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This thesis considers applications of machine learning techniques in hospital emergency

readmission and comorbidity risk problems, using healthcare administrative data. The

aim is to introduce generic and robust solution approaches that can be applied to

different healthcare settings. Existing solution methods and techniques of predictive

risk modelling of hospital emergency readmission and comorbidity risk modelling are

reviewed. Several modelling approaches, including Logistic Regression, Bayes Point

Machine, Random Forest and Deep Neural Network are considered.

Firstly, a framework is proposed for pre-processing hospital administrative data, includ-

ing data preparation, feature generation and feature selection. Then, the Ensemble

Risk Modelling of Hospital Readmission (ERMER) is presented, which is a genera-

tive ensemble risk model of hospital readmission model. After that, the Temporal-

Comorbidity Adjusted Risk of Emergency Readmission (T-CARER) is presented for

identifying very sick comorbid patients. A Random Forest and a Deep Neural Net-

work are used to model risks of temporal comorbidity, operations and complications of

patients using the T-CARER.

The computational results and benchmarking are presented using real data from Hospi-

tal Episode Statistics (HES) with several samples across a ten-year period. The models

select features from a large pool of generated features, add temporal dimensions into

the models and provide highly accurate and precise models of problems with complex

structures. The performances of all the models have been evaluated across different

timeframes, sub-populations and samples, as well as previous models.
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Chapter 1

Introduction

The cost of care is increasing at a rate that is unaffordable in the current economy.

This is mainly due to the impact of the accumulated rise in the ageing population,

population growth, deprivations, age-related or long-term comorbidities, emergency

admissions, increased expectations, and the cost of treatments and technologies (Lewis

et al., 2011, DH, 2013b, NHS, 2013c, Strandberg et al., 2011). The current system is

unsustainable and unfair, and available financial options to support people in meeting

care costs are limited.

In this research, our focus is on three main areas: developing a healthcare pre-processing

framework for hospital data, producing a predictive risk model of emergency re-admission

to hospital, and development of a temporal comorbidity index. In the following sub-

sections, initially, a brief background about the England healthcare data is provided.

After that, the importance of the pre-processing and feature generation is highlighted.

Afterwards, the summary of emergency readmission and comorbidity index are pro-

vided. Then, gaps and motivations, aims and objectives, and the main contributions

of this research are explained. Finally, the outline of the thesis is provided.

1.1 Hospital Administrative Data

In the England’s National Health Service (NHS), patients’ interactions with hospital

services are recorded on statutorily defined datasets, known as Secondary Uses Service

(SUS). The SUS data is cleaned and combined on a national basis to create Hospital

Episode Statistics (HES) data. The HES contains administrative hospital data for all

inpatient, outpatient and Accident and Emergency (A&E) admissions in England. The

1
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databases hold admissions, clinical, utilisation and demographics details in the format

of episodes and spells. The spell refers to a continuous period of care, which includes

one or more episodes of care activities (HSCIC, 2016d).

1.2 Pre-processing and Generating Features

Finding representations that capture the structure of the input data, is of particular

importance. As Jeff Hawkins, founder of the Redwood Center for Theoretical Neuro-

science, said once ”Finding a good representation of the massive amount of knowledge

about the world is hard enough, it is compounded by the need to efficiently extract

contextually relevant knowledge depending on the situation” (Hawkins and Blakeslee,

2007).

The existing studies (Section 2.2) have obtained features using three main approaches:

• Referring to self-judgement or an obscure clinical experience;

• Justifying by a vague and basic exploratory analysis of a few features;

• Using features in the previous studies.

Although disregarding prior probabilities and distribution patterns are clear indications

of a bad modelling practice, no framework or systematic way of data pre-processing

and feature generation have been found in the existing studies. However, there are a

number of frameworks available, like the PARAMO framework proposed by Ng et al.

(2014), that focus on facilitating large-scale modelling endeavour to speed-up research

workflow.

1.3 Prediction of Emergency Readmission to Hospitals

The National Health Service (NHS) spends an estimated £11 billion per-year on emer-

gency admissions in England (Lewis et al., 2011). According to the Nuffield Trust

report in 2012 (Nuffield-Trust, 2012), about 8% of discharged patients are readmitted

within 30 days, costing an estimated £2.2 billion a year. Based on the retrospective

study by Clarke et al. (2012), about half of the 30-day emergency readmissions were

potentially preventable between 2004 and 2010.
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Four major risks contribute to the increase in emergency (or unplanned) readmissions

to hospitals (Lewis et al., 2011, HSCIC, 2013a): ageing population and frailty (Caley

and Sidhu, 2011), patients with long-term conditions (DH, 2012), premature discharge

and unpredictable accident and emergency (Clarke et al., 2012). While discharging

patients provides a way of freeing beds in healthcare systems, premature discharge

can still increase the risk of emergency readmissions. Often hospital admission or

readmission can be avoided by providing adequate care (Bardsley et al., 2012), therefore

identification of high-risk patients can help clinicians to prevent avoidable readmissions.

Predictive risk models can help patients and carers obtain appropriate support services

in clinical decision-making. In addition, such models can improve care quality and

reduce the costs of inappropriate admissions to hospital and A&E. In 2005, the UK

Department of Health (DoH) commissioned the Patients at Risk of Re-hospitalisation

(PARR) (Billings et al., 2006a, Lewis, 2011) algorithm and PARR++ software for

Primary Care Trusts (PCTs)1 (Fund, 2016a, Lewis et al., 2011). The aim of the PARR

model was to identify individuals at high-risk of emergency readmission to the hospital

within a year based on the inpatient data from the HES database. After that, to address

the need for identifying the patient risk along a continuum, in 2006 the DoH released

the Combined Predictive Model (CPM), which was based on the General Practice (GP)

and the HES data (DH, 2006).

In 2011, the DoH commissioned an upgrade to the PARR and the CPM models (DH,

2011a, Nuffield-Trust, 2012). The Patients at Risk of Readmission within 30 days

(PARR-30) model was developed as an upgrade, to be run by acute hospitals. The

PARR-30 model was based on a broad range of measures used in the PARR (Billings

et al., 2012), but features more restricted due to restriction in recording within 30-days.

After the controversies of the 2012 Heath and Social Care Act (Timmins, 2013), the

care system moved towards developing new models of integrated care. The NHS’s

strategic 5-year forward view (NHS, 2014) outlines that commissioners, the NHS and

other providers will co-design the services based on a model of integrated care that tar-

gets specific cohorts, with their own exemplars, potential benefits, risks and transition

cost.

1The Primary Care Trusts (PCTs) were subcommittees of discrete health authorities and part of the
NHS in England from 2001 to 2013. Afterwards, PCTs were replaced by the Clinical Commissioning
Groups (CCGs), as part of the Health and Social Care Act 2012.
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1.4 Comorbidity Risk Index

There is increasing evidence that the quantification of high-risk operations and proce-

dures with adequate adjustment can greatly improve the quality of readmission models.

There have been two streams of work on risk scoring comorbidities to estimate future

resource utilisation, readmission and mortality.

One stream of research looks at the odds ratio of major diagnoses groups and therefore

is highly reliant on the whole population statistics. Another weakness of such model

stems from crudely summing up the risk score for comorbidities, which are based on the

most recent admission of the patients. One major model is the Charlson Comorbidity

Index (CCI), which relies on twenty-two comorbidity groups (Charlson et al., 1987).

Another stream uses a diagnoses classification approach or a case-mix model based

on similarity, type of care, likelihood or duration, which are usually very complex,

specialised to highly particular settings and population characteristics. One popular

model is Elixhauser Comorbidity Index (ECI), which is using patients’ diagnoses and

an Aggregated Diagnosis Groups (ADGs) classifier (Elixhauser et al., 1998, AHRQ,

2016b). Another well-established method is the John Hopkin’s (Weiner and Abrams,

2011) Adjusted Clinical Groups (ACGs), which uses the ADGs to encapsulates 32 di-

agnoses groups, and their aggregations called Expanded Diagnosis Clusters (EDCs).

1.5 Motivation

Firstly, in recent years many predictive risk models of emergency readmission have

emerged. However, many studies in the literature simplify the model, and the selected

features are mainly based on previous models, personal experience or a very shallow

exploratory analysis.

Secondly, most of the existing predictive risk models (Section 2.2) that used hospital

administrative data were based on Logistic Regression (LR) or Coxian Phase-type

Distribution (C-PHD) models. Although they are uncomplicated and powerful, they

are bounded by algorithms’ shortfalls, restricted assumptions and limited parameters.

The main shortcomings of these models can be summarised as:

• Oversimplifying complex correlations;

• Not accounting for small probabilities in an appropriate way;



1.5 Motivation 5

• Not updating the beliefs (prior probabilities) based on the environmental variables

or changes in the policies;

• Do not adjust the model for important factors;

• Not using an iterative or parallel mechanism to compare different models and

settings (Fenton and Neil, 2012, Ng et al., 2014).

After the breakdown of financial markets at 2008, Rodriguez (2011) wrote, ”predictive

modelling, the process by which a model is created or chosen to try to best predict the

probability of an outcome has lost credibility as a forecasting tool”. This is either due

to the modeller’s expertise or knowledge, or the lack of resources. In below, the main

common causes of predictive modelling failures are outlined:

• Inadequate data pre-processing approaches;

• Incomplete model validation methods;

• Unjustified extrapolations;

• Over-fitted models (Kuhn and Johnson, 2013).

In healthcare risk modelling, there have been many successful implementations of ma-

chine learning methods, but, there are limited numbers of literature that applied a

Bayesian approach or specialised sub-models of cohorts.

The combination of machine learning and forecasting helps to recognise subtle changes

in patients flow and behavioural patterns (Weiner and Abrams, 2011). Moreover, gen-

erative models have the capability to move beyond associations between predictors and

the outputs and recognise hidden structures in the data by encoding the prior probabili-

ties into the model. Examples of generative methods are Bayesian approaches, mixture

models and generative models using hidden units or latent stochastic variables, like

Hidden Markov Models (HMMs) and Generative Adversarial Networks (Goodfellow

et al., 2016, Koller and Friedman, 2009). Furthermore, Ensemble methods in machine

learning are a powerful type of approach, which use a finite set of weaker models and an

algorithm to combine and optimise the performance of the Ensemble model (Chapter

4).

Finally, the majority of comorbidity risk models only consider the most recent ad-

mission and the first few diagnoses of the patient to rank the comorbidity risk of the

patient. But, very sick and comorbid patients usually have multiple medical conditions
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and operations, or procedure with complex existing conditions. There are four major

areas that comorbidity index models can improve. Firstly, to make the risk score rele-

vant to different environments, an approach must be used to model complex correlation

between variables and states. Secondly, to better distinguish the short and long-term

conditions (LTCs), the temporal dimension may be included in the form of life-table

(Singer and Willett, 2003) or in the form of a polynomial weight function (Bee Dagum

and Bianconcini, 2016). Thirdly, population stratification is a major factor in the

prevalence of medical conditions and must be adjusted. Fourthly, major correlated

factors to diagnoses must be included directly (observable) or indirectly (latent) to

improve the risk estimates, including secondary diagnoses, operations, procedures and

complications.

Consequently, there are three main areas that can enhance the performance of the

predictive risk models. Firstly, designing a generic framework for data pre-processing

and feature generation is highly desirable, in order to be able to include a large pool

of features in the analyses. Secondly, developing a robust decision support tool for

modelling emergency readmission is beneficial, which can add the prior probability

of patients characteristics into the model. Thirdly, comorbidity index is an extremely

significant factor in predictive risk models and has a high potential for further improve-

ment. Presently, comorbidity index models have four major weakness areas: robustness,

temporal dimensions (length-of-stay and delta-time between admissions), population

stratification and adjusting for associated risk factors.

Moreover, in the healthcare risk modelling research area, there have been many suc-

cessful implementations of machine learning methods (Bottaci et al., 1997, Green et al.,

2006, Lee et al., 2012, Nilsson et al., 2006, Peelen et al., 2010, Song et al., 2004). But,

there are a few numbers of literature that used a Bayesian approach or a Deep Neu-

ral Network (DNN) to address emergency hospital readmission and comorbidity index

modelling problems (Álvaro-Meca et al., 2012, Cui et al., 2015, Demir and Chaussalet,

2011, Gupta et al., 2014, Helm et al., 2015, Huws et al., 2008).

1.5.1 Scepticism

There is always machine learning scepticism in reaction against the hype or failures of

inappropriate modelling approaches. Bottle et al. (2014) stated that advanced machine

learning methods, particularly Artificial Neural Network (ANN) and Support Vector

Machines (SVMs), did not offer noticeably better predictions for readmission risk com-

pared to Linear Regression, and they were relatively harder to implement. Based on
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the reported details in this study, standard approaches for ANN and SVM modelling

are mainly used. There are four main concerns regarding the applied machine learning

methods in this study:

• The inputted features into the utilised Principal Component Analysis (PCA)

algorithm may have missed some main influencing features; therefore, derived

features could be fictional and consequently have a hit on the performance of the

applied SVM algorithm (Yang et al., 2005b);

• Using inappropriate input features, small training set, unsuitable network design

or poor initial solution may have negatively impacted on the performance and

the convergence of the ANN (Matignon, 2005);

• The temporal dimension may have been included into machine learning models

using weighted observations or including prior probabilities into the modelling.

• The linearity and normality assumptions are not necessarily true for the variables.

The model performance could be improved with the non-parametric assumption

or heavy-tailed priors for the variables, which are usually more robust to outliers

(Congdon, 2010).

1.6 Aims and Objective

The ultimate goal of this research is to produce solutions that can be used as a system-

atic methodology for data processing, and predictive modelling solutions that improve

patients’ life quality. In this context, it is important to get a better understanding of

individual patient pathways and evaluate the solution based on patient-centred out-

come parameters, such as readmissions, comorbidities, utilisation risks, health risks

and Length-of-Stay (LoS) (Adeyemi et al., 2013, Weiner and Abrams, 2011).

Moreover, the model development is based on the hospital administrative data (HES

database) without any intervention. In addition, supplementary data from the NHS,

the DoH, the HSCIC and the ONS are used in a number of models, in order to confirm

variable distributions and re-categorise variables.

The main objectives of this research are as follows:

• Healthcare pre-processing framework:
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– Developing a comprehensive framework to clear and prepare hospital;

– Defining a feature generation process for creation of a pool of potential

features.

• Hospital readmission model:

– Designing a robust generative approach to predict the risk of hospital emer-

gency readmission within a year.

– Using an Ensemble method to increase overall precision and improve risk

predictions for the main sub-cohort of patients.

• Comorbidity risk model:

– Proposing a comorbidity index to identify very sick patients that are in risk

of emergency admission in future (which is highly correlated to increased

length-of-stay).

– Including temporal aspects of patients comorbidities and associated risks

into the comorbidity risk model.

– Trying to capture complex abstract layers of patients health status into the

comorbidity risk model.

• Benchmarking:

– Testing the applicability of modelling approaches across different cohorts

and time-frames using the NHS hospital inpatient data.

– Comparing the performances of the designed models against the recent mod-

els from several analytical angles.

• Reproducibility:

– Producing open-source and easy-to-use software toolkits to allow users to

apply modelling solutions and incrementally develop the solutions.

– Providing clear documentation of toolkits and produce step-by-step guide-

line of modelling.

1.7 Contribution

In recent years, many patients risk modelling approaches, in the form of hospital emer-

gency readmission models and comorbidity risk indices, have been emerged as a result
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of collaborations between academia and local healthcare providers. However, many

studies in the literature use extremely similar features and very simplistic modelling

techniques and have moderate performances. There is a pitfall of model oversimpli-

fication and relying too much on outdated researchers, which affects the precision of

designed solutions.

Healthcare modelling using administrative data leads itself to complex feature gener-

ation and extensive model designing and tuning. Some studies use self-judgement or

vague exploratory analysis to produce features, and the majority other simply use a

version of features based on the previous studies, without any systematic feature gen-

eration. Also, there is a very poor integration of temporal dimensions into comorbidity

risk models, which leads to heavily biased risk scores. Therefore, an adaptable feature

pre-processing and generation, as well as a robust modelling technique can have major

benefits for continuously changing healthcare systems.

In view of the above discussions, the key contributions of this thesis are as follows:

• In this research, a generic healthcare pre-processing framework has been devel-

oped for healthcare data. The framework defines a systematic way to sample,

clean and treat input data, create super-spells, generate and select features. The

feature selection includes steps for filtering stationary features, visual exploratory

analyses, feature transformation, filtering correlated features and feature impor-

tance ranking. The developed framework has been proved to be highly effective

in practice, and it has led to the generation of highly significant features in our

modelling, including some new significant features that have not appeared in the

previous studies.

• A predictive risk model for the 1-year emergency readmission to the England’s

hospitals has been developed using a generative method. The chosen generative

method is a version of Bayes Point Machine (BPM) (Herbrich et al., 2001, Minka,

2001b), which is a nonlinear Bayesian classifier and uses quadratic programming

to optimise the classification’s hyperplanes using support vectors and margin. It

has been shown that the inclusion of the prior probabilities of the features can

increase stability and precision (positive predictive value) of the models.

• An Ensemble of generated BPM models of emergency readmission has been de-

veloped, which is based on a collection of sub-models that are conditioned on

different population characteristics. The proposed model, Ensemble Risk Model

of Emergency Admissions (ERMER), utilises a weighted average ranking method

to optimise the weights of sub-classifier using a bidirectional hill-climbing heuris-

tic. However, the ensemble of specialised sub-models for prediction of patients
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risks has not been addressed with existing studies. The novelty of our solution lies

in the intuitive adaptation of an Ensemble modelling with a generative approach

for prediction of patients’ risks.

• A Temporal-Comorbidity Adjusted Risk of Emergency Readmission (T-CARER)

has been produced that is robust, temporal (incorporate length-of-stay and delta-

time between admissions), and adjust for population stratification and major

comorbidity-related risk factors, including operations and complications. The

produced solution has sufficient generality to be extended to other healthcare

settings and internationally.

• The developed solutions are trained, tested and cross-validated across several

samples from 10-year of inpatient records (1999-2010) from the HES inpatient

database. The performance profiling has been done from several aspects using a

wide range of methods, in order to produce clear insight into the models’ strength

and bias. All the produced models are stable with high prediction accuracies and

precisions.

• The models are benchmarked against the solutions that are currently in use.

The readmission models are compared against the CPM (DH, 2006, Paton et al.,

2014), the PARR (Billings et al., 2006a), and Billings et al. (2013) (a.k.a. CPM

update) models using the reported performance statistics. Moreover, the co-

morbidity risk models are benchmarked against two major models, the Charlson

Comorbidity Index (CCI) (Charlson et al., 1987) and the Elixhauser Comorbid-

ity Index (ECI) (Elixhauser et al., 1998, AHRQ, 2016b) using a meta-analysis of

multiple benchmarking surveys. The comparison of prediction performances and

comorbidity-wise analyses strongly indicates that the ERMER and the T-CARER

models produce significant improvements in terms of precision, accuracy and can

greatly enhance the decision support systems in healthcare. The ERMER had

ROCs between 0.76-0.77 and the T-CARER had ROCs between 0.73-0.80 using

different settings and datasets.

• Generic, open-source and easy-to-use software toolkits have been developed to

model the emergency readmission and the comorbidity risk, which are based on

the developments of the ERMER and the T-CARER. They consist of procedures

in MySQL, Python, Bash and C#, as well as third-party libraries, which are

controlled via user-friendly Jupyter Notebooks. Moreover, the usefulness of the

developed tools is going be exposed to the academic community and healthcare

researchers, which will potentially lead to a wider adaptation of more sophisti-

cated methods of patient risks modelling by healthcare sectors.
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• The presented solutions are transferable to other problems across healthcare do-

main, due to the general applicability of patient risk scoring techniques and

the generality of the developed toolkits. Moreover, the research is expected to

contribute to the academic communities, including the operational research and

health and social care modellers, in order to implement more effective decision

support systems and risk indices.

1.8 Thesis Overview

The remainder of this thesis is organised as follows. Chapter 2 provides a background

on emergency readmission and risk scoring modelling. Then, complexity levels in data

quality, feature generation, modelling and validation are presented in Chapter 3. More-

over, the modelling approaches that are used throughout this research are explained

in Chapter 4. Next, the three main phases of the analyses are defined in Chapter 6,

including the considered benchmarking models. Chapter 5 contains a brief overview of

the healthcare data, NHS administrative data and the description of the extracted sam-

ples. Thereafter, the first phase of the project, the healthcare pre-processing framework

is presented in Chapter 7, which is based on the HES and the SUS, but has a generic

structure. Chapter 8 presents the Predictive Risk Modelling of Hospital Readmission

(ERMER). Then, the Temporal-Comorbidity Adjusted Risk Emergency Readmission

(T-CARER) is presented in Chapter 9. Chapter 10, describes the open-source toolkits

developed for applying the ERMER and the T-CARER solutions. Finally, Chapter 11

contains the conclusion and the future work.





Chapter 2

Background

For many healthcare providers and purchasers identification of high-risk events has

been a major concern. According to Lewis et al. (2011), there are three major sources

of risk to the healthcare system:

• Ageing population and frailty;

• The increasing number of people with long-term conditions;

• The rising rate of emergency admissions to hospitals.

Firstly, a major concern in healthcare organisations throughout the world is about

coping with an ageing population (Caley and Sidhu, 2011). Survey results (Chitnis

et al., 2012, Leadbeater and Garber, 2010) show that many people would prefer to die

with appropriate care support at home rather than at a hospital, and yet the number

of death in hospitals can reach to 65% if there is no appropriate policy in place.

Also, the average cost of hospital care is higher than the social care for older and

terminally ill patients. And, the costs of care in the final phases before death are very

high in hospitals. Looking further ahead, it is projected that people aged over 85 to

almost double by 2030, with an additional 600,000 of the ageing population to need

significant care (FCS, 2011). While a quarter of people aged over 65 will need to spend

very little in care over their life, half can expect the cost of up to £20,000, and one in

10 can expect the cost of £100,000 (FCS, 2011). According to a recent Nuffield Trust

report (Georghiou et al., 2012), the average cost of social care increases with the age

of the patient. However, the cost of social care stays cheaper than hospital care for age

below 85. Based on gender, the intersection point of the hospital and the social care

13
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costs for male patients are close to age 90 and the female patients are approximately

at age 80.

Furthermore, Figure 2.1 presents the risk segmentation for a typical population accord-

ing to Kaiser pyramid. Although it demonstrates that moderate to high-risk patients

represent a very small percentage of the population, their future utilisation is extremely

high compared to the majority of the population (Lewis et al., 2011).

Figure 2.1: Risk segmentation and future utilisation

Sometimes a hospital admission can be avoided by residential setting substitution or

social care. According to the analysis by Bardsley et al. (2012) on a wide population

in England, the use of social care may prevent the need for hospital care. The End-of-

Life (EoL) research help patients to get appropriate support services towards EoL by

better management of resources and patients. The ambition of the NHS is to increase

the number of people who die in their usual place of residence to 60%. This baseline

in 2007 was 38%, and with the EoL practices that were in place, it reached to 42% in

2012 (NHS, 2012, 2013d).

Secondly, the ageing population and changes in lifestyles mean an increase in the num-

ber of people with long-term conditions or comorbidities. For instance, there have been

significant rises in chronic kidney disease, diabetes and cancer between 2006 and 2011

(DH, 2012). Also, it has been predicted that people with comorbidity conditions to

rise from 1.9 million in 2009 to 2.9 million in 2018 (Fund, 2013).

Moreover, the time that is spent in poor general health, a limiting chronic health or

disability, can be attributed to frailty in some cases. Frailty refers to the condition of

being weak and delicate, and it mainly develops as a result of ageing. It is associated

with the state of high vulnerability and decreased the ability to sustain homoeostasis,
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which is correlated with high risk of adverse outcome including falls, delirium, im-

mobility and disability, incontinence and susceptibility to medications and their side

effects (Eeles et al., 2012, BGS, 2014, 2015, Walston et al., 2006). In the UK, the life

expectancy is 17.8 years on average for a 65 years old male, of which about 43.3% is

in poor general health, and about 41.6% is with a limiting chronic health condition

or disability. Similarly, on average a 65-year-old female has a life expectancy of 20.4

years, of which 43.1% will be likely in poor general health and 45.1% with a limiting

chronic health condition or disability (NICE, 2016, ONS, 2012).

Thirdly, the rise in the rate of emergency admission to hospitals is another contributing

element. Discharging patients is a primary way of providing free beds in healthcare

sectors. But if the estimated risks by healthcare administrators and decision support

systems are not correct, it may lead to readmission of patients. Patient-flow mod-

elling solutions, like Length-of-Stay (LoS), enable managers to better understand the

operational and clinical functions (Adeyemi et al., 2013). The LoS modelling includes

capturing the flow of patients from admission to discharge. The flow is through a num-

ber of conceptual (virtual) phases that patients go through. The predictive models of

LoS use the time spent in phases, in addition to the clinical data and the demographic

data, to identify events.

In the following subsections, first, the preventable emergency admissions are defined

and discussed. Then, the emergency readmission predictive modelling and the comor-

bidity risk index modelling are summarised.

2.1 Preventable Emergency Admissions

According to a recent report by the Organisation for Economic Co-operation and Devel-

opment (OECD), the healthcare spending have fallen in the half of the European Union

(EU) countries in real terms1, including the UK between 2009 and 2012 after about

forty years (OECD, 2014). The spending in real terms per-capita was increasing by an

average 4.9% per-year over the previous decade in the UK, until 1.3% decline between

2009 and 2012. In general, these declines were due to cuts in workforce and salaries,

reductions in fees and pharmaceutical prices and increase in patient co-payments.

Many countries are developing strategies to reduce down avoidable hospital care (OECD,

2014, Nolte and McKee, 2008). Over the last decade, the National Health Service

(NHS) in England has been transformed through efficiency savings measures, such

1The healthcare expenditure in real terms is the spending after adjustment for inflation.
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as the payment reform and quality improvement measures like marginal rate tariffs

(Charlesworth et al., 2014). However, increasing demands for emergency admission

still remain a major issue. A well-performing healthcare system must be able to pro-

vide necessary policies (NICE, 2016) for preventive care. In below, four major policies

that are directly related to emergency readmissions are highlighted, and their impacts

are discussed.

Firstly, there is sound evidence that the quality of care at the primary care level can

reduce down potentially avoidable admissions. One approach is to use admissions

of patients with the Ambulatory Care Sensitive Conditions (ACSCs)2 as a general

indicator for optimality assessment of primary care, community services and outpatient

care (Ansari et al., 2006, Billings et al., 1993, Purdy et al., 2009a,b). At present, twenty-

seven ACSCs are specified in the NHS Outcomes Framework (Bardsley et al., 2013,

Blunt, 2013b) as markers of improved health outcomes (Section 2.3.1).

Moreover, ACSCs are identified by experts and do not usually take into account the

population and the quality of care. Consequently, they can be misleading and may

reduce down the predictive model’s accuracy. Therefore, the rate of admission for

care sensitive conditions may be adjusted by the characteristics of local population,

such as age, deprivations, morbidity levels, area of residence, ethnicity, environmental

factors, prevalence rates of diagnosed and undiagnosed based using the Quality and

Outcomes Framework (QOF), QOF patient experience and QOF clinical quality of

care (Calderón-Larrañaga et al., 2011, HSCIC, 2014c, Purdy et al., 2009b, Sanderson

and Dixon, 2000, Tian et al., 2012).

Secondly, the Payment by Results (PbR) strategy is based on the Healthcare Resource

Group (HRG) and is likely to be the heart of payment system for the coming decade.

Most countries in Europe use a similar system known as case-based payment, which is

based on the Diagnosis-Related Group (DRG) Fetter et al. (1980), Mistichelli (1984)

and several other metrics (e.g. metrics based on assessments of demands and supplies)

to calculate fixed annual budget. Since the introduction of the PbR in the NHS, about

a decade ago, the general evaluations have been positive. But, there is no robust

evidence on its long-term impact or its health system efficiency (Busse et al., 2011,

Charlesworth et al., 2014, Quentin et al., 2011).

Thirdly, the marginal rate was originally introduced to discourage unnecessary emer-

gency admissions. But, according to the recent report by the DoH (DH, 2014), the

introduction of the national 30% marginal rate tariff to limit the incentive for increased

emergency admission did not meet the costs, and demand still continues to increase.

2The Ambulatory Care Sensitive Conditions (ACSCs) is also known as the primary care sensitive
condition (PCSCs)
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Also, the 2011/12 operating framework proposed that the cost of 30-day readmission

should not be reimbursed (DH, 2010); but, the enforcement of this penalty varies across

the country (Dowler, 2011).

Finally, it is an ongoing challenge to monitor and manage the financial sustainability

of NHS bodies. For instance, lack of transparent reports of income and expenditure

can lead to wrong financial performance benchmarks and incorrect efficiency saving

achievements (DH, 2014). In the recent report by the DoH (Marshall et al., 2014, DH,

2014) the need for more transparent reports of income and expenditure is planned for

NHS Monitor, the NHS England and the NHS Trust Development Authority.

Considering the long-term view, health providers need to address the underlying causes

of ACSCs. Purdy et al. (2009b) suggested the following evidence-based interventions

for avoidable admissions:

• Implementing disease management and supporting for self-management for pa-

tients with long-term conditions;

• Encouraging patient lifestyle change with behavioural change programmes, like

telephone health coaching;

• Providing easy access to the urgent care;

• Increasing continuity of care with General Practitioners (GPs);

• Ensuring effective local primary care arrangements.

2.2 Emergency Readmission Prediction Modelling

The UK’s DoH in 2005 commissioned to develop the PARR (Billings et al., 2006a,

Lewis, 2011) algorithm and the PARR++ software for PCTs (Fund, 2016a, Lewis

et al., 2011). The aim of PARR was to identify individuals at high-risk of emergency

re-admission to hospital within a year using the HES’s inpatient data. The developed

PARR model was very similar to the SPARRA (NHS, 2011) and the PRISM (Dialog,

2008, Hutchings et al., 2013) for Scotland and NHS Wales. Then, the Combined Pre-

dictive Model (CPM) was released in 2006 by the DoH from combined general practices

(GPs) and HES databases, in order to address the need of identifying the patient risk

along the continuum, (DH, 2006).
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Thereafter, the DoH commissioned an upgrade in 2011 to the PARR++ and the CPM

models of the NHS England (DH, 2011a, Nuffield-Trust, 2012). Patients at Risk of Re-

admission within 30 days (PARR-30) was developed as the upgrade to be run by acute

hospitals. The PARR-30 was based on a broad range of measures used in the PARR

(Billings et al., 2012). Next, Billings et al. (2013) released an update to the CPM

model in 2013, using a different set of features, with more clear report of performance

statistics. The data setting was very similar to the CPM, but each of the sub-models

presented moderately good performance and better than the CPM.

A comprehensive literature review regarding the prediction modelling of hospital emer-

gency admission has been carried out, and the full summary is presented in Appendix

A.1.1. All the commercial tools except John Hopkin’s models are closed source, and it is

very hard to evaluate their performance independently. In below, five other important

emergency admission models are summarised.

In a recent research by Bottle et al. (2014) several modelling approaches were applied

to predict cohort-specific emergency readmission, in addition to other cohort-specific

models for prediction of mortality, return to theatre, comorbidity index and outpatient

non-attendance. The research used a large extract from the HES and several modelling

approaches, including LR, Random Forest (RF), Artificial Neural Network (ANN) and

Support Vector Machines (SVM). In general, models have very modest performance

across different cohorts using different modelling approaches, including models with

time-weighted polynomials features; but, the mortality models have modestly high

performance.

The QAdmissions score was developed by Hippisley-Cox and Coupland (2013) using

two data sources: QResearch validation cohort and the Clinical Practice Research

Datalink (CPRD) database, to predict the risk of emergency admission within 2-years.

The proposed model incorporated thirty features from GPs and HES with the col-

laboration of 405 general practices across England. The performance of the model

using GP data only is moderate and the overall model is moderately high. Also, the

model is specialised to the QResearch database, and it is very hard to adapt it to other

healthcare systems.

The CMS Model, the Hospital-Wide All-Cause Unplanned Readmission Measure, was

introduced by YNHHSC/CORE (2012, 2015) to predict 30-day readmission using Medi-

care data from two datasets between 2007 to 2010. The model was developed using

the LR method for a cohort of patients aged above 65. The model adjusts for case-

mix differences and service-mix differences, based on a very wide range of inpatient

features. Initially, five sub-models based on different speciality cohorts were designed,
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and then they were combined. However, the performances of all models are very low

or moderate across samples, cohorts and performance tests.

Shortly after the release of the LACE (van Walraven et al., 2010), the LACE+ was de-

veloped by van Walraven et al. (2010, 2012) to predict 30-day death or emergency read-

mission, based on the administrative data from the Ontario population. The LACE+

feature space consists of patient age, sex, discharge method, emergency diagnoses and

procedures, alternative cares and count of admission methods, which were selected us-

ing a stepwise LR. The performance of the model was moderately high; however, the

selected population size was fairly small. Also, one of the most significant features

in the model, the Case-Mix Group feature, can only be calculated by the Canadian

Institute for Health Information data.

In the study by Lyon et al. (2007), hospital emergency readmission to inpatient within

12-month was modelled using the LR model. The Emergency Admission Risk Likeli-

hood Index (EARLI) was designed using inpatient, outpatient and A&E data from the

HES database, and GP records, in addition to the mortality records. The HES records

from 2002 to 2003 was linked with mortality records in conjunction with data collected

from seventeen PCTs, using questionnaire from the patient over 75 years of age. The

performance of the developed solution was very moderate and the dataset size was very

small.

2.3 Risk Scoring

Risk scoring, in the healthcare domain, relates to a systematic and effective method

of identifying risks and predisposing factors that might give rise to a specific event

or allow for partial classification. Examples of the application of risk scoring include:

identifying patients who are at risk of a heart attack, have unmet needs, represent

complex cases or are socially isolated. Furthermore, risk scoring is a useful aid in ef-

ficiently identifying and isolating cohorts of patients for which an intervention will be

made or for the purposes of stratification and more general analysis of a given patient

population.
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2.3.1 Comorbidity Risk Index Modelling

Adjustment for comorbidity is common in clinical outcome risk adjustment. The two

most common measures (Austin et al., 2012, Baldwin et al., 2006, Khuu et al., 2015,

Kuo and Lai, 2010, Lieffers et al., 2011, Sharabiani et al., 2012) are the Charlson

Comorbidity Index (CCI) (Charlson et al., 1994, 1987) and the Elixhauser Comorbidity

Index (ECI) (Elixhauser et al., 1998), which are used for predicting admission and

mortality. The CCI and the ECI calculate the frequency of some comorbidity categories,

weight them based on the proportion of expected admission or mortality and then

linearly sum them up. There have been revised versions of the CCIs (Deyo et al.,

1992, D’Hoore et al., 1993, 1996, Ghali et al., 1996, Quan et al., 2005, Romano et al.,

1993) and the ECI (van Walraven et al., 2009), including the most recent adaptation

of the CCI (Aylin et al., 2010, DFI, 2010, HSCIC, 2014d) and Bottle et al. (2014) and

the actively maintained ECI by the AHRQ (AHRQ, 2016b). In addition, Gagne et al.

(2011) introduced a combined version of CCI and ECI indices, and demonstrated that

the combined scoring can boost the performance, especially for short-term prediction

of mortality and resource usage.

Moreover, the acute conditions in the England NHS can be categorised into three

subgroups (HSCIC, 2016k): Ambulatory Care Sensitive Conditions (ACSCs), vaccine-

preventable conditions and conditions that usually do not require hospital admission.

The ACSCs (Blunt, 2013a, Fund, 2016c, ACI, 2015) are seen as potentially avoidable

and are highly correlated to multiple admissions over time and quality of care (HSCIC,

2016k). The use of ACSCs has had some success in order to hold commissioners to

account and reduce the emergency admission (Bardsley et al., 2013, OECD, 2014,

QualityWatch, 2016).

At present, twenty-seven ACSCs are used in the NHS Outcomes Framework (Bardsley

et al., 2013, Blunt, 2013b) as markers of improved health outcomes. Between 2001

and 2013, the patterns of change over time for each ACSC across all the deprivation

levels were similar. The standardised rates of admission per 100,000 population for

conditions in acute group3, chronic4 and other5 groups changed by +0.49%, -0.03%

and +0.47%, respectively.

3The acute group of ACSC: Acute conditions, Cellulitis, Dehydration, Dental conditions, Ear, nose
and throat infections, Gangrene, Gastroenteritis, Nutritional deficiencies, Pelvic inflammatory disease,
Perforated/bleeding ulcer, Urinary tract infection/ pyelonephritis.

4The chronic group of ACSC: Chronic conditions, Angina, Asthma, Chronic obstructive pulmonary
disease, Congestive heart failure, Convulsions and epilepsy, Diabetes complications, Hypertension, Iron
deficiency anaemia.

5The other and vaccine-preventable group of ACSC: Influenza, Pneumonia, Tuberculosis, Other
vaccine-preventable.
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Also, there have been other attempts to classify conditions, such as John Hopkin’s Ag-

gregated Diagnosis Groups (ADGs) (JHU, 2014) and Selection of Multipurpose Aus-

tralian Comorbidity Scoring System (MACSS) (Holman et al., 2005). The ADG clus-

tering method is part of the John Hopkin’s ACG system and defines thirty-two clusters

of diagnoses. It is used to draw five aspects of morbidity: duration, severity, diagnostic

certainty, aetiology and speciality of care. Moreover, the MACSS selected 102 comor-

bid conditions based on readmission, Length-of-Stay (LoS) or mortality predictability.

Based on the validation results on a large population in Australia, MACSS significantly

outperformed the CCI.

An alternative approach to comorbidity scoring is to use a cost function, like the

UK’s HRG (HSCIC, 2016a), and the US’s Centers for Medicare and Medicaid Services

Hierarchical Condition Categories (CMS-HCC) (Kautter et al., 2014, CMS, 2016b).

Commercial implementations of such approaches exist in John Hopkin’s ACG system

(JHU, 2014) and Verisk Health’s DxCG Risk Analytics (Verisk Health, 2016). Also, it

has been demonstrated (Billings et al., 2012, Li et al., 2010) that use of cost functions,

such as HRG and CMS-HCC, can improve the performance of comorbidity models.

On the other hand, the use of comorbidity scoring in predictive models is sometimes

criticised. Firstly, unrepresentative versions of the comorbidity scoring, like the CCI,

are being used widely, even though their accuracies have been shown to be sensitive

to the time-frame and population settings (Bottle and Aylin, 2011, Bottle et al., 2014,

Quan et al., 2005). Also, the coding accuracy of diagnoses, cost groups and validation

techniques are another set of important factors (Bardsley et al., 2013, Bottle et al.,

2013, Hurst and Williams, 2012). Other criticisms (Bottle and Aylin, 2011, D’Hoore

et al., 1996, Quan et al., 2005, Romano et al., 1993) of such scoring methods relate to

using very small validation sets and not adjusting for key factors, such as age, gender,

deprivations, LoS and temporal patterns.

2.3.2 Operations and Procedures

There is increasing evidence that the quantification of high-risk operations and proce-

dures with adequate adjustment can significantly improve the quality of mortality and

readmission models (Aylin et al., 2013, Finks et al., 2011, Jhanji et al., 2008, Symons

et al., 2013). Yet, unlike comorbidity, there is no generic risk model for operations

and procedures (Barnett and Moonesinghe, 2011, Mehta et al., 2016, Moonesinghe

et al., 2013, Rix and Bates, 2007), and the categorisation is typically carried out using
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clinical groups. In the UK, the NHS uses Office of Population Censuses and Sur-

veys (OPCS) Classification of Interventions and Procedures (HSCIC, 2016j). And, in

the US, the Public Health Service uses the AHRQ’s procedure categorisation scheme

(AHRQ, 2016a).

Nonetheless, there have been several attempts to define a scoring mechanism for pa-

tients with specific conditions, such as the Royal College of Surgeons Charlson Score

(Armitage and Van der Meulen, 2010), EuroSCORE (Nashef et al., 1999) and the model

is developed by Aktuerk et al. (2016) using HES. It has been shown that such tools

can potentially increase measurement effectiveness of a patients’ general risk and the

risks associated with complications (Keltie et al., 2014).

In contrast to using HRG and CMS-HCC classifications surrounding cost, alternative

approaches that are more focused on operations and procedures include (Mehta et al.,

2016, Pearse et al., 2006): the Bupa’s Operative Severity Score (Bupa, 2016) and

the Surgical Outcome Risk Tool (SORT) (NCEPOD, 2011, Protopapa et al., 2014).

However, they are constrained by their limited data collection range and very narrow

population cohorts.

The Bupa’s Operative Severity Score was developed by the UK’s largest private medical

insurer using the Bupa private major score procedure database (PROM). It provides

a range of information about treatment options including benefits, risks, burden and

likelihood of success, which has been proven to be successful in producing more in-

formation about risks of readmission, mortality as well as the effect of interventions.

But, there is a concern about its accuracy, because of the discrete way of scoring risks

(Devlin and Appleby, 2010, Protopapa et al., 2014).

Moreover, the SORT was developed by Protopapa et al. (2014) to predict the preop-

erative risk of 30-day mortality after non-cardiac surgery, using cases from 326 NHS

hospitals in England, Wales and Northern Ireland. The model uses LR with forty-five

features to predict the risk, including American Society of Anesthesiologists Physical

Status (ASA-PS) grade, the urgency of surgery, high-risk surgical speciality, surgical

severity, cancer and age. The model performance is comparable (Moonesinghe et al.,

2013, Protopapa, 2016) with leading preoperative risk models: the Portsmouth POS-

SUM (Prytherch et al., 1998) and the Surgical Risk Scale (SRS). The model incorpo-

rates a manageable set of features and has a moderately high performance in overall,

but more external validation of the model is necessary to prove its resilience.

In the following chapter, the main complexity levels in data extraction and analysis

stages are outlined.



Chapter 3

Complexity Levels of Models

Generally, data-driven approach needs to filter results based on statistical significance,

importance and novelty, in order to identify significant correlations from electronic

health records (EHRs). A true data interpretation needs development and implemen-

tation of guidelines and clinical models to allow unambiguous representation of clinical

meaning (Jensen et al., 2012).

There are considerable challenges in comparing the predictive models across interna-

tional boundaries (Lewis et al., 2011, Mihaylova et al., 2011). Four distinctive aspects

in the analyses of research studies are: data, produced features, modelling, and perfor-

mance. In each area, there are several layers of complexity, which influence the quality

and interpretability of the models. In the following subsections, these four aspects are

presented.

3.1 Data

Three layers of complexity can be defined for the data aspect: availability, quality and

pre-processing. In terms of availability, three main areas are presented in below:

• Selected populations: may be subjective to ethical approvals and the concession

of patients, and can be limited to terms of use.

• Important variables: may not be available or have different methods of collection.

• Linked sources: may be required to connect databases to query variables from

different healthcare sectors, such as inpatient, outpatient, A&E GP, and national

statistical registry like mortality.
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Furthermore, quality of obtained data varies across several dimensions and is generally

very hard to quantify and compare (Bardsley et al., 2013, Bottle et al., 2013):

• Variables: may have different accuracies and recording policies (HSCIC, 2013b,

NHS, 2013a, of Physicians, 2006):

– Events chronology: can have inconsistencies in recording or usage, such as

the delays in mortality recording, or risk scores that rely only on the most

recent care status and undermine the long-term and chronic conditions.

– Coding orders: may not be consistent with coding manuals and the chrono-

logical order of the patient codes are not usually similar. Therefore, relying

only on primary diagnoses or operations codes may not be relevant for very

sick patients with complex comorbidities.

– Unclassifiable events: can be recorded based on different practices. In the

ICD-10, abnormal signs and symptoms are known as the R codes. The R

codes may be correctly identified in the following episodes or spells.

– Local factors: can have profound effects on administration and clinical vari-

ables. For instance, regions or hospitals can follow different policies or be

constrained under different conditions.

– Time lags: can be present between care setting changes and can affect the

performance or operational applicability of models.

• Time-frames: may have a significant correlation to the national and local care

policies and regulations. It is usually possible to keep track of major high-level

policies, but minor national and local changes are either unobservable or very

hard to track their enforcements across organisations (HSCIC, 2016i)

• Institution characteristics: can largely vary in terms of type, staffing, quality,

accidents, resources and registered patients.

Moreover, the data pre-processing stage is one of the main time-consuming stages when

dealing with new data sources. After exploratory analysis of the raw data, there are a

number of issues that may arise:

• Missing and invalid data: may be excluded or treated by the imputation of values,

removing records or replacing. For instance, multiple imputation methods may

be used to explicitly impute variables with a substitute. An alternative approach

is to calculate a log-likelihood function to estimate the maximum likelihood of

variables (Fitzmaurice et al., 2008, O’Kelly and Ratitch, 2014).
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• Conversions and aggregations: may be used to convert variables and temporal

events to a format that can be processed by the model (Kuhn and Johnson, 2013).

For instance, re-categorisation of discrete and continuous variables can be an ef-

fective approach to reduce sparsity and to better capture non-linear relationships.

Also, it may help training algorithms to converge faster.

Moreover, there are usually some care aspects that are not observable in research prob-

lems, which can introduce a degree of bias in the model. For instance, it was speculated

(Bottle et al., 2014) that a lot of variations for readmission can be due to the method of

delivery of care, which cannot be quantified using the HES database. In addition, extra

information, such as physiological and pathology records, might boost the performance

of models.

3.1.1 Policies

Any study that is collecting measurements over time is vulnerable to errors caused by

the way data is collected and maintained. The majority of literature did not investigate

changes in policies, care services and facilities, and the major country-wide policies were

mainly mentioned (Bottle et al., 2013). In order to identify shifts in data recording

and changes in system’s structure two different approaches can be pursued: partially

derive the patterns of changes using exploratory analyses, or alternatively record all

the changes using reported references.

For the UK healthcare systems, these changes are not recorded in a centralised database,

but they may be extracted manually from large sets of document repositories. The

HSCIC keeps records of any methodological changes (HSCIC, 2016i), and Department

of Health (DoH), which is responsible for the NHS policies, keep records of national

policies (DH, 2016), and the local changes only kept by the local authorities.

3.2 Producing Features

The producing features aspect is one of the most time-consuming part of many analysis

problems. Five main layers of difficulties are presented in the following:
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• Correlated or causal features: must be linked, combined or removed. For instance,

a hierarchical or a graphical algorithm may be used to formulate correlated fea-

tures into the model (Koller and Friedman, 2009, Kuhn and Johnson, 2013).

• Transformations: may be applied to address skewness, kurtosis, sparseness or

other theoretical considerations (Kuhn and Johnson, 2013, Mihaylova et al., 2011,

Walpole et al., 2014).

• Feature generation methods: may be designed to derive features from raw vari-

ables. In addition, specialised risk scoring models, such as comorbidity index,

may be used to adjust for more complex features.

• Feature construction: may be used to extract more significant features using a di-

mension reduction technique, such as filter, wrapper and embedded methods, in-

cluding Kernel Principal Component Analysis (PCA) (Izenman, 2008, Schölkopf

et al., 1997).

• Feature selection: may be used to select the most important features. Methods

like randomised Logistic Regression LR and Random Forest (RF) may be used

to rank features importance (Yang et al., 2005b).

3.3 Modelling Techniques

The majority of recent emergency admission modelling approaches are limited to LR

and Coxian Phase-type Distribution (C-PHD). Although these solutions are simple and

powerful, they have limited powers (Appendix A.1.1). In below, the main complexity

layers, related to modelling techniques, are presented:

• Assumptions: can excessively simplify the problem or fitting approximation. An

example is an inductive bias that is embodied in parametric models, like Linear

Regression (Mihaylova et al., 2011, Murphy, 2012), or normality of random errors

in regression (Walpole et al., 2014).

• Temporal dimensions: may be introduced to adjust for pre-existing conditions

and resource usage. Although well-established methodologies exist, temporal

analysis of longitudinal healthcare data is still in its early stage (Bellazzi et al.,

2011, Jensen et al., 2012).

• Prior probabilities: may be included using an approximation by direct (genera-

tive) or indirect (frequentist) inference. Ignoring prior probability of a conditional
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event (i.e. base rate fallacy) and inaccurate distribution of a feature can invalidate

a model (Murphy, 2012).

• Sampling: may be used to produce samples that can represent the population

and are more manageable for the derivation of the fit. If the Normal distribution

is assumed despite skewness, excess zeros, multimodality or heavy tails, then the

sample should be large enough to guarantee near normality (Mihaylova et al.,

2011). If normality is not assumed, the pre-processing and modelling stages must

deal with the problem by using methods, such as bivariate zero-inflated Binomial

Regression for count data with excess zeros (Wang, 2003) and transformation or

skewed distribution for skewed data (Mihaylova et al., 2011).

• Adjustment: may need to include other associated factors. However, use of case-

mix adjustment does not necessarily remove all the variability (case-mix fallacy)

Lilford et al. (2004).

• Error estimations: must be used as a tool to minimise errors appears in mea-

surements or those that are introduced as extraneous noise. Unlike systematic

noises, which are associated with measurement methods, any extraneous noise in

the predictors can lead to poor performance. Extraneous noise can originate from

measurement type, the inclusion of non-informative predictors and high level of

noise in the response variable (Kuhn and Johnson, 2013).

• Efficient search methods: may be used in the form of approximation to model fit-

tings. For instance, probabilistic and Bayesian inference methods usually require

approximation of expectation, computing marginalisation and normalising con-

stants using deterministic methods (e.g. Maximum a Posteriori (MAP), Laplace’s

method, Expectation Propagation (EP) (Minka, 2001b), Variational Bayes (Hin-

ton and Van Camp, 1993)) or stochastic (Monte Carlo) (Koller and Friedman,

2009, MacKay, 2003, Neal, 1993, Paquet, 2008, Robert and Casella, 2004).

Furthermore, an appropriate modelling approach must be chosen to account for cen-

sored observations (partially known observations) or competing risks (Cook, 2007,

Pencina et al., 2008, Steyerberg et al., 2010). Firstly, in survival analysis, a com-

mon approach to deal with censored data is to use life-table, which can also be applied

to longitudinal predictive models in healthcare (Singer and Willett, 2003). Moreover,

one of the competing risks is the clinical intervention, which may be triggered for the

high-risk patients by clinicians and is not always observable to healthcare models. Ex-

amples of clinical interventions are: invasive and non-invasive procedures, cognitive

interventions, and social and community cares.
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3.3.1 Comorbidity Risk

Capturing high-risk patients using diagnoses can be hard due to coding inaccuracies,

incomplete coding of transferred patients, and non-unified coding of comorbidities.

Therefore, comorbidity grouping and risk scoring are usually used to determine the

very sick patients and those who are in high-risk of mortality, emergency admission or

high resource utilisation.

But, comorbidity scores that are outdated (Appendix A.1.1) (Brilleman et al., 2014,

Carey et al., 2013, Holman et al., 2005, Mosley, 2013) or performance indicators that

are invalidated have been controversial (Fischer et al., 2011). For instance, old versions

of the Charlson Comorbidity Index (CCI) (Charlson et al., 1987) are still being used

(Bottle and Aylin, 2011, Quan et al., 2005), despite their inaccuracy for the studied

years. Following is a list of other criticisms of similar models, such as Charlson (Bottle

and Aylin, 2011, D’Hoore et al., 1996, Quan et al., 2005, Romano et al., 1993):

• Training on small cohorts, and neglecting the cohort-specific diagnoses prevalence;

• Using additive risk model to calculate risk for different medical conditions;

• Ignoring important factors, such as emergency admission, complexities, opera-

tions and Length-of-Stay (LoS);

• Ignoring temporal patterns and not adjusting for long-term conditions and pre-

vious health and care status.

Moreover, the inclusion of comorbidity indices in the models are beneficial, but disre-

garding groups and population that are being compared can introduce bias, which is

known as constant risk fallacy (Nicholl, 2007). An example is stratifying (separating

populations) into different risk groups based on demographics or care status using sep-

arate models, hierarchical models or case-mix models.

3.4 Testing, Validating and Benchmarking

The final hurdle is interpretation and comparison of tests, validations and benchmarks:

• Sampling: must be used to extract population-representative samples for testing,

cross-validation, validation and benchmarking.
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• Performance statistics: must be applied using different methodologies to validate

the effectiveness of the model from several aspects.

• Sub-populations: may be defined to examine strengths and weaknesses of the

model for different groups of patients.

The curve of true positive versus false positive, a.k.a. the Receiver-Operating Char-

acteristic (ROC) curve, is a popular tool for benchmarking binary classification. One

advantage of the ROC is that it can visualise the performance of a classifier disregarding

the class distributions or error cost (Fawcett, 2006). The Area Under the Curve (AUC)

of ROC (c-statistics) provides an average sensitivity score weighted by derivative of the

specificity (Cook, 2007, Pencina et al., 2008, Steyerberg et al., 2010).

However, only using the AUC of ROC is not sufficient for comparison. Naive calcula-

tion of the ROC curve for survival analysis can often lead to misestimating, because

of inattention to censored observations or competing risks. Moreover, when two ROC

curves cross over, then curves can become superior for some ranges only and conse-

quently, the AUC of ROC interpretation will become subjective (Cook, 2007, Hand,

2009, Pencina et al., 2008, Steyerberg et al., 2010, Webb, 2003).

Alternatively, the performance statistics for several desirable cut-off thresholds may be

selected for comparison (e.g. 50% and 75% cut-off points and the top 5% of patients

in risk). The thresholds might be specified based on expert judgements, or instead,

models may be optimised using a cost or profit function (e.g. intervention cost) to

strike a balance between specificity1 and sensitivity2. Also, they may be accompanied

by other measures, including sensitivity, precision3, specificity, F1-score4, and log-loss5.

In addition, other comparison approaches might be required in benchmarking, such as

risk-band (e.g. 20 risk-bands from 0%-100%) and top risk-segment (e.g. top 1000 high-

risks) performance comparisons. Another approach is adopting a reclassification metric,

like Net Reclassification Improvement (NRI) (Pencina et al., 2008), to investigate the

role of independent variables in the performance, with some precautions (Pepe et al.,

2014). Another alternative metric is the invariant AUC method that was proposed by

Hand (2009), which is based on a common belief distribution for all test samples.

In the next chapter, the main modelling methods that are used throughout the devel-

opment phases are described.

1Specificity, a.k.a. true negative rate.
2Sensitivity, a.k.a. recall or true positive rate.
3Precision, a.k.a. positive predictive value.
4F1-score (a.k.a. F-measure) is the weighted average of the precision and sensitivity
5Log Loss represents the accuracy of a classifier by penalising false classifications.





Chapter 4

Modelling Approaches

In this chapter, the algorithms and modelling approaches that are used throughout

the research are described. Firstly, the predictive modelling and risk adjustment are

explained. Then, seven modelling approaches are specified in detail, including Transfer

Learning, Ensemble learning, Logistic Regression (LR), Decision Trees, Random For-

est (RF), Support Vector Machine (SVM), Bayesian Methods, Bayes Point Machine

(BPM), Deep Neural Network (DNN), and Wide and Deep Neural Network (WDNN).

4.1 Predictive Risk Modelling

In healthcare sectors, many types of scoring systems are used to support clinical deci-

sions, such as Glasgow Coma Scale for patients with brain injuries. However, statistical

and stochastic models are needed to estimate the risks according to changes in care

and environmental variables (Stedman, 2010).

Data mining techniques can help to predict risks, in healthcare problems, improve the

health status of high-risk patients and consequently make overall savings. There are

various predictive risk models in the literature, and each can forecast a small range of

healthcare and social care outcomes. They differ in terms of the predicted time range,

variables, data sources and modelling approaches (Lewis et al., 2011).

There are two major branches of risk modelling in healthcare: predictive modelling

and risk adjustment. The predictive modelling is frequently used for high-risk member

case finding, like finding patients with high-risk of readmission and predicting costs

and utilisation. While, the risk adjustment is a normalisation technique for comparison
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purposes, such as classifying patients by potential risk level for the purpose of insurance

providers’ reimbursement (Holmes and Jain, 2012, Lewis et al., 2011).

Moreover, the identification of emergent risk can be categorised into modelling of three

main aspects: stratification, clinical profiles and resource utilisation profiles. Also,

in the modelling of the events, the time dimensions can be designed as time-to-event

models (Appendix A.1.4) or as risk score models.

4.1.1 Predictive Modelling

Predictive modelling is directly associated with machine learning1, pattern recognition

and data mining. The practice of predictive modelling defines the process of devel-

opment of models that their prediction accuracy can be understood and quantified

(Kuhn and Johnson, 2013). Geisser (1993) defines predictive modelling as ”the process

by which a model is created or chosen to try to best predict the probability of an

outcome.”

Physicians are interested in evaluating and forecasting adverse events that may provoke

mortality or longer hospital stay for the patient, and assign a quantity to the patient

risk profile (Cornalba, 2009).Regarding risk impact, healthcare risk analysis can be cat-

egorised into two categories: Operational Risks (ORs) and Clinical Risks (Kohn et al.,

2000). The predictive modelling of ORs in healthcare modelling, such as emergency

readmission (Appendix A.1.1), Length-of-Stay (LoS) and End-of-Life (EoL) (Appendix

A.1.3) modelling, varies across systems and often lacks robustness and generalisation.

A popular OR analysis approach in financial modelling problems is loss-event risk mod-

elling using Bayesian Networks (BNs) (Fenton and Neil, 2012). The BN approach is

an ideal choice since it is great at identifying common causes of failures that affect the

whole trading process. This type of OR analysis tries to quantify the OR that affects

the system as a whole, to identify the routes and causes. Another advantage of this

approach is that it enables stress testing the system to determine the effects. Two

examples of OR analysis in loss-event risk modelling are the identification of rogue

trading and stress testing financial markets.

1Note that predictive modelling is different notion from Predictive or Supervised Learning approach
in machine learning.
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4.1.2 Risk Adjustment

Although the medical advances have contributed to the improvement of life expectancy,

they have little to do with life expectancy and much more to do with life quality. Risk

adjustment methods are either used directly by health insurers for selection of good

(profitable) risks from an insurer pool or indirectly by designing insurance products.

The models are often based on a linear utility function framework (Newhouse, 1996),

and the objective is to minimise the outcome (i.e. risk) (Culyer and Newhouse, 2000,

Culyer et al., 2012).

4.2 Modelling Techniques

Since the late 1980s, machine learning methods have been used in extending the sta-

tistical analysis for making inferences from data, and there are a lot to be done in the

area of automated methods for learning and forecasting in healthcare.

Based on the knowledge of interest, BN, Artificial Neural Network (ANN), Decision

Tree (DT) and kernel methods, like Support Vector Machine (SVM) and Gaussian Pro-

cesses, are often used in healthcare data mining problems (Bardsley, 2012, Kansagara

et al., 2011, Lewis et al., 2011, ACI, 2014, DH, 2011a, Paton et al., 2014). Other

approaches in machine learning can be found in the work of Bishop and Nasrabadi

(2006).

Predictive models vary in terms of prediction time-window (time-horizon), selected

population, input variables, algorithm design and benchmarking methods. A list of

good practices is proposed by Sinha et al. (2013), which covers a number of issues.

However, not all studies (Lewis et al., 2011) clearly specify the details of analyses,

including publicly and privately funded projects (Appendix A.1.1).

This chapter is divided into six sections. Firstly, a brief introduction to Transfer Learn-

ing is provided. Then, Ensemble learning is discussed in detail. Afterwards, regression

modelling and Logistic Regression (LR) approaches are briefly summarised. Next,

major Decision Tree modelling algorithms are outlined, including the Random For-

est (RF). Moreover, a recap of the SVM models is presented. Furthermore, Bayesian

approaches are reviewed. After that, an abstract introduction to the Deep Neural

Networks (DNNs) is provided. Then the Bayes Point Machines (BPM) modelling ap-

proach is defined. Later, Deep learning approach and Wide and Deep Neural Network



4.2.1 Transfer Learning 34

(WDNN) model are described extensively. Finally, outlines of some other major mod-

elling techniques are given in Appendix A.1.2.

4.2.1 Transfer Learning

The Transfer Learning (Woodworth and Thorndike, 1901) is a wide area of research

in machine learning (Pratt et al., 1993) that focuses on improvement of the learning

through the transfer of knowledge from sub-models or inputs that are learnt. The

Transfer Learning refers to methods that harness and adapt models to a specific new

predictive task at hand. The Transfer Learning is also known as Multi-Task Learning

(Caruana, 1998) or Learning to Learn (Thrun and Pratt, 1997), and it refers to fitting

many related models to get better performance.

Transfer Learning methodologies can help to use forecasting and predictive modelling

techniques to provide a systematic methodology of analysis for similar cases with a

smaller number of visible parameters. This may also be extended to perform a semi-

supervised machine learning modelling such as active learning (semi-supervised ma-

chine learning) or latent feature modelling (Ghahramani et al., 2007) for use in com-

plex, real-world settings (Graham et al., 2011, Horvitz, 2010, Koller and Friedman,

2009).

The main application of the Transfer Learning is in domain adaptation. Examples of

domain adaptation problems are spam filtering, news analysis and many other person-

alised classifiers, or models that transfer the learnt features to another problem.

In this chapter, Ensemble learning is discussed, which is a partial subset of Multi-Task

Learning. In addition, DNNs are briefly overviewed. Because of recent breakthroughs

in graphics hardware (Oh and Jung, 2004), accelerated computing (Weber et al., 2011)

and backpropagation optimisation (Hinton, 2007) allowed DNNs to become one of the

most powerful tools in the Transfer Learning domain (Yosinski et al., 2014).

4.2.2 Ensemble Learning

The Ensemble learning approaches (Dasarathy and Sheela, 1979, Hansen and Salamon,

1990, Schapire, 1990) are used in statistics and machine learning techniques to combine

multiple learning algorithms to achieve a better performance. Ensemble methods have

been applied or integrated within a wide range of modelling techniques, including
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ANNs, Decision Trees, and unsupervised learning scenarios, like anomaly detection.

Some of the common Ensemble algorithms are Bagging, Boosting and various Bayesian

methods (Murphy, 2012, Rokach, 2010, Sammut and Webb, 2011, Sewell, 2008, Zhou,

2012).

Firstly, the Bagging method (Breiman, 1996) stands for bootstrap aggregating, and

it combines classifications of randomly generated training sets to decrease the error

and improve the classification. Firstly, the algorithm uses bootstrap distribution for

generating different base learners (Efron and Tibshirani, 1994). Then, it applies a

popular combination method, known as Voting, in order to aggregate the output of

learners. For example, Smedira et al. (2013) used a Bagging method to enhance the

stability of the multivariate analysis of a non-proportional hazard hospital readmission

model. The Bagging approach helped to increase the stability of the model, to be able

to analyse the association between readmission, resource use and mortality. However,

the studied population was very small and isolated, and the presented performance

benchmark was subjective.

The Boosting method (Schapire and Freund, 2012) can reduce the variance of proba-

bility estimates, by averaging together many estimates. In another word, the models

in the Ensemble modelling space try to correct weaker ones by focusing on the mis-

taken cases. AdaBoost method (Freund et al., 1996) is an extension of Boosting with

many variations (e.g. M1, M2 and R algorithms), which allows it to be implemented on

multi-class problems and regression problems. For instance, Turgeman and May (2016)

applied a boosted Decision Tree in combination with an SVM algorithm to model hos-

pital readmission. The model was tested on a dataset from veteran hospitals in a city in

the USA. The model performed considerably better than other basic models, including

LR, SVM and Decision Tree. But, the applied optimisation approach had a moderate

performance.

Bayesian methods, like Bayes Optimal Classifier (BOC), Bayes Model Averaging (BMA)

and Bayesian Model Combination (BMC) can be used to include hypotheses from the

hypothesis space and the associated prior probabilities. For instance, Monteith et al.

(2011) demonstrated that BMC provides a theoretical basis for soft-selecting from a

space of Ensemble models. The model was applied to a machine learning dataset, and

it was shown that BMC could outperform BMA, Bagging, and Boosting, in terms of

prediction accuracy.

However, two major disadvantages of Ensemble methods are moderately high comput-

ing resource usage, and difficulty in interpretability. Firstly, the computing resources

have been improved significantly in the past decade, and an Ensemble model with a
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moderate number of sub-models can run very quickly with comparable prediction per-

formance. Secondly, there are various post-processing techniques that can be applied to

interpret the models. The partial dependence plot (Goldstein et al., 2015) and impor-

tance rankings (Breiman et al., 1984, Chen and Lin, 2006) of features are two generic

approaches that can be used to interpret a black-box method (Murphy, 2012).

In the following subsection, a number of approaches for combining and selecting sub-

models in Ensemble modelling are discussed.

4.2.2.1 Combination Methods

In the final level of Ensemble modelling, a combination method must be applied to

include the estimated probability of all the sub-models in Ensemble modelling space.

The popular methods for combining a set of models are Voting, Stacking, Sum, Median,

Mean, Product, Mixture of Experts (MxE) and finally using weighting in combination

with other methods (Murphy, 2012, Sammut and Webb, 2011, Sewell, 2008, Zhou,

2012).

Firstly, Voting algorithms use a selection approach, like majority, soft averaging and

weighted combination of estimates to combine models. Voting algorithms are applied

in Bagging and Boosting algorithms and many classification algorithms, such as the

Random Forest (RF).

Moreover, the Stacking method (Wolpert, 1992) (a.k.a. Stacking Generalisation) uses

the produced estimated probability from a combination of sub-models as an additional

input to the main prediction model.

Furthermore, the weighting approach is used in Ensemble methods, like Weighted-

Average, Weighted Voting and Bayesian methods, like BOC. The weights are usually

derived using an approximation technique, like Expectation Maximisation (EM), to

optimise a performance indicator.

Moreover, the MxE algorithm (Jacobs et al., 1991, Jordan and Jacobs, 1994) generates

a group of sub-classifiers (i.e. Experts) whose outputs are combined and inputted into

a Generalised Linear Model (GLM). The inputted classifiers to the GLM are weighted

by a gating function using a method like EM. The MxE is particularly useful when the

feature space is heterogeneous, and classifiers on different parts of the space provide

more informative and synthetic estimates.
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For instance, Liu et al. (2014) proposed an Ensemble model based on MxE to predict

risk scores for acute cardiac complications. The developed MxE predictive model in-

corporates multiple sources of features and the weights of experts are defined using a

hybrid method. The model was developed using a small sample of cardiac patients

in the Singapore, and the performance of the model was fairly high based on a small

population in Singapore.

4.2.3 Logistic Regression (LR)

Before 1980, almost all learning methods were learnt linear surfaces. Linear Regression

modelling methods, such as the Logistic Regression (LR) and mixed models have been

applied extensively in previous literature in social science and healthcare modelling.

The LR (Cox, 1958, Walker and Duncan, 1967) method is similar to Linear Regres-

sion methods, but it has been developed for binary linear classification. For the LR,

the observed variable has Bernoulli distribution (Uspensky, 1937) instead of Gaussian

(Feller, 2008), and the estimated response variable is passed through a Sigmoid func-

tion (i.e. Logistic or Logit) to squash the estimates between zero and one. Moreover,

to fit the LR, there is a wide range of estimation and optimisation algorithms. One

of the popular methods is the Maximum Likelihood Estimation (MLE), which is the

same as minimising cross-entropy. A method like the MLE suffers from overfitting and

is sensitive to sparse features. The algorithm of a basic logistic regression model can

be represented as the following (Eq. 4.1):

f̂(x) =
1

1 + e(a+bx)
(4.1)

, where f̂ is the prediction of the dependent variable for a vector of data points x. 1
1+et

represents a Sigmoid function, and a and b are the coefficients and the error term is

implicit.

To overcome overfitting, L2 regularisation (a.k.a. weight decay) may be applied to

sparse models with a large number of features, and L1 regularisation may be applied

to sparse models with a small number of features. Regularisation in statistics is an

effective approach to favour simpler models (Blumer et al., 1987), which can work very

well with a large amount of data to reduce overfitting (Halevy et al., 2009). However,

when the dataset is small or more personalised results are required, then more complex

approaches are needed. For instance, a Multi-Task Learning or an Ensemble modelling
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methods may be used to include multiple classifiers (Section 4.2.1) and create more

specialised or personalised solutions.

The Linear Regression modelling is a well-understood approach with a very broad

range of algorithms. A brief summary of other major regression algorithm is provided

in Appendix A.1.2. For example, Demir et al. (2009) presented a predictive model

for emergency readmission to hospital using HES database. It evaluated the use of LR

with a simple transition model to incorporate patients’ history of readmission and other

covariates. The research focused on Chronic Obstructive Pulmonary Disease (COPD)

patients that are admitted to the England’s hospitals during a 7-year period. Factors,

including demographics, admission events and Length-of-Stay (LoS) were included,

and ultimately the performance was compared using ROC. The research demonstrated

that use of an only administrative database and a simple phase-type distribution could

effectively predict the risk; however, it was designed for a very specific cohort.

Wennberg et al. (2006) developed the LR to predict hospital emergency readmission,

similar to other NHS’s models (Lewis, 2011, DH, 2006, Nuffield-Trust, 2012). The de-

veloped model, Combined Predictive Model (CPM), takes advantage of variables from

inpatient, outpatient, A&E and GP from five PCTs. However, very little performance

statistics were reported for the model. The update of CPM (Billings et al., 2013) was

published in 2013 and reported a modestly high ROC for the model by including data

from all the four care sectors, but it had a very weak true positive rate (sensitivity).

Howell et al. (2009) used a multivariate LR to predict hospital readmission within 12-

month for patients with chronic medical conditions, using Queensland Hospital data in

Australia. The model includes demographics, socioeconomic status, geographic remote-

ness, comorbidities and previous care utilisation. The model has a modest performance

and very narrow focus.

Demir (2014) presented a comparison between Decision Trees, LR, GAM and MARS

for predicting hospital readmission for a PCT in the UK. The benchmark shows that

for this particular population and very narrow specification, the LR came first and

others came very close.

In addition, one application of regression modelling is in the pathway modelling (i.e. the

factors that arise from heterogeneity amongst patients) of the EoL (Appendix A.1.3)

and frailty function modelling. For instance, a multinomial Logit model was developed

by Adeyemi and Chaussalet (2009) for modelling COPD patients’ pathway. In the

model, the patient frailties were regarded as mixed effect type, and the random effects

distributions were modelled based on patient pathways. The model was successful in

identifying the high probability pathways for survival and cost objective functions, but
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must be tested on other cohorts of patients.

4.2.4 Decision Trees

In 1980’s, Decision Trees allowed efficient learning of nonlinear decision surfaces. De-

cision Trees in predictive modelling are defined by recursively partitioning the input

space, and defining a sub-model in each resulting region of input space (Murphy, 2012,

Zhou, 2012). There are many algorithms for Decision Tree, with specific criteria for

building and training, including C4.5 by Quinlan (1986) and its commercial successor

C5.0 (Quinlan, 2014), Classification And Regression Tree (CART) by Breiman et al.

(1984) and Multivariate Adaptive Regression Splines (MARS) by Friedman (1991).

Decision Trees are popular, because of the ease of interpretability, ability to handle

discrete and continuous features, insensitiveness to the monotone transformation of

features, automated feature importance ranking, robustness to outliers and scalability

in terms of number features and observations.

One of the main disadvantages of Decision Trees is that a small change in the distri-

bution of top features in the tree can have a large effect on the model. The algorithms

that use greedy search to find optimal tree usually have lower accuracy than any other

kind of algorithm, which uses a more sophisticated optimisation algorithm, such as the

hierarchical MxE (Murphy, 2012, Zhou, 2012).

For example, Austin (2007) compares CART, Generalised Additive Model (GAM),

MARS and Logistic Regression (LR) for prediction of mortality after Acute Myocar-

dial Infraction (AMI) hospitalisation, using Ontario hospital data. All the models

demonstrated very close prediction performance, except the CART model, which suf-

fered due to its algorithmic inability to incorporate complex or non-piecewise linear

relationships.

In the following subsection, Random Forest (RF) classifier is outlined, which is an en-

semble of Decision Trees, and provides a solution to the high variance in the estimations.

4.2.4.1 Random Forest (RF)

The Random Forest (RF) is an Ensemble Decision Tree, which was first introduced by

Breiman (2001), and is based on the CART algorithm (Breiman et al., 1984) and the

Bagging Ensemble method (Breiman, 1996). To reduce the correlation between the
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classifiers, Breiman (2001) algorithm implements a technique to decorrelate the base

learning trees based on a random feature selection.

Moreover, the Breiman RF is sensitive to highly correlated features (i.e. correlation

bias), and the scale or the number of categories of features. Although it can produce

very good fit for the data, the RF feature importance predictions must be treated

with caution (Strobl et al., 2007, Toloşi and Lengauer, 2011). The cForest algorithm

proposed by Hothorn et al. (2006), is an alternative to the original RF. It is based on

conditional inference trees and reduces selection bias with a much higher computation

burden. Therefore, if the original RF is going to be used, the input features must be

pre-processed by a correlation analysis and a feature transformation approach, in order

to guarantee unbiased and reliable feature importance ranking (Figure 4.1).

For a given training set with {(Xi, Yi)}ni=1 as input features and response variables, the

Bagging part of the RF model can be represented as the following (Eq. 4.2).

f̂(x) =
1

B

B∑
b=1

fb(x
′) (4.2)

, where Bagging has been carried out for B number of times, and random sampling

with replacement at each iteration. The fb(x
′) represents a trained tree for unseen

sample x′. In addition, in the random forest at each candidate split in trees, a random

subset of the features is used.

For instance, Zheng et al. (2015) benchmarks the LACE score (van Walraven et al.,

2010). The study used a RF, a particle swarm optimisation based SVM and a Radial

basis function ANN, for predicting hospital readmission using a small sample of heart

failure (HF) patients. The presented statistics indicate that the SVM outperformed the

rest, but with a very steep computation cost. Additionally, the RF was in the second

place with high accuracy and sensitivity.

Moreover, RF is one of the most accurate learning algorithm, which can efficiently han-

dle missing observations well. However, the main disadvantage of RF, as many other

techniques, is its algorithmic weakness in dealing with noisy classification problems.

Also, when the number of observations is lower than the number of features or order

of problem’s convolutional structures, RF can over-fit and under-perform.
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Figure 4.1: An abstract representation of the Random Forest

4.2.5 Support Vector Machine (SVM)

In 1990’s and 2000’s, efficient learning algorithms for non-linear functions based on

computational learning theory were developed, including efficient separability of non-

linear regions using kernel functions, quadratic optimisations and better optimisation

algorithms rather than greedy search.
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Figure 4.2: Separating hyperplane in the Support Vector Machine (SVM)

The Support Vector Machine (SVM) algorithm searches for an optimal hyperplane for

linearly separating patterns and it extends to patterns that are not linearly separable.
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SVM can take advantage of Kernel Trick (Hofmann et al., 2008) to transform input

data to be mapped into a new space (kernel space). The support vector refers to

the data points that lie closest to the decision surface (hyperplane). There are many

possible ways to find a separating hyperplane (Figure 4.2) and the SVM tries to find

an optimum solution, unlike a method such as Artificial Neural Network (ANN). A

hyperplane may be represented as the following (Eq. 4.3):

f(x) =

n∑
i=1

yiαiK(x, xi) + b (4.3)

, where xi represents the input data from a sample of size n, and yi is the response

variable of input i. K(x, xi) is a kernel function, which a non-linear mapping func-

tion from the input space, and α is a Lagrange multiplier, which is non-zero if input

data belongs to the support vector. The following demonstrate the decision function

(sgn(f(x))) using the Kernel Trick (Eq. 4.4):

sgn(f(x)) = sgn(wx+ b) = sgn(
n∑
i=1

yiαiK(x, xi) + b) (4.4)

, where sgn is the Signum function that extracts the sign of the estimate where yi ∈
{−1, 1}.

For instance, Yu et al. (2015) modelled a 30-day readmission model with adjustment for

hospitals, and then compared a linear SVM, a non-linear SVM and a Cox regression

against the LACE score. The model used Medicare inpatients 65+ years from the

general US population, with a moderately small dataset. All the proposed models

performed better, in comparison with the LACE. However, the two more complex

models, the non-linear SVM and the Cox regression, failed to perform better than the

linear SVM.

Moreover, to evaluate the importance of features, Guyon et al. (2002) proposed Support

Vector Machine Recursive Feature Extraction (SVM-RFE) with w2
i as the ranking

criterion. The SVM-RFE method uses a weighted sum of support vectors to rank

features by importance.

The advantage of the SVM methods against Linear Regression like LR is that it can

classify non-linearly classifiable problems. However, the major downside of the SVM is

its proportional complexity to the number of input data. But, the number of features

has very little effect on the complexity of the optimisation.
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4.2.6 Bayesian Methods

There are two main approaches for incorporating stochastic models into the statistical

modelling: discriminative (conditional distribution model) and generative (joint prob-

ability model). Firstly, the discriminative modelling does not make any assumption

about the prior distribution and only includes the conditional probability. Therefore,

discriminative modelling is also known as the frequentist approach, and linear clas-

sifiers, like LR, are examples of it. On the other hand, Bayes modelling (Bayes and

Price, 1763) methods are known as generative, and they include the prior (marginal)

distribution of the evidence data to the discriminative model (Jordan, 2002).

Under the frequentist approach, unknown parameters are considered to have fixed but

unknown values (i.e. fixed priors). The unknown parameters might be calculated

by maximisation of total marginal likelihood, or be estimated using methods, such

as Maximum Likelihood Estimate (MLE) or numerical integral approximations like

Laplace approximation. Moreover, the frequentist inference of the posterior probabil-

ity distribution can be interpreted as procedures that guarantee long-run frequency.

This inference is derived from procedures that guarantee probability within a random

confidence interval (Berger et al., 2006, Gill, 2014, Koller and Friedman, 2009).

In contrast, a Bayesian approach considers all parameters to be random variables (i.e.

functions of the data), and the data is used to update the prior probabilities of these

parameters. In this approach, the Bayesian inference of posterior probability distribu-

tion is used for setting and updating beliefs. The computation methods of Bayesian

priors can be categorised into three distinct groups (Berger et al., 2006, Gelman et al.,

2013, Gill, 2014, Koller and Friedman, 2009, Lunn et al., 2012, Press, 2009):

• Subjective Bayesians: uses personal degrees of belief. It is applying informative

priors, based on historical data or underlying theory.

• Objective Bayesians: uses non-informative priors (a.k.a. objective, diffuse, flat

or reference priors). It is applying prior distributions that are formally express-

ing ignorance (vague information); but, have well-defined posterior probability

distributions2:

– Using conjugate priors to approximate uninformative priors.

– Using prior distributions that can span the range of likelihoods, such as flat

prior or Gaussian prior.

2It is especially useful for complex problems with many parameters that have very little amount of
information about the data. However, for many problems, this approach can be misguided or have no
clear choice of prior distributions and inference approximation.
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– Defining priors that are transformation invariant based on Jeffreys’ Prior

(Jeffreys, 1946).

• Empirical Bayesian: Using data to estimate the prior.

Before doing the Bayesian inference, it is useful for comparison to ignore some infor-

mation and do a crude estimation of the missing data. However, ultimately inference

of missing data should be included as part of the model. The Bayesian inference ap-

proximation can be categorised into two distinct groups: deterministic and stochastic.

In below, some of the well-known inference approaches are highlighted (Barber, 2012,

Gelman et al., 2013, Koller and Friedman, 2009):

• Deterministic approximation:

– Laplace approximation: finds the Gaussian approximation to a probability

density, which is based on the second-order Taylor approximation of the log

posterior around the Maximum-a-Posteriori (MAP) (Bishop and Nasrabadi,

2006).

– Expectation Propagation (EP): is an iterative approach for choosing the

best approximation from within some tractable class of distributions (Minka,

2001c).

– Loopy belief propagation: is a dynamic programming approach, which cal-

culates the marginal distributions for unobserved nodes, conditional on any

observed nodes (Murphy et al., 1999).

– Expectation Maximisation (EM): is an iterative method for finding the max-

imum likelihood or MAP estimates, where the model depends on unobserv-

able variables (Bailey et al., 1994).

– Variational Bayesian methods: is an extension of EM algorithm from MAP,

and it finds a set of optimal parameter values based on a set of interlocked

equations (Bernardo et al., 2003).

• Stochastic Approximation:

– Direct simulation: can be used for simulation of simple models, and it is

often easy to draw from the posterior distribution (e.g. rejection sampling,

univariate sampling, and multivariate sampling).

– Markov Chain (MC) simulation, a.k.a. Markov Chain Monte Carlo (MCMC):

is a general method for drawing sequential samples, which distribution of
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sampled draws depends on the last value drawn. Gibbs sampler and Metropo-

lis sampling are two examples of the Markov-based sampling algorithm

(Gilks, 2005, Koller and Friedman, 2009).

Moreover, in Bayesian Network (BN) modelling, template-based representations are

used to produce a single compact model that can represent properties of system dy-

namics and to produce distribution over different trajectories (e.g. Dynamic Bayesian

Network) or to produce a distribution over different worlds (e.g. Genetics networks).

To be able to reason about non-static situations, Dynamic Bayesian Network (DBNs)

(Dean and Kanazawa, 1989) are used to represent nodes with system states. The sys-

tem states are either considered as stationary time-slices (homogeneous or invariant),

like Markov Models, or they are regarded as the state observation model, like Hid-

den Markov Models (HMMs). In state observation models, the states are variant and

evolve on their own separately from the observations (Koller and Friedman, 2009). Five

principal methods have identified to model a Time-Varying DBN and are presented in

Appendix A.1.5.

In the following subsection, Bayes Point Machines (BPM) is summarised, which is a

generative approach for non-linear classification. Moreover, before the model develop-

ment stage, a list of suitable Bayesian libraries are produced for the purpose of this

research, that is presented in Appendix A.3.

4.2.6.1 Bayes Point Machine (BPM)

The Bayes Point Machine (BPM) (Herbrich et al., 2001, Minka, 2001b) is a type of

nonlinear classification algorithm that identifies an average classifier known as a Bayes

point in a version space. A version space can be defined as a set of hypotheses, each

of which is an approximation of the main hypothesis class. Similar to SVMs, BPMs

are more geometrically motivated and are aimed to find a hyperplane with optimal

margins between classes. In contrast, logistic regression maximises the probability of

data by optimising the distance of each point to the decision boundary.

The soft margin SVM can be thought of as an approximation to the BPM (Herbrich

et al., 2001). SVMs (Vapnik and Vapnik, 1998) use a mapping to indirectly transform

data into higher dimensional space using a kernel function. Then, they use quadratic

programming to optimise the classification’s hyperplanes using support vectors and

margins. However, SVMs are only efficient for a symmetric version space and its

complexity is characterised by the number of support vectors.
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On the other hand, BPMs sample the Bayesian posterior (Eq. 4.5) for a nonlinear

classification in a kernel space. Then, they approximate the centre of the version

space, which is a set of consistent hypothesis, and the effective size is determined from

the training sample. BPMs minimise the generalisation error over a set of hypotheses

according to a prior probability, instead of maximising the classification boundary

margin explicitly, as SVMs do. The predictive distribution can be thought of as a linear

discriminant function, which is assumed to have the following parametric density:

p(y|x,w) = p(y|s = wTx) (4.5)

, where w is the weight or latent parameter vector, x is the fully observed feature

vector, and s is the score function. BPMs use the kernel trick (Hofmann et al., 2008)

to find an optimised w. The centre mass of the version space is approximated using an

average of the weight vectors while minimising the average generalisation error. The

derived scores are subject to additive Gaussian noise (ε) to allow for measurement or

labelling errors (Eq. 4.6).

p(y|s, ε) = (ys+ ε > 0)1

, with p(ε) = N(ε|0, 1) ∧ 1(α > 0) =

1 if α > 0

0 if α ≤ 0

(4.6)

In this research, Microsoft’s Infer.Net library (Research, 2016) was used to construct

the BPM model (Figure 4.3). The applied algorithm uses the original version of the

BPM, with two main modifications. Firstly, it uses a mixture of Gamma-Gamma, a

heavy-tailed prior probability distribution for the precision of weights and features.

Secondly, it applies Expectation Propagation (EP) message passing to infer poste-

rior probabilities, which has been demonstrated (Minka, 2001a,b) in Gaussian Mixture

problems to be better than approximation techniques.

Therefore, the applied BPM is invariant to parameter rescaling or shifting, unlike LR

or SVM methods. Moreover, active Bayesian training can allow continuous updates of

the model and account for changes in the prior probabilities. Furthermore, the BPM

can efficiently handle a relatively larger number of features.

For instance, (Tan et al., 2008) applied a BPM model in combination with a Hidden

Markov Model (HMM) to analyse immunological data of Asthma patients from a hos-

pital in the UK. The research has provided a basic proof of concept for the analysis

of large-scale immunological datasets. But, the study provided very little detail about
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Figure 4.3: Infer.Net implementation of Bayes Point Machine (BPM)

the performance statistics and the dataset characteristics.

4.2.7 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) (McCulloch and Pitts, 1943) are based on a col-

lection of artificial neurons (i.e. neural units), and are inspired by our understanding

of our biological brain’s axons. An ANN can be defined using three parameters: in-

teraction patterns between layers, weights of the interactions and activation functions.

Unlike brain neurons that can connect to any nearby neurons, an ANN consists of

discrete layers, connections and direction of data propagation. Each neuron computes

using an activation function (a.k.a. rectifier) (Hahnloser et al., 2000), with a minimum

limit on the output before the data propagation.

Moreover, activation functions provide a form of linear or non-linear rectifiers to allow

faster and effective training by efficiently activating the neurons. There is a wide range

of activation functions, including Linear, Tanh, Sigmoid, Softmax, Softplus, Softsign,

ReLU, ReLU6, LeakyReLU and PReLU. The Rectified Linear Unit (ReLU) was used in
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this research, because of its effective approximation technique for classification problem.

The ReLU is defined in Eq. 4.7, where f(x) is the rectifier for input signal x.

f(x) = max(0, x) (4.7)

Furthermore, ANN algorithms use an optimisation function to minimise a defined cost

function and a method to stimulate neurons in the network. The cost function (Eq. 4.8)

is a measure of model’s goodness based on input data, and depends on ANNs weights,

biases, inputs and outputs (for observation i), but independent of the activation values

C(W,B, Si, Ei) (4.8)

The signals in training stage can flow either in feed-forward (one-way) mode, recurrent

mode (a.k.a feedback or interactive) or recurrent coupled with Long Short-Term Mem-

ory (LSTM) (Demuth et al., 2014). Because of the computational complexity in the

training, most of ANNs use a from Gradient Descent (a.k.a. Steepest Descent) with

backpropagation, to perform optimisation (Gron, 2017, Ruder, 2016). Some popular

versions of Gradient Descent are highlighted in below:

• Gradient Descent: moves into the direction of the decreasing gradient in its

search, based on a manually configured learning rate (a.k.a. learning step).

• Batch Gradient Descent: is similar to the generic algorithm, but in each step, it

calculates gradient on changes in features (partial derivative). Therefore, it uses

the whole training set in each step.

• Stochastic Gradient Descent: is similar to the Batch Gradient Descent, but it

picks only one random instance to calculate the gradient.

• Mini-Batch Gradient Descent: is similar to the Stochastic Gradient Descent, but

it picks a few random instance to calculate the gradient.

• Momentum (Sutton, 1986): accelerates Stochastic Gradient Descent by adding a

momentum to the descent, when gradient does not change direction.

• Nesterov accelerated gradient (Nesterov and Nemirovskii, 1994): improves the

Momentum algorithm by adapting the learning rate in anticipation of the current

descent.

• Adagrad (Duchi et al., 2011): improves the Nesterov accelerated gradient by

adapting the learning rate to each parameter importance.
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• Adadelta (Zeiler, 2012): is a modified version of the Adagrad, which decreases

learning rate with a smaller rate.

In this research, the Adadelta (Zeiler, 2012) Gradient Descent was applied, because it

eliminates the need to manually adjust the learning rate, and the learning rate does

not decay to zero like the Adagrad. Gradient Descent methods generally have some

degree of weakness toward falling into local minima trap. Also, the input features that

are not scaled can have big negative impact on the convergence and the learning rate.

The gradient in Adadelta model is defined in Eq. (4.9):

g0 = 0

gt = (1− γ)f ′(θt)
2 + γgt−1

(4.9)

, where gt represents expected gradient in iteration t, where γ is the decay term.

Moreover, f ′(θt) is the derivative of the loss, with respect to parameters (θ) at time t.

In the following subsection, a brief introduction to Deep Neural Network (DNN) is

provided.

4.2.7.1 Deep Neural Network (DNN)

Firstly, Deep learning (a.k.a. hierarchical learning) refers to a class of algorithms in

machine learning that attempts to learn multiple levels of complexities that correspond

to different abstract levels. It uses many layers of non-linear learning representation

to transform raw input data to a format that can be effectively exploited (Deng et al.,

2014).

Furthermore, Deep Neural Network (DNN) (Bengio et al., 2009, Schmidhuber, 2015)

is a class of ANNs with multiple hidden layers, which allows modelling more complex

non-linear problems. DNNs act like ANNs, but with better ability to model non-linear

models with more complex and effective representation of features in each layer.

Researchers in the area of DNN modelling try to create more effective methods that can

implement more abstract layers. But it does not mean that more layers and neurons in

DNNs would translate to a stronger model. Generally, hidden layers are not needed if a

problem is linearly separable, and neither an ANN. For non-linear problems, one hidden

layer is usually enough for most problems. Also, input neurons may be optimised after

training using a pruning method to filter out insignificant input nodes. Also, there
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are iterative pruning methods that can be run during the training phase to perform

selective pruning by gradually reducing neurons, or incremental pruning by gradually

increasing the number of hidden neurons, to simplify the model (Heaton, 2008).

For instance, Pham et al. (2016) presented DeepCare model which predicts illness states

using a Dynamic DNN algorithm with LSTM. The model applied on hospital data from

2002 to 2013 for two chronic conditions: diabetes (11,000 patients) and mental health

conditions (52,000 patients). The full model includes features like diagnoses codes,

interventions, episodes and irregular timing, hypertension and tobacco use as inputs

with input node and network layer trimmings using L2 regularisation. The model

applies a weight function on the illness state to make the model temporal, and a forget

gate in the network to control the decay of this weight vector. The DeepCare model

performed significantly better compared to SVM and RF and a simple DNN methods.

However, the model used a very little number of features, and the comparisons were

made only using two performance indicators: F-score and precision.

In the following section, Deep learning and Wide and Deep Neural Network (WDNN)

are summarised, which takes advantage of latent variables, and deep feed-forward net-

work with memorisation and generalisation.

4.2.7.2 Wide and Deep Neural Network (WDNN)

For the purpose of this research, a Wide and Deep Neural Network (WDNN) method

was implemented, which combines benefits of memorisation and generalisation. The

WDNN was introduced by Cheng et al. (2016). The WDNN consists of two parts: wide

model, and deep model (Appendix A.7.2).

Firstly, the wide part of the ANN consists of a wide linear model for highly sparse

features (random features, which are only rarely active). Secondly, the wide part that

includes groups of crossed features (a.k.a. interaction terms). For each group of the

crossed features, each level of one feature occurs in combination with each level of the

other features. The Generalised Linear Model (GLM) (Eq. 4.10) and the cross-product

transformation (Eq. 4.11) are defined as the following:

y = wTx+ b (4.10)
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φk(x) =
d∏
i=1

xckii cki ∈ {0, 1} (4.11)
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Figure 4.4: Abstract graph of the Wide and Deep Neural Network (WDNN)

, where y is the prediction, x is a vector of features of d features, w is model parameters

and b is the bias. The φk(x) is the k-th transformation for vector of features x. Secondly,

the deep part of ANN composed of hidden layers of feed-forward Neural Network with

an embedding layer and several hidden layers for any other variable (Abadi et al., 2016).

Each hidden layer performs the following operation (Eq. 4.12).

a(l+1) = f(W (l)a(l) + b(l)) (4.12)

, where W (l), a(l) and b(l) represent weights, activations and bias for layer l, respectively.

Finally, the WDNN for the LR problem (Y ) can be formulated as the following (Eq.

4.13):

p(Y = 1|x) = σ(wTwide[x, φ(x)] + wTdeepa
(lf ) + b) (4.13)

, where σ(.) is the sigmoid function, φ(x) is the cross-product transformations of x

features and w. are the weights.

The WDNN is an attractive modelling choice since it can generalise better the unseen

features, using dense embedding in the deep part of ANN. Also, it can memorise feature

interactions, using cross-product of features in the wide part of the ANN.
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In the next chapter, the main healthcare data sources are defined, and the bespoke

dataset that is used in this research is described.



Chapter 5

Data

In this chapter, the data sources are described and the extracts and samples are defined.

In the following sections, firstly, an introduction is provided to healthcare administra-

tive databases. Then, the Hospital Episode Statistics (HES) is summarised. After

that, Secondary Uses Service (SUS) is outlined. Next, the emergency admission types

are precisely defined. Afterwards, the extracted samples and created sub-samples are

specified. Finally, a discussion about the data quality is supplemented with exploratory

analyses.

5.1 Healthcare Administrative Databases

Administrative databases are used in performance monitoring healthcare systems in

the UK, the USA and other countries. Healthcare data, such as hospital admissions,

Accident and Emergency (A&E), outpatient attendance and General Practice (GP)

data, are used in predictive modelling problems (Billings et al., 2013, David et al.,

2006, Dialog, 2008, Kansagara et al., 2011, Lewis et al., 2011).

Although clinical databases, like primary care and Nuffield Trust databases, are a

compliment to administrative databases. But, they are expensive and usually are not

free, and therefore with limited applicability. According to a study, cost per-record

for clinical data can range from £10 to £60 per-record compared to £1 per-record

for the HES database (Raftery et al., 2005). Aylin et al. (2007) compared a set of

predictive mortality risk models using administrative data only, and demonstrated

that the creative use of such data can be useful for performance monitoring and is a

complement to the clinical data.

53
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Moreover, another challenge in using health databases is in dealing with different clin-

ical coding systems (e.g. use of Read Codes Version 2, CTV3 and SNOMED-CT by

GPs) and under-reporting of diagnostic variables (Billings et al., 2013, NHS, 2016d).

For instance, SystmOne and its rival EMIS are software systems that are used by the

majority of GPs in England. Although such systems can capture a wide range of record

types, the way they organise and encode the patient data is not standardised and varies

(TPP, 2016b, Morrison et al., 2012).

5.1.1 Hospital Episode Statistics (HES)

The Hospital Episode Statistics (HES) warehouse was originally founded in 1987 and is

an administrative database that contains all inpatient admissions, outpatient appoint-

ments and A&E attendances to National Health Service (NHS) hospitals in England.

In additions, the HES database is a verified and less detailed version of the SUS, which

is used at hospitals. Moreover, HES data covers all the NHS trusts, including acute

cares, Primary Care Trusts (PCTs) and mental health trusts. The secondary copy of

the HES database is an anatomised or a pseudonymised version of the original database

and can be used by researchers for non-clinical purposes. At present, the HES database

holds records since 1998, and the records are being updated on monthly basis (HSCIC,

2016d).

The HES’s data columns (variables) can be categorised into the following business

definitions (HSCIC, 2014a):

• Clinical classifications: include details of any diagnosis, procedures and interven-

tions, like DIAG NN that keeps patient diagnoses codes.

• Episodes and spells: contain details of units of care provided and details of entire

stay of the patient, such as SPELLDUR that holds the calculation of the spell

duration.

• Patient classifications: record details of admissions, like CLASSPAT that rep-

resent the patient classification.

• Unfinished records: represent records that have open status. Episode status

variable (EPISTAT ) is used to flag the status of treatment.

• Outpatient appointments: hold details of the admitted patients who do not stay

overnight, and records are separate from other admission types.
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• A&E attendances: keep details of admitted patients to A&Es, and it is separate

from other types of admissions.

Moreover, the databases hold health status and care details in format of episodes and

spells. Spell refers to a continuous period of care, which includes episodes of care activ-

ities (HSCIC, 2016d). However, hospital transfers and same-day admissions sometimes

are recorded as separate spells. Therefore, depending on the problem in hand, super-

spells might be considered, which broaden the definition of spells to combine more

related episodes of care, in order to reduce the bias.

In this study, no linkage was made to the ONS’s mortality data, but the flag for in-

hospital death from the HES was used to filter patients. The DISMETH (Discharge

Method) and DISDATE (Discharge Date) variables were used to label in-hospital

deaths (HSCIC, 2016d).

5.1.2 Secondary Uses Service (SUS)

The HES database is derived from the Secondary Uses Service (SUS) database, which

is supplied by the Commissioning Data Sets (CDS) directly from hospitals. Compared

to the HES, SUS is missing some derived variables and a series of data verifications

and corrections procedures. Moreover, there are some detailed administrative, clinical

and cost variables which are not passed to the HES. The SUS engine extracts two set

of databases: the SUS Extract Mart (SEM) and the Payment by Results (PbR).

Firstly, the SEM data is directly used by the NHS providers and commissioners. How-

ever, SEM is much more difficult to use for analysis, compared to the PbR, because it

is in raw format and very weakly validated.

Moreover, the PbR contains derived items, including very detailed tariffs, and goes

through consistent data verifications. The SUS for the PbR extraction is validated

according to the HSCIC guidelines and the Department of Health (DoH) policies.

Therefore, PbR is a more suitable option for analysis and has the capability to run

special purpose extracts to support critical care models. In addition, the PbR provides

extracts based on spells, as well as episodes, with exclusion of some fields and removal

of incomplete episodes (NHS, 2013b, 2016c,e).
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5.2 Emergency Admission

The emergency admission is a method of admission (ADMIMETH), and by defini-

tion is not predictable and happens at short notice. It can have one of the following

attributes in the HES database:

• State 21: A&E or dental casualty department;

• State 22: Immediate admission requested by a GP;

• State 23: Bed bureau;

• State 24: A consultant clinic;

• State 25: Admission via a mental health crisis resolution team, or domiciliary

visit by consultant;

• State 2A: Transfer from another A&E;

• State 2B: Transfer from another hospital;

• State 2C: Baby born at home as intended;

• State 2D: Other emergency means;

• State 28: Other means.

Moreover, maternity may be considered as an emergency admission method, which is

typically included in previous models:

• State 31: Admitted ante-partum;

• State 32: Admitted post-partum.

The two other types of admissions, which are not considered as an emergency, are as

the following:

• Elective admissions: waiting list, booked and planned;

• Others and not applicable.

Furthermore, patient classification variable (CLASSPAT ) should also be set to value

one, to indicate that the patient was not admitted electively.
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5.3 Population Samples

In this research, only inpatient data from the HES database is used. The bespoke

extract of the HES database includes records from April 1995 to April 2010. The

inpatient table consists of 206,528,432 episodes. This excludes records invalid (NULL

value), patient identification (HESID) or admission date (ADMIDATE). In total, it

adds up to 39,403 episodes with NULL value ADMIDATE and 11,212,871 episodes

with NULL value HESID. Similar to the PARR model, each sample covers about

20% of unique patients in England that are admitted within the trigger-year of the

selected time-frame (Table 5.1).

Table 5.1: Selected samples from the HES Inpatient database

Samples Timeframe
Population size Sample size Filtered patients
Episodes Patients Episodes Patients Total No

prior
spell

No post
spell

Sample-1 1999/04 - 2004/03 18,885,777 7,206,133 6,347,067 1,441,227 1,157,873 492,458 148,950
Sample-2 2004/04 - 2009/03 31,731,488 8,104,748 11,394,152 1,615,347 1,410,923 395,522 110,961
Sample-3 2000/04 - 2005/03 32,217,541 7,370,830 6,449,169 1,474,166 1,324,712 671,919 194,097

Analogous to the PARR, the data was divided into about three years of prior-history,

one year of trigger-event and one year of prediction-period. For instance, Figure 5.1

demonstrates how Sample-1 was divided into three periods.

Table 5.2: Combinations of the selected test and train samples

Samples Training Sub-sample Testing Sub-sample
Sample-1 trainsample-1 testsample-1
Sample-2 trainsample-2 testsample-2
Sample-3 trainsample-3 testsample-3
Sample-1-train-half-2-test-half trainsample-1 testsample-2
Sample-1-train-half-3-test-half trainsample-1 testsample-3

Emergency Re-
Admission in Next 12-

Months 

Apr. 1999 Apr. 2002 Apr. 2003 Apr. 2004 

The Trigger Year 3 Years Prior History 

Figure 5.1: Data time-frame for the PARR model

Finally, the selected main samples from each time-frame were divided into two sub-

samples for training and testing (Table 5.2). No validation sub-sample was created

since different modelling algorithms were not going to be compared against each other.

Each sub-sample includes 50% of the main sample, and train and test sub-samples have

about 10% of all the unique patients that were admitted during in the trigger-year.
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5.3.1 Terminologies

Finally, a number of terminologies are used through the document, which are related

to the emergency admission prediction, and are outlined in below:

• Trigger-period (trigger-year): Only the patients who have an admission during

Trigger-period are included in our data extracts. In our analysis, it is the fourth

year of a selected time-frame.

• Trigger-event (trigger-admission): In our research, the Trigger-event is consid-

ered as the first qualified admission of a patient and is drawn from the trigger-

period. Based on this admission, the prior-history periods and the Future-admission

are calculated.

• Prior-history (prior-period, prior-trigger or prior-admissions): The prior care

records before the trigger-event are specified as the prior-period. In this study,

the Prior-history is the 3-year period prior to the trigger-event.

• Future-admission (target, label or response variable): The Future-admission refers

to the emergency admission outcome that is going to be predicted. It happens

within a time-window from the trigger-event.

• Prediction-period (time-horizon or post-trigger): The period after the trigger-

event of the patient is defined as the time-horizon. For instance, the Prediction-

period can be 30-day or 365-day after the discharge date (DISDATE) for the

trigger-event.

5.4 Data Quality

Every healthcare administrative database has usually some degrees of quality issues,

and the HES database is no exception. In Appendix A.5, some detailed statistics are

provided for the populations and samples, to identify potential issues in the data before

progressing with pre-processing.

Firstly, Appendix A.5.1 demonstrates that a large portion of spells is missing before

April 1997, and there is a little record after April 2010 in the bespoke HES extract.

