Bibliometric Mapping and Cluster-
ing”), more advanced approaches can be used based on the formal conceptualization of the
marine science domain [130]. For example, the Semantic Web for Earth and Environmental
Terminology (SWEET) ontology [131] and the Natural Environment Research Council
(NERC; https://vocab.nerc.ac.uk/ assessed on 28 May 2021) vocabulary could be used
for the automated merging of the terms resulting from the abstract, titles and keyword
analysis. Similarly, natural processing language techniques can also be used to identify the
most relevant terms, on which the map is built up [132,133].

For the second aspect, the interpretation of a bibliometric map is not always straightfor-
ward. A term-map represents a simplified version of reality, leading to loss of information
and a partial representation of the investigated field [134]. VOSviewer generates such
an inevitable loss of information due to the two-dimensional representation of the terms
in a Euclidean space. We are aware that those mapping and clustering procedures rely
on dissimilar design principles and conventions. However, the VOS mapping technique
and the weighted and parameterized variant of modularity-based clustering can both be
derived from the same underlying principle [64]. This justified our choice of a unified
approach to mapping and clustering bibliometric networks to identify sub-fields or specific
sub-topics [135]. Despite these limitations, depending on researcher errors and bibliometric
mapping constraints, term-map analysis represents a valuable tool to support experts to
improve their knowledge on a specific domain [135].
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Table A1. Number of publications (n) per the complete list of subject categories as different disciplines
(see Table 2).

Subject Area n

Engineering 2985
Materials Science 1707

Chemistry 1402
Chemical Engineering 1290
Environmental Science 1259

Computer Science 1193
Biochemistry, Genetics and Molecular Biology 1152

Physics and Astronomy 1109
Energy 896

Mathematics 525
Agricultural and Biological Sciences 420

Earth and Planetary Sciences 285
Immunology and Microbiology 174

Multidisciplinary 146
Medicine 133

Social Sciences 79
Business, Management and Accounting 53

Neuroscience 35
Pharmacology, Toxicology and Pharmaceutics 24

Economics, Econometrics and Finance 22
Arts and Humanities 19

Health Professions 18
Decision Sciences 17

Psychology 7
Veterinary 4
Dentistry 1
Nursing 1
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Table A2. Complete list of countries and their total number of issued scientific papers (n) as well as their relative percentage.

Country n % Country n % Country n % Country n %

China 2183 26.573 Mexico 36 0.438 Ethiopia 6 0.073 Monaco 1 0.012
United
States 1714 20.864 Israel 34 0.414 Lithuania 6 0.073 Nepal 1 0.012

United
Kingdom 451 5.490 Saudi

Arabia 34 0.414 Oman 5 0.061
North

Macedo-
nia

1 0.012

India 384 4.674 Pakistan 32 0.390 Croatia 4 0.049 Peru 1 0.012
Germany 364 4.431 Ireland 31 0.377 Kenya 4 0.049 Sri Lanka 1 0.012

Japan 339 4.127 Estonia 30 0.365 Senegal 4 0.049 Tanzania 1 0.012
South
Korea 294 3.579 Indonesia 29 0.353 Slovakia 4 0.049 Venezuela 1 0.012

Italy 241 2.934 Thailand 28 0.341 Tunisia 4 0.049
Australia 234 2.848 Egypt 26 0.316 Ecuador 3 0.037

France 210 2.556 South
Africa 26 0.316 Luxembourg 3 0.037

Canada 187 2.276 Romania 21 0.256 Macao 3 0.037
Spain 175 2.130 Argentina 20 0.243 Mauritius 3 0.037

Singapore 173 2.106 Czech
Republic 20 0.243 Puerto Rico 3 0.037

Sweden 98 1.193 New
Zealand 20 0.243 Cuba 2 0.024

Taiwan 92 1.120 Viet Nam 20 0.243 Jordan 2 0.024
Hong Kong 86 1.047 Hungary 19 0.231 Kazakhstan 2 0.024

Belgium 84 1.023 Bangladesh 16 0.195 Russia 2 0.024
Iran 84 1.023 Chile 16 0.195 Serbia 2 0.024

Netherlands 84 1.023 Nigeria 14 0.170 Antarctica 1 0.012
Switzerland 84 1.023 Colombia 11 0.134 Azerbaijan 1 0.012

Malaysia 82 0.998 Iraq 11 0.134 Barbados 1 0.012
Brazil 80 0.974 Philippines 11 0.134 Belarus 1 0.012

Denmark 63 0.767 Qatar 11 0.134 Bosnia and
Herzegovina 1 0.012

Greece 61 0.743
United
Arab

Emirates
10 0.122 Burkina Faso 1 0.012

Poland 61 0.743 Bulgaria 9 0.110 Cyprus 1 0.012

Portugal 57 0.694 Latvia 9 0.110 French
Polynesia 1 0.012

Russian
Federation 57 0.694 Lebanon 9 0.110 Ghana 1 0.012

Austria 55 0.670 Algeria 8 0.097 Libyan Arab
Jamahiriya 1 0.012

Finland 52 0.633 Morocco 8 0.097 Liechtenstein 1 0.012
Turkey 44 0.536 Slovenia 8 0.097 Mali 1 0.012

Norway 42 0.511 Ukraine 7 0.085 Malta 1 0.012
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