Moreover, in-hospital death shows a seasonal pattern, it has a peak in the fourth quarter

(October to January), and in-hospital deaths gradually decreases with a very slow-rate.
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Furthermore, as it is expected, the number of episodes gradually increases per year,

but its rate is moderately higher for unique patients from about 2003 onwards.

In addition, Appendix A.5.2 and Appendix A.5.3 present descriptive statistics for the

selected features in the pre-processing stage. In Chapter 7, a framework is presented

that can deal with major data quality issues.

In the following chapter, the definitions of the problems that are studied in this research

are presented. In addition, the benchmarking models that used are briefly described.





Chapter 6

Problem Definition

In this research three major pieces of work have been carried out. Firstly, a framework

is designed for pre-processing the Hospital Episode Statistics (HES) and the Secondary

Uses Service (SUS). Then, a model for hospital emergency readmission is provided.

Finally, a temporal comorbidity risk index is developed.

Furthermore, for all the developed solutions, a bespoke extract of the HES was used

which covers admissions from April 1995 to April 2010. Three different samples, each

covering a 5-year period, were selected to train, test, validate and benchmark the

models.

Moreover, studying interventions, control groups and stratified classes can provide an

opportunity to study factors that can affect the implementation of risk models (Davies

et al., 2015, Eggli et al., 2014, Hutchings et al., 2013). However, the effects of in-

terventions were not included in the scope of this research, because the NHS has no

centralised service to record the interventions.

In the following sections, firstly, the specification of the healthcare pre-processing frame-

work is defined. After that, the hospital emergency readmission problem is explained,

including the benchmarking models. Then, the comorbidity index problem is outlined,

and a brief overview of the benchmarking models is provided.

6.1 Phase I: Healthcare Pre-Processing Framework

The HES database is a less detailed and verified version of the SUS, and it is maintained

by the Health and Social Care Information Centre (HSCIC) (HSCIC, 2016f). Although
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the quality of the data improves after a set of standard cleaning and validation by the

HSCIC, the data still needs to be pre-processed before it can be used for modelling

(Section 1.2).

Moreover, patient records include a very large set of variables, which are very sparse

and are not collected on a regular basis. Also, many of the patients have censored (i.e.

partially observable) observations from left and right, which may introduce a level of

bias in the analyses. Consequently, a systematic way must be developed to generate

features, to be able to capture as mush as features possible with temporal dimensions

that are consumable by statistical methods.

Furthermore, for engineering features, all the models in the literature (Appendix A.1.1)

rely either on previous studies, clinicians’ experts or a very shallow exploratory analysis.

And, our literature review did not find a framework for cleaning the HES or the SUS

data, and neither it could identify any framework for generating healthcare features.

The aim of this phase is to design a set of steps, to pre-process the HES and the SUS

data, and treat invalid data by removing or imputation. Also, a systematic set of

procedures must be defined to generate features, discretise or re-categorise features,

aggregate temporal dimensions and rank importance of features.

6.2 Phase II: Modelling Hospital Emergency Readmission

Developing and implementing a robust decision support tool for admitted patients is

critical. Predictive risk models can help patients and carers obtain appropriate support

services in clinical decision-making. In addition, such models can improve care quality,

and reduce the costs of inappropriate admissions to hospital or Accident and Emergency

(A&E) (Section 2.2).

In 2005, the Patients at Risk of Re-hospitalisation (PARR) (Billings et al., 2006a, Lewis,

2011) was commissioned to identify patients at high risk of emergency readmission to

inpatient within a year. After that, in 2006, the Combined Predictive Model (CPM)

was commissioned, to use the General Practice (GP), inpatient, outpatient and A&E

data, in order to predict the risk of 1-year emergency admission (DH, 2006). Later in

2013, an update of the CPM model was published with new features and more detailed

performance statistics (Billings et al., 2013).

Most existing decision support tools that are based on hospital administrative data, use

Logistic Regression (LR) or Coxian Phase-type Distribution (C-PHD) models (Adeyemi
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et al., 2013, Bardsley, 2012, Bottle et al., 2014, Kansagara et al., 2011, Lewis et al.,

2011, ACI, 2014, DH, 2011a, Paton et al., 2014). Although these models are simple

and popular, they have limited powers, because of algorithmic shortfalls, restricted

assumptions and weak variable selection strategies. In the area of healthcare risk mod-

elling research, there have been many successful implementations of advanced machine

learning methods (Green et al., 2006, Lee et al., 2012, Nilsson et al., 2006, Peelen et al.,

2010, Song et al., 2004). However, few studies used a Bayesian approach to address

emergency hospital readmission problems (Álvaro-Meca et al., 2012, Cui et al., 2015,

Demir and Chaussalet, 2011, Gupta et al., 2014, Helm et al., 2015, Huws et al., 2008).

The aim of this phase of research is to develop an Ensemble generative risk model, to

predict emergency readmission within a year to the England’s hospitals. Firstly, based

on the designed healthcare pre-processing framework, the features can be cleaned and

generated, filtered and ranked from a bespoke extract of the HES. After that, sub-

models specialised for sub-population must be trained using a Bayes Point Machine

(BPM) approach. Afterwards, an optimised Ensemble model of these sub-models must

be generated. Moreover, the proposed models can be trained, tested, validated and

benchmarked using different samples and cohorts against previous models. Finally, the

source code of the produced solution is desirable to be released with sufficient level of

documentations.

6.2.1 Benchmarking Models

In this part of the research, performances of the PARR, the CPM and the CPM update

were used as a benchmark, since these tools use the HES data and are being used by

commissioners across the NHS England. These decision support tools help clinicians

and commissioners to rank and group patients based on anticipated intervention inten-

sity, including case management, disease management, supported care, prevention and

wellness promotion.

Moreover, none of the chosen benchmarking models was reconstructible due to lack of

documentation and data accessibility. Therefore, the benchmarking models were not

applied to our data, and instead the reported perfromance statistics were used.

In the following subsections, firstly, the PARR (Billings et al., 2006a, Lewis, 2011)

model is described. Then, the CPM (DH, 2006) is summarised. After that, the CPM

update that was developed by Billings et al. (2013) is outlined. Finally, a summary of

the benchmarked models’ settings is provided for more clarity.
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6.2.1.1 Patients at Risk of Re-hospitalisation (PARR)

The UK’s Department of Health (DoH) commissioned the Patients at Risk of Re-

hospitalisation (PARR) model in 2005 (Billings et al., 2006a, Lewis, 2011). The char-

acteristics that made the PARR model an ideal benchmarking model are presented in

below:

• Modelling hospital emergency readmission of inpatient patients within 12-month

period;

• Being applied by the NHS England for inpatients before discharge, in order to

identify if an extra intervention may be required;

• Using only inpatient administrative records from the HES database;

• Narrowing down the cohort to patients with 75+ years of age that have a reference

condition. The reference conditions include some of the frequent Healthcare

Resource Groups (HRGs), which are identified at the time of the study.

At the modelling stage, the PARR had two branches of models that were fitted using

a LR: the PARR-1 and the PARR-2 (Billings et al., 2006b). Unlike the PARR-2, the

PARR-1 limits the emergency admissions at the trigger-event to have a reference con-

dition (such as diabetes, congestive heart diseases and sickle cell disease).

6.2.1.2 Combined Predictive Model (CPM)

After the PARR development, the Combined Predictive Model (CPM) was commis-

sioned to include care records from the primary care and the secondary care sectors

(DH, 2006). The main characteristics of the CPM are as the following:

• Modelling the 12-month emergency readmission to hospital;

• Being applied by the NHS England for patients in the primary and the secondary

care to identify high-risk patients for a period of close follow-up;

• Using inpatient, outpatient A&E from the SUS database, and records from GP

systems.

The first CPM model that was developed in 2006, included data from 2002 to 2005 from

five Primary Care Trusts (PCTs). The population was divided equally into training
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and testing, and the final year of data was used as the prediction-period for emergency

readmission. Similar to the PARR, the CPM used a LR model, but with features from

different care sectors, which allowed it to be implemented in primary and secondary care

settings. Regarding the performance, the CPM could identify more positive high-risk

patients with a minimum of two years historical data from the SUS and GPs databases.

Also, it showed that linking four different data sources and handling missing data can

be very challenging, and a large portion of the development needs to be invested in

data preparation, linking, validation and correction.

6.2.1.3 CPM Update

There are other modelling efforts that focused on hospital emergency readmission to

inpatient within 12-month, such as the solution provided by Billings et al. (2013). The

main characteristics of the Billings et al. (2013) study can be summarised as follows:

• Modelling hospital emergency readmission of inpatient patients within 12-month;

• Using inpatient, outpatient and A&E from the SUS database, in addition to the

GP records.

The developed model was based on patient aged 18-95 with admissions from 2007-2010.

It included GP records from five PCTs in combination with the SUS records extracted

from hospitals. The performance of the model was noticeably higher than the PARR

and the CPM using the LR method. Moreover, this model is referred to as the CPM

update, the updated CPM model or the Billings et al. (2013) model throughout this

document.

6.2.1.4 Summary of Models Settings

The CPM, the PARR and the CPM update used different data sources and settings.

Therefore, in the benchmarking stage of our modelling, the statistics are presented for

three sub-populations (Table 8.1), to minimise the differences. The main differences in

the modelling settings of the studies are presented in below:

• The PARR-1 model:
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– Includes patients who only had an emergency admission during the trigger-

period ;

– Removes invalid patient identification numbers;

– Removes invalid or missing admission or discharge dates;

– Removes invalid or missing admission classification;

– Removes deceased patients at the trigger-event ;

– Removes patients aged below 65;

– Applies other data quality measures, which are not specified in the public

documentations.

• The CPM model:

– Includes patients who only had any type of admission during the trigger-

period ;

– Removes invalid patient identification numbers;

– Removes invalid or missing gender;

– Removes invalid or missing age;

– Removes deceased patients at the trigger-event ;

– Limits model to just five PCTs;

– Applies other data quality measures, which are not specified in the public

documentations.

• The updated CPM model:

– Includes patients who only had any type of admission during the trigger-

period ;

– Includes patients who only were registered with a GP;

– Includes patients that were aged 18-95;

– Limits model to just five PCTs;

– Applies other data quality measures, which are not specified in the public

documentations.

In contrast, the emergency readmission models that are developed during this study

have the following settings:

• Include patients who only had an emergency admission during the trigger-period ;

• Remove invalid patient identification numbers;
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• Remove invalid or missing admission or discharge dates;

• Remove invalid or missing admission classification;

• Remove deceased patients at the trigger-event ;

• Remove patient aged below one;

• Impute invalid or missing variables based on other variables or episodes;

• Categorise invalid or missing variables as a separate state.

6.3 Phase III: Modelling Comorbidity Index

There is increasing evidence that the quantification of high-risk operations and pro-

cedures, with adequate adjustment, can greatly improve the quality of readmission

models. There have been two streams of work on risk scoring comorbidities to estimate

future resource utilisation, emergency admission and mortality (Section 2.3.1).

The first stream of researches looks at the odds ratio of major diagnoses groups and

therefore is highly reliant on the whole population statistics. Another weakness of

such models stems from crudely summing up the risk score for comorbidities, which

are based on the most recent admission of the patients. A popular example is the

Charlson Comorbidity Index (CCI) (Charlson et al., 1987), which relies on twenty-two

comorbidity groups.

The second stream of models uses a diagnoses classification approach based on similar-

ities, type of care, likelihood or duration, which is usually very complex and specialised

to highly particular settings. One prominent method is the Elixhauser Comorbidity

Index (ECI) (Elixhauser et al., 1998, AHRQ, 2016b), which relies on thirty comor-

bidity groups. Unlike the CCI, the ECI is using Diagnosis-related Groups (DRG),

which was first developed by Fetter et al. (1980), Mistichelli (1984) and is based on

ICD diagnoses, procedures, age, sex, discharge status, complications and comorbidities.

Another well-established method is the John Hopkin’s (Weiner and Abrams, 2011) Ad-

justed Clinical Groups (ACG), which is a commercial tool. It encapsulates 32 diagnoses

groups, known as Aggregated Diagnosis Groups (ADGs), and their aggregations called

Expanded Diagnosis Clusters (EDCs).

Based on the machine learning pipeline that was developed in the prior stage of our

research (Section 6.1 and Section 6.2), comorbidity index is an extremely significant



6.3.1 Benchmarking Models 68

factor and has a high potential for further improvement. Presently, comorbidity risk

indices have four major weakness areas: robustness, temporal dimensions, population

stratification and associated factors to comorbidities and complications.

In this phase of research, we aim to improve on these four major areas. Firstly, to make

the risk score relevant to different environments, an approach must be used to model

complex correlations between variables and states. Secondly, to better distinguish the

short- and long-term conditions (i.e. prior-admissions, Length-of-Stay, and delta-time

between admissions), the temporal dimension may be included in the form of life-table

or a polynomial weight function. Thirdly, population stratification is a major factor in

the prevalence of medical conditions, and therefore must be adjusted. Fourthly, major

correlated factors to diagnoses may be included directly or indirectly (as latent) to

improve the risk estimates, including secondary diagnoses, operations, procedures and

complications.

The aim of this phase of our study was to develop a generic temporal comorbidity

risk index to predict the risk of emergency admission within 30-day and 365-day pe-

riods. Firstly, the input data from the HES may be processed using the healthcare

pre-processing framework. After that, the comorbidity risk may be modelled using

the temporal history of diagnoses, operations, complexities and other major correlated

factors. The modelling approach must be generic enough to be applicable to different

healthcare setting and input data sources. Afterwards, the models can be trained,

tested, validated and benchmarked using multiple samples and cohorts against previ-

ous models. Finally, a user-friendly toolkit must be designed to allow wider adaptation

and validation by research communities.

6.3.1 Benchmarking Models

Since the introduction of the CCI and the ECI models, researchers across the world have

tried to translate and to implement versions of the comorbidity indices that are more

representative of their population. Austin et al. (2012), Baldwin et al. (2006), Khuu

et al. (2015), Kuo and Lai (2010), Lieffers et al. (2011), Sharabiani et al. (2012) provided

systematic reviews of some major comorbidity indices, and some have compared the

risk model for 30-day emergency admission in addition to mortality.

In this phase, the developed comorbidity index models were benchmarked against our

implementation of the HSCIC adaptation of the CCI (HSCIC-CCI), and the reported

performance statistics of CCIs and ECIs. In the following subsections, the CCI and
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the ECI models are outlined.

6.3.1.1 Charlson Comorbidity Index (CCI)

Initially the Charlson Comorbidity Index (CCI) was developed by Charlson et al.

(1987), using a cohort of 559 medical patients from New York Hospital-Cornell Medi-

cal Center for a 1-month period in 1984, with 1-year follow-up. The aim of the model

was to derive a comorbidity index to predict mortality within a year. The CCI created

thirty diagnoses groups within nineteen major groups, and then calculated the Cox pro-

portional hazard to derive the adjusted weights for the diagnoses groups. After that, it

rounded the weights and calculated the comorbidity risk for patients by summing up

the weights. The CCI scores the nineteen diagnoses groups with various weightings,

which results in minimum possible risk score of zero and maximum of thirty-one. Fi-

nally, the model was benchmarked against the Kaplan and Feinstein methods (Kaplan

and Feinstein, 1974), which was developed for a cohort of diabetes, using cumulative

survival plot.

The CCI introduced an easy to use but very basic way to predict comorbidity risk of

1-year mortality. One of the recent translation of the CCI is the HSCIC version of the

CCI (HSCIC-CCI), that is developed by Dr Foster Unit (Aylin et al., 2010, Bottle et al.,

2011) and adapted by the NHS England (HSCIC, 2014d, 2015, 2016c). The HSCIC-CCI

includes seventeen main groups of diagnoses, and the diagnoses weights are continuously

being reviewed by the HSCIC. The HSCIC-CCI, with modified diagnoses groups and

new weightings, has a maximum score of hundred and twenty-nine in theory. Also, this

version of comorbidity index excludes stillbirths and cancer code anomalies. Firstly,

stillbirth is removed, because it is not included in the HES-ONS link. Moreover, when

both cancer and metastatic cancer are present in the diagnoses of a patient at the same

time, it is set to zero to avoid miss-classification and lower model bias.

In this study, our comorbidity models are compared directly against the HSCIC-CCI,

which was implemented using our data. Also, the models were compared indirectly

against the survey benchmarks, because they reviewed multiple versions of comorbid-

ity indices with the inclusion of emergency admission predictability power (Bottle and

Aylin, 2011, Bottle et al., 2014, Holman et al., 2005, Mehta et al., 2016).
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6.3.1.2 Elixhauser Comorbidity Index (ECI)

Firstly, Elixhauser et al. (1998) developed Elixhauser Comorbidity Index (ECI) to

predict the Length-of-Stay (LoS), in-hospital mortality and hospital charges. The study

used thirty refined diagnoses groups with ordinary least square regression and a LR to

predict the contribution of comorbidities. Unlike the CCI, the ECI model also adjusted

for demographics, financial incentives and clinical differences (including age, gender,

race, insurance, type of admission, operations and complications). The population

study was drawn from California hospitals inpatient data, which contained about 1.8

million admissions from 439 hospitals after excluding under 18 years old, non-emergency

admissions, maternal, and discharges to long-term care. The study presented a method

to rank the risk of comorbidity of patients for heterogeneous, as well as homogeneous

population sub-groups (DesHarnais, 1990).

Moreover, an ECI adaptation (AHRQ, 2016b) is sponsored and actively maintained by

the Agency for Healthcare Research and Quality (AHRQ). The inputs to the model are

ICD-10 diagnoses, and the generated Diagnosis-related Groups (DRGs). The model

classifies hospital cases into about 470 cases, using ICD diagnoses, procedures, age,

sex, discharge status, complications and comorbidities Fetter et al. (1980), Mistichelli

(1984). Li et al. (2008), Southern et al. (2004) published benchmarks of Charlson

and Elixhauser indices and provided more insight into their performances and general

characteristics.

In the next chapter, the healthcare pre-processing framework is presented as the first

phase of research.



Chapter 7

Phase I: Healthcare

Pre-Processing Framework

The developed healthcare pre-processing framework consists of four generic steps of

data pre-processing and is part of the development toolkits (Chapter 10). Initially, the

data was ingested and explored. Next, a set of procedures was carried out to remove

invalid variables and data records, and then the features that have inconsistencies were

treated. Thereafter, a pool of features was generated in a systematic way. Finally,

the features were filtered and ranked by their importance, and then top features were

selected.

Figure 10.1 outlines the pre-processing steps, using a process-flow diagram. In the

following sections, these four steps are outlined.

7.1 Step I: Data Management

In the data management step, a database was configured, and a bespoke extract of the

data sources was obtained. Then, an exploratory analysis of the features was carried

out, in order to visually observe their distributions properties, like quantiles, most

frequent values and invalid values. Thereafter, the variables were filtered out based

on their relevance and quality. Afterwards, cleaning, validation and re-categorisation

rules for the next steps are designed.

In this research, a MySQL database engine was used for our analyses (Oracle, 2016).

The MySQL database is an open source and highly scalable relational database manage-

ment system with a strong development community. Although it was feasible to choose
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a distributed computing solution, like MySQL Cluster1 or Hadoop Distributed File Sys-

tem (HDFS)2 with Apache Spark interface3, our healthcare data was well-manageable

on a single node. Since our MySQL queries, indexes and keys were designed very care-

fully, the migration from MySQL database to a more advanced engine, like MySQL

Cluster, would be very smooth.

Moreover, the features in the database have been explored in the R environment

(R Foundation, 2016), mainly using R base packages. In addition, continuous features

with complex patterns have been investigated using more specialised Cognostics tools

(Izenman, 2008), including Tableau software (Tableau, 2016), ggplot library (Wickham,

2016) and Trelliscope library (DeltaRho, 2016).

Thereafter, the duplicate variables were removed based on their level of quality. And,

unusable features with low-quality, inactive and irrelevant variables were excluded.

Finally, a set of cleaning, validation and re-categorisation rules was designed based on

our exploratory analyses and the HSCIC documentations (HSCIC, 2014a).

7.2 Step II: Data Preparation

The data pre-processing step can be divided into four main sub-steps (Figure 7.1).

Firstly, a sample was acquired from the main database, and a number of basic cleaning

rules have been applied (Figure 7.2). Thereafter, the re-factorisation, including dis-

cretisation and re-categorisation, and imputation of features were done simultaneously

(Figure 7.3). Finally, spells with same admission date and their episodes were grouped

into super-spells (Figure 7.4).

7.2.1 Sample and Remove Invalid Records

In this sub-step (Figure 7.2), firstly, about 20% of unique patients were selected from

all admissions within the trigger-year.

1MySQL Cluster is a distributed database engine that has high availability and high throughput
with low latency.

2Hadoop Distributed File System (HDFS) is a distributed file-system that stores data in computer
clusters built from commodity hardware.

3Apache Spark is an open-source cluster computing framework, that provides an interface for pro-
gramming entire clusters with implicit data parallelism and fault-tolerance.
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Figure 7.1: Healthcare pre-processing framework: Process-flow diagram

Since the inpatient records are episode-wise, they were sorted by patient identification

(HESID), admission date (ADMIDATE), episode start-date (EPISTART ), episode

order (EPIORDER), episode end-date (EPIEND) and episode key (EPIKEY ).

Next, invalid records and excluded populations were removed. Initially, infants less than

1-year old were dropped. Then, patients with invalid (NULL value) patient identifica-

tion (HESID) were removed. Thereafter, unknown admission dates (ADMIDATE)

were removed. Later, if a patient died at the trigger-event or during the prior-period,

the records were filtered out. Also, if a patient did not have emergency admission

within the trigger-year, the records were removed.

7.2.2 Cleaning and Treatment

Initially at this sub-step (Figure 7.3), invalid discharge date (DISDATE) and episode

end-date (EPIEND) were cleared (turned to NULL).

Furthermore, discharge date (DISDATE) and episode end-date (EPIEND) were

consolidated when one was missing, as part of the imputation procedures. The main

reasons of missing DISDATE or EPIEND are: regular day case episodes; not being

the last episode in the spell ; or not known.
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Thereafter, sex (GENDER) and ethnicity (ETHNOS) were imputed based on all the

patients’ records. Next, the Healthcare Resource Groups (HRGs) values (HRGLATE

and HRGLATE35) were set to their minimum in each spell. In the HES database,

there are six main HRGs categories, numbered two to seven, where two represents the

lowest resource use, and seven represents the highest resource use (NHS, 2013e).

Select the HES Database:
Inpatient table

Sample

Select Patients:
Find patients admitted within the trigger year.
Sample 20% of the patients.

Select

Search and Add Records:
SET episodes TO

Select episodes with admission within the timeframe for the selected patients.
ORDER episodes BY hesid, admidate, epistart, epiorder, epiend, epikey

Validate

Exclude Records: a

Removing patients with invalid identification, not known admission date b, less than one year
old, died at the trigger event or had no emergency admission during the trigger period.
FOR episode ∈ episodes :
IF (startage >= 7000), THEN
REMOV E episode

ENDIF
IF (hesid == NULL), THEN
REMOV E episode

ENDIF
IF (admidate == NULL

OR admidate == DATE(1885 01 01)
OR admidate == DATE(1582 10 15)
OR admidate == DATE(1600 01 01)), THEN
REMOV E episode

ENDIF
ENDFOR
FOR patient ∈ episodes :
IF (Hospital Deathtrigger == TRUE

OR Emergency Readmissiontrigger == FALSE), THEN
REMOV E patient

ENDIF
ENDFOR

aEpisodes prior to transfer were not removed.
bEarliest valid date (1885-01-01); Invalid date (1582-10-15); Missing date (1600-01-01)

Figure 7.2: Healthcare pre-processing framework - Step I: sampling sub-step
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Select Sub-samples:
Train and test subsamples

’NULL Invalid Dates’:a

FOR var ∈ {disdate, epiend} :
IF (var == NULL
OR var == DATE(1885 01 01)
OR var == DATE(1582 10 15)
OR var == DATE(1600 01 01)), THEN
var = NULL

ENDIF
ENDFOR

aEarliest valid date: 1885-01-01; Invalid date: 1582-10-15; Missing date: 1600-01-01

Imputations and Removals:a

disdatespell = MAXspell(disdate)
IF (epiend == NULL AND disdate 6= NULL), THEN
epiendspell = MAXspell(disdate)

ENDIF
IF (disdate == NULL AND epiend 6= NULL), THEN
disdatespell = MAXspell(epiend)

ENDIF
IF (MAXspell(disdate) < MAXspell(admidate)), THEN
disdatespell = admidate

ENDIF
epiend = disdate− admidate
IF (Anyspell(dismeth == 4)), then
dismethspell = 4

ENDIF
genderpatient = MAXpatient(COUNTpatient(gender))
ethnospatient = MAXpatient(COUNTpatient(ethnos))
hrglatespell = MINspell(hrglate)
hrglate35spell = MINspell(hrglate35)

aBy default disdate must be NULL, except for transfers and the final episode.

Factorisations and Imputations:
Factorise and convert variables using the rules presented in (Appendix A.4.3).
genderRecoded = FACTORISEgenderRecoded(genderepatient)
ethnosRecodedpatient = FACTORISEethnosRecoded(ethnospatient)
imd04rkRecodedpatient = FACTORISEimd04rkRecoded(imd04rkpatient)
ageRecodedpatient = FACTORISEageRecoded(startAgepatient, endAgepatient)
admimethRecodedspell = FACTORISEadmimethRecoded(admimethspell)
classpatRecodedspell = FACTORISEclasspatRecoded(classpatspell)
epidurRecodedspell = FACTORISEepidurRecoded(epidurspell)
admisorcRecodedspell = FACTORISEadmisorcRecoded(admisorcspell)
intmanigRecodedspell = FACTORISEintmanigRecoded(intmanigspell)
orgClusterspell = FACTORISEorgCluster(procode3spell)
rotreatRecodedspell = FACTORISErotreatRecoded(rotreatspell)
hrgsamplespell = CONV ERThrglate35(hrglatespell)

Figure 7.3: Healthcare pre-processing framework: data cleanings and treatments
step
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Finally, re-factorisations (Appendix A.4.3) were applied on a set of features, including:

• Sex (GENDER);

• Ethnicity (ETHNOS);

• Index of Multiple Deprivation (IMD) overall rank (IMD04RK);

• Age (AGE);

• Admission method (ADMIMETH);

• Patient classification (CLASSPAT );

• episode duration (EPIDUR);

• Admission source (ADMISORC);

• Intended management for patient classification (INTMANIG);

• NRLS (NRLS, 2010b) organisation clusters (derived from PROCODE3);

• Region of treatment (ROTREAT ).

Next, conversion of the HRGs to the latest version (HRG v3.5) were carried out

(HRGLATE), to make it consistent across our selected samples (HSCIC, 2016b).

7.2.2.1 Other Care Sectors

The aim of this subsection is to highlight only major relevant cleaning rules, that have

been encountered throughout our researches.

Other data sources that may be considered to be included in healthcare modelling are:

• Inpatient, outpatient and Accident and Emergency (A&E) data from the Sec-

ondary Uses Service - Payment by Results (SUS-PbRs).

• Diagnoses, drugs, encounters and lab data from General Practises (GPs).

• Outpatient and A&E data from the HES.

• Community and social care data from local authorities;

• Mental health data from the Mental health Services Data Set (MHSDS).
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Firstly, the use of SUS-PbR is very similar to the HES, but additional procedures

must be carried out to remove invalid data records, duplicate and missing variables

(HSCIC, 2016e). The HSCIC performs some additional removals during the HES core

processing, and must be carried out for the SUS-PbR. These additional removal rules

are as follows:

• The records that cannot be attributed to a valid Organisation Data Service (ODS)

provider.

• The records with invalid organisation code (PROCODE5), old query date (Query

Date), unattended patients (Attended Or Did Not Attend), excluded records

(Exclusion Reason), unfinished spells (Finished Indicator) and spells not in-

cluded in the PbR calculations (Spell In PbR/Not In PbR).

• The duplicate records that can be captured using the published HSCIC guideline

(HSCIC, 2016e).

• The records that fall out of the reporting period. These must be determined for

each time-frame and data source independently, due variety of data recording

quality.

Moreover, pre-processing GP data are usually very challenging as there is a very scatter

adaptions of standard clinical terminology systems across GPs, as well as inconsistent

disease coding practices throughout time by GPs. At the moment, there is a mix-

adaptation of Read Codes Version 2, CTV3 and SNOMED-CT, in addition to the

EMIS National Codes that are added to supplement the Read Codes Version 2 (NHS,

2016d, TPP, 2016a).

More details about cleaning rules must be enquired directly from data providers, as

there is very little public documentation for analyses of these data sources.

7.2.3 Grouping to Super-Spells

In this sub-step (Figure 7.4), initially, episodes were ordered by patient identification

(HESID), episode start-date (EPISTART ), episode order (EPIORDER), episode

end-date (EPIEND) and episode key (EPIKEY ). Then, each patient record was

ordered by admission date (ADMIDATE) and discharge date (DISDATE), and later

it is determined if spells could be categorised as a transfer.

Afterwards, the same day spells were combined into one spell, with exception of reg-

ular admissions. The defined rules are based on the NHS publications which specify
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an approach to construct a type of super-spell (HSCIC, 2014e). The super-spell term

refers to an entire period of care of a patient, which can include multiple episodes and

spells of care at multiple hospitals (DFI, 2014).

Prerequisite Order:
SET episodes TO
ORDER episodes BY hesid, epistart, epiorder, epiend, epikey

Order:
SET episodes TO
ORDER episodes BY hesidspell, admidatespell, disdatespell, transferspell, WHERE
IF (disdestspellprovider=1 ∈ {49, 50, 51, 52, 53, 84}

OR admisorcspellprovider>1 ∈ {49, 50, 51, 52, 53, 87}
OR admimethspellprovider>1 ∈ {2B, 81}), THEN

transfer = TRUE
ELSE
transfer = FALSE

Link:
Combine the same day spells, excluding regular attenders.
FOR spell ∈ spells :
IF (NOT (classpatspelli ∈ {3, 4}

AND NOT (classpatspelli+1 ∈ {3, 4}
AND (disdatespelli+1 − admidatespelli) ≤ 2
AND NOT (disdestspelli == 19 AND
admisorcspelli+1 == 51 AND
admimethspelli+1 == 21)), THEN

SET spelli TO spelli AND spelli+1

Figure 7.4: Healthcare pre-processing framework: the super-spells declaration step

7.3 Step III: Feature Engineering

In this step, the features pool was generated through several sub-processes. Initially,

parallel models can be defined if there are more than one care sector or cohort to be

modelled. Thereafter, four sub-steps were defined to construct a pool of features with

minimal levels of sparsity in features and with efficient generation procedures.

The feature pool specification is defined in the following subsections, and the detailed

design of the process-flow is described in Section 10.3.
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7.3.1 Parallel Models

Different parallel sub-models can be defined at this instance, in order to split-up the

modelling efforts, in-line with Multi-Task Learning (Section 4.2.1) or Ensemble learn-

ing (Section 4.2.2) approaches. For instance, parallel sub-models can be defined to

predict risk of emergency admission from GP, inpatient, outpatient, A&E, social and

community care. In addition, more parallel models can be defined to target a very

specific cohort of patients, like cancer patients or patients in risk of frailty.

Because, there is only one data source and one principal population cohort (England

patients with inpatient admission), this sub-step was not applicable for this research.

7.3.2 Core Features

In total, 738 summary features were generated, which can be categorised into three

main groups:

• Administrative:

– Admission: patient classifications; number of episodes and spells; admission,

readmission and discharge times; and sources and methods of admissions and

discharges.

– Bed days: durations of spells; and preoperative and post-operative dura-

tions.

– Geographical: providers’ codes; and regions of registrations and treatments.

– Hospital: operation codes.

– Identifications: patient identification; and admission time-frame.

– Speciality: specialities of consultants; and palliative cares.

– Waiting time: admissions waiting time.

• Clinical:

– Diagnosis: HSCIC version of the Charlson Comorbidity Index (HSCIC-CCI)

(Aylin et al., 2010, Bottle et al., 2011, HSCIC, 2014d, 2015, 2016c); and

PARR’s Healthcare Resource Groups (HRGs) reference conditions.

– Operation: number of operations; and categories of operations.

• Patient:
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– Demographic: age; the Index of Multiple Deprivation (IMD); ethnicity; and

gender.

All features categorisations are presented in Appendix A.4 and their mathematical

definitions are presented in Appendix A.4.3.

In addition to the generated features, two groups of features were constructed for

performance assessment and grouping of the predicted outcomes: prior-trigger and

post-trigger features.

7.3.3 Combine States

It is very likely that discrete features are very sparse, including the recategorised fea-

tures. Therefore, in this sub-step another round of explorative analyses can be carried

out to observe the distribution of features states (dummy features or terms), and iden-

tify features states that can be combined.

An alternative approach would be to use an unsupervised approach, like k-means clus-

tering and Principal Component Analysis (PCAs), to find optimal clusters of states

that may improve the effectiveness of a feature. Although when the number of features

is high, this approach might increase the development phase, because the generated

clusters must be interpreted and validated (Bishop and Nasrabadi, 2006, Coates and

Ng, 2012).

Another option is to use a simple latent model for selected features to create a names-

pace that includes possible interaction terms (Murphy, 2012). Initially, interactions

can be created explicitly for selected terms (e.g. a function of age and gender) or

instead all possible interactions can be created for all sub-groups of features using a

quadratic or cubic function. Then a latent modelling approach, like non-negative ma-

trix factorisation, can be used to characterise the correlations between features, with

the assumption that the feature lives on a low dimensional linear manifold.

Also, it is possible to effectively include many feature states using a multilayer learn-

ing architectures, like Deep Neural Network (DNN) or using a data fusion approach,

like Bayesian approaches. Firstly, in deep architectures (Section 4.2.7.1), compactly

represented functions can sufficiently be represented using a very large and deep archi-

tecture; providing that enough data is supplemented and an appropriate architecture

is designed (Bengio et al., 2009). Also, we can use a Bayesian framework to introduce
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several sources of data for variables that are noisy versions of the true values (Koller

and Friedman, 2009).

For instance, amplification of a large group of features (or states) with complex in-

terdependencies using DNN may be accomplished by convolutional models of feature

(Lee et al., 2009), embedding layers (Esteban et al., 2015), groups of crossed features

(a.k.a. interaction terms) (Cheng et al., 2016), or latent features, in order to increase

their discriminative power (Abadi et al., 2016).

7.3.4 Temporal Features

Healthcare administrative data are severely unbalanced regarding the amount of lon-

gitudinal (panel) data per patient and their distribution over the years. Statistical

methods are not equipped to handle these types of unbalances directly. Therefore, the

life-table approach, which is also used in survival analysis modelling, was used for mod-

elling time-to-event (Appendix A.1.4), to keep track of temporal events with minimal

bias and sparsity (Singer and Willett, 2003). Based on the previous studies and the

initial statistical analyses, four levels of temporal features were generated: 0-30, 30-90,

90-365 and 365-730 days (Bardsley et al., 2013, Billings et al., 2006a, 2012, 2013, NHS,

2011, Mullins et al., 2006).

Moreover, following four main groups of features were initially generated from the

inpatient database: cross-sectional, trigger-event, and longitudinal features. Generated

features were stored into four separate groups (database tables) (Appendix A.4):

• cross-sectional : prior-history features (565 features)

– prior-3-years (219 features)

– prior-90-Days (173 features)

– prior-12-months (173 features)

• trigger-event (173 features)

• prediction-period (173 features)

• longitudinal : Monthly temporal levels (151 features)

The cross-sectional groups include features for each patient prior to admission at the

trigger-event, which is a mix of demographic, admission and clinical features. Simi-

larly, the trigger-event group consists of features at the trigger-event for each patient.
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The longitudinal features generated for the whole time-frame, using monthly temporal

levels.

7.3.5 Combine Features

At this stage of analysis, there might be highly sparse and correlated features, which can

be combined, in order to increase their overall impact. There are two main motivations

in combining the features: dimension reduction of related characteristics; and reducing

sparsity. It is especially useful when there are multiple indicators of a patient attributes,

like diagnoses, consultation and drugs. Encoding a feature combination method allows

to gather all the evidence from multiple sources of information.

For instance, indicator about frailty or respiratory conditions can be gathered from

the type of consultancy, diagnoses, operations and complexities. And, it can also be

beneficial to stratify them based on demographics and other indicators. This type of

approach is usually more exploited, when a risk score is being developed to capture a

very particular high-risk group of patients, like Elixhauser Comorbidity Index (ECI)

(Section 2.3).

Similar to the other combination sub-step (Section 7.3.3) related features can be com-

bined using an unsupervised technique, a deep architecture or a data fusion method.

7.4 Step IV: Feature Selection

Since numbers of generated features were very high, a feature reduction strategy was

needed. At this stage, implementation of a classification, a dimensionality reduction

method, like PCA (Hotelling, 1933, Pearson, 1901), or a type of Ridge Regression

(Hoerl and Kennard, 1970) can not guarantee a good fit.

Initially, highly stationary features were dropped. Then, features that were highly lin-

early correlated were excluded. Afterwards, the features with very small predictability

for emergency readmission were excluded. These steps are outlined in Figure 7.5 and

explained in the following subsections.
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Filtering Stationary Features:
Removing highly sparse features (constant count: ≥ 95%).

Aggregating Temporal Records:
Generate temporal feature, by choosing an aggregation method.
e.g. most prevalent values, quantiles, count, average, standard deviation and sum.

Exploratory Analysis:
Inspecting distribution and frequency of features.

Transforming Features:
Scale to the mean transformation;
Yeo-Johnson transformation.

Filtering Correlated Features:
Removing highly linearly correlated features (correlation coefficient: ≥ 80%);
Removing features that their definitions highly overlap.

Ranking Features:
Feature ranking methods:

1. Random Forest importance score:
1.1. Trees: number of features, and maximum of 100,000 trees;
1.2. Number of variables selected at each node: 10;
1.3. Sample size: 100, 000 to 700, 000 patients;

2. SVM Recursive Feature Extraction (SVM-RFE) importance rank (optional):
1.1. Kernel used in training and predicting: Linear kernel;
1.2. Regularisation term in the Lagrange formulation: 10;
1.3. Rescaling: scale to zero mean and unit variance.
1.4. Sample size: 10, 000 to 20, 000 patients;

Optional: Step-Wise Feature Selection:
A developed stepwise forward-selection Bayes Point Machine (BPM):

1. Step-wise method: Forward-selection;
2. Improvement condition: Micro average precision ≥ 0.01%.

Figure 7.5: Healthcare pre-processing framework: the feature selection step

7.4.1 Filtering Stationary Features

Firstly, in order to reduce sparseness and invalid features, highly stationary ones were

withdrawn (Kuhn and Johnson, 2013). The features that had constant counts less

than or equal a threshold were filtered out, to exclude highly constants and near-zero

variances. In this study, the threshold was set to ≥ 95%, because the linear correlations

to 1-year emergency admission were ≤ 50%. The near-zero variance rules are presented

in below:

• Frequency ratio: The frequency of the most prevalent value over the second most

frequent value to be greater than a threshold;



7.4.2 Aggregating Temporal Records 84

• Percent of unique values: The number of unique values divided by the total num-

ber of samples to be greater than the threshold.

7.4.2 Aggregating Temporal Records

Finally, the sub-states of each temporal feature4 must be aggregated using a function

that can capture the temporal state of patient appropriately. In this research, a num-

ber of aggregation functions have been implemented, including most prevalent values,

quantiles, count, average, standard deviation and sum.

This step can lead to one or more sub-features, but the sub-features must be checked

to have low intercorrelations before including into the model.

A more complex approach for aggregating the sub-states is to use a static or dynamic

weighted polynomial. The weighted polynomial combines the sub-states by weighting

the time dimension. For instance, if a polynomial weighting with prevalence ranking is

combined, it only outputs the sub-states that have been more prevalent recently. How-

ever, if there is a very little number of sub-states, observations or patients, polynomial

weighting might introduce more bias into our model.

7.4.3 Exploratory Analyses

After filtering features, the distribution and frequency of the features were investigated,

in order to identify any anomalies. Descriptive summaries were produced for the con-

tinuous features to investigate their distributions’ properties. In addition, descriptive

summaries were produced for the discrete features to identify the most frequent cate-

gories and missing counts.

7.4.4 Transforming Features

There is a wide range of transformation methods that can be applied to features to

improve normality of their distributions and equalise variances. Although transfor-

mation methods may improve model convergence, increase features effectiveness, deal

4For instance, feature x can have multiple sub-states for different episodes of care during the 0-365-
days temporal state: substatesx, 365 days = {1, 20, 100, 118, 213} ∧ substatesx, 365 days ∈ featurex
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with outliers or meet some modelling assumption, but they must be used with caution

(Osborne, 2010, Ohara and Kotze, 2010).

The first step is to test distributions of features. There are several ways to identify if a

feature deviates significantly from the Normal distribution: visual inspection, and sta-

tistical tests. Examples of basic statistical tests, which can be easily applied, are skew-

ness, Kurtosis, Q-Q plot5 and P-P plots6. Another type of statistical approach is infer-

ential tests, like Kolmogorov-Smirnov test, Lilliefors corrected Kolmogorov-Smirnov

test, Anderson-Darling test, Shapiro-Wilk test, Cramer-von Mises test, DAgostino

skewness test, Anscombe-Glynn kurtosis test, DAgostino-Pearson omnibus test, and

the Jarque-Bera test (Ghasemi et al., 2012, Salkind, 2006).

The next step is to decide on the transformation function. When the error structure of

our data is simple, a transformation can be very useful to improve the model perfor-

mance. Examples of popular transformation methods are scale to mean, Square Root,

Log, Arcsine, Multiplicative Inverse (reciprocal), Box-Cox and Yeo-Johnson transfor-

mations. However, transformations do not necessarily guarantee to stabilise the vari-

ance or to make a better linear model. Also, transformations make model interpretation

harder, and can negatively impact the relationship between correlated features in the

model.

In this study, two feature transformations have been applied to the continuous features:

the scale to mean and the Yeo-Johnson (Yeo and Johnson, 2000). Both methods can be

used to transform the data, to improve normality. Firstly, the scale to mean method was

applied to standardise features by removing the mean and scaling to the unit variance.

Moreover, the Yeo-Johnson method is from the family of power transformations and is

very similar to the box-cox (Sakia, 1992), which can be applied to both negative and

positive numbers. The Yeo-Johnson power transformation family is defined in below

(Eq. 7.1).

Ψ(λ, y) =



((y + 1)λ − 1)/λ if λ 6= 0, y ≥ 0

log(y + 1) if λ = 0, y ≥ 0

−[(−y + 1)2−λ − 1)]/(2− y) if λ 6= 2, y < 0

−log(−y + 1) if λ = 2, y < 0

(7.1)

5The Q-Q Plot compares the quantiles of a data distribution against the quantiles of a standard
theoretical distribution.

6The P-P plot compares the empirical distribution of a data against a specified theoretical distri-
bution.
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, where y is a list on strictly power positive numbers, and λ is the power parameter.

7.4.5 Filtering Correlated Features

Then, features with high linear correlation to 1-year readmission were excluded. The

Pearson correlation coefficient (Pearson, 1895) was calculated for all the pair of variables

to measure linear dependence between them (Eq. 7.2). The linear correlation coefficient

was set to ≥ 80%, because the applied algorithms including the rankings are sensitive

to correlated features. The Pearson correlation coefficient is presented in below (Eq.

7.2).

ρ(X,Y ) =
cov(X,Y )

σX ∗ σY
(7.2)

, where cov represents the covariance, σ is the standard deviation of a feature and the

features are represented by X and Y symbols.

7.4.6 Ranking and Selecting Features

In this sub-step, features were ranked using a selection of methods, and were chosen

based on literature review (Section 4.2 and Section 2.2) and several tests and trials. The

considered methods include Breiman (2001) version of Random Forest (RF), Gradient

Boosted Regression Trees (GBRTs) by Friedman (2001), Randomized Logistic Regres-

sion (RLR) with L1 regularisation (Xing et al., 2001), Guyon et al. (2002) version of

Support Vector Machine Recursive Feature Extraction (SVM-RFE) and Herbrich et al.

(2001) version of stepwise Bayes Point Machine (BPM).

In this study, the RF importance score was implemented for all models. The SVM-

RFE importance ranking and the stepwise BPM have been applied for the emergency

readmission modelling. In all the models, excluding the stepwise BPM, six trials have

been executed, with three different settings for each ranking method. Then, the features

were inspected and selected manually using the average ranks. Thereafter, the stepwise

BPM model for the emergency readmission models was run. Based on the average of

importance, initially the prior-3-years cross-sectional features were inputted to the

stepwise BPM, then other features were added.
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Firstly, the applied RF (Section 4.2.4.1) importance score uses the Breiman algorithm

with gradient boosted regression trees, Gini index, balanced samples, the minimum leaf

split size of hundred, and minimum leaf size of fifty. The number of trees in the forest

was set to the maximum of 100,000 trees. The applied RF is a non-linear method and is

an implementation of Breiman’s algorithm (Breiman, 2001), which applies significance

test criteria (Hothorn et al., 2010, R-Project, 2010). It performs recursive univariate

splitting and selects covariates based on the significance test. The significance test

approach, unlike the maximising information, does not suffer a systematic tendency

towards covariates with many possible splits or many missing values. However, highly

similar features and linearly correlated features were excluded in the prior step, since

the applied algorithm is sensitive to correlated features. Although the applied RF

algorithm is not very data dependent, the results can vary largely by the choice of

hyper-parameters (number of variables selected at each node and number of trees)

(Dı́az-Uriarte and De Andres, 2006, Gromski et al., 2014, Verikas et al., 2011).

Moreover, the applied SVM-RFE (Section 4.2.5) importance ranking was used with

the sample sizes of 10,000 to 20,000, because of the high computational cost of SVM

algorithms. The SVM-RFE algorithm proposed by Guyon (Guyon et al., 2002) was

applied to rank features recursively using SVM. The SVM-RFE returns ranking of the

features by training a SVM with a linear kernel and removing the features with the

smallest ranking criterion.

Furthermore, the stepwise BPM (Section 4.2.6) model was run using a stepwise ap-

proach with backward elimination and forward selection, which was developed explic-

itly for the purpose of this study. The stepwise algorithm was defined to use the

micro-average precision ≥ 0.01%, as the selection criteria in each step.

7.5 Concluding Remarks

What is already known?

• The pre-processing of healthcare administrative data is a very challenging task,

due to inconsistent data recording practices and incomplete data validation pro-

cesses by data warehouse administrators.
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• A wide range of administrative data is recorded by healthcare sectors for pa-

tients. But, present healthcare models mainly lack a systematic feature genera-

tion technique, which can effectively search for potential features and assess their

importance.

• In literature, no pre-processing framework have been proposed, that can deal

with the pre-processing or the feature generation in healthcare analytics.

What this phase of research adds?

• A generic and novel healthcare pre-processing framework have been proposed

that systematically define analyses steps and approaches, that may be carried

out to manage meta-data, prepare data, engineer features and select top factors.

• The data management and preparation step are customised to England primary

and secondary care data sources, but the steps are generic and applicable to many

healthcare systems.

• The feature engineering is one of the main time-consuming steps in many health-

care modelling problems, and this framework provides a universal methodological

approach to generate and select features.

In conclusion, the proposed healthcare pre-processing framework defines four main

steps of data management and analyses. Initially, a number of steps were defined to

ingest data and manage the metadata. Next, several procedures were specified to clean

and validate the data. After that, a feature pool was generated using a generic and

systematic way. Finally, the redundant features were filtered out, and then features

sorted by importance and top factors were selected.

Finally, the toolkits that are presented in Chapter 10 provide a set of mechanisms to

carry out part of this framework. It is a comprehensive, user-friendly and free software

package, and is released for public use and incremental development.

In the next chapter, a predictive model for hospital emergency readmission is presented.



Chapter 8

Phase II: Predictive Risk

Modelling of Hospital

Readmission (ERMER)

About half of hospital readmissions can be avoided with preventive interventions, and

healthcare commissioners are looking for more powerful predictive risk tools to target

the high-risk patients. Developing decision support tools for identification of patients’

emergency readmission risk is an important area of research (Section 2.2). Because,

it remains unclear how to design features and develop predictive models that can ad-

just continuously to a fast-changing healthcare system and population characteristics.

The objective of this phase of study was to develop a generic Ensemble of Bayesian

emergency readmission risk models to better adjust for prior probabilities and various

population characteristics.

Most existing decision support tools, that are based on hospital administrative data,

use Logistic Regression (LR) or Coxian Phase-type Distribution models (C-PHDs),

and have very limited capability (Section 6.2). This phase of research developed an

Ensemble generative risk model of emergency readmission within a year to the Eng-

land’s hospitals. The Machine Learning Ensemble method is a powerful technique

(Section 4.2.2), which uses a finite set of weaker models and an algorithm to combine

and optimise the performance of the Ensemble model.

Based on the defined healthcare pre-processing framework introduced in the Phase-I

of research (Chapter 7), features were generated, filtered and ranked. Thereafter, a

number of sub-models based on population characteristics were trained using a Bayes

Point Machine (BPM) approach (Section 4.2.6). Afterwards, an optimised Ensemble

89
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model of these sub-models was generated. The developed Ensemble Risk Model of

Emergency Admissions (ERMER) was trained and tested using three time-frames:

1999-2004, 2000-05 and 2004-09, each of which includes 20% of patients admitted within

the trigger-year (Section 5.3). In addition, a development toolkit is supplemented to

ease the validation and adaptation of the ERMER (Chapter 10).

Furthermore, the benchmarking comparisons were made for different time-frames, sub-

populations, risk cut-offs, risk bands, and top risk segments. The ERMER has 71.6%-

73.9% precision, 88.3%-91.7% specificity, and 42.1%-49.2% sensitivity across different

time-frames. Also, the Area Under the Curve (AUC) of the Receiver Operating Char-

acteristic (ROC) of the proposed model is 75.9%-77.1%.

The proposed decision support tool performed considerably better than the previous

modelling approaches, and it was robust and stable with high precision. Moreover, the

healthcare pre-processing framework and the Ensemble Bayesian approach allowed the

ERMER to continuously be adjusted to new significant features, different population

characteristics and changes in the care system.

The chapter is structured as follows. Firstly, we describe the data and then define the

process of selecting an optimised number of features that are highly significant. After

that, the applied BPM algorithm is presented and the Ensemble model is specified.

Then, we discuss the results of training, testing and validation, as well as the bench-

marking against CPM (DH, 2006), PARR (Billings et al., 2006a), and Billings et al.

(2013) models (Section 6.2). Finally, concluding remarks are presented, and then the

specification of the ERMER development toolkit is provided separately in Chapter 10.

8.1 Data and Features

The healthcare pre-processing framework (Chapter 7) has been applied, in order to

sample, clean and treat input data, combine episodes, and engineer features. Firstly,

the inpatient table of the HES database is selected. Then, the patients with admission

within the trigger-year were identified. Afterwards, 20% of patients were selected,

and all their records were extracted and sorted based on the patient and admission

date. Thereafter, the records were validated and filtered. Finally, the selected sample

was divided into two sub-samples for training and testing. Section 7.1 and Section

7.2 outlines the metadata management, sampling and validation stages, which were

completed as part of the pre-processing stage but not presented here (HSCIC, 2011,

2014d,e).
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Table 8.1: ERMER: The sub-population settings for the benchmarking

Sub-population Model Setting
Sub PARR-2-Settings Population setting for the PARR-2 model (Billings et al., 2006a, Lewis, 2011):

Age: 65+;
Trigger admission: Emergency admission.

Pop IPAEOPGP Population setting for the Billings et al. (2013) models:
Age: 18 to 95;
Trigger admission: Emergency admission.

Pop Any-Acute All the population for the selected sample:
Trigger admission: Emergency admission.

In the data management and preparation (Section 7.1 and Section 7.2), firstly, the

extracted data was sorted by patients and the order of episodes. Next, invalid records

were excluded. Thereafter, several corrections and imputations were carried out on

dates, Healthcare Resource Groups (HRGs) and demographics. After that, some of the

continuous features were converted into discrete with other features to better capture

non-linear interactions. And, some of the discrete features were re-categorised into

bigger groups to reduce sparseness and overfitting risk. Finally, episodes of care were

grouped into super-spells, and then a feature pool was generated (Section 7.3).

Furthermore, Kernel classifiers, such as the BPM and the Support Vector Machine

(SVM), are usually resistant to over-fitting, because of an implementation of weight

regularisation (Cawley and Talbot, 2007, 2010). However, since numbers of generated

features were very high, features were selected based on two different methods (Section

7.4): a Random Forest (RF) importance score and a SVM importance ranking.

Finally, a stepwise BPM procedure was developed using the forward-selection approach,

to evaluate significance of the top features. Based on the average of importance, initially

three years cross-sectional features were included, then other features were added. A

summary of the features’ definitions and their importance rankings are provided in

Appendix A.6.1.

Table 8.2: ERMER: Main categories of all the initially defined features

Category Sub-category
Administrative Admission: patient classification; number of episodes and spells; admission, readmission and discharge

times; source and methods of admission and discharge.
Bed days: duration of spells; preoperative and post-operative duration.
Geographical: provider code; region of treatment.
ID: patient identification, and admission timeframe number.
Speciality: speciality of consultant; palliative cares.
Waiting time: admission waiting time.

Clinical Diagnosis: Charlson comorbidity groups; Elixhauser comorbidity groups; frequent categories of diag-
noses; HSCIC-CCI (Aylin et al., 2010, Bottle et al., 2011, HSCIC, 2016c); PARR’s HRGs reference
conditions, using version 3.5.
Operation: operation groups; number of operations; frequent categories of operations.

Patient Demographic: age; deprivations; ethnicity; gender.

For the purpose of testing, validation and benchmarking, five different combinations of

training and testing sub-samples are considered (Table 5.2). In addition, after running
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the model, results are filtered based on three different sub-populations for benchmark-

ing purpose (Table 8.1).

8.2 Model

Firstly, one main model (cond main) and four conditional sub-models were specified,

with significantly diverse populations that represent unique clinical and behavioural

categories (Figure 8.1). The conditional sub-models includes: prior 12-month acute

spells (Cond Prior-Acute-12-month), prior 12-month operation (Cond Prior-Oper-12-month),

prior spells (Cond Prior-Spells) and age 65+ (Cond Age-65p).

Table 8.3: ERMER: The conditional sub-models based on sub-populations

Model Condition
Cond Main Main Model: NO condition
Cond Prior-Spellsa Prior spells: 0, or > 0
Cond Prior-Acute-12-month Prior emergency within 12-month: 0, or > 0
Cond Prior-Oper-12-month Prior operation within 12-month: 0, or > 0
Cond Age-65pa Age: < 65, or ≥ 65

a Cond Prior-Spells and Cond Age-65p sub-models are only applied for the Pop Any-Acute and
Pop Any-Acute-NO-Mental modelling group.

Afterwards, they were trained and tested across the sub-sample combinations (Table

5.2). Considering that the filtered features are more relevant for the main model, the

sub-models have very different performances, but features weights and overall perfor-

mances are stable across all tests and validations.

Figure 8.1: ERMER: Abstract representation of the proposed Ensemble model

Then, we decided to use an Ensemble model, to improve the performance of the decision

support system. Three main challenges in our Ensemble modelling were: method

of constructing sub-classifiers, weighting the classifier, and defining a cost function

and optimising it. Based on the background research and multiple trials, a weighted

average ranking method was constructed, in addition to a heuristic method, to optimise

the weights of sub-classifiers (Murphy, 2012, Rokach, 2010, Sammut and Webb, 2011,

Sewell, 2008, Zhou, 2012).
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In another word, the ERMER partitions the data instance space, based on some pop-

ulations similarities (sub-models). Then, it uses data envelop analysis methodology

(Charnes and Cooper, 1984) to assign weights to different classifiers (Rokach, 2005).

In this research, we refer to this weight function as the cost function, because we applied

a search technique to optimise the weights that are assigned to each sub-model.

The cost function for the optimisation was defined as a normalised combination of four

performance metrics (Alvarez, 2011, Brown, 2011, Fukunaga, 2013):

• ACC (Accuracy): The fraction of the sum of True Positives (TPs) and True

Negatives (TNs) from the total.

• AUC of ROC: The Area Under the Curve of ROC curve, which y-axis is the True

Positive Rate (TPR) and x-axis is the False Positive Rate (FPR).

• RMSE (Root Mean Square Error): Root of averaged of squared difference of the

predicted outcomes (Ŷ ) from the actual outcomes (Y ).

• SAR (Squared Error, Accuracy, and ROC Area): a robust metric for performance.

The applied Ensemble algorithm (Algorithm 1) uses a bidirectional hill-climbing al-

gorithm with a greedy initial solution set (modelsensemble) to generate an optimised

Ensemble model from the sub-models. Firstly, it generates an initial solution based on

the main model, and one other sub-model with the highest AUC of ROC. Then, a bidi-

rectional hill-climbing (Russell and Norvig, 2002) heuristic was applied to optimise the

average of the four performance metrics, through iterations, trials (trials) and across

samples (samples).

The hill-climbing method is a greedy sequential search with forward and backward

passes, where the learning rate for each performance metric can be tuned manually

prior to the execution. The learning rate in the algorithm (Algorithm 1) defined using

alphaensemblemin
for the performance indicators (Caruana et al., 2004, Fukunaga, 2013,

Opitz and Maclin, 1999).

The sub-models in the Ensemble heuristic are selected using a Bagging Ensemble (se-

lection with replacement). Then, the sub-models are combined using a mean combiner,

which is the approximate posterior probability based on the weighted average of the risk

scores, without any additional training. When the first run of the algorithm with the

defined iterations, trails and across samples is finished; then, the second run is executed

using the best solutions of the first round, with less sensitive limits and thresholds.
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Algorithm 1 The ensemble modelling algorithm (part 1).

Require: . Set samples, modelling groups and sub-models
1: samples← {”sample-1”, ”sample-2”, ”sample-3”,

”sample-1-train-2-test”, ”sample-1-train-3-test”}
2: groups← {”Pop Any-Acute”, ”Pop Any-Acute-NO-Mental”}
3: models← {”Cond Main”, ”Cond Prior Spells”,

”Cond Prior Acute 12 month”, ”Cond Prior Oper 12 month”,
”Cond Age 65p”} . Set limits on weight of each sub-model

4: weightensemblesummax
← 2

5: weightensemblesummin
← 20 . Second iteration of the algorithm: 300

6: weightensemblemax ← 15 . Second iteration of the algorithm: 150 . Set limit on iterations of
searches

7: searchtrialsmax ← 40 . Second iteration of the algorithm: 20
8: searchiterationsmax ← 150 . Second iteration of the algorithm: 150 . Set the thresholds for model

selection step and the predicted probability cut-off
9: alphaensemblemin ← 0.0005 . Second iteration of the algorithm: 0.0001

10: alphamodelmin ← 0.50
. Other notations

11: TPx : True positive of model x with cut-off point alphamodelmin

12: FPx : False positive of model x with cut-off point alphamodelmin

13: FNx : False negative of model x with cut-off point alphamodelmin

14: TPRx : True positive rate of model x with cut-off point alphamodelmin

15: FPRx : False positive rate of model x with cut-off point alphamodelmin

16: . The ensemble modelling algorithm:
17: procedure EnsembleModels(models)
18: modelsensemble ← InitialSolution(models) . Set the initial greedy solution
19: selectedmodel ← MainSearch(modelsensemble) . Run the main heuristic search

20: procedure InitialSolution(models)
21: model ∈ models
22: modelensemble ∈ models
23: modelmaxAUC ←MAXmodelAUC (models), WHERE model 6= ”Cond Main”
24: return {”Cond Main”} ∪modelmaxAUC

25: procedure ACC(x)
26: return TPx+TNx

TPx+TNx+FPx+FNx

27: procedure AUC(x)
28: return

∫ +∞
−∞ TPRxFPR′xdx

29: procedure RMSE(x)

30: return

√∑n
i=1 Ŷx−Yx)

n

31: procedure SAR(x)

32: return ACCx+ROCx+(1−RMSEx))
3
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Algorithm 2 The ensemble modelling algorithm (part 2).

1: procedure MainSearch(modelsensemble)
2: modelsselected = {}
3: for all s ∈ samples do . Run for each sample
4: for all g ∈ groups do . Run for each modelling group
5: for t← 1, searchtrialsmax do . Run trials
6: for all modelensemble ∈ modelsensemble do . Run for each initial solution
7: acc0 ← auc0 ← rmse0 ← sar0 ← 1
8: for i← 1, searchiterationsmax do . Run iterations
9: acci ← ACC(x)

10: auci ← AUC(x)
11: rmsei ← RMSE(x)
12: sari ← SAR(x)
13: improvement← (acci − acci−1 >= alphaensemblemin) ∗ 1

+(auci − auci−1 >= alphaensemblemin) ∗ 1
+(rmsei − rmsei−1 >= alphaensemblemin) ∗ 1
+(sari − sari−1 >= alphaensemblemin) ∗ 1

14: degradation← (acci − acci−1 < −alphaensemblemin) ∗ 1
+(auci − auci−1 < −alphaensemblemin) ∗ 1
+(rmsei − rmsei−1 < −alphaensemblemin) ∗ 1
+(sari − sari−1 < −alphaensemblemin) ∗ 1

15: if i == 1 then . Select a step
16: backwardStep← True

17: else
18: if backwardStep == True then
19: if degradation < 0.5 then . Forward
20: modelensemble ← modelensemble ∪ selectedmodel

21: else . Switch
22: backwardStep← False

23: switchStep← True

24: else
25: if backwardStep == False then
26: if improvement ≥ 0.5 then . Switch
27: switchStep← True

28: backwardStep← True

29: if backwardStep == True then . Backward selection
30: if switchStep == True then
31: counter ← 0
32: modelensemble ← modelensemble \modelensemblecounter+1

33: if backwardStep == False then . Forward selection
34: model ∈ models
35: modelensemble ← modelensemble ∪model

36: modelsselected ← modelsselected ∪modelensemble . Add selected model

37: return modelsselected

modelensemble =Mean{Cond Main+ Cond Age-65p0+

9 Cond Age-65p1 + 4 Cond Prior-Oper-12-month0+

2 Cond Prior-Oper-12-month1}.

(8.1)

Finally, the best performing Ensemble model, with the minimum number of unique

sub-models is selected (Blumer et al., 1987). The optimised Ensemble Risk Models of



8.3 Results 96

Emergency Admissions (ERMER) based on our datasets is defined in Eq. (8.1). In

this equation, sub-model subscripts, like Age-65p0, represent the conditional state, and

the coefficients are the weights in the Ensemble mean combiner.

8.3 Results

Four stages of performance checks were performed across test sub-samples to assess the

goodness of fit. Firstly, a learning-curve plot of training errors versus the number of

training points for sub-models was generated, using training sub-samples. The learning-

curve is a function of the number of training points and the prediction accuracy rate,

and it allows investigating the effect of sample sizes on the performance of models

(Murphy, 2012, Nordhausen, 2009). Figure 8.2 demonstrates that training sub-sample

size greater than 40,000 patients contributes very little to the sub-model performance.

Table 8.4: ERMER: The top significant features in the submodels

Feature Calculation a

Sum of number of operations within 90 days & at the trigger. Countspell(Uniquespell(opertn nnepisode))
Count of recoded main speciality of state ’Maternity’ in the
past & at the trigger.

mainspefspell ∈ {501, 560, 610}

Count of recoded main speciality of state ’Gynaecology’ in the
past & at the trigger.

mainspefspell ∈ {502}

Count of recoded main speciality of state ’General’ in the past
& at the trigger.

mainspefspell ∈ {300, 600, 620}

Having recoded gender of state ’Female’. sexpatient == 2
Age of patient at the trigger. startagespell
Average of post-operative durations at the trigger. posopdurspell
Count of the acute admission method between 12 to 36 months,
& within 90 days.

Countspell(admimethspell ∈ {21, 22, 23, 24, 25,
2A, 2B, 2C, 2D, 28, 31, 32, 81, 82, 83, 84, 89, 98})

Average of spells durations in the past & at the trigger. Meanspell(Maxepisode(epidur))
Average of gaps between admissions in the past. admidatespelli

− dismethspelli−1
Having recoded ethnicity of state ’NA’. ethnospatient ∈ {S, 8, L,G}
Average value of the Charlson Index in the past. Mean(CharlsonIndexDr Foster CCI (diag nnspell))

a Refer the the HES dictionary for the raw variables’ definition (HSCIC, 2010).

Moreover, the effects of complexity levels were investigated for the main model (Cond

Main) using F-score versus the number of features, using training sub-samples. The

plot of the effects of complexity levels shows how the stepwise addition of top features

changes the prediction performance of a model. Figure 8.3 shows that adding up

to 18 features (Table 8.4), from the top significant features, improves the model’s

performance significantly. However, the gains then become very small (on average 0.005

change in AUC percentage). More detailed specifications of the complexity levels are

provided in Section 8.3.1. Moreover, the presented learning-curve and the complexity

plots are for Sample-1, although the results are consistent across all other samples and

sub-samples.

Thereafter, the convergences of the sub-models were tested using an iterative fitting,

using train sub-samples, in order to assess over-fitting and variations in convergence.
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Figure 8.2: ERMER: Learning curve plot of sub-models, micro-average error vs.
number of training points (Sample-1 )

Figure 8.4 shows that after the first few iterations, all sub-models converge quickly

after about forty iterations, and the weights differences become very small.

Furthermore, a 5-fold cross-validation (Murphy, 2012) algorithm was implemented for

all three test sub-samples (Table 5.2). The K-fold cross-validation splits each test sub-

sample into five equal-sized random samples. Then, K - 1 folds are used for training

and the K-th fold is used for validation. Finally, the K-fold performance output is

generated after the cross-validation cycled through all K combinations of splits.

Figure 8.5 exhibits very small standard deviations in accuracy, mean of negative log-

probability and AUC, for the sub-models’ cross-validations.

Finally, the profiling was done using three test sub-samples, based on population char-

acteristics and performance indicators (Table 8.7 and Table 8.8). Table A.61 and Table
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Figure 8.3: ERMER: Complexity analysis of sub-models, the F-score vs. number of
features (Sample-1 )

A.62 demonstrate the weights of the features for each sub-model, as well as the features’

definition, encoded category and temporal state.

In the following subsection, more insight is provided into the complexity analysis mea-

sures, including the RMSE that is used in the Ensemble Cost function. Then, in the

next section, the benchmark against previous models is discussed.

8.3.1 Effects of complexity

The Root Mean Squared Error (RMSE) is one of the performance indicator in the

ERMER cost function for the Ensemble method. Figure 8.6 demonstrates the number

of indicators that capture complexity of the sub-models across different subpopulations
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Figure 8.4: ERMER: Average and range of convergences (all samples)

and data-frames. Two types of errors that were included in the analyses are the Mean

Squared Error (MSE) and expected prediction error, a.k.a. the Expected Mean Squared

Error (EMSE). With this assumption, data points are statistically independent and

residuals (ε) with mean of zero (Eε) and a constant variance (V ARε). The expected

prediction error (EMSE(x)) for training sub-sample τ at x can be decomposed as follows

(James et al., 2013, Kuhn and Johnson, 2013, Nordhausen, 2009):
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Figure 8.5: ERMER: Distributions of the standard deviation of the cross-validations’
performance indicators (all samples)

EMSE(x) = Eτ [(Y − Ŷx)2] = V ARτ (Ŷx) +BIAS2
τ (Ŷx) + σ2

ε (8.2a)

s.t. Y = f(x) + ε (8.2b)

V ARτ (Ŷx) = Eτ [(Ŷx − Eτ (Yx)2] (8.2c)

BIASτ (Ŷx) = Eτ [Ŷx]− f(x) (8.2d)

ε ∼ {Eε = 0 ∧ V ARε = σε} (8.2e)

x ∈ {x1, x2, ..., xn} : xi⊥xj (8.2f)

, where the function Ŷx approximates function Yx, to be as close as possible to fx.

σ2
ε is the initial variance of the target around mean, V ARτ (Ŷx) is the variance of

the estimated target about its mean, and BIAS2
τ (Ŷx) is the amount that the average
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estimate varies from true mean. The combination of the first two parts is also known

as the reducible noise, and the last part (σ2
ε) is known as the irreducible noise, because

Y is a function of ε.

Figure 8.6: ERMER: Error, bias and variance plots for all sub-models (all samples)

Moreover, the MSE is a performance indicator, which sometimes is being used as part

of a regularisation (penalisation) function to control complexity of fit or certain type

of smoothness behaviours. The Root of MSE (RMSE), which is used as performance

indicator in our Ensemble model generation, gives more weight to points further away.
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The MSE algorithm can be broken down into bias-variance decomposition (Nordhausen,

2009):

MSE(x) = Eτ [(Y − Ŷx)2] (8.3a)

MSE(x) = Eτ [Ŷx − Eτ (Ŷx)]2 + (Eτ [Ŷx]− Y )2 (8.3b)

MSE(X) = V ARτ (Ŷx) +BIAS2
τ (Ŷx) (8.3c)

Table 8.5: ERMER: The performance statistics for different sub-populations and
risk cut-offs (all samples)

Statistic Sub PARR-2-Settings a Sub IPAEOPGP b Sub Any-Acute c

Threshold 0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70
Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1
True & False Positive (TP+FP) 19,646 7,946 2,991 51,422 30,361 14,719 52,842 31,260 15,231
True Positive (TP) 11,962 5,512 2,291 36,966 24,051 12,432 37,979 24,759 12,878
Sensitivity (True Positive Rate) 0.390 0.180 0.075 0.478 0.311 0.161 0.461 0.300 0.156
Specificity (True Negative Rate) 0.805 0.938 0.982 0.887 0.950 0.982 0.900 0.956 0.984
Precision (Positive Predictive Value) 0.609 0.694 0.766 0.719 0.792 0.845 0.719 0.792 0.846
Emer. admi. post 12 m. per TP 1.242 1.600 2.105 1.581 1.857 2.146 1.586 1.863 2.158
Emer. admi. prior 12 m. per TP 0.462 0.607 0.740 0.351 0.365 0.368 0.351 0.364 0.367
Emer. admi. prior 13-24 m. per TP 0.401 0.532 0.646 0.319 0.336 0.327 0.318 0.335 0.326
Emer. admi. prior 25-36 m. per TP 0.006 0.007 0.009 0.004 0.004 0.005 0.004 0.004 0.005
AUC of ROC 0.661 0.767 0.771
Total number of patients 70,147 204,672 231,755

Train: train sub-sample of Sample-2 ; Test: test sub-sample of Sample-2
True & False Positive (TP+FP) 25,972 11,121 4,212 61,229 34,292 15,745 62,910 35,230 16,177
True Positive (TP) 15,916 7,577 3,169 43,858 26,920 13,180 45,032 27,611 13,539
Sensitivity (True Positive Rate) 0.470 0.224 0.094 0.503 0.309 0.151 0.492 0.302 0.148
Specificity (True Negative Rate) 0.745 0.910 0.974 0.873 0.946 0.981 0.883 0.950 0.983
Precision (Positive Predictive Value) 0.613 0.681 0.752 0.716 0.785 0.837 0.716 0.784 0.837
Emer. admi. post 12 m. per TP 1.296 1.604 2.051 1.623 1.925 2.272 1.624 1.922 2.270
Emer. admi. prior 12 m. per TP 0.452 0.591 0.723 0.365 0.403 0.441 0.365 0.402 0.440
Emer. admi. prior 13-24 m. per TP 0.388 0.507 0.635 0.327 0.361 0.395 0.327 0.360 0.393
Emer. admi. prior 25-36 m. per TP 0.007 0.009 0.010 0.005 0.006 0.007 0.005 0.006 0.007
AUC of ROC 0.663 0.756 0.759
Total number of patients 73,315 224,001 243,712

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-3
True & False Positive (TP+FP) 22,351 8,351 2,896 60,515 35,642 18,487 62,213 36,753 19,117
True Positive (TP) 14,003 5,942 2,337 44,730 28,783 16,114 45,950 29,654 16,678
Sensitivity (True Positive Rate) 0.340 0.144 0.057 0.438 0.282 0.158 0.421 0.272 0.153
Specificity (True Negative Rate) 0.834 0.952 0.989 0.905 0.959 0.986 0.917 0.964 0.988
Precision (Positive Predictive Value) 0.627 0.712 0.807 0.739 0.808 0.872 0.739 0.807 0.872
Emer. admi. post 12 m. per TP 1.311 1.730 2.361 1.646 1.913 2.163 1.655 1.926 2.186
Emer. admi. prior 12 m. per TP 0.522 0.684 0.805 0.364 0.348 0.304 0.364 0.347 0.304
Emer. admi. prior 13-24 m. per TP 0.435 0.565 0.667 0.322 0.306 0.260 0.321 0.305 0.259
Emer. admi. prior 25-36 m. per TP 0.005 0.006 0.010 0.004 0.004 0.004 0.004 0.004 0.004
AUC of ROC 0.658 0.767 0.771
Total number of patients 91,369 268,575 304,888

a Population setting for the PARR-2 model: age: 65+; Trigger admission: Emergency.
b Population setting for the Billings et al. (2013) model: Age: 18-95; Trigger admission: Emergency.
c All the population for the selected sample: Trigger admission: Emergency admission.

8.4 Benchmarks

Admission risk models are limited by the characteristics of the selected sub-population

and data quality issues, such as missing diagnoses for outpatients and A&E patients

(Billings et al., 2013), delayed death registration (ONS, 2014b), and the number of

registered or consented patients. Also, models developed by researchers usually have

different settings and assumptions; hence, comparisons of models in literature become

more subjective.
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The developed ERMER model is benchmarked against the CPM (DH, 2006, Paton

et al., 2014), the PARR (Billings et al., 2006a) and Billings et al. (2013) models using

their reported performance statistics.

Figure 8.7: ERMER: ROC of model against the PARR model (all samples)

For the testing, validation and benchmarking phase, three data settings were consid-

ered: Sample-1 ’s train and test sub-samples, Sample-2 ’s train and test sub-samples,

and finally a rolling window setting with Sample-1 ’s train sub-sample and Sample-

3 ’s test sub-sample (Table 5.2). The rolling window is configured as a 1-year gap

between time-frames, to better assess the stability of the model over time. In ad-

dition, three different sub-populations were selected from the outputted test results

(Sub PARR−2−Settings, Sub IPAEOPGP and Sub Any−Acute), for better com-

parison against the benchmarking models.

In comparisons, numerical summaries beyond the ROC and abstract statistical sum-

maries must be used to avoid misinterpretation (Cook, 2007, Pencina et al., 2008,
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Steyerberg et al., 2010). In addition to the ROC (Figure 8.7), the profiling is presented

using three forms of presentations: the summary statistics for different risk cut-offs

(Table 8.5) against the previous models (Table 8.6), the summary statistics for 20 risk

bands (Table 8.7) and the profile of top risk segments (Table 8.8).

Table 8.6: The reported performance statistics for the benchmarking models (PARR,
CPM and CPM update)

Statistic PARR CPM Billings-13 (IP) Billings-13 (IPAEOPGP)a

Thresholdb 0.50 0.60 0.70 0.50 0.50 0.50
True & False Positive (TP+FP) 17,455 4,810 2,011 NR 8,743 10,545
True Positive (TP) NRc NR NR NR 4,627 5,669
Sensitivity (True Positive Rate) 0.543 0.178 0.081 NR 0.049 0.060
Specificity (True Negative Rate) 0.722 0.950 0.986 NR NR NR
Precision (Positive Predictive Value) 0.653 0.774 0.843 0.538 0.529 0.538

Emer. admi. post 12 m. per TPd 1.47 2.23 3.0 NR NR NR
Emer. admi. prior 12 m. per TP 2.22 3.43 4.59 NR NR NR
Emer. admi. prior 13-24 m. per TP 0.93 1.84 2.80 NR NR NR
Emer. admi. prior 25-36 m. per TP 0.73 1.48 2.25 NR NR NR
AUC of ROC 0.69 0.780 0.73 0.78
Total number of patients 42,778 281,617 1,836,099 1,836,099

a The Billings et. al. (2013) model with inpatient (IP), A&E (AE), outpatient (OP) and GP data. b The threshold on the

predicted risk. c Not reported (NR). d Average number of emergency readmission of the truly positively predicted patients.

The ERMER model made a considerable improvement to the previous models. For in-

stance, according to Table 8.5, the ERMER model with sub-population Sub Any−Acute
has precision 0.719 and AUC of 0.771 with Sample-1 as the test set, compared to 0.529,

0.73 for the Billings et al. (2013) model with inpatient (IP) data.

8.5 Discussions

In this study, a set of significant features was initially developed using a framework.

Then, several predictive models were trained based on different sub-populations. The

defined sub-models were fitted using a Bayes Point Machine (BPM) algorithm, with

Gamma priors and the Expectation Propagation (EP) message passing for the inference

of the posterior. Furthermore, an optimised Ensemble of five sub-models was produced

based on age group sub-models, 1-year prior operation sub-models and the general

model.

Thereafter, the developed decision support tool, the Ensemble Risk Model of Emer-

gency Admissions (ERMER), was benchmarked against the PARR, the CPM and

Billings et al. (2013) models, with very similar settings. The proposed model outper-

forms other models for any-emergency readmissions and the sub-population of 18-95

year-old patients. The ROC of any-emergency readmission is 0.759-0.771, compared

with the PARR, which is 0.69 with an age restriction (65+) and an HRG restriction

(reference conditions). In addition, the performance is very close to the CPM and

Billings et al. (2013) models, which predicts any-emergency admissions using much
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more care data (inpatient, outpatient, A&E and GP data).

8.5.1 Data

Firstly, the feature preparation is the most time-consuming part of many analyses.

There are three main layers of difficulties in the preparation of features: correlations,

re-categorisations and selections (Mihaylova et al., 2011, Walpole et al., 2014, Yang

et al., 2005a). In this study, the variables were generated and selected based on the

healthcare pre-processing framework developed in the Phase-I of our research (Chapter

7). Based on this framework a large pool of variables was generated and filtered based

on a set of defined criteria. Then, these features were ranked and a selection of top

features were inputted into the model.

Capturing high-risk patients using diagnoses can be difficult owing to variate coding

practices, under-reporting of diagnostic variables, incomplete coding of transferred pa-

tients and comorbidities’ complexities (Billings et al., 2013, Bottle et al., 2011, Reimer

et al., 2016). Therefore, only high-level of diagnoses groups were included, and the

remaining detailed codes were aggregated.

In this study, a recent version of the HSCIC Charlson Comorbidity Index (HSCIC-CCI)

was used, which is actively maintained by the HSCIC and Dr Foster unit (Aylin et al.,

2010, Bottle et al., 2011). Comorbidity scoring is usually used to distinguish the condi-

tions present on admission from complications. But, poor coding and disregarding the

effects of population characteristics can introduce bias (constant risk fallacy) (Fischer

et al., 2011, Nicholl, 2007). Other criticisms of scoring originate from choosing small

cohorts, using additive risk models of different medical conditions, ignoring important

factors, such as the Length-of-Stay (LoS) and the presence of different valid principal

diagnoses across different cohorts (Bottle and Aylin, 2011, Quan et al., 2005).

Moreover, left-censored and right-censored observations introduce bias in the features

and predicted risk estimates (Singer and Willett, 2003). According to Table 5.1, about

8%-15% of patients do not have any admissions after the trigger-event. In addition,

about 28%-51% of patients do not have any other prior-admissions before the trigger-

event.

Finally, it has been speculated that many of the variations in readmission can be due

to the delivery of the care method, which cannot be quantified using an administrative

database only (Billings et al., 2013, Bottle et al., 2014, DH, 2006).
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Table 8.7: ERMER: the risk bands statistics (all samples)

PARR-2-Settingsa IPAEOPGPb Any-Acutec

Band TP+FP TP Preci. Sens. Avg.d C.I.e TP+FP TP Preci. Sens. Avg. C.I. TP+FP TP Preci. Sens. Avg. C.I.

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1

1 14 0 0.000 0.000 0.00 0.00, 0.00 2,101 140 0.067 1.000 6.66 0.06, 0.08 3,797 240 0.063 1.000 6.30 0.06, 0.07

2 103 5 0.049 1.000 4.85 0.00, 0.10 8,065 945 0.117 0.871 11.68 0.11, 0.12 12,435 1,411 0.113 0.855 11.36 0.11, 0.12

3 522 48 0.092 0.906 9.19 0.07, 0.12 14,916 2,046 0.137 0.653 13.70 0.13, 0.14 20,067 2,675 0.133 0.618 13.33 0.13, 0.14

4 2,329 369 0.158 0.874 15.8 0.14, 0.17 15,054 2,643 0.176 0.458 17.55 0.17, 0.18 20,237 3,457 0.171 0.444 17.08 0.17, 0.18

5 3,404 742 0.218 0.637 21.79 0.20, 0.23 20,850 3,979 0.191 0.408 19.09 0.19, 0.20 24,368 4,613 0.189 0.372 18.92 0.18, 0.19

6 6,356 1,832 0.288 0.611 28.80 0.28, 0.30 20,969 4,585 0.219 0.320 21.87 0.21, 0.22 23,313 5,075 0.218 0.290 21.77 0.21, 0.22

7 7,681 2,618 0.341 0.466 34.09 0.33, 0.35 21,445 5,593 0.261 0.281 26.09 0.25, 0.27 23,063 5,968 0.259 0.255 25.87 0.25, 0.26

8 9,604 3,705 0.386 0.398 38.57 0.38, 0.40 18,623 6,271 0.337 0.239 33.64 0.33, 0.34 19,461 6,523 0.335 0.218 33.49 0.33, 0.34

9 11,501 5,080 0.442 0.353 44.18 0.43, 0.45 17,265 7,216 0.418 0.216 41.77 0.41, 0.43 17,827 7,425 0.417 0.199 41.66 0.41, 0.42

10 8,987 4,310 0.480 0.230 47.95 0.47, 0.49 13,962 6,896 0.494 0.171 49.38 0.49, 0.50 14,345 7,068 0.493 0.159 49.27 0.48, 0.50

11 6,913 3,713 0.537 0.166 53.66 0.53, 0.55 10,921 6,160 0.564 0.133 56.38 0.55, 0.57 11,191 6,313 0.564 0.124 56.38 0.55, 0.57

12 4,787 2,737 0.572 0.109 57.21 0.56, 0.59 10,140 6,755 0.666 0.127 66.57 0.66, 0.67 10,391 6,907 0.665 0.120 66.50 0.66, 0.67

13 3,076 1,948 0.633 0.072 63.32 0.62, 0.65 10,109 7,426 0.735 0.122 73.43 0.73, 0.74 10,357 7,585 0.732 0.116 73.21 0.72, 0.74

14 1,879 1,273 0.677 0.045 67.80 0.66, 0.70 5,533 4,193 0.758 0.065 75.81 0.75, 0.77 5,672 4,296 0.757 0.062 75.74 0.75, 0.77

15 1,116 800 0.717 0.027 71.68 0.69, 0.74 4,301 3,423 0.796 0.050 79.58 0.78, 0.81 4,424 3,517 0.795 0.048 79.49 0.78, 0.81

16 721 547 0.759 0.018 75.86 0.73, 0.79 2,975 2,447 0.823 0.035 82.31 0.81, 0.84 3,089 2,549 0.825 0.034 82.55 0.81, 0.84

17 460 364 0.791 0.012 79.13 0.75, 0.83 4,595 4,076 0.887 0.054 88.72 0.88, 0.90 4,757 4,223 0.888 0.053 88.77 0.88, 0.90

18 306 240 0.784 0.008 78.43 0.74, 0.83 1,697 1,475 0.869 0.019 86.91 0.85, 0.89 1,769 1,542 0.872 0.019 87.22 0.86, 0.89

19 199 167 0.839 0.005 83.92 0.79, 0.89 597 509 0.853 0.007 85.26 0.82, 0.88 619 527 0.851 0.006 85.13 0.82, 0.88

20 189 173 0.915 0.006 91.53 0.87, 0.95 554 502 0.906 0.006 90.61 0.88, 0.93 573 520 0.908 0.006 90.75 0.88, 0.93

N 70,147 30,671 0.609 0.390 43.72 0.43, 0.44 204,672 77,280 0.719 0.478 37.75 0.38, 0.38 231,755 82,434 0.719 0.461 35.56 0.35, 0.36

a The performance of the model for the sub-population Sub PARR-2-Settings. b The performance of the model for the sub-population Sub IPAEOPGP.
c The performance of the model for the sub-population Sub Any-Acute. d The average of number of readmitted patients. e The confidence interval for the average of number

of readmitted patients using the bootstrapped central estimate with 95% CI.
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Table 8.8: ERMER: The top risk segments profile of the predicted patient (all samples)

Risk

Seg.a
Model Sub-population Min

Riskb

Asthma
c

COPD
d

Depres.
e

Diab.
f

Hyper.
g

Cancer
h

CHD
i

CHF j Avg.

Agek

Avg.

LoSl

5-9

Medsm
10+

Medsn

Train: train sub-sample of Sample-1 ; Test: test sub-sample of Sample-1

10,000

ERMER

PARR-2-Settings 0.576 16.69 35.68 41.94 23.49 53.20 19.65 50.93 39.82 80.80 11.06 NA NA

IPAEOPGP 0.759 11.54 12.19 12.24 8.25 20.71 6.51 14.88 10.34 39.68 4.49 NA NA

Any-Acute 0.766 11.25 11.52 11.57 7.93 19.74 6.24 14.01 9.72 38.61 4.39 NA NA

5,000

PARR-2-Settings 0.647 20.84 44.14 45.10 26.00 56.28 21.24 57.00 45.10 80.33 11.32 NA NA

IPAEOPGP 0.817 15.80 15.78 15.28 10.14 25.20 7.52 18.58 12.96 42.36 4.91 NA NA

Any-Acute 0.818 15.84 15.72 15.32 10.38 25.12 7.60 18.48 12.92 41.99 4.93 NA NA

1,000

PARR-2-Settings 0.815 31.40 59.10 50.70 26.90 61.70 22.90 66.40 53.30 78.95 10.04 NA NA

IPAEOPGP 0.910 33.40 35.70 30.50 21.90 39.70 14.30 38.60 26.30 53.38 6.98 NA NA

Any-Acute 0.912 33.20 34.80 29.90 21.80 39.00 14.40 37.50 25.40 52.21 6.85 NA NA

500

PARR-2-Settings 0.881 37.40 67.60 52.00 26.40 63.20 25.20 69.60 55.20 77.98 9.35 NA NA

IPAEOPGP 0.957 38.20 38.60 34.80 25.20 42.80 14.20 43.20 27.40 54.49 7.43 NA NA

Any-Acute 0.958 37.80 37.60 33.80 25.00 41.20 14.00 41.80 26.80 52.95 7.37 NA NA

250

PARR-2-Settings 0.933 36.40 70.00 53.60 27.60 63.20 25.60 69.60 53.60 77.34 9.57 NA NA

IPAEOPGP 0.985 40.80 39.20 36.40 27.20 42.80 11.60 42.00 29.60 53.88 7.99 NA NA

Any-Acute 0.986 40.40 38.80 36.40 27.60 42.40 11.60 41.20 28.80 52.76 7.89 NA NA

a The top predicted risk segment. b The minimum predicted risk in the segment.
c The percentage of patients with a history of Asthma diagnosis (ICD-10: J45-J46). d The percentage of patients with a history of Chronic Obstructive Pulmonary

Disease (COPD) diagnosis (ICD-10: J20, J41-J44, J47). e The percentage of patients with a history of Depression diagnosis (ICD-10: I10-I15).
f The percentage of patients with a history of Diabetes diagnosis (ICD-10: E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8, E11.9, E12.0, E12.1, E12.6,

E12.8, E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, E14.9, E10.2-E10.5, E10.7, E11.2-E11.5, E11.7, E12.2-E12.5, E12.7, E13.2-E13.5, E13.7,

E14.2-E14.5, E14.7). g The percentage of patients with a history of Hypertension diagnosis (ICD-10: I10-I15, I27, I6, I87.0, I87, I97, K76.6, H35.0, R03, O13, O14,

O16, O10, G93.2, H40.0, P292, P293). h The percentage of patients with a history of Cancer diagnosis (ICD-10: C00-D49). i The percentage of patients with a

history of Coronary Heart Disease (CHD) diagnosis (ICD-10: I20-I25). j The percentage of patients with a history of Congestive Heart Failure (CHF) diagnosis

(ICD-10: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0). k The average age of patients at the trigger event. l The average length of

stay of patient at the trigger event. m The percentage of patients with 5-9 medication prescription. n The percentage of patients with 10+ medication prescription.
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8.5.2 Model

Scepticism against using advanced machine learning techniques in healthcare modelling

has been repeatedly highlighted in literature, due its hype, bad practices and lack of

transparency (Section 1.5.1).

In general, accuracy and efficiency of a Bayesian model depend on five main design

choices: the representation of features, fitness algorithm, inference approximation, as-

signment and update of prior probabilities and the framework of system states.

Firstly, the features were carefully generated, selected and ranked before generating

the models. The initial prototype models, without the feature selection strategies men-

tioned earlier, have shown very high sensitivity to intercorrelations, sparsity and noisy

features. As a result, these caused non-convergence, weight decay and performance

degradation.

Moreover, in comparison with the SVM, the BPM method is demonstrated (Herbrich

et al., 2001) that can provide a better solution for an asymmetric version space, greater

ability to handle large datasets and may produce a smoother decision boundary more

efficiently.

Furthermore, Microsoft’s version of the BPM algorithm (Research, 2016) uses EP mes-

sage passing, which in Gaussian Mixture problems is demonstrated (Minka, 2001a,b)

to be better than approximation techniques, such as the Markov Chain Monte Carlo

(MCMC), Laplace and Variational Bayes techniques. The EP does not guarantee

convergence, but in many cases it does. Especially if the features are not highly inter-

dependent, to become trapped in a region of local optima.

Finally, the choice of prior probability distributions of the weights and features can

have a significant impact on the robustness of the algorithm. The applied algorithm

uses a heavy-tailed prior, which is more robust towards outliers of the weight distribu-

tions. Also, the incremental Bayesian training of the ERMER allows it to incorporate

the effects of changes in prior distributions.

8.5.3 Results

All the sub-models are stable in the convergence and the cross-validation tests. More-

over, the features are initially selected based on the main model’s population. And, the

weights are very similar, proportionally, for all sub-models owing to very similar feature



8.5.3 Results 109

distributions, except for two: the sub-model with no prior spell (Cond Prior-Spells0)

and the sub-model with no prior operation or procedure (Cond Prior-Oper-12-month0).

Firstly, the learning curve plots for the BPM sub-models are presented in Figure 8.2.

The learning curve plots for each modelling group was generated for Sample-1 with

fixed test sub-sample size. Each plot demonstrates the micro-average error of the

sub-models against different training sub-sample sizes. In all the modelling groups and

sub-models, the micro-average error reduces by 0.02 to 0.04 for training sub-sample size

from 500 up to 10, 000, and then the error changes less than < 0.005 for training sub-

sample size from 10, 000 up to 200, 000. Therefore, this is an indication that training

sub-sample sizes > 10, 000 do not provide a huge benefit to the performance of our

models.

Furthermore, the applied BPM algorithm can handle a large number of features and a

moderately large number of observations in comparison to the LR. On average, it takes

about two to eight minutes1 to train a sub-model with 100 features.

Moreover, for this modelling approach, 5 random folds were used, and 100 iterations

were performed for training (similar to the model fitting stage). In Figure 8.5, the

distribution of standard deviation of cross-validation’s performance indicators are pre-

sented.

Finally, a way to find the generalisation error can be to test models with fresh and in-

dependent samples from the same source (Shalizi, 2015). The dataset splitting method

was carried out at first, and different sub-samples were used for testing purpose. The

detailed results are provided in Appendix A.6.

For the BPM models, the training needs to reach a uniform consistency that can bound

the probability of error. The EP algorithm that Infer.Net used can not guarantee

convergence, and if there is a conflicting solution, it may lead to non-convergence

(Minka, 2001b, 2016, Research, 2016). Average and range of convergence for all sub-

models, and distributions of cross-validation performance indicators are presented in

Figure 8.4 and Figure 8.5.

Also, the models’ performances are consistently high across all the samples. The per-

formance of the main sub-models improves the ROC (Figure 8.7), sensitivity, specificity

and precision percentage by 2.83, 0.50, 1.26 and 2.83, respectively (Table 8.5).

Furthermore, the populations of readmitted patients are very low; therefore, the sam-

ples are significantly unbalanced in terms of the dependent variable distribution. The

main models have 3.0-4.5 times less readmitted patients, and sub-models have 1-10

1Windows 10 machine with Intel i7 2 GHz quad-core CPU and 8 GB 1600 MHz RAM.
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times less readmitted patients compared to non-readmissions. Therefore, based on the

sensitivity, precision and the ROC, our models can more confidently identify low-risk

patients, and avoid unnecessary interventions.

In addition, the Ensemble model improves the overall performance compared to the in-

dividual sub-models. The ROC and precision statistics of the any-acute model increase

by 2.83 and 7.16, respectively, and sensitivity decreases in consequence. The detailed

performance indicators of sub-models are presented in Appendix A.6.3.

Moreover, the features were selected based on the main model, which considers all

the emergency admission population. Therefore, the PARR sub-population under-

performs. However, compared with the PARR model, the predicted high-risk patients

have less number of prior-admissions for all the sub-populations, which makes it con-

siderably harder to predict.

In addition, based on the population profile of the top 1000 risk segments (Table 8.8),

the model (Any-Acute) predicts more patients with chronic obstructive pulmonary

disease (COPD), depression, diabetes, coronary heart disease (CHD), congestive heart

failure (CHF) and smaller average-age as high-risk, than the CPM and the PARR

models did. On the other hand, cancer that is highly predictable and manageable has

a smaller share among the high-risk patients.

Finally, because sensitivity and precision vary across risk scores, and the costs of inter-

ventions or readmissions are not zero, it is better to define a profit function. However,

owing to the lack of necessary variables for mapping the costs, this was not considered.

8.6 Concluding Remarks

What is already known?

• Avoidable emergency hospital admission can be an indicator of suboptimal care

quality.

• Identification of high-risk patients for intervention can substantially improve care

quality and reduce costs.

• Designing features and developing predictive models that can adjust continuously

to a fast-changing healthcare system and population characteristics are very chal-

lenging.
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What this phase of research adds?

• The optimised Ensemble model of sub-population was proved to significantly

improve the risk model.

• The combination of using a nonlinear Bayesian model and applying a healthcare

pre-processing framework to generate a pool of features and to select significant

features can effectively create a highly adaptable predictive model.

• The Ensemble of generative models is a new effective way to predicts patients

with harder predictability, such as patients with chronic conditions and patients

with fewer prior hospitalisation records.

In conclusion, ERMER provides a generic approach in modelling readmission empha-

sising on robustness and feature discovery. Moreover, based on a large number of it-

erations for performance assessment across different settings, the ERMER maintained

its high discriminatory performance. Consequently, ERMER can bring a significant

improvement to the current decision support system in use, increase care quality and

reduce the costs.

Finally, the ERMER toolkit is presented in Chapter 10. It is a generic, user-friendly

and open-source software package, and is released for public use and incremental de-

velopment.

In the next chapter, the final phase of the research is presented, which is dedicated to

the development of a generic temporal comorbidity risk model.





Chapter 9

Phase III: Temporal-Comorbidity

Adjusted Risk of Emergency

Readmission (T-CARER)

Patients’ comorbidities, operations and complications can be associated with reduced

long-term survival probability and increased healthcare utilisation. The aim of this

research phase was to produce an adjusted case-mix model of comorbidity risk and

develop a user-friendly software tool to encourage public adaptation and incremental

development.

It has been shown in healthcare research, that demographics, temporal dimensions,

Length-of-Stay (LoS) and time between admissions, can noticeably improve the statis-

tical measures related to comorbidities.

In previous literature, there have been two streams of work on risk scoring comorbidities

to estimate future resource utilisation, emergency admission and mortality. Firstly,

one stream of research looks at the odds ratio of major diagnoses groups, like Charlson

Comorbidity Index (CCI) which rely on twenty-two comorbidity groups (Charlson et al.,

1987). The second stream uses a case-mix model or a diagnoses classification approach

based on similarities, type of care, likelihood or duration, like Elixhauser Comorbidity

Index (ECI) (Elixhauser et al., 1998, AHRQ, 2016b), Diagnosis-related Groups (DRGs)

(Fetter et al., 1980, Mistichelli, 1984) and John Hopkin’s (Weiner and Abrams, 2011)

Adjusted Clinical Groups (ACGs).

Furthermore, comorbidity risk models are constrained by the population and sample

characteristics, data quality (e.g. missing diagnoses or delayed death registration) and

modelling approaches. There is a wide range of literature that focuses on modification

113
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and benchmarking comorbidity risk indices, using different datasets, cohorts, diagnoses

groups, complexity types, LoS and claims. The models’ prediction targets varies and

include: 1-year in-hospital or general mortality, and 7- and 30-day emergency admis-

sions (Austin et al., 2012, Bottle et al., 2014, Gagne et al., 2011, Holman et al., 2005,

Januel et al., 2011, Mehta et al., 2016, Sharabiani et al., 2012). Moreover, there have

been many attempts at scoring surgical outcomes and complications (Section 2.3.2),

which are affected by comorbidity (Armitage and Van der Meulen, 2010, Mehta et al.,

2016), but they lack generality and high dependency to extra clinical data.

There has been very little research in the area of temporal comorbidity risk scores

(Wang et al., 2009a), and the majority of temporal models (Appendix A.1.1) in the

literature focus on survival analysis aspect of comorbidity indices. Unlike temporal

models of mortality, temporal emergency admissions risk scores are more difficult to

model, optimise and implement, due to complex characteristics of comorbidities and

care utilisation over time and their relations to emergency admissions.

The proposed model in this phase, incorporates temporal aspects, operations and pro-

cedures groups, demographics, and admission details, as well as diagnoses groups.

The research resulted in the development of Temporal-Comorbidity Adjusted Risk

of Emergency Readmission (T-CARER) model using routinely collected hospital in-

patient data. The T-CARER model is published publicly as an interactive IPython

Notebook, with generic inputs, features and population settings for general purpose

use.

Moreover, several stages of analysis have been carried out to test and benchmark the

T-CARER. Firstly, two data-frames across a 10-year period (1999-2010) were selected.

Afterwards, three different modelling approaches were developed: a Logistic Regression

(LR), a Random Forest (RF), and a Wide and Deep Neural Network (WDNN). Then,

the models were benchmarked against the HSCIC implementation of the CCI (HSCIC-

CCI) (Aylin et al., 2010, DFI, 2013), and the reported performance of CCI and ECI

implementations (Bottle and Aylin, 2011, Bottle et al., 2014, Holman et al., 2005,

Mehta et al., 2016).

The WDNN and the RF methods outperform in terms of the Area Under the Curve

(AUC) of Receiver-Operating Characteristic (ROC) against the LR, as well as HSCIC-

CCI, CCI and ECI models. For 30- and 365-day emergency admissions, ROCs of

different modelling approaches were from 0.772%-0.804% for the two sampled time-

frames.

The WDNN method produced predictions with high precision, and the RF method

outperformed regarding micro-average of F1-score. The precisions were 0.582%-0.639%,
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and the micro-average of F1-score were 0.730%-0.790% for the best modelling methods

across different sampled time-frames.

This chapter is structured as follows. Firstly, the data and pre-processing stages are

summarised. Furthermore, the T-CARER and modelling methods are described. After-

wards, the results are presented, and then the benchmarking comparisons are provided.

Finally, concluding remarks are presented. Moreover, the description of the T-CARER

development toolkit is provided separately in Chapter 10.

9.1 Data

After the data ingestion step (Section 7.1), four stages of data pre-processing were

carried out (Section 7.2), including removals, imputations and re-categorisation1 of

some discrete and continuous variables to reduce sparsity and better capture non-linear

relationships (Table 5.1).

Based on previous studies and the initial statistical analyses, four levels of tempo-

ral features were generated: 0-30, 30-90, 90-365 and 365-730 days. These four levels

capture part of the temporal aspect of comorbidities, in addition to the delta-time

between admissions (GapDays) and the length-of-stay (epidur) features that include

temporal metadata. Furthermore, in the modelling stage, we applied several techniques

to capture the complex temporal patterns of patients comorbidities.

For the diagnoses, a clinical grouper, known as the Clinical Classifications Software

(CCS), was used to better capture comorbidities’ patterns. The CCS categorises the

ICD-10 diagnoses and operations into a number of categories that are clinically mean-

ingful (Elixhauser and Steiner, 2006, AHRQ, 2016a). In this study, operations and

procedures are categorised using the main categories of the OPCS-42.

After exploratory analyses of the variables, three major related risk factors were de-

fined and re-categorised: demographics, admission and clinical (Table 9.1). Next, a

feature pool was generated similar to the feature engineering step of our pre-processing

framework Section 7.3. Also, the temporal features were summarised in each temporal

level based on several aggregation functions, including prevalence, count and average.

This step increased the number of features by more than fifty folds.

1Re-categorisation is also known as recoding, grouping, classifying or aggregating
2The OPCS has hierarchical coding structure and the first character in the code represents the main

category of operation or procedure.
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Table 9.1: T-CARER: The main defined features

Main Feature Definition
gender Gender of patient (Female, Male, Others)
ethnos Ethnicity of patient (Bangladeshi, Black African, Black Caribbean, Black Other, Chinese,

Indian, Pakistani, White, Others).
imd04rk The Index of Multiple Deprivation (IMD) overall ranking of income (22.5%), employment

(22.5%), health deprivation and disability (13.5%), education & skills (13.5%), barriers to
housing & services (9.3%), crime (9.3%), & living environment (9.3%).

ageTrigger Age of patient at the trigger event. Categorisation bins: {10-, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70, 75, 80, 85, 90+}.

gapDays (temporal) Delta-times from discharge to the trigger admission.
epidur (temporal) Spell durations.
preopdur (temporal) Pre-operative durations.
posopdur (temporal) Post-operative durations.
operOPCSL1 (temporal) The level-1 categories (25 groups) of operating procedure codes (OPCS), the national standard

(HSCIC, 2014b) version 4.0 (¿4,000 codes).
diagCCS (temporal) The level-1 categories (302 groups) of Clinical Classifications Software (CCS) for ICD-10

(AHRQ, 2016b) diagnoses ( 69,800 codes).
admimeth (temporal) The level-1 categories (3 groups) of admission method (20 codes): {Elective, Emergency,

Others}.
mainspef (temporal) The level-1 categories (33 groups) of the main specialities of the consultants (86 codes), based

on the exploratory analysis.

Then, the feature selection step has been carried out (Section 7.4). The recoding

states of the features were filtered out based on their linear cross-correlation, as well

as frequency and sparseness (percentage of distinct and the ratio of the most common

value to the second most common). Afterwards, features were sorted using the average

importance score, which was produced using the Breiman RF method after six trials

and three different decision tree generation settings (Breiman, 2001).

9.2 Model

The aim of this research phase is to model emergency readmission using a minimal

number of generic features that can be used for short and long-term predictions and

have a high correlation to comorbidity risk. In this phase of research, emergency

readmission refers to the emergency admission in future without any condition on

the trigger-event, unlike the ERMER model, which enforced the emergency admission

condition for both the trigger-event and the future-admission.

Based on our literature reviews, three training methods have been considered for the

T-CARER, in order to closely access the algorithms strengths and weaknesses3.

The first algorithm is a LR with L1 regularisation (value of 1.0), using liblinear op-

timisation algorithm (Fan et al., 2008) with a maximum of hundred iterations and a

warm-up period (scikit learn, 2016). The LR method is a linear regression model and

is a special case of Generalised Linear Model (GLM), which assumes the model error

has a standard logistic distribution. Moreover, the addition of L1 regularisation to LR

3CPU: Intel i7-7700K 4.2 GHz; GPU: NVIDIA Titan X 1.5GHz, 12GB RAM; Memory: Samsung
SM951 512GB, PCI-E v3 on Intel Z270 chipset; RAM: 4x16GB Corsair DDR4 2666 MHz C15 XMP
2.0; Libraries: TensorFlow (1.0), Cuda (8.0), SciKit-Learn (0.18) and SciPy (0.18).
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Table 9.2: T-CARER: Top groups of diagnoses, operations and consultant speciali-
ties

CCS Categories of the ICD-10 Diagnoses: Spondylosis; disc disorders; other back problems

Abdominal pain Thyroid disorders

Administrative/social admission Urinary tract infections

Alcohol-related disorders Level-1 Categories of OPCS-4 for Operations:

Allergic reactions Arteries & Veins

Asthma Bones & Joints of Skull & Spine

Cardiac dysrhythmias Diagnostics & Tests

Cataract Female Genital Tract

Chronic obstructive pulmonary & bronchiectasis Heart

Complication of device; implant or graft Lower Digestive Tract

Congestive heart failure; nonhypertensive Lower Female Genital Tract

Coronary atherosclerosis & other heart disease Male Genital Organs

Deficiency & other anemia Mental Health

Delirium dementia & amnestic & other cognitives Miscellaneous Operations

Diabetes mellitus without complication Nervous System

Disorders of lipid metabolism Other Abdominal Organs

Esophageal disorders Other Bones & Joints

Essential hypertension Others

External cause codes Respiratory Tract

Fetal distress & abnormal forces of labor Skin

Fracture of upper limb Soft Tissue

Genitourinary symptoms & ill-defined conditions Upper Digestive Tract

Normal pregnancy and/or delivery Upper Female Genital Tract

OB-related trauma to perineum & vulva Urinary

Osteoarthritis Bespoke Categories of Consultant Specialities:

Other & unspecified benign neoplasm A&E

Other aftercare Cardiothoracic

Other birth complications; mother’s puerperium Ear, nose & throat

Other complications of pregnancy Gastroenterology

Other connective tissue disease General

Other female genital disorders General Surgery

Other gastrointestinal disorders Geriatric

Other injuries & conditions due to external causes Gynaecology

Other lower respiratory disease Haemotology

Other nervous system disorders Maternity

Other suspected screening (excl. mental & infectious) Ophthalmology

Other skin disorders Others

Other upper respiratory disease Paediatrics

Others Plastic

Phlebitis; thrombophlebitis & thromboembolism Psychiatry

Residual codes; unclassified Urology

Skin & subcutaneous tissue infections

allows the model to select a simpler model when there are moderate number of features

with high sparsity (Section 4.2.3).

Secondly, we used a RF method using the Breiman (2001) algorithm with Gradient

Boosted Regression trees, Gini index, fifty trees in the forest with balanced labels, the

minimum split size of hundred, and minimum leaf size of fifty (scikit learn, 2016).

The RF method (Section 4.2.4.1) is an Ensemble Decision Tree, which was initially

introduced by Breiman (2001), and is based on the CART algorithm and the Bagging

Ensemble method. However, the Breiman RF is sensitive to highly correlated features

and the scale or categories of features (Strobl et al., 2007, Toloşi and Lengauer, 2011).

Thirdly, a Deep Neural Network (DNN) was designed based on the Wide and Deep
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Neural Network (WDNN) algorithm, that was introduced by Cheng et al. (2016). DNNs

are a class of Artificial Neural Networks (ANNs) with multiple hidden layers (Section

4.2.7.2), which allow modelling more complex non-linear problems with more effective

representation of features in each layer. The WDNN is a DNN which combines benefits

of memorisation and generalisation. The WDNN consists of two parts: the wide model

and the deep model (Figure 4.4).

The wide part of the model consists of a wide linear model for highly sparse features

(random features that are rarely active). The wide part may also include groups of

crossed features (a.k.a. interaction terms). Inside of a group of crossed features, each

level of one feature occurs in combination with each level of other features. On the

other hand, the deep part of the model composed of hidden layers of the feed-forward

artificial neural network (ANN) and may also include an embedding layer to convert

categorical inputs into low-dimensional and dense real-valued vectors (Abadi et al.,

2016).

Table 9.3: T-CARER: The input layer of the Wide and Deep Neural Network

Sub-Model Feature Type Features
Wide Categorical ageTrigger (17 states), epidur (6 states), ethnos (11 states), gapDays (6 states), gender

(2 states), & imd04rk (11 states)
Crossed (memorised) gender ≈ ethnos (80 cross states), imd04rk ≈ gender (200 cross states), imd04rk ≈

ethnos (400 cross states), & imd04rk ≈ ageTrigger (400 cross states).
Deep Embedded ageTrigger (5 states), ethnos (3 states), gender (2 states), imd04rk (5 states), epidur

(3 states), & gapDays. (3 states)
Continuous All the selected categories of admimeth, diagCC, gapDays, mainspef, operOPCSL1,

posopdur, & preopdur.

In our study, the WDNN model applies Adadelta optimiser (Duchi et al., 2011) for the

gradients of the deep part, and the Rectified Linear Unit (ReLU) activation function

was applied to each layer of the ANN (LeCun et al., 2015). Moreover, the WDNN model

was developed after several stages of ad-hoc benchmarking to reach an optimal setting

for hyper-parameters. The first aim was to minimise the loss function in learning

iterations, to avoid weight decay and to assure convergence. The second objective

was to maximise the layers and neurons under computing resources constraints, to

increase stability and minimise resource utilisation. Also, an implicit optimisation was

carrying out in the background by the Adadelta optimiser to configure the learning

rate dynamically.

Furthermore, because of the huge size of the WDNN, the designed tensors (Google,

2016) was trained in batches of 2,000 observations per-step, for 40,000 iterations. The

training of each model using our hardware and software setups took about 12 hours

(with regular storage of the trained model). The outline of the nodes are presented in

Table 9.3, and an abstract representation of the designed model with the TensorFlow

is presented in Appendix A.7.2. The wide part of the model consists of twenty-two
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categorical features (1-17 states) and four crossed columns (80-400 states). The deep

part of the model includes fourteen embedding features (3-5 states), 286 features con-

tinuous features (one-dimensional) and three hidden layers of neurons. The defined

hidden layers one to three were fully interconnected and were configured as 24,000,

12,000 and 6,000 nodes, respectively.

Table 9.4: T-CARER: The performance statistics (all samples)

Time Hori-

zon

30-day 365-day

Method RFCa LRb WDNNc RFC LR WDNN

Sample Train Test Train Test Train Test Train Test Train Test Train Test

Sample: Sample-1 (Train, Test)

ROC 0.827 0.804 0.778 0.772 0.817 0.796 0.789 0.780 0.760 0.759 0.795 0.787

Precision 0.180 0.180 0.530 0.520 0.641 0.617 0.430 0.430 0.690 0.690 0.644 0.631

Sensitivity d 0.760 0.730 0.070 0.070 0.104 0.098 0.710 0.700 0.260 0.270 0.382 0.374

F1 e 0.300 0.280 0.130 0.130 0.178 0.170 0.540 0.530 0.380 0.380 0.480 0.470

Macro F1 0.790 0.790 0.900 0.900 0.900 0.900 0.740 0.730 0.770 0.770 0.790 0.790

Accuracy 0.728 0.724 0.926 0.925 0.928 0.928 0.718 0.713 0.802 0.802 0.808 0.805

Log-Loss 9.392 9.538 2.571 2.576 2.476 2.496 9.746 9.914 6.840 6.835 6.636 6.748

Brier-Score 0.168 0.171 0.061 0.061 0.059 0.060 0.186 0.188 0.144 0.144 0.137 0.139

TP+FP f 43,494 43,466 43,494 43,466 43,494 43,466 134,101 133,901 134,101 133,901 134,101 133,901

Total 578,936 578,937 578,936 578,937 578,936 578,937 578,936 578,937 578,936 578,937 578,936 578,937

Sample: Sample-2 (Train, Test)

ROC 0.766 0.743 0.718 0.715 0.759 0.735 0.791 0.785 0.765 0.766 0.793 0.772

Precision 0.340 0.320 0.580 0.570 0.600 0.582 0.610 0.610 0.690 0.690 0.651 0.639

Sensitivity 0.590 0.550 0.110 0.120 0.207 0.198 0.690 0.690 0.460 0.460 0.585 0.573

F1 0.430 0.400 0.190 0.190 0.308 0.295 0.650 0.650 0.550 0.550 0.616 0.604

Macro F1 0.790 0.780 0.810 0.810 0.830 0.830 0.720 0.720 0.700 0.700 0.720 0.720

Accuracy 0.770 0.756 0.857 0.855 0.862 0.859 0.722 0.717 0.720 0.720 0.728 0.719

Log-Loss 7.955 8.416 4.931 5.011 4.738 4.878 9.616 9.775 9.672 9.668 9.397 9.719

Brier-Score 0.194 0.197 0.112 0.114 0.107 0.110 0.187 0.190 0.185 0.185 0.176 0.184

TP+FP 47,487 48,207 47,487 48,207 47,487 48,207 120,285 120,838 120,285 120,838 120,285 120,838

Total 322,300 322,301 322,300 322,301 322,300 322,301 322,300 322,301 322,300 322,301 322,300 322,301

a Random forest classification (RFC). b Logistic regression (LR). c Wide and deep neural network (WDNN).
d Recall or true positive rate. e F1-score (F1). f True and false positives.

9.3 Results and Benchmarks

Firstly, the three T-CARER models: LR, RF and WDNN, have been benchmarked

across samples and the two prediction target variables: 30- and 365-day emergency

admissions (Table 9.4). In overall, the WDNN and the RF models provide a better fit

for the 30- and 365-day emergency readmission problems. For the 365-day, the WDNN

produces a marginally better Receiver-Operating Characteristic (ROC) compared to

the RF, and significantly better than the LR (Figure 9.1). Also, the WDNN models

have very strong precision (positive predictive value), accuracy and micro-average F1-

score. On the other hand, the RF models have very high sensitivity (True Positive

Rate) and F1-score (Figure 9.2).
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Table 9.5: T-CARER: The profile of main comorbidity groups for the 365-day model using Random Forest method (all samples)

Main Comorbidity Groups Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons
Diagnoses Group a Prior

b
Male Age

c
LoS
d

Total Sens.
(0.5)
e

F1
(.5)
f

TP
(.5)
g

TN
(.5)
h

TP
(.7)

TN
(.7)

CCI
1-3
i

CCI
1-3
(TP)

CCI
4+

CCI
4+
(TP)

Delta Score
(.5, 4+) j

Delta Score
(.7, 4+)

Sample: Sample-1 (Test)
Hypertension (HT) 29,207 12,311 22 9 89004 0.296 0.6 27,954 11,017 7,833 51,964 7,079 2,380 23,022 8,962 -8,962 (-10.1%) 10,926 (12.3%)
Depression 21,635 9,925 16 8 69154 0.311 0.611 22,864 7,143 5,849 41,670 6,356 2,130 18,168 7,166 -7,166 (-10.4%) 9,379 (13.6%)

CHDk 20,849 11,669 16 8 57550 0.222 0.504 13,540 7,616 6,146 30,555 3,871 1,547 19,360 7,776 -7,776 (-13.5%) 7,762 (13.5%)
Cancer 20,475 9,888 24 7 80579 0.479 0.768 42,240 4,699 3,921 56,183 2,054 708 14,643 5,589 -5,589 (-6.9%) 6,479 (8.0%)
Asthma 10,196 3,576 43 6 32718 0.356 0.67 12,405 4,272 2,489 20,033 559 267 18,073 5,124 -5,124 (-15.7%) 10,752 (32.9%)
Diabetes 11,249 5,799 20 8 31673 0.259 0.56 8,730 4,067 2,941 17,483 14,307 4,545 8,014 3,400 -3,400 (-10.7%) 11,435 (36.1%)

COPDl 9,144 4,729 14 9 19892 0.119 0.351 2,482 4,621 3,017 7,731 542 303 10,935 4,839 -4,839 (-24.3%) 3,318 (16.7%)
CHFm 9,248 4,466 15 10 20838 0.097 0.29 2,098 4,468 3,457 8,133 1,083 559 11,385 4,937 -4,937 (-23.7%) 3,515 (16.9%)
Prior 30-day non-emergency 781 310 43 9 2203 0.291 0.61 676 374 238 1,184 71 35 272 112 -112 (-5.1%) -42 (-1.9%)
Prior 30-day emergency 112,570 39,530 46 6 360657 0.331 0.64 126,308 44,469 23,167 224,920 11,348 4,223 48,512 18,579 -18,579 (-5.2%) 13,891 (3.9%)

Sample: Sample-2 (Test)
Hypertension (HT) 40,163 16,555 23 7 85422 0.232 0.574 21,913 11,178 3,845 41,414 7,908 3,425 30,744 16,271 -16,271 (-19.0%) 15,111 (17.7%)
Depression 32,312 14,583 17 8 69956 0.224 0.554 17,409 7,711 3,270 34,374 7,481 3,230 27,170 14,424 -14,424 (-20.6%) 13,727 (19.6%)
CHD 21,714 11,662 18 7 42427 0.171 0.481 8,037 5,819 2,322 18,391 3,372 1,725 20,758 11,267 -11,267 (-26.6%) 8,816 (20.8%)
Cancer 15,732 6,965 25 7 33143 0.227 0.567 8,408 4,198 1,601 15,810 1,602 757 12,386 6,783 -6,783 (-20.5%) 4,847 (14.6%)
Asthma 14,124 4,562 46 6 31962 0.312 0.682 11,086 4,956 1,400 16,438 805 424 18,387 7,715 -7,715 (-24.1%) 9,653 (30.2%)
Diabetes 13,006 6,482 21 8 27138 0.221 0.56 6,649 3,489 1,357 12,775 11,730 4,834 10,368 5,794 -5,794 (-21.3%) 10,113 (37.3%)
COPD 10,717 5,439 16 7 18912 0.123 0.41 2,507 4,126 1,481 6,714 722 436 12,365 7,007 -7,007 (-37.0%) 4,163 (22.0%)
CHF 9,686 4,700 14 9 16361 0.095 0.348 1,670 3,371 1,343 5,332 1,004 598 10,722 6,470 -6,470 (-39.5%) 3,315 (20.3%)
Prior 30-day non-emergency 755 283 41 6 1394 0.201 0.567 309 311 76 563 59 35 343 200 -200 (-14.3%) 91 (6.5%)
Prior 30-day emergency 120,838 39,590 48 5 322301 0.411 0.764 147,815 39,168 9,021 192,442 12,321 5,052 55,456 26,535 -26,535 (-8.2%) 27,169 (8.4%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1 score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3

by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+. k Coronary heart disease (CHD). l Chronic obstructive pulmonary disease (COPD).
m Congestive heart failure (CHF).



9.3 Results and Benchmarks 121

Figure 9.1: T-CARER: ROC plot of RF and WDNN Models (all samples)

Moreover, based on the published comparison tests of CCIs and ECIs in literature,

T-CARER performs considerably better for 30-day emergency admission. For the

emergency admission within a year, no previous benchmarking studies of CCIs or ECIs

calculated this, due to constraints on data collection, poor prediction power of models

or different research priorities.

Three previous studies have been selected that include benchmarks of various versions

of CCIs and ECIs for the emergency admission problem. Firstly, Mehta et al. (2016)

reported ROC of 0.70-0.766 for CCIs and ECIs using the Texas Medicare data (2006-

2011). Furthermore, Bottle and Aylin (2011), Bottle et al. (2014) benchmarked CCIs

using the England’s HES data (2007-2009) and produced ROC of 0.57-0.79. Moreover,
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Table 9.6: T-CARER: The profile of main comorbidity groups for the 365-day model using Wide and Deep Neural Network method (all samples)

Main Comorbidity Groups Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Sample: Sample-1 (Test)

Hypertension (HT) 29,207 12,311 22 9 89004 0.109 0.47 11,613 51,212 4,630 58,409 7,079 2,380 23,022 8,962 -8,962 (-10.1%) 17,371 (19.5%)

Depression 21,635 9,925 16 8 69154 0.089 0.419 7,426 41,098 2,004 46,547 6,356 2,130 18,168 7,166 -7,166 (-10.4%) 14,256 (20.6%)

CHDk 20,849 11,669 16 8 57550 0.117 0.455 8,238 29,601 2,454 35,477 3,871 1,547 19,360 7,776 -7,776 (-13.5%) 12,684 (22.0%)

Cancer 20,475 9,888 24 7 80579 0.051 0.332 4,949 55,706 1,564 59,401 2,054 708 14,643 5,589 -5,589 (-6.9%) 9,697 (12.0%)

Asthma 10,196 3,576 43 6 32718 0.116 0.51 4,447 19,742 2,112 21,886 559 267 18,073 5,124 -5,124 (-15.7%) 12,605 (38.5%)

Diabetes 11,249 5,799 20 8 31673 0.12 0.468 4,585 16,663 1,433 19,766 14,307 4,545 8,014 3,400 -3,400 (-10.7%) 13,718 (43.3%)

COPDl 9,144 4,729 14 9 19892 0.218 0.577 5,197 7,071 1,912 9,895 542 303 10,935 4,839 -4,839 (-24.3%) 5,482 (27.6%)

CHFm 9,248 4,466 15 10 20838 0.183 0.531 4,656 7,961 1,474 10,849 1,083 559 11,385 4,937 -4,937 (-23.7%) 6,231 (29.9%)

Prior 30-day non-emergency 781 310 43 9 2203 0.146 0.532 380 1,154 183 1,357 71 35 272 112 -112 (-5.1%) 131 (5.9%)

Prior 30-day emergency 112,570 39,530 46 6 360657 0.117 0.519 49,548 219,15729,322 241,351 11,348 4,223 48,512 18,579 -18,579 (-5.2%) 30,322 (8.4%)

Sample: Sample-2 (Test)

Hypertension (HT) 40,163 16,555 23 7 85422 0.235 0.598 23,876 29,461 9,893 41,592 7,908 3,425 30,744 16,271 -16,271 (-19.0%) 15,289 (17.9%)

Depression 32,312 14,583 17 8 69956 0.22 0.575 18,473 24,165 6,952 34,521 7,481 3,230 27,170 14,424 -14,424 (-20.6%) 13,874 (19.8%)

CHD 21,714 11,662 18 7 42427 0.257 0.601 13,125 11,881 5,359 18,430 3,372 1,725 20,758 11,267 -11,267 (-26.6%) 8,855 (20.9%)

Cancer 15,732 6,965 25 7 33143 0.236 0.592 9,345 10,891 3,648 15,894 1,602 757 12,386 6,783 -6,783 (-20.5%) 4,931 (14.9%)

Asthma 14,124 4,562 46 6 31962 0.245 0.634 9,062 12,444 4,266 16,608 805 424 18,387 7,715 -7,715 (-24.1%) 9,823 (30.7%)

Diabetes 13,006 6,482 21 8 27138 0.24 0.598 7,772 8,931 3,181 12,846 11,730 4,834 10,368 5,794 -5,794 (-21.3%) 10,184 (37.5%)

COPD 10,717 5,439 16 7 18912 0.338 0.67 7,481 4,077 3,520 6,927 722 436 12,365 7,007 -7,007 (-37.0%) 4,376 (23.1%)

CHF 9,686 4,700 14 9 16361 0.345 0.672 6,675 3,165 3,107 5,428 1,004 598 10,722 6,470 -6,470 (-39.5%) 3,411 (20.8%)

Prior 30-day non-emergency 755 283 41 6 1394 0.336 0.688 540 365 273 564 59 35 343 200 -200 (-14.3%) 92 (6.6%)

Prior 30-day emergency 120,838 39,590 48 5 322301 0.185 0.604 69,254 162,35634,938 193,319 12,321 5,052 55,456 26,535 -26,535 (-8.2%) 28,046 (8.7%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1 score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3

by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+. k Coronary heart disease (CHD). l Chronic obstructive pulmonary disease (COPD).
m Congestive heart failure (CHF).
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Holman et al. (2005) reported ROC of 0.61-0.77 for CCIs, ECIs and Multipurpose

Australian Comorbidity Scoring System (MACSS) models, based on data from hospitals

in Western Australia (1989-1996).

Furthermore, T-CARER models are compared against our implementation of the HSCIC-

CCI across all the CCI and the ECI diagnoses categories. Appendix A.7.3 indicates

that the T-CARER performs significantly better than the HSCIC-CCI for all the 46

diagnoses categories (The 2009-10 versions) regarding the True Positive Rate (TPR).

The WDNN models with the cut-off of 0.70 outperform against the HSCIC-CCI score

of greater than four. Also, the RF model, with the cut-off of 0.50, can beat the accuracy

of HSCIC-CCI score of greater than zero for the majority of diagnoses.

Figure 9.2: T-CARER: precision-recall curves of RF and WDNN Models (all sam-
ples)

Also, the performance of the emergency admission models using only HSCIC-CCI are

very poor, therefore are not presented here. For instance, constructed LR and RF 365-

day emergency admission models using only the HSCIC-CCI, have ROC of 0.53-0.58
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across the samples.

Moreover, the two top T-CARER models are compared against the HSCIC-CCI based

on eight main comorbidity groups: hypertension, depression, Coronary Heart Disease

(CHD), asthma, diabetes, cancer, Chronic Obstructive Pulmonary Disease (COPD)

and Congestive Heart Failure (CHF). Table 9.5 and Table 9.6 demonstrate that for

all the main comorbidity categories, the T-CARER models outperform against the

HSCIC-CCI.

Finally, a 10-fold cross-validation (Murphy, 2012) algorithm was run for the LR and

the RF using the two test sub-samples (Table 5.2). The cross-validation tests were sta-

ble and consistent, with negative Mean Square Error (MSE) variance of -0.7-2.9. The

applied K-fold cross-validation splits each sample into ten equal-sized random samples.

Then, K - 1 folds are used for training and 1-fold is used for validation. Finally, the

K-fold cycles through all combinations to generate performance outputs.

9.4 Discussions

We compared the performance of the T-CARER against commonly used comorbidity

index models using different samples and population cohorts across a ten year period.

Our analyses of the T-CARER and the HSCIC-CCI for different diagnoses categories

demonstrated that our model performed best in the majority of comorbidity groups,

and in overall T-CARER models show better results against previous surveys of CCIs

and ECIs.

Furthermore, the progression of patients comorbidities over time and patterns of care

utilisation can have great impacts on the performance of comorbidity models, and it

is important that modelling algorithms are equipped to capture temporal changes and

interactions of correlated factors. The T-CARER’s performances for prediction of 30-

and 365-day emergency readmissions indicate that it can overtake conventional risk

scoring methods with more flexibility on the features and customisations. Also, our

study shows that boosting algorithms, like RF, and deep learning models, like the

WDNN, can learn better multiple levels of comorbidities complexities.

In the best-case scenario, a comorbidity score can perform only as well as the included

diagnoses categories and their correlated factors (Austin et al., 2015). The deployment

of the healthcare pre-processing framework that was proposed in Phase-I (Chapter 7),

helped to systematically perform the data pre-processing and feature engineering of



9.5 Concluding Remarks 125

the comorbidity risk scoring. Furthermore, the CCS allowed to categorise the ICD-10

diagnoses into a manageable number of clinically meaningful categories. The applied

CCS clinical grouper made it simpler to understand patterns of diagnoses and easily

add a wider range of comorbidity groups (Elixhauser and Steiner, 2006, 2013, AHRQ,

2016a).

Benchmarking comorbidity scores can be very useful as it offers more insight into

strength and weaknesses of models. Our benchmarking demonstrates that the RF

modelling method may lead to a low level of positive predictive value, but high sensi-

tivity. On the other hand, the designed deep learning model (the WDNN) can produce

models with high precision and weak sensitivity. In overall, the micro-average of F1-

score for the WDNN models is greater across samples and prediction targets, but with

high training cost. However, the implemented LR models can only train estimators

that have weaker overall performance and higher bias.

In summary, the designed temporal case-mix risk models outperform against major

previous models, with superior precision, F1-score and ROC. The developed risk index

can help in monitoring temporal comorbidities of patients, and potentially reduce down

the cost of inappropriate hospital and A&E admissions.

9.5 Concluding Remarks

What is already known?

• Identification of avoidable emergency admission remains a troublesome problem

for healthcare.

• Providing intervention before and after discharge for high-risk patients can sig-

nificantly improve care quality and reduce costs.

• Development of a risk index calculator that can adjust very precisely patients

demographics and temporal conditions is very challenging, due to the complexity

of comorbidities and patients health status over time.

• The majority of in-use comorbidity risk indices use population odds-ratio to

weight diagnoses groups, and then apply a crude sum of present conditions to

calculate the comorbidity risk index.

What this phase of research adds?
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• The temporal model of comorbidities, operations and complexities was proved to

notably improve the comorbidity risk model.

• Adjustment for demographics and admission type was significantly influential.

• The DNN method and the RF method with Boosting were provided very good

fits, in comparison with LR.

• Inputting a pool of features, including comorbidity groups, operations and com-

plexities, into the feature selection can lead to the discovery of new important

risk factors.

This study has sought to identify an approach to score commodities by the inclusion

of diverse categories of diagnoses, operations, and complexities. The T-CARER per-

forms consistently across tests and validations, and it outperforms against Charlson

and Elixhauser indices which are widely used for prediction of comorbidity risks.

In the following chapter, the produced development toolkits for the ERMER and the

T-CARER are presented, which can be applied to many different healthcare settings.

They are generic, user-friendly and open-source software packages, and are released for

public use and incremental development.



Chapter 10

Development Toolkits

Jupyter is an interactive computing interface, and it supports interactive data visuali-

sation. Jupyter provides a browser-based language shell (a.k.a Read-Eval-Print Loop)

and has many Jupyter-compatible kernel languages, like Python, R, Julia, Matlab/Oc-

tave, SAS, JavaScript and Scala (IPython, 2016, Jupyter, 2016).

Furthermore, Jupyter provides an ideal lab notebook for saving computational work-

flow. The IPython Notebook, that is Jupyter Notebook with Python Kernel, is in-

creasingly being used by scientists who need to keep a detailed record of analytical

processes.

In this project, the developed models can be controlled and configured through an

IPython Notebook. IPython Notebooks (Figure 10.2) were produced to implement

the workflows of all the analyses steps of the Ensemble Risk Model of Emergency

Admissions (ERMER) and the Temporal-Comorbidity Adjusted Risk of Emergency

Readmission (T-CARER).

The process-flow diagram of the whole data ingestion, feature generation and modelling

processes are presented in Figure 10.1. The process-flow diagram includes six main

logical steps: the data management, the data preparation, the feature engineering, the

feature selection, the model development and the deployment. Firstly, the first four

steps are included in the healthcare pre-processing framework (Chapter 7). And, the

developed IPython Notebooks apply the feature selection and the model development

steps, which need more configurations and interactive design. The data preparation

and feature generation steps will be released in near future as a separate package,

with generic design for inclusion of multiple healthcare data sources. Finally, the

deployment step may be applied by engineers after developing a modelling solution

using the development toolkits.

127
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Figure 10.1: Process-flow diagram of the development phases
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The defined workflow script in the IPython Notebooks is calling third-party libraries

and the developed sub-packages to handle input and outputs, pre-process features,

train and test models. The Notebooks call procedures that are from different language

environments, including Python, MySQL, Bash and C#.

Moreover, a set of generic Python sub-package were developed to facilitate the reading

and writing interface, statistical functions, feature parsing, and configuration modules.

The Unified Modelling Language (UML) representation of the sub-packages and their

classes are presented in Appendix A.8.1.

Figure 10.2: Toolkits: Screenshot of a developed Jupyter Notebook

Moreover, basic modelling approaches, like Logistic Regression (LR) and Random For-

est (RF), are implemented in these developed Python sub-packages. But, the applied

advanced modelling techniques, the Bayes Point Machine (BPM) and the Wide and

Deep Neural Network (WDNN), have been integrated independently from these sub-

packages and Notebooks.

Furthermore, the abstract structures of the main modelling Notebooks for the ERMER

and the T-CARER have very similar specifications and they are presented in Figure

10.3. The defined steps in Notebooks are pre-configured and can be re-configured down

to the every finest detail by the user.

In the following sections, firstly, the objectives of the toolkits are stated. Then, the soft-

ware and hardware prerequisites and deployments of the ERMER and the T-CARER

toolkits are discussed. Afterwards, the feature generation process workflow is discussed,

which will be added to the public release. Next, the toolkits inputs and outputs types

are described. After that, the pre-processing and the modelling steps are explained.
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Finally, the toolkits developments and applications are discussed.

IPython Notebook - Main Model

Initialise

Initialise Packages

Configure Settings

Generate Features

Prepare MySQL Tables

Save Raw Features into CSV

Get Inputs

Read Input Data

Explorative Analysis

Sample

Split Sample

Select Sub-Populations

Filtering - Stage 1

Filtering Stationary Features

Explorative Analysis

Transformations

Filtering - Stage 2

Filtering Correlated Features

Explorative Analysis

Ranking

Rank Features

Select Top Features

Save Features

Train & Test

Balance Sampling

Initialise Training Model

Train, Test & Cross-Validate

Output Statistics

Figure 10.3: Toolkits: Abstract structure of the main Jupyter IPython Notebook

10.1 Objectives

The developments of the ERMER and the T-CARER are intended to move toward the

key objectives of adaptation of open tools, transparency and reproducibility in health-

care modelling. The developed solutions provide generic, user-friendly and transparent

tools to model the risk of hospital readmission and the comorbidity risk index of pa-

tients.
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The IPython Notebooks provide a perfect environment, in which the users can explore

the tools, tune the settings and try different features and modelling techniques. And,

due to nature of the problems, designing a complex Graphical User Interface with lim-

ited functionality and vague modelling process may limit the usage and adaptation of

the tools.

10.2 Prerequisites and Deployment

The ERMER and the T-CARER models are using high-performance statistical software

packages, which are highly optimised and scalable and are actively maintained. In

addition to the installation of Python (Ver. 3.5, 64bit) and the Jupyter library, a

number of other libraries and dependencies must be installed and configured, before

using the toolkits.

Firstly, the developed toolkits use scientific Python packages, including Pandas, SciPy

and NumPy libraries, in order to implement the pre-processing stages and exploratory

analyses. Moreover, the toolkits call statistical modelling functions in the SciKit-Learn

library, to apply basic modelling techniques, like LR and Breiman (2001) RF. Further-

more, the input data are read from a configured MySQL server using SQLAlchemy

library, via calling queries and predefined MySQL procedures. Finally, the optional

summary plots are generated using ggplot and Matplotlib libraries.

However, there are two main Operating System (OS) related dependencies for the

ERMER and the T-CARER toolkits. Firstly, the ERMER package is dependent on the

Microsoft Infer.Net library (Research, 2016) if the BPM is chosen to be the modelling

method of choice. Therefore, it may only be run on a Windows OS that has Infer.Net

installed. Also, the applied WDNN in the T-CARER uses the TensorFlow (Google,

2016) installation (Ver. 1.0, 64bit). The WDNN model has some dependencies for the

unofficial TensorFlow Contrib sub-packages, which may only be able to run on Linux

based distributions, like Fedora, Ubuntu and Mac OSs.

Furthermore, it is recommended to chose a machine that has a minimum of 50GB of

free disk memory and 32GB of physical RAM for sample sizes less than three millions,

to satisfy the requirements for in-memory processing. Also, use of a GPU and a CPU

that are suitable for Deep Neural Network (DNN), like XEON family of INTEL CPU

and the NVIDIA’s Pascal GPU architecture.

Finally, the tools are fully documented and are made available on-line. The toolkits

are hosted by the GitHub (https://github.com/mesgarpour) and are licensed under

https://github.com/mesgarpour
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Apache License, Version 2.0 (Apache, 2016). The granted rights under the Apache Li-

cense, Version 2.0, covers copy, modify and distribute in source and binary forms. The

present release of the toolkits is considered as Version 1.0 and are open to third party

contributions. Also, the IPython Notebooks may be hosted locally, and after meeting

the prerequisites, they can be configured to work with custom input data, settings and

models.

10.3 Data Preparation and Feature Engineering

In this part of the development, the data preparation and the feature engineering steps

have been applied, which will be included in the next public version as a seperate

toolkit (Figure 10.1). This step is equivalent to the Step II and Step III (Section 7.2

and Section 7.3) of the healthcare pre-processing framework (Chapter 7).

The data preparation step includes custom data cleaning and treatments, and the

feature engineering includes core feature generation and temporal feature generation.

The feature engineering step has a generic design with this in mind that multiple

healthcare data sources may be provided and wide range of temporal features might

be needed.

Figure 10.4 and Figure 10.6 demonstrate the process-flow diagram of the data prepara-

tion and the feature engineering steps, that are applied using MySQL procedures and

Python modules, with the expansion of possible input data sources. The main steps

can be controlled using an IPython Notebook and a number of configuration files.

The designed mapping tables are released as part of the development toolkits, except

some of the HSCIC data that have a very protective licensing.

10.4 Inputs and Outputs

The T-CARER uses a generic input layer to read the input data, which is configured

using a Comma Separated Value (CSV). Based on the input configuration file, the input

columns are selected from the specified MySQL tables and the temporal features are

generated using an aggregation function, such as average, min, max, count of prevalence

states and count of other states. Figure 10.5 presents a snapshot of the configuration

file.



10.4 Inputs and Outputs 133

Figure 10.4: Process-flow diagram of the feature generation
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Figure 10.5: Toolkits: Screenshot of the inputs configuration file

Firstly, all the major steps in IPython Notebooks produce outputs in form of statistical

outputs, configurations outputs or features backups. Also, an additional Notebook was

added for more detailed analyses of the models’ performances and benchmarking, to

reduce the main modelling Notebook’s complexity.

Figure 10.6: Detailed process-flow diagram of the feature generation step

10.5 Pre-Processing and Modelling Techniques

According to the proposed healthcare pre-processing framework in this thesis, the fea-

ture generation is called via the IPython Notebooks. This stage is highly resource-

intensive; therefore the features and settings may be saved throughout the workflow.
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Moreover, the filtering stationary features step and the filtering correlated features

(Section 7.4) are partially automated. Because, the number of input features can be

high and it can be burdensome for the user to specify them manually in each run.

However, it is strongly recommended to manually review the features to make sure

that the right features are removed. Figure 10.7 presents a screenshot of the filtering

stationary features step.

Figure 10.7: Toolkits: Screenshot of the filtering stationary features step

Similarly, in the feature ranking step, the list of ranked features can be approved, before

progressing with the analysis. These two feature removal steps are only triggered after

the features list is confirmed by the user!

Finally, the basic modelling approaches in the modelling stage, including the LR and

the RF, are presented in the main Notebooks and can be configured quickly. The ad-

vanced models, BPM and WDNN, are implemented in separate Notebook, due to their

complex configurations.

10.6 Discussions

The version 1.0 of the ERMER and the T-CARER toolkits are now released and can

be applied and customised to any type of healthcare setting or data source. Also,

there is a number of mapping tables provided as part of the release, which is used for

re-categorising features.

One of the most challenging tasks during the development of the feature pre-processing

was efficient feature generation and processing. In part, this was due to complex nature
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of healthcare data, but also the fact that very little public research was available about

the prepossessing the NHS data with a clear and detailed specification.

Moreover, another major challenge in the development was the development of mapping

tables, to reduce sparsity and improve fitness. For instance, the design of effective

diagnoses or cost grouping can be considered as the most important step in patient

risk modelling, due to their high correlations and high levels of complexities. And, the

design of features that have adequate precision with optimally low sparsity are very

complex, when the number of feature categories is very high, population sample sizes

are moderate, and prevalence of categorising varies across several dimensions.

Finally, there is a plan to release an extension of the feature pre-processing that can be

fully implemented on HES, Secondary Uses Service (SUS) and General Practice (GP)

data. In this separate extension, the hospital features will include all three sectors,

inpatient, outpatient, and Accident and Emergency (A&E). In addition, the mapping

tables for feature re-categorisation are going to be included, to allow the generation of

features that have lower sparsity and higher significance, but are clinically meaningful.

In the following chapter, the concluding remarks and feature works are highlighted.
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Concluding Remarks

In this chapter, firstly, a brief overview of the thesis is provided. Then, the future work

and extensions are highlighted.

11.1 Conclusion

In this thesis, we have investigated several important problems regarding the identi-

fication of patients risks. The principal motivation of this research was to provide a

framework for analysing administrative healthcare data to generate significant features

that are correlated to patients health and care status, and then to model the high layers

of risks complexities using robust techniques. Because, at present, no other framework

available for pre-processing healthcare data, and current predictive models for patients

risk are very simplistic and mainly fail to learn the significant complex patterns in

health and care status.

Moreover, hospital readmissions are rising, due to growth in long-term comorbidities,

the ageing population, premature discharges and accidents. It has been estimated that

about half of the Ambulatory Care Sensitive Conditions (ACSCs) can be predicted and

may be avoided by adequate interventions. The present models of hospital emergency

readmission and comorbidity risks have moderate performances and use very similar

features and modelling techniques.

This thesis looked at three sub-problems in the area of healthcare modelling. Firstly, a

healthcare pre-processing framework was developed to prepare data, generate a pool of

features and select important features. Then, an Ensemble Risk Model of Emergency

Admissions (ERMER) was developed as a decision support tool, to help clinicians and

137
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commissioners to identify risks of patients. Next, a Temporal-Comorbidity Adjusted

Risk of Emergency Readmission (T-CARER) was designed to identify patients’ risks

of comorbidities and complexities, with more accuracy and higher confidence.

Firstly, the proposed healthcare pre-processing framework was used to sample, clean

and treat input data. Then, it creates super-spells out of related episodes. After that, it

systematically generates a pool of features, transforms, filters correlated features, ranks

feature importance and select top features. The proposed healthcare pre-processing

framework has been proven to be effective in prediction models of readmission and

comorbidity risks, and it has potential to be used in other areas of healthcare modelling.

Secondly, the ERMER was developed using an Ensemble of Bayes Point Machine

(BPM) models. The sub-models in the Ensemble were generated using a collection

of different cohorts, including prior spells, prior emergency admissions, prior opera-

tions and age limits. Then, the ERMER used a hill-climbing heuristic to optimise

the weighted average rank of predicted estimates using several performance criteria.

Introducing prior probabilities and using a collection of weaker sub-models have been

demonstrated to be effective in the production of highly stable readmission models with

strong confidence and accuracy.

Finally, the T-CARER implements a comorbidity risk model with inclusion of tem-

poral dimensions: Length-of-Stay (LoS) and delta-time between admissions. Also, in

addition to comorbidity groups, T-CARER adds population stratification, consultant

specialities, operations and complications. The offered solution introduces a generic

method for generating a pool of features out of re-categorised and temporal features,

in order to create a customised comorbidity risk index.

Towards meeting our objectives, several extracts of the Hospital Episode Statistics

(HES) within a 10-year timeframe have been obtained, to train, test and cross-validate

the models. And, all the proposed models were benchmarked against previous mod-

els from several aspects, including different population cohorts, time-frames, fitting

algorithms and risk segments. The benchmarks of the ERMER and the T-CARER us-

ing multiple comparison criteria have shown significant improvements against previous

models, in terms of precision, accuracy and stability.

Finally, the proposed solutions are implemented in the form of user-friendly toolkits,

using Jupyter IPython Notebook. The toolkits use a wide range of high-performance

computing packages to process input data, generate features, and train and test mod-

els. Moreover, the developed IPython Notebooks provide an ideal environment for

researchers to model a custom predictive model with great flexibility in feature gener-

ation and applying modelling algorithms.
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In conclusion, the produced solutions in this research are transferable to other health-

care environments, due to the general applicability of the framework and modelling

approaches. Moreover, the research outcomes are expected to contribute to the aca-

demic and healthcare providers communities. Furthermore, development of customised

prediction models using the ERMER and the T-CARER can significantly save time

and research costs in healthcare, without compromising the quality of models.

11.2 Extensions and Future Work

In this thesis, we have studied the pre-processing healthcare data, the emergency read-

mission modelling and the comorbidity risk modelling problems, using hospital ad-

ministrative data. The developed solutions look at the general patterns in the data,

in contrast to micro-processes and pathways of individual patients. And, there is a

great potential in the modelling patients risk using approaches, like process mining

techniques (Mans et al., 2015), discrete event simulation (Marshall et al., 2015) and

unsupervised clustering (Burgel et al., 2014). Such approaches allow defining more

complex clusters of comorbidities and other complexities, which were not possible to

derive in this research.

Moreover, with the advancement in computing and Deep Neural Network (DNN) learn-

ing algorithms, there is a great potential in design and development of Transfer Learn-

ing approaches (Section 4.2.1) that can adapt to different healthcare settings. Recently,

there have been some advancements in the area of Deep Convolutional Neural Network

(DCNN) (Abadi et al., 2016, Pan and Yang, 2010), and it is of economic and academic

interest to produce models that can adapt to different settings and objectives. Also,

Transfer Learning approaches allow to discover processes across different settings and

to define parallel models for patients that apply generic and specialised algorithms

(Kuhn and Johnson, 2013).

Furthermore, there are other approaches for modelling the temporal aspects that

can potentially have good prediction performance. Methods, like DNN (Dean and

Kanazawa, 1989, Koller and Friedman, 2009) and Deep Neural Network Hidden Markov

(DNN-HMM) (Dahl et al., 2012) allow to encode stationary and dynamic time-slices

and unobserved system states.

In below, an outline of the future work directions is presented:
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• Integrating a process mining approach into the healthcare pre-processing frame-

work;

• Designing a DCNN to predict patients risks of comorbidities and emergency read-

mission.

• Developing a latent model using a Bayesian or a DNN, to model the temporal

and hidden aspects of the models.

• Producing a heuristic to create an Ensemble readmission model that can take

advantage of a wider set of modelling algorithms.



Appendix A

Appendices

A.1 Background Research

A.1.1 Major Emergency Readmission Models
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Table A.1: Studies investigating factors related to hospital readmission (part 2: commercial solutions)

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

MARA (Milliman

Advanced Risk Ad-

juster): DxAdjuster,

RxAdjuster & Cx-

Adjuster (Milliman,

2016)

Milliman, UK NRg NR NR NR NR NR NR NR

HealthNumerics-

RISC; Episode Risk

Groups (ERG); Phar-

macy Risk Groups

(PRG); EpisodeTreat-

ment Groups (ETG);

Impact Pro; Natural

History of Disease

(NHD) (OPTUM,

2014, 2016b,c), App.

(Kasteridis et al.,

2015)

Optum, Unit-

edHealth

Group, Inter-

national

12-m admi. NR All SUS, GP, social care

& mental health

NR NR

– Acute (12-m):

AUC 0.84

– Acute (3-m): AUC

0.85

– Acute + GP (12-

m): AUC 0.85

– Acute + GP (3-m):

AUC 0.86

CMG, demo-

graphics, DS,

LoS, psycho-

logical & so-

cial care

SF Health Surveys

(Maruish, 2011,

OPTUM, 2016d),

App. (Scoggins and

Patrick, 2009)

Optum, Unit-

edHealth

Group, Inter-

national

NR NR Including age 18+ Questionnaires:

– SF-36v2: 36 ques-

tions & measures

health

– SF-12v2: 12 ques-

tions & similar to

SF-36v2

– SF-8: 8 questions

& similar to SF-

36v2

– PIQ-6: impact of

pain on health

NR NR NR Physical &

psychological

DxCG Risk Analytics

(Verisk Health, 2016),

App. (Freund et al.,

2010, 2013)

Verisk Health,

USA

12-m admi. DCG All Hospital: Inpatient,

Outpatient

NR NR NR Demographics,

DCG &

Pharmacy

Continued on next page
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Table A.1 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Probability of Read-

mission (Pra);

PraPlus (JHU,

2016c), App. (Al-

laudeen et al.,

2011, Bowles and

Cater, 2003, Doñate-

Mart́ınez et al., 2014,

Novotny and An-

derson, 2008, Pacala

et al., 1995, 1997,

Sidorov and Shull,

2002)

University of

Minnesota &

Johns Hopkins

University,

USA

12-m admi.

(Doñate-

Mart́ınez

et al., 2014),

30-d admi.

(Allaudeen

et al., 2011)

Regr. Including age 65+ Questionnaires:

– Pra: 8 questions

& predict usage of

health services

– PraPlus: Pra + 8

questions & predict

health needs

– Spain: using Pra

questionnaire in 3

health departments

(Doñate-Mart́ınez

et al., 2014)

– UCSF Medical

Center (Allaudeen

et al., 2011)

– NA & 500

patients

(Doñate-

Mart́ınez

et al.,

2014)

– NA & 164

patients

(Al-

laudeen

et al.,

2011)

– 2-y:

2008-10

(Doñate-

Mart́ınez

et al.,

2014)

– 5 weeks:

2008-08

(Al-

laudeen

et al.,

2011)

– Sen. 0.54; Spe.

0.81; PPV 0.30;

AUC 0.67 (Doñate-

Mart́ınez et al.,

2014)

– Sen. 0.31; Spe.

0.72; AUC 0.56;

PPV 0.38 (Al-

laudeen et al.,

2011)

Admissions,

CMG, de-

mographics,

physical &

social care,

The Johns Hopkins

Adjusted Clini-

cal Groups (ACG)

System: Care Man-

agement; Population

health (Lemke, 2013,

JHU, 2014, 2016a,b),

App. (Sollis, 2016)

Johns Hopkins

University,

USA

30-d admi. LR All USA: hospital (IMS)

– NR (JHU,

2014)

– 270,020 &

272,050

patients

(Lemke,

2013)

– 2-y: 2009-

10 (JHU,

2014)

– 3-y:

2009-12

(Lemke,

2013)

– ¿0.80: AUC 0.73;

PPV:0.16 (JHU,

2014)

– Sen. 0.06; Spe.

0.99; AUC 0.75;

PPV:0.52 (Lemke,

2013)

Admissions,

CMG, de-

mograph-

ics, DCG,

DS, LoS,

medical,

operations,

psychological

& social care

Health Risk Assess-

ments (HRA) Frame-

work (CDC, 2016)

Centers for Dis-

ease Control

& Prevention,

USA

Risk assess-

ment

Framework Including Medicare NR NR NR NR Clinical, de-

mographics,

physical &

psychological

3M Potentially Pre-

ventable Readmis-

sions (PPR) Grouping

Software; 3M Poten-

tially Preventable

Complications (PPC)

Grouping Software;

3M Population-

focused Preventables

Software (3M, 2016)

3M, Interna-

tional

7-, 15-, 30-d

admi.

NR NR NR NR NR NR NR

Continued on next page
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Table A.1 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

LexisNexis Risk

Solutions: Risk Nav-

igator Performance;

Population Health

Monitor (LexisNexis,

2016a,b,c)

LexisNexis,

USA

Risk assess-

ment

NR NR NR NR NR NR Administrative,

medical

claims,

pharmacy

& Public

records data

Diagnosis-Related

Group (DRG) (CMS,

2016a,c, NTIS, 2016)

CMS, USA Grouping Grouping All NR NR NR NR Diagnoses

Health & Human

Services - Hierarchical

Condition Categories

(HHS-HCC); CMS-

HCC (Kautter et al.,

2014, CMS, 2016b)

Centers for

Medicare &

Medicaid Ser-

vices (CMS),

USA

Medical

expenditure

Reg Including under 65 &

disabled

USA: hospital &

claims (MarketScan)

NR NR NR CMG, DCG,

demograph-

ics, diag-

noses, DS,

pharmacy &

psychological

Care Pathways frame-

work (Health Dialog,

2016a,b)

Health Dialog,

Rite Aid, USA

12-m NR Including cardio-

vascular disease,

diabetes, chronic kid-

ney disease, Asthma,

COPD, musculoskele-

tal (low back, hip,

knee, shoulder), can-

cer & mental health

NR NR NR NR Census data,

demograph-

ics, financial

data & ge-

ographical

data

a (App.) Applied cases. b (Admi.) admissions; (AMI) Acute Myocardial Infarction; (CCI) Charlson Comorbidity Index; (Cond.) conditions; (COPD) Chronic Obstructive Pulmonary Disease; (EoL) End

of Life; (HF) Heart Failure; (HR) Hip Replacement; (KR) Knee Replacement. c (-d) -day; (-m) -month; (-y) -year. d (BPM) Bayes Point Machine; (Cond.) Conditional; (C-PHD) Coxian Phase-type

Distribution; (DCG) Diagnostic Cost Grouping; (FP) Fractional Polynomials; (GLM) Generalised Linear Models; (LR) Logistic Regression; (ANN) Artificial Neural Network; (PR) Piosson Regression;

(Regr.) Linear Regression; (RF) Random Forest; (SVM) Support Vector Machine; (TM) Transition Model. e (AUC) C-Statistic; (D-stat) D-Statistic; (IDI) Integrated Discrimination Improvement; (PPV)

Positive Predictive Value; (Sen.) Sensitivity; (Spe.) Specificity; (X2): Chi-Square Statistic. f (CMG) Case-Mix Group; (DS) Diagnosis Scoring; (LoS) Length of Stay. g (NR) Not Reported.
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Table A.2: Studies investigating factors related to hospital readmission (part 2: open researches)

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Ensemble Risk Model

of Emergency Read-

mission (ERMER)

(Mesgarpour et al.,

2016)

University of

Westminster,

UK

12-m admi. Ensemble,

BPM,

SVM &

RF

Including age 1+ England: hospital

(HES) Inpatient – 578,936 &

578,936

patients

– 705,461 &

705,461

patients

– 662,356 &

662,356

patients

– 5-y: 1999-

04

– 5-y: 2004-

09

– 5-y: 2000-

05

Sen. 0.42 to 0.49; Spe.

0.88 to 0.92; AUC 0.76

to 0.77; PPV 0.72 to

0.74

Admissions,

demograph-

ics, DS, LoS,

operations &

specialities

Cronin et al. (2014) Massachusetts

General Hos-

pital, Boston,

USA

30-d admi. C-PHD

& LR

Excluding chemother-

apy, radiation, dialy-

sis & obstetrics

Massachusetts Gen-

eral Hospital, USA:

Inpatient, Outpa-

tient, emergency,

laboratory, billing &

medications

36,462 &

9,325 pa-

tients

– 1 year:

2012-13

– 2-m val-

idation:

2013

AUC 0.53 to 0.70 Admissions,

DS, phar-

macy, psy-

chological &

social care

Bottle et al. (2014) National Insti-

tute for Health

Research & Dr.

Foster Unit,

UK

–

Readmission:

7-, 30-,

90-, 182-

& 365-d

– Mortality:

30-d

–

Outpatient

non-

attendance

– Return to

theatre:

90-d

– Other

cond.: 7-

& 28-d

LR,

SVM,

ANN &

RF

Including condition

specific

England:

– Hospital (HES &

SUS): Inpatient,

Outpatient & A&E

– Mortality

– CCI: all

Inpatient

– HR Pro-

cedure:

260,370

patients

in total

– KR Pro-

cedure:

286,590

patients

in total

– Other

cond.: NR

– 1 year:

CCI for

admi. &

mortality:

2008-09

– 5-y: CCI

for admi.

& mortal-

ity with

weights

on time:

2008-13

– 6-y: HR

& KR Op-

erations:

2007-13

– 4-y: Oth-

ers cond.:

2009-13

– Readmission: AUC

0.58 to 0.68

– Mortality: AUC

0.68 to 0.86

Admissions,

clinical,

CMG, de-

mographics,

depriva-

tion, LoS &

psychological

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Hospital Admis-

sion Risk Prediction

(HARP) (Ontario,

2013a,b)

Health Qual-

ity Ontario,

Canada

1-m & 15-m

admi.

LR Including age 18+ Ontario & Manitoba,

Canada: hospital

191,321

& 191,627

episodes

4-y: 2008-12

– 1-m: Sen. 0.75;

Spe. 0.46 to 0.50;

AUC 0.66 to 0.68;

PPV 0.17 to 0.18

– 15-m: Sen. 0.68 to

0.70; Spe. 0.58 to

0.59; AUC 0.69 to

0.70; PPV 0.51 to

0.52

Admissions,

CMG, de-

mographics,

DS, LoS

& resource

intensity

level

Hospital Admis-

sion Risk Program

(HARP) Victoria

(SGV, 2002, 2011,

2016)

Victorian

Government

Department of

Human Ser-

vices, Australia

Measure

inputs, pro-

cesses &

outputs of

services

Framework All State Government of

Victoria: hospital

NA NA NA Admissions,

CMG, de-

mographics,

LoS, qual-

ity of life,

physical &

psychological

QAdmissions score

(Hippisley-Cox and

Coupland, 2013)

University of

Nottingham,

North East

London Com-

missioning

& National

School for

Primary Care

Research UK

24-m admi. C-PHD

& FP

Including age 18 to

100

QResearch practices,

England:

– Hospital (HES)

– GP (QResearch

database & Clinical

Practice Research

DataLink)

2,849,381 &

(1,340,622 &

2,475,360)

patients

2-y: 2010-12

– HES-GP: AUC 0.77

to 0.78; D-stat 1.69

to 1.76

– GP: AUC 0.76 to

0.77; D-stat 1.58 to

1.65

Admissions,

clinical,

CMG, de-

mographics,

deprivation,

pharmacy &

psychological

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Billings et al. (2013) Nuffield Trust

& Department

of Health, UK

12-m admi. LR Including age 18 to 95 5 Primary Care

Trusts (PCTs),

England: Newham,

Cornwall, Kent,

Croydon, Redbridge:

– Hospital (SUS):

Inpatient, Outpa-

tient & A&E

– GP

1,836,099 &

1,836,099 pa-

tients

3-y: 2007-10

– IP data: Sen. 0.05;

AUC 0.73; PPV

0.53

– IP+AE data: Sen.

0.05; AUC 0.74;

PPV 0.53

– IP+AE+OP data:

Sen. 0.05; AUC

0.75; PPV 0.52

– IP+AE+OP+GP

Data: Sen. 0.06;

AUC 0.78; PPV

0.54

Admissions,

clinical,

CMG, de-

mographics,

deprivation,

pharmacy,

psycholog-

ical, social

care & spe-

ciality

Shulan et al. (2013) Department

of Veterans

Affairs USA

30-d admi. LR All Veterans Healthcare

Network Upstate New

York: hospital

4,359 & 4,359

patients

13-m: 2011-

12

AUC 0.80 Admissions,

DCG, de-

mographics,

DS, Geo-

graphical,

insurance &

LoS

CMS Model -

Hospital-Wide All-

Cause Unplanned

Readmission Measure

(YNHHSC/CORE,

2012, 2015)

CMS, USA 30-d admi. LR Including age 65+;

Excluding insufficient

data, against medical

advice, cancer treat-

ment, not typically

cared for in short-stay

acute care hospitals

& PPS-exempt cancer

hospitals

USA: Hospitals

(Medicare) Inpatient

7,957,901 pa-

tients in to-

tal (2007-08)

– 2-y: 2007-

09

– 2-y &

1 year:

2007-10

AUC 0.66 CMG, demo-

graphics &

operations

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

LACE+ (van Wal-

raven et al., 2012)

Canadian Insti-

tutes of Health

Research,

Physicians’

Services In-

corporated

Foundation

& University

of Ottawa,

Canada

30-d admi. LR Including age 18+;

Excluding psychi-

atric, obstetric & no

healthcare coverage

Ontario’s hospital,

Canada:

– Discharge Abstract

Database

– Ontario Mental

Health Reporting

System

– National Ambula-

tory Care Report-

ing System

– Registered Patient

Database

250,000,

250,000

patients

6-y: 2003-09 AUC 0.76 to 0.77 Admissions,

CMG, demo-

graphics, DS

& LoS

Patients at Risk of

Re-hospitalisation

within the next 30

days (PARR-30)

(Billings et al., 2012)

Nuffield Trust

& Department

of Health, UK

30-d admi. LR All England: hospital

(HES) Inpatient

576,868 pa-

tients &

Bootstrap-

ping

3-y: 2006-09 Sen. 0.05; Spe. 0.99;

AUC 0.70; PPV 0.59

Admissions,

CMG, de-

mographics,

deprivation,

geographical

Nairn Case Finder

(Baker et al., 2012,

NHS, 2010)

NHS Highland,

Scotland, UK

12-m Cond.

PR

Including care-home,

proactively care &

with complex, pal-

liative or EoL care

needs

1 GP practice Scot-

land:

– Hospital: Inpa-

tient, Outpatient

– GP

96 patients 3-y: 2006-08 AUC 0.79 Admissions,

CMG, demo-

graphics, DS

& psycholog-

ical

Scottish Patients at

Risk of Readmission &

Admission (SPARRA)

- version 3 (NHS,

2011)

NHS Scotland,

UK

12-m admi. LR Including age 16+;

Excluding psychiatric

Inpatient only

Scotland:

– Hospital: Inpa-

tient, Outpatient

& A&E

– Community Health

Partnerships

– Psychiatric Inpa-

tient

– GP

3,506,796 pa-

tients in to-

tal

4-y: 2006-10

– Admi.: Sen. 0.10;

PPV 0.60

– Bed days: Sen.

0.20

Admissions,

CMG, de-

mographics,

depriva-

tion, LoS,

pharmacy &

psychological

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Hammill et al. (2011) American

Heart Associ-

ation National

Center, USA

30-d admi. &

mortality

GLM &

Cond.

GLM

Including age 65+ &

HF & 2+ days LoS

Association’s Get

With The Guidelines-

Heart Failure registry

from 344 hospitals,

USA:

– Hospital (Medi-

care): Inpatient

– American Heart

Association: HF

36,267 pa-

tients &

Bootstrap-

ping

3-y: 2004-07

– Mortality: AUC

0.71 to 0.76

– Admi.: AUC 0.59

to 0.61

CMG, clin-

ical, demo-

graphics &

psychological

Jen et al. (2011) Dr. Foster

Unit, Na-

tional Institute

of Health

Research,

UK Clinical

Research Col-

laboration,

UK

28-d admi. &

mortality

LR Including 78 diagnosis

groups & 126 opera-

tions

England: hospital

(HES) Inpatient

NR & Boot-

strapping

10-y: 1996-

06 – Mortality: AUC

0.50 to 0.98

– Admi.: AUC 0.55

to 0.78

Admissions,

CMG, de-

mographics,

depriva-

tion, DS &

operations

Elders Risk Assess-

ment Index (ERA)

(Crane et al., 2010)

Mayo Clinic,

Rochester,

USA

24-m admi. LR Including age 60+;

Excluding skilled

nursing care

Rochester, USA: Pri-

mary Care Internal

Medicine

12,650 pa-

tients &

Bootstrap-

ping

4-y: 2003-07

– Hospital visits:

AUC 0.70

– Emergency room

visits: AUC 0.64

– Combined: AUC

0.68

Admissions,

demograph-

ics & LoS

LACE: stands for:

length of stay (L);

acuity of the admis-

sion (A); co-morbidity

of the patient (C);

& emergency depart-

ment use (E) (van

Walraven et al., 2010)

Canadian Insti-

tutes of Health

Research,

Physicians’

Services In-

corporated

Foundation

& University

of Ottawa,

Canada

30-d admi. LR &

FP

Including age 18+ &

patients of medical &

surgical services

11 hospitals in 5

cities, Ontario,

Canada:

– Discharge Abstract

Database

– National Ambula-

tory Care Report-

ing System

– Registered Patient

Database

– Questionare

4,812 &

(4,812 &

1,000,000)

patients

3-y: 2004-08 AUC 0.68 Admissions,

DS & LoS

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Amarasingham et al.

(2010)

University

of Texas &

National Insti-

tutes of Health,

USA

30-d admi. &

mortality

LR Including HF Parkland Memorial

Hospital & admi.

records to 136 hospi-

tals, Dallas, USA:

– Hospital

– Mortality

1,372 pa-

tients &

Bootstrap-

ping

18-m: 2007-

08 – Mortality: AUC

0.86; IDI 0.10

– Admi.: AUC 0.72;

IDI 0.11

Demographics,

insurance &

deprivation

Hasan et al. (2010) Agency for

Healthcare

Research &

Quality &

Department of

Health & Hu-

man Services ,

USA

30-d admi. LR Including age 18+;

Excluding patients

under the care of their

GP

6 large academic med-

ical centers across the

USA:

– Questionnaire

– Hospital

– Mortality

7,287 & 3,659

patients

2-y: 2001-03 AUC 0.61 Demographics,

insurance &

LoS

Scottish Patients at

Risk of Readmission

& Admission for Men-

tal Health (SPARRA-

MH) (NHS, 2009)

NHS Scotland,

UK

12-m admi. LR Including age 15+;

Including psychiatric

hospitals

Scotland: psychiatric

Inpatient

36,500 & NR

patients

4-y: 2003-07 AUC 0.74; PPV 0.56

to 0.75

Admissions,

CMG, de-

mographics,

LoS & psy-

chological

Howell et al. (2009) Queensland

Health &

University of

Queensland,

Brisbane,

Australia

12-m admi. LR Including 28 chronic

medical cond.

Queensland Hospital:

hospital Inpatient

13,207 &

4,492 pa-

tients

2-y: 2005-07 Sen. 0.44; Spe. 0.78;

AUC 0.65

Admissions,

CMG, de-

mographics,

deprivation

& psycholog-

ical

Demir et al. (2009) University of

Westminster,

UK

38-d admi. TM &

LR

Including COPD England: hospital

(HES)

307,394 &

NR patients

7-y: 1997-04 AUC 0.73 Admissions,

demograph-

ics, depri-

vation &

LoS

Predict Emergency

admissions Over the

Next year (PEONY)

(Donnan et al., 2008)

NHS Scotland,

UK

12-m admi. LR Including age 40+ Tayside, Scotland:

– Hospital (Scottish

Morbidity Record)

– GP

90,522 &

90,879 pa-

tients

8-y: 1996-04 Sen. 0.08; Spe. 0.99;

AUC 0.79; PPV 0.59

Demographics,

deprivation

& LoS

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Predictive Risk

Stratification Model

(PRISM) (Dialog,

2008), App. (Hutch-

ings et al., 2013,

TRUST, 2016)

Health Dialog,

Wales, UK

12-m admi. LR (Di-

alog,

2008)

GLM,

C-PHD

(Hutch-

ings

et al.,

2013)

Including patient with

39+-m registration

Wales:

– Hospital: Inpa-

tient, Outpatient

– GP

– Questionnaire

(PRISMATIC re-

search) (Hutchings

et al., 2013)

149,038

& 149,038

patients

3-y: 2004-07 ¿0.80: Sen. 0.49; PPV

0.16 (Dialog, 2008)

CMG, de-

mographics,

deprivation,

pharmacy &

psychological

Silverstein et al.

(2008)

Baylor Health

Care System,

Dallas, USA

30-d admi. LR Including age 65+ 7 acute care hospi-

tals, Dallas, USA: In-

patient

19,528 &

9,764 pa-

tients

2-y: 2002-04 AUC 0.65 CMG, de-

mographics,

insurance &

operations

Billings and Mi-

janovich (2007)

New York

Community

Trust & the

United Hos-

pital Fund,

USA

12-m admi. LR Inluding eligible Med-

icaid disabled patients

& disabled adult pa-

tients with serious

mental condition

New York City, USA:

– Hospital (Medi-

caid)

– Supplemental Se-

curity Income of

disabled adult

35,000

& 35,000

patients

4-y: 2000-04

– Medical admi.

(Medicaid, men-

tally ill): PPV

0.60, 0.19

– Mental illness

(Medicaid, men-

tally ill): PPV

0.50, 0.56

– Substance abuse

(Medicaid, men-

tally ill): PPV

0.13, 0.18

Admissions,

CMG, de-

mographics,

operations,

psycholog-

ical, social

care & spe-

ciality

Emergency Admission

Risk Likelihood Index

(EARLI) (Lyon et al.,

2007)

NHS Executive

North West Re-

search & Devel-

opment, UK

12-m admi. LR Including age 75+;

Excluding unsuitable

patients (terminal

cancer & mental

illness)

1 PCT, England:

– Questionnaire

– Hospital (HES)

– Mortality

3,032 pa-

tients &

Bootstrap-

ping

18-m: 2002-

03

Sen. 0.64; Spe. 0.64,

AUC 0.69; PPV 0.35

Admissions,

CMG &

Physical

Combined Predictive

Model (CPM) (Paton

et al., 2014, Wennberg

et al., 2006), App.

(HI, 2013)

Department of

Health, UK

12-m admi. LR All 5 PCTs, England:

– Hospital (HES):

Inpatient, Outpa-

tient, A&E;

– GP

280,000

& 280,000

patients

3-y: 2002-05 AUC 0.78, PPV: 0.59 Admission,

CMG, de-

mographics,

medical,

pharmacy &

psychological

Continued on next page



A
.1

.1
M

a
jo

r
E

m
ergen

cy
R

ead
m

issio
n

M
o
d

els
152

Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Bottle et al. (2006) Dr Foster Unit,

UK

12-m admi. LR Including ACSC England:

– Hospital (HES): In-

patient

– Mortality

1,373,754 &

1,373,754 pa-

tients

5-y: 1999-04

– Top 250,000 high

risks:

– All: Sen. 0.27;

Spe. 0.93; AUC

0.72; PPV 0.30

– Excluding death:

Sen. 0.27; Spe.

0.92; AUC 0.70;

PPV 0.23

– ACSC: Sen. 0.86,

Spe. 0.45; AUC

0.75; PPV 0.20

Admissions,

demograph-

ics, depriva-

tion, DS &

speciality

Patients at Risk of

Re-hospitalisation

(PARR) (Billings

et al., 2006a,c)

Department of

Health, UK

12-m admi. LR Including age 65+

& 32 most common

cond.

England: hospital

(HES) Inpatient

42,778

& 42,778

patients

5-y: 1999-04 Sen. 0.54; Spe. 0.72;

AUC 0.68; PPV 0.65

Admissions,

CMG, DCG,

demograph-

ics, psycho-

logical &

speciality

Halfon et al. (2006) University

of Lausanne,

Switzerland

30-d admi. PR Excluding healthy

newborns, residents

outside of Switzerland

& elective surgical

stays that could usu-

ally be performed as

day surgery.

12 out of 221 acute

cares, Swiss: hospital

65,740 &

66,069 pa-

tients

1 year: 2000-

01 – Nonclinical Model:

AUC 0.67; X2 0.84

– Charlson-based

Model: AUC 0.69;

X2 0.18

– SQLape-based

Model: AUC 0.72;

X2 0.70

Admissions,

CMG, demo-

graphics, DS,

operations &

psychological

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Holman et al. (2005) National

Health &

Medical Re-

search Council

& Western

Australia De-

partment of

Health, Aus-

tralia

30-d admi. &

LoS & 12-m

mortality

C-PHD,

LR, FP

& Regr.

Including asthma,

AMI, breast can-

cer mastectomy,

transurethral prosta-

tectomy & major

depressive disorder

Western Australia:

hospital

1,118,989 pa-

tients & sub-

sampling

7-y: 1989-96

– Admi: LR AUC

0.64 to 0.77; Cox

D-stat 341 to 5715

– LoS: regression R2

0.13 to 0.33

– Mortality: LR

AUC 0.81 to 90;

Cox D-stat 184 to

1760

CMG & de-

mographics

Coleman et al. (2004) American

Federation

for Aging

Research, USA

30-d admi. LR Including age 65+;

Excluding long-term

care & hospice care

patients

Medicare, USA:

– Hospital (Medi-

care)

– Questionnaire

700 & 704

patients

2-y: 1997-99

– Admin.: Sen. 0.95;

Spe. 0.39; AUC

0.77

– Admin. + self-

reported: Sen.

0.98; Spe. 0.45;

AUC 0.83

Admissions,

CMG, demo-

graphics, DS,

insurance,

LoS, physical

& social care

Morrissey et al. (2003) Queen’s Uni-

versity Belfast,

Northern Ire-

land, UK

12-m admi. LR Including age 65+,

& general medicine

wards emergency

admi.

Antrim Area hospi-

tal, Northen Ireland:

Questionnaire

487 & 732

patients

8-m: 1997-

98

Sen. 0.60; Spe. 0.79;

AUC 0.77

Admissions,

CMG, de-

mographics,

pharmacy &

physical

Krumholz et al.

(2000)

Yale Univer-

sity, USA

6-m admi. C-PHD Including age 65+ &

HF; Excluding severe

aortic stenosis, severe

mitral stenosis & HF

caused by a medical

illness

9 acute care, Con-

necticut, USA: hospi-

tal (Medicare)

1,129 & 1,047

patients

2-y: 1994-96

– Admi. & Mortal-

ity: PPV 0.65

– HF Admi: PPV

0.31

– Admi: 0.59

CMG, de-

mograph-

ics, LoS,

medical,

operations &

physical

Continued on next page
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Table A.2 – Continued from previous page

Authors Objectives Modelling Service Data Results

Toola Funders /

Org.

Outcomebc Approachd Aspectb Sources Size: train

& test)b
Timeframebc Performanceec Variables f

Community Assess-

ment Risk Screen

(CARS) (Shelton

et al., 2000), App.

(Doñate-Mart́ınez

et al., 2014)

Carle Clinic

Association

& University

of Wisconsin-

Madison, USA

12-m admi. LR Including age 65+, 6-

m prior admi., lived

alone, no caregiver,

4+ medications, diffi-

culty in walking, lim-

itations in activities

of daily living, mem-

ory difficulties, incon-

tinent of urine or stool

& multiple illnesses or

disabilities

Carle Clinic site, Ur-

bana, USA:

– Hospital (Medi-

care)

– Questionnaire

411 & 1,054

patients

2-y: 1993-95 AUC 0.74 Admissions,

CMG, de-

mographics,

pharmacy,

physical &

psychological

a (App.) Applied cases. b (Admi.) admissions; (AMI) Acute Myocardial Infarction; (CCI) Charlson Comorbidity Index; (Cond.) conditions; (COPD) Chronic Obstructive Pulmonary Disease; (EoL) End

of Life; (HF) Heart Failure; (HR) Hip Replacement; (KR) Knee Replacement. c (-d) -day; (-m) -month; (-y) -year. d (BPM) Bayes Point Machine; (Cond.) Conditional; (C-PHD) Coxian Phase-type

Distribution; (DCG) Diagnostic Cost Grouping; (FP) Fractional Polynomials; (GLM) Generalised Linear Models; (LR) Logistic Regression; (ANN) Artificial Neural Network; (PR) Piosson Regression;

(Regr.) Linear Regression; (RF) Random Forest; (SVM) Support Vector Machine; (TM) Transition Model. e (AUC) C-Statistic; (D-stat) D-Statistic; (IDI) Integrated Discrimination Improvement; (PPV)

Positive Predictive Value; (Sen.) Sensitivity; (Spe.) Specificity; (X2): Chi-Square Statistic. f (CMG) Case-Mix Group; (DS) Diagnosis Scoring; (LoS) Length of Stay. g (NR) Not Reported.
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A.1.2 Other Modelling Approaches

There are five major modelling methodologies presented in the previous healthcare

predictive modelling studies: simulation, formula-based, statistical, probabilistic and

queueing. Methods like formula-based and queueing theory are not practical for this

research. Formula-based models derived from empirical data based on observed pat-

terns in variables, like crowding, are generally poor regarding predictability power.

Moreover, queueing-theory modelling has poor predictability performance and has lim-

itation due to assumptions, which in a dynamic system this must be relaxed and tested

by data from the actual system (e.g. stationary arrival time) (Wiler et al., 2011).

In the following, firstly, the main regression methods in the modelling are outlined.

Next, the Markov modelling is presented. Afterwards, the pros and cons of applying

simulation modelling on healthcare problems are discussed.

A.1.2.1 Regression Modelling

Regression methods such as LR, LMMs1, GLM(GLMs), Generalised Linear Mixed

Models (GLMMs) have been popular methodologies for modelling pathways and cor-

relations (Garson, 2012).

The LMM is a broad name for Hierarchical Linear Models (HLMs) and Multilevel

Models, and it is used in the analysis of variance correlation, regression and factor

analysis. The LMM is suitable for modelling problems with dependent observations

with correlated errors. The LMM supports analysis of three types of variables: random

effects, hierarchical effects and repeated effects. The GLMM is an extension of LMM,

which supports a variety of link functions. The fundamental importance of the GLMM

is that it supports continuous and ordinal features with non-normal distributions (Gar-

son, 2012).

Kulinskaya et al. (2005) provided a comparison between GLM method against a robust

method such as truncated maximum likelihood for a LoS problem. The comparison

was carried out on the Nervous System classification of Health Resource Groups (HRG)

of the NHS. Although the robust model produce a better fit regarding variance, the

differences between the two models were not significantly high in overall. Also, the

GLM model did outperform the robust models for a subset of factors.

1Mixed Models are also known as Mixed Effects Models, Random Coefficient Regression Models,
Multilevel Models or Covariance Components Models.
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Adeyemi et al. (2013) presented a GLMM for detecting stage-wise transitions in patient

pathways modelling with excluding the clinical flow pathway. The solution modelled

the serial independence of the readmission using continuous ratio logit model. The con-

tinuous ratio logit model was used on Chronic Obstructive Pulmonary Disease (COPD)

patients, to compare the categorisation factors for frailties. The method was effective

in detecting the most critical threshold for readmissions.

The advantage of mixed modelling in regression is that it can account for the un-

certainty in models and small evidence data. But, the major shortcomings of the

mentioned regression methods are the linearity assumption. Moreover, the regression

methods ignore the prior distributions and are very dependent on the subject of design;

therefore, it is very hard to generalise or re-use them on similar problems.

A.1.2.2 Markov Modelling

In stochastic state-space modelling, Markov Model (MM) (Norris, 1998, Ross, 1993) is

one of the most powerful tool. Markov modelling is simplistic approach; however, it

becomes very complex, when there are a large number of states, or multiple events are

modelled.

In the area of survival analysis, the PHD modelling (Neuts, 1974, 1981) is a popular

approach for modelling systems with state-space and latent parameters and is a way of

modelling Markov stochastic process. Coxian phase-type distributions (C-PHD) (Cox,

1955) is a special type of PHD with an initial and an absorbing state, which avoids

over parametrisation of the model (Fackrell, 2009, Marshall and Zenga, 2009).

Altman (2007) presented an extension to the HMM called Mixed HMM which accounts

for two sources of heterogeneity: time constant unit-specific effects and serial correla-

tion. Maruotti (2011) provides two case studies for analysis of longitudinal data using

MHMM. The time-series that were studied are patent data and financial economet-

rics; however, there is no library available for it and the estimation step is complex

particularly for parametric models.

Length-of-Stay (LoS) models of is another research area which is highly associated to

hospital readmission (Kelly et al., 2012). Xie et al. (2005) develops a MM to predict

LoS in continuous time for elderly patients. The proposed continuous time MM uses

home care to model movement of elderly in residential, nursing homes and discharge

to community or hospital, with two possible states: short-term and long-term stays.

The model provides a good fit to the data and can capture the movement of patients
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between care facilities.

A.1.2.3 Simulation Modelling

There are three main approaches in simulation modelling in healthcare: Discrete Event

Simulation (DES), System Dynamics (SD) and Agent-Based Simulation (ABS) mod-

elling. Simulation modelling techniques provide a better understanding of the interac-

tions and flows. However, most reported studies are limited by the parameters bounds,

problem domains, lack of scalability and reusability. The reason behind these shortcom-

ings is partly because of models complexities and the amount of data they depend on.

Also, another reason stems from the weak economic and political support of projects.

DES modelling techniques generally have been used for planning healthcare services,

economic modelling and disease intervention. Moreover, SD modelling techniques

mainly have been used for policy evaluation, economic modelling, system and infras-

tructure modelling. Finally, the applications of ABS modelling is not yet widespread,

because it is a newly developed methodology, and modelling the agents is highly com-

plex. ABS has the potential to model the quality of care and used to study the scale and

granularity of system behaviour. The DES and SD can be considered as a compliment

to each other, since DES models look at the detailed level, and SD uses the aggregated

level. Therefore, depending on the problems, these two approaches alone can impose

some limitations in model development (Gunal and Pidd, 2010, Kanagarajah et al.,

2008, Katsaliaki and Mustafee, 2010).
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A.1.3 End of Life Care Frameworks and Approaches

There are a number of frameworks (Table A.1 and A.2) that have been introduced to

the practices in England that take systematic approaches towards End of Life (EoL)

care by utilising information such as administrative triggers, clinical triggers, phases of

illness and phases of care (DH, 2008, 2009). Each of the frameworks is particular to a

sub-problem with different predictability powers; therefore, they are used in different

phases of care by different users. In Table A.1, a list of general EoL frameworks is

presented, and the aim of the main approaches are used in these frameworks are listed

in Table A.2.

Moreover, the predictive modelling powers of frameworks are limited and are variable

across systems. For example, Garson (2012) compared Gold Standards Framework

(GSF), which is a palliative care prognostic tool against Global Registry of Acute

Coronary Events (GRACE) score to assess their predictive powers. This assessment

was carried out for 172 patients with Acute Coronary Syndrome (ACS) with admission

period of over eight weeks. The study concluded that GRACE and GSF criteria can

identify many of the ACS patients. The main bias of this research is that only a small

number of patients was studied with caring physician and also it excluded cardiologists.

Table A.3: Major end of life care frameworks

Framework Source Tools/Approaches
NHS End of Life Care Programme
(NEoLCP) (Henry and Fenner,
2007, DH, 2008)

NHS (2004 - 2007)
• Preferred Priorities for Care (PPC)
• Liverpool Care Path (LCP)
• Gold Standards Framework (GSF)
• Advance Care Planning (ACP)

National End of Life Care strategy
(Henry and Fenner, 2007, DH, 2008,
2013a)

NHS (2008 - 2012)
• Preferred Priorities for Care (PPC)
• Liverpool Care Path (LCP)
• Gold Standards Framework (GSF)
• Advance Care Planning(ACP)
• Holistic Needs Assessment
• NHS End of Life Care Programme (NEoLCP)

Support and Fact Sheets
• The Route to Success Series
• End of Life Care for All (ELCA)
• Guidance for Commissioners

Marie Curie Cancer Care - De-
livering Choice Programme (Payne
et al., 2008)

Marie Curie Cancer
Care (2004) • Rapid Response Team (RRT)

• Discharge Community Link Nurses (DCLNs)
• Palliative Care Coordination Centre (PCCC)
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Table A.4: Major end of life care approaches

Framework/Approach Usage timeframe
GSF (Hansford and Meehan, 2005,
Lea, 2013, Shaw et al., 2010)

GSF optimises primary palliative care; GSF is a stepwise ap-
proach to enhance communication, coordination, control of
symptoms, continuity, continued learning, carer support and
care of the dying.

6 - 12 month

LCP (Lea, 2013) LCP provides alerts, guidance and a structured record for doc-
tors, nurses and multidisciplinary team that are inexpert in pal-
liative care.

0 - 14 days

PPC (Curie, 2010, DH, 2011b) PPC facilitates individual choice in relation to end of life care. 6 month
ACP (Curie, 2010, DH, 2007) ACP is a process if discussion between an individual and their

care provider regardless of discipline.
6 month

RRT (Thomas et al., 2007) RRTs are designated groups of clinicians that deliver critical
care expertise to patients outside of a critical care unit.

6 month

DCLNs (Addicott and Dewar, 2008) DCLNs facilitates discharge by co-ordinating packages of home
care and community healthcare; DCLNs provides support and
consultancy to professionals and patients;

6 month

PCCC (Addicott and Dewar, 2008) PCCC is an administrative centre for packages of care; PCCCs
administrates based on the assessments by the district nurses.

6 month

Amber Care Bundle (ACB) (Lea,
2013)

A simple approach used in hospital when there is uncertainty on
patient’s recovery.

1 week to 9
month
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A.1.4 Time To Event Modelling

Survival Tree (ST) (Davis and Anderson, 1989) is traditionally used for modelling time

to occurrence of an event, such as time to recovery, stimulus-response time and time

to death. ST modelling is used for finding the probability of time-to-event rather than

the probability of an event. Also, the time dimension may be replaced by other param-

eters, such as assessing breaking strength of a concrete block or the level attained in

some court trials (Crowder, 2012). Garg et al. (2011) implemented a Phase-type Dis-

tribution (PHD) modelling and mixed distribution modelling approach in constructing

STs for clustering patients’ LoS at hospital. The proposed approaches were tested on

stroke-related patients from the HES database. The presented ST models allowed the

representation of heterogeneous pathways which is not possible using the traditional

ST. Both modelling approaches demonstrated that could improve the likelihood func-

tions of the clustering method. Furthermore, Garg et al. (2009, 2010, 2012) presented

discrete and continuous PHD models with non-homogeneous Markov states.

Forsberg et al. (2012) developed a number of BNs referred to as Bayesian-Estimated

Tools for Survival (BETS) model. The model is capable of estimating the survival

likelihood after surgery based on 84 demographic and clinical attributes with varying

missing data. Regarding robustness, the Area Under Curve (AUC) of ROC test was

79% for different patient populations. There are some limitations to the model capa-

bility. Firstly, it is limited to patients who were under orthopaedic surgery for their

skeletal metastatic disease. Secondly, a homogeneous population was used for training

and validation of the model. Finally, the covariates that were used in the modelling

are very specific to the case study and the collected data.
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A.1.5 Time-Varying Dynamic Bayesian Network

In a predictive modelling problem, such as Length-of-Stay (LoS) or End-of-Life (EoL),

the features are mainly inhomogeneous, because the processes in the models are either

non-stationary (e.g. length of illness or treatment stages) or the events are sparse

(e.g. morbidity conditions or patient states). The unobservable and inhomogeneous

properties of models cause the momentum of the system dynamic to change across

temporal access.

Generally, it is not statistically tractable to consider all of the variances for every

time-point, because of the complexity in the inference and the lack of enough training

evidence. Also, it is not possible to segment the time, since the model characteristics

are unknown for each segment. There are five main approaches to model a Bayesian

Network (BN) that is time-varying Dynamic Bayesian Network (DBN). The approaches

are highlighted in the following and the summary of the studies is presented in (Table

A.5).

Firstly, a basic indirect approach is to transform time in order to make the process

homogeneous. A naive approach is to use a time interpolation technique. Instead of

using direct time transformation, a method like Kalman filter can be used, which is

a Linear Dynamical System technique and is based on an autoregressive function to

estimate a value at a time-point Cook and Lawless (2013), Wang et al. (2009b). Xu et

al. Xu et al. (2007) proposed a state space model based on Kalman filter to estimate

mean and variance for equally and unequally spaced longitudinal count data with serial

correlation. The model applied to Epileptic Seizure and Primary Care Visits Data, and

with high-number of observations, the model produced comparable results to those by

a numerical approach.

Moreover, another indirect approach is to re-weight the likelihoods at each time-point

using a particle-based approach, such as feed-forward and sparse Kalman filtering.

Since DBN is a generative model, it often works better for sparse models, because

of its assumption about the underlying probabilities. However, it needs to be applied

with extreme care, since inappropriate sampling technique can rapidly slide the weights

to zero or make the model assumptions and prior probabilities incorrect Koller and

Friedman (2009).

Furthermore, another approach is network rewiring which is also known as time-

evolving graphical models Robinson and Hartemink (2010). It is a feasible option

for large-scale time-varying networks. Time-evolving graphical models have been re-

cently used in designing large networks in biological and social studies Ahmed and Xing
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(2009), Guo et al. (2007), Zhou et al. (2008), with the objective to find unobserved net-

work topologies or to rewire network under different conditions (e.g. edge stability and

transitivity). For instance, recently a new modelling approach known as temporal Ex-

ponential Random Graph Model has been proposed for modelling networks evolving

over discrete time-steps with Monte Carlo Markov Chain based or convex optimisation

algorithms for posterior inference Ahmed and Xing (2009), Guo et al. (2007), Hanneke

et al. (2010).

Another approach is conditional BN modelling, which is also known as multilevel or hi-

erarchical BN model and is popular in the literature. In BN modelling, a time-varying

framework on top of a Markov Chain (MC) technique can be used to model multi-

level time properties. A Cox phase-type model is used for modelling durations on top

of a Hidden Semi-Markov Model by Duong et al. (2009) for human activity recogni-

tion. In this research, an extension added to the Coxian Hidden Semi-Markov Model,

which incorporates both duration and hierarchical modelling. Also, a DBN framework

is proposed by Lappenschaar et al. Lappenschaar et al. (2013b) for modelling non-

stationary events in multi-morbidity modelling. This PM of the interactions between

heart failure and diabetes mellitus could closely resemble the PM techniques which use

multilevel Linear Mixed Model. Moreover, a framework is designed by Lappenschaar

et al. Lappenschaar et al. (2013a) for formulating a Linear Mixed Model into a BN

using a Logistic Regression function.

Finally, the Linear Dynamical Systems are useful temporal models, which represent

one or more real-valued variables that evolve linearly over time, with some Gaussian

noise Koller and Friedman (2009). There are two categories of the Linear Dynamical

Systems methods in the modelling of time-varying DBN: Switching Linear Dynamic

System and Time-Varying Autoregression.

Switching Linear Dynamic Systems have been studied extensively for piecewise mod-

elling of linear systems Wang et al. (2011). Based on the Switching Linear Dynamic Sys-

tems modelling, time-varying observations Ghahramani and Hinton (2000) and time-

varying duration Blake et al. (1999), Pavlovic et al. (2000) can be formulated using a

latent MC. But, the MC method which is a piecewise stationary, does not have a very

general application in learning and inference, and a time-varying linear regression can

be used instead. For instance, a time-varying DBN has been introduced by Song et al.

Song et al. (2009), which aggregates observations of adjacent time points by a kernel

re-weighting function.

Time-Varying Autoregression models are another type of the Linear Dynamic Systems

Wang et al. (2011) models, which focus on non-stationary models with a fixed structure.
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Table A.5: The summary of the studies in Time-Varying Dynamic Bayesian Network
area

Approach Method(s) Study Domain Findings/Outcomes
Time transforma-
tion

Autoregression
and Kalman filter Xu et al. (2007)

Healthcare events The likelihood estimation approach
performs better than the numerical in-
tegration approach

Time Evolving
Graphical
Network

Prevailing net-
works Robinson and

Hartemink (2010)

Generic non-
stationary data

Demonstrating the feasibility

Scalable inference
for time-evolving
networks

Ahmed and Xing
(2009)

Biological sys-
tems to social
science

Having asymptotically value-
consistent under fixed model di-
mension

Conditional BN
Modelling

A multilevel BN
Lappenschaar
et al. (2013a)

Multimorbidity
condition predic-
tion

Providing more insight into interac-
tion of multiple diseases

A multilevel BN
Lappenschaar
et al. (2013b)

The course of a
medical condition

An informative clinical decision mak-
ing tool

Semi-Markov
model, Coxian
and HMM

Duong et al.
(2009)

Recognition of
human activities
of daily living

Having high and comparable accuracy

Switching Linear
Dynamic Systems

Using hidden
variables for
network changes

Wang et al.
(2011)

Camera tracking Being successful for both simulated
non-stationary data and video se-
quences

Time Varying
Autoregression

Kalman filter
Johnson and Sak-
oulis (2008)

Equity market
prediction

Performing as well as the Capital As-
set Pricing Model benchmark, despite
of using non-traditional pricing mea-
sures

Time-Varying Autoregression models have been applied to a wide range of research ap-

plications, such as predictive modelling of equity market Johnson and Sakoulis (2008),

inferring time-varying data from gene expression Perrin et al. (2003), Rao et al. (2007)

and modelling non-Gaussian autoregression Gencaga et al. (2010).
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A.2 Data Sources

Table A.6: Potential external data sources

Data Source Org. Start
Year

Features

Admitted Patient Care (APC): Monthly
statistics (HSCIC, 2016f,h)

HSCIC,
ONS

2002 A wide range of summary information about
patients admitted to NHS hospitals.

National Reporting and Learning System
(NRLS): Patient safety (HSCIC, 2016m,
NHS, 2016f, NRLS, 2010b, 2014)

NRLS 2003 The organisation level data for each NHS or-
ganisation on patient safety incidents in Eng-
land and Wales, which are grouped by clus-
ter. Most incidents are submitted electroni-
cally from local risk management systems.

Avoidable Mortality (ONS, 2014a) ONS 2001 Statistics on avoidable mortality (i.e. deaths
caused by certain conditions that should not
occur in the presence effective health care or
health interventions).

Hospital and community healthcare staff
(ONS, 2013)

ONS 2001 Estimates of the usually resident population
and changes made to the population estimates
over time.

Quality and Outcomes Framework
(QOF): Recorded prevalence (Fund,
2011, HSCIC, 2014c, 2016l, NHS, 2016a)

NHS 2004 A voluntary annual reward and incentive pro-
gramme for all GP surgeries in England, de-
tailing practice achievement, exceptions and
recorded prevalence.

Table A.7: Impractical external data sources

Data Source Organisation Reason
Patient Safety (NHS, 2016f) NRLS Slowly adaptation; different reporting practices (NRLS,

2010a)
Number of GP per demographic
groups (HSCIC, 2016g)

HSCIC Very small correlation to readmission (Laudicella et al.,
2013)

Distance of Patient from the hospi-
tal (HSCIC, 2016h)

HSCIC Very small correlation to readmission (Laudicella et al.,
2013)
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A.3 Software Tools

Table A.8: Considered software tools for Bayesian modelling

Tool Developers License Source Language Interface

AgenaRisk (Agena, 2016) Agena Commercial Closed Java GUI 2

Bayesian Network Tool BNT
for MATLAB (Mathworks,
2016, Murphy, 2016)

Kevin Murph GNU GPL 3 Opened Matlab Matlab

Infer.Net (Research, 2016) Microsoft Research Non-
Commercial

Opened C# C#, F#

Bayes Server (Server, 2016) Bayes Server Ltd Commercial Closed C# GUI, C#
SAMIAM (UCLA, 2016) Automated Reasoning

Group, UCLA
GNU Closed JAVA GUI

Bayesian Network tools in Java
(BNJ) (Hsu, 2016)

Laboratory for Knowledge
Discovery in Databases,
Kansas State University

GNU GPL Closed Java Java

GeNIe & SMILE (DSL, 2016) Decision Systems Labora-
tory, University of Pitts-
burgh

As-Is Closed C++ GUI, C++

OpenBUGS (Fund, 2016b,
Unit, 2016)

OpenBUGS community GNU GPL Opened Component
Pascal

GUI

GMTK (Bilmes, 2006, of Wash-
ington, 2016)

University of Washington OSL 4 Opened C++ GMTKL,
a simple
textual
language



A.4 Features 166

A.4 Features

A.4.1 Main Categories of Correlated Variables

Table A.9: Main categories of identified Features

Category Examples
Case mix group of diagnoses Patterns of Morbidity with Adjusted Clinical Groups (ACGs), chronic condition

with Expanded Diagnosis Clusters (EDCs) (JHU, 2014), Agency for Healthcare
Research & Quality’s (AHRQ) diagnosis categorisation scheme (AHRQ, 2016a),
ACS conditions (AHRQ, 2001, NHS, 2016b), frequent comorbidities & chronic
conditions.

Case mix group of operations & proce-
dures

National Clinical Coding Standards (OPCS) classification (HSCIC, 2016j), &
AHRQ’s procedure categorisation (AHRQ, 2016a).

Clinical indicators, treatments, medica-
tions & compliance

Lab test results, & prescribed medications.

Demographics Age, race, gender, living arrangements, level of education & marital status.
Deprivations Index of Multiple Deprivation (IMD) (DCLG, 2012), which includes: income,

employment, health & disability, education, skills & training, barriers to housing
& services, living environment, & crime.

Geographical location of patient & care
provider

Area of residence, Type & location of hospital (HSCIC, 2016h, NRLS, 2014) &
population estimates of local authorities (ONS, 2016).

Insurance & medical claims Grouping clinically similar treatments with Healthcare Resource Groups (HRGs)
(HSCIC, 2016a).

Legal status Formally detained or subject to guardianship under mental health act.
Physical condition Functional physical activities, specific comorbidities & general health.
Psychological health, emotional state &
social functioning

Health of the Nation Outcome Scales (HoNOS). ADLs, Instrumental ADLs,
Social isolation, loneliness, presence of aggressive, disturbed or psychotic be-
haviour, physical activities, life satisfaction, anxiety & depression, quality of
life, self-reported health status, & general mental health.

Risk indices A version of Charlson comorbidity index (Charlson et al., 1987), Elixhauser
comorbidity index (Elixhauser et al., 1998, AHRQ, 2016b), & Bupa Operative
Severity Score (Bupa, 2016).

Social care status Skilled nursing facility, rehab, hospice & palliative care.
Times, types, consultations, sources,
waiting & length-of-stays for admissions
or discharges

Using clinically homogeneous units that describe complete episodes of care using
Optum Episode Treatment Groups (ETGs) (OPTUM, 2014, 2016a), the num-
ber of emergency admissions in different time frames, types and the number of
specialities, & Previous hospitalisation.
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Table A.10: ERMER: Definition of all the main features

Id. Group Category Sub-category Feature Name Definition

1 Admin. Admission Classification classpatRecoded freq The recoded HES’s classpat (patient classification) of an episode. a

2 Admin. Admission Count episodeAdmission freq The number of episodes of a patient, within the selected timeframe.

3 Admin. Admission Count observations The number of episodes of a patient.

4 Admin. Admission Count spell The spell number of a patient.

5 Admin. Admission Count spellAdmission freq The number of spells of a patient, within the selected timeframe.

6 Admin. Admission Date admidate The HES’s admidate (date of admission) of a spell. a

7 Admin. Admission Date firstAdmidate The first HES’s admidate of a patient. a

8 Admin. Admission Date lastAdmidate The last HES’s admidate of a patient. a

9 Admin. Admission Discharge Method dismeth The HES’s dismeth (method of discharge) of a spell. a

10 Admin. Admission Discharge Method dismeth deadAlive The hospital death based on the HES’s dismeth value of a spell. a

11 Admin. Admission General readmiGap The gap between the current spell’s admission to the next spell.

12 Admin. Admission Method admimethRecoded freq The recoded HES’s admimeth (method of admission) of an episode. a

13 Admin. Admission Source admisorcRecoded freq The recoded HES’s admisorc (source of admission) of an episode. a

14 Admin. Admission Source intmanigRecoded The recoded HES’s intmanig (intended management) of an episode. a

15 Admin. Bed Days Count epidur The HES’s epidur (episode duration) of a spell. a

16 Admin. Bed Days Count epidurRecoded The recoded HES’s epidur of a spell. a

17 Admin. Bed Days Operation posopdur The HES’s posopdur (post-operative duration) of a spell. a

18 Admin. Bed Days Operation preopdur The HES’s preopdur (pre-operative duration) of a spell. a

19 Admin. Geographical Provider procode3 The first three characters of the HES’s procode (Provider code) of an

episode. The procode is managed by the National Administrative Codes

Service. a

20 Admin. Geographical Provider rotreatRecoded The recoded HES’s rotreat of an episode (based on the coding from

1996 to present). a

21 Admin. Hospital Provider orgCluster The organisation cluster of an episode, based on the NRLS classification

of procode3. c

22 Admin. Hospital Provider protype The HES’s protype (provider type) of an episode. a

23 Admin. ID Patient hesid The HES’s hesid (patient identifier) of an episode. a

24 Admin. ID Time timeframe The month of the year of an episode, based on the HES’s admidate. a

25 Admin. Speciality General mainspef The list of HES’s mainspef nn (main speciality) of an episode. a

26 Admin. Speciality General mainspefRecoded The list of recoded HES’s mainspef nn (main speciality) of an episode

(refer to its corresponding table for the mapping). a

27 Admin. Speciality Palliative palliativeCare The palliative care flag of an episode, based on the diagnosis code. f

28 Admin. Speciality Palliative palliativeMedicine The palliative medicine flag of an episode, based on the treatment func-

tion code. f

29 Admin. Waiting

Time

General elecdur The HES’s elecdur (waiting time) of an episode. a

30 Clinical Diagnosis Diagnosis charlsonIndex The CCI of a spell, based on HSCIC CCI. def

31 Clinical Diagnosis Diagnosis diag2Diag20 The list of secondary diagnosis codes of an episode, based on the HES’s

diag nn (diagnosis codes). a

32 Clinical Diagnosis Diagnosis mainDiag The AHRQ CCS category of the spell’s primary diagnosis based on the

HES’s diag nn & the guideline provided by the HSCIC. ae

Continued on next page
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Id. Group Category Sub-category Feature Name Definition

33 Clinical Diagnosis Diagnosis shmiIndex The SHMI index of a spell. def

34 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagCci 39 coagulopathy freq The count of coagulopathy conditions. i

35 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagCci 43 bloodLoss freq The count of blood loss anemia conditions. i

36 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagCci 44 anemia freq The count of deficiency anemia conditions. i

37 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagOther 3 blood freq The count of thrombocytopenia & thrombocytosis & elevated white

blood cell count conditions. i

38 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagOther 4 chronic g freq The count of blood (ACSC category ’g’) gconditions. i

39 Clinical Diagnosis Blood & Blood-Forming Organs &

Immune Mechanism

diagOther 6 diagSickle freq The count of Sickle cell conditions. i

40 Clinical Diagnosis Circulatory System diagCat 1 freq The count of rheumatic fever or rheumatic heart conditions. i

41 Clinical Diagnosis Circulatory System diagCat 10 freq The count of other unspecified disorders of the circulatory system. i

42 Clinical Diagnosis Circulatory System diagCat 11 freq The count of congenital cardiovascular defects

43 Clinical Diagnosis Circulatory System diagCat 2 freq The count of hypertensive conditions. i

44 Clinical Diagnosis Circulatory System diagCat 3 freq The count of ischemic (coronary) heart conditions. i

45 Clinical Diagnosis Circulatory System diagCat 4 freq The count of pulmonary heart & pulmonary circulation conditions. i

46 Clinical Diagnosis Circulatory System diagCat 5 freq The count of other forms of heart conditions. i

47 Clinical Diagnosis Circulatory System diagCat 6 freq The count of cerebrovascular (stroke) conditions. i

48 Clinical Diagnosis Circulatory System diagCat 7 freq The count of atherosclerosis conditions. i

49 Clinical Diagnosis Circulatory System diagCat 8 freq The count of other arteries, arterioles & capillaries conditions. i

50 Clinical Diagnosis Circulatory System diagCat 9 freq The count of other veins, lymphatics & lymph nodes conditions. i

51 Clinical Diagnosis Circulatory System diagCci 01 myocardial freq The count of myocardial infarction conditions. i

52 Clinical Diagnosis Circulatory System diagCci 02 chf freq The count of congestive heart failure conditions. i

53 Clinical Diagnosis Circulatory System diagCci 03 pvd freq The count of peripheral vascular conditions. i

54 Clinical Diagnosis Circulatory System diagCci 13 renal freq The count of renal conditions. i

55 Clinical Diagnosis Circulatory System diagCci 15 liverSevere freq The count of moderate or severe liver conditions. i

56 Clinical Diagnosis Circulatory System diagCci 19 cardiac freq The count of cardiac arrhythmias conditions. i

57 Clinical Diagnosis Circulatory System diagCci 21 pulmonary freq The count of pulmonary circulation disorders. i

58 Clinical Diagnosis Circulatory System diagCci 22 vascular freq The count of peripheral vascular disorders. i

59 Clinical Diagnosis Circulatory System diagCci 23 hypertensionNotComplicated freqThe count of hypertension with no complication conditions. i

60 Clinical Diagnosis Circulatory System diagCci 27 pulmonaryChronic freq The count of chronic pulmonary conditions. i

61 Clinical Diagnosis Circulatory System diagCci 31 renal freq The count of renal failure conditions. i

62 Clinical Diagnosis Circulatory System diagOther 4 chronic c freq The count of cardiovascular (ACSC category ’c’) gconditions. i

63 Clinical Diagnosis Circulatory System diagOther 4 chronic f freq The count of hypertensive heart & renal with heart failure (ACSC cat-

egory ’f’) gconditions. i

64 Clinical Diagnosis Circulatory System diagOther 4 chronic h freq The count of cardiovascular (ACSC category ’h’) gconditions. i

65 Clinical Diagnosis Circulatory System diagRisk 3 blood extra freq The count of hypertension conditions. i

66 Clinical Diagnosis Circulatory System diagRisk 3 blood freq The count of pulmonary hypertension, chronic venous hypertension,

post procedural hypertension & ocular hypertension conditions. i

67 Clinical Diagnosis Digestive System diagCci 08 ulcer freq The count of peptic ulcer conditions. i

Continued on next page
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Id. Group Category Sub-category Feature Name Definition

68 Clinical Diagnosis Digestive System diagCci 09 liverMild freq The count of mild liver conditions. i

69 Clinical Diagnosis Digestive System diagCci 17 aids freq The count of AIDS/HIV conditions. i

70 Clinical Diagnosis Digestive System diagCci 32 liver freq The count of liver conditions. i

71 Clinical Diagnosis Digestive System diagCci 33 ulcerNotBleeding freq The count of peptic ulcer with no bleeding conditions. i

72 Clinical Diagnosis Digestive System diagCci 45 alcohol freq The count of alcohol abuse conditions. i

73 Clinical Diagnosis Digestive System diagMorbid 8 periodontitis freq The count of periodontitis conditions. i

74 Clinical Diagnosis Digestive System diagRisk 7 kidney freq The count of liver conditions. i

75 Clinical Diagnosis Digestive System diagOther 4 chronic a freq The count of Hepatitis B infections (ACSC category ’a’) g. i

76 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 10 diabetesNotChronic freq The count of diabetes with no chronic complication conditions. i

77 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 11 diabetesChronic freq The count of diabetes with chronic complication conditions. i

78 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 28 diabetesNotComplicated freq The count of diabetes with no complicated conditions. i

79 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 29 diabetesComplicated freq The count of diabetes with complication conditions. i

80 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 30 hypothyroidism freq The count of hypothyroidism conditions. i

81 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 40 obesity freq The count of overweight & obesity conditions. i

82 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 41 weightLoss freq The count of weight loss conditions. i

83 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagCci 42 fluidDisorder freq The count of fluid & electrolyte disorders. i

84 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagOther 1 ulcers freq The count of diabetic ulcer conditions. i

85 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagOther 4 chronic d freq The count of diabetes conditions (ACSC category ’d’) g. i

86 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagRisk 2 Cholesterol freq The count of disorders of lipidemias conditions. i

87 Clinical Diagnosis Endocrine, Nutritional & Metabolic diagRisk 6 Metabolic freq The count of metabolic syndrome conditions. i

88 Clinical Diagnosis External Causes of Morbidity diagRisk 10 externalMorbidity freq The count of external causes of morbidity conditions. i

89 Clinical Diagnosis Genitourinary System diagMorbid 2 kidney freq The count of kidney conditions. i

90 Clinical Diagnosis Genitourinary System diagMorbid 4 erectile freq The count of male erectile dysfunction conditions. i

91 Clinical Diagnosis Infectious & Parasitic diagCci 20 valvular freq The count of valvular conditions. i

92 Clinical Diagnosis Injury, Poisoning & External

Causes

diagMorbid 10 vascularOper freq The count of heart or lungs transplant status & aftercare. i

93 Clinical Diagnosis Injury, Poisoning & External

Causes

diagRisk 5 diabetes extra freq The count of complications due to insulin pump malfunction & sec-

ondary diabetes mellitus due to pancreatectomy. i

94 Clinical Diagnosis Injury, Poisoning & External

Causes

diagRisk 9 external freq The count of injury, poisoning & certain other consequences of external

causes or complications, which not elsewhere classified. i

95 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagCci 05 dementia freq The count of dementia conditions. i

96 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagCci 18 depression freq The count of depression conditions. i

97 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagCci 34 psychoses freq The count of psychoses conditions. i

98 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagCci 46 drug freq The count of drug abuse conditions. i

99 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagOther 5 alcohol freq The count of alcohol conditions. i

100 Clinical Diagnosis Mental, Behavioral & Neurodevel-

opmental

diagOther 8 mental freq The count of mental conditions. i

Continued on next page
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Id. Group Category Sub-category Feature Name Definition

101 Clinical Diagnosis Musculoskeletal System & Connec-

tive Tissue

diagCci 07 rheumatic freq The count of rheumatic conditions. i

102 Clinical Diagnosis Musculoskeletal System & Connec-

tive Tissue

diagMorbid 6 rheumatoid freq The count of rheumatoid arthritis conditions. i

103 Clinical Diagnosis Neoplasms diagCci 14 malignancy freq The count of malignancy conditions, including lymphoma & leukemia,

except malignant neoplasm of skin. i

104 Clinical Diagnosis Neoplasms diagCci 16 tumorSec freq The count of metastatic solid tumor conditions. i

105 Clinical Diagnosis Neoplasms diagCci 35 lymphoma freq The count of lymphoma conditions. i

106 Clinical Diagnosis Neoplasms diagCci 36 cancerSec freq The count of metastatic cancer conditions. i

107 Clinical Diagnosis Neoplasms diagCci 37 tumorNotSec freq The count of solid tumour without metastasis conditions. i

108 Clinical Diagnosis Neoplasms diagOther 7 cancer freq The count of neoplasm conditions. i

109 Clinical Diagnosis Nervous System diagCci 04 cerebrovascular freq The count of cerebrovascular conditions. i

110 Clinical Diagnosis Nervous System diagCci 12 hemiplegia freq The count of hemiplegia or paraplegia conditions. i

111 Clinical Diagnosis Nervous System diagCci 25 paralysis freq The count of paralysis conditions. i

112 Clinical Diagnosis Nervous System diagCci 26 neuroOther freq The count of other neurological disorders. i

113 Clinical Diagnosis Nervous System diagMorbid 3 sleep freq The count of obstructive sleep apnea

114 Clinical Diagnosis Nervous System diagOther 4 chronic i freq The count of mental & behavioural disorders or neurological disorders

(ACSC category ’i’) g. i

115 Clinical Diagnosis Not Elsewhere Classified diagRisk 4 Glucose freq The count of elevated blood glucose level conditions. i

116 Clinical Diagnosis Other Factors diagMorbid 9 vascularRadi freq The count of radiation exposure conditions. i

117 Clinical Diagnosis Other Factors diagRisk 8 smoke freq The count of exposure to tobacco smoke conditions. i

118 Clinical Diagnosis Palliative palliativeCare freq The count of radiotherapy conditions. i

119 Clinical Diagnosis Reference reference freq The count of the reference hconditions in the HRG record.

120 Clinical Diagnosis Respiratory System diagCci 06 cpd freq The count of chronic pulmonary conditions. i

121 Clinical Diagnosis Respiratory System diagMorbid 1 Influenza freq The count of influenza a pneumonia conditions. i

122 Clinical Diagnosis Respiratory System diagOther 4 chronic b freq The count of respiratory conditions (ACSC category ’b’) g. i

123 Clinical Diagnosis Respiratory System diagOther 4 chronic e freq The count of respiratory conditions (ACSC category ’e’) g. i

124 Clinical Diagnosis Skin & Subcutaneous diagCci 38 rheumatoid freq The count of collagen vascular or rheumatoid arthritis conditions. b

125 Clinical Diagnosis Skin and Subcutaneous diagMorbid 5 psoriasis freq The count of psoriasis conditions. i

126 Clinical Diagnosis Skin & Subcutaneous diagMorbid 7 lupus freq The count of lupus erythematosus conditions. i

127 Clinical Operation Count episodeOpertn freq The number of operations of an episode, based on the HES’s opertn

(operation codes). a

128 Clinical Operation Count spellOpertn freq The number of operations of a spell, based on the HES’s opertn (oper-

ation codes). a

129 Clinical Operation Circulatory System oper 2 heart freq The count of heart operations. i

130 Clinical Operation Endocrine, Nutritional & Metabolic oper 1 obesity freq The count of obesity operations. i

131 Clinical Operation Genitourinary System oper 3 urinary freq The count of urinary operations. i

132 Clinical Operation Other Factors oper 4 radio freq The count of radiotherapy related operations. i

133 patient Demographic Age triggerStartAge The HES’s startage (age at start of episode) of a patient at the trigger

year. a

134 patient Demographic Age triggerStartAgeRecoded The HES’s startage (age at start of episode) of a patient at the trigger

year. a

Continued on next page
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Id. Group Category Sub-category Feature Name Definition

135 patient Demographic Deprivation imd04rk The HES’s imd04k (the Index of Multiple Deprivation Overall Rank) of

a patient. a

136 patient Demographic Deprivation imd04rkRecoded The recoded HES’s imd04k (the Index of Multiple Deprivation Overall

Rank) of a patient. a

137 patient Demographic Ethnicity ethnos The HES’s ethnos (ethnic category) of a patient. a

138 patient Demographic Ethnicity ethnosRecoded The recoded HES’s ethnos (ethnic category) of a patient. a

139 patient Demographic Gender genderRecoded The recoded HES’s sex (sex of patient) of a patient. a

a It is based on the HSCIC definition of the variable. b It is based on the ICD-10 coding system. c It is based on the organisation clustering provided by the National Reporting & Learning

System (NRLS). d It is based on the HSCIC version of the Charlson Comorbidity Index (CCI). e It is based on the Summary Hospital-level Mortality Indicator (SHMI) documentation by

the Health & Social Care Information Centre(HSCIC). f It is based on the Hospital Standardised Mortality Ratio (HSMR) mortality indicators by the Dr. Foster Intelligence
g It is based on the chronic Ambulatory Care Sensitive Conditions (ACSC) categorisation, which provided by Clinical Commissioning Group (CCG). h It is based on the reference Healthcare

Resource Groups (HRG) conditions that are specified in the PARR modellings. i It is based on the OPCS-4 coding system.
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A.4.3 Features Calculations

Table A.11: Mathematical definition of the main features included in the feature
pool

Formula Sub-Features

1. classpatRecoded freq

IF (classpatepisode ∈ {NULL, 9}) THEN

classpatRecoded freqepisode = ”NA”

ELSE IF (classpatepisode ∈ {1, 5, 8}) THEN

classpatRecoded freqepisode = ”Ordinary”

ELSE IF (classpatepisode ∈ {2, 3, 4}) THEN

classpatRecoded freqepisode = ”Regular” ENDIF

NA

2. episodeAdmission freq

episodeAdmission freqpatient = COUNTepisode(episodepatient),WHERE

TIMEstart ≤ episodetime ≤ TIMEend

NA

3. observations

episodespatient = COUNTepisode(episodespell) NA

4. spell

spellpatient NA

5. spellAdmission freq

spellAdmission freqpatient = COUNTspell(episodepatient),WHERE

TIMEstart ≤ spelltime ≤ TIMEend

NA

6. admidate

admidatespell NA

7. firstAdmidate

firstAdmidatepatient = MIN(admidatespell) NA

8. lastAdmidate

lastAdmidatepatient = MAX(admidatespell) NA

9. dismeth

dismethspell NA

10. dismeth deadAlive

IF (dismethspell == 4) THEN

hospitalDeathspell = TRUE

ELSE hospitalDeathspell = FALSE ENDIF

NA

11. readmiGap

readmiGapspell = COUNTday(admidatespell1 − dismethspelli−1
) NA

12. admimethRecoded freq

IF (admimethepisode = NULL) THEN

admimethRecoded freqepisode = ”NA”

ELSE IF (admimethepisode ∈ {11, 12, 13}) THEN

admimethRecoded freqepisode = ”Elective”

ELSE IF (admimethepisode = 99) THEN

admimethRecoded freqepisode = ”Unknown”

ELSE IF (admimethepisode ∈ {21, 22, 23, 24, 25, ”2A”, ”2B”, ”2C”, ”2D”, 28, 31,

32, 81, 82, 83, 84, 89, 98}) THEN

admimethRecoded freqepisode = ”Acute” ENDIF

NA

13. admisorcRecoded freq

Continued on next page
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Formula Sub-Features

IF (admisorcepisode ∈ {NULL, 98, 99}) THEN

admisorcRecoded freqepisode = ”NA”

ELSE IF (admisorcepisode ∈ {19, 29}) THEN

admisorcRecoded freqepisode = ”Residential”

ELSE IF (admisorcepisode ∈ {54, 65, 66, 69, 85, 86, 88}) THEN

admisorcRecoded freqepisode = ”Transferred from Residential Care”

ELSE IF (admisorcepisode ∈ {30, 37, 38, 39, 48, 49, 50, 51, 53, 87, 89}) THEN

admisorcRecoded freqepisode = ”Transferred from Others”

ELSE IF (admisorcepisode ∈ {79, 52}) THEN

admisorcRecoded freqepisode = ”Maternity” ENDIF

NA

14. intmanigRecoded

IF (intmanigepisode ∈ {NULL, 9}) THEN

intmanigRecodedepisode = ”NA”

ELSE IF (intmanigepisode ∈ {1, 2, 5, 8}) THEN

intmanigRecodedepisode = ”Ordinary”

ELSE IF (intmanigepisode ∈ {3, 4}) THEN

intmanigRecodedepisode = ”Regular” ENDIF

NA

15. epidur

epidurspell epidur avgAvgpatient =

AV ERAGE(AV ERAGE(

epidurepisode)spell)

epidur maxAvgpatient =

MAX(AV ERAGE(

epidurepisode)spell)

epidur maxStdevpatient =

MAX(STD DEV (

epidurepisode)spell)

16. epidurRecoded

IF (epidurspell ∈ {NULL,−1}) THEN

epidurRecodedspell = ”NA”

ELSE IF (epidurspell = 0) THEN

epidurRecodedspell = 0

ELSE IF (epidurspell = 1) THEN

epidurRecodedspell = 1

ELSE IF (epidurspell = 2) THEN

epidurRecodedspell = 2

ELSE IF (epidurspell = 3) THEN

epidurRecodedspell = 3

ELSE IF (epidurspell = 4) THEN

epidurRecodedspell = 4

ELSE IF (epidurspell = 5) THEN

epidurRecodedspell = 5

ELSE IF (epidurspell = 6) THEN

epidurRecodedspell = 6

ELSE IF (epidurspell = 7) THEN

epidurRecodedspell = 7

ELSE IF (7 < epidurspell ≤ 30) THEN

epidurRecodedspell = 8

ELSE IF (30 < epidurspell ≤ 180) THEN

epidurRecodedspell = 9

ELSE IF (epidurspell > 180) THEN

epidurRecodedspell = 10

epidurRecoded avgAvgpatient =

AV ERAGE(AV ERAGE(

epidurRecodedepisode)spell)

epidurRecoded maxAvgpatient =

MAX(AV ERAGE(

epidurRecodedepisode)spell)

epidurRecoded maxStdevpatient =

MAX(STD DEV (

epidurRecodedepisode)spell)

ENDIF

17. posopdur

Continued on next page
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Formula Sub-Features

posopdurspell posopdur avgpatient =

AV ERAGE(posopdurspell)

posopdur stdevpatient =

STD DEV (posopdurspell)

18. preopdur

preopdurspell preopdur avgpatient =

AV ERAGE(preopdurspell)

preopdur stdevpatient =

STD DEV (preopdurspell)

19. procode3

procode3episode procode3 freq1patient =

FRQUENT (procode3episode)

20. rotreatRecoded

IF (rotreatepisode ∈ NULL, Y ) THEN

rotreatRecodedepisode = ”NA”

ELSE IF (rotreatepisode = ”Y 01”) THEN

rotreatRecodedepisode = ”Northern ∧ Y orkshire”

ELSE IF (rotreatepisode = ”Y 02”) THEN

rotreatRecodedepisode = ”Trent”

ELSE IF (rotreatepisode = ”Y 07”) THEN

rotreatRecodedepisode = ”West Midlands”

ELSE IF (rotreatepisode = ”Y 08”) THEN

rotreatRecodedepisode = ”North West”

ELSE IF (rotreatepisode = ”Y 09”) THEN

rotreatRecodedepisode = ”Eastern”

ELSE IF (rotreatepisode = ”Y 10”) THEN

rotreatRecodedepisode = ”London”

ELSE IF (rotreatepisode = ”Y 11”) THEN

rotreatRecodedepisode = ”South East”

ELSE IF (rotreatepisode ∈ {”Y 12”, ”Y 06”}) THEN

rotreatRecodedepisode = ”South West ∧ South ∧ West (old coding)”

ELSE IF (rotreatepisode ∈ {”Y 03”, ”Y 04”, ”Y 05”}) THEN

rotreatRecodedepisode = ”Others”

rotreatRecoded freq1patient =

FRQUENT (

rotreatRecodedepisode)

ENDIF

21. episodeOpertn freq

opertnepisode = opertnepisode NA

22. spellOpertn freq

opertnspell =
∑

episodespell

opertnepisode NA

23. orgCluster

orgClusterepisode =

COUNTcluster(DICTIONARYNRLS Cluster(procode3, cluster)),

WHERE cluster ∈ {”NULL”, ”Acute teaching trust”,

”Acute specialist trust (including acute specialist (children))”,

”Large acute trust”, ”Medium acute trust”,

”Small acute trust”, ”Ambulance”, ”Mental health”,

”PCO : No inpatient provision”, ”PCO : Inpatient provision”}

orgCluster freq1patient =

FREQUENT (

orgClusterepisode)

24. protype

protypeepisode protype freq1patient =

FREQUENT (protypeepisode)

25. hesid

hesidepisode NA

26. timeframe

Continued on next page
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Formula Sub-Features

timeframeepisode = DATEmonth(admidateepisode) timeframeTriggerpatient =

timeframetrigger

27. mainspef

mainspefnnepisode
mainspef freq1patient =

FREQUENT (mainspefepisode)

mainspef uniques freqpatient =

FREQUENT (mainspefepisode)

28. mainspefRecoded

mainspefRecodednnepisode
=

COUNT (group(DICTIONARYmainspefRecoded(mainspef, group))

mainspefRecoded freq1patient =

FREQUENT (

mainspefRecodedepisode)

29. palliativeCare

IF (ANY
20
nn=1(diagnnepisode

= Z515)) THEN

palliativeCareepisode = TRUE ENDIF

NA

30. palliativeMedicine

IF (tretspefepisode = 315)) THEN

palliativeMedicinespell = TRUE ENDIF

NA

31. elecdur

elecdurepisode elecdur avgpatient =

AV ERAGE(elecdurspell)

elecdur freqpatient =

COUNTday(elecdurspell)

elecdur nulls freqpatient =

COUNTNA(elecdurspell)

elecdur stdevpatient =

STD DEV (elecdurspell)

32. charlsonIndex

episodespellselected
= episodespell,WHERE

IF (COUNT (episodespell) > 1) THEN

episodespellorder
= 2

ELSE episodespellorder
= 1

charlsonIndexspell =
20∑

nn=2

=

COUNT (weight(DICTIONARYFoster CCI (

diagnnepisodespellselected
, weight))

IF (15, 11 ⊆ ANY
20
nn=2(diagnnepisodespellselected

) THEN

charlsonIndexspell = charlsonIndexspell − 8

IF (charlsonIndexspell < 0) THEN charlsonIndex = 0

charlsonIndex avgpatient =

AV ERAGE(charlsonIndexspell)

charlsonIndex maxpatient =

MAX(charlsonIndexspell)

charlsonIndex stdevpatient =

STD DEV (charlsonIndexspell)

charlsonIndex zerof reqpatient =

COUNTNA(charlsonIndexspell)

33. diag2Diag20

diagnnepisode
,WHERE nn ∈ 2, 3, ..., 20 NA

34. mainDiag

mainDiagspell =

COUNT (category(DICTIONARYAHRQ CCS(

diagepisodenn , category)),WHERE

IF (diagepisode1 == ”R CODE” ∧ diagepisode2 6= ”R CODE”) THEN

nn = 2

ELSE nn = 1

NA

35. shmiIndex
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IF (charlsonIndexspell = 0) THEN

shmiIndexspell = 0

ELSE IF (0 < charlsonIndexspell ≤ 5) THEN

shmiIndexspell = 1

ELSE IF (charlsonIndexspell > 5) THEN

shmiIndexspell = 2

shmiIndex avgpatient =

AV ERAGE(shmiIndexspell)

shmiIndex maxpatient =

MAX(shmiIndexspell)

shmiIndex stdevpatient =

STD DEV (shmiIndexspell)

shmiIndex zero freqpatient =

COUNTzero(shmiIndexspell)

ENDIF

36. diagCci 39 coagulopathy freq

diagCci 39 coagulopathy freqspell =

COUNT (diag nnepisode ∈ {”D65”, ..., ”D68.x”, ”D69.1”, ”D69.3”, ..., ”D69.6”})

NA

37. diagCci 43 bloodLoss freq

diagCci 43 bloodLoss freqspell =

COUNT (diag nnepisode ∈ {”D50.0”})

NA

38. diagCci 44 anemia freq

diagCci 44 anemia freqspell =

COUNT (diag nnepisode ∈ {”D50.8”, ”D50.9”, ”D51.x”, ..., ”D53.x”,

”F10”, ”E52”, ”G62.1”, ”I42.6”})

NA

39. diagOther 3 blood freq

diagOther 3 blood freqspell =

COUNT (diag nnepisode ∈ {”D47.3”, ”D96.3”, ”D72.82”})

NA

40. diagOther 4 chronic g freq

diagOther 4 chronic g freqspell =

COUNT (diag nnepisode ∈ {”D50.1”, ”D50.8”, ”D50.9”, ”D51”, ”D52”})

NA

41. diagOther 6 diagSickle freq

diagOther 6 diagSickle freqspell =

COUNT (diag nnepisode ∈ {”D57”})

NA

42. diagCat 1 freq

diagCat 1 freqspell = COUNT (diag nnepisode ∈ {”I00”, ..., ”I09”}) NA

43. diagCat 10 freq

diagCat 10 freqspell = COUNT (diag nnepisode ∈ {”I95”, ..., ”I99”}) NA

44. diagCat 11 freq

diagCat 11 freqspell = COUNT (diag nnepisode ∈ {”Q20”, ..., ”Q28”}) NA

45. diagCat 2 freq

diagCat 2 freqspell = COUNT (diag nnepisode ∈ {”I10”, ..., ”I15”}) NA

46. diagCat 3 freq

diagCat 3 freqspell = COUNT (diag nnepisode ∈ {”I20”, ..., ”I25”}) NA

47. diagCat 4 freq

diagCat 4 freqspell = COUNT (diag nnepisode ∈ {”I26”, ..., ”I28”}) NA

48. diagCat 5 freq

diagCat 5 freqspell = COUNT (diag nnepisode ∈ {”I30”, ..., ”I52”}) NA

49. diagCat 6 freq

diagCat 6 freqspell = COUNT (diag nnepisode ∈ {”I60”, ..., ”I69”}) NA

50. diagCat 7 freq

diagCat 7 freqspell = COUNT (diag nnepisode ∈ {”I70”}) NA

51. diagCat 8 freq

diagCat 8 freqspell = COUNT (diag nnepisode ∈ {”I71”, ..., ”I79”}) NA

52. diagCat 9 freq

diagCat 9 freqspell = COUNT (diag nnepisode ∈ {”I80”, ..., ”I89”}) NA
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53. diagCci 01 myocardial freq

diagCci 01 myocardial freqspell =

COUNT (diag nnepisode ∈ {”I21.x”, ”I22.x”, ”I25.2”})

NA

54. diagCci 02 chf freq

diagCci 02 chf freqspell = COUNT (diag nnepisode ∈ {”I09.9”, ”I11.0”, ”I13.0”,

”I13.2”, ”I25.5”, ”I42.0”, ”I42.5”, ..., ”I42.9”, ”I43.x”, ”I50.x”, ”P29.0”})

NA

55. diagCci 03 pvd freq

diagCci 03 pvd freqspell = COUNT (diag nnepisode ∈ {”I70.x”, ”I71.x”, ”I73.1”,

”I73.8”, ”I73.9”, ”I77.1”, ”I79.0”, ”I79.2”, ”K55.1”, ”K55.8”, ”K55.9”, ”Z95.8”, ”Z95.9”})

NA

56. diagCci 13 renal freq

diagCci 13 renal freqspell =

COUNT (diag nnepisode ∈ {”I12.0”, ”I13.1”, ”N03.2”, ..., ”N03.7”, ”N05.2”, ..., ”N05.7”,

”N18.x”, ”N19.x”, ”N25.0”, ”Z49.0”, ..., ”Z49.2”, ”Z94.0”, ”Z99.2”})

NA

57. diagCci 15 liverSevere freq

diagCci 15 liverSevere freqspell = COUNT (diag nnepisode ∈ {”I85.0”, ”I85.9”,

”I86.4”, ”I98.2”, ”K70.4”, ”K71.1”, ”K72.1”, ”K72.9”, ”K76.5”, ”K76.6”, ”K76.7”})

NA

58. diagCci 19 cardiac freq

diagCci 19 cardiac freqspell = COUNT (diag nnepisode ∈ {”I44.1”, ..., ”I44.3”, ”I45.6”,

”I45.9”, ”I47.x”, ..., ”I49.x”, ”R00.0”, ”R00.1”, ”R00.8”, ”T82.1”, ”Z45.0”, ”Z95.0”})

NA

59. diagCci 21 pulmonary freq

diagCci 21 pulmonary freqspell =

COUNT (diag nnepisode ∈ {”I26.x”, ”I27.x”, ”I28.0”, ”I28.8”, ”I28.9”})

NA

60. diagCci 22 vascular freq

diagCci 22 vascular freqspell = COUNT (diag nnepisode ∈ {”I70.x”, ”I71.x”, ”I73.1”,

”I73.8”, ”I73.9”, ”I77.1”, ”I79.0”, ”I79.2”, ”K55.1”, ”K55.8”, ”K55.9”, ”Z95.8”, ”Z95.9”})

NA

61. diagCci 23 hypertensionNotComplicated freq

diagCci 23 hypertensionNotComplicated freqspell =

COUNT (diag nnepisode ∈ {”I10.x”})

NA

62. diagCci 27 pulmonaryChronic freq

diagCci 27 pulmonaryChronic freqspell = COUNT (diag nnepisode ∈

{”I27.8”, ”I27.9”, ”J40.x”, ..., ”J47.x”, ”J60.x”, ..., ”J67.x”, ”J68.4”, ”J70.1”, ”J70.3”})

NA

63. diagCci 31 renal freq

diagCci 31 renal freqspell = COUNT (diag nnepisode ∈

{”I12.0”, ”I13.1”, ”N18.x”, ”N19.x”, ”N25.0”, ”Z49.0”, ..., ”Z49.2”, ”Z94.0”, ”Z99.2”})

NA

64. diagOther 4 chronic c freq

diagOther 4 chronic c freqspell = COUNT (diag nnepisode ∈ {”I11.0”, ”I13.0”, ”I50”,

”J81X”} ∧ oper nnepisode /∈ {”K0”, ”K1”, ”K2”, ”K3”, ”K4”, ”K50”, ”K52”,

”K55”, ”K56”, ”K57”, ”K60”, ”K61”, ”K66”, ”K67”, ”K68”, ”K69”, ”K71”})

NA

65. diagOther 4 chronic f freq

diagOther 4 chronic f freqspell = COUNT (diag nnepisode ∈ {”I20”, ”I25”}

∧ oper nnepisode /∈ {”A”, ”B”, ”C”, ”D”, ”E”, ”F”, ”G”, ”H”, ”I”, ”J”, ”K”, ”L”,

”M”, ”N”, ”O”, ”P”, ”Q”, ”R”, ”S”, ”T”, ”V ”, ”W”, ”X0”, ”X1”, ”X2”, ”X4”, ”X5”})

NA

66. diagOther 4 chronic h freq

diagOther 4 chronic h freqspell = COUNT (diag nnepisode ∈ {”I10.X”, ”I11.9”}

∧ oper nnepisode /∈ {”K0”, ”K1”, ”K2”, ”K3”, ”K4”, ”K50”, ”K52”, ”K55”,

”K56”, ”K57”, ”K60”, ”K61”, ”K66”, ”K67”, ”K68”, ”K69”, ”K71”})

NA

67. diagRisk 3 blood extra freq

diagRisk 3 blood extra freqspell = COUNT (diag nnepisode ∈

{”I10”, ”I11”, ”I12”, ”I13”, ”I14”, ”I15”, ”I27.0”, ”I27.2”, ”I6”, ”I87.0”, ”I87.30”,

”I87.31”, ”I87.32”, ”I87.33”, ”I87.39”, ”I97.3”, ”K76.6”, ”H35.0”, ”I10”, ”R03”,

”O13”, ”O14”, ”O16”, ”O10”, ”G93.2”, ”H40.05”, ”P29.2”, ”P29.3”})

NA

Continued on next page



A.4.3 Features Calculations 179

Formula Sub-Features

68. diagRisk 3 blood freq

diagRisk 3 blood freqspell = COUNT (diag nnepisode ∈ {”I27”, ”I87”, ”I97”, ”H40.0”})NA

69. diagCci 08 ulcer freq

diagCci 08 ulcer freqspell = COUNT (diag nnepisode ∈ {”K25.x”, ..., ”K28.x”}) NA

70. diagCci 09 liverMild freq

diagCci 09 liverMild freqspell = COUNT (diag nnepisode ∈

{”B18.x”, ”K70.0”, ..., ”K70.3”, ”K70.9”, ”K71.3”, ..., ”K71.5”, ”K71.7”, ”K73.x”,

”K74.x”, ”K76.0”, ”K76.2”, ..., ”K76.4”, ”K76.8”, ”K76.9”, ”Z94.4”})

NA

71. diagCci 17 aids freq

diagCci 17 aids freqspell = COUNT (diag nnepisode ∈ {”B20.x”, ..., ”B22.x”, ”B24.x”})NA

72. diagCci 32 liver freq

diagCci 32 liver freqspell = COUNT (diag nnepisode ∈

{”B18.x”, ”I85.x”, ”I86.4”, ”I98.2”, ”K70.x”, ”K71.1”, ”K71.3”, ..., ”K71.5”,

”K71.7”, ”K72.x”, ..., ”K74.x”, ”K76.0”, ”K76.2”, ..., ”K76.9”, ”Z94.4”})

NA

73. diagCci 33 ulcerNotBleeding freq

diagCci 33 ulcerNotBleeding freqspell = COUNT (diag nnepisode ∈

{”K25.7”, ”K25.9”, ”K26.7”, ”K26.9”, ”K27.7”, ”K27.9”, ”K28.7”, ”K28.9”})

NA

74. diagCci 45 alcohol freq

diagCci 45 alcohol freqspell = COUNT (diag nnepisode ∈

{”K29.2”, ”K70.0”, ”K70.3”, ”K70.9”, ”T51.x”, ”Z50.2”, ”Z71.4”, ”Z72.1”})

NA

75. diagMorbid 8 periodontitis freq

diagMorbid 8 periodontitis freqspell =

COUNT (diag nnepisode ∈ {”K04.4”, ”K04.5”, ”K05.2”, ”K05.3”})

NA

76. diagRisk 7 kidney freq

diagOther 2 liver freqspell = COUNT (diag nnepisode ∈ {”K70”, ..., ”K77”, ”I85”}) NA

77. diagOther 4 chronic a freq

diagOther 4 chronic a freqspell =

COUNT (diag nnepisode ∈ {”B18.0”, ”B18.1”} ∧ oper nnepisode /∈ {”D57”})

NA

78. diagCci 10 diabetesNotChronic freq

diagCci 10 diabetesNotChronic freqspell = COUNT (diag nnepisode ∈

{”E10.0”, ”E10.1”, ”E10.6”, ”E10.8”, ”E10.9”, ”E11.0”, ”E11.1”, ”E11.6”, ”E11.8”,

”E11.9”, ”E12.0”, ”E12.1”, ”E12.6”, ”E12.8”, ”E12.9”, ”E13.0”, ”E13.1”, ”E13.6”,

”E13.8”, ”E13.9”, ”E14.0”, ”E14.1”, ”E14.6”, ”E14.8”, ”E14.9”})

NA

79. diagCci 11 diabetesChronic freq

diagCci 11 diabetesChronic freqspell = COUNT (diag nnepisode ∈

{”E10.2”, ..., ”E10.5”, ”E10.7”, ”E11.2”, ..., ”E11.5”, ”E11.7”, ”E12.2”, ..., ”E12.5”,

”E12.7”, ”E13.2”, ..., ”E13.5”, ”E13.7”, ”E14.2”, ..., ”E14.5”, ”E14.7”})

NA

80. diagCci 28 diabetesNotComplicated freq

diagCci 28 diabetesNotComplicated freqspell = COUNT (diag nnepisode ∈

{”E10.0”, ”E10.1”, ”E10.9”, ”E11.0”, ”E11.1”, ”E11.9”, ”E12.0”, ”E12.1”,

”E12.9”, ”E13.0”, ”E13.1”, ”E13.9”, ”E14.0”, ”E14.1”, ”E14.9”})

NA

81. diagCci 29 diabetesComplicated freq

diagCci 29 diabetesComplicated freqspell =

COUNT (diag nnepisode ∈ {”E10.2”, ..., ”E10.8”, ”E11.2”, ..., ”E11.8”,

”E12.2”, ..., ”E12.8”, ”E13.2”, ..., ”E13.8”, ”E14.2”, ..., ”E14.8”})

NA

82. diagCci 30 hypothyroidism freq

diagCci 30 hypothyroidism freqspell =

COUNT (diag nnepisode ∈ {”E00.x”, ..., ”E03.x”, ”E89.0”})

NA

83. diagCci 40 obesity freq

diagCci 40 obesity freqspell = COUNT (diag nnepisode ∈ {”E66.x”}) NA
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84. diagCci 41 weightLoss freq

diagCci 41 weightLoss freqspell =

COUNT (diag nnepisode ∈ {”E40.x”, ..., ”E46.x”, ”R63.4”, ”R64”})

NA

85. diagCci 42 fluidDisorder freq

diagCci 42 fluidDisorder freqspell =

COUNT (diag nnepisode ∈ {”E22.2”, ”E86.x”, ”E87.x”})

NA

86. diagOther 1 ulcers freq

diagOther 1 ulcers freqspell =

COUNT (diag nnepisode ∈ {”E08.6”, ”E09.6”, ”E10.6”, ”E11.6”, ”E13.6”, ”Z86.3”})

NA

87. diagOther 4 chronic d freq

diagOther 4 chronic d freqspell = COUNT (diag nnepisode ∈ {”E10”, ..., ”E14”}) NA

88. diagRisk 2 Cholesterol freq

diagRisk 2 Cholesterol freqspell = COUNT (diag nnepisode ∈ {”E78”, ”Z13.220”}) NA

89. diagRisk 6 Metabolic freq

diagRisk 6 Metabolic freqspell = COUNT (diag nnepisode ∈ {”E88.81”}) NA

90. diagRisk 10 externalMorbidity freq

diagRisk 10 externalMorbidity freqspell = COUNT (diag nnepisode ∈ {”V ”, ”Y ”}) NA

91. diagMorbid 2 kidney freq

diagMorbid 2 kidney freqspell = COUNT (diag nnepisode ∈

{”N17”, ..., ”N19”, ”N18”} OR {”N18” ∧ ”Z94.0”} OR {”N18” ∧ ”I12”})

NA

92. diagMorbid 4 erectile freq

diagMorbid 4 erectile freqspell = COUNT (diag nnepisode ∈ {”N52”}) NA

93. diagCci 20 valvular freq

diagCci 20 valvular freqspell = COUNT (diag nnepisode ∈ {”A52.0”, ”I05.x”, ...,

”I08.x”, ”I09.1”, ”I09.8”, ”I34.x”, ..., ”I39.x”, ”Q23.0”, ..., ”Q23.3”, ”Z95.2”, ..., ”Z95.4”})

NA

94. diagMorbid 10 vascularOper freq

diagMorbid 10 vascularOper freqspell =

COUNT (diag nnepisode ∈ {”T86.2”, ”Z94.3”, ”Z94.1”, ”Z48.21”, ”Z48.280”})

NA

95. diagRisk 5 diabetes extra freq

diagRisk 5 diabetes extra freqspell = COUNT (diag nnepisode

∈ {”T85.6”, ”T85.6”, ”T38.3x1”, ”T38.3x6”} OR {”E89.1” ∧ ”Z90.41”})

NA

96. diagRisk 9 external freq

diagRisk 9 external freqspell = COUNT (diag nnepisode ∈ {”S”, ”T”}) NA

97. diagCci 05 dementia freq

diagCci 05 dementia freqspell =

COUNT (diag nnepisode ∈ {”F00.x”, ..., ”F03.x”, ”F05.1”, ”G30.x”, ”G31.1”})

NA

98. diagCci 18 depression freq

diagCci 18 depression freqspell = COUNT (diag nnepisode ∈

{”F20.4”, ”F31.3”, ..., ”F31.5”, ”F32.x”, ”F33.x”, ”F34.1”, ”F41.2”, ”F43.2”})

NA

99. diagCci 34 psychoses freq

diagCci 34 psychoses freqspell = COUNT (diag nnepisode ∈

{”F20.x”, ”F22.x”, ..., ”F25.x”, ”F28.x”, ”F29.x”, ”F30.2”, ”F31.2”, ”F31.5”})

NA

100. diagCci 46 drug freq

diagCci 46 drug freqspell = COUNT (diag nnepisode ∈

{”F11.x”, ..., ”F16.x”, ”F18.x”, ”F19.x”, ”Z71.5”, ”Z72.2”})

NA

101. diagOther 5 alcohol freq

diagOther 5 alcohol freqspell = COUNT (diag nnepisode ∈ {”F10”}) NA

102. diagOther 8 mental freq

diagOther 8 mental freqspell = COUNT (diag nnepisode ∈ {”F01”, ..., ”F19”}) NA
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103. diagCci 07 rheumatic freq

diagCci 07 rheumatic freqspell = COUNT (diag nnepisode ∈

{”M05.x”, ”M06.x”, ”M31.5”, ”M32.x”, ..., ”M34.x”, ”M35.1”, ”M35.3”, ”M36.0”})

NA

104. diagMorbid 6 rheumatoid freq

diagMorbid 6 rheumatoid freqspell = COUNT (diag nnepisode ∈ {”M05”, ..., ”M06”}) NA

105. diagCci 14 malignancy freq

diagCci 14 malignancy freqspell = COUNT (diag nnepisode ∈

{”C00.x”, ..., ”C26.x”, ”C30.x”, ..., ”C34.x”, ”C37.x”, ..., ”C41.x”, ”C43.x”, ”C45.x”,

..., ”C58.x”, ”C60.x”, ..., ”C76.x”, ”C81.x”, ..., ”C85.x”, ”C88.x”, ”C90.x”, ..., ”C97.x”})

NA

106. diagCci 16 tumorSec freq

diagCci 16 tumorSec freqspell = COUNT (diag nnepisode ∈ {”C77.x”, ..., ”C80.x”}) NA

107. diagCci 35 lymphoma freq

diagCci 35 lymphoma freqspell = COUNT (diag nnepisode ∈

{”C81.x”, ..., ”C85.x”, ”C88.x”, ”C96.x”, ”C90.0”, ”C90.2”})

NA

108. diagCci 36 cancerSec freq

diagCci 36 cancerSec freqspell = COUNT (diag nnepisode ∈ {”C77.x”, ..., ”C80.x”}) NA

109. diagCci 37 tumorNotSec freq

diagCci 37 tumorNotSec freqspell =

COUNT (diag nnepisode ∈ {”C00.x”, ..., ”C26.x”, ”C30.x”, ..., ”C34.x”, ”C37.x”,

..., ”C41.x”, ”C43.x”, ”C45.x”, ..., ”C58.x”, ”C60.x”, ..., ”C76.x”, ”C97.x”})

NA

110. diagOther 7 cancer freq

diagOther 7 cancer freqspell = COUNT (diag nnepisode ∈ {”C00”, ..., ”D4”}) NA

111. diagCci 04 cerebrovascular freq

diagCci 04 cerebrovascular freqspell =

COUNT (diag nnepisode ∈ {”G45.x”, ”G46.x”, ”H34.0”, ”I60.x”, ..., ”I69.x”})

NA

112. diagCci 12 hemiplegia freq

diagCci 12 hemiplegia freqspell = COUNT (diag nnepisode ∈

{”G04.1”, ”G11.4”, ”G80.1”, ”G80.2”, ”G81.x”, ”G82.x”, ”G83.0”, ..., ”G83.4”, ”G83.9”})

NA

113. diagCci 25 paralysis freq

diagCci 25 paralysis freqspell = COUNT (diag nnepisode ∈

{”G04.1”, ”G11.4”, ”G80.1”, ”G80.2”, ”G81.x”, ”G82.x”, ”G83.0”, ..., ”G83.4”, ”G83.9”})

NA

114. diagCci 26 neuroOther freq

diagCci 26 neuroOther freqspell = COUNT (diag nnepisode ∈ {”G10.x”,

..., ”G13.x”, ”G20.x”, ..., ”G22.x”, ”G25.4”, ”G25.5”, ”G31.2”, ”G31.8”, ”G31.9”,

”G32.x”, ”G35.x”, ..., ”G37.x”, ”G40.x”, ”G41.x”, ”G93.1”, ”G93.4”, ”R47.0”, ”R56.x”})

NA

115. diagMorbid 3 sleep freq

diagMorbid 3 sleep freqspell = COUNT (diag nnepisode ∈ {”G47.33”, ”P28.3”}) NA

116. diagOther 4 chronic i freq

diagOther 4 chronic i freqspell =

COUNT (diag nnepisode ∈ {”G40”, ”G41”, ”F00”, ”F01”, ”F02”, ”F03”, ”I48X”})

NA

117. diagRisk 4 Glucose freq

diagRisk 4 Glucose freqspell = COUNT (diag nnepisode ∈ {”R73”}) NA

118. diagMorbid 9 vascularRadi freq

diagMorbid 9 vascularRadi freqspell =

COUNT (diag nnepisode ∈ {”Z51”, ”W88”, ”Y 36.5”, ”Y 37.5”, ”Y 38.5”, ”Y 63”})

NA

119. diagRisk 8 smoke freq

diagRisk 8 smoke freqspell =

COUNT (diag nnepisode ∈ {”Z77”, ”P968”, ”Z878”, ”Z573”, ”F17”, ”Z72.0”})

NA

120. palliativeCare freq

palliativeCare freqspell = COUNT (diag nnepisode ∈ {”Z515”}) NA
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121. reference freq

reference freqspell = hrg n.nepisode ∈ {”A18”, ”A29”, ”D16”, ”D17”, ”D20”,

”D21”, ”D26”, ”D33”, ”D99”, ”E18”, ”E19”, ”E22”, ”E29”, ”E33”, ”E99”, ”G25”,

”H25”, ”K11”, ”K99”, ”P02”, ”P23”, ”P25”, ”Q17”, ”S04”, ”S05”, ”S06”, ”T01”}

NA

122. diagCci 06 cpd freq

diagCci 06 cpd freqspell = COUNT (diag nnepisode ∈

{”I27.8”, ”I27.9”, ”J40.x”, ..., ”J47.x”, ”J60.x”, ..., ”J67.x”, ”J68.4”, ”J70.1”, ”J70.3”})

NA

123. diagMorbid 1 Influenza freq

diagMorbid 1 Influenza freqspell = COUNT (diag nnepisode ∈ {”J09”, ..., ”J18”}) NA

124. diagOther 4 chronic b freq

diagOther 4 chronic b freqspell = COUNT (diag nnepisode ∈ {”J45”, ”J46X”}) NA

125. diagOther 4 chronic e freq

diagOther 4 chronic e freqspell = COUNT (mainDiagepisode ∈

{”J20”, ”J41”, ”J42X”, ”J43”, ”J44”, ”J47X”, ”J20”}) +

COUNT (diag2Diag20episode ∈ {”J41”, ”J42”, ”J43”, ”J44”, ”J47”})

NA

126. diagCci 38 rheumatoid freq

diagCci 38 rheumatoid freqspell = COUNT (diag nnepisode ∈

{”L94.0”, ”L94.1”, ”L94.3”, ”M05.x”, ”M06.x”, ”M08.x”, ”M12.0”, ”M12.3”, ”M30.x”,

”M31.0”, ..., ”M31.3”, ”M32.x”, ..., ”M35.x”, ”M45.x”, ”M46.1”, ”M46.8”, ”M46.9”})

NA

127. diagMorbid 5 psoriasis freq

diagMorbid 5 psoriasis freqspell = COUNT (diag nnepisode ∈ {”L40”}) NA

128. diagMorbid 7 lupus freq

diagMorbid 7 lupus freqspell = COUNT (diag nnepisode ∈ {”L93”, ”M32”}) NA

129. oper 2 heart freq

oper 2 heart freqspell = COUNT (oper nnepisode ∈ {”G28”, ”G30”, ”G32”, ”G61”}) NA

130. oper 1 obesity freq

oper 1 obesity freqspell = COUNT (oper nnepisode ∈ {”K”, ”L”}) NA

131. oper 3 urinary freq

oper 3 urinary freqspell = COUNT (oper nnepisode ∈ {”M”}) NA

132. oper 4 radio freq

oper 4 radio freqspell = COUNT (oper nnepisode ∈ {”X65”, ”X67”, ”X68”}) NA

133. triggerStartAge

triggerStartAgepatient = MIN(startagepatienttrigger
) NA

134. triggerStartAgeRecoded

Continued on next page
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Formula Sub-Features

IF (triggerStartAgepatient = NULL) THEN

triggerStartAgeRecodedpatient = 0

ELSE IF (1 ≤ triggerStartAgepatient) THEN

triggerStartAgeRecodedpatient = 1

ELSE IF (1 ≤ triggerStartAgepatient < 4) THEN

triggerStartAgeRecodedpatient = 2

ELSE IF (4 ≤ triggerStartAgepatient < 9) THEN

triggerStartAgeRecodedpatient = 3

ELSE IF (9 ≤ triggerStartAgepatient < 14) THEN

triggerStartAgeRecodedpatient = 4

ELSE IF (14 ≤ triggerStartAgepatient < 19) THEN

triggerStartAgeRecodedpatient = 5

ELSE IF (19 ≤ triggerStartAgepatient < 24) THEN

triggerStartAgeRecodedpatient = 6

ELSE IF (24 ≤ triggerStartAgepatient < 29) THEN

triggerStartAgeRecodedpatient = 7

ELSE IF (29 ≤ triggerStartAgepatient < 34) THEN

triggerStartAgeRecodedpatient = 8

ELSE IF (34 ≤ triggerStartAgepatient < 39) THEN

triggerStartAgeRecodedpatient = 9

ELSE IF (39 ≤ triggerStartAgepatient < 44) THEN

triggerStartAgeRecodedpatient = 10

ELSE IF (44 ≤ triggerStartAgepatient < 49) THEN

triggerStartAgeRecodedpatient = 11

ELSE IF (49 ≤ triggerStartAgepatient < 54) THEN

triggerStartAgeRecodedpatient = 12

ELSE IF (54 ≤ triggerStartAgepatient < 59) THEN

triggerStartAgeRecodedpatient = 13

ELSE IF (59 ≤ triggerStartAgepatient < 64) THEN

triggerStartAgeRecodedpatient = 14

ELSE IF (64 ≤ triggerStartAgepatient < 69) THEN

triggerStartAgeRecodedpatient = 15

ELSE IF (69 ≤ triggerStartAgepatient < 74) THEN

triggerStartAgeRecodedpatient = 16

ELSE IF (74 ≤ triggerStartAgepatient < 79) THEN

triggerStartAgeRecodedpatient = 17

ELSE IF (79 ≤ triggerStartAgepatient < 84) THEN

triggerStartAgeRecodedpatient = 18

ELSE IF (84 ≤ triggerStartAgepatient < 89) THEN

triggerStartAgeRecodedpatient = 19

ELSE IF (89 ≤ triggerStartAgepatient < 120) THEN

triggerStartAgeRecodedpatient = 20 ENDIF

NA

135. imd04rk

imd04rkpatient = AV ERAGE(imd04rkpatienttrigger
) NA

136. imd04rkRecoded

Continued on next page
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Formula Sub-Features

IF (imd04rkpatient = NULL) THEN

imd04rkRecodedpatient = 0

ELSE IF (1 ≤ imd04rkpatient < 3, 249) THEN

imd04rkRecodedpatient = 1

ELSE IF (3, 249 ≤ imd04rkpatient < 6, 497) THEN

imd04rkRecodedpatient = 2

ELSE IF (6, 497 ≤ md04rkpatient < 9, 746) THEN

imd04rkRecodedpatient = 3

ELSE IF (9, 746 ≤ imd04rkpatient < 12, 994) THEN

imd04rkRecodedpatient = 4

ELSE IF (12, 994 ≤ imd04rkpatient < 16, 242) THEN

imd04rkRecodedpatient = 5

ELSE IF (16, 242 ≤ md04rkpatient < 19, 490) THEN

imd04rkRecodedpatient = 6

ELSE IF (19, 490 ≤ imd04rkpatient < 22, 738) THEN

imd04rkRecodedpatient = 7

ELSE IF (22, 738 ≤ imd04rkpatient < 25, 987) THEN

imd04rkRecodedpatient = 8

ELSE IF (25, 987 ≤ md04rkpatient < 29, 235) THEN

imd04rkRecodedpatient = 9

ELSE IF (29, 235 ≤ imd04rkpatient ≤ 32, 482) THEN

imd04rkRecodedpatient = 10 ENDIF

NA

137. ethnos

ethnospatient = REQUENT (ethnospatienttrigger
) NA

138. ethnosRecoded

IF (ethnospatient ∈ {NULL, ”X”, ”Z”, ”9”}) THEN

ethnosRecodedpatient = ”NA”

ELSE IF (ethnospatient ∈ {”A”, ”0”, ”B”, ”F”, ”C”}) THEN

ethnosRecodedpatient = ”White”

ELSE IF (ethnospatient ∈ {”H”, ”4”}) THEN

ethnosRecodedpatient = ”Indian”

ELSE IF (ethnospatient ∈ {”J”, ”5”}) THEN

ethnosRecodedpatient = ”Pakestani”

ELSE IF (ethnospatient ∈ {”K”, ”6”}) THEN

ethnosRecodedpatient = ”Bangeladeshi”

ELSE IF (ethnospatient ∈ {”M”, ”1”}) THEN

ethnosRecodedpatient = ”Caribbean”

ELSE IF (ethnospatient ∈ {”N”, ”2”}) THEN

ethnosRecodedpatient = ”African”

ELSE IF (ethnospatient ∈ {”P”, ”3”, ”D”, ”E”}) THEN

ethnosRecodedpatient = ”Other Black”

ELSE IF (ethnospatient ∈ {”R”, ”7”}) THEN

ethnosRecodedpatient = ”Chinese”

ELSE IF (ethnospatient ∈ {”S”, ”8”, ”L”, ”G”}) THEN

ethnosRecodedpatient = ”Others” ENDIF

NA

139. genderRecoded

IF (FREQUENT (sexpatienttrigger
∈ {NULL, 0}) THEN

genderRecodedpatient = ”NA”

ELSE IF (FREQUENT (sexpatienttrigger
= 1) THEN

genderRecodedpatient = ”Male”

ELSE IF (FREQUENT (sexpatienttrigger
= 2) THEN

genderRecodedpatient = ”Female” ENDIF

NA
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Table A.12: Definitions of the mainspef and the mainspefRecoded features

# mainspef Definition mainspefRecoded
0 900 Community medicine Other
0 901 Occupational medicine Other
0 902 Community health services Other
0 903 Public health medicine Other
0 904 Public health denta Other
0 950 Nursing episode Other
0 960 Allied health professional episode Other
1 180 Accident & emergency (A&E) A&E
2 190 Anaesthetics Anaesthetics & pain management
2 191 Pain management Anaesthetics & pain management
3 170 Cardiothoracic surgery Cardiothoracic
3 320 Cardiology Cardiothoracic
3 321 Paediatric cardiology Cardiothoracic
4 141 Restorative dentistry Dental
4 142 Paediatric dentistry Dental
4 149 Surgical dentistry Dental
4 450 Dental medicine Dental
4 601 General Dental Practice Dental
5 330 Dermatology Dermatology
6 120 Ear, nose & throat (ENT) Ear, nose & throat (ENT)
7 302 Endocrinology Endocrinology
8 301 Gastroenterology Gastroenterology
9 300 General medicine General
9 600 General Medical Practice General
9 620 General practice other than maternity General
10 100 General surgery General Surgery
11 430 Geriatric medicine Geriatric
12 502 Gynaecology Gynaecology
13 303 Clinical haemotology Haemotology
14 350 Infectious diseases Infectious diseases
15 501 Obstetrics Maternity
15 560 Midwifery Maternity
15 610 General practice with maternity function Maternity
16 360 Genito-urinary medicine Nephrology & Urinary
16 361 Nephrology Nephrology & Urinary
17 150 Neurosurgery Neurology
17 400 Neurology Neurology
17 401 Clinical neuro-physiology Neurology
17 421 Paediatric neurology Neurology
18 370 Medical oncology Oncology
19 130 Ophthalmology Ophthalmology
20 140 Oral surgery Oral & Maxillofacial Surgery
20 145 Oral & maxillo facial surgery Oral & Maxillofacial Surgery
21 143 Orthodontics Other Medicine & Surgical
21 146 Endodontics Other Medicine & Surgical
21 147 Periodontics Other Medicine & Surgical
21 148 Prosthodontics Other Medicine & Surgical
21 192 Critical care medicine Other Medicine & Surgical
21 199 Non-UK Provider Other Medicine & Surgical
21 304 Clinical physiology Other Medicine & Surgical
21 310 Audiological medicine Other Medicine & Surgical
21 311 Clinical genetics Other Medicine & Surgical
21 312 Clinical cytogenics & molecular genetics Other Medicine & Surgical
21 313 Clinical immunology & allergy Other Medicine & Surgical
21 352 Tropical medicine Other Medicine & Surgical
21 460 Medical opthalmology Other Medicine & Surgical
21 499 Non-UK Provider Other Medicine & Surgical
22 420 Paediatrics Paediatrics
23 171 Paediatric surgery Paediatrics Surgery
24 315 Palliative medicine Palliative
25 820 General pathology Pathology
25 821 Blood transfusion Pathology
25 822 Chemical pathology Pathology
25 823 Haematology Pathology
25 824 Histopathology Pathology
25 830 Immunopathology Pathology
25 831 Medical microbiology Pathology
25 832 Neuropathology Pathology
26 305 Clinical pharmacology Pharmacology & Medicine
27 110 Trauma & orthopaedics Plastic
27 160 Plastic surgery Plastic
28 700 Learning disability Psychiatry
28 710 Adult mental illness Psychiatry
28 711 Child & adolescent psychiatry Psychiatry
28 712 Forensic psychiatry Psychiatry
28 713 Psychotherapy Psychiatry
28 715 Old age psychiatry Psychiatry
29 371 Nuclear medicine Radiology
29 800 Clinical oncology/ Radiotherapy Radiology
29 810 Radiology Radiology
30 314 Rehabilitation Rehabilitation
31 340 Respiratory medicine Respiratory
32 410 Rheumatology Rheumatology
33 101 Urology Urology
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A.5 Exploratory Analysis

A.5.1 Descriptive Statistics of the HES Inpatient Table

Table A.13: Descriptive statistics of the HES Inpatient (full population)

Timeframe Episodesa Unique Pa-

tientsb
In-Hospital
Deathsc

[before - 95.01) 120,265 26,329 2,917
[95.01 - 95.04) 7,038 1,101 222
[95.04 - 95.07) 7,454 1,183 207
[95.07 - 96.10) 8,737 1,298 258
[96.10 - 96.01) 14,652 1,663 247
[96.01 - 96.04) 163,215 3,476 278
[96.04 - 96.07) 2,749,577 5,344 328
[96.07 - 97.10) 2,805,893 4,685 375
[97.10 - 97.01) 2,848,432 12,006 732
[97.01 - 97.04) 2,837,168 126,700 10,035
[97.04 - 97.07) 2,918,779 2,134,594 58,341
[97.07 - 98.10) 2,912,508 2,112,901 56,377
[98.10 - 98.01) 2,863,725 2,074,988 63,032
[98.01 - 98.04) 2,960,848 2,127,869 65,400
[98.04 - 98.07) 2,905,382 2,112,059 60,701
[98.07 - 99.10) 3,023,064 2,192,427 58,100
[99.10 - 99.01) 3,055,677 2,205,082 71,889
[99.01 - 99.04) 3,095,404 2,220,246 67,654
[99.04 - 99.07) 3,105,967 2,148,992 58,264
[99.07 - 00.10) 3,167,735 2,197,861 56,792
[00.10 - 00.01) 3,166,087 2,182,087 72,721
[00.01 - 00.04) 3,267,136 2,246,435 68,114
[00.04 - 00.07) 3,187,241 2,173,315 58,830
[00.07 - 01.10) 3,193,730 2,190,678 56,398
[01.10 - 01.01) 3,200,789 2,187,832 64,373
[01.01 - 01.04) 3,275,679 2,221,350 66,503
[01.04 - 01.07) 3,195,150 2,155,444 61,521
[01.07 - 02.10) 3,224,230 2,177,022 57,873
[02.10 - 02.01) 3,258,326 2,187,605 65,905
[02.01 - 02.04) 3,274,550 2,184,154 66,058
[02.04 - 02.07) 3,273,544 2,188,117 61,305
[02.07 - 03.10) 3,356,944 2,234,744 60,014
[03.10 - 03.01) 3,345,833 2,217,512 67,731
[03.01 - 03.04) 3,444,811 2,277,501 67,537
[03.04 - 03.07) 3,393,718 2,228,996 61,763
[03.07 - 04.10) 3,510,433 2,298,963 60,607
[04.10 - 04.01) 3,537,263 2,305,662 71,777
[04.01 - 04.04) 3,633,673 2,357,917 66,489
[04.04 - 04.07) 3,557,005 2,305,457 60,168
[04.07 - 05.10) 3,639,798 2,348,126 58,991
[05.10 - 05.01) 3,664,560 2,350,715 67,211
[05.01 - 05.04) 3,666,341 2,332,739 71,462
[05.04 - 05.07) 3,775,273 2,405,817 60,702
[05.07 - 06.10) 3,801,861 2,410,653 56,957
[06.10 - 06.01) 3,854,788 2,435,704 64,967
[06.01 - 06.04) 3,905,841 2,448,819 68,630
[06.04 - 06.07) 3,860,587 2,423,167 59,473
[06.07 - 07.10) 3,917,355 2,447,565 55,326
[07.10 - 07.01) 3,967,287 2,468,216 61,543
[07.01 - 07.04) 4,040,330 2,524,416 64,785
[07.04 - 07.07) 4,022,303 2,507,277 56,723
[07.07 - 08.10) 4,068,534 2,542,374 53,861
[08.10 - 08.01) 4,149,038 2,595,681 62,965
[08.01 - 08.04) 4,220,524 2,637,602 63,051
[08.04 - 08.07) 4,287,498 2,661,918 55,475
[08.07 - 09.10) 4,325,488 2,676,844 52,907
[09.10 - 09.01) 4,412,952 2,725,331 66,767
[09.01 - 09.04) 4,400,573 2,724,586 61,343
[09.04 - 09.07) 4,432,390 2,716,139 52,922
[09.07 - 10.10) 4,489,317 2,742,665 51,281
[10.10 - 10.01) 4,617,801 2,807,007 60,772
[10.01 - 10.04) 4,564,225 2,787,305 59,529
[10.04 - 10.07) 4,583,220 2,782,770 51,651
[10.07 - 10.10) 2,953,483 1,934,450 25,775
Total 206,489,029 127,469,481 3,312,905

a The number of patient excludes records with NULLs HESID.
b The number of episodes excludes records with NULLs ADMIDATE.
c The patients with dismeth value of 4.
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Figure A.1: The year quarters (colour coded) vs number of episodes for the HES
Inpatient (full population, part 1)
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Figure A.2: The year quarters (colour coded) vs number of episodes for the HES
Inpatient (full population, part 2)
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Figure A.3: The year quarters (colour coded) vs number of episodes for the HES
Inpatient (full population, part 3)
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A.5.2 Descriptive Statistics of the Samples

A.5.2.1 Sample-1

Table A.14: Descriptive statistics of the continuous variables (sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-1;

Test sub-sample size: 231,755

Feature a Mean
b

Stnd.

Devi.
c

Min d Q. 1 e Q. 2 f Q. 3 g Max h Zero

or NA

(%) i

readmiGap avg trigger 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0

(0.00%)

mainspefRecoded freq1 trigger 15 0.14 0.35 0.00 0.00 0.00 0.00 1.00 198,227

(85.53%)

mainspefRecoded freq1 trigger 12 0.10 0.30 0.00 0.00 0.00 0.00 1.00 208,100

(89.79%)

mainspefRecoded freq1 trigger 09 0.25 0.43 0.00 0.00 0.00 1.00 1.00 173,377

(74.81%)

mainspefRecoded freq1 trigger 11 0.08 0.27 0.00 0.00 0.00 0.00 1.00 213,954

(92.32%)

mainspefRecoded freq1 trigger 10 0.10 0.30 0.00 0.00 0.00 0.00 1.00 208,447

(89.94%)

mainspefRecoded freq1 trigger 27 0.09 0.29 0.00 0.00 0.00 0.00 1.00 210,262

(90.73%)

mainspefRecoded freq1 trigger 01 0.02 0.13 0.00 0.00 0.00 0.00 1.00 227,609

(98.21%)

mainspefRecoded freq1 trigger 28 0.03 0.16 0.00 0.00 0.00 0.00 1.00 225,610

(97.35%)

mainspefRecoded freq1 trigger 03 0.03 0.16 0.00 0.00 0.00 0.00 1.00 225,365

(97.24%)

mainspefRecoded freq1 trigger 19 0.01 0.08 0.00 0.00 0.00 0.00 1.00 230,440

(99.43%)

mainspefRecoded freq1 trigger 33 0.02 0.13 0.00 0.00 0.00 0.00 1.00 227,729

(98.26%)

mainspefRecoded freq1 trigger 08 0.01 0.12 0.00 0.00 0.00 0.00 1.00 228,607

(98.64%)

mainspefRecoded freq1 trigger 06 0.01 0.12 0.00 0.00 0.00 0.00 1.00 228,517

(98.60%)

mainspefRecoded freq1 trigger 31 0.01 0.10 0.00 0.00 0.00 0.00 1.00 229,418

(98.99%)

s spellAdmiMeth acute freq delta 1.33 0.98 1.00 1.00 1.00 1.00 48.00 114,857

(49.56%)

s spellAdmiMeth acute freq 365days delta -0.28 0.84 -41.00 0.00 0.00 0.00 0.00 212,427

(91.66%)

spellOpertn freq 90days delta 1.38 3.33 -1.00 0.00 1.00 2.00 395.00 145,093

(62.61%)

posopdur avg trigger 1.61 7.21 0.00 0.00 0.00 1.00 1,103.00 166,767

(71.96%)

epidurRecoded avg 2.99 2.58 0.00 1.00 2.00 4.50 10.00 27,736

(11.97%)

charlsonIndex avg 1.75 4.14 0.00 0.00 0.00 0.00 84.00 180,405

(77.84%)

readmiGap avg 0.55 0.50 0.00 0.00 1.00 1.00 1.00 103,415

(44.62%)

epidur maxAvg trigger 7.09 29.31 0.00 1.00 2.00 6.00 2,989.00 46,039

(19.87%)

s spellAdmiMeth acute freq 90days delta 1.09 3.05 -1.00 0.00 0.00 2.00 128.00 147,942

(63.84%)

posopdur avg 2.23 7.69 0.00 0.00 0.00 2.00 1,315.00 119,334

(51.49%)

charlsonIndex max 365days 1.83 4.49 0.00 0.00 0.00 0.00 84.00 206,514

(89.11%)

preopdur avg trigger 0.54 3.43 0.00 0.00 0.00 0.00 518.00 195,244

(84.25%)

reference freq 90days sum 0.50 1.53 0.00 0.00 0.00 0.00 123.00 201,403

(86.90%)

Continued on next page
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Feature a Mean
b

Stnd.

Devi.
c

Min d Q. 1 e Q. 2 f Q. 3 g Max h Zero

or NA

(%) i

s spellAdmiMeth elective freq delta 0.18 1.01 0.00 0.00 0.00 0.00 144.00 219,162

(94.57%)

preopdur avg 0.69 3.33 0.00 0.00 0.00 0.50 518.00 158,721

(68.49%)

posopdur avg 365days 2.17 9.29 0.00 0.00 0.33 2.00 1,397.00 171,432

(73.97%)

diagRisk 9 external freq 90days sum 0.45 1.21 0.00 0.00 0.00 1.00 117.00 199,737

(86.18%)

intmanigRecoded other freq 90days 0.56 1.42 0.00 0.00 0.00 1.00 87.00 193,573

(83.52%)

mainspef uniques freq trigger 1.09 0.31 0.00 1.00 1.00 1.00 7.00 50

(0.02%)

epidur maxAvg 365days 12.05 238.18 0.00 0.50 2.00 5.00 17,866.00 138,017

(59.55%)

diagCat 3 freq 90days sum 0.60 2.12 0.00 0.00 0.00 0.00 77.00 210,719

(90.92%)

diagCci 06 cpd freq trigger 0.10 0.40 0.00 0.00 0.00 0.00 9.00 214,359

(92.49%)

diagCat 5 freq 90days sum 0.43 1.48 0.00 0.00 0.00 0.00 96.00 212,053

(91.50%)

diagRisk 3 blood freq 90days sum 0.58 1.63 0.00 0.00 0.00 0.00 126.00 202,635

(87.44%)

spellOpertn freq 365days delta -0.19 0.86 -

114.00

0.00 0.00 0.00 0.00 217,039

(93.65%)

preopdur avg 365days 0.63 3.06 0.00 0.00 0.00 0.50 405.50 193,126

(83.33%)

diagOther 4 chronic e freq 90days sum 0.33 1.73 0.00 0.00 0.00 0.00 96.00 222,676

(96.08%)

orgCluster freq1 trigger 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 190,018

(81.99%)

orgCluster freq1 trigger 3 0.34 0.47 0.00 0.00 0.00 1.00 1.00 153,815

(66.37%)

orgCluster freq1 trigger 5 0.11 0.31 0.00 0.00 0.00 0.00 1.00 207,242

(89.42%)

orgCluster freq1 trigger 4 0.25 0.43 0.00 0.00 0.00 0.00 1.00 174,137

(75.14%)

rotreatRecoded freq1 trigger 6 0.14 0.35 0.00 0.00 0.00 0.00 1.00 198,591

(85.69%)

rotreatRecoded freq1 trigger 8 0.10 0.30 0.00 0.00 0.00 0.00 1.00 208,965

(90.17%)

rotreatRecoded freq1 trigger 7 0.15 0.36 0.00 0.00 0.00 0.00 1.00 196,496

(84.79%)

rotreatRecoded freq1 trigger 4 0.15 0.36 0.00 0.00 0.00 0.00 1.00 197,284

(85.13%)

rotreatRecoded freq1 trigger 5 0.09 0.28 0.00 0.00 0.00 0.00 1.00 211,224

(91.14%)

rotreatRecoded freq1 trigger 3 0.11 0.31 0.00 0.00 0.00 0.00 1.00 205,945

(88.86%)

rotreatRecoded freq1 trigger 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 198,870

(85.81%)

rotreatRecoded freq1 trigger 2 0.11 0.31 0.00 0.00 0.00 0.00 1.00 207,050

(89.34%)

diagOther 4 chronic d freq 90days sum 0.36 1.80 0.00 0.00 0.00 0.00 89.00 220,883

(95.31%)

diagOther 8 mental freq 90days sum 0.20 1.07 0.00 0.00 0.00 0.00 48.00 221,716

(95.67%)

diagOther 4 chronic b freq 90days sum 0.24 1.25 0.00 0.00 0.00 0.00 77.00 219,849

(94.86%)

s spellAdmiMeth elective freq 90days delta1.33 3.73 -1.00 0.00 1.00 2.00 395.00 158,628

(68.45%)

diagOther 4 chronic i freq 90days sum 0.37 1.63 0.00 0.00 0.00 0.00 221.00 215,528

(93.00%)

diagCci 44 anemia freq 90days 0.11 0.82 0.00 0.00 0.00 0.00 53.00 225,842

(97.45%)

oper 2 heart freq 90days 0.13 0.54 0.00 0.00 0.00 0.00 29.00 221,283

(95.48%)

admisorcRecoded other freq 0.11 0.46 0.00 0.00 0.00 0.00 43.00 213,702

(92.21%)

diagOther 7 cancer freq 90days 0.28 1.98 0.00 0.00 0.00 0.00 112.00 220,027

(94.94%)

Continued on next page
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Feature a Mean
b

Stnd.

Devi.
c

Min d Q. 1 e Q. 2 f Q. 3 g Max h Zero

or NA

(%) i

protype freq1 9 0.02 0.14 0.00 0.00 0.00 0.00 1.00 227,368

(98.11%)

protype freq1 trigger 9 0.02 0.13 0.00 0.00 0.00 0.00 1.00 227,918

(98.34%)

diagCci 19 cardiac freq 90days sum 0.29 1.24 0.00 0.00 0.00 0.00 96.00 217,947

(94.04%)

diagCci 02 chf freq 90days 0.12 0.76 0.00 0.00 0.00 0.00 55.00 225,283

(97.21%)

elecdur elective nulls freq 0.12 1.50 0.00 0.00 0.00 0.00 393.00 218,051

(94.09%)

oper 3 urinary freq 90days 0.14 0.75 0.00 0.00 0.00 0.00 51.00 222,055

(95.81%)

diagCci 26 neuroOther freq 90days 0.16 1.32 0.00 0.00 0.00 0.00 220.00 225,785

(97.42%)

diagCci 14 malignancy freq 90days 0.18 1.78 0.00 0.00 0.00 0.00 112.00 226,797

(97.86%)

diagCci 18 depression freq 90days 0.08 0.66 0.00 0.00 0.00 0.00 127.00 227,240

(98.05%)

diagRisk 8 smoke freq 90days 0.07 0.52 0.00 0.00 0.00 0.00 37.00 226,903

(97.91%)

diagRisk 10 externalMorbidity freq 90days 0.10 0.99 0.00 0.00 0.00 0.00 274.00 223,390

(96.39%)

diagMorbid 1 Influenza freq 90days 0.04 0.30 0.00 0.00 0.00 0.00 12.00 228,366

(98.54%)

diagRisk 2 Cholesterol freq 90days 0.06 0.48 0.00 0.00 0.00 0.00 50.00 228,253

(98.49%)

diagRisk 7 kidney freq 90days 0.10 2.84 0.00 0.00 0.00 0.00 403.00 229,331

(98.95%)

diagCci 04 cerebrovascular freq 90days 0.10 0.68 0.00 0.00 0.00 0.00 31.00 226,052

(97.54%)

diagCat 9 freq 90days 0.06 0.40 0.00 0.00 0.00 0.00 31.00 226,830

(97.87%)

spellOpertn freq trigger 0.35 0.48 0.00 0.00 0.00 1.00 1.00 149,970

(64.71%)

a Feature: Name of the defined feature.
b Mean: The mean value of the feature.
c Stnd. Devi.: The standard deviation of the feature.
d Min: The minimum of the feature.
e Q. 1: The value of the first quantile.
f Q. 2: The value of the second quantile.
g Q. 3: The value of the third quantile.
h Max: The maximum of the feature.
i Zero or NA (%): The frequency and percentage of zeros or NAs.

Table A.15: Descriptive statistics of the discrete variables (sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-1;

Test sub-sample size: 231,755

Feature a 1st

Freq.

value b

1st

Freq.

(%) c

2nd

Freq.

value d

2nd

Freq.

(%) e

Zero or

NA (%)
f

future365 s spellAdmiMeth emergency freq bool1 82,434

(35.57%)

0 149,321

(64.43%)

149,321

(64.43%)

mainspefRecoded 15 25 1

(0.00%)

26 1

(0.00%)

190,388

(82.15%)

mainspefRecoded 12 25 1

(0.00%)

27 1

(0.00%)

192,050

(82.87%)

mainspefRecoded 09 49 1

(0.00%)

51 1

(0.00%)

141,647

(61.12%)

mainspefRecoded 11 26 1

(0.00%)

30 1

(0.00%)

205,687

(88.75%)

Continued on next page
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Feature a 1st

Freq.

value b

1st

Freq.

(%) c

2nd

Freq.

value d

2nd

Freq.

(%) e

Zero or

NA (%)
f

mainspefRecoded 10 29 1

(0.00%)

33 1

(0.00%)

181,564

(78.34%)

mainspefRecoded 27 15 1

(0.00%)

19 1

(0.00%)

192,258

(82.96%)

mainspefRecoded 01 12 1

(0.00%)

15 1

(0.00%)

223,542

(96.46%)

mainspefRecoded 28 36 1

(0.00%)

37 1

(0.00%)

221,672

(95.65%)

mainspefRecoded 03 20 1

(0.00%)

22 1

(0.00%)

217,199

(93.72%)

mainspefRecoded 19 13 1

(0.00%)

16 1

(0.00%)

220,079

(94.96%)

mainspefRecoded 33 21 1

(0.00%)

25 1

(0.00%)

218,885

(94.45%)

mainspefRecoded 08 16 2

(0.00%)

20 2

(0.00%)

221,289

(95.48%)

mainspefRecoded 06 13 1

(0.00%)

14 1

(0.00%)

222,155

(95.86%)

mainspefRecoded 31 12 1

(0.00%)

18 1

(0.00%)

226,922

(97.91%)

triggerStartAge 21 1,132

(0.49%)

2 5,395

(2.33%)

0

(0.00%)

gender 2 0 89,367

(38.56%)

1 142,388

(61.44%)

89,367

(38.56%)

ethnosRecoded 0 1 52,998

(22.87%)

0 178,757

(77.13%)

178,757

(77.13%)

ethnosRecoded 1 0 74,293

(32.06%)

1 157,462

(67.94%)

74,293

(32.06%)

imd04rkRecoded 0 4,425

(1.91%)

10 15,310

(6.61%)

4,425

(1.91%)

a Feature: Name of the defined feature.
b 1st Freq. value: The value of the first most frequent value.
c 1st Freq. (%): The frequency and percentage of the first most frequent value.
d 2nd Freq. value: The value of the second most frequent value.
e 2nd Freq. (%): The frequency and percentage of the second most frequent value.
f Zero or NA (%): The frequency and percentage of zeros or NAs.
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A.5.2.2 Sample-2

Table A.16: Descriptive statistics of the continuous variables (sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-2;

Test sub-sample size: 243,712

Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

readmiGap avg trigger 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0

(0.00%)

mainspefRecoded freq1 trigger 15 0.15 0.35 0.00 0.00 0.00 0.00 1.00 208,080

(85.38%)

mainspefRecoded freq1 trigger 12 0.10 0.30 0.00 0.00 0.00 0.00 1.00 220,231

(90.37%)

mainspefRecoded freq1 trigger 09 0.21 0.41 0.00 0.00 0.00 0.00 1.00 191,420

(78.54%)

mainspefRecoded freq1 trigger 11 0.07 0.26 0.00 0.00 0.00 0.00 1.00 225,592

(92.56%)

mainspefRecoded freq1 trigger 10 0.09 0.29 0.00 0.00 0.00 0.00 1.00 221,150

(90.74%)

mainspefRecoded freq1 trigger 27 0.08 0.27 0.00 0.00 0.00 0.00 1.00 225,139

(92.38%)

mainspefRecoded freq1 trigger 01 0.09 0.28 0.00 0.00 0.00 0.00 1.00 222,266

(91.20%)

mainspefRecoded freq1 trigger 28 0.01 0.12 0.00 0.00 0.00 0.00 1.00 240,209

(98.56%)

mainspefRecoded freq1 trigger 03 0.04 0.19 0.00 0.00 0.00 0.00 1.00 234,553

(96.24%)

mainspefRecoded freq1 trigger 19 0.00 0.06 0.00 0.00 0.00 0.00 1.00 242,790

(99.62%)

mainspefRecoded freq1 trigger 33 0.02 0.12 0.00 0.00 0.00 0.00 1.00 239,933

(98.45%)

mainspefRecoded freq1 trigger 08 0.02 0.14 0.00 0.00 0.00 0.00 1.00 238,640

(97.92%)

mainspefRecoded freq1 trigger 06 0.01 0.11 0.00 0.00 0.00 0.00 1.00 240,609

(98.73%)

mainspefRecoded freq1 trigger 31 0.02 0.15 0.00 0.00 0.00 0.00 1.00 238,013

(97.66%)

s spellAdmiMeth acute freq delta 1.34 1.02 1.00 1.00 1.00 1.00 43.00 81,054

(33.26%)

s spellAdmiMeth acute freq 365days delta -0.28 0.87 -36.00 0.00 0.00 0.00 0.00 217,356

(89.19%)

spellOpertn freq 90days delta 2.24 8.86 -1.00 0.00 1.00 3.00 1,264.00 114,597

(47.02%)

posopdur avg trigger 1.81 7.12 0.00 0.00 0.00 1.00 388.00 168,557

(69.16%)

epidurRecoded avg 2.34 2.16 0.00 0.75 1.75 3.43 10.00 32,721

(13.43%)

charlsonIndex avg 2.28 4.64 0.00 0.00 0.00 4.00 103.00 172,695

(70.86%)

readmiGap avg 0.70 0.46 0.00 0.00 1.00 1.00 1.00 73,536

(30.17%)

epidur maxAvg trigger 4.79 16.66 0.00 0.00 1.00 4.00 1,125.00 70,135

(28.78%)

s spellAdmiMeth acute freq 90days delta 1.93 5.29 -1.00 0.00 1.00 3.00 1,050.00 121,256

(49.75%)

posopdur avg 2.29 6.90 0.00 0.00 0.75 2.00 974.00 97,987

(40.21%)

charlsonIndex max 365days 2.30 5.15 0.00 0.00 0.00 3.00 94.00 201,079

(82.51%)

preopdur avg trigger 0.61 2.94 0.00 0.00 0.00 0.00 452.00 197,116

(80.88%)

reference freq 90days sum 0.54 3.73 0.00 0.00 0.00 0.00 1,241.00 205,652

(84.38%)

s spellAdmiMeth elective freq delta 0.18 1.36 0.00 0.00 0.00 0.00 160.00 227,060

(93.17%)

preopdur avg 0.73 3.04 0.00 0.00 0.00 0.67 452.00 140,606

(57.69%)

Continued on next page
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Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

posopdur avg 365days 1.99 6.97 0.00 0.00 0.67 2.00 1,095.00 147,231

(60.41%)

diagRisk 9 external freq 90days sum 0.66 2.22 0.00 0.00 0.00 1.00 565.00 189,268

(77.66%)

intmanigRecoded other freq 90days 0.27 1.63 0.00 0.00 0.00 0.00 503.00 218,756

(89.76%)

mainspef uniques freq trigger 1.13 0.38 0.00 1.00 1.00 1.00 7.00 242

(0.10%)

epidur maxAvg 365days 6.57 117.85 0.00 0.50 1.67 4.00 14,906.00 109,894

(45.09%)

diagCat 3 freq 90days sum 0.85 3.65 0.00 0.00 0.00 0.00 522.00 215,088

(88.25%)

diagCci 06 cpd freq trigger 0.13 0.47 0.00 0.00 0.00 0.00 9.00 220,743

(90.58%)

diagCat 5 freq 90days sum 0.60 2.07 0.00 0.00 0.00 0.00 146.00 214,611

(88.06%)

diagRisk 3 blood freq 90days sum 1.15 5.30 0.00 0.00 0.00 1.00 1,080.00 189,201

(77.63%)

spellOpertn freq 365days delta -0.21 1.20 -

124.00

0.00 0.00 0.00 0.00 222,013

(91.10%)

preopdur avg 365days 0.60 2.96 0.00 0.00 0.00 0.50 366.00 178,417

(73.21%)

diagOther 4 chronic e freq 90days sum 0.46 2.49 0.00 0.00 0.00 0.00 148.00 230,886

(94.74%)

orgCluster freq1 trigger 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 190,975

(78.36%)

orgCluster freq1 trigger 3 0.35 0.48 0.00 0.00 0.00 1.00 1.00 158,425

(65.01%)

orgCluster freq1 trigger 5 0.11 0.31 0.00 0.00 0.00 0.00 1.00 216,738

(88.93%)

orgCluster freq1 trigger 4 0.27 0.44 0.00 0.00 0.00 1.00 1.00 178,182

(73.11%)

rotreatRecoded freq1 trigger 6 0.16 0.36 0.00 0.00 0.00 0.00 1.00 205,874

(84.47%)

rotreatRecoded freq1 trigger 8 0.10 0.30 0.00 0.00 0.00 0.00 1.00 219,975

(90.26%)

rotreatRecoded freq1 trigger 7 0.16 0.36 0.00 0.00 0.00 0.00 1.00 205,521

(84.33%)

rotreatRecoded freq1 trigger 4 0.15 0.36 0.00 0.00 0.00 0.00 1.00 206,636

(84.79%)

rotreatRecoded freq1 trigger 5 0.10 0.29 0.00 0.00 0.00 0.00 1.00 220,390

(90.43%)

rotreatRecoded freq1 trigger 3 0.11 0.31 0.00 0.00 0.00 0.00 1.00 217,296

(89.16%)

rotreatRecoded freq1 trigger 1 0.14 0.34 0.00 0.00 0.00 0.00 1.00 210,606

(86.42%)

rotreatRecoded freq1 trigger 2 0.10 0.30 0.00 0.00 0.00 0.00 1.00 219,686

(90.14%)

diagOther 4 chronic d freq 90days sum 0.58 2.84 0.00 0.00 0.00 0.00 271.00 226,239

(92.83%)

diagOther 8 mental freq 90days sum 0.34 1.77 0.00 0.00 0.00 0.00 125.00 225,466

(92.51%)

diagOther 4 chronic b freq 90days sum 0.40 2.97 0.00 0.00 0.00 0.00 924.00 222,651

(91.36%)

s spellAdmiMeth elective freq 90days delta2.10 9.13 -1.00 0.00 1.00 2.00 1,092.00 130,912

(53.72%)

diagOther 4 chronic i freq 90days sum 0.58 2.35 0.00 0.00 0.00 0.00 181.00 218,325

(89.58%)

diagCci 44 anemia freq 90days 0.20 1.48 0.00 0.00 0.00 0.00 119.00 232,957

(95.59%)

oper 2 heart freq 90days 0.21 0.74 0.00 0.00 0.00 0.00 49.00 223,873

(91.86%)

admisorcRecoded other freq 0.18 0.72 0.00 0.00 0.00 0.00 127.00 213,963

(87.79%)

diagOther 7 cancer freq 90days 0.39 2.39 0.00 0.00 0.00 0.00 184.00 223,215

(91.59%)

protype freq1 9 0.78 0.41 0.00 1.00 1.00 1.00 1.00 52,920

(21.71%)

protype freq1 trigger 9 0.63 0.48 0.00 0.00 1.00 1.00 1.00 90,351

(37.07%)

Continued on next page
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Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

diagCci 19 cardiac freq 90days sum 0.46 1.83 0.00 0.00 0.00 0.00 119.00 221,671

(90.96%)

diagCci 02 chf freq 90days 0.15 1.01 0.00 0.00 0.00 0.00 117.00 235,573

(96.66%)

elecdur elective nulls freq 0.23 3.38 0.00 0.00 0.00 0.00 579.00 219,972

(90.26%)

oper 3 urinary freq 90days 0.21 1.07 0.00 0.00 0.00 0.00 53.00 227,330

(93.28%)

diagCci 26 neuroOther freq 90days 0.24 1.96 0.00 0.00 0.00 0.00 180.00 234,646

(96.28%)

diagCci 14 malignancy freq 90days 0.25 2.17 0.00 0.00 0.00 0.00 184.00 235,517

(96.64%)

diagCci 18 depression freq 90days 0.12 1.04 0.00 0.00 0.00 0.00 248.00 235,588

(96.67%)

diagRisk 8 smoke freq 90days 0.18 0.99 0.00 0.00 0.00 0.00 96.00 230,769

(94.69%)

diagRisk 10 externalMorbidity freq 90days 0.15 0.63 0.00 0.00 0.00 0.00 66.00 227,028

(93.15%)

diagMorbid 1 Influenza freq 90days 0.07 0.44 0.00 0.00 0.00 0.00 14.00 237,185

(97.32%)

diagRisk 2 Cholesterol freq 90days 0.16 1.17 0.00 0.00 0.00 0.00 316.00 233,027

(95.62%)

diagRisk 7 kidney freq 90days 0.26 8.64 0.00 0.00 0.00 0.00 1,100.00 238,491

(97.86%)

diagCci 04 cerebrovascular freq 90days 0.15 1.35 0.00 0.00 0.00 0.00 381.00 234,758

(96.33%)

diagCat 9 freq 90days 0.10 0.61 0.00 0.00 0.00 0.00 68.00 234,065

(96.04%)

spellOpertn freq trigger 0.41 0.49 0.00 0.00 0.00 1.00 1.00 144,058

(59.11%)

Table A.17: Descriptive statistics of the discrete variables (sample-2 ))

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-2;

Test sub-sample size: 243,712

Feature 1st Fre-

quent -

value

1st Fre-

quent

- Freq.

(%)

2nd

Fre-

quent -

value

2nd

Fre-

quent

- Freq.

(%)

Zero or

NA (%)

future365 s spellAdmiMeth emergency freq bool1 91,517

(37.55%)

0 152,195

(62.45%)

152,195

(62.45%)

mainspefRecoded 15 35 1

(0.00%)

39 1

(0.00%)

192,388

(78.94%)

mainspefRecoded 12 34 1

(0.00%)

35 1

(0.00%)

193,074

(79.22%)

mainspefRecoded 09 64 1

(0.00%)

67 1

(0.00%)

140,699

(57.73%)

mainspefRecoded 11 25 1

(0.00%)

28 1

(0.00%)

211,596

(86.82%)

mainspefRecoded 10 34 1

(0.00%)

37 1

(0.00%)

174,328

(71.53%)

mainspefRecoded 27 25 1

(0.00%)

32 1

(0.00%)

190,232

(78.06%)

mainspefRecoded 01 24 1

(0.00%)

26 1

(0.00%)

206,598

(84.77%)

mainspefRecoded 28 31 1

(0.00%)

41 1

(0.00%)

233,989

(96.01%)

mainspefRecoded 03 26 1

(0.00%)

30 1

(0.00%)

217,050

(89.06%)

mainspefRecoded 19 15 1

(0.00%)

20 1

(0.00%)

223,566

(91.73%)

Continued on next page
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Feature 1st Fre-

quent -

value

1st Fre-

quent

- Freq.

(%)

2nd

Fre-

quent -

value

2nd

Fre-

quent

- Freq.

(%)

Zero or

NA (%)

mainspefRecoded 33 35 1

(0.00%)

36 1

(0.00%)

224,095

(91.95%)

mainspefRecoded 08 18 1

(0.00%)

23 1

(0.00%)

222,642

(91.35%)

mainspefRecoded 06 13 1

(0.00%)

14 1

(0.00%)

227,980

(93.54%)

mainspefRecoded 31 19 1

(0.00%)

27 1

(0.00%)

231,485

(94.98%)

triggerStartAge 21 657

(0.27%)

2 1,781

(0.73%)

0

(0.00%)

gender 2 0 92,625

(38.01%)

1 151,087

(61.99%)

92,625

(38.01%)

ethnosRecoded 0 1 19,568

(8.03%)

0 224,144

(91.97%)

224,144

(91.97%)

ethnosRecoded 1 0 51,397

(21.09%)

1 192,315

(78.91%)

51,397

(21.09%)

imd04rkRecoded 0 4,749

(1.95%)

10 14,863

(6.10%)

4,749

(1.95%)
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A.5.2.3 Sample-3

Table A.18: Descriptive statistics of the continuous variables (sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-3;

Test sub-sample size: 304,888

Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

readmiGap avg trigger 1.00 0.00 1.00 1.00 1.00 1.00 1.00 0

(0.00%)

mainspefRecoded freq1 trigger 15 0.15 0.35 0.00 0.00 0.00 0.00 1.00 260,347

(85.39%)

mainspefRecoded freq1 trigger 12 0.09 0.29 0.00 0.00 0.00 0.00 1.00 276,450

(90.67%)

mainspefRecoded freq1 trigger 09 0.25 0.44 0.00 0.00 0.00 1.00 1.00 227,198

(74.52%)

mainspefRecoded freq1 trigger 11 0.07 0.26 0.00 0.00 0.00 0.00 1.00 282,281

(92.59%)

mainspefRecoded freq1 trigger 10 0.10 0.30 0.00 0.00 0.00 0.00 1.00 274,676

(90.09%)

mainspefRecoded freq1 trigger 27 0.09 0.29 0.00 0.00 0.00 0.00 1.00 277,468

(91.01%)

mainspefRecoded freq1 trigger 01 0.03 0.17 0.00 0.00 0.00 0.00 1.00 295,674

(96.98%)

mainspefRecoded freq1 trigger 28 0.02 0.15 0.00 0.00 0.00 0.00 1.00 297,874

(97.70%)

mainspefRecoded freq1 trigger 03 0.03 0.17 0.00 0.00 0.00 0.00 1.00 296,309

(97.19%)

mainspefRecoded freq1 trigger 19 0.01 0.07 0.00 0.00 0.00 0.00 1.00 303,246

(99.46%)

mainspefRecoded freq1 trigger 33 0.02 0.13 0.00 0.00 0.00 0.00 1.00 299,594

(98.26%)

mainspefRecoded freq1 trigger 08 0.01 0.12 0.00 0.00 0.00 0.00 1.00 300,694

(98.62%)

mainspefRecoded freq1 trigger 06 0.01 0.12 0.00 0.00 0.00 0.00 1.00 300,608

(98.60%)

mainspefRecoded freq1 trigger 31 0.01 0.10 0.00 0.00 0.00 0.00 1.00 301,790

(98.98%)

s spellAdmiMeth acute freq delta 1.37 1.06 1.00 1.00 1.00 1.00 45.00 182,103

(59.73%)

s spellAdmiMeth acute freq 365days delta -0.31 0.90 -35.00 0.00 0.00 0.00 0.00 282,671

(92.71%)

spellOpertn freq 90days delta 1.05 3.29 -1.00 0.00 1.00 1.00 420.00 216,492

(71.01%)

posopdur avg trigger 1.49 7.48 0.00 0.00 0.00 1.00 1,522.00 222,130

(72.86%)

epidurRecoded avg 2.96 2.67 0.00 1.00 2.00 4.60 10.00 44,351

(14.55%)

charlsonIndex avg 1.71 4.19 0.00 0.00 0.00 0.00 105.00 240,103

(78.75%)

readmiGap avg 0.47 0.50 0.00 0.00 0.00 1.00 1.00 161,375

(52.93%)

epidur maxAvg trigger 6.53 26.64 0.00 1.00 2.00 5.00 2,534.00 64,924

(21.29%)

s spellAdmiMeth acute freq 90days delta 0.74 2.37 -1.00 -1.00 0.00 1.00 114.00 216,789

(71.10%)

posopdur avg 2.02 8.62 0.00 0.00 0.00 1.75 1,581.00 176,085

(57.75%)

charlsonIndex max 365days 1.82 4.52 0.00 0.00 0.00 0.00 81.00 278,319

(91.29%)

preopdur avg trigger 0.51 3.33 0.00 0.00 0.00 0.00 394.00 258,247

(84.70%)

reference freq 90days sum 0.46 1.23 0.00 0.00 0.00 0.00 45.00 270,192

(88.62%)

s spellAdmiMeth elective freq delta 0.19 1.06 0.00 0.00 0.00 0.00 138.00 290,405

(95.25%)

preopdur avg 0.67 3.71 0.00 0.00 0.00 0.33 672.00 223,418

(73.28%)

Continued on next page
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Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

posopdur avg 365days 2.02 8.86 0.00 0.00 0.00 2.00 1,581.00 250,693

(82.22%)

diagRisk 9 external freq 90days sum 0.39 0.98 0.00 0.00 0.00 0.00 37.00 272,445

(89.36%)

intmanigRecoded other freq 90days 0.31 0.90 0.00 0.00 0.00 0.00 41.00 276,185

(90.59%)

mainspef uniques freq trigger 1.10 0.32 0.00 1.00 1.00 1.00 5.00 125

(0.04%)

epidur maxAvg 365days 6.23 28.37 0.00 0.40 2.00 5.00 3,567.00 210,668

(69.10%)

diagCat 3 freq 90days sum 0.55 1.83 0.00 0.00 0.00 0.00 74.00 281,257

(92.25%)

diagCci 06 cpd freq trigger 0.11 0.41 0.00 0.00 0.00 0.00 9.00 280,777

(92.09%)

diagCat 5 freq 90days sum 0.42 1.71 0.00 0.00 0.00 0.00 386.00 282,768

(92.74%)

diagRisk 3 blood freq 90days sum 0.60 2.19 0.00 0.00 0.00 0.00 438.00 271,498

(89.05%)

spellOpertn freq 365days delta -0.21 0.90 -

118.00

0.00 0.00 0.00 0.00 287,896

(94.43%)

preopdur avg 365days 0.62 4.44 0.00 0.00 0.00 0.50 730.00 270,914

(88.86%)

diagOther 4 chronic e freq 90days sum 0.34 1.65 0.00 0.00 0.00 0.00 60.00 294,166

(96.48%)

orgCluster freq1 trigger 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 249,397

(81.80%)

orgCluster freq1 trigger 3 0.35 0.48 0.00 0.00 0.00 1.00 1.00 197,841

(64.89%)

orgCluster freq1 trigger 5 0.11 0.31 0.00 0.00 0.00 0.00 1.00 272,709

(89.45%)

orgCluster freq1 trigger 4 0.26 0.44 0.00 0.00 0.00 1.00 1.00 224,737

(73.71%)

rotreatRecoded freq1 trigger 6 0.15 0.35 0.00 0.00 0.00 0.00 1.00 260,452

(85.43%)

rotreatRecoded freq1 trigger 8 0.10 0.30 0.00 0.00 0.00 0.00 1.00 274,503

(90.03%)

rotreatRecoded freq1 trigger 7 0.15 0.36 0.00 0.00 0.00 0.00 1.00 257,673

(84.51%)

rotreatRecoded freq1 trigger 4 0.15 0.36 0.00 0.00 0.00 0.00 1.00 259,273

(85.04%)

rotreatRecoded freq1 trigger 5 0.10 0.30 0.00 0.00 0.00 0.00 1.00 275,356

(90.31%)

rotreatRecoded freq1 trigger 3 0.11 0.31 0.00 0.00 0.00 0.00 1.00 271,138

(88.93%)

rotreatRecoded freq1 trigger 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 262,141

(85.98%)

rotreatRecoded freq1 trigger 2 0.10 0.30 0.00 0.00 0.00 0.00 1.00 273,682

(89.76%)

diagOther 4 chronic d freq 90days sum 0.36 1.60 0.00 0.00 0.00 0.00 89.00 291,871

(95.73%)

diagOther 8 mental freq 90days sum 0.21 0.99 0.00 0.00 0.00 0.00 42.00 293,164

(96.15%)

diagOther 4 chronic b freq 90days sum 0.23 1.06 0.00 0.00 0.00 0.00 72.00 291,625

(95.65%)

s spellAdmiMeth elective freq 90days delta1.05 3.43 -1.00 0.00 1.00 1.00 417.00 231,690

(75.99%)

diagOther 4 chronic i freq 90days sum 0.37 1.69 0.00 0.00 0.00 0.00 386.00 285,976

(93.80%)

diagCci 44 anemia freq 90days 0.11 0.75 0.00 0.00 0.00 0.00 39.00 298,514

(97.91%)

oper 2 heart freq 90days 0.10 0.47 0.00 0.00 0.00 0.00 44.00 294,784

(96.69%)

admisorcRecoded other freq 0.08 0.37 0.00 0.00 0.00 0.00 26.00 284,946

(93.46%)

diagOther 7 cancer freq 90days 0.25 1.82 0.00 0.00 0.00 0.00 130.00 293,346

(96.21%)

protype freq1 9 0.99 0.11 0.00 1.00 1.00 1.00 1.00 3,796

(1.25%)

protype freq1 trigger 9 0.99 0.11 0.00 1.00 1.00 1.00 1.00 4,055

(1.33%)

Continued on next page
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Feature Mean Stnd.

Devi.

Min Q. 1 Q. 2 Q. 3 Max Zero

or NA

(%)

diagCci 19 cardiac freq 90days sum 0.30 1.59 0.00 0.00 0.00 0.00 386.00 289,068

(94.81%)

diagCci 02 chf freq 90days 0.11 0.71 0.00 0.00 0.00 0.00 54.00 298,127

(97.78%)

elecdur elective nulls freq 0.09 1.28 0.00 0.00 0.00 0.00 320.00 291,479

(95.60%)

oper 3 urinary freq 90days 0.11 0.58 0.00 0.00 0.00 0.00 31.00 295,865

(97.04%)

diagCci 26 neuroOther freq 90days 0.14 0.95 0.00 0.00 0.00 0.00 61.00 298,212

(97.81%)

diagCci 14 malignancy freq 90days 0.17 1.69 0.00 0.00 0.00 0.00 130.00 299,644

(98.28%)

diagCci 18 depression freq 90days 0.06 0.47 0.00 0.00 0.00 0.00 24.00 300,428

(98.54%)

diagRisk 8 smoke freq 90days 0.08 0.54 0.00 0.00 0.00 0.00 50.00 298,734

(97.98%)

diagRisk 10 externalMorbidity freq 90days 0.08 0.56 0.00 0.00 0.00 0.00 146.00 297,117

(97.45%)

diagMorbid 1 Influenza freq 90days 0.04 0.29 0.00 0.00 0.00 0.00 11.00 301,405

(98.86%)

diagRisk 2 Cholesterol freq 90days 0.06 0.47 0.00 0.00 0.00 0.00 31.00 300,515

(98.57%)

diagRisk 7 kidney freq 90days 0.10 2.80 0.00 0.00 0.00 0.00 388.00 301,843

(99.00%)

diagCci 04 cerebrovascular freq 90days 0.09 0.67 0.00 0.00 0.00 0.00 127.00 299,073

(98.09%)

diagCat 9 freq 90days 0.05 0.44 0.00 0.00 0.00 0.00 67.00 300,322

(98.50%)

spellOpertn freq trigger 0.34 0.47 0.00 0.00 0.00 1.00 1.00 200,954

(65.91%)

Table A.19: Descriptive statistics of the discrete variables (sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Conditional: Cond Main;

Sample: Sample-3;

Test sub-sample size: 304,888

Feature 1st Fre-

quent -

value

1st Fre-

quent

- Freq.

(%)

2nd

Fre-

quent -

value

2nd

Fre-

quent

- Freq.

(%)

Zero or

NA (%)

future365 s spellAdmiMeth emergency freq bool1 109,045

(35.77%)

0 195,843

(64.23%)

195,843

(64.23%)

mainspefRecoded 15 22 1

(0.00%)

23 1

(0.00%)

253,385

(83.11%)

mainspefRecoded 12 20 1

(0.00%)

21 1

(0.00%)

260,674

(85.50%)

mainspefRecoded 09 37 1

(0.00%)

49 1

(0.00%)

191,162

(62.70%)

mainspefRecoded 11 19 1

(0.00%)

25 1

(0.00%)

273,361

(89.66%)

mainspefRecoded 10 28 1

(0.00%)

31 1

(0.00%)

247,875

(81.30%)

mainspefRecoded 27 13 1

(0.00%)

17 1

(0.00%)

259,718

(85.18%)

mainspefRecoded 01 20 1

(0.00%)

23 1

(0.00%)

291,065

(95.47%)

mainspefRecoded 28 27 1

(0.00%)

35 1

(0.00%)

294,023

(96.44%)

mainspefRecoded 03 16 1

(0.00%)

21 1

(0.00%)

287,075

(94.16%)

mainspefRecoded 19 14 1

(0.00%)

15 1

(0.00%)

292,860

(96.05%)

Continued on next page
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Feature 1st Fre-

quent -

value

1st Fre-

quent

- Freq.

(%)

2nd

Fre-

quent -

value

2nd

Fre-

quent

- Freq.

(%)

Zero or

NA (%)

mainspefRecoded 33 20 1

(0.00%)

22 1

(0.00%)

291,069

(95.47%)

mainspefRecoded 08 20 1

(0.00%)

24 1

(0.00%)

292,512

(95.94%)

mainspefRecoded 06 10 1

(0.00%)

15 1

(0.00%)

295,175

(96.81%)

mainspefRecoded 31 19 1

(0.00%)

20 1

(0.00%)

299,055

(98.09%)

triggerStartAge 21 1,052

(0.35%)

3 8,361

(2.74%)

0

(0.00%)

gender 2 0 118,670

(38.92%)

1 186,218

(61.08%)

118,670

(38.92%)

ethnosRecoded 0 1 64,965

(21.31%)

0 239,923

(78.69%)

239,923

(78.69%)

ethnosRecoded 1 0 93,555

(30.69%)

1 211,333

(69.31%)

93,555

(30.69%)

imd04rkRecoded 0 5,654

(1.85%)

10 20,742

(6.80%)

5,654

(1.85%)
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A.5.3 Distribution Plots of HSCIC-CCI for Diagnoses Groups

In this section, the box-plot statistics for the Charlson and Elixhauser diagnoses cat-

egories are plotted. Each plot represents one diagnosis category in the Charlson or

Elixhauser comorbidity indices. The plots visually represent the bias of the HSCIC

Charlson Comorbidity Index (HSCIC-CCI).
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208Figure A.8: The box-plot statistics of dementia (all samples)
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210Figure A.10: The box-plot statistics of rheumatic disease (all samples)
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A
.5

.3
D

istrib
u

tio
n

P
lots

o
f

H
S

C
IC

-C
C

I
for

D
iagn

oses
G

rou
p

s
213Figure A.13: The box-plot statistics of diabetes without chronic complication (all samples)
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225Figure A.25: The box-plot statistics of peripheral vascular disorders (all samples)
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227Figure A.27: The box-plot statistics of hypertension - complicated (all samples)
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228Figure A.28: The box-plot statistics of paralysis (all samples)
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232Figure A.32: The box-plot statistics of diabetes - complicated (all samples)
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234Figure A.34: The box-plot statistics of renal failure (all samples)



A
.5

.3
D

istrib
u

tio
n

P
lots

o
f

H
S

C
IC

-C
C

I
for

D
iagn

oses
G

rou
p

s
235Figure A.35: The box-plot statistics of liver disease (all samples)
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237Figure A.37: The box-plot statistics of psychoses (all samples)
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242Figure A.42: The box-plot statistics of coagulopathy (all samples)
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246Figure A.46: The box-plot statistics of blood loss anemia (all samples)
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A
.5

.3
D

istrib
u

tio
n

P
lots

o
f

H
S

C
IC

-C
C

I
for

D
iagn

oses
G

rou
p

s
249Figure A.49: The box-plot statistics of drug abuse (all samples)



A.6 ERMER 250

A.6 ERMER

A.6.1 Features

A.6.1.1 Features Definitions
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Table A.20: ERMER: Definition of the included features (all samples)

Feature Name Definition Feature’s Source

readmiGap avg Average of days gap between spells in the past. 11. readmiGap

readmiGap avg trigger Count of days gap from the previous spell at the trigger event. 11. readmiGap

s spellAdmiMeth acute freq delta Count of the acute admission method between 12 to 36 months. 12. admimethRecoded freq

s spellAdmiMeth acute freq 365days delta Count of the acute admission method between 90 days to 12 months. 12. admimethRecoded freq

s spellAdmiMeth acute freq 90days delta Count of the acute admission method within 90 days. 12. admimethRecoded freq

s spellAdmiMeth elective freq delta Count of the elective admission method between 12 to 36 months. 12. admimethRecoded freq

s spellAdmiMeth elective freq 90days delta Count of the elective admission method within 90 days. 12. admimethRecoded freq

admisorcRecoded other freq Count of the admission source of state ”NA”, ”Transferred from others” or ”Maternity”. 13. admisorcRecoded freq

intmanigRecoded other freq 90days Count of recoded intended management admission of state ”NA”, ”Transferred from others” or ”Ma-

ternity” within 90 days.

14. intmanigRecoded

epidur maxAvg 365days Average of spells durations within 12 months. 15. epidur

epidur maxAvg trigger Average of spells durations at the trigger event. 15. epidur

epidurRecoded avg Average of spells durations in the past. 16. epidurRecoded

posopdur avg Average of post-operative durations in the past. 17. posopdur

posopdur avg 365days Average of post-operative durations within 12 months. 17. posopdur

posopdur avg trigger Average of post-operative durations at the trigger event. 17. posopdur

preopdur avg Average of pre-operative durations in the past. 18. preopdur

preopdur avg 365days Average of pre-operative durations within 12 months. 18. preopdur

preopdur avg trigger Average of pre-operative durations at the trigger event. 18. preopdur

rotreatRecoded freq1 trigger 1 Count of recoded region of treatment of state ”NA” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 2 Count of recoded region of treatment of state ”Northern and Yorkshire” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 3 Count of recoded region of treatment of state ”Trent” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 4 Count of recoded region of treatment of state ”West Midlands” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 5 Count of recoded region of treatment of state ”North West” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 6 Count of recoded region of treatment of state ”Eastern” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 7 Count of recoded region of treatment of state ”London” at the trigger event. 20. rotreatRecoded

rotreatRecoded freq1 trigger 8 Count of recoded region of treatment of state ”South East” at the trigger event. 20. rotreatRecoded

orgCluster freq1 trigger 1 Count of organisation cluster of state ”Acute teaching trust” at the trigger event. 21. orgCluster

orgCluster freq1 trigger 3 Count of organisation cluster of state ”Large acute trust” at the trigger event. 21. orgCluster

orgCluster freq1 trigger 4 Count of organisation cluster of state ”Medium acute trust” at the trigger event. 21. orgCluster

orgCluster freq1 trigger 5 Count of organisation cluster of state ”Small acute trust” at the trigger event. 21. orgCluster

protype freq1 9 Count of provider type of state ”TRUST” in the past. 22. protype

protype freq1 trigger 9 Count of provider type of state ”TRUST” at the trigger event. 22. protype

mainspef uniques freq trigger Count of unique main speciality seen at the trigger event. 25. mainspef

mainspefRecoded 01 Count of recoded main speciality of state ”A&E” in the past. 26. mainspefRecoded

mainspefRecoded 03 Count of recoded main speciality of state ”Cardiothoracic” in the past. 26. mainspefRecoded

mainspefRecoded 06 Count of recoded main speciality of state ”Ear, nose & throat (ENT)” in the past. 26. mainspefRecoded

mainspefRecoded 08 Count of recoded main speciality of state ”Gastroenterology ” in the past. 26. mainspefRecoded

mainspefRecoded 09 Count of recoded main speciality of state ”General” in the past. 26. mainspefRecoded

mainspefRecoded 10 Count of recoded main speciality of state ”General Surgery” in the past. 26. mainspefRecoded

mainspefRecoded 11 Count of recoded main speciality of state ”Geriatric” in the past. 26. mainspefRecoded

Continued on next page
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Feature Name Definition Feature’s Source

mainspefRecoded 12 Count of recoded main speciality of state ”Gynaecology” in the past. 26. mainspefRecoded

mainspefRecoded 15 Count of recoded main speciality of state ”Maternity” in the past. 26. mainspefRecoded

mainspefRecoded 19 Count of recoded main speciality of state ”Ophthalmology” in the past. 26. mainspefRecoded

mainspefRecoded 27 Count of recoded main speciality of state ”Plastic” in the past. 26. mainspefRecoded

mainspefRecoded 28 Count of recoded main speciality of state ”Psychiatry” in the past. 26. mainspefRecoded

mainspefRecoded 31 Count of recoded main speciality of state ”Respiratory” in the past. 26. mainspefRecoded

mainspefRecoded 33 Count of recoded main speciality of state ”Urology” in the past. 26. mainspefRecoded

mainspefRecoded freq1 trigger 01 Count of recoded main speciality of state ”A&E” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 03 Count of recoded main speciality of state ”Cardiothoracic” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 06 Count of recoded main speciality of state ”Ear, nose & throat (ENT)” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 08 Count of recoded main speciality of state ”Gastroenterology ” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 09 Count of recoded main speciality of state ”General” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 10 Count of recoded main speciality of state ”General Surgery” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 11 Count of recoded main speciality of state ”Geriatric” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 12 Count of recoded main speciality of state ”Gynaecology” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 15 Count of recoded main speciality of state ”Maternity” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 19 Count of recoded main speciality of state ”Ophthalmology” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 27 Count of recoded main speciality of state ”Plastic” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 28 Count of recoded main speciality of state ”Psychiatry” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 31 Count of recoded main speciality of state ”Respiratory” at the trigger event. 26. mainspefRecoded

mainspefRecoded freq1 trigger 33 Count of recoded main speciality of state ”Urology” at the trigger event. 26. mainspefRecoded

elecdur elective nulls freq Count of zero waiting time for elective admissions in the past. 29. elecdur

charlsonIndex avg Average value of the Charlson Index in the past. 30. charlsonIndex

charlsonIndex max 365days Maximum value of the Charlson Index within 12 months. 30. charlsonIndex

diagCci 44 anemia freq 90days Count of blood loss anemia conditions within 90 days. 36. diagCci 44 anemia freq

diagCat 3 freq 90days sum Count of ischemic (coronary) heart conditions within 90 days, including the trigger event. 44. diagCat 3 freq

diagCat 5 freq 90days sum Count of other forms of heart conditions within 90 days, including the trigger event. 46. diagCat 5 freq

diagCat 9 freq 90days Count of other veins, lymphatics and lymph nodes conditions within 90 days. 50. diagCat 9 freq

diagCci 02 chf freq 90days Count of congestive heart failure conditions within 90 days. 52. diagCci 02 chf freq

diagCci 19 cardiac freq 90days sum Count of cardiac arrhythmias conditions within 90 days, including the trigger event. 56. diagCci 19 cardiac freq

diagRisk 3 blood freq 90days sum Count of thrombocytopenia & thrombocytosis & elevated white blood cell count conditions within 90

days, including the trigger event.

66. diagRisk 3 blood freq

diagRisk 7 kidney freq 90days Count of liver conditions within 90 days. 74. diagRisk 7 kidney freq

diagOther 4 chronic d freq 90days sum Count of diabetes conditions (ACSC category ’d’) within 90 days, including the trigger event. 85. diagOther 4 chronic d freq

diagRisk 2 Cholesterol freq 90days Count of disorders of lipidemias conditions within 90 days. 86. diagRisk 2 Cholesterol freq

diagRisk 10 externalMorbidity freq 90days Count of external causes of morbidity conditions within 90 days. 88. dia-

gRisk 10 externalMorbidity freq

diagRisk 9 external freq 90days sum Count of injury, poisoning & certain other consequences of external causes or complications, which not

elsewhere classified within 90 days, including the trigger event.

94. diagRisk 9 external freq

diagCci 18 depression freq 90days Count of depression conditions within 90 days. 96. diagCci 18 depression freq

diagOther 8 mental freq 90days sum Count of mental conditions within 90 days, including the trigger event. 100. diagOther 8 mental freq

diagCci 14 malignancy freq 90days Count of malignancy conditions, including lymphoma & leukemia, except malignant neoplasm of skin

within 90 days.

103. diagCci 14 malignancy freq

Continued on next page
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diagOther 7 cancer freq 90days Count of neoplasm conditions within 90 days. 108. diagOther 7 cancer freq

diagCci 04 cerebrovascular freq 90days Count of cerebrovascular (stroke) conditions within 90 days. 109. diagCci 04 cerebrovascular freq

diagCci 26 neuroOther freq 90days Count of other neurological disorders within 90 days. 112. diagCci 26 neuroOther freq

diagOther 4 chronic i freq 90days sum Count of mental & behavioural disorders or neurological disorders (ACSC category ’i’) within 90 days,

including the trigger event.

114. diagOther 4 chronic i freq

diagRisk 8 smoke freq 90days Count of exposure to tobacco smoke conditions at the trigger event. 121. diagRisk 8 smoke freq

reference freq 90days sum Count of PARR’s ”reference” conditions in the HRG record within 90 days, including the trigger event. 119. reference freq

diagCci 06 cpd freq trigger Count of chronic pulmonary conditions at the trigger event. 120. diagCci 06 cpd freq

diagMorbid 1 Influenza freq 90days Count of influenza a pneumonia conditions within 90 days. 121. diagMorbid 1 Influenza freq

diagOther 4 chronic b freq 90days sum Count of respiratory conditions (ACSC category ’b’) within 90 days, including the trigger event. 122. diagOther 4 chronic b freq

diagOther 4 chronic e freq 90days sum Count of respiratory conditions (ACSC category ’e’) within 90 days, including the trigger event. 123. diagOther 4 chronic e freq

spellOpertn freq 365days delta Sum of number of operations between 90 days to 12 months. 128. spellOpertn freq

spellOpertn freq 90days delta Sum of number of operations within 90 days. 128. spellOpertn freq

spellOpertn freq trigger Sum of number of operations at the trigger event. 128. spellOpertn freq

oper 2 heart freq 90days Count of heart operations within 90 days. 129. oper 2 heart freq

oper 3 urinary freq 90days Count of urinary operations within 90 days. 131. oper 3 urinary freq

triggerStartAge State age of patient at the trigger event. 133. triggerStartAge

imd04rkRecoded State of the recoded Index of Multiple Deprivation Overall Rank of a patient. 135. imd04rk

ethnosRecoded 0 Having recoded ethnicity of state ”NA”. 138. ethnosRecoded

ethnosRecoded 1 Having recoded ethnicity of state ”White”. 138. ethnosRecoded

gender 2 Having recoded gender of state ”Female”. 139. genderRecoded
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Table A.21: ERMER: Average importance and average weights of features in sub-
models (all samples)

# Feature Sub-models: Main Age0 Age1 Oper0 Oper1

1 Sum of number of operations (trigger) -0.744 <-1 -0.049 <-1 -0.666

2 Count of recoded main speciality of state ’Maternity’ (trigger) 0.885 >1 -0.608 >1 0.289

3 Count of recoded main speciality of state ’Maternity’ (3 years) -0.021 -0.024 0.138 0.033 0.019

4 Count of recoded main speciality of state ’Gynaecology’ (trigger) 0.742 0.910 -0.514 >1 0.311

5 Having recoded gender of state ’Female’ 0.005 0.020 -0.032 0.059 -0.056

6 Count of recoded main speciality of state ’Gynaecology’ (3 years) -0.005 -0.004 -0.017 0.093 0.026

7 Age of patient (trigger) 0.023 0.003 0.004 0.015 0.024

8 Average of post-operative durations (trigger) 0.008 0.007 0.001 <-1 0.007

9 Count of the acute admission method (90 days) 0.054 0.053 0.043 0.044 0.049

10 Average of spells durations (3 years) 0.041 0.032 0.056 0.047 0.063

11 Sum of number of operations (90 days) -0.011 -0.008 -0.002 >1 -0.004

12 Count of the acute admission method between (1-2 years) -0.043 -0.031 0.075 -0.138 0.061

13 Count of recoded main speciality of state ’General’ (trigger) -0.077 -0.037 0.025 0.006 -0.183

14 Average of gaps between admissions (3 years) 0.236 0.189 0.180 0.375 0.154

15 Average of spells durations (trigger) -0.002 -0.002 -0.002 -0.002 -0.001

16 Having recoded ethnicity of state ’others’ -0.363 -0.391 -0.368 -0.429 -0.320

17 Average of the Charlson Index (3 years) 0.018 0.040 0.009 0.011 0.018

18 Count of recoded main speciality of state ’General’ (3 years) 0.015 0.021 0.003 0.013 0.012

19 Average of post-operative durations (3 years) 0.000 0.003 -0.001 >1 -0.002

20 Count of recoded main speciality of state ’General Surgery’ (trigger) -0.046 0.049 -0.064 -0.068 -0.145

21 Count of the acute admission method between 90 days to 12 months -0.153 -0.152 -0.047 -0.314 -0.030

22 Average of pre-operative durations (trigger) 0.017 0.021 0.001 <-1 0.013

23 Count of recoded main speciality of state ’Plastic’ (trigger) 0.025 0.161 -0.110 -0.164 -0.109

24 Having recoded ethnicity of state ’White’ 0.010 -0.013 0.021 -0.003 0.015

25 Count of PARR’s ’reference’ conditions (90 days, trigger) 0.014 0.036 0.025 0.058 0.008

26 Count of recoded main speciality of state ’Geriatric’ (3 years) 0.007 0.045 0.003 -0.011 0.006

27 Recoded Index of Multiple Deprivation Overall Rank (10 equal

ranges)

-0.002 -0.006 0.002 0.013 -0.008

28 Maximum value of the Charlson Index (1 year) -0.001 -0.009 0.002 -0.007 -0.003

29 Average of pre-operative durations (3 years) -0.002 0.001 0.002 0.126 -0.004

30 Count of recoded main speciality of state ’General Surgery’ (3 years) 0.018 0.024 0.002 -0.012 0.006

31 Count of recoded main speciality of state ’Plastic’ (3 years) 0.002 0.013 -0.010 -0.001 -0.016

32 Count of external causes or complications (3 years) 0.007 0.003 0.003 0.020 -0.005

33 Count of recoded main speciality of state ’Geriatric’ (trigger) -0.017 -0.053 0.056 0.145 -0.136

34 Count of recoded main speciality of state ’A&E’ (trigger) -0.204 -0.182 0.013 -0.065 -0.335

35 Count of ischemic heart conditions (90 days, trigger) -0.008 -0.012 0.002 0.003 -0.005

36 Count of unique main speciality seen (trigger) 0.119 0.150 0.029 -0.007 0.090

37 Average of post-operative durations (1 year) -0.001 -0.002 -0.001 <-1 0.000

38 Count of other heart conditions (90 days, trigger) 0.016 0.011 0.009 0.013 0.007

39 Count of the elective admission method (90 days) 0.009 0.004 0.008 0.000 0.002

40 Count of thrombocytopenia, thrombocytosis & high WBC (90 days,

trigger)

0.004 0.004 -0.002 -0.004 0.000

41 Count of recoded intended admission of states ’others’ or ’Maternity’

(90 days)

-0.016 -0.014 -0.006 -0.016 -0.008

42 Count of recoded main speciality of state ’A&E’ (3 years) 0.032 0.037 0.034 0.074 0.037

43 Count of ACS respiratory conditions (90 days, trigger) 0.014 0.019 0.014 0.026 0.011

44 Count of ACS neurological disorders (90 days, trigger) -0.014 0.001 -0.005 -0.019 -0.012

45 Count of mental conditions (90 days, trigger) -0.001 0.052 -0.023 -0.003 0.003

46 Count of recoded main speciality of state ’Psychiatry’ (3 years) 0.004 0.007 -0.013 0.019 -0.002

47 Count of recoded main speciality of state ’Psychiatry’ (trigger) -0.078 -0.029 0.058 0.035 -0.181

48 Count of the admission sources from ’others’ or ’Maternity’ 0.001 0.021 -0.012 -0.033 0.000

49 Count of chronic pulmonary conditions (trigger) 0.013 -0.039 0.027 0.034 0.018

50 Count of recoded main speciality of state ’Cardiothoracic’ (3 years) 0.003 0.014 -0.013 0.047 -0.008

51 Count of ACS diabetes conditions (90 days, trigger) 0.013 0.022 0.010 0.012 0.013

52 Count of blood loss anemia conditions (90 days) 0.022 -0.019 0.008 0.032 0.019

53 Average of pre-operative durations (1 year) 0.003 0.001 -0.001 0.516 0.003

54 Count of recoded main speciality of state ’ENT’ (trigger) -0.080 -0.053 -0.127 -0.199 -0.144

55 Count of recoded region of state ’Eastern’ (trigger) 0.455 0.534 0.583 0.593 0.220

56 Sum of number of operations between 90 days to 12 months -0.020 -0.026 0.040 >1 -0.019

57 Count of organisation cluster of state ’Acute teaching trust’ (trigger) -0.029 -0.022 -0.030 -0.055 -0.020

58 Count of cardiac arrhythmias conditions (90 days, trigger) 0.002 -0.018 0.005 0.009 0.007

59 Count of congestive heart failure conditions (90 days) -0.036 -0.046 -0.025 -0.030 -0.027

60 Count of recoded main speciality of state ’Ophthalmology’ (3 years) 0.057 0.025 0.048 -0.084 0.033

61 Count of recoded main speciality of state ’Gastroenterology ’ (3 years) 0.032 0.045 0.009 0.049 0.017

62 Count of ACS respiratory conditions (90 days, trigger) -0.009 -0.015 -0.008 -0.005 -0.008

63 Count of recoded main speciality of state ’Cardiothoracic’ (trigger) 0.084 0.174 0.081 0.081 -0.007

64 Count of organisation cluster of state ’Large acute trust’ (trigger) -0.058 -0.048 -0.035 -0.034 -0.052

65 Count of recoded main speciality of state ’ENT’ (3 years) 0.033 0.038 0.043 -0.060 0.016

66 Count of recoded region of state ’Trent’ (trigger) 0.506 0.592 0.602 0.654 0.284

Continued on next page
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# Feature Sub-models: Main Age0 Age1 Oper0 Oper1

67 Count of other neurological disorders (90 days) 0.007 -0.005 -0.002 0.018 0.008

68 Count of recoded region of state ’West Midlands’ (trigger) 0.510 0.619 0.549 0.660 0.270

69 Count of recoded region of state ’London’ (trigger) 0.511 0.604 0.616 0.627 0.291

70 Count of neoplasm conditions (90 days) 0.021 0.096 0.013 -0.039 0.026

71 Average of spells durations (1 year) 0.000 0.000 0.000 0.000 0.000

72 Count of recoded region of state ’North West’ (trigger) 0.471 0.577 0.560 0.586 0.245

73 Count of the elective admission method between (1-2 years) 0.011 0.012 0.051 0.064 0.007

74 Count of heart operations (90 days) -0.005 -0.008 -0.015 >1 -0.015

75 Count of recoded main speciality of state ’Urology’ (3 years) 0.023 0.018 0.025 0.062 0.014

76 Count of organisation cluster of state ’Medium acute trust’ (trigger) -0.040 -0.053 -0.019 -0.027 -0.049

77 Count of recoded region of state ’Northern and Yorkshire’ (trigger) 0.503 0.604 0.572 0.634 0.279

78 Count of provider type of state ’Trust’ (trigger) -0.107 -0.148 -0.124 0.014 -0.073

79 Count of malignancy conditions, except malignant neoplasm of skin

(90 days)

-0.019 -0.096 -0.003 0.016 -0.023

80 Count of recoded main speciality of state ’Respiratory’ (3 years) 0.026 0.049 -0.001 0.042 0.013

81 Count of depression conditions (90 days) -0.007 -0.010 0.004 -0.016 0.004

82 Count of recoded main speciality of state ’Urology’ (trigger) 0.069 0.080 0.012 -0.134 -0.013

83 Count of provider type of state ’Trust’ (3 years) 0.085 0.137 0.126 -0.004 0.076

84 Count of recoded main speciality of state ’Gastroenterology’ (trigger) -0.012 0.064 0.029 0.011 -0.079

85 Count of recoded region of state ’others’ (trigger) 0.519 0.620 0.599 0.679 0.284

86 Count of zero waiting time for elective admissions (3 years) 0.002 0.005 -0.010 -0.008 0.001

87 Count of organisation cluster of state ’Small acute trust’ (trigger) -0.054 -0.066 -0.017 -0.017 -0.050

88 Count of recoded region of state ’South East’ (trigger) 0.540 0.643 0.614 0.617 0.326

89 Count of recoded main speciality of state ’Respiratory’ (trigger) -0.052 0.001 0.051 -0.028 -0.110

90 Count of liver conditions (90 days) -0.003 -0.004 0.010 -0.009 0.001

91 Count of urinary operations (90 days) -0.005 0.018 -0.022 >1 -0.008

92 Count of exposure to tobacco smoke conditions (trigger) 0.008 0.009 0.024 0.020 0.010

93 Count of external causes of morbidity conditions (90 days) -0.014 -0.007 -0.008 0.037 -0.009

94 Count of cerebrovascular (stroke) conditions (90 days) -0.022 -0.027 -0.012 0.008 -0.020

95 Count of disorders of lipidemias conditions (90 days) -0.035 -0.043 -0.036 0.005 -0.033

96 Count of influenza a pneumonia conditions (90 days) 0.024 -0.003 0.012 -0.004 0.019

97 Count of recoded main speciality of state ’Ophthalmology’ (trigger) -0.076 0.008 -0.363 0.013 -0.250

98 Count of other veins, lymphatics and lymph nodes conditions (90

days)

-0.010 -0.005 -0.019 -0.002 -0.007

99 Count of days gap from the previous spell (trigger) -0.727 -0.695 -0.662 -0.840 -0.521
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A.6.2 Weights
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Figure A.50: ERMER: Sub-models’ features weights (all samples - part 1)
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Figure A.51: ERMER: Sub-models’ features weights (all samples - part 2)



A.6.2 Weights 259

diagCat_3_freq__90days__sum

diagCat_5_freq__90days__sum

diagCci_06_cpd_freq__trigger

diagRisk_9_external_freq__90days__sum

epidur_maxAvg__365days

intmanigRecoded_other_freq__90days

mainspef_uniques_freq__trigger

mainspefRecoded_01

mainspefRecoded_03

mainspefRecoded_27

mainspefRecoded_28

mainspefRecoded_freq1__trigger_01

mainspefRecoded_freq1__trigger_27

mainspefRecoded_freq1__trigger_28

posopdur_avg__365days

1.
6−

−
1.

4

−
1.

2

−
1

−
0.

8

−
0.

6

−
0.

4

−
0.

2 0

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6+

Weight

F
ea

tu
re

Sub−Models

Cond_Age−65p

Cond_Main

Cond_Prior−Acute−12−month

Cond_Prior−Oper−12−month

Cond_Prior−Spells

Databases

sample_1

sample_1_train_half_2_test_half

sample_1_train_half_3_test_half

sample_2

sample_3

Figure A.52: ERMER: Sub-models’ features weights (all samples - part 3)
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Figure A.53: ERMER: Sub-models’ features weights (all samples - part 4)
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Figure A.54: ERMER: Sub-models’ features weights (all samples - part 5)
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Figure A.55: ERMER: Sub-models’ features weights (all samples - part 6)
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Figure A.56: ERMER: Sub-models’ features weights (all samples - part 7)
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A.6.3 Performance of Sub-Models

A.6.3.1 Summary Performance Statistics

Table A.22: ERMER: Performance statistics of submodels (Sample-1 )

Modelling Approach: BPM;
Sample: Sample-1

Sub-modela Ifb Nc TP+FPd TPe Spec.f Prec.g Sens.h F1i AUCj

Modelling Group: Pop Any-Acute-No-Mental

Cond Age-65p 0 158,180 126,801 50,470 0.93 0.79 0.52 0.62 0.78
Cond Age-65p 1 69,281 43,235 30,270 0.81 0.61 0.39 0.47 0.66
Cond Main 227,461 167,147 80,740 0.89 0.70 0.45 0.55 0.74
Cond Prior-Acute-12-month 0 142,858 108,438 41,610 0.94 0.69 0.31 0.43 0.72
Cond Prior-Acute-12-month 1 84,603 58,801 39,130 0.75 0.69 0.63 0.66 0.74
Cond Prior-Oper-12-month 0 82,103 61,535 29,615 0.91 0.74 0.47 0.57 0.78
Cond Prior-Oper-12-month 1 145,358 104,771 51,125 0.88 0.65 0.44 0.52 0.75
Cond Prior-Spells 0 101,790 79,841 26,579 0.96 0.73 0.28 0.40 0.72
Cond Prior-Spells 1 125,671 87,620 54,161 0.81 0.69 0.55 0.61 0.73
Modelling Group: Pop Any-Acute

Cond Age-65p 0 161,608 129,158 51,763 0.93 0.79 0.51 0.62 0.78
Cond Age-65p 1 70,147 43,736 30,671 0.81 0.61 0.39 0.47 0.66
Cond Main 231,755 170,034 82,434 0.89 0.70 0.45 0.54 0.74
Cond Prior-Acute-12-month 0 145,127 110,022 42,277 0.94 0.69 0.30 0.42 0.72
Cond Prior-Acute-12-month 1 86,628 60,032 40,157 0.75 0.68 0.63 0.65 0.74
Cond Prior-Oper-12-month 0 85,022 63,510 30,632 0.91 0.74 0.46 0.57 0.78
Cond Prior-Oper-12-month 1 146,733 105,632 51,802 0.87 0.65 0.44 0.53 0.75
Cond Prior-Spells 0 103,415 81,042 26,997 0.96 0.73 0.27 0.40 0.72
Cond Prior-Spells 1 128,340 89,244 55,437 0.81 0.69 0.55 0.61 0.73
Modelling Group: Pop PARR-1-Settings

Cond Main 20,697 12,456 10,557 0.65 0.62 0.56 0.59 0.65
Cond Prior-Acute-12-month 0 9,781 5,769 4,162 0.83 0.54 0.27 0.36 0.60
Cond Prior-Acute-12-month 1 10,91 6,614 6,395 0.37 0.63 0.77 0.70 0.63
Cond Prior-Oper-12-month 0 7,928 4,757 3,698 0.74 0.60 0.44 0.51 0.64
Cond Prior-Oper-12-month 1 12,769 7,674 6,859 0.58 0.63 0.62 0.62 0.64
Modelling Group: Pop PARR-2-Settings

Cond Main 70,147 43,736 30,671 0.81 0.61 0.39 0.47 0.66
Cond Prior-Acute-12-month 0 39,491 25,506 14,253 0.93 0.53 0.14 0.23 0.64
Cond Prior-Acute-12-month 1 30,656 18,227 16,418 0.57 0.62 0.62 0.62 0.63
Cond Prior-Oper-12-month 0 23,647 15,024 9,351 0.87 0.58 0.28 0.38 0.66
Cond Prior-Oper-12-month 1 46,500 28,637 21,320 0.76 0.61 0.44 0.51 0.66
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Table A.23: ERMER: Performance statistics of submodels (Sample-2 )

Modelling Approach: BPM;
Sample: Sample-2

Sub-model If N TP+FP TP Spec. Prec. Sens. F1 AUC
Modelling Group: Pop Any-Acute-No-Mental

Cond Age-65p 0 168,014 132,125 56,697 0.93 0.79 0.50 0.61 0.76
Cond Age-65p 1 72,729 45,040 33,579 0.74 0.61 0.48 0.54 0.66
Cond Main 240,743 174,571 90,276 0.88 0.70 0.47 0.56 0.73
Cond Prior-Acute-12-month 0 115,727 88,744 33,665 0.95 0.72 0.32 0.45 0.71
Cond Prior-Acute-12-month 1 125,016 86,433 56,611 0.78 0.69 0.58 0.63 0.72
Cond Prior-Oper-12-month 0 56,612 44,106 19,862 0.93 0.79 0.51 0.62 0.80
Cond Prior-Oper-12-month 1 184,131 129,862 70,414 0.86 0.67 0.46 0.54 0.73
Cond Prior-Spells 0 72,903 58,333 18,789 0.96 0.76 0.33 0.46 0.71
Cond Prior-Spells 1 167,840 117,090 71,487 0.82 0.69 0.53 0.60 0.72
Modelling Group: Pop Any-Acute

Cond Age-65p 0 170,397 133,693 57,668 0.93 0.79 0.50 0.61 0.76
Cond Age-65p 1 73,315 45,394 33,849 0.74 0.61 0.48 0.54 0.66
Cond Main 243,712 176,355 91,517 0.88 0.70 0.46 0.56 0.73
Cond Prior-Acute-12-month 0 116,721 89,399 33,978 0.95 0.72 0.32 0.44 0.71
Cond Prior-Acute-12-month 1 126,991 87,665 57,539 0.78 0.69 0.58 0.63 0.72
Cond Prior-Oper-12-month 0 58,133 45,103 20,429 0.93 0.79 0.50 0.61 0.80
Cond Prior-Oper-12-month 1 185,579 130,727 71,088 0.86 0.67 0.46 0.54 0.73
Cond Prior-Spells 0 73,536 58,784 18,969 0.96 0.76 0.33 0.46 0.71
Cond Prior-Spells 1 170,176 118,504 72,548 0.82 0.69 0.52 0.60 0.71
Modelling Group: Pop PARR-1-Settings

Cond Main 16,213 9,775 8,544 0.55 0.62 0.65 0.63 0.64
Cond Prior-Acute-12-month 0 5,328 3,175 2,203 0.81 0.52 0.29 0.37 0.59
Cond Prior-Acute-12-month 1 10,885 6,587 6,341 0.34 0.63 0.79 0.70 0.62
Cond Prior-Oper-12-month 0 2,667 1,623 1,173 0.76 0.58 0.41 0.48 0.63
Cond Prior-Oper-12-month 1 13,546 8,128 7,371 0.50 0.62 0.68 0.65 0.64
Modelling Group: Pop PARR-2-Settings

Cond Main 73,315 45,394 33,849 0.74 0.61 0.48 0.54 0.66
Cond Prior-Acute-12-month 0 29,506 19,209 10,513 0.92 0.53 0.16 0.24 0.63
Cond Prior-Acute-12-month 1 43,809 26,453 23,336 0.53 0.62 0.67 0.64 0.64
Cond Prior-Oper-12-month 0 11,891 7,916 4,336 0.88 0.58 0.30 0.40 0.67
Cond Prior-Oper-12-month 1 61,424 37,568 29,513 0.70 0.61 0.52 0.56 0.66

Table A.24: ERMER: Performance statistics of submodels (Sample-3 )

Modelling Approach: BPM;
Sample: Sample-3

Sub-model If N TP+FP TP Spec. Prec. Sens. F1 AUC
Modelling Group: Pop Any-Acute-No-Mental

Cond Age-65p 0 209,467 167,218 66,332 0.94 0.78 0.50 0.61 0.77
Cond Age-65p 1 90,364 55,977 40,684 0.77 0.61 0.44 0.51 0.66
Cond Main 299,831 219,997 107,016 0.89 0.69 0.45 0.55 0.74
Cond Prior-Acute-12-month 0 213,411 160,319 65,262 0.93 0.69 0.34 0.45 0.73
Cond Prior-Acute-12-month 1 86,420 59,667 41,754 0.70 0.68 0.68 0.68 0.74
Cond Prior-Oper-12-month 0 128,665 95,443 48,190 0.90 0.74 0.48 0.58 0.78
Cond Prior-Oper-12-month 1 171,166 123,011 58,826 0.87 0.64 0.42 0.51 0.75
Cond Prior-Spells 0 159,140 123,224 43,720 0.96 0.72 0.29 0.42 0.72
Cond Prior-Spells 1 140,691 96,691 63,296 0.77 0.68 0.59 0.63 0.72
Modelling Group: Pop Any-Acute

Cond Age-65p 0 213,519 169,926 67,890 0.94 0.78 0.50 0.61 0.77
Cond Age-65p 1 91,369 56,502 41,155 0.76 0.60 0.44 0.51 0.66
Cond Main 304,888 223,285 109,045 0.89 0.69 0.45 0.55 0.74
Cond Prior-Acute-12-month 0 216,448 162,390 66,260 0.93 0.69 0.33 0.45 0.72
Cond Prior-Acute-12-month 1 88,440 60,856 42,785 0.70 0.68 0.67 0.68 0.74
Cond Prior-Oper-12-month 0 132,530 98,025 49,630 0.90 0.74 0.48 0.58 0.78
Cond Prior-Oper-12-month 1 172,358 123,718 59,415 0.87 0.64 0.43 0.51 0.75
Cond Prior-Spells 0 161,375 124,841 44,357 0.96 0.72 0.29 0.41 0.72
Cond Prior-Spells 1 143,513 98,386 64,688 0.77 0.67 0.58 0.63 0.72
Modelling Group: Pop PARR-1-Settings

Cond Main 27,854 16,817 14,434 0.59 0.62 0.61 0.62 0.65
Cond Prior-Acute-12-month 0 16,110 9,489 7,334 0.77 0.57 0.38 0.45 0.62
Cond Prior-Acute-12-month 1 11,744 7,344 7,100 0.27 0.64 0.86 0.73 0.64
Cond Prior-Oper-12-month 0 13,192 7,907 6,276 0.68 0.59 0.51 0.55 0.64
Cond Prior-Oper-12-month 1 14,662 8,881 8,158 0.49 0.63 0.69 0.66 0.64
Modelling Group: Pop PARR-2-Settings

Cond Main 91,369 56,502 41,155 0.76 0.60 0.44 0.51 0.66
Cond Prior-Acute-12-month 0 59,751 37,420 23,432 0.88 0.55 0.24 0.33 0.64
Cond Prior-Acute-12-month 1 31,618 19,181 17,723 0.44 0.63 0.74 0.68 0.64
Cond Prior-Oper-12-month 0 38,342 23,869 16,159 0.81 0.58 0.37 0.45 0.66
Cond Prior-Oper-12-month 1 53,027 32,685 24,996 0.72 0.61 0.50 0.55 0.66
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Table A.25: ERMER: Performance statistics of submodels (Sample-1-train-half-2-
test-half )

Modelling Approach: BPM;
Sample: Sample-1-train-half-2-test-half

Sub-model If N TP+FP TP Spec. Prec. Sens. F1 AUC
Modelling Group: Pop Any-Acute-No-Mental

Cond Age-65p 0 168,014 132,201 56,697 0.91 0.76 0.54 0.63 0.76
Cond Age-65p 1 72,729 45,085 33,579 0.68 0.60 0.55 0.57 0.66
Cond Main 240,743 174,874 90,276 0.86 0.68 0.51 0.58 0.73
Cond Prior-Acute-12-month 0 115,727 88,998 33,665 0.95 0.72 0.33 0.46 0.70
Cond Prior-Acute-12-month 1 125,016 85,847 56,611 0.74 0.67 0.62 0.64 0.72
Cond Prior-Oper-12-month 0 56,612 44,079 19,862 0.91 0.76 0.53 0.63 0.80
Cond Prior-Oper-12-month 1 184,131 128,535 70,414 0.84 0.64 0.47 0.54 0.73
Cond Prior-Spells 0 72,903 58,238 18,789 0.96 0.76 0.32 0.45 0.71
Cond Prior-Spells 1 167,840 116,804 71,487 0.80 0.68 0.55 0.61 0.71
Modelling Group: Pop Any-Acute

Cond Age-65p 0 170,397 133,374 57,668 0.91 0.75 0.54 0.63 0.76
Cond Age-65p 1 73,315 45,332 33,849 0.68 0.59 0.54 0.57 0.66
Cond Main 243,712 176,429 91,517 0.86 0.68 0.51 0.58 0.73
Cond Prior-Acute-12-month 0 116,721 89,653 33,978 0.95 0.73 0.33 0.45 0.70
Cond Prior-Acute-12-month 1 126,991 86,884 57,539 0.74 0.66 0.61 0.64 0.72
Cond Prior-Oper-12-month 0 58,133 45,093 20,429 0.91 0.76 0.53 0.63 0.79
Cond Prior-Oper-12-month 1 185,579 129,296 71,088 0.84 0.64 0.47 0.54 0.73
Cond Prior-Spells 0 73,536 58,631 18,969 0.97 0.76 0.31 0.44 0.71
Cond Prior-Spells 1 170,176 118,069 72,548 0.80 0.67 0.55 0.60 0.71
Modelling Group: Pop PARR-1-Settings

Cond Main 16,213 9,707 8,544 0.46 0.60 0.72 0.66 0.64
Cond Prior-Acute-12-month 0 5,328 3,042 2,203 0.69 0.48 0.41 0.44 0.57
Cond Prior-Acute-12-month 1 10,885 6,586 6,341 0.34 0.63 0.79 0.70 0.62
Cond Prior-Oper-12-month 0 2,667 1,586 1,173 0.61 0.54 0.57 0.55 0.62
Cond Prior-Oper-12-month 1 13,546 8,127 7,371 0.50 0.62 0.69 0.65 0.63
Modelling Group: Pop PARR-2-Settings

Cond Main 73,315 45,332 33,849 0.68 0.59 0.54 0.57 0.66
Cond Prior-Acute-12-month 0 29,506 19,118 10,513 0.91 0.52 0.18 0.26 0.62
Cond Prior-Acute-12-month 1 43,809 26,179 23,336 0.58 0.62 0.62 0.62 0.63
Cond Prior-Oper-12-month 0 11,891 7,805 4,336 0.85 0.55 0.31 0.40 0.66
Cond Prior-Oper-12-month 1 61,424 37,638 29,513 0.70 0.62 0.52 0.56 0.66

Table A.26: ERMER: Performance statistics of submodels (Sample-1-train-half-3-
test-half )

Modelling Approach: BPM;
Sample: Sample-1-train-half-3-test-half

Sub-model If N TP+FP TP Spec. Prec. Sens. F1 AUC
Modelling Group: Pop Any-Acute-No-Mental

Cond Age-65p 0 209,467 167,249 66,332 0.94 0.80 0.49 0.60 0.77
Cond Age-65p 1 90,364 55,544 40,684 0.83 0.63 0.36 0.45 0.66
Cond Main 299,831 219,574 107,016 0.91 0.71 0.42 0.53 0.74
Cond Prior-Acute-12-month 0 213,411 160,689 65,262 0.94 0.70 0.33 0.45 0.72
Cond Prior-Acute-12-month 1 86,420 59,513 41,754 0.76 0.71 0.61 0.65 0.74
Cond Prior-Oper-12-month 0 128,665 95,407 48,190 0.90 0.74 0.48 0.58 0.78
Cond Prior-Oper-12-month 1 171,166 123,593 58,826 0.90 0.67 0.37 0.48 0.75
Cond Prior-Spells 0 159,140 123,442 43,720 0.96 0.73 0.29 0.41 0.72
Cond Prior-Spells 1 140,691 96,291 63,296 0.83 0.71 0.51 0.59 0.72
Modelling Group: Pop Any-Acute

Cond Age-65p 0 213,519 169,585 67,890 0.95 0.80 0.47 0.59 0.77
Cond Age-65p 1 91,369 55,980 41,155 0.84 0.63 0.34 0.44 0.66
Cond Main 304,888 222,458 109,045 0.91 0.72 0.40 0.52 0.74
Cond Prior-Acute-12-month 0 216,448 162,504 66,260 0.94 0.71 0.32 0.44 0.72
Cond Prior-Acute-12-month 1 88,440 60,679 42,785 0.77 0.71 0.59 0.65 0.74
Cond Prior-Oper-12-month 0 132,530 97,891 49,630 0.91 0.75 0.46 0.57 0.78
Cond Prior-Oper-12-month 1 172,358 124,056 59,415 0.91 0.67 0.36 0.47 0.75
Cond Prior-Spells 0 161,375 124,691 44,357 0.96 0.74 0.27 0.39 0.72
Cond Prior-Spells 1 143,513 97,817 64,688 0.84 0.71 0.49 0.58 0.72
Modelling Group: Pop PARR-1-Settings

Cond Main 27,854 16,766 14,434 0.61 0.62 0.59 0.61 0.65
Cond Prior-Acute-12-month 0 16,110 9,360 7,334 0.65 0.54 0.50 0.52 0.62
Cond Prior-Acute-12-month 1 11,744 7,235 7,100 0.36 0.65 0.78 0.71 0.64
Cond Prior-Oper-12-month 0 13,192 7,869 6,276 0.61 0.57 0.58 0.58 0.64
Cond Prior-Oper-12-month 1 14,662 8,766 8,158 0.58 0.65 0.61 0.63 0.64
Modelling Group: Pop PARR-2-Settings

Cond Main 91,369 55,980 41,155 0.84 0.63 0.34 0.44 0.66
Cond Prior-Acute-12-month 0 59,751 37,379 23,432 0.90 0.56 0.20 0.29 0.64
Cond Prior-Acute-12-month 1 31,618 18,698 17,723 0.60 0.65 0.59 0.62 0.63
Cond Prior-Oper-12-month 0 38,342 23,835 16,159 0.83 0.59 0.34 0.43 0.66
Cond Prior-Oper-12-month 1 53,027 32,124 24,996 0.81 0.64 0.38 0.48 0.66
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A.6.3.2 Risk Bands Statistics
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Table A.27: ERMER: Risk bands statistics of the Pop Any-Acute Cond Main model (Sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-1;

Submodel: Cond Main

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 1 4,805 326 241 2 26 34 134 326 416 20.61 23.68 115

(2.39%)

1

(0.02%)

45

(0.94%)

24

(0.50%)

54

(1.12%)

54

(1.12%)

13

(0.27%)

2

(0.04%)

NA 2 12,889 1,700 2,362 14 174 194 673 1,700 2,295 4.04 32.35 430

(3.34%)

38

(0.29%)

441

(3.42%)

191

(1.48%)

517

(4.01%)

296

(2.30%)

297

(2.30%)

16

(0.12%)

NA 3 16,897 2,907 5,183 48 476 566 1,162 2,907 4,411 4.79 35.61 791

(4.68%)

113

(0.67%)

926

(5.48%)

411

(2.43%)

1,112

(6.58%)

726

(4.30%)

726

(4.30%)

65

(0.38%)

NA 4 18,777 3,668 5,873 64 704 900 1,415 3,668 5,839 5.29 41.85 1,039

(5.53%)

222

(1.18%)

1,539

(8.20%)

720

(3.83%)

1,871

(9.96%)

1,041

(5.54%)

1,222

(6.51%)

177

(0.94%)

NA 5 23,019 5,026 7,083 98 990 1,257 1,868 5,026 7,970 5.67 39.63 1,266

(5.50%)

392

(1.70%)

1,943

(8.44%)

923

(4.01%)

2,476

(10.76%)

1,226

(5.33%)

1,538

(6.68%)

324

(1.41%)

NA 6 23,590 5,443 10,209 134 1,421 1,918 1,887 5,443 8,763 6.19 43.61 1,390

(5.89%)

483

(2.05%)

2,082

(8.83%)

1,051

(4.46%)

2,838

(12.03%)

1,219

(5.17%)

1,764

(7.48%)

505

(2.14%)

NA 7 24,544 6,101 14,561 182 1,878 2,498 2,091 6,101 10,158 6.94 46.49 1,561

(6.36%)

675

(2.75%)

2,496

(10.17%)

1,166

(4.75%)

3,526

(14.37%)

1,400

(5.70%)

2,145

(8.74%)

583

(2.38%)

NA 8 22,767 6,827 15,854 175 2,502 3,274 2,403 6,827 11,583 7.80 50.43 1,553

(6.82%)

780

(3.43%)

2,837

(12.46%)

1,347

(5.92%)

4,192

(18.41%)

1,638

(7.19%)

2,726

(11.97%)

735

(3.23%)

NA 9 17,986 7,024 12,787 160 2,555 3,440 2,460 7,024 12,438 9.52 57.83 1,369

(7.61%)

957

(5.32%)

3,102

(17.25%)

1,478

(8.22%)

4,349

(24.18%)

1,626

(9.04%)

2,969

(16.51%)

945

(5.25%)

NA 10 13,794 6,712 10,636 175 2,545 3,579 2,350 6,712 12,107 10.01 60.99 1,177

(8.53%)

1,101

(7.98%)

3,013

(21.84%)

1,407

(10.20%)

4,059

(29.43%)

1,572

(11.40%)

2,838

(20.57%)

1,122

(8.13%)

NA 11 12,381 7,116 8,708 199 2,525 3,734 2,603 7,116 13,885 8.57 58.26 978

(7.90%)

1,103

(8.91%)

2,610

(21.08%)

1,308

(10.56%)

3,474

(28.06%)

1,297

(10.48%)

2,555

(20.64%)

1,278

(10.32%)

NA 12 11,950 8,201 8,076 142 2,548 3,902 3,399 8,201 16,426 7.18 52.27 803

(6.72%)

1,062

(8.89%)

2,013

(16.85%)

1,071

(8.96%)

3,015

(25.23%)

1,145

(9.58%)

2,134

(17.86%)

1,286

(10.76%)

NA 13 10,061 7,163 8,882 193 2,622 4,128 3,027 7,163 14,777 6.21 50.33 778

(7.73%)

958

(9.52%)

1,631

(16.21%)

923

(9.17%)

2,543

(25.28%)

997

(9.91%)

1,775

(17.64%)

1,238

(12.30%)

NA 14 8,244 6,351 7,994 146 2,714 4,375 2,896 6,351 13,582 5.10 47.49 719

(8.72%)

853

(10.35%)

1,185

(14.37%)

666

(8.08%)

2,058

(24.96%)

771

(9.35%)

1,268

(15.38%)

933

(11.32%)

NA 15 4,262 3,308 4,162 84 2,131 3,772 1,298 3,308 7,863 6.70 52.62 574

(13.47%)

646

(15.16%)

863

(20.25%)

489

(11.47%)

1,384

(32.47%)

487

(11.43%)

929

(21.80%)

738

(17.32%)

NA 16 2,251 1,712 2,207 65 1,480 3,175 590 1,712 4,468 8.52 58.10 382

(16.97%)

454

(20.17%)

582

(25.86%)

363

(16.13%)

816

(36.25%)

341

(15.15%)

669

(29.72%)

497

(22.08%)

NA 17 1,324 1,036 1,315 38 991 2,425 362 1,036 2,904 9.71 60.89 248

(18.73%)

323

(24.40%)

397

(29.98%)

251

(18.96%)

532

(40.18%)

215

(16.24%)

474

(35.80%)

323

(24.40%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 18 903 714 900 31 748 2,391 228 714 2,281 8.54 61.14 214

(23.70%)

266

(29.46%)

297

(32.89%)

204

(22.59%)

403

(44.63%)

156

(17.28%)

344

(38.10%)

247

(27.35%)

NA 19 611 486 609 20 518 1,938 140 486 1,684 10.11 61.03 172

(28.15%)

226

(36.99%)

210

(34.37%)

117

(19.15%)

275

(45.01%)

106

(17.35%)

248

(40.59%)

186

(30.44%)

NA 20 700 613 698 72 655 3,934 222 613 3,140 10.97 57.33 244

(34.86%)

269

(38.43%)

254

(36.29%)

181

(25.86%)

320

(45.71%)

113

(16.14%)

306

(43.71%)

214

(30.57%)

NA Total 231,755 82,434 128,340 2,042 30,203 51,434 31,208 82,434 156,990 7.09 46.77 15,803

(6.82%)

10,922

(4.71%)

28,466

(12.28%)

14,291

(6.17%)

39,814

(17.18%)

16,426

(7.09%)

26,940

(11.62%)

11,414

(4.93%)

a If: The condition of the sub-modelling group. b #.: The risk band number: 1 = [0, 0.05); 2 = [0.05, 0.10); 3 = [0.10, 0.15); 4 = [0.15, 0.20); 5 = [0.20, 0.25); 6 = [0.25, 0.30); 7 = [0.30,

0.35); 8 = [0.35, 0.40); 9 = [0.40, 0.45); 10 = [0.45, 0.50); 11 = [0.50, 0.55); 12 = [0.55, 0.60); 13 = [0.60, 0.65); 14 = [0.65, 0.70); 15 = [0.70, 0.75); 16 = [0.75, 0.80); 17 = [0.80, 0.85); 18 =

[0.85, 0.90); 19 = [0.90, 0.95); 20 = [0.95, 1]. c TP+FP: The number of true positives (TPs) and false positives (FPs). d TP: The number of true positives (TPs). e Prior Spells: Total

number of patients with any prior spell. f Prior 30-d Emer.: Total number of patients with prior 30-day emergency admission. g Prior 12-m Emer.: Total number of patients with prior

12-month emergency admission. h Prior 12-m Emer. Spells: Total number of spell with prior 12-month emergency admission. i Post 30-d Emer.: Total number of patients with post

30-day emergency admission. j Post 12-m Emer.: Total number of patients with post 12-month emergency admission. k Post 12-m Emer. Spells: Total number of spell with post 12-month

emergency admission. l Avg. Stay: The average stay of all patients during the trigger admission. m Avg. Age: The average ageRecoded of all patients during the trigger admission.
n Asth.: Total number of patients with an asthma diagnosis during the trigger admission. o COPD: Total number of patients with a COPD diagnosis during the trigger admission.
p Depr.: Total number of patients with a depression diagnosis during the trigger admission. q Diab.: Total number of patients with a diabetes diagnosis during the trigger admission.
r Hype.: Total number of patients with a hypertension diagnosis during the trigger admission. s Canc.: Total number of patients with a cancer diagnosis during the trigger admission.
t CHD: Total number of patients with a CHD diagnosis during the trigger admission. u CHF: Total number of patients with a CHF diagnosis during the trigger admission.
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Table A.28: ERMER: Risk bands statistics of the Pop Any-Acute Cond Age-65p model (Sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-1;

Submodel: Cond Age-65p

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 10,511 1,039 1,396 9 106 126 440 1,039 1,395 9.15 29.58 277

(2.64%)

24

(0.23%)

256

(2.44%)

99

(0.94%)

313

(2.98%)

178

(1.69%)

164

(1.56%)

3

(0.03%)

0 2 14,537 2,636 5,795 47 525 614 1,008 2,636 4,078 5.11 33.97 652

(4.49%)

64

(0.44%)

572

(3.93%)

282

(1.94%)

737

(5.07%)

594

(4.09%)

571

(3.93%)

25

(0.17%)

0 3 10,295 1,843 3,116 47 590 744 693 1,843 2,944 5.25 30.05 702

(6.82%)

90

(0.87%)

497

(4.83%)

348

(3.38%)

653

(6.34%)

482

(4.68%)

455

(4.42%)

59

(0.57%)

0 4 13,995 1,885 3,500 57 518 707 724 1,885 2,909 3.99 32.25 714

(5.10%)

115

(0.82%)

500

(3.57%)

386

(2.76%)

825

(5.89%)

308

(2.20%)

418

(2.99%)

64

(0.46%)

0 5 18,422 3,097 4,977 81 779 1,055 1,155 3,097 4,753 3.67 28.33 986

(5.35%)

133

(0.72%)

556

(3.02%)

361

(1.96%)

978

(5.31%)

348

(1.89%)

482

(2.62%)

80

(0.43%)

0 6 21,717 3,918 9,723 111 1,066 1,455 1,527 3,918 6,328 3.80 32.52 1,107

(5.10%)

158

(0.73%)

762

(3.51%)

496

(2.28%)

1,418

(6.53%)

438

(2.02%)

694

(3.20%)

71

(0.33%)

0 7 18,156 3,836 12,620 126 1,619 2,148 1,340 3,836 6,435 5.10 35.20 1,326

(7.30%)

183

(1.01%)

899

(4.95%)

526

(2.90%)

1,721

(9.48%)

572

(3.15%)

859

(4.73%)

102

(0.56%)

0 8 9,794 2,667 8,178 87 1,754 2,323 881 2,667 4,548 6.18 38.02 1,149

(11.73%)

211

(2.15%)

732

(7.47%)

574

(5.86%)

1,252

(12.78%)

681

(6.95%)

734

(7.49%)

99

(1.01%)

0 9 5,881 2,192 4,852 64 1,388 1,953 788 2,192 4,149 6.84 40.41 763

(12.97%)

218

(3.71%)

610

(10.37%)

512

(8.71%)

925

(15.73%)

572

(9.73%)

671

(11.41%)

122

(2.07%)

0 10 4,593 2,140 3,189 58 1,090 1,678 803 2,140 4,107 5.68 39.46 532

(11.58%)

193

(4.20%)

495

(10.78%)

404

(8.80%)

728

(15.85%)

399

(8.69%)

536

(11.67%)

121

(2.63%)

0 11 4,085 2,654 2,493 68 952 1,563 1,236 2,654 5,272 4.86 36.96 362

(8.86%)

195

(4.77%)

376

(9.20%)

289

(7.07%)

664

(16.25%)

276

(6.76%)

393

(9.62%)

126

(3.08%)

0 12 4,166 2,825 2,315 53 865 1,460 1,202 2,825 5,621 3.79 35.37 299

(7.18%)

142

(3.41%)

320

(7.68%)

266

(6.39%)

565

(13.56%)

269

(6.46%)

326

(7.83%)

150

(3.60%)

0 13 6,259 4,831 2,829 89 859 1,581 2,316 4,831 10,286 2.08 31.52 267

(4.27%)

116

(1.85%)

224

(3.58%)

192

(3.07%)

584

(9.33%)

244

(3.90%)

229

(3.66%)

115

(1.84%)

0 14 7,723 6,383 4,989 114 1,081 1,808 3,215 6,383 13,541 1.61 30.70 280

(3.63%)

120

(1.55%)

204

(2.64%)

148

(1.92%)

840

(10.88%)

243

(3.15%)

205

(2.65%)

97

(1.26%)

0 15 5,863 5,068 5,681 126 1,440 2,434 2,583 5,068 11,119 1.84 30.85 392

(6.69%)

99

(1.69%)

172

(2.93%)

133

(2.27%)

786

(13.41%)

308

(5.25%)

141

(2.40%)

67

(1.14%)

0 16 2,727 2,347 2,696 61 1,167 2,131 1,108 2,347 5,985 2.70 32.05 338

(12.39%)

83

(3.04%)

142

(5.21%)

106

(3.89%)

455

(16.69%)

288

(10.56%)

121

(4.44%)

62

(2.27%)

0 17 1,161 965 1,154 42 728 1,629 431 965 2,834 3.73 34.70 222

(19.12%)

60

(5.17%)

105

(9.04%)

65

(5.60%)

227

(19.55%)

143

(12.32%)

101

(8.70%)

48

(4.13%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 662 542 658 24 500 1,405 214 542 1,782 5.84 36.49 142

(21.45%)

60

(9.06%)

94

(14.20%)

82

(12.39%)

143

(21.60%)

86

(12.99%)

89

(13.44%)

33

(4.98%)

0 19 458 370 455 13 367 1,312 128 370 1,336 6.13 39.28 115

(25.11%)

49

(10.70%)

77

(16.81%)

76

(16.59%)

130

(28.38%)

66

(14.41%)

67

(14.63%)

38

(8.30%)

0 20 603 525 601 51 539 3,081 202 525 2,640 8.27 42.17 190

(31.51%)

114

(18.91%)

127

(21.06%)

130

(21.56%)

178

(29.52%)

96

(15.92%)

141

(23.38%)

72

(11.94%)

0 Total 161,608 51,763 81,217 1,328 17,933 31,207 21,994 51,763 102,062 4.61 33.00 10,815

(6.69%)

2,427

(1.50%)

7,720

(4.78%)

5,475

(3.39%)

14,122

(8.74%)

6,591

(4.08%)

7,397

(4.58%)

1,554

(0.96%)

1 1 16 0 10 0 2 2 0 0 0 987.19 79.64 0

(0.00%)

0

(0.00%)

1

(6.25%)

1

(6.25%)

1

(6.25%)

1

(6.25%)

0

(0.00%)

2

(12.50%)

1 2 261 9 8 0 1 1 2 9 12 14.31 90.78 3

(1.15%)

0

(0.00%)

5

(1.92%)

1

(0.38%)

8

(3.07%)

7

(2.68%)

4

(1.53%)

0

(0.00%)

1 3 709 45 26 0 4 8 16 45 64 10.12 79.25 7

(0.99%)

1

(0.14%)

42

(5.92%)

15

(2.12%)

50

(7.05%)

19

(2.68%)

9

(1.27%)

2

(0.28%)

1 4 1,872 296 139 0 11 11 130 296 412 2.94 75.57 38

(2.03%)

30

(1.60%)

322

(17.20%)

83

(4.43%)

342

(18.27%)

64

(3.42%)

154

(8.23%)

11

(0.59%)

1 5 2,821 606 613 1 58 71 264 606 866 8.42 76.69 86

(3.05%)

76

(2.69%)

545

(19.32%)

181

(6.42%)

611

(21.66%)

191

(6.77%)

342

(12.12%)

54

(1.91%)

1 6 5,756 1,585 1,511 16 143 163 611 1,585 2,425 9.48 76.96 169

(2.94%)

193

(3.35%)

1,236

(21.47%)

363

(6.31%)

1,445

(25.10%)

392

(6.81%)

819

(14.23%)

155

(2.69%)

1 7 7,284 2,434 3,092 31 329 388 841 2,434 3,754 11.33 77.77 318

(4.37%)

371

(5.09%)

1,656

(22.73%)

583

(8.00%)

2,006

(27.54%)

703

(9.65%)

1,364

(18.73%)

400

(5.49%)

1 8 9,247 3,462 5,944 47 633 777 1,180 3,462 5,594 12.79 77.79 424

(4.59%)

485

(5.24%)

2,470

(26.71%)

828

(8.95%)

2,940

(31.79%)

1,247

(13.49%)

1,967

(21.27%)

520

(5.62%)

1 9 12,494 5,422 8,190 82 1,038 1,347 1,655 5,422 9,044 15.10 78.93 641

(5.13%)

908

(7.27%)

3,588

(28.72%)

1,355

(10.85%)

4,400

(35.22%)

1,857

(14.86%)

3,107

(24.87%)

1,017

(8.14%)

1 10 10,065 4,871 8,304 118 1,475 1,876 1,394 4,871 8,359 14.01 79.98 746

(7.41%)

1,149

(11.42%)

3,319

(32.98%)

1,412

(14.03%)

4,167

(41.40%)

1,711

(17.00%)

3,103

(30.83%)

1,495

(14.85%)

1 11 7,193 3,864 6,890 97 1,768 2,270 1,058 3,864 6,958 14.08 80.69 604

(8.40%)

1,147

(15.95%)

2,462

(34.23%)

1,197

(16.64%)

3,220

(44.77%)

1,264

(17.57%)

2,612

(36.31%)

1,547

(21.51%)

1 12 4,791 2,746 4,763 75 1,701 2,287 705 2,746 5,028 13.84 81.26 517

(10.79%)

1,086

(22.67%)

1,794

(37.45%)

917

(19.14%)

2,333

(48.70%)

820

(17.12%)

1,940

(40.49%)

1,387

(28.95%)

1 13 3,036 1,936 3,033 56 1,576 2,316 476 1,936 3,754 12.79 80.96 450

(14.82%)

941

(30.99%)

1,206

(39.72%)

671

(22.10%)

1,562

(51.45%)

571

(18.81%)

1,446

(47.63%)

1,137

(37.45%)

1 14 1,724 1,189 1,722 54 1,161 1,968 299 1,189 2,498 12.14 80.73 289

(16.76%)

672

(38.98%)

727

(42.17%)

417

(24.19%)

926

(53.71%)

345

(20.01%)

904

(52.44%)

739

(42.87%)

1 15 1,096 773 1,096 23 820 1,637 199 773 1,751 11.42 80.73 220

(20.07%)

482

(43.98%)

485

(44.25%)

296

(27.01%)

603

(55.02%)

231

(21.08%)

636

(58.03%)

494

(45.07%)

1 16 662 516 662 37 548 1,315 126 516 1,286 10.89 79.93 135

(20.39%)

294

(44.41%)

321

(48.49%)

193

(29.15%)

394

(59.52%)

149

(22.51%)

393

(59.37%)

306

(46.22%)

1 17 434 344 434 21 377 1,058 87 344 971 9.64 79.79 105

(24.19%)

235

(54.15%)

208

(47.93%)

118

(27.19%)

254

(58.53%)

96

(22.12%)

270

(62.21%)

217

(50.00%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 305 240 305 15 272 912 63 240 728 8.92 79.06 91

(29.84%)

159

(52.13%)

155

(50.82%)

78

(25.57%)

186

(60.98%)

69

(22.62%)

205

(67.21%)

168

(55.08%)

1 19 194 161 194 9 174 733 44 161 595 11.27 78.45 74

(38.14%)

136

(70.10%)

101

(52.06%)

58

(29.90%)

126

(64.95%)

46

(23.71%)

126

(64.95%)

106

(54.64%)

1 20 187 172 187 32 179 1,087 64 172 829 7.73 77.17 71

(37.97%)

130

(69.52%)

103

(55.08%)

49

(26.20%)

118

(63.10%)

52

(27.81%)

142

(75.94%)

103

(55.08%)

1 Total 70,147 30,671 47,123 714 12,270 20,227 9,214 30,671 54,928 12.81 79.01 4,988

(7.11%)

8,495

(12.11%)

20,746

(29.58%)

8,816

(12.57%)

25,692

(36.63%)

9,835

(14.02%)

19,543

(27.86%)

9,860

(14.06%)
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Table A.29: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Acute-12-month model (Sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-1;

Submodel: Cond Prior-Acute-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 5,095 366 207 3 12 12 148 366 470 7.07 25.07 135

(2.65%)

5

(0.10%)

55

(1.08%)

25

(0.49%)

69

(1.35%)

52

(1.02%)

28

(0.55%)

1

(0.02%)

0 2 11,488 1,477 1,293 8 121 141 606 1,477 1,955 3.89 32.28 349

(3.04%)

38

(0.33%)

416

(3.62%)

181

(1.58%)

478

(4.16%)

243

(2.12%)

225

(1.96%)

16

(0.14%)

0 3 15,752 2,434 2,529 19 296 335 1,045 2,434 3,643 4.09 35.00 697

(4.42%)

90

(0.57%)

789

(5.01%)

392

(2.49%)

917

(5.82%)

492

(3.12%)

546

(3.47%)

47

(0.30%)

0 4 14,350 2,648 2,886 38 416 492 1,054 2,648 4,097 5.55 44.76 686

(4.78%)

176

(1.23%)

1,245

(8.68%)

545

(3.80%)

1,472

(10.26%)

750

(5.23%)

943

(6.57%)

113

(0.79%)

0 5 19,599 4,032 3,472 47 550 709 1,595 4,032 6,307 5.16 37.45 934

(4.77%)

285

(1.45%)

1,358

(6.93%)

703

(3.59%)

1,671

(8.53%)

834

(4.26%)

1,075

(5.48%)

172

(0.88%)

0 6 16,776 3,896 4,508 57 770 982 1,429 3,896 6,196 6.50 46.25 918

(5.47%)

318

(1.90%)

1,490

(8.88%)

695

(4.14%)

1,980

(11.80%)

797

(4.75%)

1,168

(6.96%)

284

(1.69%)

0 7 14,886 3,824 5,197 86 1,037 1,303 1,426 3,824 6,136 7.30 51.64 729

(4.90%)

443

(2.98%)

1,746

(11.73%)

769

(5.17%)

2,249

(15.11%)

861

(5.78%)

1,462

(9.82%)

332

(2.23%)

0 8 13,066 3,990 5,185 105 1,183 1,520 1,556 3,990 6,689 8.10 55.05 616

(4.71%)

485

(3.71%)

1,700

(13.01%)

794

(6.08%)

2,365

(18.10%)

925

(7.08%)

1,489

(11.40%)

390

(2.98%)

0 9 9,120 3,404 4,465 81 1,280 1,662 1,230 3,404 5,793 10.38 60.94 479

(5.25%)

456

(5.00%)

1,503

(16.48%)

786

(8.62%)

2,095

(22.97%)

950

(10.42%)

1,287

(14.11%)

442

(4.85%)

0 10 6,437 3,341 2,975 91 1,134 1,510 1,427 3,341 5,975 9.68 57.65 290

(4.51%)

368

(5.72%)

1,084

(16.84%)

505

(7.85%)

1,589

(24.69%)

814

(12.65%)

887

(13.78%)

416

(6.46%)

0 11 5,530 3,274 2,260 85 1,057 1,535 1,315 3,274 6,416 7.34 50.57 179

(3.24%)

272

(4.92%)

687

(12.42%)

404

(7.31%)

1,062

(19.20%)

614

(11.10%)

641

(11.59%)

437

(7.90%)

0 12 4,487 3,093 1,992 96 945 1,439 1,411 3,093 6,354 5.62 44.43 163

(3.63%)

194

(4.32%)

410

(9.14%)

253

(5.64%)

696

(15.51%)

480

(10.70%)

411

(9.16%)

325

(7.24%)

0 13 4,682 3,769 1,742 83 920 1,464 1,959 3,769 7,760 3.50 38.17 114

(2.43%)

135

(2.88%)

266

(5.68%)

140

(2.99%)

595

(12.71%)

307

(6.56%)

266

(5.68%)

227

(4.85%)

0 14 2,170 1,608 1,502 75 904 1,441 862 1,608 3,439 4.80 43.71 87

(4.01%)

92

(4.24%)

162

(7.47%)

100

(4.61%)

349

(16.08%)

246

(11.34%)

165

(7.60%)

136

(6.27%)

0 15 907 619 784 32 610 1,092 295 619 1,348 7.91 52.84 34

(3.75%)

70

(7.72%)

125

(13.78%)

74

(8.16%)

199

(21.94%)

190

(20.95%)

132

(14.55%)

102

(11.25%)

0 16 393 250 352 22 301 740 97 250 544 15.94 63.75 20

(5.09%)

41

(10.43%)

85

(21.63%)

44

(11.20%)

118

(30.03%)

105

(26.72%)

83

(21.12%)

66

(16.79%)

0 17 196 126 183 13 160 458 49 126 262 17.94 67.07 19

(9.69%)

28

(14.29%)

54

(27.55%)

29

(14.80%)

68

(34.69%)

70

(35.71%)

71

(36.22%)

54

(27.55%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 102 66 94 5 80 266 19 66 178 18.86 71.55 9

(8.82%)

19

(18.63%)

31

(30.39%)

19

(18.63%)

41

(40.20%)

44

(43.14%)

40

(39.22%)

29

(28.43%)

0 19 51 32 48 2 43 165 14 32 74 23.37 72.98 5

(9.80%)

14

(27.45%)

11

(21.57%)

13

(25.49%)

19

(37.25%)

24

(47.06%)

16

(31.37%)

13

(25.49%)

0 20 40 28 38 6 30 115 8 28 62 28.80 61.28 2

(5.00%)

4

(10.00%)

8

(20.00%)

6

(15.00%)

15

(37.50%)

20

(50.00%)

11

(27.50%)

5

(12.50%)

0 Total 145,127 42,277 41,712 954 11,849 17,381 17,545 42,277 73,698 6.34 44.53 6,465

(4.45%)

3,533

(2.43%)

13,225

(9.11%)

6,477

(4.46%)

18,047

(12.44%)

8,818

(6.08%)

10,946

(7.54%)

3,607

(2.49%)

1 1 133 13 133 0 11 17 5 13 16 458.22 30.57 5

(3.76%)

0

(0.00%)

2

(1.50%)

4

(3.01%)

2

(1.50%)

2

(1.50%)

0

(0.00%)

3

(2.26%)

1 2 1,270 215 1,270 1 22 28 55 215 320 10.27 23.76 100

(7.87%)

6

(0.47%)

17

(1.34%)

14

(1.10%)

37

(2.91%)

29

(2.28%)

23

(1.81%)

2

(0.16%)

1 3 2,483 563 2,483 7 126 135 194 563 903 6.58 35.61 220

(8.86%)

19

(0.77%)

162

(6.52%)

65

(2.62%)

221

(8.90%)

120

(4.83%)

149

(6.00%)

15

(0.60%)

1 4 3,108 881 3,108 9 218 242 289 881 1,491 6.52 46.02 268

(8.62%)

77

(2.48%)

442

(14.22%)

184

(5.92%)

566

(18.21%)

259

(8.33%)

385

(12.39%)

75

(2.41%)

1 5 4,668 1,228 4,668 24 351 425 369 1,228 2,098 7.10 44.85 382

(8.18%)

131

(2.81%)

575

(12.32%)

266

(5.70%)

807

(17.29%)

385

(8.25%)

564

(12.08%)

157

(3.36%)

1 6 8,538 1,888 8,538 24 467 548 565 1,888 3,116 5.55 37.56 606

(7.10%)

194

(2.27%)

692

(8.10%)

358

(4.19%)

1,151

(13.48%)

476

(5.58%)

613

(7.18%)

254

(2.97%)

1 7 8,823 2,176 8,823 44 865 1,019 698 2,176 3,793 6.35 38.90 792

(8.98%)

233

(2.64%)

734

(8.32%)

432

(4.90%)

1,336

(15.14%)

532

(6.03%)

656

(7.44%)

278

(3.15%)

1 8 7,235 2,358 7,235 63 1,126 1,357 666 2,358 4,113 8.44 45.52 788

(10.89%)

254

(3.51%)

933

(12.90%)

458

(6.33%)

1,438

(19.88%)

542

(7.49%)

912

(12.61%)

330

(4.56%)

1 9 6,530 2,478 6,530 59 1,127 1,503 704 2,478 4,490 9.01 53.60 754

(11.55%)

365

(5.59%)

1,263

(19.34%)

540

(8.27%)

1,672

(25.60%)

558

(8.55%)

1,395

(21.36%)

384

(5.88%)

1 10 6,975 3,144 6,975 60 1,210 1,716 905 3,144 5,701 10.01 61.17 786

(11.27%)

571

(8.19%)

1,682

(24.11%)

762

(10.92%)

2,177

(31.21%)

691

(9.91%)

1,795

(25.73%)

600

(8.60%)

1 11 7,085 3,706 7,085 68 1,309 1,841 1,120 3,706 6,961 10.05 64.97 779

(11.00%)

824

(11.63%)

1,890

(26.68%)

882

(12.45%)

2,456

(34.66%)

777

(10.97%)

2,012

(28.40%)

820

(11.57%)

1 12 7,504 4,693 7,504 83 1,567 2,264 1,707 4,693 9,140 8.76 59.84 712

(9.49%)

904

(12.05%)

1,756

(23.40%)

885

(11.79%)

2,397

(31.94%)

800

(10.66%)

1,866

(24.87%)

959

(12.78%)

1 13 8,079 5,837 8,079 97 1,810 2,662 2,371 5,837 11,759 5.90 51.67 749

(9.27%)

877

(10.86%)

1,475

(18.26%)

754

(9.33%)

2,281

(28.23%)

700

(8.66%)

1,545

(19.12%)

1,013

(12.54%)

1 14 5,502 4,133 5,502 102 2,106 3,212 1,565 4,133 8,999 6.40 54.08 636

(11.56%)

785

(14.27%)

1,144

(20.79%)

725

(13.18%)

1,767

(32.12%)

574

(10.43%)

1,224

(22.25%)

871

(15.83%)

1 15 3,251 2,463 3,251 84 1,778 3,021 927 2,463 5,912 7.42 57.57 502

(15.44%)

640

(19.69%)

808

(24.85%)

441

(13.57%)

1,182

(36.36%)

392

(12.06%)

929

(28.58%)

666

(20.49%)

1 16 1,974 1,530 1,974 74 1,356 2,921 509 1,530 4,150 7.57 58.98 362

(18.34%)

463

(23.45%)

559

(28.32%)

318

(16.11%)

805

(40.78%)

281

(14.24%)

646

(32.73%)

443

(22.44%)

1 17 1,321 1,045 1,321 74 1,012 2,617 364 1,045 2,983 7.26 57.89 264

(19.98%)

332

(25.13%)

383

(28.99%)

237

(17.94%)

529

(40.05%)

176

(13.32%)

429

(32.48%)

324

(24.53%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 885 721 885 68 734 2,332 263 721 2,316 7.87 59.41 217

(24.52%)

259

(29.27%)

287

(32.43%)

208

(23.50%)

381

(43.05%)

125

(14.12%)

334

(37.74%)

242

(27.34%)

1 19 619 510 619 53 543 2,120 153 510 1,920 7.44 58.39 182

(29.40%)

215

(34.73%)

214

(34.57%)

129

(20.84%)

284

(45.88%)

94

(15.19%)

255

(41.20%)

191

(30.86%)

1 20 645 575 645 94 616 4,073 234 575 3,111 9.95 55.05 234

(36.28%)

240

(37.21%)

223

(34.57%)

152

(23.57%)

278

(43.10%)

95

(14.73%)

262

(40.62%)

180

(27.91%)

1 Total 86,628 40,157 86,628 1,088 18,354 34,053 13,663 40,157 83,292 8.35 50.49 9,338

(10.78%)

7,389

(8.53%)

15,241

(17.59%)

7,814

(9.02%)

21,767

(25.13%)

7,608

(8.78%)

15,994

(18.46%)

7,807

(9.01%)
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Table A.30: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Oper-12-month model (Sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-1;

Submodel: Cond Prior-Oper-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 302 34 44 1 9 15 12 34 43 211.71 29.43 12

(3.97%)

1

(0.33%)

5

(1.66%)

8

(2.65%)

10

(3.31%)

0

(0.00%)

2

(0.66%)

1

(0.33%)

0 2 3,937 381 44 0 7 9 189 381 498 5.44 17.60 131

(3.33%)

11

(0.28%)

27

(0.69%)

27

(0.69%)

34

(0.86%)

13

(0.33%)

11

(0.28%)

1

(0.03%)

0 3 9,092 1,022 290 2 23 23 455 1,022 1,353 2.74 31.99 498

(5.48%)

25

(0.27%)

337

(3.71%)

220

(2.42%)

385

(4.23%)

41

(0.45%)

164

(1.80%)

15

(0.16%)

0 4 12,392 2,070 697 6 110 123 863 2,070 2,985 3.45 29.79 633

(5.11%)

106

(0.86%)

566

(4.57%)

329

(2.65%)

652

(5.26%)

79

(0.64%)

427

(3.45%)

45

(0.36%)

0 5 11,267 2,432 1,131 7 133 156 982 2,432 3,835 5.60 43.02 726

(6.44%)

169

(1.50%)

859

(7.62%)

498

(4.42%)

1,084

(9.62%)

128

(1.14%)

650

(5.77%)

134

(1.19%)

0 6 9,004 2,426 2,135 24 333 383 898 2,426 3,947 7.66 52.24 754

(8.37%)

292

(3.24%)

1,051

(11.67%)

564

(6.26%)

1,316

(14.62%)

166

(1.84%)

937

(10.41%)

202

(2.24%)

0 7 6,963 2,418 2,264 21 449 528 853 2,418 4,062 11.17 57.28 584

(8.39%)

313

(4.50%)

1,032

(14.82%)

574

(8.24%)

1,355

(19.46%)

166

(2.38%)

1,036

(14.88%)

298

(4.28%)

0 8 5,711 2,231 2,370 28 555 684 694 2,231 3,922 14.33 64.89 426

(7.46%)

381

(6.67%)

1,084

(18.98%)

563

(9.86%)

1,432

(25.07%)

169

(2.96%)

1,047

(18.33%)

347

(6.08%)

0 9 4,094 1,885 2,309 30 573 726 569 1,885 3,378 14.59 69.05 340

(8.30%)

361

(8.82%)

912

(22.28%)

513

(12.53%)

1,234

(30.14%)

147

(3.59%)

866

(21.15%)

435

(10.63%)

0 10 3,196 1,641 2,182 43 631 784 535 1,641 2,902 12.31 65.57 243

(7.60%)

348

(10.89%)

687

(21.50%)

375

(11.73%)

971

(30.38%)

102

(3.19%)

672

(21.03%)

401

(12.55%)

0 11 2,801 1,576 1,734 40 584 777 554 1,576 2,877 10.02 58.97 179

(6.39%)

316

(11.28%)

497

(17.74%)

292

(10.42%)

731

(26.10%)

79

(2.82%)

506

(18.06%)

365

(13.03%)

0 12 1,603 894 1,257 18 543 740 268 894 1,679 10.21 66.09 153

(9.54%)

298

(18.59%)

332

(20.71%)

185

(11.54%)

477

(29.76%)

49

(3.06%)

382

(23.83%)

299

(18.65%)

0 13 1,914 1,245 884 13 464 664 446 1,245 2,570 5.85 46.50 100

(5.22%)

259

(13.53%)

253

(13.22%)

146

(7.63%)

357

(18.65%)

42

(2.19%)

295

(15.41%)

220

(11.49%)

0 14 2,682 1,894 587 16 402 650 803 1,894 4,110 2.76 37.41 96

(3.58%)

174

(6.49%)

144

(5.37%)

85

(3.17%)

278

(10.37%)

50

(1.86%)

184

(6.86%)

142

(5.29%)

0 15 978 608 476 8 247 456 249 608 1,337 5.30 44.43 79

(8.08%)

111

(11.35%)

83

(8.49%)

58

(5.93%)

149

(15.24%)

28

(2.86%)

90

(9.20%)

80

(8.18%)

0 16 758 519 555 20 253 474 211 519 1,197 4.36 40.43 67

(8.84%)

81

(10.69%)

61

(8.05%)

35

(4.62%)

100

(13.19%)

17

(2.24%)

58

(7.65%)

50

(6.60%)

0 17 1,884 1,610 427 29 300 563 887 1,610 3,185 1.43 31.43 63

(3.34%)

57

(3.03%)

44

(2.34%)

37

(1.96%)

175

(9.29%)

10

(0.53%)

58

(3.08%)

44

(2.34%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 1,700 1,488 310 21 206 467 796 1,488 3,145 1.27 28.88 32

(1.88%)

47

(2.76%)

28

(1.65%)

14

(0.82%)

107

(6.29%)

9

(0.53%)

39

(2.29%)

28

(1.65%)

0 19 3,925 3,519 698 54 329 630 1,973 3,519 7,397 0.94 29.81 71

(1.81%)

41

(1.04%)

31

(0.79%)

23

(0.59%)

357

(9.10%)

11

(0.28%)

36

(0.92%)

24

(0.61%)

0 20 819 739 778 43 527 1,122 442 739 2,031 2.62 33.60 67

(8.18%)

48

(5.86%)

28

(3.42%)

28

(3.42%)

87

(10.62%)

6

(0.73%)

39

(4.76%)

28

(3.42%)

0 Total 85,022 30,632 21,172 424 6,678 9,974 12,679 30,632 56,453 7.36 43.97 5,254

(6.18%)

3,439

(4.04%)

8,061

(9.48%)

4,574

(5.38%)

11,291

(13.28%)

1,312

(1.54%)

7,499

(8.82%)

3,159

(3.72%)

1 1 1,754 96 33 0 4 5 39 96 111 15.75 17.59 25

(1.43%)

0

(0.00%)

9

(0.51%)

4

(0.23%)

12

(0.68%)

14

(0.80%)

1

(0.06%)

1

(0.06%)

1 2 10,319 977 1,003 6 94 101 387 977 1,276 2.20 27.91 278

(2.69%)

16

(0.16%)

185

(1.79%)

87

(0.84%)

219

(2.12%)

121

(1.17%)

81

(0.78%)

4

(0.04%)

1 3 13,151 1,915 3,690 24 361 405 757 1,915 2,710 3.29 36.17 464

(3.53%)

37

(0.28%)

502

(3.82%)

193

(1.47%)

682

(5.19%)

360

(2.74%)

321

(2.44%)

18

(0.14%)

1 4 14,654 2,533 5,993 52 657 795 996 2,533 3,959 4.44 40.81 479

(3.27%)

104

(0.71%)

852

(5.81%)

324

(2.21%)

1,216

(8.30%)

687

(4.69%)

679

(4.63%)

53

(0.36%)

1 5 13,609 2,882 8,743 110 1,149 1,415 1,035 2,882 4,720 6.18 44.51 617

(4.53%)

189

(1.39%)

1,203

(8.84%)

471

(3.46%)

1,727

(12.69%)

1,068

(7.85%)

1,021

(7.50%)

168

(1.23%)

1 6 13,953 3,356 11,037 133 1,357 1,780 1,180 3,356 5,562 7.01 46.84 720

(5.16%)

267

(1.91%)

1,400

(10.03%)

632

(4.53%)

2,130

(15.27%)

1,324

(9.49%)

1,182

(8.47%)

272

(1.95%)

1 7 12,494 3,484 10,977 101 1,504 1,959 1,175 3,484 5,873 7.69 48.18 876

(7.01%)

362

(2.90%)

1,579

(12.64%)

686

(5.49%)

2,371

(18.98%)

1,370

(10.97%)

1,350

(10.81%)

415

(3.32%)

1 8 10,896 3,777 10,312 126 1,552 2,184 1,284 3,777 6,513 8.59 52.85 918

(8.43%)

442

(4.06%)

1,765

(16.20%)

745

(6.84%)

2,397

(22.00%)

1,399

(12.84%)

1,578

(14.48%)

487

(4.47%)

1 9 10,475 4,493 10,177 100 1,634 2,271 1,563 4,493 8,121 8.84 56.99 922

(8.80%)

557

(5.32%)

2,101

(20.06%)

919

(8.77%)

2,755

(26.30%)

1,549

(14.79%)

1,964

(18.75%)

606

(5.79%)

1 10 10,699 5,574 10,586 121 1,902 2,655 2,034 5,574 10,483 8.43 56.85 972

(9.08%)

678

(6.34%)

2,198

(20.54%)

962

(8.99%)

2,915

(27.25%)

1,562

(14.60%)

2,090

(19.53%)

741

(6.93%)

1 11 10,070 5,985 10,015 178 2,080 3,090 2,306 5,985 11,451 7.98 56.22 905

(8.99%)

748

(7.43%)

2,094

(20.79%)

975

(9.68%)

2,903

(28.83%)

1,448

(14.38%)

1,992

(19.78%)

878

(8.72%)

1 12 8,009 5,020 7,988 142 2,257 3,415 1,885 5,020 10,034 8.56 58.06 751

(9.38%)

771

(9.63%)

1,788

(22.32%)

898

(11.21%)

2,612

(32.61%)

1,230

(15.36%)

1,877

(23.44%)

913

(11.40%)

1 13 5,733 3,755 5,718 121 2,129 3,375 1,301 3,755 7,922 9.52 61.30 682

(11.90%)

791

(13.80%)

1,457

(25.41%)

801

(13.97%)

2,071

(36.12%)

1,005

(17.53%)

1,581

(27.58%)

973

(16.97%)

1 14 3,895 2,649 3,887 87 1,837 3,201 863 2,649 5,867 9.59 63.83 520

(13.35%)

713

(18.31%)

1,099

(28.22%)

667

(17.12%)

1,545

(39.67%)

679

(17.43%)

1,200

(30.81%)

835

(21.44%)

1 15 2,534 1,776 2,528 70 1,534 2,982 554 1,776 4,316 9.55 64.26 411

(16.22%)

598

(23.60%)

762

(30.07%)

454

(17.92%)

1,056

(41.67%)

461

(18.19%)

863

(34.06%)

655

(25.85%)

1 16 1,705 1,268 1,701 55 1,178 2,675 410 1,268 3,276 9.73 62.93 314

(18.42%)

395

(23.17%)

532

(31.20%)

304

(17.83%)

724

(42.46%)

329

(19.30%)

620

(36.36%)

470

(27.57%)

1 17 1,048 823 1,046 55 791 2,162 273 823 2,406 8.06 60.17 192

(18.32%)

264

(25.19%)

328

(31.30%)

226

(21.56%)

441

(42.08%)

197

(18.80%)

387

(36.93%)

281

(26.81%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 738 584 738 37 612 2,082 193 584 1,988 8.19 58.99 173

(23.44%)

209

(28.32%)

232

(31.44%)

153

(20.73%)

323

(43.77%)

135

(18.29%)

263

(35.64%)

208

(28.18%)

1 19 471 384 470 30 405 1,609 113 384 1,410 7.30 57.03 143

(30.36%)

166

(35.24%)

149

(31.63%)

89

(18.90%)

201

(42.68%)

88

(18.68%)

185

(39.28%)

143

(30.36%)

1 20 526 471 526 70 488 3,299 181 471 2,539 9.95 53.41 187

(35.55%)

176

(33.46%)

170

(32.32%)

127

(24.14%)

223

(42.40%)

88

(16.73%)

206

(39.16%)

134

(25.48%)

1 Total 146,733 51,802 107,168 1,618 23,525 41,460 18,529 51,802 100,537 6.94 48.38 10,549

(7.19%)

7,483

(5.10%)

20,405

(13.91%)

9,717

(6.62%)

28,523

(19.44%)

15,114

(10.30%)

19,441

(13.25%)

8,255

(5.63%)
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Table A.31: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Spells model (Sample-1 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-1;

Submodel: Cond Prior-Spells

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 5,599 415 0 0 0 0 178 415 526 5.19 26.38 151

(2.70%)

10

(0.18%)

92

(1.64%)

42

(0.75%)

111

(1.98%)

54

(0.96%)

44

(0.79%)

1

(0.02%)

0 2 10,388 1,402 0 0 0 0 581 1,402 1,929 3.85 33.16 302

(2.91%)

40

(0.39%)

361

(3.48%)

175

(1.68%)

428

(4.12%)

206

(1.98%)

248

(2.39%)

20

(0.19%)

0 3 13,225 2,005 0 0 0 0 848 2,005 2,962 3.98 33.73 549

(4.15%)

86

(0.65%)

588

(4.45%)

335

(2.53%)

695

(5.26%)

292

(2.21%)

447

(3.38%)

45

(0.34%)

0 4 11,005 1,821 0 0 0 0 742 1,821 2,733 6.00 43.17 488

(4.43%)

146

(1.33%)

793

(7.21%)

371

(3.37%)

980

(8.91%)

322

(2.93%)

621

(5.64%)

92

(0.84%)

0 5 15,570 2,927 0 0 0 0 1,173 2,927 4,459 4.78 33.86 626

(4.02%)

199

(1.28%)

778

(5.00%)

445

(2.86%)

1,045

(6.71%)

295

(1.89%)

638

(4.10%)

137

(0.88%)

0 6 12,354 2,635 0 0 0 0 1,047 2,635 4,202 6.26 43.93 575

(4.65%)

203

(1.64%)

872

(7.06%)

464

(3.76%)

1,227

(9.93%)

280

(2.27%)

670

(5.42%)

171

(1.38%)

0 7 9,556 2,399 0 0 0 0 933 2,399 3,861 7.18 51.55 387

(4.05%)

257

(2.69%)

940

(9.84%)

437

(4.57%)

1,271

(13.30%)

219

(2.29%)

856

(8.96%)

210

(2.20%)

0 8 7,514 2,353 0 0 0 0 979 2,353 3,897 7.89 53.58 260

(3.46%)

276

(3.67%)

781

(10.39%)

422

(5.62%)

1,162

(15.46%)

162

(2.16%)

738

(9.82%)

221

(2.94%)

0 9 4,474 1,616 0 0 0 0 621 1,616 2,696 11.01 60.55 170

(3.80%)

219

(4.89%)

630

(14.08%)

345

(7.71%)

953

(21.30%)

169

(3.78%)

556

(12.43%)

252

(5.63%)

0 10 3,562 2,028 0 0 0 0 943 2,028 3,750 8.90 53.32 88

(2.47%)

137

(3.85%)

442

(12.41%)

205

(5.76%)

721

(20.24%)

144

(4.04%)

392

(11.01%)

223

(6.26%)

0 11 3,427 2,214 0 0 0 0 991 2,214 4,373 5.61 42.48 54

(1.58%)

81

(2.36%)

245

(7.15%)

143

(4.17%)

491

(14.33%)

96

(2.80%)

217

(6.33%)

164

(4.79%)

0 12 2,149 1,471 0 0 0 0 684 1,471 2,954 5.33 41.51 36

(1.68%)

45

(2.09%)

133

(6.19%)

80

(3.72%)

251

(11.68%)

72

(3.35%)

105

(4.89%)

151

(7.03%)

0 13 2,650 2,237 0 0 0 0 1,168 2,237 4,608 2.56 31.33 24

(0.91%)

17

(0.64%)

48

(1.81%)

21

(0.79%)

209

(7.89%)

41

(1.55%)

42

(1.58%)

56

(2.11%)

0 14 1,615 1,317 0 0 0 0 744 1,317 2,627 1.94 34.37 24

(1.49%)

10

(0.62%)

23

(1.42%)

10

(0.62%)

182

(11.27%)

15

(0.93%)

29

(1.80%)

35

(2.17%)

0 15 221 118 0 0 0 0 61 118 232 9.99 49.97 7

(3.17%)

3

(1.36%)

12

(5.43%)

10

(4.52%)

38

(17.19%)

13

(5.88%)

9

(4.07%)

8

(3.62%)

0 16 58 21 0 0 0 0 7 21 35 26.09 61.82 2

(3.45%)

1

(1.72%)

5

(8.62%)

8

(13.79%)

14

(24.14%)

4

(6.90%)

4

(6.90%)

3

(5.17%)

0 17 24 12 0 0 0 0 4 12 23 23.21 60.33 1

(4.17%)

0

(0.00%)

2

(8.33%)

1

(4.17%)

3

(12.50%)

1

(4.17%)

1

(4.17%)

2

(8.33%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 15 3 0 0 0 0 1 3 4 38.93 64.77 0

(0.00%)

1

(6.67%)

4

(26.67%)

2

(13.33%)

6

(40.00%)

4

(26.67%)

3

(20.00%)

3

(20.00%)

0 19 5 2 0 0 0 0 0 2 2 26.80 52.80 0

(0.00%)

0

(0.00%)

1

(20.00%)

0

(0.00%)

1

(20.00%)

2

(40.00%)

1

(20.00%)

1

(20.00%)

0 20 4 1 0 0 0 0 0 1 2 110.00 68.00 0

(0.00%)

0

(0.00%)

1

(25.00%)

0

(0.00%)

2

(50.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0 Total 103,415 26,997 0 0 0 0 11,705 26,997 45,875 5.75 40.84 3,744

(3.62%)

1,731

(1.67%)

6,751

(6.53%)

3,516

(3.40%)

9,790

(9.47%)

2,391

(2.31%)

5,621

(5.44%)

1,795

(1.74%)

1 1 159 13 159 2 24 31 2 13 19 473.89 33.46 7

(4.40%)

0

(0.00%)

5

(3.14%)

5

(3.14%)

7

(4.40%)

9

(5.66%)

0

(0.00%)

3

(1.89%)

1 2 2,299 316 2,299 15 200 223 109 316 438 7.98 26.95 129

(5.61%)

1

(0.04%)

59

(2.57%)

25

(1.09%)

83

(3.61%)

109

(4.74%)

33

(1.44%)

2

(0.09%)

1 3 4,871 991 4,871 29 445 513 344 991 1,524 5.67 39.52 334

(6.86%)

30

(0.62%)

333

(6.84%)

125

(2.57%)

419

(8.60%)

378

(7.76%)

244

(5.01%)

14

(0.29%)

1 4 5,174 1,417 5,174 58 635 778 502 1,417 2,359 6.63 50.19 387

(7.48%)

100

(1.93%)

741

(14.32%)

270

(5.22%)

868

(16.78%)

645

(12.47%)

576

(11.13%)

73

(1.41%)

1 5 7,427 2,058 7,427 84 998 1,231 673 2,058 3,466 6.90 47.66 575

(7.74%)

186

(2.50%)

1,012

(13.63%)

451

(6.07%)

1,260

(16.97%)

864

(11.63%)

859

(11.57%)

162

(2.18%)

1 6 11,510 2,929 11,510 137 1,631 2,112 941 2,929 4,941 5.96 41.19 901

(7.83%)

262

(2.28%)

1,185

(10.30%)

554

(4.81%)

1,607

(13.96%)

981

(8.52%)

1,017

(8.84%)

339

(2.95%)

1 7 16,155 3,828 16,155 209 2,173 2,940 1,259 3,828 6,488 5.77 41.50 1,227

(7.60%)

346

(2.14%)

1,489

(9.22%)

710

(4.39%)

2,259

(13.98%)

1,296

(8.02%)

1,257

(7.78%)

353

(2.19%)

1 8 14,134 4,180 14,134 137 2,354 3,065 1,323 4,180 7,169 7.62 49.55 1,250

(8.84%)

489

(3.46%)

1,977

(13.99%)

880

(6.23%)

2,872

(20.32%)

1,352

(9.57%)

1,822

(12.89%)

479

(3.39%)

1 9 11,950 4,554 11,950 132 2,374 3,132 1,395 4,554 8,084 9.37 58.60 1,198

(10.03%)

713

(5.97%)

2,483

(20.78%)

1,136

(9.51%)

3,256

(27.25%)

1,492

(12.49%)

2,457

(20.56%)

681

(5.70%)

1 10 10,524 4,912 10,524 195 2,474 3,511 1,478 4,912 8,899 10.29 64.12 1,062

(10.09%)

941

(8.94%)

2,660

(25.28%)

1,161

(11.03%)

3,404

(32.35%)

1,380

(13.11%)

2,544

(24.17%)

906

(8.61%)

1 11 9,355 5,048 9,355 166 2,485 3,598 1,642 5,048 9,510 10.35 64.89 921

(9.85%)

1,066

(11.39%)

2,403

(25.69%)

1,243

(13.29%)

3,132

(33.48%)

1,297

(13.86%)

2,435

(26.03%)

1,081

(11.56%)

1 12 9,819 6,352 9,819 218 2,894 4,316 2,486 6,352 12,703 8.19 56.81 842

(8.58%)

1,066

(10.86%)

2,014

(20.51%)

1,015

(10.34%)

2,864

(29.17%)

1,164

(11.85%)

2,117

(21.56%)

1,245

(12.68%)

1 13 9,802 7,199 9,802 186 2,824 4,457 3,038 7,199 14,787 6.22 50.38 811

(8.27%)

946

(9.65%)

1,611

(16.44%)

920

(9.39%)

2,564

(26.16%)

988

(10.08%)

1,712

(17.47%)

1,160

(11.83%)

1 14 6,238 4,705 6,238 126 2,535 4,212 1,898 4,705 10,293 6.25 53.26 666

(10.68%)

870

(13.95%)

1,229

(19.70%)

727

(11.65%)

1,923

(30.83%)

732

(11.73%)

1,330

(21.32%)

982

(15.74%)

1 15 3,462 2,602 3,462 88 1,956 3,609 956 2,602 6,391 7.84 57.38 539

(15.57%)

671

(19.38%)

854

(24.67%)

477

(13.78%)

1,250

(36.11%)

456

(13.17%)

934

(26.98%)

714

(20.62%)

1 16 2,006 1,538 2,006 64 1,361 2,974 516 1,538 4,066 8.34 59.58 341

(17.00%)

448

(22.33%)

543

(27.07%)

335

(16.70%)

772

(38.48%)

323

(16.10%)

652

(32.50%)

480

(23.93%)

1 17 1,348 1,063 1,348 60 1,011 2,678 370 1,063 3,033 8.65 59.59 266

(19.73%)

333

(24.70%)

397

(29.45%)

264

(19.58%)

535

(39.69%)

214

(15.88%)

475

(35.24%)

326

(24.18%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 873 684 873 38 724 2,319 219 684 2,195 8.94 61.29 202

(23.14%)

261

(29.90%)

288

(32.99%)

195

(22.34%)

395

(45.25%)

147

(16.84%)

331

(37.92%)

246

(28.18%)

1 19 584 472 584 20 495 1,882 135 472 1,744 9.26 59.83 166

(28.42%)

211

(36.13%)

205

(35.10%)

116

(19.86%)

269

(46.06%)

103

(17.64%)

245

(41.95%)

180

(30.82%)

1 20 650 576 650 78 610 3,853 217 576 3,006 10.53 56.84 235

(36.15%)

251

(38.62%)

227

(34.92%)

166

(25.54%)

285

(43.85%)

105

(16.15%)

279

(42.92%)

193

(29.69%)

1 Total 128,340 55,437 128,340 2,042 30,203 51,434 19,503 55,437 111,115 8.18 51.49 12,059

(9.40%)

9,191

(7.16%)

21,715

(16.92%)

10,775

(8.40%)

30,024

(23.39%)

14,035

(10.94%)

21,319

(16.61%)

9,619

(7.49%)
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Table A.32: ERMER: Risk bands statistics of the Pop Any-Acute Cond Main model (Sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-2;

Submodel: Cond Main

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 1 2,115 113 170 0 7 8 60 113 143 1.19 30.12 62

(2.93%)

3

(0.14%)

81

(3.83%)

11

(0.52%)

87

(4.11%)

28

(1.32%)

9

(0.43%)

0

(0.00%)

NA 2 8,978 1,107 1,230 5 58 76 508 1,107 1,550 1.57 30.59 232

(2.58%)

20

(0.22%)

399

(4.44%)

105

(1.17%)

470

(5.24%)

134

(1.49%)

132

(1.47%)

11

(0.12%)

NA 3 17,284 2,731 7,483 21 344 391 1,239 2,731 3,954 2.11 37.83 926

(5.36%)

96

(0.56%)

1,327

(7.68%)

411

(2.38%)

1,579

(9.14%)

675

(3.91%)

476

(2.75%)

42

(0.24%)

NA 4 16,487 3,556 9,345 56 743 886 1,537 3,556 5,661 3.85 45.09 1,257

(7.62%)

234

(1.42%)

2,392

(14.51%)

762

(4.62%)

2,913

(17.67%)

1,331

(8.07%)

1,206

(7.31%)

92

(0.56%)

NA 5 21,690 5,315 8,776 60 945 1,169 2,177 5,315 8,761 4.07 43.46 1,343

(6.19%)

446

(2.06%)

3,592

(16.56%)

1,149

(5.30%)

4,218

(19.45%)

1,608

(7.41%)

1,855

(8.55%)

239

(1.10%)

NA 6 25,407 6,741 13,498 98 1,281 1,657 2,583 6,741 11,473 4.38 45.20 1,805

(7.10%)

675

(2.66%)

4,314

(16.98%)

1,506

(5.93%)

5,006

(19.70%)

1,990

(7.83%)

2,232

(8.78%)

462

(1.82%)

NA 7 29,712 7,932 22,004 150 2,131 2,825 3,097 7,932 13,455 4.52 44.84 2,470

(8.31%)

851

(2.86%)

4,749

(15.98%)

1,755

(5.91%)

5,760

(19.39%)

2,589

(8.71%)

2,531

(8.52%)

642

(2.16%)

NA 8 27,463 7,871 23,804 208 3,005 3,930 2,820 7,871 13,906 5.14 48.00 2,737

(9.97%)

1,003

(3.65%)

5,310

(19.34%)

1,972

(7.18%)

6,699

(24.39%)

2,736

(9.96%)

3,042

(11.08%)

816

(2.97%)

NA 9 18,915 6,696 17,225 189 3,348 4,418 2,298 6,696 12,349 6.45 55.41 2,575

(13.61%)

1,275

(6.74%)

5,426

(28.69%)

2,066

(10.92%)

6,612

(34.96%)

2,411

(12.75%)

3,268

(17.28%)

956

(5.05%)

NA 10 15,059 7,074 12,371 147 3,065 4,304 2,472 7,074 13,579 6.88 58.37 1,981

(13.15%)

1,441

(9.57%)

5,078

(33.72%)

1,912

(12.70%)

6,014

(39.94%)

2,146

(14.25%)

3,270

(21.71%)

1,100

(7.30%)

NA 11 14,634 8,878 10,041 105 2,716 4,123 3,752 8,878 17,550 5.81 55.44 1,650

(11.28%)

1,439

(9.83%)

4,688

(32.03%)

1,880

(12.85%)

5,549

(37.92%)

1,916

(13.09%)

3,075

(21.01%)

1,314

(8.98%)

NA 12 13,229 8,875 12,154 233 3,207 5,029 3,687 8,875 18,195 5.57 53.56 1,456

(11.01%)

1,316

(9.95%)

3,981

(30.09%)

1,531

(11.57%)

4,839

(36.58%)

1,954

(14.77%)

2,665

(20.15%)

1,382

(10.45%)

NA 13 12,632 9,345 12,160 218 3,210 5,302 4,227 9,345 19,482 4.40 50.32 1,504

(11.91%)

1,274

(10.09%)

3,246

(25.70%)

1,289

(10.20%)

4,349

(34.43%)

1,725

(13.66%)

2,285

(18.09%)

1,314

(10.40%)

NA 14 7,872 5,864 7,756 141 3,004 5,161 2,468 5,864 13,169 5.52 53.91 1,263

(16.04%)

1,032

(13.11%)

2,491

(31.64%)

1,048

(13.31%)

3,359

(42.67%)

1,242

(15.78%)

1,732

(22.00%)

1,139

(14.47%)

NA 15 4,643 3,478 4,610 125 2,504 4,716 1,334 3,478 8,493 6.47 57.73 854

(18.39%)

824

(17.75%)

1,836

(39.54%)

790

(17.01%)

2,329

(50.16%)

855

(18.41%)

1,255

(27.03%)

858

(18.48%)

NA 16 2,817 2,104 2,798 105 1,875 4,316 779 2,104 5,533 7.69 62.21 624

(22.15%)

664

(23.57%)

1,373

(48.74%)

612

(21.73%)

1,655

(58.75%)

606

(21.51%)

1,015

(36.03%)

689

(24.46%)

NA 17 1,732 1,322 1,724 64 1,284 3,427 456 1,322 3,828 7.74 62.46 445

(25.69%)

468

(27.02%)

877

(50.64%)

410

(23.67%)

1,068

(61.66%)

361

(20.84%)

687

(39.67%)

446

(25.75%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 18 1,193 946 1,187 57 948 3,038 308 946 2,924 10.04 63.30 345

(28.92%)

377

(31.60%)

631

(52.89%)

296

(24.81%)

751

(62.95%)

297

(24.90%)

461

(38.64%)

320

(26.82%)

NA 19 854 689 850 59 696 2,747 230 689 2,432 9.67 62.55 293

(34.31%)

323

(37.82%)

463

(54.22%)

233

(27.28%)

537

(62.88%)

208

(24.36%)

395

(46.25%)

255

(29.86%)

NA 20 996 880 990 119 881 5,620 340 880 4,777 8.22 55.68 439

(44.08%)

363

(36.45%)

547

(54.92%)

325

(32.63%)

634

(63.65%)

210

(21.08%)

435

(43.67%)

244

(24.50%)

NA Total 243,712 91,517 170,176 2,160 35,252 63,143 36,372 91,517 181,214 4.79 48.08 24,261

(9.95%)

14,124

(5.80%)

52,801

(21.67%)

20,063

(8.23%)

64,428

(26.44%)

25,022

(10.27%)

32,026

(13.14%)

12,321

(5.06%)
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Table A.33: ERMER: Risk bands statistics of the Pop Any-Acute Cond Age-65p model (Sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-2;

Submodel: Cond Age-65p

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 4,406 387 771 3 31 39 205 387 511 1.61 33.73 146

(3.31%)

10

(0.23%)

205

(4.65%)

38

(0.86%)

238

(5.40%)

81

(1.84%)

55

(1.25%)

2

(0.05%)

0 2 16,899 2,745 7,030 17 318 360 1,215 2,745 4,037 2.28 34.00 722

(4.27%)

86

(0.51%)

946

(5.60%)

295

(1.75%)

1,210

(7.16%)

704

(4.17%)

391

(2.31%)

19

(0.11%)

0 3 13,510 2,714 7,577 47 683 816 1,156 2,714 4,286 4.44 37.54 1,257

(9.30%)

189

(1.40%)

1,305

(9.66%)

568

(4.20%)

1,712

(12.67%)

888

(6.57%)

743

(5.50%)

53

(0.39%)

0 4 8,936 1,843 4,636 39 715 917 739 1,843 3,064 4.48 36.92 811

(9.08%)

161

(1.80%)

976

(10.92%)

458

(5.13%)

1,260

(14.10%)

559

(6.26%)

701

(7.84%)

81

(0.91%)

0 5 12,263 2,539 3,586 36 579 822 1,014 2,539 4,376 2.96 36.28 668

(5.45%)

178

(1.45%)

993

(8.10%)

404

(3.29%)

1,243

(10.14%)

531

(4.33%)

491

(4.00%)

98

(0.80%)

0 6 25,013 4,672 12,155 88 954 1,331 1,931 4,672 7,577 2.09 32.45 1,153

(4.61%)

209

(0.84%)

1,291

(5.16%)

579

(2.31%)

1,854

(7.41%)

1,054

(4.21%)

640

(2.56%)

124

(0.50%)

0 7 24,891 4,991 20,253 126 1,770 2,330 1,943 4,991 8,296 3.03 33.38 1,999

(8.03%)

227

(0.91%)

1,538

(6.18%)

759

(3.05%)

2,523

(10.14%)

1,349

(5.42%)

734

(2.95%)

108

(0.43%)

0 8 14,438 3,759 12,764 121 2,085 2,682 1,362 3,759 6,732 4.07 35.57 2,251

(15.59%)

294

(2.04%)

1,363

(9.44%)

803

(5.56%)

2,195

(15.20%)

945

(6.55%)

805

(5.58%)

136

(0.94%)

0 9 8,511 3,094 7,291 85 1,846 2,540 1,245 3,094 5,888 4.61 37.86 1,511

(17.75%)

350

(4.11%)

1,203

(14.13%)

773

(9.08%)

1,711

(20.10%)

684

(8.04%)

749

(8.80%)

136

(1.60%)

0 10 4,992 2,173 4,626 62 1,509 2,215 841 2,173 4,295 4.92 40.04 1,039

(20.81%)

303

(6.07%)

938

(18.79%)

578

(11.58%)

1,259

(25.22%)

487

(9.76%)

624

(12.50%)

153

(3.06%)

0 11 3,236 1,705 2,908 43 1,086 1,785 636 1,705 3,570 5.48 41.16 666

(20.58%)

229

(7.08%)

678

(20.95%)

436

(13.47%)

918

(28.37%)

385

(11.90%)

454

(14.03%)

128

(3.96%)

0 12 5,498 3,840 2,162 37 959 1,743 1,785 3,840 8,077 2.31 33.77 457

(8.31%)

203

(3.69%)

527

(9.59%)

338

(6.15%)

842

(15.31%)

314

(5.71%)

381

(6.93%)

128

(2.33%)

0 13 8,155 6,492 5,123 108 1,149 2,102 3,306 6,492 13,380 1.39 31.44 433

(5.31%)

171

(2.10%)

418

(5.13%)

260

(3.19%)

868

(10.64%)

517

(6.34%)

281

(3.45%)

119

(1.46%)

0 14 8,528 7,233 8,078 160 1,514 2,728 3,784 7,233 15,251 1.16 30.92 597

(7.00%)

103

(1.21%)

347

(4.07%)

223

(2.61%)

1,142

(13.39%)

552

(6.47%)

223

(2.61%)

72

(0.84%)

0 15 5,006 4,305 4,909 107 1,487 2,567 2,156 4,305 10,103 1.68 31.72 729

(14.56%)

134

(2.68%)

305

(6.09%)

210

(4.19%)

967

(19.32%)

336

(6.71%)

185

(3.70%)

78

(1.56%)

0 16 2,457 2,117 2,448 65 1,233 2,409 1,029 2,117 5,569 2.13 33.21 528

(21.49%)

111

(4.52%)

252

(10.26%)

163

(6.63%)

611

(24.87%)

212

(8.63%)

154

(6.27%)

63

(2.56%)

0 17 1,361 1,122 1,358 65 924 2,348 488 1,122 3,375 3.47 35.78 352

(25.86%)

93

(6.83%)

216

(15.87%)

153

(11.24%)

410

(30.12%)

157

(11.54%)

141

(10.36%)

67

(4.92%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 809 678 807 34 622 1,844 289 678 2,264 3.39 37.58 229

(28.31%)

76

(9.39%)

162

(20.02%)

114

(14.09%)

269

(33.25%)

100

(12.36%)

99

(12.24%)

42

(5.19%)

0 19 569 453 568 35 452 1,776 189 453 1,788 5.29 40.24 180

(31.63%)

66

(11.60%)

131

(23.02%)

97

(17.05%)

208

(36.56%)

78

(13.71%)

89

(15.64%)

35

(6.15%)

0 20 919 806 908 101 796 4,930 318 806 4,384 8.19 43.62 385

(41.89%)

182

(19.80%)

329

(35.80%)

237

(25.79%)

427

(46.46%)

147

(16.00%)

240

(26.12%)

93

(10.12%)

0 Total 170,397 57,668 109,958 1,379 20,712 38,284 25,631 57,668 116,823 3.03 34.65 16,113

(9.46%)

3,375

(1.98%)

14,123

(8.29%)

7,486

(4.39%)

21,867

(12.83%)

10,080

(5.92%)

8,180

(4.80%)

1,735

(1.02%)

1 1 39 3 1 0 1 1 1 3 4 0.36 94.80 0

(0.00%)

0

(0.00%)

2

(5.13%)

0

(0.00%)

2

(5.13%)

0

(0.00%)

0

(0.00%)

1

(2.56%)

1 2 143 7 5 0 0 0 4 7 10 0.67 80.49 2

(1.40%)

0

(0.00%)

10

(6.99%)

4

(2.80%)

11

(7.69%)

5

(3.50%)

3

(2.10%)

0

(0.00%)

1 3 1,094 142 37 0 0 0 65 142 196 1.03 77.61 28

(2.56%)

23

(2.10%)

258

(23.58%)

72

(6.58%)

264

(24.13%)

24

(2.19%)

77

(7.04%)

7

(0.64%)

1 4 939 169 295 2 18 18 84 169 218 4.31 76.21 39

(4.15%)

31

(3.30%)

321

(34.19%)

89

(9.48%)

336

(35.78%)

53

(5.64%)

111

(11.82%)

14

(1.49%)

1 5 3,028 715 608 3 39 44 295 715 1,144 3.66 76.95 67

(2.21%)

75

(2.48%)

994

(32.83%)

232

(7.66%)

1,050

(34.68%)

178

(5.88%)

306

(10.11%)

50

(1.65%)

1 6 3,774 1,070 1,109 5 81 97 441 1,070 1,728 3.82 76.89 202

(5.35%)

210

(5.56%)

1,345

(35.64%)

381

(10.10%)

1,454

(38.53%)

311

(8.24%)

589

(15.61%)

106

(2.81%)

1 7 5,495 1,704 3,666 14 188 228 703 1,704 2,791 5.85 77.24 317

(5.77%)

217

(3.95%)

2,145

(39.04%)

468

(8.52%)

2,281

(41.51%)

757

(13.78%)

908

(16.52%)

167

(3.04%)

1 8 9,458 3,447 7,806 32 425 492 1,254 3,447 5,728 6.92 77.97 652

(6.89%)

511

(5.40%)

4,298

(45.44%)

1,080

(11.42%)

4,624

(48.89%)

1,715

(18.13%)

2,278

(24.09%)

330

(3.49%)

1 9 11,666 4,902 9,994 58 1,000 1,186 1,668 4,902 8,539 9.07 79.08 1,052

(9.02%)

956

(8.19%)

5,919

(50.74%)

1,667

(14.29%)

6,461

(55.38%)

2,404

(20.61%)

3,554

(30.46%)

776

(6.65%)

1 10 10,913 5,343 10,182 105 1,604 1,999 1,629 5,343 9,588 10.37 80.36 1,203

(11.02%)

1,341

(12.29%)

6,068

(55.60%)

1,980

(18.14%)

6,718

(61.56%)

2,515

(23.05%)

3,765

(34.50%)

1,365

(12.51%)

1 11 9,140 4,935 8,967 102 2,235 2,810 1,435 4,935 9,253 11.09 81.15 1,214

(13.28%)

1,587

(17.36%)

5,430

(59.41%)

1,843

(20.16%)

6,094

(66.67%)

2,161

(23.64%)

3,469

(37.95%)

1,715

(18.76%)

1 12 6,549 3,811 6,486 100 2,268 3,124 1,061 3,811 7,334 12.05 81.60 997

(15.22%)

1,513

(23.10%)

4,118

(62.88%)

1,490

(22.75%)

4,640

(70.85%)

1,718

(26.23%)

2,776

(42.39%)

1,699

(25.94%)

1 13 4,337 2,747 4,327 87 2,013 3,136 754 2,747 5,559 11.50 81.95 704

(16.23%)

1,287

(29.67%)

2,886

(66.54%)

1,091

(25.16%)

3,235

(74.59%)

1,131

(26.08%)

2,069

(47.71%)

1,428

(32.93%)

1 14 2,701 1,782 2,698 70 1,558 2,844 493 1,782 3,902 12.03 81.63 547

(20.25%)

958

(35.47%)

1,862

(68.94%)

770

(28.51%)

2,067

(76.53%)

743

(27.51%)

1,409

(52.17%)

1,038

(38.43%)

1 15 1,651 1,181 1,649 60 1,152 2,422 296 1,181 2,795 11.46 81.28 362

(21.93%)

741

(44.88%)

1,189

(72.02%)

544

(32.95%)

1,336

(80.92%)

478

(28.95%)

977

(59.18%)

719

(43.55%)

1 16 941 693 941 35 732 1,812 187 693 1,731 10.31 80.98 228

(24.23%)

410

(43.57%)

696

(73.96%)

316

(33.58%)

763

(81.08%)

267

(28.37%)

543

(57.70%)

413

(43.89%)

1 17 609 473 609 29 493 1,465 133 473 1,213 10.87 80.21 184

(30.21%)

330

(54.19%)

466

(76.52%)

211

(34.65%)

498

(81.77%)

191

(31.36%)

394

(64.70%)

306

(50.25%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 383 329 383 21 323 1,073 104 329 983 9.83 80.36 142

(37.08%)

239

(62.40%)

302

(78.85%)

150

(39.16%)

331

(86.42%)

126

(32.90%)

273

(71.28%)

203

(53.00%)

1 19 245 203 245 22 217 955 68 203 738 9.54 79.86 101

(41.22%)

164

(66.94%)

193

(78.78%)

96

(39.18%)

212

(86.53%)

93

(37.96%)

175

(71.43%)

129

(52.65%)

1 20 210 193 210 36 193 1,153 66 193 937 7.48 76.33 107

(50.95%)

156

(74.29%)

176

(83.81%)

93

(44.29%)

184

(87.62%)

72

(34.29%)

170

(80.95%)

120

(57.14%)

1 Total 73,315 33,849 60,218 781 14,540 24,859 10,741 33,849 64,391 8.91 79.58 8,148

(11.11%)

10,749

(14.66%)

38,678

(52.76%)

12,577

(17.15%)

42,561

(58.05%)

14,942

(20.38%)

23,846

(32.53%)

10,586

(14.44%)
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Table A.34: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Acute-12-month model (Sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-2;

Submodel: Cond Prior-Acute-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 2,352 133 153 0 6 9 68 133 164 1.48 31.08 71

(3.02%)

4

(0.17%)

98

(4.17%)

20

(0.85%)

105

(4.46%)

41

(1.74%)

14

(0.60%)

1

(0.04%)

0 2 10,191 1,237 1,024 4 43 67 576 1,237 1,751 1.88 31.70 281

(2.76%)

29

(0.28%)

444

(4.36%)

135

(1.32%)

524

(5.14%)

193

(1.89%)

130

(1.28%)

15

(0.15%)

0 3 12,512 1,990 3,518 14 224 274 1,008 1,990 2,924 3.00 41.92 707

(5.65%)

106

(0.85%)

1,295

(10.35%)

414

(3.31%)

1,484

(11.86%)

606

(4.84%)

418

(3.34%)

34

(0.27%)

0 4 12,007 2,528 3,402 25 349 438 1,103 2,528 4,116 3.92 44.80 600

(5.00%)

167

(1.39%)

1,709

(14.23%)

515

(4.29%)

1,972

(16.42%)

821

(6.84%)

694

(5.78%)

68

(0.57%)

0 5 17,271 3,655 4,520 30 390 494 1,602 3,655 5,740 3.33 40.95 912

(5.28%)

270

(1.56%)

2,225

(12.88%)

724

(4.19%)

2,520

(14.59%)

1,000

(5.79%)

933

(5.40%)

119

(0.69%)

0 6 14,828 3,616 6,031 40 604 741 1,509 3,616 5,949 4.22 47.75 1,079

(7.28%)

374

(2.52%)

2,588

(17.45%)

905

(6.10%)

2,908

(19.61%)

1,200

(8.09%)

1,067

(7.20%)

190

(1.28%)

0 7 12,050 3,127 5,646 67 926 1,141 1,231 3,127 5,214 5.21 51.19 821

(6.81%)

391

(3.24%)

2,382

(19.77%)

801

(6.65%)

2,684

(22.27%)

1,195

(9.92%)

1,124

(9.33%)

242

(2.01%)

0 8 9,842 2,752 4,866 71 1,029 1,327 1,178 2,752 4,727 5.55 51.37 612

(6.22%)

412

(4.19%)

2,003

(20.35%)

728

(7.40%)

2,338

(23.76%)

967

(9.83%)

974

(9.90%)

265

(2.69%)

0 9 6,251 2,147 3,685 77 1,024 1,379 937 2,147 3,650 6.73 55.36 429

(6.86%)

329

(5.26%)

1,593

(25.48%)

559

(8.94%)

1,886

(30.17%)

827

(13.23%)

774

(12.38%)

251

(4.02%)

0 10 4,187 1,850 2,554 57 907 1,233 751 1,850 3,469 7.51 56.17 273

(6.52%)

276

(6.59%)

1,161

(27.73%)

443

(10.58%)

1,386

(33.10%)

624

(14.90%)

630

(15.05%)

238

(5.68%)

0 11 4,344 2,646 1,978 51 715 1,078 1,159 2,646 5,292 5.55 46.53 214

(4.93%)

214

(4.93%)

829

(19.08%)

319

(7.34%)

1,043

(24.01%)

497

(11.44%)

470

(10.82%)

247

(5.69%)

0 12 4,691 3,569 1,795 62 675 1,073 1,924 3,569 7,077 3.59 39.23 152

(3.24%)

155

(3.30%)

548

(11.68%)

203

(4.33%)

824

(17.57%)

417

(8.89%)

298

(6.35%)

197

(4.20%)

0 13 3,573 2,855 1,834 77 772 1,256 1,537 2,855 5,943 3.42 38.98 141

(3.95%)

113

(3.16%)

379

(10.61%)

152

(4.25%)

608

(17.02%)

338

(9.46%)

226

(6.33%)

157

(4.39%)

0 14 1,436 1,073 1,111 39 637 1,015 566 1,073 2,285 5.30 45.37 93

(6.48%)

74

(5.15%)

256

(17.83%)

101

(7.03%)

366

(25.49%)

215

(14.97%)

140

(9.75%)

96

(6.69%)

0 15 608 430 535 20 399 795 191 430 966 8.78 53.98 41

(6.74%)

53

(8.72%)

160

(26.32%)

60

(9.87%)

205

(33.72%)

136

(22.37%)

90

(14.80%)

52

(8.55%)

0 16 258 165 238 16 187 454 63 165 333 18.35 64.76 22

(8.53%)

18

(6.98%)

105

(40.70%)

42

(16.28%)

124

(48.06%)

75

(29.07%)

52

(20.16%)

41

(15.89%)

0 17 142 92 134 11 119 337 29 92 210 21.62 71.37 12

(8.45%)

18

(12.68%)

77

(54.23%)

34

(23.94%)

85

(59.86%)

58

(40.85%)

41

(28.87%)

26

(18.31%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 81 54 77 6 61 203 15 54 133 20.15 72.84 8

(9.88%)

14

(17.28%)

41

(50.62%)

21

(25.93%)

52

(64.20%)

29

(35.80%)

19

(23.46%)

20

(24.69%)

0 19 57 30 49 6 40 152 7 30 67 28.89 69.47 5

(8.77%)

7

(12.28%)

32

(56.14%)

11

(19.30%)

35

(61.40%)

21

(36.84%)

16

(28.07%)

9

(15.79%)

0 20 40 29 35 3 19 118 10 29 66 33.23 66.56 5

(12.50%)

8

(20.00%)

19

(47.50%)

4

(10.00%)

22

(55.00%)

13

(32.50%)

10

(25.00%)

2

(5.00%)

0 Total 116,721 33,978 43,185 676 9,126 13,584 15,464 33,978 60,076 4.26 44.88 6,478

(5.55%)

3,032

(2.60%)

17,944

(15.37%)

6,191

(5.30%)

21,171

(18.14%)

9,273

(7.94%)

8,120

(6.96%)

2,270

(1.94%)

1 1 52 7 52 0 2 2 4 7 12 0.92 23.10 1

(1.92%)

0

(0.00%)

3

(5.77%)

0

(0.00%)

3

(5.77%)

2

(3.85%)

0

(0.00%)

0

(0.00%)

1 2 502 62 502 0 4 4 24 62 91 1.81 31.64 41

(8.17%)

2

(0.40%)

41

(8.17%)

12

(2.39%)

47

(9.36%)

11

(2.19%)

14

(2.79%)

1

(0.20%)

1 3 3,403 614 3,403 1 38 38 220 614 852 1.69 28.65 285

(8.37%)

16

(0.47%)

130

(3.82%)

51

(1.50%)

186

(5.47%)

132

(3.88%)

77

(2.26%)

10

(0.29%)

1 4 5,721 1,267 5,721 6 250 263 474 1,267 2,006 3.19 39.77 606

(10.59%)

56

(0.98%)

623

(10.89%)

206

(3.60%)

854

(14.93%)

406

(7.10%)

353

(6.17%)

27

(0.47%)

1 5 5,075 1,556 5,075 12 456 526 579 1,556 2,615 5.22 52.23 634

(12.49%)

187

(3.68%)

1,300

(25.62%)

413

(8.14%)

1,600

(31.53%)

645

(12.71%)

834

(16.43%)

88

(1.73%)

1 6 8,586 2,630 8,586 21 513 626 911 2,630 4,619 4.65 44.61 797

(9.28%)

298

(3.47%)

1,817

(21.16%)

621

(7.23%)

2,133

(24.84%)

909

(10.59%)

1,158

(13.49%)

234

(2.73%)

1 7 17,494 4,421 17,494 47 841 1,034 1,523 4,421 7,715 3.79 39.74 1,575

(9.00%)

454

(2.60%)

2,224

(12.71%)

896

(5.12%)

3,068

(17.54%)

1,300

(7.43%)

1,406

(8.04%)

423

(2.42%)

1 8 15,571 4,666 15,571 58 1,745 2,008 1,574 4,666 8,380 4.95 45.71 1,890

(12.14%)

586

(3.76%)

2,906

(18.66%)

1,088

(6.99%)

3,938

(25.29%)

1,459

(9.37%)

1,754

(11.26%)

519

(3.33%)

1 9 12,077 4,531 12,077 89 2,186 2,704 1,456 4,531 8,346 6.44 53.81 1,860

(15.40%)

759

(6.28%)

3,493

(28.92%)

1,347

(11.15%)

4,304

(35.64%)

1,471

(12.18%)

2,322

(19.23%)

667

(5.52%)

1 10 9,883 4,365 9,883 84 2,254 3,089 1,312 4,365 8,353 7.27 61.51 1,644

(16.63%)

1,040

(10.52%)

3,809

(38.54%)

1,461

(14.78%)

4,433

(44.85%)

1,475

(14.92%)

2,689

(27.21%)

842

(8.52%)

1 11 9,532 5,219 9,532 84 2,064 3,036 1,796 5,219 10,325 6.35 61.92 1,446

(15.17%)

1,178

(12.36%)

3,814

(40.01%)

1,513

(15.87%)

4,375

(45.90%)

1,510

(15.84%)

2,667

(27.98%)

992

(10.41%)

1 12 11,706 7,964 11,706 117 2,278 3,442 3,269 7,964 15,653 5.10 54.10 1,456

(12.44%)

1,194

(10.20%)

3,605

(30.80%)

1,375

(11.75%)

4,465

(38.14%)

1,620

(13.84%)

2,503

(21.38%)

1,194

(10.20%)

1 13 9,693 6,968 9,693 108 2,709 4,050 2,844 6,968 14,931 4.93 54.96 1,439

(14.85%)

1,220

(12.59%)

3,141

(32.40%)

1,261

(13.01%)

4,080

(42.09%)

1,441

(14.87%)

2,242

(23.13%)

1,226

(12.65%)

1 14 6,452 4,616 6,452 149 2,789 4,578 1,765 4,616 10,618 5.92 58.95 1,228

(19.03%)

1,091

(16.91%)

2,522

(39.09%)

1,044

(16.18%)

3,206

(49.69%)

1,048

(16.24%)

1,779

(27.57%)

1,088

(16.86%)

1 15 4,017 2,905 4,017 144 2,353 4,411 1,076 2,905 7,048 6.56 61.01 796

(19.82%)

847

(21.09%)

1,769

(44.04%)

775

(19.29%)

2,162

(53.82%)

775

(19.29%)

1,226

(30.52%)

844

(21.01%)

1 16 2,580 1,971 2,580 114 1,791 4,047 679 1,971 5,387 7.33 63.35 571

(22.13%)

670

(25.97%)

1,274

(49.38%)

569

(22.05%)

1,564

(60.62%)

533

(20.66%)

1,010

(39.15%)

663

(25.70%)

1 17 1,737 1,325 1,737 115 1,347 3,700 475 1,325 3,833 7.57 62.14 454

(26.14%)

480

(27.63%)

876

(50.43%)

418

(24.06%)

1,036

(59.64%)

385

(22.16%)

656

(37.77%)

459

(26.42%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,120 893 1,120 88 915 3,068 318 893 2,897 7.98 62.19 336

(30.00%)

358

(31.96%)

571

(50.98%)

289

(25.80%)

687

(61.34%)

237

(21.16%)

452

(40.36%)

298

(26.61%)

1 19 845 711 845 83 729 2,989 257 711 2,582 8.25 59.58 318

(37.63%)

330

(39.05%)

442

(52.31%)

236

(27.93%)

534

(63.20%)

192

(22.72%)

357

(42.25%)

245

(28.99%)

1 20 945 848 945 164 862 5,944 352 848 4,875 7.27 53.63 406

(42.96%)

326

(34.50%)

497

(52.59%)

297

(31.43%)

582

(61.59%)

198

(20.95%)

407

(43.07%)

231

(24.44%)

1 Total 126,991 57,539 126,991 1,484 26,126 49,559 20,908 57,539 121,138 5.29 51.02 17,783

(14.00%)

11,092

(8.73%)

34,857

(27.45%)

13,872

(10.92%)

43,257

(34.06%)

15,749

(12.40%)

23,906

(18.82%)

10,051

(7.91%)
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Table A.35: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Oper-12-month model (Sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-2;

Submodel: Cond Prior-Oper-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 188 20 6 0 0 0 11 20 20 38.32 28.16 1

(0.53%)

0

(0.00%)

1

(0.53%)

2

(1.06%)

2

(1.06%)

0

(0.00%)

1

(0.53%)

0

(0.00%)

0 2 4,044 293 52 1 2 2 160 293 373 1.46 32.86 164

(4.06%)

23

(0.57%)

229

(5.66%)

111

(2.74%)

241

(5.96%)

12

(0.30%)

61

(1.51%)

9

(0.22%)

0 3 4,921 603 317 0 11 18 313 603 805 2.82 35.36 217

(4.41%)

53

(1.08%)

346

(7.03%)

143

(2.91%)

362

(7.36%)

35

(0.71%)

115

(2.34%)

16

(0.33%)

0 4 11,638 2,044 543 3 46 55 886 2,044 3,186 1.64 34.07 595

(5.11%)

128

(1.10%)

844

(7.25%)

362

(3.11%)

888

(7.63%)

59

(0.51%)

273

(2.35%)

27

(0.23%)

0 5 9,185 2,036 1,484 6 81 88 872 2,036 3,347 2.62 42.87 721

(7.85%)

213

(2.32%)

1,225

(13.34%)

566

(6.16%)

1,283

(13.97%)

93

(1.01%)

477

(5.19%)

86

(0.94%)

0 6 5,465 1,489 2,572 6 195 215 623 1,489 2,539 5.00 46.22 547

(10.01%)

182

(3.33%)

910

(16.65%)

407

(7.45%)

973

(17.80%)

89

(1.63%)

450

(8.23%)

106

(1.94%)

0 7 3,799 1,273 2,384 20 417 488 470 1,273 2,209 7.52 51.76 447

(11.77%)

182

(4.79%)

801

(21.08%)

383

(10.08%)

865

(22.77%)

86

(2.26%)

426

(11.21%)

141

(3.71%)

0 8 2,609 968 1,925 16 437 527 336 968 1,757 9.09 57.60 338

(12.96%)

180

(6.90%)

675

(25.87%)

320

(12.27%)

745

(28.56%)

64

(2.45%)

363

(13.91%)

129

(4.94%)

0 9 1,869 812 1,518 13 375 466 251 812 1,454 10.95 62.06 229

(12.25%)

175

(9.36%)

543

(29.05%)

243

(13.00%)

608

(32.53%)

54

(2.89%)

299

(16.00%)

141

(7.54%)

0 10 1,480 724 1,219 10 353 471 237 724 1,372 10.34 63.12 163

(11.01%)

180

(12.16%)

467

(31.55%)

208

(14.05%)

530

(35.81%)

41

(2.77%)

299

(20.20%)

159

(10.74%)

0 11 1,019 529 819 3 268 342 181 529 962 9.24 63.88 129

(12.66%)

143

(14.03%)

338

(33.17%)

160

(15.70%)

383

(37.59%)

30

(2.94%)

180

(17.66%)

138

(13.54%)

0 12 653 398 574 5 235 347 132 398 853 9.00 66.40 81

(12.40%)

133

(20.37%)

245

(37.52%)

114

(17.46%)

286

(43.80%)

25

(3.83%)

147

(22.51%)

103

(15.77%)

0 13 908 579 382 6 182 291 228 579 1,222 4.79 44.78 51

(5.62%)

85

(9.36%)

150

(16.52%)

67

(7.38%)

193

(21.26%)

18

(1.98%)

86

(9.47%)

70

(7.71%)

0 14 1,748 1,249 256 7 148 272 526 1,249 2,810 1.62 34.32 75

(4.29%)

66

(3.78%)

117

(6.69%)

48

(2.75%)

177

(10.13%)

22

(1.26%)

66

(3.78%)

54

(3.09%)

0 15 1,145 796 239 8 112 201 378 796 1,681 1.89 34.78 70

(6.11%)

56

(4.89%)

74

(6.46%)

42

(3.67%)

132

(11.53%)

25

(2.18%)

47

(4.10%)

32

(2.79%)

0 16 934 744 387 7 113 222 379 744 1,555 1.39 32.19 64

(6.85%)

48

(5.14%)

48

(5.14%)

27

(2.89%)

84

(8.99%)

21

(2.25%)

43

(4.60%)

25

(2.68%)

0 17 631 523 387 15 207 353 305 523 1,129 1.40 33.38 57

(9.03%)

26

(4.12%)

40

(6.34%)

22

(3.49%)

68

(10.78%)

7

(1.11%)

33

(5.23%)

17

(2.69%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 2,422 2,172 258 23 169 319 1,270 2,172 4,313 0.46 27.95 47

(1.94%)

36

(1.49%)

35

(1.45%)

22

(0.91%)

166

(6.85%)

6

(0.25%)

30

(1.24%)

20

(0.83%)

0 19 2,580 2,339 525 17 137 275 1,377 2,339 4,765 0.68 28.61 95

(3.68%)

32

(1.24%)

28

(1.09%)

17

(0.66%)

179

(6.94%)

9

(0.35%)

24

(0.93%)

19

(0.74%)

0 20 895 838 865 64 559 1,194 506 838 1,995 1.02 29.50 89

(9.94%)

29

(3.24%)

32

(3.58%)

22

(2.46%)

94

(10.50%)

1

(0.11%)

19

(2.12%)

16

(1.79%)

0 Total 58,133 20,429 16,712 230 4,047 6,146 9,441 20,429 38,347 3.72 40.94 4,180

(7.19%)

1,970

(3.39%)

7,148

(12.30%)

3,286

(5.65%)

8,259

(14.21%)

697

(1.20%)

3,439

(5.92%)

1,308

(2.25%)

1 1 1,238 59 66 0 10 13 29 59 77 0.85 26.67 20

(1.62%)

1

(0.08%)

31

(2.50%)

2

(0.16%)

33

(2.67%)

12

(0.97%)

2

(0.16%)

0

(0.00%)

1 2 5,547 597 900 6 74 85 268 597 834 1.32 30.14 168

(3.03%)

12

(0.22%)

248

(4.47%)

67

(1.21%)

278

(5.01%)

84

(1.51%)

68

(1.23%)

5

(0.09%)

1 3 12,767 1,842 4,960 21 336 401 846 1,842 2,651 1.96 35.40 546

(4.28%)

37

(0.29%)

773

(6.05%)

192

(1.50%)

937

(7.34%)

417

(3.27%)

220

(1.72%)

24

(0.19%)

1 4 12,854 2,741 8,457 27 546 639 1,174 2,741 4,313 3.00 43.43 900

(7.00%)

118

(0.92%)

1,562

(12.15%)

471

(3.66%)

1,928

(15.00%)

992

(7.72%)

686

(5.34%)

48

(0.37%)

1 5 15,858 3,698 9,229 66 1,166 1,433 1,521 3,698 6,053 4.08 45.17 1,023

(6.45%)

273

(1.72%)

2,571

(16.21%)

727

(4.58%)

3,198

(20.17%)

1,431

(9.02%)

1,377

(8.68%)

121

(0.76%)

1 6 20,014 4,991 16,333 88 1,368 1,790 1,927 4,991 8,389 4.36 44.57 1,276

(6.38%)

447

(2.23%)

3,095

(15.46%)

981

(4.90%)

4,017

(20.07%)

2,121

(10.60%)

1,834

(9.16%)

307

(1.53%)

1 7 21,927 5,913 20,075 105 1,782 2,269 2,237 5,913 10,217 4.81 46.40 1,841

(8.40%)

615

(2.80%)

3,863

(17.62%)

1,234

(5.63%)

5,094

(23.23%)

2,448

(11.16%)

2,170

(9.90%)

496

(2.26%)

1 8 18,202 5,793 17,188 102 2,212 2,785 2,037 5,793 10,104 5.77 52.07 2,112

(11.60%)

763

(4.19%)

4,460

(24.50%)

1,530

(8.41%)

5,606

(30.80%)

2,543

(13.97%)

2,531

(13.91%)

700

(3.85%)

1 9 14,565 5,716 14,092 126 2,506 3,347 1,935 5,716 10,537 6.56 57.98 2,001

(13.74%)

1,021

(7.01%)

4,767

(32.73%)

1,732

(11.89%)

5,632

(38.67%)

2,477

(17.01%)

2,885

(19.81%)

851

(5.84%)

1 10 14,033 7,333 13,830 146 2,618 3,746 2,711 7,333 14,174 6.26 57.10 1,878

(13.38%)

1,231

(8.77%)

4,752

(33.86%)

1,725

(12.29%)

5,603

(39.93%)

2,436

(17.36%)

3,038

(21.65%)

1,010

(7.20%)

1 11 13,553 8,283 13,428 138 2,655 3,952 3,443 8,283 16,276 5.85 56.00 1,711

(12.62%)

1,273

(9.39%)

4,449

(32.83%)

1,716

(12.66%)

5,386

(39.74%)

2,197

(16.21%)

2,978

(21.97%)

1,138

(8.40%)

1 12 11,060 7,238 11,005 143 2,986 4,460 2,822 7,238 14,746 6.21 57.63 1,599

(14.46%)

1,286

(11.63%)

3,901

(35.27%)

1,517

(13.72%)

4,924

(44.52%)

2,005

(18.13%)

2,671

(24.15%)

1,284

(11.61%)

1 13 8,012 5,257 7,989 161 2,931 4,642 1,916 5,257 11,523 6.79 61.85 1,408

(17.57%)

1,235

(15.41%)

3,314

(41.36%)

1,310

(16.35%)

4,101

(51.19%)

1,577

(19.68%)

2,315

(28.89%)

1,241

(15.49%)

1 14 5,448 3,687 5,439 152 2,600 4,651 1,308 3,687 8,611 7.65 63.82 1,013

(18.59%)

1,013

(18.59%)

2,485

(45.61%)

1,055

(19.36%)

2,993

(54.94%)

1,182

(21.70%)

1,762

(32.34%)

1,093

(20.06%)

1 15 3,686 2,640 3,675 124 2,177 4,323 886 2,640 6,391 8.63 65.54 698

(18.94%)

791

(21.46%)

1,852

(50.24%)

804

(21.81%)

2,198

(59.63%)

840

(22.79%)

1,308

(35.49%)

885

(24.01%)

1 16 2,480 1,800 2,473 121 1,716 4,018 617 1,800 4,710 8.81 65.67 517

(20.85%)

658

(26.53%)

1,278

(51.53%)

566

(22.82%)

1,549

(62.46%)

574

(23.15%)

1,003

(40.44%)

654

(26.37%)

1 17 1,649 1,256 1,648 110 1,250 3,511 422 1,256 3,788 8.57 63.59 419

(25.41%)

464

(28.14%)

861

(52.21%)

388

(23.53%)

1,023

(62.04%)

389

(23.59%)

635

(38.51%)

440

(26.68%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,072 850 1,069 67 846 2,882 282 850 2,689 8.99 62.75 315

(29.38%)

347

(32.37%)

558

(52.05%)

287

(26.77%)

671

(62.59%)

235

(21.92%)

428

(39.93%)

304

(28.36%)

1 19 763 626 760 79 655 2,702 233 626 2,309 8.22 59.18 271

(35.52%)

277

(36.30%)

393

(51.51%)

202

(26.47%)

476

(62.39%)

177

(23.20%)

311

(40.76%)

219

(28.70%)

1 20 851 768 848 148 771 5,348 317 768 4,475 7.91 53.05 365

(42.89%)

292

(34.31%)

440

(51.70%)

271

(31.84%)

522

(61.34%)

188

(22.09%)

365

(42.89%)

193

(22.68%)

1 Total 185,579 71,088 153,464 1,930 31,205 56,997 26,931 71,088 142,867 5.13 50.31 20,081

(10.82%)

12,154

(6.55%)

45,653

(24.60%)

16,777

(9.04%)

56,169

(30.27%)

24,325

(13.11%)

28,587

(15.40%)

11,013

(5.93%)
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Table A.36: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Spells model (Sample-2 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-2;

Submodel: Cond Prior-Spells

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 3,194 243 0 0 0 0 121 243 315 3.12 31.75 93

(2.91%)

11

(0.34%)

137

(4.29%)

29

(0.91%)

169

(5.29%)

38

(1.19%)

26

(0.81%)

1

(0.03%)

0 2 10,416 1,403 0 0 0 0 678 1,403 2,023 2.27 33.07 282

(2.71%)

43

(0.41%)

551

(5.29%)

173

(1.66%)

661

(6.35%)

140

(1.34%)

164

(1.57%)

16

(0.15%)

0 3 8,224 1,281 0 0 0 0 684 1,281 1,896 3.64 42.25 429

(5.22%)

87

(1.06%)

914

(11.11%)

335

(4.07%)

1,073

(13.05%)

182

(2.21%)

350

(4.26%)

35

(0.43%)

0 4 8,742 1,656 0 0 0 0 700 1,656 2,684 3.66 39.73 358

(4.10%)

117

(1.34%)

860

(9.84%)

313

(3.58%)

1,014

(11.60%)

216

(2.47%)

422

(4.83%)

54

(0.62%)

0 5 11,618 2,279 0 0 0 0 1,052 2,279 3,493 3.06 37.29 513

(4.42%)

175

(1.51%)

1,185

(10.20%)

439

(3.78%)

1,341

(11.54%)

206

(1.77%)

470

(4.05%)

89

(0.77%)

0 6 8,366 1,836 0 0 0 0 820 1,836 3,058 3.90 45.24 508

(6.07%)

205

(2.45%)

1,167

(13.95%)

480

(5.74%)

1,327

(15.86%)

195

(2.33%)

500

(5.98%)

107

(1.28%)

0 7 5,727 1,348 0 0 0 0 558 1,348 2,219 5.19 47.29 273

(4.77%)

170

(2.97%)

795

(13.88%)

293

(5.12%)

972

(16.97%)

187

(3.27%)

400

(6.98%)

99

(1.73%)

0 8 4,646 1,138 0 0 0 0 520 1,138 1,931 5.03 44.86 212

(4.56%)

123

(2.65%)

588

(12.66%)

221

(4.76%)

753

(16.21%)

126

(2.71%)

296

(6.37%)

125

(2.69%)

0 9 2,833 899 0 0 0 0 449 899 1,525 6.57 46.21 137

(4.84%)

102

(3.60%)

366

(12.92%)

146

(5.15%)

510

(18.00%)

88

(3.11%)

222

(7.84%)

96

(3.39%)

0 10 1,547 666 0 0 0 0 337 666 1,172 7.73 48.97 58

(3.75%)

62

(4.01%)

240

(15.51%)

99

(6.40%)

340

(21.98%)

73

(4.72%)

141

(9.11%)

72

(4.65%)

0 11 1,669 1,014 0 0 0 0 475 1,014 2,074 4.81 39.26 59

(3.54%)

36

(2.16%)

175

(10.49%)

68

(4.07%)

244

(14.62%)

45

(2.70%)

87

(5.21%)

53

(3.18%)

0 12 2,215 1,628 0 0 0 0 809 1,628 3,275 2.75 33.81 40

(1.81%)

27

(1.22%)

102

(4.60%)

48

(2.17%)

211

(9.53%)

57

(2.57%)

51

(2.30%)

52

(2.35%)

0 13 2,677 2,234 0 0 0 0 1,263 2,234 4,472 1.42 30.24 43

(1.61%)

19

(0.71%)

50

(1.87%)

26

(0.97%)

191

(7.13%)

35

(1.31%)

29

(1.08%)

31

(1.16%)

0 14 1,318 1,108 0 0 0 0 646 1,108 2,279 2.00 33.04 35

(2.66%)

10

(0.76%)

42

(3.19%)

21

(1.59%)

127

(9.64%)

25

(1.90%)

19

(1.44%)

21

(1.59%)

0 15 235 184 0 0 0 0 95 184 334 4.85 39.54 14

(5.96%)

7

(2.98%)

19

(8.09%)

7

(2.98%)

45

(19.15%)

14

(5.96%)

9

(3.83%)

10

(4.26%)

0 16 58 31 0 0 0 0 16 31 52 23.90 56.98 7

(12.07%)

2

(3.45%)

9

(15.52%)

2

(3.45%)

15

(25.86%)

10

(17.24%)

4

(6.90%)

5

(8.62%)

0 17 26 12 0 0 0 0 0 12 17 25.69 73.46 1

(3.85%)

3

(11.54%)

13

(50.00%)

7

(26.92%)

16

(61.54%)

4

(15.38%)

8

(30.77%)

8

(30.77%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 8 2 0 0 0 0 0 2 3 42.25 69.50 0

(0.00%)

0

(0.00%)

2

(25.00%)

0

(0.00%)

3

(37.50%)

2

(25.00%)

1

(12.50%)

1

(12.50%)

0 19 8 6 0 0 0 0 3 6 9 69.00 70.75 0

(0.00%)

0

(0.00%)

4

(50.00%)

1

(12.50%)

4

(50.00%)

5

(62.50%)

2

(25.00%)

1

(12.50%)

0 20 9 1 0 0 0 0 0 1 2 51.11 66.50 0

(0.00%)

0

(0.00%)

4

(44.44%)

1

(11.11%)

6

(66.67%)

2

(22.22%)

1

(11.11%)

1

(11.11%)

0 Total 73,536 18,969 0 0 0 0 9,226 18,969 32,833 3.71 39.68 3,062

(4.16%)

1,199

(1.63%)

7,223

(9.82%)

2,709

(3.68%)

9,022

(12.27%)

1,650

(2.24%)

3,202

(4.35%)

877

(1.19%)

1 1 89 11 89 0 3 3 6 11 17 0.79 25.47 2

(2.25%)

0

(0.00%)

4

(4.49%)

0

(0.00%)

5

(5.62%)

5

(5.62%)

1

(1.12%)

0

(0.00%)

1 2 1,112 124 1,112 4 49 58 53 124 169 1.65 34.52 69

(6.21%)

3

(0.27%)

89

(8.00%)

21

(1.89%)

100

(8.99%)

64

(5.76%)

25

(2.25%)

0

(0.00%)

1 3 6,396 1,094 6,396 20 302 351 420 1,094 1,574 1.74 34.13 422

(6.60%)

26

(0.41%)

377

(5.89%)

103

(1.61%)

471

(7.36%)

449

(7.02%)

158

(2.47%)

19

(0.30%)

1 4 9,046 2,030 9,046 46 657 776 796 2,030 3,190 2.89 45.27 864

(9.55%)

110

(1.22%)

1,355

(14.98%)

390

(4.31%)

1,655

(18.30%)

986

(10.90%)

623

(6.89%)

34

(0.38%)

1 5 8,864 2,607 8,864 58 904 1,111 1,014 2,607 4,339 5.60 53.32 883

(9.96%)

268

(3.02%)

2,272

(25.63%)

664

(7.49%)

2,684

(30.28%)

1,308

(14.76%)

1,302

(14.69%)

132

(1.49%)

1 6 13,972 4,264 13,972 110 1,292 1,652 1,537 4,264 7,419 4.45 46.27 1,234

(8.83%)

456

(3.26%)

2,840

(20.33%)

913

(6.53%)

3,292

(23.56%)

1,776

(12.71%)

1,650

(11.81%)

301

(2.15%)

1 7 23,970 6,244 23,970 167 2,241 2,929 2,298 6,244 10,588 3.93 43.81 2,113

(8.82%)

603

(2.52%)

3,805

(15.87%)

1,326

(5.53%)

4,703

(19.62%)

2,455

(10.24%)

2,061

(8.60%)

496

(2.07%)

1 8 22,586 6,612 22,586 204 3,076 4,001 2,287 6,612 11,792 4.79 48.34 2,579

(11.42%)

861

(3.81%)

4,704

(20.83%)

1,723

(7.63%)

5,914

(26.18%)

2,598

(11.50%)

2,623

(11.61%)

677

(3.00%)

1 9 16,768 6,123 16,768 161 3,172 4,238 2,055 6,123 11,373 6.22 55.87 2,366

(14.11%)

1,115

(6.65%)

5,073

(30.25%)

1,934

(11.53%)

6,103

(36.40%)

2,324

(13.86%)

3,148

(18.77%)

870

(5.19%)

1 10 12,311 5,470 12,311 142 2,937 4,080 1,684 5,470 10,373 7.67 62.88 1,907

(15.49%)

1,342

(10.90%)

4,895

(39.76%)

1,796

(14.59%)

5,666

(46.02%)

2,090

(16.98%)

3,173

(25.77%)

1,060

(8.61%)

1 11 12,209 7,017 12,209 170 3,082 4,632 2,628 7,017 13,953 6.71 60.54 1,606

(13.15%)

1,433

(11.74%)

4,634

(37.96%)

1,852

(15.17%)

5,406

(44.28%)

2,055

(16.83%)

3,086

(25.28%)

1,225

(10.03%)

1 12 13,671 9,382 13,671 224 3,421 5,333 4,021 9,382 18,752 5.37 53.15 1,559

(11.40%)

1,327

(9.71%)

4,068

(29.76%)

1,563

(11.43%)

5,020

(36.72%)

1,999

(14.62%)

2,697

(19.73%)

1,400

(10.24%)

1 13 10,813 7,803 10,813 199 3,244 5,285 3,296 7,803 16,814 5.15 54.17 1,539

(14.23%)

1,314

(12.15%)

3,343

(30.92%)

1,376

(12.73%)

4,374

(40.45%)

1,672

(15.46%)

2,346

(21.70%)

1,314

(12.15%)

1 14 6,949 5,019 6,949 141 2,990 5,198 1,928 5,019 11,614 6.18 57.62 1,218

(17.53%)

1,068

(15.37%)

2,573

(37.03%)

1,087

(15.64%)

3,311

(47.65%)

1,171

(16.85%)

1,781

(25.63%)

1,130

(16.26%)

1 15 4,272 3,135 4,272 129 2,432 4,775 1,152 3,135 7,646 7.42 61.24 791

(18.52%)

860

(20.13%)

1,877

(43.94%)

805

(18.84%)

2,316

(54.21%)

847

(19.83%)

1,315

(30.78%)

919

(21.51%)

1 16 2,611 1,950 2,611 83 1,784 4,117 683 1,950 5,214 7.42 63.22 567

(21.72%)

656

(25.12%)

1,295

(49.60%)

574

(21.98%)

1,559

(59.71%)

573

(21.95%)

964

(36.92%)

666

(25.51%)

1 17 1,678 1,280 1,678 73 1,262 3,478 446 1,280 3,721 8.26 62.57 447

(26.64%)

470

(28.01%)

849

(50.60%)

413

(24.61%)

1,032

(61.50%)

338

(20.14%)

648

(38.62%)

434

(25.86%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,136 908 1,136 59 911 2,982 295 908 2,877 9.28 62.83 336

(29.58%)

378

(33.27%)

595

(52.38%)

288

(25.35%)

712

(62.68%)

276

(24.30%)

462

(40.67%)

310

(27.29%)

1 19 811 668 811 53 672 2,739 232 668 2,406 9.03 61.66 295

(36.37%)

311

(38.35%)

439

(54.13%)

230

(28.36%)

510

(62.89%)

193

(23.80%)

368

(45.38%)

240

(29.59%)

1 20 912 807 912 117 821 5,405 315 807 4,550 7.55 54.56 402

(44.08%)

324

(35.53%)

491

(53.84%)

296

(32.46%)

573

(62.83%)

193

(21.16%)

393

(43.09%)

217

(23.79%)

1 Total 170,176 72,548 170,176 2,160 35,252 63,143 27,146 72,548 148,381 5.27 51.68 21,199

(12.46%)

12,925

(7.60%)

45,578

(26.78%)

17,354

(10.20%)

55,406

(32.56%)

23,372

(13.73%)

28,824

(16.94%)

11,444

(6.72%)
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Table A.37: ERMER: Risk bands statistics of the Pop Any-Acute Cond Main model (Sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-3;

Submodel: Cond Main

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 1 5,880 420 283 2 49 56 196 420 489 20.48 23.58 157

(2.67%)

5

(0.09%)

72

(1.22%)

35

(0.60%)

78

(1.33%)

45

(0.77%)

23

(0.39%)

2

(0.03%)

NA 2 16,091 2,106 2,066 20 256 297 870 2,106 3,035 3.66 31.09 445

(2.77%)

37

(0.23%)

539

(3.35%)

204

(1.27%)

639

(3.97%)

291

(1.81%)

334

(2.08%)

17

(0.11%)

NA 3 21,396 3,638 4,837 31 642 751 1,412 3,638 5,607 4.22 35.13 908

(4.24%)

120

(0.56%)

1,199

(5.60%)

515

(2.41%)

1,373

(6.42%)

668

(3.12%)

864

(4.04%)

76

(0.36%)

NA 4 22,121 4,174 5,854 75 910 1,149 1,561 4,174 6,471 4.91 43.44 1,173

(5.30%)

270

(1.22%)

1,965

(8.88%)

821

(3.71%)

2,358

(10.66%)

1,006

(4.55%)

1,393

(6.30%)

182

(0.82%)

NA 5 30,950 6,816 7,058 121 1,303 1,711 2,494 6,816 10,931 4.83 36.97 1,457

(4.71%)

440

(1.42%)

2,437

(7.87%)

1,100

(3.55%)

3,007

(9.72%)

1,233

(3.98%)

1,786

(5.77%)

280

(0.90%)

NA 6 33,453 7,595 9,652 124 1,804 2,346 2,703 7,595 12,384 5.13 41.29 1,902

(5.69%)

616

(1.84%)

2,766

(8.27%)

1,291

(3.86%)

3,587

(10.72%)

1,336

(3.99%)

1,973

(5.90%)

434

(1.30%)

NA 7 33,729 8,198 15,842 234 2,778 3,661 2,825 8,198 13,625 5.67 45.46 2,017

(5.98%)

778

(2.31%)

3,299

(9.78%)

1,565

(4.64%)

4,404

(13.06%)

1,454

(4.31%)

2,556

(7.58%)

662

(1.96%)

NA 8 28,978 8,666 17,220 175 3,192 4,210 2,944 8,666 14,949 7.08 50.08 2,018

(6.96%)

983

(3.39%)

3,689

(12.73%)

1,689

(5.83%)

5,091

(17.57%)

1,581

(5.46%)

3,084

(10.64%)

786

(2.71%)

NA 9 23,701 9,757 14,217 191 3,120 4,209 3,600 9,757 17,412 8.97 57.66 1,844

(7.78%)

1,284

(5.42%)

4,184

(17.65%)

1,849

(7.80%)

5,544

(23.39%)

1,693

(7.14%)

3,528

(14.89%)

936

(3.95%)

NA 10 17,591 8,455 12,186 189 3,242 4,568 2,931 8,455 15,174 10.00 64.27 1,520

(8.64%)

1,477

(8.40%)

4,088

(23.24%)

1,901

(10.81%)

5,211

(29.62%)

1,660

(9.44%)

3,649

(20.74%)

1,154

(6.56%)

NA 11 16,114 9,305 10,515 195 3,162 4,624 3,206 9,305 17,975 8.57 59.40 1,224

(7.60%)

1,442

(8.95%)

3,547

(22.01%)

1,773

(11.00%)

4,584

(28.45%)

1,473

(9.14%)

3,133

(19.44%)

1,409

(8.74%)

NA 12 17,333 11,932 9,495 191 3,212 4,867 5,083 11,932 24,280 6.18 51.12 1,136

(6.55%)

1,364

(7.87%)

2,847

(16.43%)

1,498

(8.64%)

3,985

(22.99%)

1,369

(7.90%)

2,750

(15.87%)

1,506

(8.69%)

NA 13 13,454 9,674 10,980 284 3,908 6,061 4,095 9,674 19,961 6.24 51.20 929

(6.91%)

1,250

(9.29%)

2,215

(16.46%)

1,187

(8.82%)

3,280

(24.38%)

1,116

(8.29%)

2,307

(17.15%)

1,477

(10.98%)

NA 14 10,101 7,633 9,702 198 3,449 5,620 3,397 7,633 16,097 5.76 50.13 868

(8.59%)

1,061

(10.50%)

1,676

(16.59%)

914

(9.05%)

2,612

(25.86%)

958

(9.48%)

1,763

(17.45%)

1,243

(12.31%)

NA 15 5,792 4,225 5,550 150 2,880 5,206 1,638 4,225 9,742 6.87 56.29 673

(11.62%)

885

(15.28%)

1,306

(22.55%)

746

(12.88%)

1,879

(32.44%)

645

(11.14%)

1,346

(23.24%)

1,007

(17.39%)

NA 16 3,193 2,372 3,121 89 2,058 4,325 820 2,372 6,246 8.69 60.77 510

(15.97%)

609

(19.07%)

934

(29.25%)

557

(17.44%)

1,269

(39.74%)

457

(14.31%)

960

(30.07%)

704

(22.05%)

NA 17 1,870 1,460 1,834 67 1,340 3,399 473 1,460 4,169 9.44 62.37 337

(18.02%)

455

(24.33%)

575

(30.75%)

361

(19.30%)

781

(41.76%)

289

(15.45%)

620

(33.16%)

462

(24.71%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 18 1,285 1,013 1,266 47 1,039 3,095 297 1,013 3,191 10.35 63.87 291

(22.65%)

420

(32.68%)

455

(35.41%)

307

(23.89%)

582

(45.29%)

216

(16.81%)

537

(41.79%)

380

(29.57%)

NA 19 844 715 841 56 736 2,784 236 715 2,608 10.84 61.80 204

(24.17%)

281

(33.29%)

331

(39.22%)

227

(26.90%)

420

(49.76%)

135

(16.00%)

341

(40.40%)

242

(28.67%)

NA 20 1,012 891 994 128 927 5,689 329 891 4,632 12.65 57.36 310

(30.63%)

394

(38.93%)

384

(37.94%)

272

(26.88%)

466

(46.05%)

140

(13.83%)

447

(44.17%)

247

(24.41%)

NA Total 304,888 109,045 143,513 2,567 40,007 68,628 41,110 109,045 208,978 6.53 46.65 19,923

(6.53%)

14,171

(4.65%)

38,508

(12.63%)

18,812

(6.17%)

51,150

(16.78%)

17,765

(5.83%)

33,394

(10.95%)

13,206

(4.33%)
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Table A.38: ERMER: Risk bands statistics of the Pop Any-Acute Cond Age-65p model (Sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-3;

Submodel: Cond Age-65p

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 12,721 1,348 1,307 13 178 199 607 1,348 1,891 7.93 28.94 355

(2.79%)

23

(0.18%)

291

(2.29%)

115

(0.90%)

361

(2.84%)

237

(1.86%)

185

(1.45%)

9

(0.07%)

0 2 18,719 3,292 5,242 32 674 800 1,299 3,292 5,165 4.50 33.32 751

(4.01%)

88

(0.47%)

728

(3.89%)

371

(1.98%)

892

(4.77%)

619

(3.31%)

638

(3.41%)

39

(0.21%)

0 3 14,813 2,466 3,538 53 655 871 905 2,466 3,948 4.40 31.00 843

(5.69%)

116

(0.78%)

694

(4.69%)

377

(2.55%)

894

(6.04%)

481

(3.25%)

584

(3.94%)

52

(0.35%)

0 4 16,702 2,347 4,091 87 900 1,202 879 2,347 3,677 3.86 32.84 920

(5.51%)

152

(0.91%)

717

(4.29%)

464

(2.78%)

1,054

(6.31%)

415

(2.48%)

554

(3.32%)

64

(0.38%)

0 5 24,214 4,103 4,519 65 892 1,268 1,565 4,103 6,401 3.07 28.20 1,221

(5.04%)

158

(0.65%)

695

(2.87%)

450

(1.86%)

1,128

(4.66%)

440

(1.82%)

484

(2.00%)

81

(0.33%)

0 6 31,589 5,686 10,252 154 1,706 2,285 2,151 5,686 9,296 3.05 31.57 1,578

(5.00%)

265

(0.84%)

1,078

(3.41%)

674

(2.13%)

1,766

(5.59%)

732

(2.32%)

831

(2.63%)

90

(0.28%)

0 7 24,512 5,308 13,628 160 2,356 3,038 1,934 5,308 8,763 4.89 34.76 1,673

(6.83%)

297

(1.21%)

1,148

(4.68%)

762

(3.11%)

1,998

(8.15%)

730

(2.98%)

1,020

(4.16%)

107

(0.44%)

0 8 13,459 3,784 9,200 104 2,036 2,711 1,226 3,784 6,756 6.50 38.40 1,439

(10.69%)

278

(2.07%)

1,029

(7.65%)

813

(6.04%)

1,617

(12.01%)

510

(3.79%)

935

(6.95%)

94

(0.70%)

0 9 7,620 2,875 6,007 75 1,669 2,307 973 2,875 5,369 7.35 40.82 1,026

(13.46%)

283

(3.71%)

867

(11.38%)

656

(8.61%)

1,180

(15.49%)

418

(5.49%)

802

(10.52%)

118

(1.55%)

0 10 6,137 3,016 4,110 70 1,390 2,147 1,188 3,016 5,783 5.68 39.24 740

(12.06%)

240

(3.91%)

651

(10.61%)

489

(7.97%)

913

(14.88%)

333

(5.43%)

663

(10.80%)

119

(1.94%)

0 11 5,210 3,308 3,151 63 1,269 2,111 1,526 3,308 6,371 4.93 37.51 504

(9.67%)

200

(3.84%)

520

(9.98%)

400

(7.68%)

833

(15.99%)

310

(5.95%)

505

(9.69%)

164

(3.15%)

0 12 4,533 3,068 2,725 80 1,187 2,020 1,311 3,068 6,261 4.35 36.18 403

(8.89%)

193

(4.26%)

416

(9.18%)

322

(7.10%)

674

(14.87%)

261

(5.76%)

381

(8.41%)

127

(2.80%)

0 13 8,462 6,365 2,815 79 1,057 1,904 2,908 6,365 13,543 2.00 31.82 311

(3.68%)

136

(1.61%)

341

(4.03%)

213

(2.52%)

711

(8.40%)

348

(4.11%)

305

(3.60%)

153

(1.81%)

0 14 10,820 9,055 5,574 203 1,742 3,002 4,604 9,055 19,421 1.62 30.49 348

(3.22%)

145

(1.34%)

262

(2.42%)

194

(1.79%)

873

(8.07%)

377

(3.48%)

238

(2.20%)

130

(1.20%)

0 15 6,883 5,845 6,426 148 1,889 3,198 3,036 5,845 12,861 1.73 31.17 418

(6.07%)

124

(1.80%)

192

(2.79%)

153

(2.22%)

751

(10.91%)

218

(3.17%)

198

(2.88%)

92

(1.34%)

0 16 3,344 2,836 3,293 84 1,414 2,617 1,381 2,836 6,986 2.79 32.43 371

(11.09%)

94

(2.81%)

172

(5.14%)

141

(4.22%)

525

(15.70%)

181

(5.41%)

159

(4.75%)

77

(2.30%)

0 17 1,518 1,278 1,507 42 939 2,145 561 1,278 3,915 3.41 34.02 272

(17.92%)

77

(5.07%)

143

(9.42%)

118

(7.77%)

290

(19.10%)

108

(7.11%)

112

(7.38%)

61

(4.02%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 825 683 817 37 599 1,744 259 683 2,283 4.72 38.22 173

(20.97%)

86

(10.42%)

129

(15.64%)

94

(11.39%)

214

(25.94%)

76

(9.21%)

117

(14.18%)

58

(7.03%)

0 19 619 515 616 28 514 1,824 184 515 1,970 5.54 39.85 140

(22.62%)

83

(13.41%)

122

(19.71%)

101

(16.32%)

185

(29.89%)

65

(10.50%)

101

(16.32%)

57

(9.21%)

0 20 819 712 802 93 723 4,321 272 712 3,723 12.59 41.49 238

(29.06%)

143

(17.46%)

189

(23.08%)

173

(21.12%)

253

(30.89%)

85

(10.38%)

195

(23.81%)

100

(12.21%)

0 Total 213,519 67,890 89,620 1,670 23,789 41,714 28,769 67,890 134,383 4.25 32.90 13,724

(6.43%)

3,181

(1.49%)

10,384

(4.86%)

7,080

(3.32%)

17,112

(8.01%)

6,944

(3.25%)

9,007

(4.22%)

1,792

(0.84%)

1 1 39 2 9 0 3 5 0 2 2 523.23 88.74 1

(2.56%)

0

(0.00%)

3

(7.69%)

1

(2.56%)

4

(10.26%)

0

(0.00%)

2

(5.13%)

1

(2.56%)

1 2 269 7 8 0 2 2 5 7 14 16.17 92.62 7

(2.60%)

0

(0.00%)

3

(1.12%)

3

(1.12%)

7

(2.60%)

2

(0.74%)

0

(0.00%)

0

(0.00%)

1 3 608 32 18 0 4 4 14 32 45 8.44 84.35 9

(1.48%)

1

(0.16%)

21

(3.45%)

9

(1.48%)

25

(4.11%)

15

(2.47%)

9

(1.48%)

1

(0.16%)

1 4 2,327 342 79 0 12 14 131 342 479 4.42 75.34 37

(1.59%)

29

(1.25%)

431

(18.52%)

99

(4.25%)

462

(19.85%)

54

(2.32%)

207

(8.90%)

8

(0.34%)

1 5 3,219 690 486 5 26 32 253 690 987 7.93 76.97 118

(3.67%)

124

(3.85%)

680

(21.12%)

197

(6.12%)

763

(23.70%)

171

(5.31%)

455

(14.13%)

66

(2.05%)

1 6 6,393 1,770 1,164 14 122 147 587 1,770 2,657 9.68 77.23 154

(2.41%)

195

(3.05%)

1,463

(22.88%)

396

(6.19%)

1,662

(26.00%)

420

(6.57%)

803

(12.56%)

156

(2.44%)

1 7 9,056 3,044 2,254 19 267 335 1,049 3,044 4,767 7.96 77.67 316

(3.49%)

468

(5.17%)

2,257

(24.92%)

770

(8.50%)

2,646

(29.22%)

574

(6.34%)

1,474

(16.28%)

362

(4.00%)

1 8 11,095 4,160 5,084 47 562 706 1,430 4,160 6,713 11.30 78.19 465

(4.19%)

587

(5.29%)

2,992

(26.97%)

875

(7.89%)

3,424

(30.86%)

1,120

(10.09%)

2,074

(18.69%)

534

(4.81%)

1 9 14,497 6,288 7,975 71 1,052 1,284 1,988 6,288 10,567 13.68 78.77 663

(4.57%)

846

(5.84%)

4,299

(29.65%)

1,338

(9.23%)

5,139

(35.45%)

1,803

(12.44%)

3,321

(22.91%)

818

(5.64%)

1 10 13,666 6,576 8,918 130 1,733 2,130 1,971 6,576 11,293 13.14 79.73 911

(6.67%)

1,404

(10.27%)

4,385

(32.09%)

1,820

(13.32%)

5,354

(39.18%)

1,821

(13.33%)

3,763

(27.54%)

1,410

(10.32%)

1 11 10,225 5,442 8,564 153 2,404 3,165 1,537 5,442 9,744 13.29 80.51 819

(8.01%)

1,467

(14.35%)

3,497

(34.20%)

1,621

(15.85%)

4,360

(42.64%)

1,558

(15.24%)

3,324

(32.51%)

1,685

(16.48%)

1 12 7,248 4,077 6,717 125 2,375 3,258 1,081 4,077 7,387 13.30 80.88 686

(9.46%)

1,410

(19.45%)

2,671

(36.85%)

1,393

(19.22%)

3,421

(47.20%)

1,165

(16.07%)

2,746

(37.89%)

1,654

(22.82%)

1 13 4,937 3,087 4,847 91 2,216 3,167 787 3,087 6,043 12.58 81.10 588

(11.91%)

1,283

(25.99%)

1,879

(38.06%)

1,046

(21.19%)

2,403

(48.67%)

782

(15.84%)

2,050

(41.52%)

1,548

(31.36%)

1 14 3,057 2,035 3,039 64 1,766 2,890 512 2,035 4,072 12.06 81.14 413

(13.51%)

951

(31.11%)

1,299

(42.49%)

696

(22.77%)

1,640

(53.65%)

512

(16.75%)

1,425

(46.61%)

1,100

(35.98%)

1 15 1,819 1,261 1,817 43 1,226 2,282 329 1,261 2,895 11.64 80.70 317

(17.43%)

698

(38.37%)

808

(44.42%)

503

(27.65%)

987

(54.26%)

302

(16.60%)

934

(51.35%)

735

(40.41%)

1 16 1,099 829 1,099 29 836 1,820 230 829 2,094 10.96 80.27 213

(19.38%)

496

(45.13%)

511

(46.50%)

345

(31.39%)

621

(56.51%)

176

(16.01%)

629

(57.23%)

494

(44.95%)

1 17 709 558 709 20 592 1,505 146 558 1,470 10.14 79.34 178

(25.11%)

359

(50.63%)

340

(47.95%)

228

(32.16%)

416

(58.67%)

135

(19.04%)

434

(61.21%)

312

(44.01%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 482 403 482 25 434 1,328 110 403 1,180 9.65 78.54 112

(23.24%)

257

(53.32%)

241

(50.00%)

166

(34.44%)

301

(62.45%)

88

(18.26%)

311

(64.52%)

238

(49.38%)

1 19 316 268 316 19 292 1,114 74 268 885 9.47 78.69 87

(27.53%)

197

(62.34%)

176

(55.70%)

123

(38.92%)

208

(65.82%)

51

(16.14%)

212

(67.09%)

153

(48.42%)

1 20 308 284 308 42 294 1,726 107 284 1,301 7.63 76.74 105

(34.09%)

218

(70.78%)

168

(54.55%)

103

(33.44%)

195

(63.31%)

72

(23.38%)

214

(69.48%)

139

(45.13%)

1 Total 91,369 41,155 53,893 897 16,218 26,914 12,341 41,155 74,595 11.87 79.15 6,199

(6.78%)

10,990

(12.03%)

28,124

(30.78%)

11,732

(12.84%)

34,038

(37.25%)

10,821

(11.84%)

24,387

(26.69%)

11,414

(12.49%)
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Table A.39: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Acute-12-month model (Sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-3;

Submodel: Cond Prior-Acute-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 5,901 404 181 3 17 40 194 404 477 12.95 23.67 162

(2.75%)

4

(0.07%)

70

(1.19%)

32

(0.54%)

76

(1.29%)

45

(0.76%)

24

(0.41%)

1

(0.02%)

0 2 14,857 1,908 1,192 13 152 170 804 1,908 2,717 3.09 30.94 390

(2.63%)

35

(0.24%)

489

(3.29%)

185

(1.25%)

570

(3.84%)

285

(1.92%)

291

(1.96%)

16

(0.11%)

0 3 20,927 3,237 2,632 21 398 461 1,298 3,237 4,780 3.53 34.52 887

(4.24%)

105

(0.50%)

1,062

(5.07%)

470

(2.25%)

1,197

(5.72%)

594

(2.84%)

726

(3.47%)

61

(0.29%)

0 4 18,521 3,371 3,115 46 581 729 1,323 3,371 5,240 4.99 45.61 864

(4.66%)

226

(1.22%)

1,737

(9.38%)

690

(3.73%)

2,012

(10.86%)

871

(4.70%)

1,148

(6.20%)

134

(0.72%)

0 5 28,328 5,989 3,669 75 763 983 2,280 5,989 9,430 4.42 35.36 1,309

(4.62%)

371

(1.31%)

1,953

(6.89%)

905

(3.19%)

2,380

(8.40%)

985

(3.48%)

1,411

(4.98%)

204

(0.72%)

0 6 26,390 6,131 5,323 99 1,084 1,394 2,221 6,131 10,006 5.35 43.97 1,478

(5.60%)

459

(1.74%)

2,196

(8.32%)

1,035

(3.92%)

2,752

(10.43%)

1,077

(4.08%)

1,505

(5.70%)

308

(1.17%)

0 7 25,124 6,128 6,392 138 1,646 2,068 2,241 6,128 9,914 5.82 48.82 1,231

(4.90%)

621

(2.47%)

2,682

(10.68%)

1,170

(4.66%)

3,384

(13.47%)

1,120

(4.46%)

1,999

(7.96%)

407

(1.62%)

0 8 19,525 5,947 6,955 145 1,937 2,479 2,191 5,947 10,119 7.59 54.81 1,091

(5.59%)

723

(3.70%)

2,669

(13.67%)

1,193

(6.11%)

3,503

(17.94%)

1,205

(6.17%)

2,173

(11.13%)

517

(2.65%)

0 9 14,760 6,001 6,152 130 2,053 2,699 2,341 6,001 10,438 9.65 61.44 888

(6.02%)

852

(5.77%)

2,683

(18.18%)

1,183

(8.01%)

3,530

(23.92%)

1,125

(7.62%)

2,100

(14.23%)

572

(3.88%)

0 10 10,319 5,145 4,595 136 1,814 2,498 2,096 5,145 9,126 9.98 63.93 623

(6.04%)

752

(7.29%)

2,102

(20.37%)

998

(9.67%)

2,781

(26.95%)

967

(9.37%)

1,740

(16.86%)

667

(6.46%)

0 11 8,957 5,294 3,670 139 1,799 2,423 2,004 5,294 10,289 8.20 55.81 408

(4.56%)

642

(7.17%)

1,552

(17.33%)

810

(9.04%)

2,086

(23.29%)

807

(9.01%)

1,351

(15.08%)

718

(8.02%)

0 12 8,847 6,180 3,209 148 1,644 2,499 2,807 6,180 12,658 5.14 45.56 299

(3.38%)

438

(4.95%)

923

(10.43%)

539

(6.09%)

1,418

(16.03%)

686

(7.75%)

945

(10.68%)

629

(7.11%)

0 13 8,019 6,398 3,102 153 1,741 2,716 3,232 6,398 12,921 4.06 41.58 265

(3.30%)

332

(4.14%)

654

(8.16%)

372

(4.64%)

1,198

(14.94%)

510

(6.36%)

636

(7.93%)

507

(6.32%)

0 14 3,088 2,219 2,471 140 1,842 2,812 1,086 2,219 4,718 6.87 51.24 187

(6.06%)

248

(8.03%)

450

(14.57%)

271

(8.78%)

730

(23.64%)

344

(11.14%)

448

(14.51%)

330

(10.69%)

0 15 1,497 990 1,219 52 1,052 1,979 462 990 2,019 7.92 56.31 109

(7.28%)

158

(10.55%)

264

(17.64%)

139

(9.29%)

378

(25.25%)

194

(12.96%)

279

(18.64%)

217

(14.50%)

0 16 685 455 590 25 538 1,332 165 455 999 10.73 63.96 64

(9.34%)

109

(15.91%)

157

(22.92%)

104

(15.18%)

217

(31.68%)

128

(18.69%)

168

(24.53%)

154

(22.48%)

0 17 325 217 288 19 262 786 75 217 522 14.39 70.50 33

(10.15%)

65

(20.00%)

100

(30.77%)

62

(19.08%)

134

(41.23%)

84

(25.85%)

93

(28.62%)

80

(24.62%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 212 146 180 10 159 549 35 146 333 19.24 73.71 21

(9.91%)

45

(21.23%)

67

(31.60%)

43

(20.28%)

92

(43.40%)

58

(27.36%)

62

(29.25%)

51

(24.06%)

0 19 109 72 96 7 87 377 19 72 227 38.12 73.08 9

(8.26%)

23

(21.10%)

36

(33.03%)

26

(23.85%)

43

(39.45%)

28

(25.69%)

37

(33.94%)

30

(27.52%)

0 20 57 28 42 2 32 216 10 28 116 81.74 59.46 7

(12.28%)

17

(29.82%)

20

(35.09%)

10

(17.54%)

25

(43.86%)

12

(21.05%)

17

(29.82%)

7

(12.28%)

0 Total 216,448 66,260 55,073 1,501 19,601 29,210 26,884 66,260 117,049 6.03 45.08 10,325

(4.77%)

6,225

(2.88%)

21,866

(10.10%)

10,237

(4.73%)

28,506

(13.17%)

11,125

(5.14%)

17,153

(7.92%)

5,610

(2.59%)

1 1 72 9 72 0 10 13 5 9 11 611.83 33.51 2

(2.78%)

0

(0.00%)

5

(6.94%)

1

(1.39%)

5

(6.94%)

0

(0.00%)

4

(5.56%)

0

(0.00%)

1 2 758 115 758 0 15 20 51 115 187 12.38 23.63 44

(5.80%)

2

(0.26%)

16

(2.11%)

4

(0.53%)

27

(3.56%)

13

(1.72%)

12

(1.58%)

0

(0.00%)

1 3 2,070 475 2,070 2 85 94 136 475 800 8.01 31.75 155

(7.49%)

13

(0.63%)

116

(5.60%)

67

(3.24%)

156

(7.54%)

66

(3.19%)

78

(3.77%)

6

(0.29%)

1 4 2,838 743 2,838 2 169 196 233 743 1,276 6.48 43.07 199

(7.01%)

55

(1.94%)

321

(11.31%)

123

(4.33%)

428

(15.08%)

148

(5.21%)

285

(10.04%)

50

(1.76%)

1 5 3,859 1,020 3,859 6 300 368 300 1,020 1,789 6.46 44.08 305

(7.90%)

104

(2.69%)

516

(13.37%)

208

(5.39%)

709

(18.37%)

277

(7.18%)

418

(10.83%)

90

(2.33%)

1 6 7,192 1,528 7,192 15 425 499 446 1,528 2,546 5.09 37.99 404

(5.62%)

148

(2.06%)

585

(8.13%)

268

(3.73%)

932

(12.96%)

349

(4.85%)

455

(6.33%)

171

(2.38%)

1 7 8,388 2,005 8,388 7 682 802 583 2,005 3,411 5.36 36.14 705

(8.40%)

172

(2.05%)

667

(7.95%)

341

(4.07%)

1,125

(13.41%)

379

(4.52%)

535

(6.38%)

203

(2.42%)

1 8 7,188 2,270 7,188 28 964 1,135 630 2,270 4,016 7.01 41.56 820

(11.41%)

250

(3.48%)

875

(12.17%)

465

(6.47%)

1,285

(17.88%)

422

(5.87%)

756

(10.52%)

273

(3.80%)

1 9 6,548 2,552 6,548 43 1,060 1,339 714 2,552 4,640 8.12 49.59 790

(12.06%)

337

(5.15%)

1,186

(18.11%)

533

(8.14%)

1,533

(23.41%)

434

(6.63%)

1,168

(17.84%)

304

(4.64%)

1 10 7,068 3,238 7,068 39 1,186 1,612 924 3,238 5,908 8.71 57.75 800

(11.32%)

494

(6.99%)

1,617

(22.88%)

722

(10.22%)

2,026

(28.66%)

509

(7.20%)

1,568

(22.18%)

431

(6.10%)

1 11 7,446 3,847 7,446 45 1,340 1,869 1,115 3,847 7,347 9.41 63.12 878

(11.79%)

768

(10.31%)

2,019

(27.12%)

935

(12.56%)

2,516

(33.79%)

665

(8.93%)

1,863

(25.02%)

613

(8.23%)

1 12 7,526 4,475 7,526 44 1,585 2,223 1,460 4,475 8,846 8.64 62.49 810

(10.76%)

940

(12.49%)

1,967

(26.14%)

978

(12.99%)

2,567

(34.11%)

650

(8.64%)

1,944

(25.83%)

845

(11.23%)

1 13 8,888 6,283 8,888 65 1,945 2,760 2,452 6,283 12,529 6.59 53.87 833

(9.37%)

955

(10.74%)

1,783

(20.06%)

919

(10.34%)

2,507

(28.21%)

708

(7.97%)

1,860

(20.93%)

1,007

(11.33%)

1 14 6,801 4,997 6,801 65 2,334 3,378 1,956 4,997 10,796 6.38 53.80 738

(10.85%)

918

(13.50%)

1,433

(21.07%)

815

(11.98%)

2,104

(30.94%)

612

(9.00%)

1,462

(21.50%)

957

(14.07%)

1 15 4,219 3,080 4,219 97 2,249 3,616 1,095 3,080 7,425 7.13 58.16 530

(12.56%)

762

(18.06%)

1,073

(25.43%)

626

(14.84%)

1,509

(35.77%)

473

(11.21%)

1,144

(27.12%)

808

(19.15%)

1 16 2,664 2,033 2,664 108 1,842 3,631 682 2,033 5,367 7.68 59.09 424

(15.92%)

539

(20.23%)

768

(28.83%)

466

(17.49%)

1,034

(38.81%)

287

(10.77%)

836

(31.38%)

584

(21.92%)

1 17 1,718 1,369 1,718 103 1,321 3,165 463 1,369 3,973 7.85 60.12 349

(20.31%)

435

(25.32%)

560

(32.60%)

312

(18.16%)

736

(42.84%)

212

(12.34%)

581

(33.82%)

418

(24.33%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,261 1,038 1,261 92 1,087 3,259 348 1,038 3,272 8.11 59.98 280

(22.20%)

369

(29.26%)

431

(34.18%)

305

(24.19%)

557

(44.17%)

169

(13.40%)

488

(38.70%)

322

(25.54%)

1 19 867 745 867 93 792 2,918 244 745 2,639 8.83 59.45 209

(24.11%)

292

(33.68%)

308

(35.52%)

204

(23.53%)

410

(47.29%)

135

(15.57%)

346

(39.91%)

250

(28.84%)

1 20 1,069 963 1,069 212 1,015 6,521 389 963 5,151 8.40 54.97 323

(30.22%)

393

(36.76%)

396

(37.04%)

283

(26.47%)

478

(44.71%)

132

(12.35%)

438

(40.97%)

264

(24.70%)

1 Total 88,440 42,785 88,440 1,066 20,406 39,418 14,226 42,785 91,929 7.78 50.47 9,598

(10.85%)

7,946

(8.98%)

16,642

(18.82%)

8,575

(9.70%)

22,644

(25.60%)

6,640

(7.51%)

16,241

(18.36%)

7,596

(8.59%)
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Table A.40: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Oper-12-month model (Sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-3;

Submodel: Cond Prior-Oper-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 71 8 32 1 12 13 1 8 8 1,013.7545.54 2

(2.82%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

1

(1.41%)

0

(0.00%)

0 2 5,582 470 19 0 7 12 234 470 579 4.11 14.45 149

(2.67%)

5

(0.09%)

18

(0.32%)

35

(0.63%)

23

(0.41%)

7

(0.13%)

6

(0.11%)

0

(0.00%)

0 3 11,746 1,295 173 1 9 10 525 1,295 1,739 2.49 35.41 627

(5.34%)

47

(0.40%)

527

(4.49%)

272

(2.32%)

586

(4.99%)

41

(0.35%)

272

(2.32%)

11

(0.09%)

0 4 16,703 2,727 739 5 153 162 1,164 2,727 3,923 2.68 27.89 839

(5.02%)

194

(1.16%)

767

(4.59%)

413

(2.47%)

882

(5.28%)

85

(0.51%)

566

(3.39%)

60

(0.36%)

0 5 18,123 3,911 892 8 183 214 1,457 3,911 6,304 3.86 39.25 1,080

(5.96%)

216

(1.19%)

1,147

(6.33%)

660

(3.64%)

1,373

(7.58%)

136

(0.75%)

720

(3.97%)

129

(0.71%)

0 6 14,935 3,974 2,094 18 362 408 1,472 3,974 6,524 5.71 53.19 1,108

(7.42%)

455

(3.05%)

1,951

(13.06%)

959

(6.42%)

2,319

(15.53%)

186

(1.25%)

1,316

(8.81%)

251

(1.68%)

0 7 10,752 3,607 2,838 23 649 758 1,228 3,607 6,183 9.10 55.61 906

(8.43%)

503

(4.68%)

1,628

(15.14%)

831

(7.73%)

1,971

(18.33%)

210

(1.95%)

1,399

(13.01%)

318

(2.96%)

0 8 9,235 3,686 3,023 34 819 1,017 1,219 3,686 6,425 12.56 61.54 767

(8.31%)

518

(5.61%)

1,688

(18.28%)

801

(8.67%)

2,143

(23.21%)

270

(2.92%)

1,439

(15.58%)

415

(4.49%)

0 9 7,617 3,499 3,033 39 858 1,027 1,103 3,499 6,097 14.06 68.63 632

(8.30%)

680

(8.93%)

1,672

(21.95%)

821

(10.78%)

2,175

(28.55%)

247

(3.24%)

1,447

(19.00%)

544

(7.14%)

0 10 5,659 2,837 3,104 56 969 1,205 850 2,837 5,171 13.08 68.07 453

(8.00%)

630

(11.13%)

1,294

(22.87%)

714

(12.62%)

1,733

(30.62%)

225

(3.98%)

1,159

(20.48%)

624

(11.03%)

0 11 4,908 2,723 3,084 64 1,126 1,471 903 2,723 5,039 10.35 62.80 398

(8.11%)

537

(10.94%)

1,008

(20.54%)

537

(10.94%)

1,386

(28.24%)

178

(3.63%)

1,049

(21.37%)

655

(13.35%)

0 12 2,955 1,628 2,474 50 1,035 1,433 458 1,628 3,055 12.22 70.74 296

(10.02%)

520

(17.60%)

810

(27.41%)

443

(14.99%)

1,090

(36.89%)

116

(3.93%)

795

(26.90%)

517

(17.50%)

0 13 2,587 1,616 1,944 43 972 1,393 515 1,616 3,269 9.85 63.42 225

(8.70%)

487

(18.82%)

560

(21.65%)

340

(13.14%)

770

(29.76%)

82

(3.17%)

666

(25.74%)

484

(18.71%)

0 14 5,052 3,657 1,239 30 776 1,187 1,442 3,657 7,749 3.27 39.13 162

(3.21%)

343

(6.79%)

355

(7.03%)

218

(4.32%)

557

(11.03%)

84

(1.66%)

414

(8.19%)

312

(6.18%)

0 15 1,914 1,204 757 15 493 830 456 1,204 2,651 5.55 48.12 143

(7.47%)

237

(12.38%)

219

(11.44%)

161

(8.41%)

339

(17.71%)

59

(3.08%)

259

(13.53%)

200

(10.45%)

0 16 1,265 863 892 22 478 875 332 863 2,177 4.61 44.71 98

(7.75%)

151

(11.94%)

141

(11.15%)

87

(6.88%)

200

(15.81%)

32

(2.53%)

195

(15.42%)

110

(8.70%)

0 17 2,914 2,424 830 41 543 1,026 1,372 2,424 4,892 1.56 32.98 103

(3.53%)

108

(3.71%)

88

(3.02%)

59

(2.02%)

257

(8.82%)

33

(1.13%)

106

(3.64%)

71

(2.44%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 1,801 1,576 527 45 376 878 833 1,576 3,405 1.70 31.17 72

(4.00%)

98

(5.44%)

78

(4.33%)

47

(2.61%)

148

(8.22%)

20

(1.11%)

92

(5.11%)

61

(3.39%)

0 19 6,958 6,330 866 107 533 1,202 3,596 6,330 13,234 0.79 29.70 134

(1.93%)

63

(0.91%)

48

(0.69%)

41

(0.59%)

466

(6.70%)

14

(0.20%)

63

(0.91%)

36

(0.52%)

0 20 1,753 1,595 1,638 106 1,132 2,650 948 1,595 4,212 2.73 34.47 130

(7.42%)

101

(5.76%)

78

(4.45%)

70

(3.99%)

200

(11.41%)

21

(1.20%)

93

(5.31%)

46

(2.62%)

0 Total 132,530 49,630 30,198 708 11,485 17,771 20,108 49,630 92,636 6.66 45.21 8,324

(6.28%)

5,893

(4.45%)

14,077

(10.62%)

7,509

(5.67%)

18,618

(14.05%)

2,046

(1.54%)

12,057

(9.10%)

4,844

(3.66%)

1 1 857 48 43 0 12 18 24 48 55 35.56 14.03 6

(0.70%)

0

(0.00%)

7

(0.82%)

3

(0.35%)

11

(1.28%)

5

(0.58%)

3

(0.35%)

0

(0.00%)

1 2 10,701 910 803 12 138 148 404 910 1,141 1.99 26.59 222

(2.07%)

10

(0.09%)

175

(1.64%)

62

(0.58%)

203

(1.90%)

92

(0.86%)

44

(0.41%)

2

(0.02%)

1 3 18,875 2,358 3,676 41 692 803 965 2,358 3,431 2.39 32.58 518

(2.74%)

30

(0.16%)

517

(2.74%)

161

(0.85%)

771

(4.08%)

305

(1.62%)

276

(1.46%)

14

(0.07%)

1 4 21,853 3,517 6,775 93 1,166 1,409 1,346 3,517 5,353 3.49 38.16 645

(2.95%)

87

(0.40%)

1,057

(4.84%)

407

(1.86%)

1,586

(7.26%)

645

(2.95%)

666

(3.05%)

60

(0.27%)

1 5 17,922 3,662 10,259 152 1,740 2,266 1,392 3,662 5,976 5.44 42.72 740

(4.13%)

191

(1.07%)

1,414

(7.89%)

508

(2.83%)

2,082

(11.62%)

1,063

(5.93%)

1,116

(6.23%)

126

(0.70%)

1 6 14,619 3,880 9,834 113 1,486 1,982 1,366 3,880 6,482 7.65 49.36 756

(5.17%)

262

(1.79%)

1,725

(11.80%)

685

(4.69%)

2,431

(16.63%)

1,298

(8.88%)

1,317

(9.01%)

204

(1.40%)

1 7 12,134 3,976 9,220 100 1,598 2,128 1,345 3,976 6,809 8.78 52.33 793

(6.54%)

387

(3.19%)

1,861

(15.34%)

752

(6.20%)

2,471

(20.36%)

1,295

(10.67%)

1,433

(11.81%)

329

(2.71%)

1 8 11,752 4,351 10,402 110 1,634 2,297 1,454 4,351 7,600 8.33 52.48 896

(7.62%)

405

(3.45%)

1,972

(16.78%)

799

(6.80%)

2,491

(21.20%)

1,454

(12.37%)

1,662

(14.14%)

498

(4.24%)

1 9 11,999 5,307 11,325 132 1,897 2,689 1,862 5,307 9,739 7.39 54.40 1,059

(8.83%)

577

(4.81%)

2,344

(19.53%)

991

(8.26%)

2,965

(24.71%)

1,565

(13.04%)

1,940

(16.17%)

577

(4.81%)

1 10 11,807 6,099 11,481 113 2,177 3,125 2,259 6,099 11,549 7.65 56.19 1,060

(8.98%)

701

(5.94%)

2,418

(20.48%)

1,090

(9.23%)

3,111

(26.35%)

1,556

(13.18%)

2,155

(18.25%)

655

(5.55%)

1 11 10,851 6,212 10,682 148 2,510 3,654 2,345 6,212 11,893 7.73 57.28 990

(9.12%)

835

(7.70%)

2,480

(22.86%)

1,143

(10.53%)

3,211

(29.59%)

1,554

(14.32%)

2,180

(20.09%)

760

(7.00%)

1 12 8,458 5,033 8,390 131 2,410 3,713 1,728 5,033 10,090 8.28 60.05 906

(10.71%)

866

(10.24%)

2,093

(24.75%)

1,064

(12.58%)

2,749

(32.50%)

1,262

(14.92%)

2,001

(23.66%)

881

(10.42%)

1 13 6,379 3,953 6,342 120 2,361 3,804 1,288 3,953 8,307 8.91 62.43 741

(11.62%)

841

(13.18%)

1,815

(28.45%)

926

(14.52%)

2,394

(37.53%)

1,066

(16.71%)

1,781

(27.92%)

898

(14.08%)

1 14 4,652 3,060 4,626 106 2,194 3,826 991 3,060 6,675 9.31 64.84 598

(12.85%)

774

(16.64%)

1,364

(29.32%)

768

(16.51%)

1,805

(38.80%)

824

(17.71%)

1,393

(29.94%)

895

(19.24%)

1 15 3,383 2,280 3,368 116 1,889 3,647 683 2,280 5,494 10.04 65.23 436

(12.89%)

660

(19.51%)

1,084

(32.04%)

577

(17.06%)

1,456

(43.04%)

644

(19.04%)

1,095

(32.37%)

770

(22.76%)

1 16 2,233 1,603 2,225 88 1,483 3,293 481 1,603 4,080 8.88 65.38 367

(16.44%)

510

(22.84%)

755

(33.81%)

445

(19.93%)

996

(44.60%)

420

(18.81%)

818

(36.63%)

595

(26.65%)

1 17 1,512 1,148 1,503 69 1,089 2,854 355 1,148 3,321 9.74 64.43 277

(18.32%)

396

(26.19%)

529

(34.99%)

342

(22.62%)

696

(46.03%)

286

(18.92%)

541

(35.78%)

452

(29.89%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 981 802 979 47 808 2,553 261 802 2,569 9.28 60.78 217

(22.12%)

296

(30.17%)

341

(34.76%)

236

(24.06%)

477

(48.62%)

173

(17.64%)

374

(38.12%)

288

(29.36%)

1 19 674 578 673 63 595 2,400 197 578 2,197 8.83 57.95 158

(23.44%)

213

(31.60%)

246

(36.50%)

173

(25.67%)

326

(48.37%)

122

(18.10%)

271

(40.21%)

210

(31.16%)

1 20 716 638 709 105 643 4,248 256 638 3,581 8.83 51.87 214

(29.89%)

237

(33.10%)

234

(32.68%)

171

(23.88%)

300

(41.90%)

90

(12.57%)

271

(37.85%)

148

(20.67%)

1 Total 172,358 59,415 113,315 1,859 28,522 50,857 21,002 59,415 116,342 6.44 47.75 11,599

(6.73%)

8,278

(4.80%)

24,431

(14.17%)

11,303

(6.56%)

32,532

(18.87%)

15,719

(9.12%)

21,337

(12.38%)

8,362

(4.85%)
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Table A.41: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Spells model (Sample-3 )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample-3;

Submodel: Cond Prior-Spells

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 6,504 471 0 0 0 0 219 471 550 9.07 25.85 175

(2.69%)

8

(0.12%)

114

(1.75%)

46

(0.71%)

123

(1.89%)

56

(0.86%)

43

(0.66%)

2

(0.03%)

0 2 14,548 1,936 0 0 0 0 825 1,936 2,804 3.18 31.53 361

(2.48%)

41

(0.28%)

491

(3.38%)

200

(1.37%)

571

(3.92%)

214

(1.47%)

333

(2.29%)

21

(0.14%)

0 3 18,205 2,742 0 0 0 0 1,161 2,742 4,076 3.61 34.19 784

(4.31%)

109

(0.60%)

892

(4.90%)

431

(2.37%)

1,053

(5.78%)

334

(1.83%)

641

(3.52%)

52

(0.29%)

0 4 16,078 2,670 0 0 0 0 1,048 2,670 3,979 4.80 43.08 707

(4.40%)

231

(1.44%)

1,253

(7.79%)

552

(3.43%)

1,468

(9.13%)

395

(2.46%)

865

(5.38%)

110

(0.68%)

0 5 22,856 4,567 0 0 0 0 1,793 4,567 7,176 4.36 33.43 1,037

(4.54%)

279

(1.22%)

1,274

(5.57%)

651

(2.85%)

1,607

(7.03%)

449

(1.96%)

914

(4.00%)

162

(0.71%)

0 6 20,731 4,621 0 0 0 0 1,688 4,621 7,402 5.11 43.01 999

(4.82%)

362

(1.75%)

1,485

(7.16%)

736

(3.55%)

1,890

(9.12%)

374

(1.80%)

997

(4.81%)

218

(1.05%)

0 7 18,313 4,273 0 0 0 0 1,595 4,273 6,918 5.69 49.80 748

(4.08%)

465

(2.54%)

1,807

(9.87%)

808

(4.41%)

2,317

(12.65%)

330

(1.80%)

1,324

(7.23%)

298

(1.63%)

0 8 12,110 3,579 0 0 0 0 1,408 3,579 6,084 7.87 55.16 569

(4.70%)

468

(3.86%)

1,513

(12.49%)

748

(6.18%)

2,031

(16.77%)

294

(2.43%)

1,282

(10.59%)

309

(2.55%)

0 9 8,322 3,468 0 0 0 0 1,388 3,468 5,767 10.54 61.42 414

(4.97%)

474

(5.70%)

1,304

(15.67%)

655

(7.87%)

1,830

(21.99%)

276

(3.32%)

1,097

(13.18%)

313

(3.76%)

0 10 5,973 3,251 0 0 0 0 1,485 3,251 5,656 10.19 59.47 249

(4.17%)

354

(5.93%)

925

(15.49%)

450

(7.53%)

1,378

(23.07%)

245

(4.10%)

756

(12.66%)

357

(5.98%)

0 11 4,275 2,525 0 0 0 0 1,018 2,525 4,783 9.41 54.34 130

(3.04%)

223

(5.22%)

531

(12.42%)

286

(6.69%)

839

(19.63%)

171

(4.00%)

484

(11.32%)

349

(8.16%)

0 12 5,111 3,531 0 0 0 0 1,516 3,531 7,085 4.75 40.54 92

(1.80%)

114

(2.23%)

296

(5.79%)

187

(3.66%)

535

(10.47%)

147

(2.88%)

269

(5.26%)

291

(5.69%)

0 13 5,825 4,955 0 0 0 0 2,593 4,955 10,223 2.16 33.01 64

(1.10%)

59

(1.01%)

136

(2.33%)

99

(1.70%)

471

(8.09%)

79

(1.36%)

155

(2.66%)

179

(3.07%)

0 14 1,919 1,514 0 0 0 0 847 1,514 2,931 4.44 40.59 57

(2.97%)

32

(1.67%)

87

(4.53%)

37

(1.93%)

264

(13.76%)

44

(2.29%)

78

(4.06%)

102

(5.32%)

0 15 319 120 0 0 0 0 66 120 220 11.16 63.74 10

(3.13%)

11

(3.45%)

31

(9.72%)

22

(6.90%)

66

(20.69%)

31

(9.72%)

37

(11.60%)

37

(11.60%)

0 16 165 85 0 0 0 0 44 85 143 12.33 54.65 3

(1.82%)

3

(1.82%)

14

(8.48%)

7

(4.24%)

28

(16.97%)

18

(10.91%)

12

(7.27%)

12

(7.27%)

0 17 41 18 0 0 0 0 9 18 30 23.27 72.00 0

(0.00%)

2

(4.88%)

5

(12.20%)

2

(4.88%)

12

(29.27%)

6

(14.63%)

7

(17.07%)

5

(12.20%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 41 21 0 0 0 0 3 21 34 30.39 80.58 0

(0.00%)

0

(0.00%)

7

(17.07%)

2

(4.88%)

11

(26.83%)

9

(21.95%)

2

(4.88%)

3

(7.32%)

0 19 22 7 0 0 0 0 2 7 13 88.64 76.68 3

(13.64%)

0

(0.00%)

8

(36.36%)

3

(13.64%)

9

(40.91%)

5

(22.73%)

4

(18.18%)

6

(27.27%)

0 20 17 3 0 0 0 0 0 3 3 228.06 46.24 1

(5.88%)

0

(0.00%)

3

(17.65%)

1

(5.88%)

3

(17.65%)

1

(5.88%)

1

(5.88%)

0

(0.00%)

0 Total 161,375 44,357 0 0 0 0 18,708 44,357 75,877 5.58 42.03 6,403

(3.97%)

3,235

(2.00%)

12,176

(7.55%)

5,923

(3.67%)

16,506

(10.23%)

3,478

(2.16%)

9,301

(5.76%)

2,826

(1.75%)

1 1 144 20 144 2 32 39 7 20 26 451.62 31.45 5

(3.47%)

0

(0.00%)

8

(5.56%)

4

(2.78%)

10

(6.94%)

0

(0.00%)

3

(2.08%)

1

(0.69%)

1 2 1,806 244 1,806 16 210 232 105 244 364 8.32 26.18 89

(4.93%)

3

(0.17%)

60

(3.32%)

10

(0.55%)

82

(4.54%)

90

(4.98%)

26

(1.44%)

0

(0.00%)

1 3 4,420 912 4,420 23 560 664 298 912 1,481 6.07 36.43 287

(6.49%)

27

(0.61%)

286

(6.47%)

93

(2.10%)

351

(7.94%)

289

(6.54%)

176

(3.98%)

17

(0.38%)

1 4 5,030 1,385 5,030 62 701 846 440 1,385 2,314 5.92 48.08 319

(6.34%)

68

(1.35%)

699

(13.90%)

238

(4.73%)

805

(16.00%)

512

(10.18%)

491

(9.76%)

54

(1.07%)

1 5 7,034 1,895 7,034 126 1,248 1,608 638 1,895 3,210 6.31 47.23 482

(6.85%)

159

(2.26%)

989

(14.06%)

380

(5.40%)

1,223

(17.39%)

733

(10.42%)

786

(11.17%)

120

(1.71%)

1 6 10,591 2,823 10,591 132 1,787 2,285 881 2,823 4,850 6.13 42.11 705

(6.66%)

245

(2.31%)

1,229

(11.60%)

515

(4.86%)

1,593

(15.04%)

964

(9.10%)

896

(8.46%)

198

(1.87%)

1 7 17,231 4,143 17,231 242 2,985 3,887 1,344 4,143 6,996 4.81 38.77 1,251

(7.26%)

304

(1.76%)

1,497

(8.69%)

707

(4.10%)

2,223

(12.90%)

1,206

(7.00%)

1,207

(7.00%)

347

(2.01%)

1 8 15,518 4,570 15,518 175 3,049 4,024 1,398 4,570 7,954 6.05 45.68 1,487

(9.58%)

442

(2.85%)

2,044

(13.17%)

930

(5.99%)

2,751

(17.73%)

1,200

(7.73%)

1,657

(10.68%)

419

(2.70%)

1 9 13,174 5,062 13,174 171 2,903 4,006 1,568 5,062 9,222 8.20 55.98 1,386

(10.52%)

736

(5.59%)

2,656

(20.16%)

1,131

(8.59%)

3,344

(25.38%)

1,415

(10.74%)

2,325

(17.65%)

563

(4.27%)

1 10 12,448 5,795 12,448 200 3,184 4,438 1,798 5,795 10,811 9.15 62.37 1,244

(9.99%)

1,013

(8.14%)

3,154

(25.34%)

1,357

(10.90%)

3,864

(31.04%)

1,396

(11.21%)

2,815

(22.61%)

787

(6.32%)

1 11 11,345 6,028 11,345 218 3,292 4,733 1,867 6,028 11,459 9.76 65.27 1,145

(10.09%)

1,216

(10.72%)

3,105

(27.37%)

1,538

(13.56%)

3,857

(34.00%)

1,398

(12.32%)

2,791

(24.60%)

1,067

(9.41%)

1 12 11,831 7,409 11,831 256 3,764 5,614 2,709 7,409 15,066 8.11 59.58 1,078

(9.11%)

1,314

(11.11%)

2,754

(23.28%)

1,392

(11.77%)

3,612

(30.53%)

1,312

(11.09%)

2,646

(22.36%)

1,264

(10.68%)

1 13 12,121 8,675 12,121 278 4,196 6,470 3,650 8,675 17,697 6.32 53.13 983

(8.11%)

1,246

(10.28%)

2,255

(18.60%)

1,192

(9.83%)

3,279

(27.05%)

1,127

(9.30%)

2,302

(18.99%)

1,364

(11.25%)

1 14 8,140 5,955 8,140 186 3,364 5,572 2,391 5,955 12,883 6.76 55.38 843

(10.36%)

1,114

(13.69%)

1,730

(21.25%)

965

(11.86%)

2,501

(30.72%)

908

(11.15%)

1,766

(21.70%)

1,201

(14.75%)

1 15 4,854 3,541 4,854 109 2,726 4,965 1,237 3,541 8,378 7.88 59.73 638

(13.14%)

882

(18.17%)

1,263

(26.02%)

744

(15.33%)

1,741

(35.87%)

604

(12.44%)

1,332

(27.44%)

973

(20.05%)

1 16 2,961 2,218 2,961 86 1,978 4,236 741 2,218 5,805 8.56 61.97 460

(15.54%)

635

(21.45%)

893

(30.16%)

549

(18.54%)

1,215

(41.03%)

415

(14.02%)

976

(32.96%)

702

(23.71%)

1 17 1,861 1,459 1,861 59 1,403 3,558 475 1,459 4,225 8.33 61.77 344

(18.48%)

473

(25.42%)

598

(32.13%)

354

(19.02%)

781

(41.97%)

273

(14.67%)

628

(33.75%)

467

(25.09%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,219 994 1,219 51 993 3,019 303 994 3,226 9.20 62.64 274

(22.48%)

402

(32.98%)

425

(34.86%)

310

(25.43%)

558

(45.78%)

194

(15.91%)

507

(41.59%)

356

(29.20%)

1 19 818 699 818 51 737 2,819 230 699 2,562 10.50 61.50 201

(24.57%)

284

(34.72%)

332

(40.59%)

220

(26.89%)

412

(50.37%)

123

(15.04%)

349

(42.67%)

249

(30.44%)

1 20 967 861 967 124 895 5,613 322 861 4,572 9.40 56.51 299

(30.92%)

373

(38.57%)

355

(36.71%)

260

(26.89%)

442

(45.71%)

128

(13.24%)

414

(42.81%)

231

(23.89%)

1 Total 143,513 64,688 143,513 2,567 40,007 68,628 22,402 64,688 133,101 7.60 51.80 13,520

(9.42%)

10,936

(7.62%)

26,332

(18.35%)

12,889

(8.98%)

34,644

(24.14%)

14,287

(9.96%)

24,093

(16.79%)

10,380

(7.23%)
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Table A.42: ERMER: Risk bands statistics of the Pop Any-Acute Cond Main model (Sample 1 train half 2 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 2 test half;

Submodel: Cond Main

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 1 2,330 170 140 2 10 42 85 170 245 9.62 26.96 67

(2.88%)

2

(0.09%)

73

(3.13%)

14

(0.60%)

81

(3.48%)

25

(1.07%)

11

(0.47%)

2

(0.09%)

NA 2 12,257 1,718 2,710 9 106 136 806 1,718 2,498 2.50 31.64 486

(3.97%)

36

(0.29%)

619

(5.05%)

172

(1.40%)

762

(6.22%)

256

(2.09%)

208

(1.70%)

14

(0.11%)

NA 3 15,765 2,867 8,055 40 452 546 1,264 2,867 4,397 3.23 40.59 1,027

(6.51%)

132

(0.84%)

1,775

(11.26%)

541

(3.43%)

2,134

(13.54%)

860

(5.46%)

831

(5.27%)

62

(0.39%)

NA 4 17,739 4,090 8,431 69 727 907 1,732 4,090 6,672 4.47 44.51 1,222

(6.89%)

324

(1.83%)

2,978

(16.79%)

902

(5.08%)

3,537

(19.94%)

1,463

(8.25%)

1,531

(8.63%)

177

(1.00%)

NA 5 21,459 5,352 8,732 85 938 1,244 2,219 5,352 8,831 4.34 42.64 1,435

(6.69%)

499

(2.33%)

3,519

(16.40%)

1,208

(5.63%)

4,120

(19.20%)

1,535

(7.15%)

1,797

(8.37%)

331

(1.54%)

NA 6 23,938 5,888 13,026 131 1,368 1,815 2,200 5,888 9,993 4.21 44.54 1,671

(6.98%)

620

(2.59%)

3,933

(16.43%)

1,402

(5.86%)

4,695

(19.61%)

1,822

(7.61%)

1,967

(8.22%)

516

(2.16%)

NA 7 25,492 6,526 18,841 164 1,970 2,702 2,360 6,526 11,094 4.47 45.75 2,192

(8.60%)

773

(3.03%)

4,362

(17.11%)

1,577

(6.19%)

5,356

(21.01%)

2,157

(8.46%)

2,145

(8.41%)

606

(2.38%)

NA 8 23,332 6,404 20,032 155 2,471 3,232 2,323 6,404 11,174 4.81 48.47 2,293

(9.83%)

876

(3.75%)

4,569

(19.58%)

1,651

(7.08%)

5,729

(24.55%)

2,213

(9.48%)

2,441

(10.46%)

709

(3.04%)

NA 9 18,788 6,268 16,657 163 2,737 3,680 2,268 6,268 11,336 5.74 53.23 2,211

(11.77%)

1,020

(5.43%)

4,792

(25.51%)

1,712

(9.11%)

5,828

(31.02%)

2,245

(11.95%)

2,785

(14.82%)

791

(4.21%)

NA 10 14,286 5,954 12,577 132 2,626 3,659 2,093 5,954 11,213 6.44 58.22 1,814

(12.70%)

1,139

(7.97%)

4,656

(32.59%)

1,747

(12.23%)

5,422

(37.95%)

2,025

(14.17%)

2,907

(20.35%)

921

(6.45%)

NA 11 13,127 6,962 10,093 126 2,498 3,685 2,662 6,962 13,776 6.07 57.31 1,595

(12.15%)

1,237

(9.42%)

4,267

(32.51%)

1,715

(13.06%)

4,978

(37.92%)

1,775

(13.52%)

2,823

(21.51%)

1,044

(7.95%)

NA 12 12,937 8,337 9,557 160 2,585 3,979 3,596 8,337 16,584 5.21 53.91 1,334

(10.31%)

1,223

(9.45%)

3,805

(29.41%)

1,419

(10.97%)

4,568

(35.31%)

1,795

(13.87%)

2,482

(19.19%)

1,162

(8.98%)

NA 13 11,282 7,722 10,596 189 2,822 4,407 3,297 7,722 15,772 5.14 53.04 1,256

(11.13%)

1,049

(9.30%)

3,219

(28.53%)

1,268

(11.24%)

4,061

(36.00%)

1,550

(13.74%)

2,143

(18.99%)

1,179

(10.45%)

NA 14 10,265 7,531 10,106 164 2,809 4,600 3,391 7,531 15,691 4.23 49.91 1,223

(11.91%)

991

(9.65%)

2,561

(24.95%)

1,039

(10.12%)

3,502

(34.12%)

1,421

(13.84%)

1,866

(18.18%)

1,062

(10.35%)

NA 15 7,332 5,521 7,275 120 2,728 4,643 2,388 5,521 12,107 4.62 51.97 1,047

(14.28%)

877

(11.96%)

2,078

(28.34%)

872

(11.89%)

2,778

(37.89%)

1,138

(15.52%)

1,546

(21.09%)

934

(12.74%)

NA 16 4,648 3,412 4,626 79 2,240 4,201 1,335 3,412 8,058 5.66 56.41 856

(18.42%)

786

(16.91%)

1,634

(35.15%)

744

(16.01%)

2,094

(45.05%)

832

(17.90%)

1,239

(26.66%)

748

(16.09%)

NA 17 3,004 2,212 2,998 71 1,842 4,051 788 2,212 5,773 5.87 59.53 669

(22.27%)

678

(22.57%)

1,188

(39.55%)

571

(19.01%)

1,476

(49.13%)

613

(20.41%)

939

(31.26%)

606

(20.17%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 18 2,076 1,578 2,072 64 1,432 3,645 530 1,578 4,419 6.60 62.25 528

(25.43%)

566

(27.26%)

980

(47.21%)

490

(23.60%)

1,158

(55.78%)

480

(23.12%)

813

(39.16%)

511

(24.61%)

NA 19 1,547 1,209 1,546 74 1,149 3,525 407 1,209 3,707 6.39 61.57 457

(29.54%)

499

(32.26%)

740

(47.83%)

399

(25.79%)

901

(58.24%)

339

(21.91%)

621

(40.14%)

395

(25.53%)

NA 20 2,108 1,796 2,106 163 1,742 8,444 628 1,796 7,874 7.34 57.98 878

(41.65%)

797

(37.81%)

1,053

(49.95%)

620

(29.41%)

1,248

(59.20%)

478

(22.68%)

931

(44.17%)

551

(26.14%)

NA Total 243,712 91,517 170,176 2,160 35,252 63,143 36,372 91,517 181,214 4.79 48.08 24,261

(9.95%)

14,124

(5.80%)

52,801

(21.67%)

20,063

(8.23%)

64,428

(26.44%)

25,022

(10.27%)

32,026

(13.14%)

12,321

(5.06%)
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Table A.43: ERMER: Risk bands statistics of the Pop Any-Acute Cond Age-65p model (Sample 1 train half 2 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 2 test half;

Submodel: Cond Age-65p

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 8,608 1,096 1,567 5 62 81 535 1,096 1,627 3.19 32.06 246

(2.86%)

22

(0.26%)

388

(4.51%)

76

(0.88%)

503

(5.84%)

147

(1.71%)

121

(1.41%)

5

(0.06%)

0 2 16,963 3,162 9,042 43 529 622 1,383 3,162 4,795 3.59 35.98 1,169

(6.89%)

127

(0.75%)

1,353

(7.98%)

448

(2.64%)

1,736

(10.23%)

758

(4.47%)

754

(4.44%)

40

(0.24%)

0 3 9,907 2,109 5,549 47 681 887 869 2,109 3,472 4.78 37.71 951

(9.60%)

179

(1.81%)

1,107

(11.17%)

530

(5.35%)

1,405

(14.18%)

747

(7.54%)

717

(7.24%)

73

(0.74%)

0 4 10,921 2,112 3,700 48 581 852 875 2,112 3,513 3.29 34.50 735

(6.73%)

151

(1.38%)

879

(8.05%)

403

(3.69%)

1,145

(10.48%)

516

(4.72%)

492

(4.51%)

97

(0.89%)

0 5 17,606 3,257 5,986 71 661 970 1,305 3,257 5,398 2.23 30.92 853

(4.84%)

164

(0.93%)

965

(5.48%)

413

(2.35%)

1,372

(7.79%)

474

(2.69%)

418

(2.37%)

92

(0.52%)

0 6 21,869 4,046 12,830 103 1,110 1,538 1,646 4,046 6,754 2.41 33.32 1,369

(6.26%)

185

(0.85%)

1,235

(5.65%)

563

(2.57%)

1,968

(9.00%)

589

(2.69%)

564

(2.58%)

97

(0.44%)

0 7 17,875 3,760 14,466 107 1,626 2,192 1,462 3,760 6,346 3.05 35.01 1,697

(9.49%)

216

(1.21%)

1,261

(7.05%)

603

(3.37%)

2,030

(11.36%)

857

(4.79%)

613

(3.43%)

97

(0.54%)

0 8 11,848 2,847 10,890 94 1,602 2,093 1,095 2,847 4,934 3.50 36.43 1,618

(13.66%)

226

(1.91%)

1,149

(9.70%)

611

(5.16%)

1,756

(14.82%)

905

(7.64%)

622

(5.25%)

96

(0.81%)

0 9 8,047 2,316 7,537 60 1,529 2,118 812 2,316 4,208 3.91 38.35 1,270

(15.78%)

212

(2.63%)

1,017

(12.64%)

624

(7.75%)

1,494

(18.57%)

803

(9.98%)

604

(7.51%)

93

(1.16%)

0 10 5,522 2,025 4,981 52 1,255 1,821 735 2,025 3,829 4.39 39.60 940

(17.02%)

252

(4.56%)

859

(15.56%)

519

(9.40%)

1,132

(20.50%)

675

(12.22%)

561

(10.16%)

116

(2.10%)

0 11 4,212 2,007 3,501 48 1,054 1,698 883 2,007 4,044 4.32 39.86 709

(16.83%)

226

(5.37%)

697

(16.55%)

448

(10.64%)

922

(21.89%)

508

(12.06%)

495

(11.75%)

126

(2.99%)

0 12 4,562 2,744 2,717 50 925 1,602 1,150 2,744 5,673 3.09 36.15 503

(11.03%)

187

(4.10%)

550

(12.06%)

372

(8.15%)

767

(16.81%)

407

(8.92%)

395

(8.66%)

113

(2.48%)

0 13 6,716 4,967 3,508 84 956 1,759 2,538 4,967 10,419 1.95 32.71 494

(7.36%)

180

(2.68%)

489

(7.28%)

301

(4.48%)

890

(13.25%)

336

(5.00%)

333

(4.96%)

112

(1.67%)

0 14 7,513 6,098 5,591 133 1,217 2,089 3,176 6,098 12,532 1.46 31.64 492

(6.55%)

148

(1.97%)

383

(5.10%)

219

(2.91%)

955

(12.71%)

396

(5.27%)

265

(3.53%)

99

(1.32%)

0 15 6,215 5,177 6,111 102 1,402 2,406 2,618 5,177 11,184 1.58 31.82 574

(9.24%)

134

(2.16%)

311

(5.00%)

201

(3.23%)

967

(15.56%)

453

(7.29%)

208

(3.35%)

80

(1.29%)

0 16 4,668 3,881 4,654 65 1,392 2,463 1,978 3,881 8,891 1.69 32.54 604

(12.94%)

123

(2.63%)

304

(6.51%)

217

(4.65%)

832

(17.82%)

414

(8.87%)

192

(4.11%)

68

(1.46%)

0 17 2,889 2,424 2,880 62 1,134 2,257 1,097 2,424 6,015 2.58 33.49 560

(19.38%)

123

(4.26%)

236

(8.17%)

196

(6.78%)

580

(20.08%)

328

(11.35%)

177

(6.13%)

73

(2.53%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 1,628 1,339 1,624 36 914 2,141 600 1,339 3,889 2.78 35.66 410

(25.18%)

107

(6.57%)

224

(13.76%)

183

(11.24%)

392

(24.08%)

244

(14.99%)

141

(8.66%)

56

(3.44%)

0 19 1,129 893 1,128 42 743 2,162 358 893 2,871 4.38 38.46 308

(27.28%)

119

(10.54%)

231

(20.46%)

166

(14.70%)

343

(30.38%)

209

(18.51%)

149

(13.20%)

63

(5.58%)

0 20 1,699 1,408 1,696 127 1,339 6,533 516 1,408 6,429 5.59 42.51 611

(35.96%)

294

(17.30%)

485

(28.55%)

393

(23.13%)

678

(39.91%)

314

(18.48%)

359

(21.13%)

139

(8.18%)

0 Total 170,397 57,668 109,958 1,379 20,712 38,284 25,631 57,668 116,823 3.03 34.65 16,113

(9.46%)

3,375

(1.98%)

14,123

(8.29%)

7,486

(4.39%)

21,867

(12.83%)

10,080

(5.92%)

8,180

(4.80%)

1,735

(1.02%)

1 1 6 1 1 0 0 0 1 1 2 145.33 80.00 0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

1

(16.67%)

0

(0.00%)

0

(0.00%)

1 2 70 5 5 0 2 7 0 5 7 55.01 86.69 0

(0.00%)

0

(0.00%)

3

(4.29%)

1

(1.43%)

3

(4.29%)

7

(10.00%)

0

(0.00%)

2

(2.86%)

1 3 318 13 17 1 3 4 9 13 19 4.53 85.76 8

(2.52%)

1

(0.31%)

22

(6.92%)

10

(3.14%)

24

(7.55%)

12

(3.77%)

3

(0.94%)

0

(0.00%)

1 4 867 133 76 1 3 3 64 133 187 3.80 75.56 22

(2.54%)

20

(2.31%)

241

(27.80%)

66

(7.61%)

247

(28.49%)

36

(4.15%)

70

(8.07%)

7

(0.81%)

1 5 1,330 263 304 0 24 29 106 263 366 7.03 75.36 50

(3.76%)

41

(3.08%)

446

(33.53%)

115

(8.65%)

466

(35.04%)

81

(6.09%)

131

(9.85%)

22

(1.65%)

1 6 4,055 991 868 5 65 78 407 991 1,595 3.91 76.05 137

(3.38%)

118

(2.91%)

1,373

(33.86%)

338

(8.34%)

1,457

(35.93%)

239

(5.89%)

447

(11.02%)

50

(1.23%)

1 7 5,222 1,563 2,837 7 164 196 636 1,563 2,571 6.35 76.92 290

(5.55%)

257

(4.92%)

2,120

(40.60%)

519

(9.94%)

2,252

(43.13%)

575

(11.01%)

903

(17.29%)

152

(2.91%)

1 8 8,429 2,916 6,545 32 366 430 1,060 2,916 4,795 7.78 77.30 545

(6.47%)

432

(5.13%)

3,893

(46.19%)

942

(11.18%)

4,175

(49.53%)

1,349

(16.00%)

1,782

(21.14%)

296

(3.51%)

1 9 11,336 4,662 9,276 60 809 995 1,636 4,662 8,010 10.00 78.83 897

(7.91%)

815

(7.19%)

5,641

(49.76%)

1,549

(13.66%)

6,162

(54.36%)

2,164

(19.09%)

3,060

(26.99%)

692

(6.10%)

1 10 10,788 4,922 9,712 80 1,264 1,547 1,541 4,922 8,587 10.02 80.17 1,037

(9.61%)

1,124

(10.42%)

5,850

(54.23%)

1,794

(16.63%)

6,460

(59.88%)

2,361

(21.89%)

3,428

(31.78%)

1,196

(11.09%)

1 11 9,202 4,677 8,931 81 1,804 2,212 1,369 4,677 8,627 10.03 81.00 1,089

(11.83%)

1,381

(15.01%)

5,265

(57.22%)

1,762

(19.15%)

5,869

(63.78%)

2,101

(22.83%)

3,294

(35.80%)

1,513

(16.44%)

1 12 6,965 3,947 6,930 75 1,970 2,574 1,151 3,947 7,487 9.93 81.56 954

(13.70%)

1,337

(19.20%)

4,185

(60.09%)

1,482

(21.28%)

4,674

(67.11%)

1,735

(24.91%)

2,842

(40.80%)

1,525

(21.90%)

1 13 4,884 2,928 4,877 91 1,923 2,773 824 2,928 5,728 9.98 82.12 789

(16.15%)

1,231

(25.20%)

2,999

(61.40%)

1,148

(23.51%)

3,392

(69.45%)

1,275

(26.11%)

2,231

(45.68%)

1,377

(28.19%)

1 14 3,362 2,121 3,359 76 1,673 2,749 582 2,121 4,328 9.45 82.02 582

(17.31%)

1,013

(30.13%)

2,165

(64.40%)

817

(24.30%)

2,409

(71.65%)

979

(29.12%)

1,693

(50.36%)

1,050

(31.23%)

1 15 2,228 1,495 2,227 55 1,343 2,478 437 1,495 3,306 8.96 81.66 462

(20.74%)

794

(35.64%)

1,448

(64.99%)

604

(27.11%)

1,630

(73.16%)

668

(29.98%)

1,209

(54.26%)

787

(35.32%)

1 16 1,517 1,067 1,517 46 990 2,146 285 1,067 2,551 8.75 81.23 363

(23.93%)

660

(43.51%)

1,023

(67.44%)

444

(29.27%)

1,152

(75.94%)

464

(30.59%)

883

(58.21%)

618

(40.74%)

1 17 963 704 963 43 699 1,651 188 704 1,658 9.19 80.90 254

(26.38%)

458

(47.56%)

685

(71.13%)

340

(35.31%)

752

(78.09%)

301

(31.26%)

594

(61.68%)

418

(43.41%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 750 581 750 37 583 1,595 158 581 1,529 8.14 80.87 224

(29.87%)

390

(52.00%)

544

(72.53%)

265

(35.33%)

594

(79.20%)

234

(31.20%)

528

(70.40%)

349

(46.53%)

1 19 464 372 464 29 377 1,270 113 372 1,110 8.51 79.81 178

(38.36%)

279

(60.13%)

337

(72.63%)

161

(34.70%)

366

(78.88%)

161

(34.70%)

305

(65.73%)

227

(48.92%)

1 20 559 488 559 62 478 2,122 174 488 1,928 7.08 78.62 267

(47.76%)

398

(71.20%)

438

(78.35%)

220

(39.36%)

477

(85.33%)

199

(35.60%)

443

(79.25%)

305

(54.56%)

1 Total 73,315 33,849 60,218 781 14,540 24,859 10,741 33,849 64,391 8.91 79.58 8,148

(11.11%)

10,749

(14.66%)

38,678

(52.76%)

12,577

(17.15%)

42,561

(58.05%)

14,942

(20.38%)

23,846

(32.53%)

10,586

(14.44%)



A
.6

.3
P

erform
an

ce
o
f

S
u

b
-M

o
d

els
315

Table A.44: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Acute-12-month model (Sample 1 train half 2 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 2 test half;

Submodel: Cond Prior-Acute-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 2,221 149 171 1 7 24 72 149 207 5.38 27.76 68

(3.06%)

3

(0.14%)

83

(3.74%)

19

(0.86%)

91

(4.10%)

29

(1.31%)

19

(0.86%)

3

(0.14%)

0 2 10,697 1,448 1,712 7 74 92 689 1,448 2,101 2.42 31.20 405

(3.79%)

37

(0.35%)

533

(4.98%)

144

(1.35%)

637

(5.95%)

190

(1.78%)

157

(1.47%)

10

(0.09%)

0 3 11,783 1,956 3,448 15 264 314 949 1,956 2,981 3.29 42.85 634

(5.38%)

112

(0.95%)

1,453

(12.33%)

432

(3.67%)

1,669

(14.16%)

585

(4.96%)

518

(4.40%)

43

(0.36%)

0 4 12,290 2,587 3,764 31 365 441 1,134 2,587 4,138 4.07 44.78 638

(5.19%)

194

(1.58%)

1,939

(15.78%)

564

(4.59%)

2,208

(17.97%)

848

(6.90%)

841

(6.84%)

87

(0.71%)

0 5 16,979 3,766 4,487 43 454 583 1,633 3,766 6,035 3.65 39.16 899

(5.29%)

277

(1.63%)

2,158

(12.71%)

765

(4.51%)

2,475

(14.58%)

940

(5.54%)

972

(5.72%)

154

(0.91%)

0 6 14,978 3,455 5,614 46 695 877 1,411 3,455 5,560 4.27 47.16 1,041

(6.95%)

340

(2.27%)

2,412

(16.10%)

856

(5.72%)

2,733

(18.25%)

980

(6.54%)

984

(6.57%)

193

(1.29%)

0 7 12,530 3,033 5,521 71 910 1,130 1,230 3,033 5,014 4.54 51.33 792

(6.32%)

382

(3.05%)

2,488

(19.86%)

796

(6.35%)

2,846

(22.71%)

1,033

(8.24%)

1,020

(8.14%)

236

(1.88%)

0 8 9,651 2,524 4,825 71 1,012 1,299 1,034 2,524 4,349 5.35 53.72 619

(6.41%)

396

(4.10%)

2,044

(21.18%)

697

(7.22%)

2,363

(24.48%)

1,082

(11.21%)

968

(10.03%)

258

(2.67%)

0 9 6,116 1,981 3,791 68 962 1,282 793 1,981 3,444 7.07 58.62 467

(7.64%)

374

(6.12%)

1,634

(26.72%)

601

(9.83%)

1,875

(30.66%)

928

(15.17%)

837

(13.69%)

265

(4.33%)

0 10 4,206 1,989 2,399 52 822 1,157 899 1,989 3,664 7.01 57.64 251

(5.97%)

281

(6.68%)

1,105

(26.27%)

434

(10.32%)

1,311

(31.17%)

706

(16.79%)

564

(13.41%)

245

(5.83%)

0 11 4,014 2,490 1,702 41 673 1,010 1,112 2,490 4,995 5.03 47.39 197

(4.91%)

221

(5.51%)

753

(18.76%)

319

(7.95%)

942

(23.47%)

493

(12.28%)

421

(10.49%)

207

(5.16%)

0 12 3,910 2,888 1,671 56 626 986 1,476 2,888 6,006 3.44 40.83 146

(3.73%)

122

(3.12%)

480

(12.28%)

178

(4.55%)

701

(17.93%)

428

(10.95%)

286

(7.31%)

177

(4.53%)

0 13 4,227 3,481 1,558 73 716 1,128 1,967 3,481 6,905 2.21 36.25 121

(2.86%)

100

(2.37%)

282

(6.67%)

114

(2.70%)

545

(12.89%)

321

(7.59%)

184

(4.35%)

147

(3.48%)

0 14 1,782 1,342 1,309 39 602 1,008 684 1,342 2,726 4.33 43.22 99

(5.56%)

76

(4.26%)

208

(11.67%)

92

(5.16%)

321

(18.01%)

249

(13.97%)

130

(7.30%)

94

(5.27%)

0 15 697 481 609 23 434 791 228 481 1,040 6.86 51.38 46

(6.60%)

33

(4.73%)

127

(18.22%)

61

(8.75%)

167

(23.96%)

183

(26.26%)

87

(12.48%)

58

(8.32%)

0 16 311 201 292 20 242 544 91 201 456 10.14 59.35 24

(7.72%)

29

(9.32%)

97

(31.19%)

51

(16.40%)

117

(37.62%)

111

(35.69%)

39

(12.54%)

34

(10.93%)

0 17 136 78 127 8 115 320 21 78 168 15.98 70.18 12

(8.82%)

18

(13.24%)

56

(41.18%)

29

(21.32%)

67

(49.26%)

69

(50.74%)

35

(25.74%)

21

(15.44%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 93 63 89 4 75 253 22 63 148 11.67 70.86 11

(11.83%)

16

(17.20%)

49

(52.69%)

20

(21.51%)

54

(58.06%)

51

(54.84%)

28

(30.11%)

22

(23.66%)

0 19 54 35 52 4 43 169 9 35 69 10.30 68.02 3

(5.56%)

8

(14.81%)

24

(44.44%)

8

(14.81%)

29

(53.70%)

22

(40.74%)

19

(35.19%)

8

(14.81%)

0 20 46 31 44 3 35 176 10 31 70 12.37 58.09 5

(10.87%)

13

(28.26%)

19

(41.30%)

11

(23.91%)

20

(43.48%)

25

(54.35%)

11

(23.91%)

8

(17.39%)

0 Total 116,721 33,978 43,185 676 9,126 13,584 15,464 33,978 60,076 4.26 44.88 6,478

(5.55%)

3,032

(2.60%)

17,944

(15.37%)

6,191

(5.30%)

21,171

(18.14%)

9,273

(7.94%)

8,120

(6.96%)

2,270

(1.94%)

1 1 68 10 68 0 4 5 2 10 12 137.06 23.69 4

(5.88%)

0

(0.00%)

3

(4.41%)

0

(0.00%)

3

(4.41%)

3

(4.41%)

0

(0.00%)

1

(1.47%)

1 2 2,041 352 2,041 1 20 20 127 352 509 3.73 24.78 187

(9.16%)

3

(0.15%)

55

(2.69%)

28

(1.37%)

92

(4.51%)

57

(2.79%)

35

(1.71%)

4

(0.20%)

1 3 4,636 1,042 4,636 5 177 191 382 1,042 1,677 3.89 37.27 514

(11.09%)

39

(0.84%)

494

(10.66%)

155

(3.34%)

657

(14.17%)

300

(6.47%)

297

(6.41%)

25

(0.54%)

1 4 5,094 1,549 5,094 11 362 412 621 1,549 2,635 5.51 49.87 584

(11.46%)

133

(2.61%)

1,263

(24.79%)

385

(7.56%)

1,529

(30.02%)

581

(11.41%)

798

(15.67%)

98

(1.92%)

1 5 6,410 1,948 6,410 29 467 562 681 1,948 3,343 5.35 49.38 648

(10.11%)

281

(4.38%)

1,652

(25.77%)

553

(8.63%)

1,996

(31.14%)

738

(11.51%)

1,033

(16.12%)

255

(3.98%)

1 6 11,844 3,073 11,844 32 668 825 1,010 3,073 5,330 3.96 41.05 1,006

(8.49%)

397

(3.35%)

1,965

(16.59%)

724

(6.11%)

2,603

(21.98%)

1,042

(8.80%)

1,176

(9.93%)

365

(3.08%)

1 7 13,194 3,602 13,194 53 1,144 1,350 1,218 3,602 6,412 4.46 41.35 1,438

(10.90%)

459

(3.48%)

1,958

(14.84%)

797

(6.04%)

2,774

(21.02%)

1,106

(8.38%)

1,177

(8.92%)

441

(3.34%)

1 8 11,461 3,495 11,461 66 1,507 1,893 1,135 3,495 6,315 5.10 45.74 1,454

(12.69%)

484

(4.22%)

2,267

(19.78%)

875

(7.63%)

2,990

(26.09%)

1,074

(9.37%)

1,366

(11.92%)

461

(4.02%)

1 9 9,907 3,436 9,907 61 1,616 2,124 1,073 3,436 6,242 6.03 52.56 1,434

(14.47%)

564

(5.69%)

2,709

(27.34%)

1,028

(10.38%)

3,274

(33.05%)

1,220

(12.31%)

1,753

(17.69%)

522

(5.27%)

1 10 9,024 3,660 9,024 76 1,698 2,359 1,106 3,660 6,892 6.60 58.65 1,399

(15.50%)

744

(8.24%)

3,158

(35.00%)

1,170

(12.97%)

3,662

(40.58%)

1,226

(13.59%)

2,145

(23.77%)

658

(7.29%)

1 11 8,457 4,043 8,457 77 1,773 2,571 1,326 4,043 7,842 6.63 63.18 1,259

(14.89%)

950

(11.23%)

3,415

(40.38%)

1,285

(15.19%)

3,880

(45.88%)

1,255

(14.84%)

2,399

(28.37%)

818

(9.67%)

1 12 9,189 5,450 9,189 93 1,832 2,745 1,987 5,450 10,446 5.67 58.92 1,266

(13.78%)

1,022

(11.12%)

3,313

(36.05%)

1,236

(13.45%)

3,894

(42.38%)

1,325

(14.42%)

2,152

(23.42%)

934

(10.16%)

1 13 9,626 6,516 9,626 96 2,068 3,062 2,675 6,516 13,299 4.83 54.64 1,243

(12.91%)

1,036

(10.76%)

3,010

(31.27%)

1,174

(12.20%)

3,738

(38.83%)

1,330

(13.82%)

2,103

(21.85%)

1,048

(10.89%)

1 14 7,979 5,696 7,979 120 2,367 3,666 2,416 5,696 12,097 4.58 54.36 1,147

(14.38%)

981

(12.29%)

2,437

(30.54%)

975

(12.22%)

3,195

(40.04%)

1,178

(14.76%)

1,804

(22.61%)

948

(11.88%)

1 15 5,925 4,296 5,925 113 2,418 4,020 1,692 4,296 9,599 4.95 55.87 984

(16.61%)

879

(14.84%)

1,976

(33.35%)

871

(14.70%)

2,578

(43.51%)

964

(16.27%)

1,498

(25.28%)

874

(14.75%)

1 16 3,927 2,913 3,927 116 2,083 3,906 1,105 2,913 7,122 5.41 58.17 785

(19.99%)

769

(19.58%)

1,518

(38.66%)

676

(17.21%)

1,909

(48.61%)

707

(18.00%)

1,144

(29.13%)

701

(17.85%)

1 17 2,820 2,076 2,820 102 1,794 4,051 753 2,076 5,395 5.48 59.92 640

(22.70%)

660

(23.40%)

1,191

(42.23%)

558

(19.79%)

1,461

(51.81%)

533

(18.90%)

930

(32.98%)

595

(21.10%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,926 1,491 1,926 107 1,347 3,584 525 1,491 4,269 5.86 59.90 499

(25.91%)

506

(26.27%)

856

(44.44%)

453

(23.52%)

1,058

(54.93%)

391

(20.30%)

719

(37.33%)

450

(23.36%)

1 19 1,511 1,199 1,511 100 1,125 3,591 431 1,199 3,842 6.07 59.46 467

(30.91%)

478

(31.63%)

685

(45.33%)

361

(23.89%)

832

(55.06%)

308

(20.38%)

574

(37.99%)

363

(24.02%)

1 20 1,952 1,692 1,952 226 1,656 8,622 643 1,692 7,860 6.77 55.30 825

(42.26%)

707

(36.22%)

932

(47.75%)

568

(29.10%)

1,132

(57.99%)

411

(21.06%)

803

(41.14%)

490

(25.10%)

1 Total 126,991 57,539 126,991 1,484 26,126 49,559 20,908 57,539 121,138 5.29 51.02 17,783

(14.00%)

11,092

(8.73%)

34,857

(27.45%)

13,872

(10.92%)

43,257

(34.06%)

15,749

(12.40%)

23,906

(18.82%)

10,051

(7.91%)
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Table A.45: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Oper-12-month model (Sample 1 train half 2 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 2 test half;

Submodel: Cond Prior-Oper-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 16 4 10 0 2 3 0 4 4 793.94 38.56 0

(0.00%)

0

(0.00%)

0

(0.00%)

1

(6.25%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0 2 1,006 84 3 0 2 2 50 84 93 6.48 21.65 17

(1.69%)

0

(0.00%)

8

(0.80%)

4

(0.40%)

9

(0.89%)

0

(0.00%)

1

(0.10%)

0

(0.00%)

0 3 3,999 314 81 2 4 4 172 314 399 2.78 32.33 175

(4.38%)

12

(0.30%)

199

(4.98%)

103

(2.58%)

212

(5.30%)

15

(0.38%)

45

(1.13%)

4

(0.10%)

0 4 8,477 1,297 300 0 8 10 613 1,297 1,935 1.64 26.73 324

(3.82%)

46

(0.54%)

329

(3.88%)

152

(1.79%)

340

(4.01%)

34

(0.40%)

88

(1.04%)

8

(0.09%)

0 5 10,509 1,934 686 2 51 60 827 1,934 3,058 1.95 37.12 673

(6.40%)

72

(0.69%)

821

(7.81%)

388

(3.69%)

865

(8.23%)

60

(0.57%)

221

(2.10%)

25

(0.24%)

0 6 7,203 1,632 1,992 7 156 181 699 1,632 2,669 3.12 48.03 689

(9.57%)

191

(2.65%)

1,178

(16.35%)

501

(6.96%)

1,237

(17.17%)

88

(1.22%)

425

(5.90%)

57

(0.79%)

0 7 4,842 1,325 2,436 13 309 356 536 1,325 2,251 5.01 49.60 525

(10.84%)

206

(4.25%)

934

(19.29%)

436

(9.00%)

989

(20.43%)

80

(1.65%)

456

(9.42%)

93

(1.92%)

0 8 3,382 1,203 2,087 17 367 420 441 1,203 2,083 7.50 56.53 411

(12.15%)

178

(5.26%)

817

(24.16%)

373

(11.03%)

874

(25.84%)

83

(2.45%)

438

(12.95%)

124

(3.67%)

0 9 2,460 921 1,732 13 361 431 317 921 1,659 8.79 62.59 288

(11.71%)

208

(8.46%)

751

(30.53%)

322

(13.09%)

825

(33.54%)

63

(2.56%)

405

(16.46%)

146

(5.93%)

0 10 1,826 814 1,466 10 322 392 256 814 1,495 9.21 66.25 208

(11.39%)

186

(10.19%)

604

(33.08%)

259

(14.18%)

687

(37.62%)

57

(3.12%)

357

(19.55%)

163

(8.93%)

0 11 1,467 718 1,097 7 296 390 256 718 1,334 7.77 61.70 157

(10.70%)

165

(11.25%)

453

(30.88%)

207

(14.11%)

511

(34.83%)

48

(3.27%)

268

(18.27%)

162

(11.04%)

0 12 960 510 843 9 237 322 172 510 954 8.79 67.89 114

(11.88%)

163

(16.98%)

346

(36.04%)

155

(16.15%)

395

(41.15%)

32

(3.33%)

227

(23.65%)

140

(14.58%)

0 13 1,216 824 610 6 258 368 323 824 1,793 4.32 47.60 73

(6.00%)

147

(12.09%)

231

(19.00%)

116

(9.54%)

274

(22.53%)

27

(2.22%)

146

(12.01%)

124

(10.20%)

0 14 2,255 1,587 411 5 210 297 687 1,587 3,388 2.32 35.03 81

(3.59%)

96

(4.26%)

152

(6.74%)

77

(3.41%)

248

(11.00%)

38

(1.69%)

101

(4.48%)

78

(3.46%)

0 15 829 497 331 10 156 292 195 497 1,033 3.46 44.07 69

(8.32%)

73

(8.81%)

88

(10.62%)

42

(5.07%)

134

(16.16%)

28

(3.38%)

62

(7.48%)

55

(6.63%)

0 16 626 463 540 12 171 280 202 463 1,138 2.84 37.80 70

(11.18%)

49

(7.83%)

63

(10.06%)

45

(7.19%)

93

(14.86%)

16

(2.56%)

48

(7.67%)

35

(5.59%)

0 17 1,030 869 404 26 257 428 501 869 1,793 1.56 32.45 55

(5.34%)

49

(4.76%)

54

(5.24%)

33

(3.20%)

104

(10.10%)

7

(0.68%)

44

(4.27%)

24

(2.33%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 1,189 1,061 237 10 142 322 637 1,061 2,226 0.77 29.22 46

(3.87%)

50

(4.21%)

42

(3.53%)

26

(2.19%)

98

(8.24%)

7

(0.59%)

46

(3.87%)

26

(2.19%)

0 19 3,984 3,587 610 50 265 546 2,131 3,587 7,152 0.54 28.51 113

(2.84%)

35

(0.88%)

36

(0.90%)

16

(0.40%)

272

(6.83%)

9

(0.23%)

26

(0.65%)

23

(0.58%)

0 20 857 785 836 31 473 1,042 426 785 1,890 1.41 30.78 92

(10.74%)

44

(5.13%)

42

(4.90%)

30

(3.50%)

92

(10.74%)

5

(0.58%)

35

(4.08%)

21

(2.45%)

0 Total 58,133 20,429 16,712 230 4,047 6,146 9,441 20,429 38,347 3.72 40.94 4,180

(7.19%)

1,970

(3.39%)

7,148

(12.30%)

3,286

(5.65%)

8,259

(14.21%)

697

(1.20%)

3,439

(5.92%)

1,308

(2.25%)

1 1 1,085 60 37 1 6 7 34 60 88 6.70 25.01 18

(1.66%)

1

(0.09%)

29

(2.67%)

4

(0.37%)

31

(2.86%)

13

(1.20%)

2

(0.18%)

1

(0.09%)

1 2 8,691 1,066 1,092 0 57 73 485 1,066 1,524 1.63 28.76 289

(3.33%)

13

(0.15%)

288

(3.31%)

89

(1.02%)

347

(3.99%)

101

(1.16%)

78

(0.90%)

7

(0.08%)

1 3 13,208 2,166 5,634 28 323 398 1,003 2,166 3,371 2.24 37.28 696

(5.27%)

67

(0.51%)

1,057

(8.00%)

284

(2.15%)

1,295

(9.80%)

462

(3.50%)

411

(3.11%)

28

(0.21%)

1 4 15,952 3,213 8,561 40 664 785 1,352 3,213 5,150 3.36 41.98 940

(5.89%)

166

(1.04%)

2,042

(12.80%)

560

(3.51%)

2,553

(16.00%)

1,057

(6.63%)

1,040

(6.52%)

82

(0.51%)

1 5 16,596 3,970 12,805 99 1,256 1,530 1,602 3,970 6,572 4.79 45.59 1,176

(7.09%)

339

(2.04%)

2,865

(17.26%)

887

(5.34%)

3,654

(22.02%)

1,675

(10.09%)

1,593

(9.60%)

219

(1.32%)

1 6 18,134 4,783 15,810 113 1,585 2,048 1,849 4,783 8,045 5.25 47.45 1,396

(7.70%)

507

(2.80%)

3,518

(19.40%)

1,055

(5.82%)

4,529

(24.98%)

2,004

(11.05%)

1,859

(10.25%)

411

(2.27%)

1 7 17,243 4,910 16,059 131 1,775 2,354 1,750 4,910 8,456 5.33 48.85 1,632

(9.46%)

600

(3.48%)

3,715

(21.54%)

1,221

(7.08%)

4,765

(27.63%)

2,096

(12.16%)

2,043

(11.85%)

547

(3.17%)

1 8 15,658 5,201 15,044 113 2,012 2,689 1,811 5,201 9,256 5.92 53.72 1,732

(11.06%)

785

(5.01%)

4,232

(27.03%)

1,414

(9.03%)

5,088

(32.49%)

2,355

(15.04%)

2,361

(15.08%)

704

(4.50%)

1 9 14,094 5,883 13,783 127 2,094 2,862 2,111 5,883 10,905 6.31 56.50 1,721

(12.21%)

913

(6.48%)

4,440

(31.50%)

1,528

(10.84%)

5,213

(36.99%)

2,290

(16.25%)

2,637

(18.71%)

850

(6.03%)

1 10 13,567 6,758 13,427 130 2,404 3,389 2,594 6,758 12,827 6.01 56.81 1,758

(12.96%)

1,054

(7.77%)

4,457

(32.85%)

1,576

(11.62%)

5,217

(38.45%)

2,276

(16.78%)

2,829

(20.85%)

920

(6.78%)

1 11 12,315 6,887 12,244 143 2,558 3,799 2,719 6,887 13,499 5.88 56.89 1,606

(13.04%)

1,140

(9.26%)

4,061

(32.98%)

1,581

(12.84%)

4,920

(39.95%)

2,134

(17.33%)

2,702

(21.94%)

1,015

(8.24%)

1 12 10,595 6,518 10,572 164 2,751 4,288 2,567 6,518 13,025 5.99 58.16 1,426

(13.46%)

1,185

(11.18%)

3,600

(33.98%)

1,402

(13.23%)

4,449

(41.99%)

1,916

(18.08%)

2,423

(22.87%)

1,116

(10.53%)

1 13 8,148 5,215 8,127 129 2,639 4,216 1,945 5,215 11,015 6.31 60.02 1,248

(15.32%)

1,039

(12.75%)

3,021

(37.08%)

1,198

(14.70%)

3,739

(45.89%)

1,604

(19.69%)

2,126

(26.09%)

1,132

(13.89%)

1 14 6,091 4,025 6,078 144 2,437 4,216 1,449 4,025 8,910 6.69 61.21 1,040

(17.07%)

954

(15.66%)

2,425

(39.81%)

989

(16.24%)

2,994

(49.15%)

1,248

(20.49%)

1,762

(28.93%)

999

(16.40%)

1 15 4,334 2,981 4,329 102 2,104 3,998 1,045 2,981 6,961 6.59 62.27 750

(17.31%)

810

(18.69%)

1,797

(41.46%)

807

(18.62%)

2,206

(50.90%)

921

(21.25%)

1,336

(30.83%)

787

(18.16%)

1 16 3,220 2,258 3,218 95 1,865 3,897 801 2,258 5,563 6.29 61.35 639

(19.84%)

711

(22.08%)

1,312

(40.75%)

610

(18.94%)

1,645

(51.09%)

745

(23.14%)

1,041

(32.33%)

706

(21.93%)

1 17 2,200 1,625 2,198 67 1,376 3,354 536 1,625 4,365 6.39 61.52 528

(24.00%)

544

(24.73%)

938

(42.64%)

488

(22.18%)

1,166

(53.00%)

475

(21.59%)

765

(34.77%)

502

(22.82%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,636 1,239 1,635 70 1,102 3,135 405 1,239 3,579 6.32 58.90 439

(26.83%)

446

(27.26%)

687

(41.99%)

376

(22.98%)

881

(53.85%)

376

(22.98%)

577

(35.27%)

369

(22.56%)

1 19 1,223 964 1,222 66 897 3,078 359 964 3,353 6.33 55.75 386

(31.56%)

373

(30.50%)

486

(39.74%)

259

(21.18%)

611

(49.96%)

258

(21.10%)

413

(33.77%)

275

(22.49%)

1 20 1,589 1,366 1,589 168 1,300 6,881 514 1,366 6,403 5.73 52.35 661

(41.60%)

507

(31.91%)

683

(42.98%)

449

(28.26%)

866

(54.50%)

319

(20.08%)

589

(37.07%)

343

(21.59%)

1 Total 185,579 71,088 153,464 1,930 31,205 56,997 26,931 71,088 142,867 5.13 50.31 20,081

(10.82%)

12,154

(6.55%)

45,653

(24.60%)

16,777

(9.04%)

56,169

(30.27%)

24,325

(13.11%)

28,587

(15.40%)

11,013

(5.93%)
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Table A.46: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Spells model (Sample 1 train half 2 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 2 test half;

Submodel: Cond Prior-Spells

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 2,664 187 0 0 0 0 96 187 256 2.75 29.01 88

(3.30%)

7

(0.26%)

93

(3.49%)

21

(0.79%)

106

(3.98%)

30

(1.13%)

20

(0.75%)

2

(0.08%)

0 2 9,386 1,309 0 0 0 0 646 1,309 1,898 2.48 32.12 320

(3.41%)

35

(0.37%)

487

(5.19%)

158

(1.68%)

593

(6.32%)

126

(1.34%)

166

(1.77%)

10

(0.11%)

0 3 8,375 1,333 0 0 0 0 673 1,333 2,021 3.70 41.19 363

(4.33%)

84

(1.00%)

887

(10.59%)

305

(3.64%)

1,058

(12.63%)

209

(2.50%)

397

(4.74%)

39

(0.47%)

0 4 8,002 1,469 0 0 0 0 658 1,469 2,396 4.26 40.60 327

(4.09%)

114

(1.42%)

913

(11.41%)

331

(4.14%)

1,074

(13.42%)

229

(2.86%)

427

(5.34%)

64

(0.80%)

0 5 12,559 2,462 0 0 0 0 1,072 2,462 3,863 3.12 33.56 542

(4.32%)

147

(1.17%)

906

(7.21%)

378

(3.01%)

1,100

(8.76%)

232

(1.85%)

379

(3.02%)

93

(0.74%)

0 6 9,442 1,898 0 0 0 0 832 1,898 3,017 3.89 44.33 515

(5.45%)

187

(1.98%)

1,092

(11.57%)

455

(4.82%)

1,293

(13.69%)

214

(2.27%)

410

(4.34%)

101

(1.07%)

0 7 6,779 1,485 0 0 0 0 646 1,485 2,454 4.29 49.44 333

(4.91%)

175

(2.58%)

1,062

(15.67%)

381

(5.62%)

1,262

(18.62%)

172

(2.54%)

434

(6.40%)

90

(1.33%)

0 8 4,363 1,035 0 0 0 0 470 1,035 1,725 5.55 49.61 217

(4.97%)

146

(3.35%)

649

(14.88%)

234

(5.36%)

794

(18.20%)

129

(2.96%)

351

(8.04%)

106

(2.43%)

0 9 2,208 740 0 0 0 0 337 740 1,275 7.92 55.45 130

(5.89%)

133

(6.02%)

453

(20.52%)

165

(7.47%)

563

(25.50%)

76

(3.44%)

254

(11.50%)

107

(4.85%)

0 10 1,960 1,120 0 0 0 0 568 1,120 2,160 5.76 46.70 64

(3.27%)

80

(4.08%)

307

(15.66%)

114

(5.82%)

389

(19.85%)

67

(3.42%)

147

(7.50%)

71

(3.62%)

0 11 2,233 1,476 0 0 0 0 718 1,476 2,912 3.21 36.98 56

(2.51%)

41

(1.84%)

173

(7.75%)

79

(3.54%)

276

(12.36%)

59

(2.64%)

101

(4.52%)

82

(3.67%)

0 12 1,736 1,292 0 0 0 0 675 1,292 2,727 2.60 34.48 32

(1.84%)

22

(1.27%)

92

(5.30%)

41

(2.36%)

179

(10.31%)

45

(2.59%)

47

(2.71%)

40

(2.30%)

0 13 2,628 2,250 0 0 0 0 1,295 2,250 4,475 1.16 30.38 37

(1.41%)

13

(0.49%)

51

(1.94%)

22

(0.84%)

193

(7.34%)

28

(1.07%)

38

(1.45%)

31

(1.18%)

0 14 1,023 840 0 0 0 0 506 840 1,526 2.13 34.47 30

(2.93%)

8

(0.78%)

31

(3.03%)

15

(1.47%)

101

(9.87%)

17

(1.66%)

12

(1.17%)

20

(1.96%)

0 15 124 49 0 0 0 0 23 49 91 6.78 51.93 5

(4.03%)

5

(4.03%)

11

(8.87%)

6

(4.84%)

21

(16.94%)

5

(4.03%)

10

(8.06%)

11

(8.87%)

0 16 30 13 0 0 0 0 7 13 19 11.70 53.30 2

(6.67%)

2

(6.67%)

5

(16.67%)

2

(6.67%)

8

(26.67%)

3

(10.00%)

2

(6.67%)

5

(16.67%)

0 17 14 7 0 0 0 0 3 7 10 21.43 57.00 1

(7.14%)

0

(0.00%)

5

(35.71%)

2

(14.29%)

6

(42.86%)

5

(35.71%)

4

(28.57%)

3

(21.43%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 6 2 0 0 0 0 0 2 5 32.83 74.33 0

(0.00%)

0

(0.00%)

4

(66.67%)

0

(0.00%)

4

(66.67%)

4

(66.67%)

1

(16.67%)

1

(16.67%)

0 19 1 1 0 0 0 0 1 1 1 13.00 74.00 0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

1

(100.00%)

0

(0.00%)

0 20 3 1 0 0 0 0 0 1 2 45.00 56.67 0

(0.00%)

0

(0.00%)

2

(66.67%)

0

(0.00%)

2

(66.67%)

0

(0.00%)

1

(33.33%)

1

(33.33%)

0 Total 73,536 18,969 0 0 0 0 9,226 18,969 32,833 3.71 39.68 3,062

(4.16%)

1,199

(1.63%)

7,223

(9.82%)

2,709

(3.68%)

9,022

(12.27%)

1,650

(2.24%)

3,202

(4.35%)

877

(1.19%)

1 1 98 15 98 1 8 10 6 15 20 175.55 27.77 2

(2.04%)

0

(0.00%)

5

(5.10%)

1

(1.02%)

5

(5.10%)

5

(5.10%)

1

(1.02%)

1

(1.02%)

1 2 3,283 496 3,283 12 157 221 187 496 759 2.99 28.08 219

(6.67%)

7

(0.21%)

145

(4.42%)

41

(1.25%)

194

(5.91%)

163

(4.96%)

51

(1.55%)

4

(0.12%)

1 3 7,872 1,613 7,872 32 485 566 651 1,613 2,527 3.16 40.78 728

(9.25%)

52

(0.66%)

959

(12.18%)

245

(3.11%)

1,174

(14.91%)

648

(8.23%)

432

(5.49%)

24

(0.30%)

1 4 8,353 2,397 8,353 54 735 899 943 2,397 3,934 5.50 52.42 821

(9.83%)

205

(2.45%)

2,083

(24.94%)

599

(7.17%)

2,432

(29.12%)

1,202

(14.39%)

1,123

(13.44%)

109

(1.30%)

1 5 9,762 3,004 9,762 78 1,015 1,263 1,163 3,004 5,180 5.38 51.24 933

(9.56%)

375

(3.84%)

2,593

(26.56%)

787

(8.06%)

3,013

(30.86%)

1,410

(14.44%)

1,433

(14.68%)

262

(2.68%)

1 6 16,071 4,380 16,071 132 1,699 2,216 1,532 4,380 7,536 4.06 43.22 1,395

(8.68%)

479

(2.98%)

2,913

(18.13%)

1,001

(6.23%)

3,552

(22.10%)

1,695

(10.55%)

1,571

(9.78%)

422

(2.63%)

1 7 20,819 5,449 20,819 173 2,235 2,935 1,919 5,449 9,323 4.02 44.00 2,016

(9.68%)

593

(2.85%)

3,506

(16.84%)

1,263

(6.07%)

4,483

(21.53%)

2,145

(10.30%)

1,831

(8.79%)

521

(2.50%)

1 8 18,405 5,351 18,405 132 2,488 3,299 1,857 5,351 9,370 4.62 49.31 2,072

(11.26%)

754

(4.10%)

4,020

(21.84%)

1,406

(7.64%)

4,983

(27.07%)

2,085

(11.33%)

2,208

(12.00%)

635

(3.45%)

1 9 14,561 5,058 14,561 149 2,516 3,366 1,645 5,058 9,324 6.10 56.59 1,958

(13.45%)

933

(6.41%)

4,471

(30.71%)

1,636

(11.24%)

5,263

(36.14%)

2,081

(14.29%)

2,641

(18.14%)

744

(5.11%)

1 10 11,877 5,027 11,877 120 2,591 3,616 1,603 5,027 9,480 6.96 61.78 1,690

(14.23%)

1,070

(9.01%)

4,451

(37.48%)

1,640

(13.81%)

5,086

(42.82%)

1,943

(16.36%)

2,798

(23.56%)

859

(7.23%)

1 11 10,548 5,312 10,548 151 2,576 3,825 1,856 5,312 10,412 7.01 62.82 1,475

(13.98%)

1,207

(11.44%)

4,143

(39.28%)

1,591

(15.08%)

4,752

(45.05%)

1,829

(17.34%)

2,770

(26.26%)

1,050

(9.95%)

1 12 11,418 7,276 11,418 195 2,856 4,349 2,913 7,276 14,406 5.84 56.49 1,333

(11.67%)

1,242

(10.88%)

3,698

(32.39%)

1,436

(12.58%)

4,469

(39.14%)

1,724

(15.10%)

2,415

(21.15%)

1,165

(10.20%)

1 13 11,010 7,730 11,010 167 2,863 4,598 3,296 7,730 15,859 4.83 52.72 1,305

(11.85%)

1,036

(9.41%)

3,118

(28.32%)

1,227

(11.14%)

3,965

(36.01%)

1,638

(14.88%)

2,120

(19.26%)

1,177

(10.69%)

1 14 8,387 6,073 8,387 145 2,712 4,368 2,640 6,073 13,044 4.83 53.26 1,178

(14.05%)

1,005

(11.98%)

2,440

(29.09%)

1,017

(12.13%)

3,276

(39.06%)

1,305

(15.56%)

1,790

(21.34%)

992

(11.83%)

1 15 5,908 4,317 5,908 130 2,599 4,664 1,702 4,317 9,798 5.25 56.12 968

(16.38%)

878

(14.86%)

1,982

(33.55%)

863

(14.61%)

2,583

(43.72%)

1,031

(17.45%)

1,522

(25.76%)

882

(14.93%)

1 16 3,888 2,844 3,888 92 2,045 3,996 1,082 2,844 6,982 6.04 58.32 739

(19.01%)

741

(19.06%)

1,479

(38.04%)

678

(17.44%)

1,809

(46.53%)

769

(19.78%)

1,090

(28.03%)

710

(18.26%)

1 17 2,657 1,969 2,657 67 1,698 3,958 664 1,969 5,134 5.87 60.52 625

(23.52%)

652

(24.54%)

1,099

(41.36%)

540

(20.32%)

1,388

(52.24%)

538

(20.25%)

903

(33.99%)

563

(21.19%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 1,849 1,420 1,849 78 1,276 3,447 486 1,420 4,051 6.56 61.20 481

(26.01%)

519

(28.07%)

853

(46.13%)

443

(23.96%)

1,020

(55.16%)

433

(23.42%)

720

(38.94%)

468

(25.31%)

1 19 1,467 1,146 1,467 73 1,069 3,346 400 1,146 3,631 6.44 59.79 425

(28.97%)

442

(30.13%)

670

(45.67%)

370

(25.22%)

822

(56.03%)

293

(19.97%)

569

(38.79%)

357

(24.34%)

1 20 1,943 1,671 1,943 179 1,629 8,201 601 1,671 7,611 7.21 56.95 836

(43.03%)

735

(37.83%)

950

(48.89%)

570

(29.34%)

1,137

(58.52%)

435

(22.39%)

836

(43.03%)

499

(25.68%)

1 Total 170,176 72,548 170,176 2,160 35,252 63,143 27,146 72,548 148,381 5.27 51.68 21,199

(12.46%)

12,925

(7.60%)

45,578

(26.78%)

17,354

(10.20%)

55,406

(32.56%)

23,372

(13.73%)

28,824

(16.94%)

11,444

(6.72%)
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Table A.47: ERMER: Risk bands statistics of the Pop Any-Acute Cond Main model (Sample 1 train half 3 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 3 test half;

Submodel: Cond Main

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 1 6,168 438 253 3 28 46 207 438 519 17.97 23.76 163

(2.64%)

6

(0.10%)

74

(1.20%)

39

(0.63%)

81

(1.31%)

47

(0.76%)

26

(0.42%)

3

(0.05%)

NA 2 18,365 2,534 2,602 18 237 274 1,053 2,534 3,646 3.64 32.03 577

(3.14%)

43

(0.23%)

656

(3.57%)

249

(1.36%)

765

(4.17%)

352

(1.92%)

363

(1.98%)

19

(0.10%)

NA 3 22,595 4,003 5,501 43 706 854 1,525 4,003 6,225 4.16 36.29 1,109

(4.91%)

168

(0.74%)

1,408

(6.23%)

626

(2.77%)

1,616

(7.15%)

812

(3.59%)

1,029

(4.55%)

98

(0.43%)

NA 4 26,379 5,372 6,221 86 920 1,174 1,999 5,372 8,467 4.88 40.41 1,357

(5.14%)

348

(1.32%)

2,277

(8.63%)

972

(3.68%)

2,675

(10.14%)

1,251

(4.74%)

1,644

(6.23%)

223

(0.85%)

NA 5 33,273 7,574 7,852 134 1,378 1,833 2,702 7,574 12,333 5.04 39.10 1,895

(5.70%)

543

(1.63%)

2,700

(8.11%)

1,296

(3.90%)

3,333

(10.02%)

1,368

(4.11%)

1,962

(5.90%)

367

(1.10%)

NA 6 35,252 8,249 12,291 156 2,062 2,749 2,912 8,249 13,704 5.43 43.45 2,075

(5.89%)

755

(2.14%)

3,244

(9.20%)

1,484

(4.21%)

4,193

(11.89%)

1,432

(4.06%)

2,375

(6.74%)

576

(1.63%)

NA 7 33,259 8,893 17,310 217 2,844 3,804 2,892 8,893 15,225 6.45 47.78 2,174

(6.54%)

958

(2.88%)

3,685

(11.08%)

1,808

(5.44%)

4,957

(14.90%)

1,574

(4.73%)

3,042

(9.15%)

781

(2.35%)

NA 8 28,764 9,321 18,246 251 3,702 5,028 3,189 9,321 16,194 7.89 52.64 2,044

(7.11%)

1,199

(4.17%)

4,256

(14.80%)

1,870

(6.50%)

5,727

(19.91%)

1,842

(6.40%)

3,647

(12.68%)

928

(3.23%)

NA 9 22,336 9,625 14,412 181 3,591 4,871 3,407 9,625 17,242 9.34 60.19 1,832

(8.20%)

1,477

(6.61%)

4,392

(19.66%)

1,992

(8.92%)

5,790

(25.92%)

1,822

(8.16%)

3,848

(17.23%)

1,125

(5.04%)

NA 10 17,034 8,997 11,905 214 3,497 5,084 3,117 8,997 16,713 9.84 62.62 1,437

(8.44%)

1,553

(9.12%)

4,079

(23.95%)

1,986

(11.66%)

5,249

(30.81%)

1,628

(9.56%)

3,631

(21.32%)

1,457

(8.55%)

NA 11 16,318 10,149 9,984 221 3,536 5,284 3,805 10,149 20,231 7.77 56.86 1,131

(6.93%)

1,504

(9.22%)

3,349

(20.52%)

1,699

(10.41%)

4,393

(26.92%)

1,470

(9.01%)

3,160

(19.37%)

1,585

(9.71%)

NA 12 15,429 11,087 9,183 206 3,394 5,297 4,756 11,087 22,743 6.03 50.64 963

(6.24%)

1,333

(8.64%)

2,467

(15.99%)

1,336

(8.66%)

3,622

(23.48%)

1,200

(7.78%)

2,566

(16.63%)

1,521

(9.86%)

NA 13 11,726 8,644 10,347 285 3,685 6,002 3,692 8,644 18,172 5.96 50.26 852

(7.27%)

1,188

(10.13%)

1,982

(16.90%)

1,032

(8.80%)

2,958

(25.23%)

1,006

(8.58%)

1,978

(16.87%)

1,424

(12.14%)

NA 14 8,765 6,899 8,429 208 3,641 6,155 3,173 6,899 15,416 5.16 48.20 744

(8.49%)

924

(10.54%)

1,371

(15.64%)

808

(9.22%)

2,254

(25.72%)

763

(8.71%)

1,385

(15.80%)

1,047

(11.95%)

NA 15 4,100 3,080 3,950 89 2,485 4,680 1,225 3,080 7,617 7.23 54.89 509

(12.41%)

639

(15.59%)

878

(21.41%)

528

(12.88%)

1,324

(32.29%)

459

(11.20%)

918

(22.39%)

744

(18.15%)

NA 16 2,031 1,583 1,979 54 1,554 3,670 563 1,583 4,378 8.58 60.30 319

(15.71%)

452

(22.26%)

569

(28.02%)

321

(15.81%)

792

(39.00%)

262

(12.90%)

585

(28.80%)

458

(22.55%)

NA 17 1,265 1,009 1,240 52 1,064 3,166 316 1,009 3,101 9.75 62.76 263

(20.79%)

381

(30.12%)

436

(34.47%)

282

(22.29%)

567

(44.82%)

213

(16.84%)

481

(38.02%)

361

(28.54%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

NA 18 768 648 761 34 681 2,547 238 648 2,395 10.95 62.73 172

(22.40%)

269

(35.03%)

277

(36.07%)

205

(26.69%)

347

(45.18%)

101

(13.15%)

298

(38.80%)

224

(29.17%)

NA 19 516 456 512 33 488 2,231 146 456 1,899 9.08 59.14 144

(27.91%)

204

(39.53%)

187

(36.24%)

127

(24.61%)

243

(47.09%)

93

(18.02%)

209

(40.50%)

132

(25.58%)

NA 20 545 484 535 82 514 3,879 193 484 2,758 14.65 57.37 163

(29.91%)

227

(41.65%)

221

(40.55%)

152

(27.89%)

264

(48.44%)

70

(12.84%)

247

(45.32%)

133

(24.40%)

NA Total 304,888 109,045 143,513 2,567 40,007 68,628 41,110 109,045 208,978 6.53 46.65 19,923

(6.53%)

14,171

(4.65%)

38,508

(12.63%)

18,812

(6.17%)

51,150

(16.78%)

17,765

(5.83%)

33,394

(10.95%)

13,206

(4.33%)
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Table A.48: ERMER: Risk bands statistics of the Pop Any-Acute Cond Age-65p model (Sample 1 train half 3 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 3 test half;

Submodel: Cond Age-65p

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 15,250 1,706 1,617 14 168 206 745 1,706 2,428 7.59 29.54 400

(2.62%)

24

(0.16%)

378

(2.48%)

136

(0.89%)

461

(3.02%)

227

(1.49%)

220

(1.44%)

11

(0.07%)

0 2 18,632 3,557 6,367 51 797 966 1,369 3,557 5,705 4.92 34.35 918

(4.93%)

119

(0.64%)

842

(4.52%)

439

(2.36%)

1,034

(5.55%)

656

(3.52%)

725

(3.89%)

49

(0.26%)

0 3 15,446 2,551 3,130 63 723 959 923 2,551 4,069 4.35 30.04 908

(5.88%)

141

(0.91%)

715

(4.63%)

392

(2.54%)

910

(5.89%)

507

(3.28%)

611

(3.96%)

63

(0.41%)

0 4 19,018 2,801 3,965 64 771 1,081 1,065 2,801 4,460 3.68 32.31 1,029

(5.41%)

158

(0.83%)

726

(3.82%)

483

(2.54%)

1,077

(5.66%)

343

(1.80%)

557

(2.93%)

84

(0.44%)

0 5 30,838 5,350 6,190 102 1,095 1,556 2,005 5,350 8,517 2.82 28.64 1,494

(4.84%)

228

(0.74%)

955

(3.10%)

583

(1.89%)

1,547

(5.02%)

438

(1.42%)

596

(1.93%)

82

(0.27%)

0 6 31,583 6,230 13,619 153 1,781 2,458 2,320 6,230 10,189 3.84 33.28 1,911

(6.05%)

288

(0.91%)

1,248

(3.95%)

760

(2.41%)

2,100

(6.65%)

544

(1.72%)

1,052

(3.33%)

115

(0.36%)

0 7 21,345 5,071 13,814 174 2,681 3,532 1,751 5,071 8,833 5.51 36.11 1,755

(8.22%)

295

(1.38%)

1,211

(5.67%)

790

(3.70%)

2,036

(9.54%)

720

(3.37%)

1,119

(5.24%)

121

(0.57%)

0 8 10,450 3,358 8,293 120 2,398 3,168 1,077 3,358 6,203 6.92 39.49 1,371

(13.12%)

337

(3.22%)

1,051

(10.06%)

839

(8.03%)

1,523

(14.57%)

659

(6.31%)

954

(9.13%)

131

(1.25%)

0 9 6,328 2,698 4,913 75 1,832 2,642 890 2,698 5,196 6.76 41.06 889

(14.05%)

279

(4.41%)

756

(11.95%)

577

(9.12%)

1,037

(16.39%)

504

(7.96%)

760

(12.01%)

128

(2.02%)

0 10 5,157 2,854 3,203 54 1,419 2,304 1,129 2,854 5,581 5.41 39.49 565

(10.96%)

249

(4.83%)

633

(12.27%)

502

(9.73%)

868

(16.83%)

393

(7.62%)

618

(11.98%)

133

(2.58%)

0 11 4,601 3,175 2,457 65 1,171 2,050 1,524 3,175 6,400 4.15 36.65 371

(8.06%)

194

(4.22%)

423

(9.19%)

369

(8.02%)

709

(15.41%)

295

(6.41%)

440

(9.56%)

181

(3.93%)

0 12 6,400 4,602 2,427 106 1,129 2,101 2,009 4,602 9,707 2.57 33.08 312

(4.88%)

162

(2.53%)

358

(5.59%)

264

(4.13%)

653

(10.20%)

287

(4.48%)

354

(5.53%)

155

(2.42%)

0 13 9,118 7,352 3,421 96 1,034 1,949 3,758 7,352 15,600 1.56 30.93 270

(2.96%)

153

(1.68%)

253

(2.77%)

184

(2.02%)

754

(8.27%)

263

(2.88%)

237

(2.60%)

120

(1.32%)

0 14 8,911 7,552 6,038 186 1,577 2,843 3,738 7,552 16,360 1.42 30.32 331

(3.71%)

117

(1.31%)

187

(2.10%)

156

(1.75%)

760

(8.53%)

264

(2.96%)

174

(1.95%)

104

(1.17%)

0 15 5,903 5,142 5,704 160 2,026 3,431 2,754 5,142 11,815 1.67 30.70 369

(6.25%)

93

(1.58%)

155

(2.63%)

143

(2.42%)

704

(11.93%)

308

(5.22%)

140

(2.37%)

89

(1.51%)

0 16 2,149 1,852 2,111 48 1,226 2,405 868 1,852 5,102 2.66 32.20 302

(14.05%)

66

(3.07%)

130

(6.05%)

118

(5.49%)

342

(15.91%)

201

(9.35%)

95

(4.42%)

45

(2.09%)

0 17 1,001 849 986 33 752 1,959 374 849 2,679 3.65 35.36 209

(20.88%)

69

(6.89%)

97

(9.69%)

81

(8.09%)

207

(20.68%)

127

(12.69%)

101

(10.09%)

56

(5.59%)

Continued on next page



A
.6

.3
P

erform
an

ce
o
f

S
u

b
-M

o
d

els
327

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 558 469 554 26 479 1,690 187 469 1,811 4.29 38.22 111

(19.89%)

53

(9.50%)

103

(18.46%)

84

(15.05%)

157

(28.14%)

82

(14.70%)

82

(14.70%)

44

(7.89%)

0 19 379 330 373 27 328 1,482 126 330 1,456 9.64 39.70 94

(24.80%)

67

(17.68%)

59

(15.57%)

66

(17.41%)

90

(23.75%)

60

(15.83%)

61

(16.09%)

30

(7.92%)

0 20 452 391 438 53 402 2,932 157 391 2,272 13.78 42.04 115

(25.44%)

89

(19.69%)

104

(23.01%)

114

(25.22%)

143

(31.64%)

66

(14.60%)

111

(24.56%)

51

(11.28%)

0 Total 213,519 67,890 89,620 1,670 23,789 41,714 28,769 67,890 134,383 4.25 32.90 13,724

(6.43%)

3,181

(1.49%)

10,384

(4.86%)

7,080

(3.32%)

17,112

(8.01%)

6,944

(3.25%)

9,007

(4.22%)

1,792

(0.84%)

1 1 14 1 6 0 2 3 0 1 1 1,210.2178.33 0

(0.00%)

0

(0.00%)

3

(21.43%)

0

(0.00%)

3

(21.43%)

0

(0.00%)

3

(21.43%)

0

(0.00%)

1 2 276 8 4 0 0 0 4 8 14 8.45 93.40 9

(3.26%)

0

(0.00%)

4

(1.45%)

3

(1.09%)

8

(2.90%)

4

(1.45%)

0

(0.00%)

0

(0.00%)

1 3 825 54 25 0 5 6 22 54 78 5.85 80.56 6

(0.73%)

1

(0.12%)

44

(5.33%)

12

(1.45%)

47

(5.70%)

24

(2.91%)

12

(1.45%)

0

(0.00%)

1 4 2,808 457 155 3 17 21 175 457 646 3.68 76.01 81

(2.88%)

59

(2.10%)

525

(18.70%)

133

(4.74%)

563

(20.05%)

79

(2.81%)

263

(9.37%)

19

(0.68%)

1 5 3,882 905 657 8 75 86 336 905 1,320 7.37 76.75 125

(3.22%)

152

(3.92%)

837

(21.56%)

254

(6.54%)

921

(23.72%)

228

(5.87%)

503

(12.96%)

96

(2.47%)

1 6 8,526 2,523 1,586 11 217 272 899 2,523 3,984 7.10 76.93 265

(3.11%)

315

(3.69%)

1,976

(23.18%)

614

(7.20%)

2,215

(25.98%)

498

(5.84%)

1,150

(13.49%)

208

(2.44%)

1 7 10,490 3,705 3,690 36 482 593 1,275 3,705 5,822 9.74 78.13 433

(4.13%)

609

(5.81%)

2,686

(25.61%)

919

(8.76%)

3,150

(30.03%)

810

(7.72%)

1,825

(17.40%)

490

(4.67%)

1 8 12,556 5,029 7,080 51 964 1,207 1,630 5,029 8,276 12.01 78.25 651

(5.18%)

760

(6.05%)

3,641

(29.00%)

1,154

(9.19%)

4,184

(33.32%)

1,463

(11.65%)

2,820

(22.46%)

702

(5.59%)

1 9 16,746 7,828 9,580 113 1,620 2,059 2,399 7,828 13,391 14.54 79.22 910

(5.43%)

1,284

(7.67%)

5,047

(30.14%)

1,940

(11.58%)

6,149

(36.72%)

2,116

(12.64%)

4,250

(25.38%)

1,258

(7.51%)

1 10 12,998 6,638 9,564 130 2,252 2,923 1,856 6,638 11,747 13.66 80.33 924

(7.11%)

1,668

(12.83%)

4,349

(33.46%)

1,978

(15.22%)

5,435

(41.81%)

1,876

(14.43%)

3,980

(30.62%)

1,988

(15.29%)

1 11 8,697 4,853 8,065 130 2,533 3,368 1,323 4,853 8,848 13.78 80.91 763

(8.77%)

1,527

(17.56%)

3,206

(36.86%)

1,618

(18.60%)

4,036

(46.41%)

1,365

(15.70%)

3,177

(36.53%)

1,836

(21.11%)

1 12 5,589 3,448 5,536 101 2,251 3,097 902 3,448 6,488 13.16 81.37 623

(11.15%)

1,330

(23.80%)

2,190

(39.18%)

1,103

(19.74%)

2,832

(50.67%)

921

(16.48%)

2,309

(41.31%)

1,605

(28.72%)

1 13 3,348 2,194 3,332 79 1,926 2,947 528 2,194 4,391 12.44 81.43 453

(13.53%)

1,069

(31.93%)

1,409

(42.08%)

727

(21.71%)

1,806

(53.94%)

585

(17.47%)

1,513

(45.19%)

1,211

(36.17%)

1 14 1,828 1,266 1,827 61 1,374 2,496 351 1,266 2,906 12.31 81.00 289

(15.81%)

707

(38.68%)

818

(44.75%)

451

(24.67%)

1,005

(54.98%)

304

(16.63%)

927

(50.71%)

738

(40.37%)

1 15 1,089 822 1,089 44 914 1,974 224 822 2,022 11.80 80.48 209

(19.19%)

503

(46.19%)

521

(47.84%)

318

(29.20%)

633

(58.13%)

201

(18.46%)

600

(55.10%)

475

(43.62%)

1 16 648 513 648 35 590 1,577 127 513 1,367 10.51 79.72 150

(23.15%)

343

(52.93%)

307

(47.38%)

174

(26.85%)

384

(59.26%)

125

(19.29%)

378

(58.33%)

285

(43.98%)

1 17 433 359 433 22 402 1,282 106 359 1,041 9.74 78.80 118

(27.25%)

240

(55.43%)

224

(51.73%)

144

(33.26%)

273

(63.05%)

85

(19.63%)

268

(61.89%)

213

(49.19%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 255 219 255 17 245 927 59 219 750 10.29 79.39 67

(26.27%)

156

(61.18%)

137

(53.73%)

89

(34.90%)

161

(63.14%)

53

(20.78%)

162

(63.53%)

129

(50.59%)

1 19 187 169 187 21 181 828 54 169 604 7.65 77.53 62

(33.16%)

141

(75.40%)

101

(54.01%)

53

(28.34%)

120

(64.17%)

42

(22.46%)

119

(63.64%)

80

(42.78%)

1 20 174 164 174 35 168 1,248 71 164 899 8.00 76.33 61

(35.06%)

126

(72.41%)

99

(56.90%)

48

(27.59%)

113

(64.94%)

42

(24.14%)

128

(73.56%)

81

(46.55%)

1 Total 91,369 41,155 53,893 897 16,218 26,914 12,341 41,155 74,595 11.87 79.15 6,199

(6.78%)

10,990

(12.03%)

28,124

(30.78%)

11,732

(12.84%)

34,038

(37.25%)

10,821

(11.84%)

24,387

(26.69%)

11,414

(12.49%)



A
.6

.3
P

erform
an

ce
o
f

S
u

b
-M

o
d

els
329

Table A.49: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Acute-12-month model (Sample 1 train half 3 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 3 test half;

Submodel: Cond Prior-Acute-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 5,822 403 163 3 10 32 188 403 475 11.18 23.74 155

(2.66%)

4

(0.07%)

55

(0.94%)

32

(0.55%)

61

(1.05%)

33

(0.57%)

18

(0.31%)

2

(0.03%)

0 2 16,300 2,113 1,298 14 162 188 894 2,113 3,003 3.29 31.22 490

(3.01%)

41

(0.25%)

560

(3.44%)

217

(1.33%)

638

(3.91%)

272

(1.67%)

291

(1.79%)

18

(0.11%)

0 3 21,447 3,366 2,759 16 394 450 1,366 3,366 4,987 3.58 35.64 970

(4.52%)

125

(0.58%)

1,206

(5.62%)

535

(2.49%)

1,351

(6.30%)

574

(2.68%)

759

(3.54%)

62

(0.29%)

0 4 20,170 3,867 3,258 42 599 757 1,475 3,867 5,994 4.91 43.81 1,012

(5.02%)

301

(1.49%)

1,874

(9.29%)

759

(3.76%)

2,154

(10.68%)

875

(4.34%)

1,230

(6.10%)

139

(0.69%)

0 5 30,009 6,585 4,060 64 746 945 2,489 6,585 10,648 4.63 36.70 1,530

(5.10%)

403

(1.34%)

2,138

(7.12%)

1,013

(3.38%)

2,579

(8.59%)

981

(3.27%)

1,511

(5.04%)

239

(0.80%)

0 6 26,267 6,311 5,876 100 1,286 1,600 2,277 6,311 10,197 5.76 47.03 1,527

(5.81%)

577

(2.20%)

2,566

(9.77%)

1,188

(4.52%)

3,152

(12.00%)

1,031

(3.93%)

1,805

(6.87%)

338

(1.29%)

0 7 23,157 6,044 6,528 120 1,551 1,981 2,117 6,044 9,926 6.72 51.56 1,180

(5.10%)

727

(3.14%)

2,874

(12.41%)

1,287

(5.56%)

3,591

(15.51%)

1,065

(4.60%)

2,270

(9.80%)

498

(2.15%)

0 8 19,812 6,198 6,911 166 1,909 2,449 2,322 6,198 10,586 7.72 54.81 1,043

(5.26%)

835

(4.21%)

2,769

(13.98%)

1,196

(6.04%)

3,617

(18.26%)

1,193

(6.02%)

2,221

(11.21%)

542

(2.74%)

0 9 13,811 5,232 6,071 148 2,099 2,720 1,918 5,232 9,061 10.03 61.66 827

(5.99%)

863

(6.25%)

2,539

(18.38%)

1,190

(8.62%)

3,404

(24.65%)

1,211

(8.77%)

2,022

(14.64%)

653

(4.73%)

0 10 9,947 5,130 4,381 163 2,025 2,720 2,160 5,130 9,274 9.48 59.62 482

(4.85%)

693

(6.97%)

1,861

(18.71%)

887

(8.92%)

2,577

(25.91%)

1,006

(10.11%)

1,613

(16.22%)

739

(7.43%)

0 11 8,857 5,482 3,416 124 1,843 2,597 2,171 5,482 10,691 7.15 51.82 330

(3.73%)

506

(5.71%)

1,207

(13.63%)

679

(7.67%)

1,745

(19.70%)

870

(9.82%)

1,148

(12.96%)

700

(7.90%)

0 12 7,051 4,888 2,782 129 1,507 2,309 2,214 4,888 9,881 5.25 46.01 239

(3.39%)

356

(5.05%)

757

(10.74%)

410

(5.81%)

1,172

(16.62%)

597

(8.47%)

776

(11.01%)

505

(7.16%)

0 13 7,609 6,133 2,697 151 1,684 2,708 3,156 6,133 12,559 3.53 39.71 203

(2.67%)

266

(3.50%)

543

(7.14%)

308

(4.05%)

1,037

(13.63%)

473

(6.22%)

544

(7.15%)

426

(5.60%)

0 14 3,345 2,545 2,356 140 1,583 2,542 1,300 2,545 5,358 5.35 46.17 144

(4.30%)

204

(6.10%)

368

(11.00%)

203

(6.07%)

638

(19.07%)

329

(9.84%)

366

(10.94%)

282

(8.43%)

0 15 1,522 1,066 1,314 50 1,113 2,055 523 1,066 2,298 6.77 52.09 93

(6.11%)

122

(8.02%)

202

(13.27%)

126

(8.28%)

331

(21.75%)

238

(15.64%)

235

(15.44%)

172

(11.30%)

0 16 674 465 609 35 553 1,282 169 465 1,022 11.70 61.83 45

(6.68%)

74

(10.98%)

152

(22.55%)

82

(12.17%)

207

(30.71%)

163

(24.18%)

158

(23.44%)

133

(19.73%)

0 17 336 230 301 21 270 808 80 230 523 17.29 69.73 29

(8.63%)

56

(16.67%)

96

(28.57%)

63

(18.75%)

124

(36.90%)

103

(30.65%)

84

(25.00%)

79

(23.51%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 156 104 151 5 143 473 33 104 232 19.81 71.56 12

(7.69%)

36

(23.08%)

46

(29.49%)

29

(18.59%)

66

(42.31%)

44

(28.21%)

53

(33.97%)

49

(31.41%)

0 19 94 61 90 5 79 340 16 61 214 27.41 70.41 10

(10.64%)

20

(21.28%)

31

(32.98%)

21

(22.34%)

37

(39.36%)

40

(42.55%)

32

(34.04%)

27

(28.72%)

0 20 62 37 52 5 45 254 16 37 120 58.97 62.24 4

(6.45%)

16

(25.81%)

22

(35.48%)

12

(19.35%)

25

(40.32%)

27

(43.55%)

17

(27.42%)

7

(11.29%)

0 Total 216,448 66,260 55,073 1,501 19,601 29,210 26,884 66,260 117,049 6.03 45.08 10,325

(4.77%)

6,225

(2.88%)

21,866

(10.10%)

10,237

(4.73%)

28,506

(13.17%)

11,125

(5.14%)

17,153

(7.92%)

5,610

(2.59%)

1 1 119 16 119 0 13 19 8 16 21 384.01 25.27 4

(3.36%)

0

(0.00%)

4

(3.36%)

2

(1.68%)

4

(3.36%)

0

(0.00%)

3

(2.52%)

0

(0.00%)

1 2 1,529 277 1,529 2 37 39 98 277 473 6.28 22.69 99

(6.47%)

2

(0.13%)

29

(1.90%)

17

(1.11%)

50

(3.27%)

23

(1.50%)

15

(0.98%)

1

(0.07%)

1 3 2,356 653 2,356 2 152 175 193 653 1,122 7.41 37.76 208

(8.83%)

27

(1.15%)

184

(7.81%)

88

(3.74%)

238

(10.10%)

109

(4.63%)

158

(6.71%)

15

(0.64%)

1 4 3,212 961 3,212 12 242 289 278 961 1,680 8.44 44.95 282

(8.78%)

86

(2.68%)

443

(13.79%)

187

(5.82%)

556

(17.31%)

243

(7.57%)

393

(12.24%)

71

(2.21%)

1 5 5,385 1,383 5,385 11 417 504 390 1,383 2,360 5.80 41.04 429

(7.97%)

153

(2.84%)

663

(12.31%)

307

(5.70%)

903

(16.77%)

372

(6.91%)

527

(9.79%)

176

(3.27%)

1 6 10,332 2,384 10,332 24 607 735 695 2,384 4,213 4.90 35.22 809

(7.83%)

192

(1.86%)

700

(6.78%)

387

(3.75%)

1,207

(11.68%)

423

(4.09%)

594

(5.75%)

235

(2.27%)

1 7 8,654 2,423 8,654 49 1,081 1,266 669 2,423 4,295 6.25 39.45 890

(10.28%)

233

(2.69%)

843

(9.74%)

507

(5.86%)

1,342

(15.51%)

469

(5.42%)

715

(8.26%)

258

(2.98%)

1 8 7,070 2,638 7,070 58 1,308 1,662 759 2,638 4,753 8.00 47.26 820

(11.60%)

299

(4.23%)

1,137

(16.08%)

520

(7.36%)

1,554

(21.98%)

477

(6.75%)

1,068

(15.11%)

331

(4.68%)

1 9 6,800 2,951 6,800 51 1,273 1,791 811 2,951 5,585 8.97 56.80 847

(12.46%)

471

(6.93%)

1,579

(23.22%)

721

(10.60%)

1,946

(28.62%)

491

(7.22%)

1,577

(23.19%)

420

(6.18%)

1 10 7,397 3,794 7,397 34 1,420 2,054 1,043 3,794 7,081 9.69 63.31 856

(11.57%)

741

(10.02%)

2,059

(27.84%)

925

(12.51%)

2,546

(34.42%)

650

(8.79%)

1,944

(26.28%)

590

(7.98%)

1 11 7,447 4,272 7,447 50 1,636 2,395 1,283 4,272 8,699 9.14 66.04 836

(11.23%)

979

(13.15%)

2,137

(28.70%)

1,038

(13.94%)

2,691

(36.14%)

737

(9.90%)

2,123

(28.51%)

904

(12.14%)

1 12 8,515 5,823 8,515 72 1,896 2,729 2,155 5,823 11,739 7.15 56.77 805

(9.45%)

1,034

(12.14%)

1,929

(22.65%)

994

(11.67%)

2,632

(30.91%)

725

(8.51%)

1,987

(23.34%)

1,045

(12.27%)

1 13 7,687 5,815 7,687 97 2,201 3,330 2,380 5,815 12,204 6.19 52.75 745

(9.69%)

943

(12.27%)

1,545

(20.10%)

804

(10.46%)

2,283

(29.70%)

613

(7.97%)

1,534

(19.96%)

990

(12.88%)

1 14 4,800 3,608 4,800 104 2,361 3,740 1,392 3,608 8,635 6.55 56.85 570

(11.88%)

827

(17.23%)

1,110

(23.13%)

655

(13.65%)

1,636

(34.08%)

446

(9.29%)

1,169

(24.35%)

848

(17.67%)

1 15 2,729 2,049 2,729 109 1,903 3,694 746 2,049 5,420 7.66 59.33 389

(14.25%)

543

(19.90%)

772

(28.29%)

438

(16.05%)

1,100

(40.31%)

298

(10.92%)

792

(29.02%)

566

(20.74%)

1 16 1,663 1,344 1,663 94 1,342 3,332 439 1,344 3,671 7.45 60.50 322

(19.36%)

441

(26.52%)

519

(31.21%)

316

(19.00%)

688

(41.37%)

202

(12.15%)

559

(33.61%)

420

(25.26%)

1 17 1,023 854 1,023 61 889 2,701 289 854 2,806 7.61 60.66 227

(22.19%)

336

(32.84%)

351

(34.31%)

238

(23.26%)

472

(46.14%)

143

(13.98%)

392

(38.32%)

277

(27.08%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 709 621 709 63 654 2,534 233 621 2,248 8.25 59.96 166

(23.41%)

242

(34.13%)

258

(36.39%)

170

(23.98%)

324

(45.70%)

89

(12.55%)

269

(37.94%)

199

(28.07%)

1 19 492 439 492 58 471 2,269 146 439 1,868 6.81 57.87 131

(26.63%)

189

(38.41%)

193

(39.23%)

127

(25.81%)

243

(49.39%)

74

(15.04%)

200

(40.65%)

121

(24.59%)

1 20 521 480 521 115 503 4,160 219 480 3,056 8.76 54.52 163

(31.29%)

208

(39.92%)

187

(35.89%)

134

(25.72%)

229

(43.95%)

56

(10.75%)

222

(42.61%)

129

(24.76%)

1 Total 88,440 42,785 88,440 1,066 20,406 39,418 14,226 42,785 91,929 7.78 50.47 9,598

(10.85%)

7,946

(8.98%)

16,642

(18.82%)

8,575

(9.70%)

22,644

(25.60%)

6,640

(7.51%)

16,241

(18.36%)

7,596

(8.59%)
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Table A.50: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Oper-12-month model (Sample 1 train half 3 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 3 test half;

Submodel: Cond Prior-Oper-12-month

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 92 11 43 1 17 21 2 11 16 936.23 47.22 1

(1.09%)

0

(0.00%)

0

(0.00%)

1

(1.09%)

0

(0.00%)

0

(0.00%)

1

(1.09%)

0

(0.00%)

0 2 3,089 231 9 0 3 5 126 231 285 3.97 16.73 54

(1.75%)

3

(0.10%)

13

(0.42%)

10

(0.32%)

13

(0.42%)

5

(0.16%)

2

(0.06%)

0

(0.00%)

0 3 12,806 1,345 166 0 12 13 575 1,345 1,769 2.61 29.37 619

(4.83%)

36

(0.28%)

393

(3.07%)

222

(1.73%)

436

(3.40%)

39

(0.30%)

174

(1.36%)

7

(0.05%)

0 4 17,017 2,817 737 5 119 133 1,149 2,817 4,126 2.81 30.41 867

(5.09%)

178

(1.05%)

815

(4.79%)

407

(2.39%)

927

(5.45%)

84

(0.49%)

532

(3.13%)

43

(0.25%)

0 5 19,608 4,171 1,120 10 213 252 1,595 4,171 6,611 3.99 38.26 1,211

(6.18%)

240

(1.22%)

1,190

(6.07%)

729

(3.72%)

1,421

(7.25%)

141

(0.72%)

748

(3.81%)

131

(0.67%)

0 6 15,882 4,254 2,553 20 397 457 1,542 4,254 6,996 6.21 52.39 1,267

(7.98%)

479

(3.02%)

2,035

(12.81%)

1,032

(6.50%)

2,414

(15.20%)

199

(1.25%)

1,414

(8.90%)

264

(1.66%)

0 7 11,648 4,061 3,197 40 770 931 1,335 4,061 7,031 9.60 56.53 1,017

(8.73%)

570

(4.89%)

1,839

(15.79%)

948

(8.14%)

2,259

(19.39%)

238

(2.04%)

1,534

(13.17%)

367

(3.15%)

0 8 9,491 3,862 3,248 35 885 1,056 1,242 3,862 6,830 12.63 63.72 779

(8.21%)

602

(6.34%)

1,813

(19.10%)

884

(9.31%)

2,310

(24.34%)

300

(3.16%)

1,655

(17.44%)

463

(4.88%)

0 9 7,385 3,532 3,247 56 1,013 1,273 1,123 3,532 6,216 13.36 69.96 564

(7.64%)

706

(9.56%)

1,729

(23.41%)

877

(11.88%)

2,272

(30.77%)

264

(3.57%)

1,548

(20.96%)

602

(8.15%)

0 10 5,165 2,677 3,288 63 1,039 1,333 749 2,677 4,803 12.61 71.34 462

(8.94%)

612

(11.85%)

1,261

(24.41%)

698

(13.51%)

1,706

(33.03%)

214

(4.14%)

1,279

(24.76%)

725

(14.04%)

0 11 4,355 2,461 2,833 60 1,121 1,468 838 2,461 4,499 9.87 63.18 332

(7.62%)

536

(12.31%)

954

(21.91%)

476

(10.93%)

1,314

(30.17%)

151

(3.47%)

951

(21.84%)

583

(13.39%)

0 12 2,846 1,636 2,190 42 1,046 1,486 509 1,636 3,246 9.66 66.98 257

(9.03%)

497

(17.46%)

700

(24.60%)

398

(13.98%)

958

(33.66%)

109

(3.83%)

749

(26.32%)

517

(18.17%)

0 13 2,117 1,355 1,498 20 863 1,272 463 1,355 2,822 8.85 60.58 169

(7.98%)

433

(20.45%)

487

(23.00%)

278

(13.13%)

654

(30.89%)

64

(3.02%)

501

(23.67%)

394

(18.61%)

0 14 4,630 3,348 971 20 667 1,041 1,313 3,348 7,202 2.68 37.41 140

(3.02%)

325

(7.02%)

293

(6.33%)

183

(3.95%)

457

(9.87%)

68

(1.47%)

326

(7.04%)

274

(5.92%)

0 15 2,067 1,351 690 20 478 843 537 1,351 2,996 3.95 43.90 119

(5.76%)

213

(10.30%)

191

(9.24%)

119

(5.76%)

301

(14.56%)

60

(2.90%)

208

(10.06%)

166

(8.03%)

0 16 1,025 673 755 17 360 699 231 673 1,699 4.37 44.21 89

(8.68%)

128

(12.49%)

121

(11.80%)

58

(5.66%)

170

(16.59%)

27

(2.63%)

144

(14.05%)

103

(10.05%)

0 17 2,442 2,024 701 30 494 887 1,163 2,024 4,176 1.28 31.82 73

(2.99%)

104

(4.26%)

66

(2.70%)

49

(2.01%)

174

(7.13%)

26

(1.06%)

90

(3.69%)

67

(2.74%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 1,870 1,620 471 56 347 905 917 1,620 3,298 1.63 32.37 68

(3.64%)

87

(4.65%)

70

(3.74%)

49

(2.62%)

183

(9.79%)

23

(1.23%)

84

(4.49%)

62

(3.32%)

0 19 7,394 6,728 962 107 551 1,220 3,805 6,728 14,165 0.80 29.25 131

(1.77%)

61

(0.82%)

43

(0.58%)

32

(0.43%)

467

(6.32%)

16

(0.22%)

44

(0.60%)

31

(0.42%)

0 20 1,601 1,473 1,519 106 1,090 2,476 894 1,473 3,850 2.43 33.80 105

(6.56%)

83

(5.18%)

64

(4.00%)

59

(3.69%)

182

(11.37%)

18

(1.12%)

73

(4.56%)

45

(2.81%)

0 Total 132,530 49,630 30,198 708 11,485 17,771 20,108 49,630 92,636 6.66 45.21 8,324

(6.28%)

5,893

(4.45%)

14,077

(10.62%)

7,509

(5.67%)

18,618

(14.05%)

2,046

(1.54%)

12,057

(9.10%)

4,844

(3.66%)

1 1 2,850 189 40 0 5 6 96 189 216 8.96 18.82 52

(1.82%)

2

(0.07%)

20

(0.70%)

12

(0.42%)

23

(0.81%)

14

(0.49%)

6

(0.21%)

0

(0.00%)

1 2 15,376 1,650 1,266 14 158 182 694 1,650 2,264 1.82 28.32 403

(2.62%)

18

(0.12%)

319

(2.07%)

121

(0.79%)

369

(2.40%)

165

(1.07%)

124

(0.81%)

6

(0.04%)

1 3 18,521 2,770 4,667 31 664 757 1,067 2,770 4,267 2.98 37.26 638

(3.44%)

65

(0.35%)

822

(4.44%)

308

(1.66%)

1,069

(5.77%)

463

(2.50%)

491

(2.65%)

28

(0.15%)

1 4 20,111 3,647 6,674 86 994 1,247 1,371 3,647 5,668 4.28 40.41 687

(3.42%)

163

(0.81%)

1,275

(6.34%)

506

(2.52%)

1,813

(9.01%)

800

(3.98%)

938

(4.66%)

99

(0.49%)

1 5 18,295 4,145 11,254 166 1,901 2,438 1,545 4,145 6,882 5.89 44.49 801

(4.38%)

239

(1.31%)

1,681

(9.19%)

633

(3.46%)

2,385

(13.04%)

1,330

(7.27%)

1,333

(7.29%)

203

(1.11%)

1 6 16,591 4,364 12,365 176 2,001 2,698 1,485 4,364 7,286 7.26 47.96 927

(5.59%)

391

(2.36%)

1,946

(11.73%)

798

(4.81%)

2,761

(16.64%)

1,467

(8.84%)

1,438

(8.67%)

312

(1.88%)

1 7 13,994 4,499 11,996 108 1,952 2,664 1,431 4,499 7,727 7.83 49.89 1,132

(8.09%)

453

(3.24%)

2,067

(14.77%)

864

(6.17%)

2,794

(19.97%)

1,541

(11.01%)

1,712

(12.23%)

492

(3.52%)

1 8 11,794 4,605 10,943 140 2,010 2,839 1,434 4,605 8,218 8.54 55.92 1,096

(9.29%)

540

(4.58%)

2,405

(20.39%)

1,038

(8.80%)

3,042

(25.79%)

1,544

(13.09%)

2,043

(17.32%)

609

(5.16%)

1 9 11,445 5,552 11,053 133 2,148 3,097 1,932 5,552 10,599 8.68 58.57 1,046

(9.14%)

732

(6.40%)

2,629

(22.97%)

1,138

(9.94%)

3,317

(28.98%)

1,599

(13.97%)

2,352

(20.55%)

708

(6.19%)

1 10 11,528 6,511 11,358 153 2,493 3,727 2,456 6,511 12,420 8.05 57.68 1,033

(8.96%)

892

(7.74%)

2,640

(22.90%)

1,175

(10.19%)

3,336

(28.94%)

1,660

(14.40%)

2,281

(19.79%)

820

(7.11%)

1 11 10,169 6,404 10,106 151 2,668 4,066 2,443 6,404 12,629 7.96 57.06 906

(8.91%)

906

(8.91%)

2,294

(22.56%)

1,149

(11.30%)

3,066

(30.15%)

1,447

(14.23%)

2,154

(21.18%)

911

(8.96%)

1 12 7,552 4,911 7,514 158 2,648 4,183 1,734 4,911 10,361 8.51 59.61 763

(10.10%)

854

(11.31%)

1,838

(24.34%)

961

(12.73%)

2,565

(33.96%)

1,150

(15.23%)

1,852

(24.52%)

961

(12.73%)

1 13 5,138 3,441 5,113 126 2,419 4,128 1,124 3,441 7,759 9.71 63.58 608

(11.83%)

820

(15.96%)

1,500

(29.19%)

786

(15.30%)

1,969

(38.32%)

874

(17.01%)

1,483

(28.86%)

891

(17.34%)

1 14 3,334 2,315 3,324 83 1,926 3,600 739 2,315 5,566 10.15 65.75 425

(12.75%)

610

(18.30%)

1,057

(31.70%)

568

(17.04%)

1,437

(43.10%)

597

(17.91%)

1,056

(31.67%)

788

(23.64%)

1 15 2,215 1,558 2,207 100 1,562 3,532 461 1,558 3,996 10.19 66.49 337

(15.21%)

512

(23.12%)

730

(32.96%)

441

(19.91%)

988

(44.60%)

448

(20.23%)

776

(35.03%)

583

(26.32%)

1 16 1,373 1,073 1,371 54 1,101 2,905 372 1,073 2,978 9.67 64.67 243

(17.70%)

374

(27.24%)

463

(33.72%)

276

(20.10%)

620

(45.16%)

262

(19.08%)

469

(34.16%)

386

(28.11%)

1 17 827 685 827 51 727 2,363 203 685 2,296 9.00 62.59 166

(20.07%)

252

(30.47%)

312

(37.73%)

210

(25.39%)

416

(50.30%)

147

(17.78%)

335

(40.51%)

245

(29.63%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 518 448 516 38 471 1,935 161 448 1,680 12.10 61.08 130

(25.10%)

196

(37.84%)

189

(36.49%)

140

(27.03%)

243

(46.91%)

100

(19.31%)

208

(40.15%)

154

(29.73%)

1 19 375 327 371 22 346 1,735 105 327 1,382 7.19 55.02 104

(27.73%)

131

(34.93%)

118

(31.47%)

84

(22.40%)

163

(43.47%)

60

(16.00%)

142

(37.87%)

85

(22.67%)

1 20 352 321 350 69 328 2,755 149 321 2,148 9.33 52.97 102

(28.98%)

128

(36.36%)

126

(35.80%)

95

(26.99%)

156

(44.32%)

51

(14.49%)

144

(40.91%)

81

(23.01%)

1 Total 172,358 59,415 113,315 1,859 28,522 50,857 21,002 59,415 116,342 6.44 47.75 11,599

(6.73%)

8,278

(4.80%)

24,431

(14.17%)

11,303

(6.56%)

32,532

(18.87%)

15,719

(9.12%)

21,337

(12.38%)

8,362

(4.85%)



A
.6

.3
P

erform
an

ce
o
f

S
u

b
-M

o
d

els
335

Table A.51: ERMER: Risk bands statistics of the Pop Any-Acute Cond Prior-Spells model (Sample 1 train half 3 test half )

Modelling Approach: BPM;

Modelling Group: Pop Any-Acute;

Sample: Sample 1 train half 3 test half;

Submodel: Cond Prior-Spells

Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 1 6,895 535 0 0 0 0 248 535 667 7.64 26.19 201

(2.92%)

10

(0.15%)

125

(1.81%)

58

(0.84%)

141

(2.04%)

60

(0.87%)

50

(0.73%)

4

(0.06%)

0 2 15,814 2,169 0 0 0 0 903 2,169 3,124 3.54 32.46 443

(2.80%)

47

(0.30%)

581

(3.67%)

251

(1.59%)

666

(4.21%)

253

(1.60%)

361

(2.28%)

24

(0.15%)

0 3 19,207 2,916 0 0 0 0 1,223 2,916 4,341 3.93 35.22 832

(4.33%)

153

(0.80%)

996

(5.19%)

475

(2.47%)

1,164

(6.06%)

399

(2.08%)

692

(3.60%)

68

(0.35%)

0 4 17,107 3,100 0 0 0 0 1,197 3,100 4,746 5.01 42.10 790

(4.62%)

270

(1.58%)

1,383

(8.08%)

634

(3.71%)

1,620

(9.47%)

452

(2.64%)

966

(5.65%)

125

(0.73%)

0 5 25,551 5,188 0 0 0 0 1,979 5,188 8,243 4.43 34.37 1,149

(4.50%)

310

(1.21%)

1,334

(5.22%)

708

(2.77%)

1,697

(6.64%)

447

(1.75%)

947

(3.71%)

199

(0.78%)

0 6 20,030 4,612 0 0 0 0 1,712 4,612 7,440 5.85 46.55 984

(4.91%)

440

(2.20%)

1,704

(8.51%)

835

(4.17%)

2,144

(10.70%)

399

(1.99%)

1,191

(5.95%)

262

(1.31%)

0 7 16,221 3,998 0 0 0 0 1,465 3,998 6,514 6.48 51.82 666

(4.11%)

489

(3.01%)

1,809

(11.15%)

847

(5.22%)

2,341

(14.43%)

274

(1.69%)

1,405

(8.66%)

349

(2.15%)

0 8 11,605 3,720 0 0 0 0 1,477 3,720 6,281 8.03 54.97 509

(4.39%)

487

(4.20%)

1,400

(12.06%)

668

(5.76%)

1,938

(16.70%)

318

(2.74%)

1,156

(9.96%)

301

(2.59%)

0 9 7,071 2,817 0 0 0 0 1,092 2,817 4,742 10.85 63.59 364

(5.15%)

441

(6.24%)

1,220

(17.25%)

574

(8.12%)

1,718

(24.30%)

260

(3.68%)

1,042

(14.74%)

367

(5.19%)

0 10 5,807 3,432 0 0 0 0 1,543 3,432 6,155 8.91 54.88 175

(3.01%)

297

(5.11%)

754

(12.98%)

383

(6.60%)

1,192

(20.53%)

209

(3.60%)

641

(11.04%)

373

(6.42%)

0 11 5,451 3,569 0 0 0 0 1,558 3,569 7,001 5.92 44.51 127

(2.33%)

151

(2.77%)

444

(8.15%)

241

(4.42%)

754

(13.83%)

158

(2.90%)

412

(7.56%)

329

(6.04%)

0 12 3,632 2,558 0 0 0 0 1,205 2,558 5,091 4.68 41.33 61

(1.68%)

81

(2.23%)

206

(5.67%)

144

(3.96%)

436

(12.00%)

110

(3.03%)

219

(6.03%)

217

(5.97%)

0 13 4,542 3,870 0 0 0 0 2,062 3,870 7,925 2.03 32.65 50

(1.10%)

33

(0.73%)

120

(2.64%)

49

(1.08%)

385

(8.48%)

58

(1.28%)

114

(2.51%)

114

(2.51%)

0 14 1,984 1,673 0 0 0 0 949 1,673 3,248 2.99 36.68 38

(1.92%)

18

(0.91%)

55

(2.77%)

32

(1.61%)

235

(11.84%)

36

(1.81%)

57

(2.87%)

54

(2.72%)

0 15 288 122 0 0 0 0 67 122 223 7.88 55.48 7

(2.43%)

6

(2.08%)

19

(6.60%)

11

(3.82%)

34

(11.81%)

16

(5.56%)

22

(7.64%)

17

(5.90%)

0 16 91 47 0 0 0 0 16 47 86 20.91 65.41 4

(4.40%)

0

(0.00%)

11

(12.09%)

6

(6.59%)

20

(21.98%)

11

(12.09%)

11

(12.09%)

11

(12.09%)

0 17 50 20 0 0 0 0 8 20 32 29.98 70.74 2

(4.00%)

2

(4.00%)

9

(18.00%)

3

(6.00%)

14

(28.00%)

15

(30.00%)

9

(18.00%)

7

(14.00%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

0 18 12 7 0 0 0 0 3 7 12 53.33 75.92 0

(0.00%)

0

(0.00%)

3

(25.00%)

3

(25.00%)

4

(33.33%)

2

(16.67%)

4

(33.33%)

5

(41.67%)

0 19 8 2 0 0 0 0 0 2 3 202.75 54.00 1

(12.50%)

0

(0.00%)

3

(37.50%)

1

(12.50%)

3

(37.50%)

1

(12.50%)

1

(12.50%)

0

(0.00%)

0 20 9 2 0 0 0 0 1 2 3 215.33 39.22 0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

0

(0.00%)

1

(11.11%)

0

(0.00%)

0 Total 161,375 44,357 0 0 0 0 18,708 44,357 75,877 5.58 42.03 6,403

(3.97%)

3,235

(2.00%)

12,176

(7.55%)

5,923

(3.67%)

16,506

(10.23%)

3,478

(2.16%)

9,301

(5.76%)

2,826

(1.75%)

1 1 211 22 211 3 39 47 8 22 27 300.45 23.17 6

(2.84%)

0

(0.00%)

5

(2.37%)

2

(0.95%)

6

(2.84%)

1

(0.47%)

3

(1.42%)

0

(0.00%)

1 2 3,115 499 3,115 21 347 395 177 499 754 4.83 26.98 176

(5.65%)

6

(0.19%)

96

(3.08%)

23

(0.74%)

134

(4.30%)

137

(4.40%)

47

(1.51%)

2

(0.06%)

1 3 5,214 1,259 5,214 41 702 843 410 1,259 2,106 5.36 42.66 379

(7.27%)

42

(0.81%)

488

(9.36%)

182

(3.49%)

573

(10.99%)

429

(8.23%)

317

(6.08%)

27

(0.52%)

1 4 6,197 1,886 6,197 85 987 1,252 627 1,886 3,234 7.62 49.79 473

(7.63%)

149

(2.40%)

1,003

(16.19%)

353

(5.70%)

1,153

(18.61%)

739

(11.93%)

756

(12.20%)

103

(1.66%)

1 5 9,112 2,596 9,112 144 1,673 2,178 834 2,596 4,490 6.12 44.80 705

(7.74%)

234

(2.57%)

1,238

(13.59%)

529

(5.81%)

1,538

(16.88%)

947

(10.39%)

937

(10.28%)

193

(2.12%)

1 6 16,287 4,213 16,287 196 2,711 3,499 1,287 4,213 7,209 4.89 38.32 1,335

(8.20%)

325

(2.00%)

1,503

(9.23%)

713

(4.38%)

2,025

(12.43%)

1,141

(7.01%)

1,182

(7.26%)

334

(2.05%)

1 7 18,860 5,077 18,860 244 3,461 4,673 1,592 5,077 8,963 5.47 43.33 1,632

(8.65%)

438

(2.32%)

2,066

(10.95%)

989

(5.24%)

2,965

(15.72%)

1,403

(7.44%)

1,747

(9.26%)

439

(2.33%)

1 8 15,017 5,294 15,017 187 3,318 4,466 1,620 5,294 9,544 7.65 53.95 1,480

(9.86%)

724

(4.82%)

2,806

(18.69%)

1,226

(8.16%)

3,592

(23.92%)

1,479

(9.85%)

2,470

(16.45%)

599

(3.99%)

1 9 12,924 5,725 12,924 186 3,266 4,548 1,668 5,725 10,616 9.37 62.64 1,380

(10.68%)

1,075

(8.32%)

3,330

(25.77%)

1,460

(11.30%)

4,061

(31.42%)

1,503

(11.63%)

3,016

(23.34%)

802

(6.21%)

1 10 11,714 6,190 11,714 199 3,424 4,979 1,906 6,190 11,712 10.18 66.02 1,157

(9.88%)

1,318

(11.25%)

3,333

(28.45%)

1,559

(13.31%)

4,091

(34.92%)

1,480

(12.63%)

3,011

(25.70%)

1,120

(9.56%)

1 11 10,647 6,261 10,647 211 3,537 5,384 2,079 6,261 12,714 9.59 64.42 1,032

(9.69%)

1,349

(12.67%)

2,865

(26.91%)

1,494

(14.03%)

3,706

(34.81%)

1,287

(12.09%)

2,759

(25.91%)

1,347

(12.65%)

1 12 12,026 8,569 12,026 327 4,231 6,455 3,515 8,569 17,631 6.65 53.59 924

(7.68%)

1,316

(10.94%)

2,299

(19.12%)

1,207

(10.04%)

3,260

(27.11%)

1,171

(9.74%)

2,343

(19.48%)

1,380

(11.48%)

1 13 9,678 7,363 9,678 225 3,632 6,069 3,136 7,363 15,785 6.05 51.65 847

(8.75%)

1,087

(11.23%)

1,771

(18.30%)

960

(9.92%)

2,659

(27.47%)

929

(9.60%)

1,759

(18.18%)

1,239

(12.80%)

1 14 5,235 3,919 5,235 135 2,849 5,030 1,523 3,919 9,389 7.24 56.74 612

(11.69%)

855

(16.33%)

1,216

(23.23%)

713

(13.62%)

1,790

(34.19%)

606

(11.58%)

1,249

(23.86%)

961

(18.36%)

1 15 2,897 2,159 2,897 79 2,041 4,187 756 2,159 5,710 8.73 61.03 422

(14.57%)

606

(20.92%)

810

(27.96%)

478

(16.50%)

1,140

(39.35%)

379

(13.08%)

862

(29.75%)

669

(23.09%)

1 16 1,683 1,343 1,683 60 1,335 3,445 435 1,343 3,764 8.92 61.34 296

(17.59%)

429

(25.49%)

510

(30.30%)

308

(18.30%)

677

(40.23%)

244

(14.50%)

540

(32.09%)

412

(24.48%)

1 17 1,033 846 1,033 61 903 2,797 289 846 2,676 9.61 62.85 213

(20.62%)

332

(32.14%)

368

(35.62%)

265

(25.65%)

493

(47.73%)

168

(16.26%)

408

(39.50%)

310

(30.01%)

Continued on next page
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Ifa #b TP+FPcTPd Prior

Spellse
Prior

30-df

Prior

12-mg

Prior

12-m

Spellsh

Post

30-di

Post

12-mj

Post

12-m

Spellsk

Avg.

Stay.l
Avg.

Agem

Asth.n COPDo Depr.p Diab.q Hype.r Canc.s CHDt CHFu

1 18 709 611 709 41 642 2,510 220 611 2,395 9.09 61.46 173

(24.40%)

259

(36.53%)

261

(36.81%)

178

(25.11%)

326

(45.98%)

101

(14.25%)

278

(39.21%)

203

(28.63%)

1 19 476 420 476 34 449 2,198 137 420 1,717 7.42 58.60 126

(26.47%)

184

(38.66%)

178

(37.39%)

114

(23.95%)

231

(48.53%)

80

(16.81%)

191

(40.13%)

116

(24.37%)

1 20 478 436 478 88 460 3,673 183 436 2,665 10.37 57.19 152

(31.80%)

208

(43.51%)

186

(38.91%)

136

(28.45%)

224

(46.86%)

63

(13.18%)

218

(45.61%)

124

(25.94%)

1 Total 143,513 64,688 143,513 2,567 40,007 68,628 22,402 64,688 133,101 7.60 51.80 13,520

(9.42%)

10,936

(7.62%)

26,332

(18.35%)

12,889

(8.98%)

34,644

(24.14%)

14,287

(9.96%)

24,093

(16.79%)

10,380

(7.23%)
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A.6.3.3 Performance Ensemble Model

A.6.3.4 Generated Models

Table A.52: ERMER: The generated ensemble models (Sample-1 )

Samplea Ensemble

Comb.b
AUCc TPd Spec.e Prec.f Sens.g F1h

Sample-1 1.1.8.0.1.3.1.0.0 76.97 38,018 90.15 72.10 46.12 56.26

Sample-1 1.1.6.0.0.4.1.0.0 76.91 38,091 90.11 72.06 46.21 56.31

Sample-1 1.0.8.0.1.3.1.0.1 76.96 37,840 90.12 71.94 45.90 56.05

Sample-1 1.1.8.0.0.4.1.0.0 76.96 38,111 90.13 72.10 46.23 56.34

Sample-1 1.1.9.0.0.4.2.0.0 77.05 37,979 90.05 71.87 46.07 56.15

Sample-1 1.1.7.0.1.3.1.0.0 76.95 38,037 90.13 72.08 46.14 56.26

Sample-1 1.1.8.0.0.4.2.0.0 77.03 37,983 90.02 71.82 46.08 56.14

Sample-2 1.1.8.0.1.3.1.0.0 75.83 44,932 88.32 71.65 49.10 58.27

Sample-2 1.1.6.0.0.4.1.0.0 75.81 44,937 88.36 71.72 49.10 58.30

Sample-2 1.0.8.0.1.3.1.0.1 75.73 44,720 88.37 71.65 48.87 58.10

Sample-2 1.1.8.0.0.4.1.0.0 75.85 45,015 88.31 71.67 49.19 58.34

Sample-2 1.1.9.0.0.4.2.0.0 75.88 45,032 88.25 71.58 49.21 58.32

Sample-2 1.1.7.0.1.3.1.0.0 75.81 44,887 88.35 71.68 49.05 58.24

Sample-2 1.1.8.0.0.4.2.0.0 75.86 45,009 88.26 71.58 49.18 58.30

Sample-3 1.1.8.0.1.3.1.0.0 77.10 51,440 89.33 71.11 47.17 56.72

Sample-3 1.1.6.0.0.4.1.0.0 77.05 51,396 89.32 71.08 47.13 56.68

Sample-3 1.0.8.0.1.3.1.0.1 77.16 51,269 89.29 70.97 47.02 56.56

Sample-3 1.1.8.0.0.4.1.0.0 77.09 51,453 89.32 71.09 47.19 56.72

Sample-3 1.1.9.0.0.4.2.0.0 77.22 51,328 89.22 70.86 47.07 56.57

Sample-3 1.1.7.0.1.3.1.0.0 77.08 51,420 89.33 71.10 47.15 56.70

Sample-3 1.1.8.0.0.4.2.0.0 77.20 51,322 89.22 70.85 47.06 56.56

Sample-1-train-half-3-test-half 1.1.8.0.1.3.1.0.0 76.87 45,896 91.83 74.14 42.09 53.70

Sample-1-train-half-3-test-half 1.1.6.0.0.4.1.0.0 76.82 46,178 91.70 73.97 42.35 53.86

Sample-1-train-half-3-test-half 1.0.8.0.1.3.1.0.1 76.93 45,575 91.87 74.11 41.79 53.45

Sample-1-train-half-3-test-half 1.1.8.0.0.4.1.0.0 76.86 46,175 91.73 74.03 42.34 53.88

Sample-1-train-half-3-test-half 1.1.9.0.0.4.2.0.0 77.02 45,950 91.70 73.86 42.14 53.66

Sample-1-train-half-3-test-half 1.1.7.0.1.3.1.0.0 76.85 45,898 91.80 74.09 42.09 53.68

Sample-1-train-half-3-test-half 1.1.8.0.0.4.2.0.0 77.00 45,980 91.68 73.84 42.17 53.68

a Sample: The selected sample data. b Ensemble Comb.: The ensemble model combination, which is defined according

to the CondEnsemble. c AUC: The AUC of ROC of the classification. d TP: The number of true positives (TPs).
e Spec.: The specificity measure, also known as the true negative rate (TNR).
f Prec.: The precision measure, also known as the positive predictive value (PPV). g Sens.: The sensitivity measure,

also known as the true positive rate (TPR), or the recall. h F1: The F1 score of the classification.
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A.6.3.5 Summary Performance Statistics
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Table A.53: ERMER: The benchmark of the Cond Ensemble sub-model (Sample-1 )

Statistica Orig. PARRb Orig.

PARR-

30c

Orig.

Billings-

13 (IP)d

Orig.

Billings-

13

(full)e

Sub PARR-2-Settingsf Sub IPAEOPGPg Sub Any-Acuteh

Threshold 0.50 0.60 0.70 0.50 0.50 0.50 0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70

TP+FPi 17,455 4,810 2,011 6,395 8,743 10,545 19,646 7,946 2,991 51,422 30,361 14,719 52,842 31,260 15,231

TPj NA NA NA 3,786 4,627 5,669 11,962 5,512 2,291 36,966 24,051 12,432 37,979 24,759 12,878

Sensitivityk 0.543 0.178 0.081 0.054 0.049 0.060 0.390 0.180 0.075 0.478 0.311 0.161 0.461 0.300 0.156

Specificityl 0.722 0.950 0.986 0.995 NA NA 0.805 0.938 0.982 0.887 0.950 0.982 0.900 0.956 0.984

Precisionm 0.653 0.774 0.843 0.592 0.529 0.538 0.609 0.694 0.766 0.719 0.792 0.845 0.719 0.792 0.846

Emer. admi. post 12 m.n 1.47 2.23 3.0 NA NA NA 24,397

(1.242)

12,717

(1.600)

6,295

(2.105)

81,296

(1.581)

56,381

(1.857)

31,588

(2.146)

83,786

(1.586)

58,246

(1.863)

32,861

(2.158)

Emer. admi. prior 12 m.o 2.22 3.43 4.59 NA NA NA 9,069

(0.462)

4,820

(0.607)

2,213

(0.740)

18,057

(0.351)

11,068

(0.365)

5,410

(0.368)

18,563

(0.351)

11,364

(0.364)

5,594

(0.367)

Emer. admi. prior 13-24

m.p
0.93 1.84 2.80 NA NA NA 7,870

(0.401)

4,228

(0.532)

1,932

(0.646)

16,378

(0.319)

10,216

(0.336)

4,820

(0.327)

16,796

(0.318)

10,468

(0.335)

4,961

(0.326)

Emer. admi. prior 25-36

m.q
0.73 1.48 2.25 NA NA NA 116

(0.006)

55

(0.007)

27

(0.009)

217

(0.004)

129

(0.004)

71

(0.005)

222

(0.004)

131

(0.004)

73

(0.005)

HL Testr NA NA NA NA 7,042.149*** 13,900.775*** 16,487.336***

AUC ROCs 0.69 0.70 0.73 0.78 0.661 0.767 0.771

Nt 42,778 576,868 1,836,099 1,836,099 70,147 204,672 231,755

a Statistic: Name of the statistical measure. b Orig. PARR: The performance of the original PARR model. Some of the values are estimated. c Orig. PARR-30: The performance

of the original PARR-30 model. Some of the values are estimated. d Orig. Billings-13 (IP): The performance of the original Billings et. al. (2013) model with inpatient data. Some

of the values are estimated. e Orig. Billings-13 (full): The performance of the original Billings et. al. (2013) model with inpatient, A&E, outpatient and GP data. Some of the values

are estimated. f Orig. Sub PARR-2-Settings: The performance of the model for the sub-population Sub PARR − 2 − Settings. g Orig. Sub IPAEOPGP: The performance of the

model for the sub-population Sub IPAEOPGP . h Orig. Sub Any-Acute: The performance of the model for the sub-population Sub Any − Acute. i TP+FP: The number of true

positives (TPs) and false positives (FPs). j TP: The number of true positives (TPs). k Sensitivity: The sensitivity measure, also known as the true positive rate (TPR), or the recall.
l Specificity: The specificity measure, also known as the true negative rate (TNR). m Precision: The precision measure, also known as the positive predictive value (PPV).
n Emer. admi. post 12 m.: The number of emergency admissions in the next 12 months. o Emer. admi. prior 12 m.: The number of emergency admissions in the past 12 months.
q Emer. admi. prior 13-24 m.: The number of emergency admissions in the past 13 to 24 months. r Emer. admi. prior 25-36 m.: The number of emergency admissions in the past 25 to

36 months. s HL Test: the Hosmer-Lemeshow test. t N: The total number of patients.
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Table A.54: ERMER: The benchmark of the Cond Ensemble sub-model (Sample-2 )

Statistic Orig. PARR Orig.

PARR-

30

Orig.

Billings-

13 (IP)

Orig.

Billings-

13

(full)

Sub PARR-2-Settings Sub IPAEOPGP Sub Any-Acute

Threshold 0.50 0.60 0.70 0.50 0.50 0.50 0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70

TP+FP 17,455 4,810 2,011 6,395 8,743 10,545 25,972 11,121 4,212 61,229 34,292 15,745 62,910 35,230 16,177

TP NA NA NA 3,786 4,627 5,669 15,916 7,577 3,169 43,858 26,920 13,180 45,032 27,611 13,539

Sensitivity 0.543 0.178 0.081 0.054 0.049 0.060 0.470 0.224 0.094 0.503 0.309 0.151 0.492 0.302 0.148

Specificity 0.722 0.950 0.986 0.995 NA NA 0.745 0.910 0.974 0.873 0.946 0.981 0.883 0.950 0.983

Precision 0.653 0.774 0.843 0.592 0.529 0.538 0.613 0.681 0.752 0.716 0.785 0.837 0.716 0.784 0.837

Emer. admi. post 12 m. 1.47 2.23 3.0 NA NA NA 33,656

(1.296)

17,835

(1.604)

8,637

(2.051)

99,397

(1.623)

66,013

(1.925)

35,776

(2.272)

102,144

(1.624)

67,710

(1.922)

36,720

(2.270)

Emer. admi. prior 12 m. 2.22 3.43 4.59 NA NA NA 11,739

(0.452)

6,572

(0.591)

3,046

(0.723)

22,340

(0.365)

13,821

(0.403)

6,951

(0.441)

22,953

(0.365)

14,167

(0.402)

7,111

(0.440)

Emer. admi. prior 13-24

m.

0.93 1.84 2.80 NA NA NA 10,089

(0.388)

5,639

(0.507)

2,674

(0.635)

20,041

(0.327)

12,367

(0.361)

6,226

(0.395)

20,560

(0.327)

12,671

(0.360)

6,363

(0.393)

Emer. admi. prior 25-36

m.

0.73 1.48 2.25 NA NA NA 183

(0.007)

105

(0.009)

44

(0.010)

316

(0.005)

201

(0.006)

103

(0.007)

324

(0.005)

205

(0.006)

106

(0.007)

HL Test NA NA NA NA 3,405.223*** 12,659.019*** 14,319.221***

AUC ROC 0.69 0.70 0.73 0.78 0.663 0.756 0.759

N 42,778 576,868 1,836,099 1,836,099 73,315 224,001 243,712
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Table A.55: ERMER: The benchmark of the Cond Ensemble sub-model (Sample-1-train-half-3-test-half )

Statistic Orig. PARR Orig.

PARR-

30

Orig.

Billings-

13 (IP)

Orig.

Billings-

13

(full)

Sub PARR-2-Settings Sub IPAEOPGP Sub Any-Acute

Threshold 0.50 0.60 0.70 0.50 0.50 0.50 0.50 0.60 0.70 0.50 0.60 0.70 0.50 0.60 0.70

TP+FP 17,455 4,810 2,011 6,395 8,743 10,545 22,351 8,351 2,896 60,515 35,642 18,487 62,213 36,753 19,117

TP NA NA NA 3,786 4,627 5,669 14,003 5,942 2,337 44,730 28,783 16,114 45,950 29,654 16,678

Sensitivity 0.543 0.178 0.081 0.054 0.049 0.060 0.340 0.144 0.057 0.438 0.282 0.158 0.421 0.272 0.153

Specificity 0.722 0.950 0.986 0.995 NA NA 0.834 0.952 0.989 0.905 0.959 0.986 0.917 0.964 0.988

Precision 0.653 0.774 0.843 0.592 0.529 0.538 0.627 0.712 0.807 0.739 0.808 0.872 0.739 0.807 0.872

Emer. admi. post 12 m. 1.47 2.23 3.0 NA NA NA 29,302

(1.311)

14,447

(1.730)

6,838

(2.361)

99,630

(1.646)

68,182

(1.913)

39,992

(2.163)

102,944

(1.655)

70,771

(1.926)

41,788

(2.186)

Emer. admi. prior 12 m. 2.22 3.43 4.59 NA NA NA 11,657

(0.522)

5,711

(0.684)

2,331

(0.805)

22,046

(0.364)

12,401

(0.348)

5,614

(0.304)

22,651

(0.364)

12,767

(0.347)

5,813

(0.304)

Emer. admi. prior 13-24

m.

0.93 1.84 2.80 NA NA NA 9,730

(0.435)

4,719

(0.565)

1,933

(0.667)

19,498

(0.322)

10,923

(0.306)

4,812

(0.260)

19,988

(0.321)

11,211

(0.305)

4,960

(0.259)

Emer. admi. prior 25-36

m.

0.73 1.48 2.25 NA NA NA 111

(0.005)

51

(0.006)

28

(0.010)

239

(0.004)

137

(0.004)

75

(0.004)

248

(0.004)

143

(0.004)

80

(0.004)

HL Test NA NA NA NA 7,042.149*** 27,251.451*** 31,312.081***

AUC ROC 0.69 0.70 0.73 0.78 0.658 0.767 0.771

N 42,778 576,868 1,836,099 1,836,099 91,369 268,575 304,888
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A.6.3.6 Top Risk Segments Statistics
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Table A.56: ERMER: The top risk segments profile of the Cond Ensemble sub-model (Sample-1 )

Risk

Seg.a
Modelb Sub-populationc Min

Riskd

Asthma

(%)e
COPD

(%)f
Depres.

(%)g
Diab.

(%)h
Hyper.

(%)i
Cancer

(%)j
CHD

(%)k
CHF

(%)l
Avg.

Agem

Avg.

LoSn

5-9

Medso
10+

Medsp

Train Sample: 50% of Sample-1 ; Test Sample: 50% of Sample-1

10,000

Orig. CPMq All NA 20.10 8.20 17.90 13.70 45.20 14.90 15.50 6.50 67.30 11.40 26.00 6.00

Orig. PARRr All NA 14.30 5.10 11.80 9.30 29.00 9.40 12.00 4.60 55.40 10.40 14.10 3.00

Ensembles
PARR-2-Settings

t

0.576 16.69 35.68 41.94 23.49 53.20 19.65 50.93 39.82 80.80 11.06 NA NA

IPAEOPGP

u

0.759 11.54 12.19 12.24 8.25 20.71 6.51 14.88 10.34 39.68 4.49 NA NA

Any-Acute

v

0.766 11.25 11.52 11.57 7.93 19.74 6.24 14.01 9.72 38.61 4.39 NA NA

5,000

Orig. CPM All NA 23.30 11.00 20.60 16.20 51.40 15.30 18.50 9.40 69.70 11.50 29.50 8.60

Orig. PARR All NA 16.60 8.80 13.70 12.90 38.70 15.10 18.80 8.30 66.20 11.00 17.60 4.30

Ensemble

PARR-2-Settings 0.647 20.84 44.14 45.10 26.00 56.28 21.24 57.00 45.10 80.33 11.32 NA NA

IPAEOPGP 0.817 15.80 15.78 15.28 10.14 25.20 7.52 18.58 12.96 42.36 4.91 NA NA

Any-Acute 0.818 15.84 15.72 15.32 10.38 25.12 7.60 18.48 12.92 41.99 4.93 NA NA

1,000

Orig. CPM All NA 31.40 19.60 22.70 18.80 61.20 16.40 24.50 15.90 71.60 10.30 31.50 13.40

Orig. PARR All NA 24.30 20.60 16.90 19.90 47.70 20.00 24.80 19.20 69.50 9.90 14.60 7.40

Ensemble

PARR-2-Settings 0.815 31.40 59.10 50.70 26.90 61.70 22.90 66.40 53.30 78.95 10.04 NA NA

IPAEOPGP 0.910 33.40 35.70 30.50 21.90 39.70 14.30 38.60 26.30 53.38 6.98 NA NA

Any-Acute 0.912 33.20 34.80 29.90 21.80 39.00 14.40 37.50 25.40 52.21 6.85 NA NA

500

Orig. CPM All NA 34.00 22.60 25.20 19.20 63.20 16.40 28.80 19.40 70.70 9.80 30.60 14.60

Orig. PARR All NA 28.40 24.60 16.40 23.00 49.00 21.00 28.80 24.40 69.10 9.40 14.80 8.60

Ensemble

PARR-2-Settings 0.881 37.40 67.60 52.00 26.40 63.20 25.20 69.60 55.20 77.98 9.35 NA NA

IPAEOPGP 0.957 38.20 38.60 34.80 25.20 42.80 14.20 43.20 27.40 54.49 7.43 NA NA

Any-Acute 0.958 37.80 37.60 33.80 25.00 41.20 14.00 41.80 26.80 52.95 7.37 NA NA

250

Orig. CPM All NA 40.80 28.40 24.40 21.20 62.80 17.60 29.60 23.20 69.50 8.90 32.00 18.00

Orig. PARR All NA 30.80 26.80 20.00 22.80 52.40 20.80 30.80 29.20 68.80 9.80 14.40 10.00

Ensemble

PARR-2-Settings 0.933 36.40 70.00 53.60 27.60 63.20 25.60 69.60 53.60 77.34 9.57 NA NA

IPAEOPGP 0.985 40.80 39.20 36.40 27.20 42.80 11.60 42.00 29.60 53.88 7.99 NA NA

Any-Acute 0.986 40.40 38.80 36.40 27.60 42.40 11.60 41.20 28.80 52.76 7.89 NA NA

Train Sample: 50% of Sample-2 ; Test Sample: 50% of Sample-2

10,000

Orig. CPM All NA 20.10 8.20 17.90 13.70 45.20 14.90 15.50 6.50 67.30 11.40 26.00 6.00

Orig. PARR All NA 14.30 5.10 11.80 9.30 29.00 9.40 12.00 4.60 55.40 10.40 14.10 3.00

Ensemble

PARR-2-Settings 0.612 22.03 38.78 70.50 29.45 78.14 28.56 54.89 39.58 81.52 8.15 NA NA

IPAEOPGP 0.771 17.96 15.53 23.70 13.10 31.93 10.40 18.76 11.97 42.08 3.85 NA NA

Any-Acute 0.774 18.03 15.38 23.51 12.94 31.66 10.41 18.59 11.98 41.80 3.82 NA NA

5,000

Orig. CPM All NA 23.30 11.00 20.60 16.20 51.40 15.30 18.50 9.40 69.70 11.50 29.50 8.60

Orig. PARR All NA 16.60 8.80 13.70 12.90 38.70 15.10 18.80 8.30 66.20 11.00 17.60 4.30

Ensemble

PARR-2-Settings 0.683 26.30 46.88 74.00 33.40 81.30 29.56 60.98 44.56 80.96 8.32 NA NA

IPAEOPGP 0.815 26.62 22.48 31.78 18.50 41.02 14.20 26.06 16.32 46.35 4.55 NA NA

Any-Acute 0.818 26.70 22.34 31.72 18.44 40.78 14.10 26.02 16.38 46.09 4.50 NA NA

Continued on next page
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Risk

Seg.

Model Sub-population Min

Risk

Asthma

(%)

COPD

(%)

Depres.

(%)

Diab.

(%)

Hyper.

(%)

Cancer

(%)

CHD

(%)

CHF

(%)

Avg.

Age

Avg.

LoS

5-9

Meds

10+

Meds

1,000

Orig. CPM All NA 31.40 19.60 22.70 18.80 61.20 16.40 24.50 15.90 71.60 10.30 31.50 13.40

Orig. PARR All NA 24.30 20.60 16.90 19.90 47.70 20.00 24.80 19.20 69.50 9.90 14.60 7.40

Ensemble

PARR-2-Settings 0.839 40.20 64.40 78.80 38.70 85.70 33.90 71.70 52.70 79.16 8.23 NA NA

IPAEOPGP 0.939 43.80 33.70 49.40 31.90 58.30 20.10 41.40 21.90 52.04 5.98 NA NA

Any-Acute 0.940 44.40 33.10 48.90 31.60 57.50 20.00 40.60 21.40 51.55 5.92 NA NA

500

Orig. CPM All NA 34.00 22.60 25.20 19.20 63.20 16.40 28.80 19.40 70.70 9.80 30.60 14.60

Orig. PARR All NA 28.40 24.60 16.40 23.00 49.00 21.00 28.80 24.40 69.10 9.40 14.80 8.60

Ensemble

PARR-2-Settings 0.895 44.60 70.20 80.80 42.20 87.00 34.20 75.60 55.20 78.46 9.09 NA NA

IPAEOPGP 0.980 45.60 32.00 51.00 31.80 58.80 18.60 41.20 20.20 50.48 4.66 NA NA

Any-Acute 0.981 45.80 31.60 50.60 31.40 58.40 18.80 40.20 19.80 50.08 4.60 NA NA

250

Orig. CPM All NA 40.80 28.40 24.40 21.20 62.80 17.60 29.60 23.20 69.50 8.90 32.00 18.00

Orig. PARR All NA 30.80 26.80 20.00 22.80 52.40 20.80 30.80 29.20 68.80 9.80 14.40 10.00

Ensemble

PARR-2-Settings 0.941 49.60 72.00 84.80 44.00 88.40 33.20 82.00 56.00 76.69 9.51 NA NA

IPAEOPGP 0.996 48.40 28.00 50.80 30.80 57.60 14.00 37.60 16.80 47.88 3.97 NA NA

Any-Acute 0.996 48.00 28.00 50.80 30.00 57.60 13.60 37.60 16.80 47.56 3.99 NA NA

Train Sample: 50% of Sample-1 ; Test Sample: 50% of Sample-3

10,000

Orig. CPM All NA 20.10 8.20 17.90 13.70 45.20 14.90 15.50 6.50 67.30 11.40 26.00 6.00

Orig. PARR All NA 14.30 5.10 11.80 9.30 29.00 9.40 12.00 4.60 55.40 10.40 14.10 3.00

Ensemble

PARR-2-Settings 0.583 16.11 37.70 43.99 23.96 54.83 17.25 49.15 38.29 80.99 10.50 NA NA

IPAEOPGP 0.801 7.81 9.10 8.22 6.13 15.47 3.50 9.63 6.25 35.81 3.57 NA NA

Any-Acute 0.803 8.05 9.08 8.27 6.23 15.51 3.61 9.58 6.22 35.41 3.57 NA NA

5,000

Orig. CPM All NA 23.30 11.00 20.60 16.20 51.40 15.30 18.50 9.40 69.70 11.50 29.50 8.60

Orig. PARR All NA 16.60 8.80 13.70 12.90 38.70 15.10 18.80 8.30 66.20 11.00 17.60 4.30

Ensemble

PARR-2-Settings 0.648 19.52 45.78 46.76 27.08 57.54 18.18 54.60 42.68 80.39 11.10 NA NA

IPAEOPGP 0.824 13.24 15.10 13.70 10.10 22.38 5.54 15.70 10.06 40.38 4.53 NA NA

Any-Acute 0.825 13.54 15.16 13.74 10.22 22.24 5.72 15.60 10.06 39.77 4.54 NA NA

1,000

Orig. CPM All NA 31.40 19.60 22.70 18.80 61.20 16.40 24.50 15.90 71.60 10.30 31.50 13.40

Orig. PARR All NA 24.30 20.60 16.90 19.90 47.70 20.00 24.80 19.20 69.50 9.90 14.60 7.40

Ensemble

PARR-2-Settings 0.808 28.90 64.10 53.10 31.70 63.40 19.50 63.60 47.40 78.37 9.66 NA NA

IPAEOPGP 0.901 28.50 38.00 32.00 23.80 40.80 12.40 38.50 22.20 53.53 7.00 NA NA

Any-Acute 0.903 28.30 37.40 31.40 23.70 39.90 12.60 37.50 21.60 52.10 6.96 NA NA

500

Orig. CPM All NA 34.00 22.60 25.20 19.20 63.20 16.40 28.80 19.40 70.70 9.80 30.60 14.60

Orig. PARR All NA 28.40 24.60 16.40 23.00 49.00 21.00 28.80 24.40 69.10 9.40 14.80 8.60

Ensemble

PARR-2-Settings 0.871 32.20 70.80 54.00 29.60 63.20 20.60 65.20 44.80 77.47 9.50 NA NA

IPAEOPGP 0.943 31.20 42.60 37.60 26.80 46.20 12.60 44.80 25.00 55.54 7.65 NA NA

Any-Acute 0.947 30.20 41.40 36.80 27.60 45.40 12.60 44.00 24.60 53.95 7.57 NA NA

250

Orig. CPM All NA 40.80 28.40 24.40 21.20 62.80 17.60 29.60 23.20 69.50 8.90 32.00 18.00

Orig. PARR All NA 30.80 26.80 20.00 22.80 52.40 20.80 30.80 29.20 68.80 9.80 14.40 10.00

Ensemble

PARR-2-Settings 0.923 34.80 75.60 56.00 25.60 64.00 22.00 70.80 46.80 76.87 9.08 NA NA

IPAEOPGP 0.977 30.80 42.00 36.80 27.60 44.80 11.20 48.40 24.40 54.74 7.36 NA NA

Any-Acute 0.979 29.60 40.80 36.40 26.00 44.40 10.80 46.80 23.20 53.46 7.10 NA NA

Continued on next page
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Risk

Seg.

Model Sub-population Min

Risk

Asthma

(%)

COPD

(%)

Depres.

(%)

Diab.

(%)

Hyper.

(%)

Cancer

(%)

CHD

(%)

CHF

(%)

Avg.

Age

Avg.

LoS

5-9

Meds

10+

Meds

a Risk Seg.: The top predicted risk segment. b Model: The selected model. c Sub-population: The selected sub-population. d Min Risk: The minimum risk in

the segment. e Asthma (%): The number of patients with a history of Asthma diagnosis (ICD-10: J45-J46). f COPD (%): The number of patients with a history of

Chronic Obstructive Pulmonary Disease (COPD) diagnosis (ICD-10: J20, J41-J44, J47). g Depres. (%): The number of patients with a history of Depression diagnosis

(ICD-10: I10-I15). h Diab. (%): The number of patients with a history of Diabetes diagnosis (ICD-10: E10.0, E10.1, E10.6, E10.8, E10.9, E11.0, E11.1, E11.6, E11.8,

E11.9, E12.0, E12.1, E12.6, E12.8, E12.9, E13.0, E13.1, E13.6, E13.8, E13.9, E14.0, E14.1, E14.6, E14.8, E14.9, E10.2-E10.5, E10.7, E11.2-E11.5, E11.7, E12.2-E12.5,

E12.7, E13.2-E13.5, E13.7, E14.2-E14.5, E14.7). i Hyper. (%): The number of patients with a history of Hypertension diagnosis (ICD-10: I10-I15, I27, I6, I87.0,

I87, I97, K76.6, H35.0, R03, O13, O14, O16, O10, G93.2, H40.0, P292, P293). j Cancer (%): The number of patients with a history of Cancer diagnosis (ICD-10:

C00-D49). k CHD (%): The number of patients with a history of Coronary Heart Disease (CHD) diagnosis (ICD-10: I20-I25). l CHF (%): The number of patients

with a history of Congestive Heart Failure (CHF) diagnosis (ICD-10: I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5-I42.9, I43.x, I50.x, P29.0). m Avg. Age: The average

age of patients at the trigger event. n Avg. LoS: The average length of stay (LoS) of patient at the trigger event. o 5-9 Meds: The number of patients with 5-9

medication prescription. p 10+ Meds: The number of patients with 10+ medication prescription. q Orig. CPM: The performance of the original CPM model. Some

of the values are estimated. r Orig. PARR: The performance of the original PARR model. Some of the values are estimated. s Ensemble: The performance of the

ensemble models. t PARR-2-Settings: The performance of the model for the sub-population Sub PARR − 2 − Settings. u IPAEOPGP: The performance of the

model for the sub-population Sub IPAEOPGP . v Any-Acute: The performance of the model for the sub-population Sub Any − Acute.

Continued on next page
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A.6.3.7 Risk Bands Statistics



A
.6

.3
P

erfo
rm

a
n

ce
of

S
u

b
-M

o
d

els
348

Table A.57: ERMER: The risk bands statistics of of the benchmarking models.

Orig. PARR-30a Orig. Billings-13 (IP)b Orig. Billings-13 (full)c

#d TP+FP (%)e TPf Prec.g Sens.h Avg.i C.I.j N (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I.

1 32,653 (5.66) NA NA NA 3.90 3.60;4.00 1,388,857

(76.27)

40,242 0.052 1.000 NA NA 1,358,609

(74.61)

33,194 0.052 1.000 NA NA

2 283,165

(49.09)

NA NA NA 7.10 7.00;7.20 281,216 (15.44) 21,397 0.126 0.575 NA NA 280,636 (15.41) 21,512 0.133 0.649 NA NA

3 146,626

(25.42)

NA NA NA 12.70 12.6;12.9 70,583 (3.88) 10,155 0.219 0.349 NA NA 80,352 (4.41) 11,289 0.220 0.422 NA NA

4 48,596 (8.42) NA NA NA 18.90 18.6;19.3 33,578 (1.84) 6,717 0.285 0.242 NA NA 36,535 (2.01) 7,096 0.283 0.303 NA NA

5 25,193 (4.37) NA NA NA 23.70 23.2;24.3 13,857 (0.76) 3,511 0.346 0.171 NA NA 20,762 (1.14) 4,929 0.333 0.228 NA NA

6 14,282 (2.48) NA NA NA 28.00 27.5;28.9 9,011 (0.49) 2,609 0.385 0.134 NA NA 12,461 (0.68) 3,476 0.378 0.176 NA NA

7 8,559 (1.48) NA NA NA 32.00 31.3;33.0 5,791 (0.32) 1,931 0.421 0.106 NA NA 8,276 (0.45) 2,680 0.417 0.139 NA NA

8 5,514 (0.96) NA NA NA 36.30 35.1;37.9 4,061 (0.22) 1,430 0.449 0.086 NA NA 5,636 (0.31) 2,022 0.450 0.111 NA NA

9 3,472 (0.60) NA NA NA 39.00 37.4;41.0 2,998 (0.16) 1,165 0.477 0.071 NA NA 4,162 (0.23) 1,573 0.479 0.090 NA NA

10 2,413 (0.42) NA NA NA 44.90 43.0;46.9 2,301 (0.13) 908 0.501 0.058 NA NA 3,034 (0.17) 1,252 0.510 0.073 NA NA

11 1,543 (0.27) NA NA NA 47.70 45.2;50.7 1,738 (0.10) 765 0.529 0.049 NA NA 2,386 (0.13) 1,088 0.538 0.060 NA NA

12 1,174 (0.20) NA NA NA 50.60 48.0;53.3 1,366 (0.08) 623 0.551 0.041 NA NA 1,788 (0.10) 846 0.562 0.048 NA NA

13 840 (0.15) NA NA NA 54.30 51.1;57.8 1,071 (0.06) 528 0.574 0.034 NA NA 1,454 (0.08) 701 0.587 0.039 NA NA

14 617 (0.11) NA NA NA 60.60 56.5;65.1 933 (0.05) 466 0.593 0.029 NA NA 1,106 (0.06) 581 0.618 0.032 NA NA

15 518 (0.09) NA NA NA 63.20 59.8;67.2 775 (0.04) 429 0.617 0.024 NA NA 919 (0.05) 532 0.645 0.026 NA NA

16 425 (0.07) NA NA NA 65.00 60.1;69.3 735 (0.04) 398 0.634 0.019 NA NA 760 (0.04) 443 0.666 0.020 NA NA

17 276 (0.05) NA NA NA 66.30 60.4;72.4 562 (0.03) 354 0.666 0.015 NA NA 557 (0.03) 364 0.696 0.016 NA NA

18 289 (0.05) NA NA NA 75.40 70.2;80.6 484 (0.03) 295 0.679 0.011 NA NA 545 (0.03) 360 0.711 0.012 NA NA

19 263 (0.05) NA NA NA 83.00 77.6;87.6 444 (0.02) 291 0.710 0.008 NA NA 455 (0.02) 317 0.738 0.008 NA NA

20 450 (0.08) NA NA NA 88.70 85.3;91.4 639 (0.04) 478 0.748 0.005 NA NA 567 (0.03) 437 0.771 0.005 NA NA

N

k

576,868.00 NA NA NA 12.20 12.1;12.3 1,821,000 94,692 0.53 0.05 NA NA 1,821,000 94,692 0.54 0.06 NA NA

a Orig. PARR-30: The performance of the original PARR-30 model. Some of the values are estimated. b Orig. Billings-13 (IP): The performance of the original Billings et. al. (2013) model

with inpatient data. Some of the values are estimated. c Orig. Billings-13 (full): The performance of the original Billings et. al. (2013) model with inpatient, A&E, outpatient and GP

data. Some of the values are estimated. d #: The risk band number: 1 = [0, 0.05); 2 = [0.05, 0.10); 3 = [0.10, 0.15); 4 = [0.15, 0.20); 5 = [0.20, 0.25); 6 = [0.25, 0.30); 7 = [0.30, 0.35);

8 = [0.35, 0.40); 9 = [0.40, 0.45); 10 = [0.45, 0.50); 11 = [0.50, 0.55); 12 = [0.55, 0.60); 13 = [0.60, 0.65); 14 = [0.65, 0.70); 15 = [0.70, 0.75); 16 = [0.75, 0.80); 17 = [0.80, 0.85); 18 = [0.85,

0.90); 19 = [0.90, 0.95); 20 = [0.95, 1]. e TP+FP: The number of true positives (TPs) and false positives (FPs). f Avg.: The average of number of readmissions after the trigger event.
g C.I.: The confidence interval for the average of readmissions using the bootstrapped central estimate with 95% CI. h TP: The number of true positives (TPs). i Prec.: The precision

measure, also known as the positive predictive value (PPV). j Sens.: The sensitivity measure, also known as the true positive rate (TPR), or the recall. k N: The total number of patients.
l PARR-2-Settings: The performance of the model for the sub-population Sub PARR−2−Settings. m IPAEOPGP: The performance of the model for the sub-population Sub IPAEOPGP .
n Any-Acute: The performance of the model for the sub-population Sub Any − Acute.
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Table A.58: ERMER: The risk bands statistics of of the Cond Ensemble sub-model on the Sample− 1 data.

PARR-2-Settingsl IPAEOPGPm Any-Acuten

# TP+FP (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I.

1 14 (0.02) 0 0.000 0.000 0.00 0.00;0.00 2,101 (1.03) 140 0.067 1.000 6.66 0.06;0.08 3,797 (1.64) 240 0.063 1.000 6.30 0.06;0.07

2 103 (0.15) 5 0.049 1.000 4.85 0.00;0.10 8,065 (3.94) 945 0.117 0.871 11.68 0.11;0.12 12,435 (5.37) 1,411 0.113 0.855 11.36 0.11;0.12

3 522 (0.74) 48 0.092 0.906 9.19 0.07;0.12 14,916 (7.29) 2,046 0.137 0.653 13.70 0.13;0.14 20,067 (8.66) 2,675 0.133 0.618 13.33 0.13;0.14

4 2,329 (3.32) 369 0.158 0.874 15.8 0.14;0.17 15,054 (7.36) 2,643 0.176 0.458 17.55 0.17;0.18 20,237 (8.73) 3,457 0.171 0.444 17.08 0.17;0.18

5 3,404 (4.85) 742 0.218 0.637 21.79 0.20;0.23 20,850 (10.19) 3,979 0.191 0.408 19.09 0.19;0.20 24,368 (10.51) 4,613 0.189 0.372 18.92 0.18;0.19

6 6,356 (9.06) 1,832 0.288 0.611 28.80 0.28;0.30 20,969 (10.25) 4,585 0.219 0.320 21.87 0.21;0.22 23,313 (10.06) 5,075 0.218 0.290 21.77 0.21;0.22

7 7,681 (10.95) 2,618 0.341 0.466 34.09 0.33;0.35 21,445 (10.48) 5,593 0.261 0.281 26.09 0.25;0.27 23,063 (9.95) 5,968 0.259 0.255 25.87 0.25;0.26

8 9,604 (13.69) 3,705 0.386 0.398 38.57 0.38;0.40 18,623 (9.10) 6,271 0.337 0.239 33.64 0.33;0.34 19,461 (8.40) 6,523 0.335 0.218 33.49 0.33;0.34

9 11,501 (16.40) 5,080 0.442 0.353 44.18 0.43;0.45 17,265 (8.44) 7,216 0.418 0.216 41.77 0.41;0.43 17,827 (7.69) 7,425 0.417 0.199 41.66 0.41;0.42

10 8,987 (12.81) 4,310 0.480 0.230 47.95 0.47;0.49 13,962 (6.82) 6,896 0.494 0.171 49.38 0.49;0.50 14,345 (6.19) 7,068 0.493 0.159 49.27 0.48;0.50

11 6,913 (9.86) 3,713 0.537 0.166 53.66 0.53;0.55 10,921 (5.34) 6,160 0.564 0.133 56.38 0.55;0.57 11,191 (4.83) 6,313 0.564 0.124 56.38 0.55;0.57

12 4,787 (6.82) 2,737 0.572 0.109 57.21 0.56;0.59 10,140 (4.95) 6,755 0.666 0.127 66.57 0.66;0.67 10,391 (4.48) 6,907 0.665 0.120 66.50 0.66;0.67

13 3,076 (4.39) 1,948 0.633 0.072 63.32 0.62;0.65 10,109 (4.94) 7,426 0.735 0.122 73.43 0.73;0.74 10,357 (4.47) 7,585 0.732 0.116 73.21 0.72;0.74

14 1,879 (2.68) 1,273 0.677 0.045 67.80 0.66;0.70 5,533 (2.70) 4,193 0.758 0.065 75.81 0.75;0.77 5,672 (2.45) 4,296 0.757 0.062 75.74 0.75;0.77

15 1,116 (1.59) 800 0.717 0.027 71.68 0.69;0.74 4,301 (2.10) 3,423 0.796 0.050 79.58 0.78;0.81 4,424 (1.91) 3,517 0.795 0.048 79.49 0.78;0.81

16 721 (1.03) 547 0.759 0.018 75.86 0.73;0.79 2,975 (1.45) 2,447 0.823 0.035 82.31 0.81;0.84 3,089 (1.33) 2,549 0.825 0.034 82.55 0.81;0.84

17 460 (0.66) 364 0.791 0.012 79.13 0.75;0.83 4,595 (2.25) 4,076 0.887 0.054 88.72 0.88;0.90 4,757 (2.05) 4,223 0.888 0.053 88.77 0.88;0.90

18 306 (0.44) 240 0.784 0.008 78.43 0.74;0.83 1,697 (0.83) 1,475 0.869 0.019 86.91 0.85;0.89 1,769 (0.76) 1,542 0.872 0.019 87.22 0.86;0.89

19 199 (0.28) 167 0.839 0.005 83.92 0.79;0.89 597 (0.29) 509 0.853 0.007 85.26 0.82;0.88 619 (0.27) 527 0.851 0.006 85.13 0.82;0.88

20 189 (0.27) 173 0.915 0.006 91.53 0.87;0.95 554 (0.27) 502 0.906 0.006 90.61 0.88;0.93 573 (0.25) 520 0.908 0.006 90.75 0.88;0.93

N 70,147 30,671 0.609 0.390 43.72 0.43;0.44 204,672 77,280 0.719 0.478 37.75 0.38;0.38 231,755 82,434 0.719 0.461 35.56 0.35;0.36

a Orig. PARR-30: The performance of the original PARR-30 model. Some of the values are estimated. b Orig. Billings-13 (IP): The performance of the original Billings et. al. (2013) model

with inpatient data. Some of the values are estimated. c Orig. Billings-13 (full): The performance of the original Billings et. al. (2013) model with inpatient, A&E, outpatient and GP

data. Some of the values are estimated. d #: The risk band number: 1 = [0, 0.05); 2 = [0.05, 0.10); 3 = [0.10, 0.15); 4 = [0.15, 0.20); 5 = [0.20, 0.25); 6 = [0.25, 0.30); 7 = [0.30, 0.35);

8 = [0.35, 0.40); 9 = [0.40, 0.45); 10 = [0.45, 0.50); 11 = [0.50, 0.55); 12 = [0.55, 0.60); 13 = [0.60, 0.65); 14 = [0.65, 0.70); 15 = [0.70, 0.75); 16 = [0.75, 0.80); 17 = [0.80, 0.85); 18 = [0.85,

0.90); 19 = [0.90, 0.95); 20 = [0.95, 1]. e TP+FP: The number of true positives (TPs) and false positives (FPs). f Avg.: The average of number of readmissions after the trigger event.
g C.I.: The confidence interval for the average of readmissions using the bootstrapped central estimate with 95% CI. h TP: The number of true positives (TPs). i Prec.: The precision

measure, also known as the positive predictive value (PPV). j Sens.: The sensitivity measure, also known as the true positive rate (TPR), or the recall. k N: The total number of patients.
l PARR-2-Settings: The performance of the model for the sub-population Sub PARR−2−Settings. m IPAEOPGP: The performance of the model for the sub-population Sub IPAEOPGP .
n Any-Acute: The performance of the model for the sub-population Sub Any − Acute.
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Table A.59: ERMER: The risk bands statistics of the Cond Ensemble sub-model (Sample-2 )

PARR-2-Settingsk IPAEOPGPl Any-Acutem

# TP+FP (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I.

1 2 (0.00) 2 1.000 1.000 100.00 1.00;1.00 1,397 (0.62) 79 0.057 1.000 5.65 0.05;0.07 1,873 (0.77) 98 0.052 1.000 5.28 0.04;0.06

2 129 (0.18) 13 0.101 0.867 10.07 0.05;0.15 7,513 (3.35) 852 0.113 0.915 11.34 0.11;0.12 10,212 (4.19) 1,125 0.110 0.920 11.00 0.10;0.12

3 951 (1.30) 145 0.152 0.906 15.35 0.13;0.18 13,940 (6.22) 2,132 0.153 0.696 15.29 0.15;0.16 16,565 (6.80) 2,459 0.148 0.668 14.85 0.14;0.15

4 1,212 (1.65) 206 0.170 0.563 16.91 0.15;0.19 16,343 (7.30) 3,168 0.194 0.508 19.39 0.19;0.20 19,209 (7.88) 3,569 0.186 0.492 18.58 0.18;0.19

5 3,574 (4.87) 862 0.241 0.702 24.09 0.23;0.26 18,859 (8.42) 4,402 0.233 0.414 23.34 0.23;0.24 22,137 (9.08) 4,978 0.225 0.407 22.46 0.22;0.23

6 4,013 (5.47) 1,149 0.286 0.483 28.65 0.27;0.30 20,608 (9.20) 4,674 0.227 0.305 22.67 0.22;0.23 22,608 (9.28) 5,066 0.224 0.293 22.40 0.22;0.23

7 6,422 (8.76) 2,030 0.316 0.461 31.59 0.30;0.33 26,838 (11.98) 6,349 0.237 0.293 23.64 0.23;0.24 28,758 (11.80) 6,770 0.235 0.281 23.52 0.23;0.24

8 10,049 (13.71) 3,823 0.380 0.465 38.03 0.37;0.39 23,409 (10.45) 7,266 0.310 0.251 31.04 0.30;0.32 24,519 (10.06) 7,560 0.308 0.239 30.80 0.30;0.31

9 10,945 (14.93) 4,718 0.431 0.364 43.12 0.42;0.44 18,994 (8.48) 7,442 0.392 0.205 39.17 0.39;0.40 19,603 (8.04) 7,682 0.392 0.195 39.19 0.38;0.40

10 10,046 (13.70) 4,985 0.496 0.278 49.63 0.49;0.51 14,871 (6.64) 6,971 0.469 0.161 46.87 0.46;0.48 15,318 (6.29) 7,178 0.469 0.154 46.84 0.46;0.48

11 8,431 (11.50) 4,548 0.539 0.202 53.95 0.53;0.55 13,271 (5.92) 7,597 0.572 0.149 57.26 0.56;0.58 13,670 (5.61) 7,848 0.574 0.144 57.41 0.57;0.58

12 6,420 (8.76) 3,791 0.590 0.144 59.03 0.58;0.60 13,666 (6.10) 9,341 0.684 0.155 68.36 0.68;0.69 14,010 (5.75) 9,573 0.683 0.150 68.31 0.68;0.69

13 4,153 (5.66) 2,557 0.616 0.089 61.54 0.60;0.63 11,454 (5.11) 8,386 0.732 0.122 73.21 0.72;0.74 11,776 (4.83) 8,596 0.730 0.119 72.99 0.72;0.74

14 2,756 (3.76) 1,851 0.672 0.060 67.12 0.66;0.69 7,093 (3.17) 5,354 0.755 0.072 75.51 0.75;0.76 7,277 (2.99) 5,476 0.753 0.070 75.21 0.74;0.76

15 1,679 (2.29) 1,186 0.706 0.037 70.63 0.68;0.73 4,056 (1.81) 3,116 0.768 0.040 76.84 0.75;0.78 4,167 (1.71) 3,200 0.768 0.039 76.81 0.76;0.78

16 1,020 (1.39) 735 0.721 0.023 72.05 0.69;0.75 5,402 (2.41) 4,627 0.857 0.057 85.65 0.85;0.87 5,580 (2.29) 4,783 0.857 0.056 85.71 0.85;0.87

17 647 (0.88) 514 0.794 0.016 79.44 0.76;0.83 2,999 (1.34) 2,575 0.859 0.031 85.86 0.85;0.87 3,076 (1.26) 2,636 0.857 0.030 85.72 0.84;0.87

18 405 (0.55) 331 0.817 0.010 81.72 0.78;0.85 1,691 (0.75) 1,454 0.860 0.017 85.98 0.84;0.88 1,730 (0.71) 1,487 0.860 0.017 85.95 0.84;0.88

19 244 (0.33) 207 0.848 0.006 84.83 0.80;0.89 728 (0.32) 625 0.859 0.007 85.98 0.83;0.88 742 (0.30) 638 0.860 0.007 85.98 0.83;0.88

20 217 (0.30) 196 0.903 0.006 90.32 0.86;0.94 869 (0.39) 783 0.901 0.009 90.21 0.88;0.92 882 (0.36) 795 0.901 0.009 90.24 0.88;0.92

N 73,315 33,849 0.613 0.470 46.18 0.46;0.47 224,001 87,193 0.716 0.503 38.93 0.39;0.39 243,712 91,517 0.716 0.492 37.55 0.37;0.38
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Table A.60: ERMER: The risk bands statistics of the Cond Ensemble sub-model (Sample-1-train-half-3-test-half )

PARR-2-Settingsk IPAEOPGPl Any-Acutem

# TP+FP (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I. N (%) TP Prec. Sens. Avg. C.I.

1 13 (0.01) 1 0.077 1.000 7.69 0.00;0.23 3,051 (1.14) 203 0.067 1.000 6.65 0.06;0.08 5,281 (1.73) 352 0.067 1.000 6.66 0.06;0.07

2 104 (0.11) 3 0.029 0.750 2.88 0.00;0.07 11,714 (4.36) 1,564 0.134 0.885 13.38 0.13;0.14 17,324 (5.68) 2,165 0.125 0.860 12.51 0.12;0.13

3 677 (0.74) 78 0.115 0.951 11.52 0.09;0.14 19,759 (7.36) 2,816 0.143 0.614 14.24 0.14;0.15 26,158 (8.58) 3,550 0.136 0.585 13.56 0.13;0.14

4 3,229 (3.53) 482 0.149 0.855 14.92 0.14;0.16 20,869 (7.77) 3,677 0.176 0.445 17.62 0.17;0.18 27,760 (9.10) 4,733 0.170 0.438 17.05 0.17;0.17

5 4,596 (5.03) 1,092 0.238 0.659 23.78 0.22;0.25 31,421 (11.70) 6,083 0.194 0.424 19.37 0.19;0.20 37,608 (12.34) 7,252 0.193 0.402 19.30 0.19;0.20

6 9,196 (10.06) 2,807 0.305 0.629 30.51 0.30;0.31 31,522 (11.74) 7,189 0.228 0.334 22.78 0.22;0.23 34,732 (11.39) 7,854 0.226 0.303 22.59 0.22;0.23

7 11,108 (12.16) 4,065 0.366 0.477 36.59 0.36;0.37 28,363 (10.56) 8,370 0.295 0.280 29.50 0.29;0.30 30,379 (9.96) 8,948 0.295 0.257 29.44 0.29;0.30

8 12,992 (14.22) 5,373 0.414 0.387 41.34 0.41;0.42 23,247 (8.66) 8,738 0.376 0.226 37.58 0.37;0.38 24,173 (7.93) 9,058 0.375 0.206 37.46 0.37;0.38

9 15,240 (16.68) 7,179 0.471 0.341 47.12 0.46;0.48 21,255 (7.91) 9,853 0.464 0.203 46.36 0.46;0.47 21,930 (7.19) 10,116 0.461 0.187 46.11 0.46;0.47

10 11,863 (12.98) 6,072 0.512 0.224 51.19 0.50;0.52 16,859 (6.28) 8,816 0.523 0.154 52.31 0.52;0.53 17,330 (5.68) 9,067 0.523 0.144 52.32 0.52;0.53

11 8,348 (9.14) 4,584 0.549 0.144 54.89 0.54;0.56 13,268 (4.94) 7,798 0.588 0.120 58.76 0.58;0.60 13,602 (4.46) 7,991 0.587 0.112 58.74 0.58;0.60

12 5,652 (6.19) 3,477 0.615 0.099 61.53 0.60;0.63 11,605 (4.32) 8,149 0.702 0.111 70.19 0.69;0.71 11,858 (3.89) 8,305 0.700 0.105 70.03 0.69;0.71

13 3,452 (3.78) 2,254 0.653 0.060 65.29 0.64;0.67 11,069 (4.12) 8,278 0.748 0.102 74.78 0.74;0.76 11,394 (3.74) 8,479 0.744 0.096 74.39 0.74;0.75

14 2,003 (2.19) 1,351 0.674 0.035 67.39 0.65;0.70 6,086 (2.27) 4,391 0.721 0.051 72.16 0.71;0.73 6,242 (2.05) 4,497 0.720 0.049 72.04 0.71;0.73

15 1,123 (1.23) 844 0.752 0.021 75.15 0.73;0.77 4,851 (1.81) 3,925 0.809 0.044 80.91 0.80;0.82 4,998 (1.64) 4,049 0.810 0.042 81.03 0.80;0.82

16 694 (0.76) 559 0.805 0.014 80.54 0.77;0.84 3,526 (1.31) 2,986 0.847 0.032 84.69 0.84;0.86 3,656 (1.20) 3,101 0.848 0.031 84.76 0.84;0.86

17 446 (0.49) 367 0.823 0.009 82.28 0.78;0.85 6,851 (2.55) 6,231 0.910 0.063 90.95 0.90;0.92 7,061 (2.32) 6,424 0.910 0.061 90.96 0.90;0.92

18 263 (0.29) 228 0.867 0.006 86.69 0.82;0.91 2,252 (0.84) 2,056 0.913 0.020 91.29 0.90;0.92 2,348 (0.77) 2,145 0.914 0.020 91.35 0.90;0.92

19 202 (0.22) 183 0.906 0.004 90.59 0.87;0.94 559 (0.21) 507 0.907 0.005 90.69 0.88;0.93 584 (0.19) 529 0.906 0.005 90.75 0.88;0.93

20 168 (0.18) 156 0.929 0.004 92.85 0.89;0.96 448 (0.17) 409 0.913 0.004 91.29 0.89;0.94 470 (0.15) 430 0.915 0.004 91.48 0.89;0.94

N 91,369 41,155 0.627 0.340 45.04 0.45;0.45 268,575 102,039 0.739 0.438 37.99 0.38;0.38 304,888 109,045 0.739 0.421 35.76 0.36;0.36
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Table A.61: T-CARER: The weights of features using the Random Forest method
(Sample-1 )

# Name Weight Temporal Definition

1 admimeth 0t30d prevalence 2 cnt 1.30E-01 0-30 Admission method: Unknown

2 admimeth 0t30d prevalence 1 cnt 1.21E-01 0-30 Admission method: Elective

3 mainspef 0t30d prevalence 5 cnt 5.83E-02 0-30 Main Speciality: Maternity

4 epidur 0t30d avg 5.68E-02 0-30 Average episode duration

5 diagCCS 0t30d prevalence 16 cnt 4.63E-02 0-30 CCS group: Other complications of pregnancy

6 ethnos 0 4.13E-02 Trigger ethnicity: Not known

7 posopdur 0t30d avg 4.06E-02 0-30 Average Post-operation duration

8 diagCCS 0t30d others cnt 2.33E-02 0-30 CCS group: Others

9 epidur 365t730d avg 2.07E-02 365-730 Average episode duration

10 operOPCSL1 0t30d others cnt 1.97E-02 0-30 Operation group: Others

11 diagCCS 0t30d prevalence 5 cnt 1.91E-02 0-30 CCS group: Normal pregnancy and delivery

12 epidur 0t30d others cnt 1.80E-02 0-30 Episode duration

13 ethnos 1 1.72E-02 Trigger ethnicity: White

14 mainspef 0t30d prevalence 4 cnt 1.65E-02 0-30 Main Speciality: Gynaecology

15 preopdur 0t30d avg 1.59E-02 0-30 Average Post-operation duration

16 gender 1 1.56E-02 Trigger Gender: Male

17 epidur 365t730d others cnt 1.45E-02 365-730 Episode duration

18 mainspef 0t30d prevalence 3 cnt 1.37E-02 0-30 Main Speciality: Plastic

19 admimeth 180t365d prevalence 2 cnt 1.35E-02 180-365 Admission method: Unknown

20 admimeth 365t730d prevalence 2 cnt 1.20E-02 365-730 Admission method: Unknown

21 gapDays 365t730d others cnt 1.08E-02 365-730 Gap-Days

22 operOPCSL1 0t30d prevalence 7 cnt 1.08E-02 0-30 Operation group: Female Genital Tract

23 preopdur 365t730d others cnt 1.06E-02 365-730 Post-operation duration

24 mainspef 0t30d prevalence 1 cnt 1.02E-02 0-30 Main Speciality: General

25 diagCCS 365t730d others cnt 9.16E-03 365-730 CCS group: Others

26 admimeth 365t730d others cnt 8.87E-03 365-730 Admission method: Others

27 epidur 180t365d avg 8.05E-03 180-365 Average episode duration

28 diagCCS 180t365d others cnt 8.04E-03 180-365 CCS group: Others

29 diagCCS 0t30d prevalence 1 cnt 7.50E-03 0-30 CCS group: Others

30 mainspef 0t30d prevalence 2 cnt 7.10E-03 0-30 Main Speciality: General Surgery

31 gapDays 180t365d others cnt 6.92E-03 180-365 Gap-Days

32 diagCCS 0t30d prevalence 8 cnt 6.63E-03 0-30 CCS group: Abdominal pain

33 posopdur 365t730d others cnt 6.21E-03 365-730 Post-operation duration

34 epidur 180t365d others cnt 5.89E-03 180-365 Episode duration

35 mainspef 0t30d others cnt 5.46E-03 0-30 Main Speciality: Others

36 gapDays 180t365d avg 5.31E-03 180-365 Average Gap-Days

37 gapDays 365t730d avg 5.20E-03 365-730 Average Gap-Days

38 preopdur 30t90d others cnt 4.97E-03 30-90 Post-operation duration

39 diagCCS 0t30d prevalence 19 cnt 4.88E-03 0-30 CCS group: Other screening for suspected condi-

tions (not mental disorders or infectious disease)

40 admimeth 90t180d prevalence 2 cnt 4.10E-03 90-180 Admission method: Unknown

41 admimeth 365t730d prevalence 1 cnt 4.04E-03 365-730 Admission method: Elective

42 operOPCSL1 0t30d prevalence 4 cnt 3.98E-03 0-30 Operation group: Miscellaneous Operations

43 posopdur 180t365d others cnt 3.92E-03 180-365 Post-operation duration

44 diagCCS 0t30d prevalence 24 cnt 3.87E-03 0-30 CCS group: Chronic obstructive pulmonary dis-

ease & bronchiectasis

45 diagCCS 0t30d prevalence 4 cnt 3.76E-03 0-30 CCS group: Coronary atherosclerosis & other

heart disease

46 mainspef 0t30d prevalence 8 cnt 3.60E-03 0-30 Main Speciality: Geriatric

47 mainspef 90t180d others cnt 3.56E-03 90-180 Main Speciality: Others

48 epidur 90t180d others cnt 3.50E-03 90-180 Episode duration

49 preopdur 90t180d others cnt 3.44E-03 90-180 Post-operation duration

50 operOPCSL1 0t30d prevalence 3 cnt 3.21E-03 0-30 Operation group: Upper Female Genital Tract

51 epidur 90t180d avg 3.12E-03 90-180 Average episode duration

52 posopdur 30t90d others cnt 2.60E-03 30-90 Post-operation duration

53 diagCCS 30t90d others cnt 2.46E-03 30-90 CCS group: Others

54 admimeth 90t180d others cnt 2.38E-03 90-180 Admission method: Others

55 mainspef 180t365d others cnt 2.29E-03 180-365 Main Speciality: Others

56 admimeth 30t90d prevalence 2 cnt 2.21E-03 30-90 Admission method: Unknown

57 posopdur 0t30d others cnt 2.18E-03 0-30 Post-operation duration

58 diagCCS 90t180d others cnt 1.98E-03 90-180 CCS group: Others

59 admimeth 180t365d others cnt 1.98E-03 180-365 Admission method: Others

60 posopdur 90t180d others cnt 1.98E-03 90-180 Post-operation duration

61 mainspef 0t30d prevalence 9 cnt 1.94E-03 0-30 Main Speciality: Ear, nose & throat

62 diagCCS 0t30d prevalence 10 cnt 1.87E-03 0-30 CCS group: Cardiac dysrhythmias

63 gapDays 90t180d avg 1.82E-03 90-180 Average Gap-Days

64 preopdur 180t365d others cnt 1.76E-03 180-365 Post-operation duration

65 diagCCS 180t365d prevalence 1 cnt 1.68E-03 180-365 CCS group: Others

66 gapDays 90t180d others cnt 1.62E-03 90-180 Gap-Days

Continued on next page
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67 diagCCS 0t30d prevalence 2 cnt 1.46E-03 0-30 CCS group: Residual codes; unclassified

68 epidur 30t90d avg 1.42E-03 30-90 Average episode duration

69 admimeth 180t365d prevalence 1 cnt 1.40E-03 180-365 Admission method: Elective

70 diagCCS 0t30d prevalence 6 cnt 1.39E-03 0-30 CCS group: Other upper respiratory disease

71 diagCCS 365t730d prevalence 1 cnt 1.39E-03 365-730 CCS group: Others

72 mainspef 30t90d others cnt 1.38E-03 30-90 Main Speciality: Others

73 diagCCS 0t30d prevalence 3 cnt 1.35E-03 0-30 CCS group: Essential hypertension

74 mainspef 180t365d prevalence 1 cnt 1.32E-03 180-365 Main Speciality: General

75 mainspef 0t30d prevalence 7 cnt 1.28E-03 0-30 Main Speciality: Ophthalmology

76 admimeth 30t90d others cnt 1.25E-03 30-90 Admission method: Others

77 gapDays 30t90d others cnt 1.25E-03 30-90 Gap-Days

78 gapDays 30t90d avg 1.17E-03 30-90 Average Gap-Days

79 epidur 30t90d others cnt 1.14E-03 30-90 Episode duration

80 diagCCS 0t30d prevalence 20 cnt 1.14E-03 0-30 CCS group: Other lower respiratory disease

81 diagCCS 0t30d prevalence 27 cnt 1.09E-03 0-30 CCS group: Other female genital disorders

82 posopdur 365t730d avg 1.07E-03 365-730 Average Post-operation duration

83 operOPCSL1 0t30d prevalence 10 cnt 1.06E-03 0-30 Operation group: Male Genital Organs

84 diagCCS 365t730d prevalence 5 cnt 1.04E-03 365-730 CCS group: Normal pregnancy and/or delivery

85 diagCCS 0t30d prevalence 28 cnt 1.03E-03 0-30 CCS group: Deficiency & other anemia

86 admimeth 90t180d prevalence 1 cnt 1.02E-03 90-180 Admission method: Elective

87 diagCCS 0t30d prevalence 9 cnt 1.02E-03 0-30 CCS group: Cataract

88 imd04rk 1 1.02E-03 Trigger imd04rk: 0 to 3248

89 diagCCS 0t30d prevalence 7 cnt 9.86E-04 0-30 CCS group: Diabetes mellitus without complica-

tion

90 imd04rk 2 9.74E-04 Trigger imd04rk: 3248 to 6496

91 mainspef 0t30d prevalence 10 cnt 9.63E-04 0-30 Main Speciality: Cardiothoracic

92 ageTrigger 80 8.88E-04 Trigger Age: 80-85

93 operOPCSL1 0t30d prevalence 2 cnt 8.51E-04 0-30 Operation group: Lower Digestive Tract

94 gapDays 0t30d others cnt 8.45E-04 0-30 Gap-Days

95 diagCCS 0t30d prevalence 30 cnt 8.39E-04 0-30 CCS group: Other aftercare

96 admimeth 30t90d prevalence 1 cnt 8.16E-04 30-90 Admission method: Elective

97 diagCCS 0t30d prevalence 21 cnt 8.13E-04 0-30 CCS group: Other & unspecified benign neo-

plasm

98 operOPCSL1 0t30d prevalence 6 cnt 7.79E-04 0-30 Operation group: Mental Health

99 ethnos 9 7.17E-04 Trigger ethnicity: Any other

100 diagCCS 0t30d prevalence 23 cnt 6.87E-04 0-30 CCS group: Other skin disorders

101 imd04rk 3 6.52E-04 Trigger imd04rk: 6496 to 9745

102 preopdur 0t30d others cnt 6.48E-04 0-30 Post-operation duration

103 posopdur 180t365d avg 6.39E-04 180-365 Average Post-operation duration

104 diagCCS 0t30d prevalence 13 cnt 6.33E-04 0-30 CCS group: Other gastrointestinal disorders

105 diagCCS 0t30d prevalence 15 cnt 6.30E-04 0-30 CCS group: Other connective tissue disease

106 mainspef 180t365d prevalence 5 cnt 5.80E-04 180-365 Main Speciality: Gynaecology

107 diagCCS 0t30d prevalence 12 cnt 5.78E-04 0-30 CCS group: Abdominal hernia

108 diagCCS 365t730d prevalence 4 cnt 5.77E-04 365-730 CCS group: Coronary atherosclerosis & other

heart disease

109 imd04rk 4 5.76E-04 Trigger imd04rk: 9745 to 12993

110 mainspef 0t30d prevalence 6 cnt 5.75E-04 0-30 Main Speciality: Urology

111 operOPCSL1 365t730d others cnt 5.64E-04 365-730 Operation group: Others

112 diagCCS 0t30d prevalence 14 cnt 5.63E-04 0-30 CCS group: External cause codes: Fall

113 diagCCS 0t30d prevalence 17 cnt 5.55E-04 0-30 CCS group: Osteoarthritis

114 preopdur 365t730d avg 5.40E-04 365-730 Average Post-operation duration

115 diagCCS 0t30d prevalence 11 cnt 5.14E-04 0-30 CCS group: Asthma

116 ageTrigger 75 5.04E-04 Trigger Age: 75-80

117 diagCCS 365t730d prevalence 21 cnt 5.04E-04 365-730 CCS group: Chronic obstructive pulmonary dis-

ease & bronchiectasis

118 operOPCSL1 0t30d prevalence 16 cnt 4.98E-04 0-30 Operation group: Other Bones & Joints

119 diagCCS 0t30d prevalence 18 cnt 4.92E-04 0-30 CCS group: Genitourinary symptoms & ill-

defined conditions

120 operOPCSL1 0t30d prevalence 9 cnt 4.88E-04 0-30 Operation group: Heart

121 ageTrigger 30 4.86E-04 Trigger Age: 30-35

122 imd04rk 6 4.82E-04 Trigger imd04rk: 16241 to 19489

123 operOPCSL1 0t30d prevalence 5 cnt 4.79E-04 0-30 Operation group: Upper Digestive Tract

124 ageTrigger 85 4.77E-04 Trigger Age: 85+

125 imd04rk 5 4.72E-04 Trigger imd04rk: 12993 to 16241

126 imd04rk 9 4.69E-04 Trigger imd04rk: 25986 to 29234

127 imd04rk 7 4.68E-04 Trigger imd04rk: 19489 to 22737

128 mainspef 90t180d prevalence 1 cnt 4.54E-04 90-180 Main Speciality: General

129 imd04rk 8 4.46E-04 Trigger imd04rk: 22737 to 25986

130 operOPCSL1 0t30d prevalence 1 cnt 4.11E-04 0-30 Operation group: Urinary

131 diagCCS 0t30d prevalence 26 cnt 4.11E-04 0-30 CCS group: Esophageal disorders

132 mainspef 180t365d prevalence 3 cnt 4.09E-04 180-365 Main Speciality: Plastic

133 diagCCS 0t30d prevalence 22 cnt 4.04E-04 0-30 CCS group: Other nervous system disorders

Continued on next page



A.7.1 Features 355

# Name Weight Temporal Definition

134 diagCCS 180t365d prevalence 4 cnt 3.70E-04 180-365 CCS group: Coronary atherosclerosis & other

heart disease

135 diagCCS 365t730d prevalence 8 cnt 3.31E-04 365-730 CCS group: Diabetes mellitus without complica-

tion

136 preopdur 180t365d avg 3.10E-04 180-365 Average Post-operation duration

137 ethnos 2 3.06E-04 Trigger ethnicity: Indian

138 operOPCSL1 365t730d prevalence 2 cnt 3.04E-04 365-730 Operation group: Miscellaneous Operations

139 diagCCS 365t730d prevalence 24 cnt 3.03E-04 365-730 CCS group: Other complications of pregnancy

140 operOPCSL1 180t365d others cnt 2.87E-04 180-365 Operation group: Others

141 admimeth 0t30d others cnt 2.87E-04 0-30 Admission method: Others

142 diagCCS 180t365d prevalence 14 cnt 2.78E-04 180-365 CCS group: Chronic obstructive pulmonary dis-

ease & bronchiectasis

143 ethnos 3 2.71E-04 Trigger ethnicity: Pakistani

144 diagCCS 365t730d prevalence 11 cnt 2.71E-04 365-730 CCS group: Cataract

145 diagCCS 0t30d prevalence 25 cnt 2.69E-04 0-30 CCS group: Allergic reactions

146 gapDays 0t30d avg 2.52E-04 0-30 Average Gap-Days

147 ethnos 7 2.41E-04 Trigger ethnicity: Black - Other

148 mainspef 180t365d prevalence 7 cnt 2.30E-04 180-365 Main Speciality: Geriatric

149 ageTrigger 35 2.27E-04 Trigger Age: 35-40

150 diagCCS 0t30d prevalence 29 cnt 2.20E-04 0-30 CCS group: Spondylosis; intervertebral disc dis-

orders; other back problems

151 ageTrigger 20 2.18E-04 Trigger Age: 20-25

152 mainspef 30t90d prevalence 1 cnt 2.13E-04 30-90 Main Speciality: General

153 posopdur 90t180d avg 2.11E-04 90-180 Average Post-operation duration

154 ageTrigger 55 2.08E-04 Trigger Age: 55-60

155 operOPCSL1 365t730d prevalence 5 cnt 2.08E-04 365-730 Operation group: Upper Female Genital Tract

156 diagCCS 365t730d prevalence 2 cnt 2.05E-04 365-730 CCS group: Residual codes; unclassified

157 operOPCSL1 0t30d prevalence 11 cnt 2.04E-04 0-30 Operation group: Respiratory Tract

158 ageTrigger 25 2.02E-04 Trigger Age: 25-30

159 diagCCS 90t180d prevalence 1 cnt 1.99E-04 90-180 CCS group: Others

160 diagCCS 180t365d prevalence 24 cnt 1.92E-04 180-365 CCS group: Normal pregnancy and/or delivery

161 ageTrigger 50 1.91E-04 Trigger Age: 50-55

162 operOPCSL1 180t365d prevalence 2 cnt 1.88E-04 180-365 Operation group: Miscellaneous Operations

163 diagCCS 180t365d prevalence 2 cnt 1.87E-04 180-365 CCS group: Residual codes; unclassified

164 mainspef 180t365d prevalence 2 cnt 1.67E-04 180-365 Main Speciality: General Surgery

165 ageTrigger 40 1.60E-04 Trigger Age: 40-45

166 posopdur 30t90d avg 1.58E-04 30-90 Average Post-operation duration

167 mainspef 90t180d prevalence 5 cnt 1.56E-04 90-180 Main Speciality: Gynaecology

168 diagCCS 365t730d prevalence 12 cnt 1.55E-04 365-730 CCS group: Cardiac dysrhythmias

169 diagCCS 365t730d prevalence 6 cnt 1.52E-04 365-730 CCS group: Other gastrointestinal disorders

170 diagCCS 365t730d prevalence 3 cnt 1.47E-04 365-730 CCS group: Essential hypertension

171 mainspef 180t365d prevalence 4 cnt 1.47E-04 180-365 Main Speciality: Urology

172 diagCCS 30t90d prevalence 7 cnt 1.45E-04 30-90 CCS group: Other complications of pregnancy

173 operOPCSL1 365t730d prevalence 1 cnt 1.42E-04 365-730 Operation group: Urinary

174 ageTrigger 70 1.35E-04 Trigger Age: 70-75

175 ageTrigger 45 1.34E-04 Trigger Age: 45-50

176 ageTrigger 15 1.31E-04 Trigger Age: 15-20

177 ageTrigger 65 1.31E-04 Trigger Age: 65-70

178 diagCCS 365t730d prevalence 18 cnt 1.28E-04 365-730 CCS group: Other lower respiratory disease

179 mainspef 30t90d prevalence 5 cnt 1.18E-04 30-90 Main Speciality: Maternity

180 ageTrigger 60 1.12E-04 Trigger Age: 60-65

181 diagCCS 90t180d prevalence 21 cnt 1.11E-04 90-180 CCS group: Other complications of pregnancy

182 mainspef 180t365d prevalence 10 cnt 1.10E-04 180-365 Main Speciality: Maternity

183 mainspef 30t90d prevalence 6 cnt 1.10E-04 30-90 Main Speciality: Plastic

184 mainspef 90t180d prevalence 9 cnt 1.09E-04 90-180 Main Speciality: Maternity

185 diagCCS 365t730d prevalence 7 cnt 1.08E-04 365-730 CCS group: Other upper respiratory disease

186 diagCCS 365t730d prevalence 10 cnt 1.07E-04 365-730 CCS group: Abdominal pain

187 operOPCSL1 30t90d prevalence 1 cnt 1.07E-04 30-90 Operation group: Miscellaneous Operations

188 operOPCSL1 30t90d others cnt 1.06E-04 30-90 Operation group: Others

189 operOPCSL1 0t30d prevalence 8 cnt 1.03E-04 0-30 Operation group: Soft Tissue

190 diagCCS 365t730d prevalence 9 cnt 1.02E-04 365-730 CCS group: Other aftercare

191 diagCCS 30t90d prevalence 1 cnt 9.74E-05 30-90 CCS group: Others

192 diagCCS 180t365d prevalence 3 cnt 9.67E-05 180-365 CCS group: Essential hypertension

193 diagCCS 180t365d prevalence 6 cnt 9.60E-05 180-365 CCS group: Other aftercare

194 diagCCS 180t365d prevalence 10 cnt 9.35E-05 180-365 CCS group: Cancer; other & unspecified primary

195 operOPCSL1 0t30d prevalence 14 cnt 9.26E-05 0-30 Operation group: Bones & Joints of Skull &

Spine

196 operOPCSL1 90t180d others cnt 9.20E-05 90-180 Operation group: Others

197 operOPCSL1 365t730d prevalence 3 cnt 9.16E-05 365-730 Operation group: Lower Digestive Tract

198 preopdur 30t90d avg 9.06E-05 30-90 Average Post-operation duration

199 mainspef 90t180d prevalence 4 cnt 9.05E-05 90-180 Main Speciality: Plastic

200 preopdur 90t180d avg 8.95E-05 90-180 Average Post-operation duration
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201 ethnos 6 8.58E-05 Trigger ethnicity: Black - African

202 diagCCS 365t730d prevalence 28 cnt 8.47E-05 365-730 CCS group: Other & unspecified benign neo-

plasm

203 diagCCS 365t730d prevalence 16 cnt 8.37E-05 365-730 CCS group: Cancer; other & unspecified primary

204 diagCCS 180t365d prevalence 11 cnt 8.32E-05 180-365 CCS group: Other upper respiratory disease

205 mainspef 30t90d prevalence 4 cnt 7.64E-05 30-90 Main Speciality: Gynaecology

206 ethnos 5 7.57E-05 Trigger ethnicity: Black - Caribbean

207 operOPCSL1 0t30d prevalence 12 cnt 7.54E-05 0-30 Operation group: Nervous System

208 mainspef 180t365d prevalence 6 cnt 7.06E-05 180-365 Main Speciality: Ophthalmology

209 diagCCS 365t730d prevalence 22 cnt 6.83E-05 365-730 CCS group: Spondylosis; intervertebral disc dis-

orders; other back problems

210 diagCCS 365t730d prevalence 19 cnt 6.46E-05 365-730 CCS group: Osteoarthritis

211 diagCCS 365t730d prevalence 20 cnt 6.30E-05 365-730 CCS group: Other screening for suspected condi-

tions (not mental disorders or infectious disease)

212 diagCCS 180t365d prevalence 7 cnt 6.28E-05 180-365 CCS group: Cataract

213 ethnos 4 6.28E-05 Trigger ethnicity: Bangladeshi

214 diagCCS 90t180d prevalence 3 cnt 6.26E-05 90-180 CCS group: Coronary atherosclerosis & other

heart disease

215 admimeth 0t30d prevalence 3 cnt 5.98E-05 0-30 Admission method: Acute

216 diagCCS 365t730d prevalence 27 cnt 5.91E-05 365-730 CCS group: Urinary tract infections

217 diagCCS 365t730d prevalence 17 cnt 5.82E-05 365-730 CCS group: Abdominal hernia

218 diagCCS 365t730d prevalence 30 cnt 5.75E-05 365-730 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

219 mainspef 30t90d prevalence 10 cnt 5.71E-05 30-90 Main Speciality: Ophthalmology

220 mainspef 90t180d prevalence 2 cnt 5.58E-05 90-180 Main Speciality: General Surgery

221 diagCCS 90t180d prevalence 10 cnt 5.46E-05 90-180 CCS group: Other aftercare

222 diagCCS 365t730d prevalence 23 cnt 5.38E-05 365-730 CCS group: Other nervous system disorders

223 diagCCS 365t730d prevalence 26 cnt 5.22E-05 365-730 CCS group: Esophageal disorders

224 diagCCS 180t365d prevalence 8 cnt 5.11E-05 180-365 CCS group: Other gastrointestinal disorders

225 diagCCS 365t730d prevalence 14 cnt 5.08E-05 365-730 CCS group: Genitourinary symptoms & ill-

defined conditions

226 diagCCS 365t730d prevalence 13 cnt 4.95E-05 365-730 CCS group: Asthma

227 diagCCS 365t730d prevalence 29 cnt 4.93E-05 365-730 CCS group: Complication of device; implant or

graft

228 diagCCS 180t365d prevalence 21 cnt 4.90E-05 180-365 CCS group: Abdominal hernia

229 operOPCSL1 365t730d prevalence 10 cnt 4.72E-05 365-730 Operation group: Mental Health

230 operOPCSL1 180t365d prevalence 1 cnt 4.71E-05 180-365 Operation group: Urinary

231 operOPCSL1 365t730d prevalence 6 cnt 4.62E-05 365-730 Operation group: Female Genital Tract

232 diagCCS 180t365d prevalence 5 cnt 4.58E-05 180-365 CCS group: Diabetes mellitus without complica-

tion

233 operOPCSL1 0t30d prevalence 15 cnt 4.31E-05 0-30 Operation group: Arteries & Veins

234 operOPCSL1 90t180d prevalence 2 cnt 4.07E-05 90-180 Operation group: Urinary

235 mainspef 90t180d prevalence 3 cnt 4.00E-05 90-180 Main Speciality: Urology

236 diagCCS 180t365d prevalence 12 cnt 3.97E-05 180-365 CCS group: Abdominal pain

237 diagCCS 90t180d prevalence 2 cnt 3.93E-05 90-180 CCS group: Residual codes; unclassified

238 diagCCS 365t730d prevalence 15 cnt 3.72E-05 365-730 CCS group: Other connective tissue disease

239 operOPCSL1 180t365d prevalence 5 cnt 3.49E-05 180-365 Operation group: Upper Female Genital Tract

240 operOPCSL1 365t730d prevalence 4 cnt 3.40E-05 365-730 Operation group: Upper Digestive Tract

241 diagCCS 180t365d prevalence 22 cnt 3.35E-05 180-365 CCS group: Other nervous system disorders

242 diagCCS 30t90d prevalence 5 cnt 3.27E-05 30-90 CCS group: Maintenance chemotherapy; radio-

therapy

243 diagCCS 180t365d prevalence 18 cnt 3.23E-05 180-365 CCS group: Spondylosis; intervertebral disc dis-

orders; other back problems

244 diagCCS 90t180d prevalence 8 cnt 2.95E-05 90-180 CCS group: Abdominal pain

245 operOPCSL1 0t30d prevalence 13 cnt 2.95E-05 0-30 Operation group: Lower Female Genital Tract

246 diagCCS 30t90d prevalence 12 cnt 2.85E-05 30-90 CCS group: Secondary malignancies

247 mainspef 90t180d prevalence 6 cnt 2.79E-05 90-180 Main Speciality: Geriatric

248 mainspef 30t90d prevalence 3 cnt 2.75E-05 30-90 Main Speciality: Urology

249 diagCCS 30t90d prevalence 2 cnt 2.42E-05 30-90 CCS group: Residual codes; unclassified

250 diagCCS 180t365d prevalence 27 cnt 2.27E-05 180-365 CCS group: Administrative/social admission

251 diagCCS 30t90d prevalence 20 cnt 2.15E-05 30-90 CCS group: Other screening for suspected condi-

tions (not mental disorders or infectious disease)

252 diagCCS 90t180d prevalence 4 cnt 2.05E-05 90-180 CCS group: Essential hypertension

253 diagCCS 180t365d prevalence 19 cnt 2.04E-05 180-365 CCS group: Other screening for suspected condi-

tions (not mental disorders or infectious disease)

254 mainspef 30t90d prevalence 8 cnt 2.04E-05 30-90 Main Speciality: Haemotology

255 operOPCSL1 365t730d prevalence 12 cnt 2.03E-05 365-730 Operation group: Arteries & Veins

256 diagCCS 180t365d prevalence 28 cnt 1.96E-05 180-365 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

257 diagCCS 180t365d prevalence 23 cnt 1.96E-05 180-365 CCS group: Osteoarthritis

258 diagCCS 180t365d prevalence 16 cnt 1.95E-05 180-365 CCS group: Other lower respiratory disease

259 diagCCS 90t180d prevalence 20 cnt 1.85E-05 90-180 CCS group: Administrative/social admission

Continued on next page



A.7.1 Features 357

# Name Weight Temporal Definition

260 diagCCS 180t365d prevalence 17 cnt 1.81E-05 180-365 CCS group: Other connective tissue disease

261 diagCCS 180t365d prevalence 26 cnt 1.80E-05 180-365 CCS group: Congestive heart failure; nonhyper-

tensive

262 diagCCS 90t180d prevalence 19 cnt 1.80E-05 90-180 CCS group: Maintenance chemotherapy; radio-

therapy

263 diagCCS 180t365d prevalence 9 cnt 1.77E-05 180-365 CCS group: Cardiac dysrhythmias

264 mainspef 90t180d prevalence 8 cnt 1.65E-05 90-180 Main Speciality: Cardiothoracic

265 operOPCSL1 365t730d prevalence 8 cnt 1.60E-05 365-730 Operation group: Nervous System

266 diagCCS 180t365d prevalence 29 cnt 1.56E-05 180-365 CCS group: Urinary tract infections

267 diagCCS 90t180d prevalence 18 cnt 1.52E-05 90-180 CCS group: Other screening for suspected condi-

tions (not mental disorders or infectious disease)

268 operOPCSL1 180t365d prevalence 3 cnt 1.48E-05 180-365 Operation group: Lower Digestive Tract

269 operOPCSL1 180t365d prevalence 4 cnt 1.47E-05 180-365 Operation group: Upper Digestive Tract

270 mainspef 180t365d prevalence 9 cnt 1.43E-05 180-365 Main Speciality: Gastroenterology

271 diagCCS 30t90d prevalence 3 cnt 1.39E-05 30-90 CCS group: Coronary atherosclerosis & other

heart disease

272 diagCCS 30t90d prevalence 21 cnt 1.38E-05 30-90 CCS group: Cancer of breast

273 operOPCSL1 0t30d prevalence 17 cnt 1.37E-05 0-30 Operation group: Other Abdominal Organs

274 operOPCSL1 365t730d prevalence 7 cnt 1.24E-05 365-730 Operation group: Heart

275 operOPCSL1 90t180d prevalence 1 cnt 1.24E-05 90-180 Operation group: Miscellaneous Operations

276 diagCCS 180t365d prevalence 13 cnt 1.19E-05 180-365 CCS group: Asthma

277 operOPCSL1 365t730d prevalence 9 cnt 1.17E-05 365-730 Operation group: Soft Tissue

278 diagCCS 180t365d prevalence 15 cnt 1.13E-05 180-365 CCS group: Genitourinary symptoms & ill-

defined conditions

279 diagCCS 90t180d prevalence 14 cnt 1.11E-05 90-180 CCS group: Cancer; other & unspecified primary

280 diagCCS 365t730d prevalence 25 cnt 1.10E-05 365-730 CCS group: Deficiency & other anemia

281 diagCCS 180t365d prevalence 30 cnt 1.04E-05 180-365 CCS group: Esophageal disorders

282 operOPCSL1 180t365d prevalence 9 cnt 9.90E-06 180-365 Operation group: Female Genital Tract

283 mainspef 30t90d prevalence 2 cnt 9.71E-06 30-90 Main Speciality: General Surgery

284 mainspef 90t180d prevalence 7 cnt 9.69E-06 90-180 Main Speciality: Ophthalmology

285 diagCCS 180t365d prevalence 25 cnt 9.64E-06 180-365 CCS group: Complication of device; implant or

graft

286 diagCCS 90t180d prevalence 15 cnt 9.26E-06 90-180 CCS group: Asthma

287 diagCCS 30t90d prevalence 10 cnt 8.89E-06 30-90 CCS group: Abdominal pain

288 diagCCS 90t180d prevalence 9 cnt 8.26E-06 90-180 CCS group: Chronic obstructive pulmonary dis-

ease & bronchiectasis

289 diagCCS 90t180d prevalence 22 cnt 7.94E-06 90-180 CCS group: Spondylosis; intervertebral disc dis-

orders; other back problems

290 mainspef 180t365d prevalence 8 cnt 7.27E-06 180-365 Main Speciality: Cardiothoracic

291 diagCCS 90t180d prevalence 6 cnt 6.77E-06 90-180 CCS group: Cardiac dysrhythmias

292 diagCCS 30t90d prevalence 4 cnt 6.73E-06 30-90 CCS group: Essential hypertension

293 diagCCS 180t365d prevalence 20 cnt 6.69E-06 180-365 CCS group: Deficiency & other anemia

294 operOPCSL1 0t30d prevalence 18 cnt 6.32E-06 0-30 Operation group: Skin

295 diagCCS 30t90d prevalence 8 cnt 5.64E-06 30-90 CCS group: Deficiency & other anemia

296 operOPCSL1 30t90d prevalence 2 cnt 5.58E-06 30-90 Operation group: Urinary

297 operOPCSL1 365t730d prevalence 14 cnt 5.55E-06 365-730 Operation group: Lower Female Genital Tract

298 operOPCSL1 365t730d prevalence 11 cnt 5.32E-06 365-730 Operation group: Respiratory Tract

299 diagCCS 90t180d prevalence 16 cnt 4.98E-06 90-180 CCS group: Cataract

300 diagCCS 90t180d prevalence 30 cnt 4.90E-06 90-180 CCS group: Osteoarthritis

301 diagCCS 30t90d prevalence 14 cnt 4.74E-06 30-90 CCS group: Other lower respiratory disease

302 operOPCSL1 180t365d prevalence 7 cnt 4.59E-06 180-365 Operation group: Nervous System

303 diagCCS 30t90d prevalence 6 cnt 4.56E-06 30-90 CCS group: Diabetes mellitus without complica-

tion

304 diagCCS 90t180d prevalence 26 cnt 4.19E-06 90-180 CCS group: Other nervous system disorders

305 mainspef 30t90d prevalence 7 cnt 4.09E-06 30-90 Main Speciality: Geriatric

306 operOPCSL1 90t180d prevalence 4 cnt 3.52E-06 90-180 Operation group: Upper Digestive Tract

307 diagCCS 30t90d prevalence 9 cnt 2.70E-06 30-90 CCS group: Cardiac dysrhythmias

308 diagCCS 30t90d prevalence 25 cnt 2.27E-06 30-90 CCS group: Chronic kidney disease

309 operOPCSL1 180t365d prevalence 6 cnt 2.14E-06 180-365 Operation group: Heart

310 diagCCS 90t180d prevalence 23 cnt 1.41E-06 90-180 CCS group: Congestive heart failure; nonhyper-

tensive

311 mainspef 90t180d prevalence 10 cnt 1.36E-06 90-180 Main Speciality: Haemotology

312 mainspef 30t90d prevalence 9 cnt 1.97E-07 30-90 Main Speciality: Cardiothoracic
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Table A.62: T-CARER: The weights of features using the Random Forest method
(Sample-2 )

# Name Weight Temporal Definition

1 mainspef 0t30d prevalence 2 cnt 9.33E-02 0-30 Main Speciality: Maternity

2 diagCCS 0t30d prevalence 10 cnt 6.60E-02 0-30 CCS group: Other complications of pregnancy

3 epidur 0t30d avg 5.93E-02 0-30 Average episode duration

4 posopdur 0t30d avg 5.79E-02 0-30 Average Post-operation duration

5 gender 1 5.09E-02 Trigger Gender: Male

6 diagCCS 0t30d prevalence 3 cnt 4.77E-02 0-30 CCS group: Normal pregnancy and delivery

7 diagCCS 0t30d prevalence 13 cnt 4.23E-02 0-30 CCS group: OB-related trauma to perineum &

vulva

8 diagCCS 0t30d others cnt 3.50E-02 0-30 CCS group: others

9 ethnos 0 3.11E-02 Trigger ethnicity: Not known

10 mainspef 0t30d prevalence 5 cnt 2.80E-02 0-30 Main Speciality: Gynaecology

11 operOPCSL1 0t30d prevalence 1 cnt 2.05E-02 0-30 Operation group: Female Genital Tract

12 posopdur 365t730d others cnt 2.04E-02 365-730 Post-operation duration

13 diagCCS 0t30d prevalence 22 cnt 1.93E-02 0-30 CCS group: Fetal distress & abnormal forces of

labor

14 mainspef 0t30d prevalence 6 cnt 1.90E-02 0-30 Main Speciality: Plastic

15 preopdur 180t365d others cnt 1.80E-02 180-365 Pre-operation duration

16 epidur 365t730d avg 1.80E-02 365-730 Average episode duration

17 gapDays 365t730d avg 1.74E-02 365-730 Average Gap-Days

18 preopdur 365t730d others cnt 1.71E-02 365-730 Pre-operation duration

19 mainspef 0t30d prevalence 1 cnt 1.71E-02 0-30 Main Speciality: General

20 gapDays 365t730d others cnt 1.54E-02 365-730 Gap-Days

21 preopdur 0t30d avg 1.47E-02 0-30 Average Pre-operation duration

22 admimeth 180t365d prevalence 1 cnt 1.33E-02 180-365 Admission method: Unknown

23 epidur 365t730d others cnt 1.30E-02 365-730 Episode duration

24 epidur 0t30d others cnt 1.10E-02 0-30 Episode duration

25 mainspef 0t30d prevalence 9 cnt 1.06E-02 0-30 Main Speciality: Paediatrics

26 mainspef 0t30d prevalence 4 cnt 1.06E-02 0-30 Main Speciality: A&E

27 diagCCS 365t730d others cnt 9.36E-03 365-730 CCS group: others

28 admimeth 365t730d prevalence 1 cnt 7.48E-03 365-730 Admission method: Unknown

29 mainspef 0t30d prevalence 3 cnt 7.40E-03 0-30 Main Speciality: General Surgery

30 diagCCS 90t180d others cnt 7.32E-03 90-180 CCS group: others

31 diagCCS 180t365d others cnt 7.27E-03 180-365 CCS group: others

32 diagCCS 0t30d prevalence 7 cnt 7.18E-03 0-30 CCS group: Abdominal pain

33 mainspef 180t365d others cnt 6.95E-03 180-365 Main Speciality: Others

34 diagCCS 0t30d prevalence 24 cnt 6.77E-03 0-30 CCS group: Other birth complications; mother’s

puerperium

35 epidur 90t180d others cnt 6.22E-03 90-180 Episode duration

36 ethnos 1 5.97E-03 Trigger ethnicity: White

37 epidur 180t365d avg 5.79E-03 180-365 Average episode duration

38 mainspef 0t30d prevalence 7 cnt 5.76E-03 0-30 Main Speciality: Geriatric

39 posopdur 180t365d others cnt 5.35E-03 180-365 Post-operation duration

40 diagCCS 0t30d prevalence 16 cnt 5.25E-03 0-30 CCS group: Chronic obstructive pulmonary &

bronchiectasis

41 admimeth 90t180d prevalence 1 cnt 5.13E-03 90-180 Admission method: Unknown

42 epidur 180t365d others cnt 4.97E-03 180-365 Episode duration

43 diagCCS 0t30d prevalence 11 cnt 4.85E-03 0-30 CCS group: Other upper respiratory disease

44 operOPCSL1 0t30d others cnt 4.50E-03 0-30 Operation group: Others

45 gapDays 180t365d avg 4.34E-03 180-365 Average Gap-Days

46 diagCCS 0t30d prevalence 2 cnt 3.80E-03 0-30 CCS group: Essential hypertension

47 posopdur 0t30d others cnt 3.74E-03 0-30 Post-operation duration

48 diagCCS 0t30d prevalence 21 cnt 3.68E-03 0-30 CCS group: Delirium dementia & amnestic &

other cognitives

49 mainspef 180t365d prevalence 1 cnt 3.49E-03 180-365 Main Speciality: General

50 diagCCS 0t30d prevalence 1 cnt 3.37E-03 0-30 CCS group: Others

51 diagCCS 0t30d prevalence 5 cnt 3.14E-03 0-30 CCS group: Coronary atherosclerosis & other

heart disease

52 mainspef 90t180d others cnt 3.09E-03 90-180 Main Speciality: Others

53 mainspef 0t30d others cnt 2.88E-03 0-30 Main Speciality: Others

54 diagCCS 30t90d others cnt 2.86E-03 30-90 CCS group: others

55 gapDays 90t180d avg 2.73E-03 90-180 Average Gap-Days

56 gapDays 90t180d others cnt 2.69E-03 90-180 Gap-Days

57 admimeth 90t180d others cnt 2.47E-03 90-180 Admission method: Others

58 admimeth 30t90d prevalence 1 cnt 2.46E-03 30-90 Admission method: Unknown

59 gapDays 30t90d avg 2.23E-03 30-90 Average Gap-Days

60 posopdur 30t90d others cnt 2.09E-03 30-90 Post-operation duration

61 diagCCS 0t30d prevalence 29 cnt 2.03E-03 0-30 CCS group: Other injuries & conditions due to

external causes

62 gapDays 180t365d others cnt 1.99E-03 180-365 Gap-Days
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63 preopdur 0t30d others cnt 1.88E-03 0-30 Pre-operation duration

64 diagCCS 0t30d prevalence 6 cnt 1.83E-03 0-30 CCS group: Cardiac dysrhythmias

65 admimeth 180t365d others cnt 1.82E-03 180-365 Admission method: Others

66 posopdur 90t180d others cnt 1.75E-03 90-180 Post-operation duration

67 epidur 30t90d others cnt 1.67E-03 30-90 Episode duration

68 diagCCS 365t730d prevalence 4 cnt 1.62E-03 365-730 CCS group: Normal pregnancy and/or delivery

69 admimeth 365t730d others cnt 1.60E-03 365-730 Admission method: Others

70 mainspef 30t90d others cnt 1.58E-03 30-90 Main Speciality: Others

71 diagCCS 0t30d prevalence 4 cnt 1.54E-03 0-30 CCS group: Residual codes; unclassified

72 diagCCS 0t30d prevalence 9 cnt 1.45E-03 0-30 CCS group: Diabetes mellitus without complica-

tion

73 epidur 90t180d avg 1.44E-03 90-180 Average episode duration

74 mainspef 0t30d prevalence 8 cnt 1.40E-03 0-30 Main Speciality: Cardiothoracic

75 admimeth 365t730d prevalence 2 cnt 1.31E-03 365-730 Admission method: Elective

76 diagCCS 0t30d prevalence 17 cnt 1.29E-03 0-30 CCS group: Urinary tract infections

77 diagCCS 365t730d prevalence 12 cnt 1.19E-03 365-730 CCS group: Other complications of pregnancy

78 diagCCS 365t730d prevalence 1 cnt 1.15E-03 365-730 CCS group: Others

79 diagCCS 0t30d prevalence 12 cnt 9.98E-04 0-30 CCS group: Asthma

80 mainspef 180t365d prevalence 3 cnt 9.82E-04 180-365 Main Speciality: Gynaecology

81 preopdur 30t90d others cnt 9.59E-04 30-90 Pre-operation duration

82 posopdur 365t730d avg 9.39E-04 365-730 Average Post-operation duration

83 mainspef 90t180d prevalence 1 cnt 9.33E-04 90-180 Main Speciality: General

84 diagCCS 0t30d prevalence 8 cnt 8.77E-04 0-30 CCS group: External cause codes: Fall

85 mainspef 0t30d prevalence 10 cnt 8.66E-04 0-30 Main Speciality: Gastroenterology

86 diagCCS 0t30d prevalence 20 cnt 8.31E-04 0-30 CCS group: Other connective tissue disease

87 diagCCS 180t365d prevalence 1 cnt 8.23E-04 180-365 CCS group: Others

88 imd04rk 2 8.15E-04 Trigger imd04rk: 3248 to 6496

89 admimeth 180t365d prevalence 2 cnt 7.73E-04 180-365 Admission method: Elective

90 diagCCS 0t30d prevalence 14 cnt 7.62E-04 0-30 CCS group: Other lower respiratory disease

91 diagCCS 0t30d prevalence 28 cnt 7.05E-04 0-30 CCS group: Deficiency & other anemia

92 diagCCS 0t30d prevalence 26 cnt 6.92E-04 0-30 CCS group: Alcohol-related disorders

93 imd04rk 3 6.76E-04 Trigger imd04rk: 6496 to 9745

94 diagCCS 0t30d prevalence 19 cnt 6.69E-04 0-30 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

95 imd04rk 1 6.60E-04 Trigger imd04rk: 0 to 3248

96 epidur 30t90d avg 6.27E-04 30-90 Average episode duration

97 ageTrigger 25 6.14E-04 Trigger Age: 25-30

98 diagCCS 0t30d prevalence 23 cnt 6.11E-04 0-30 CCS group: Allergic reactions

99 operOPCSL1 0t30d prevalence 3 cnt 5.94E-04 0-30 Operation group: Lower Digestive Tract

100 ageTrigger 85 5.85E-04 Trigger Age: 85+

101 admimeth 30t90d others cnt 5.73E-04 30-90 Admission method: Others

102 diagCCS 365t730d prevalence 7 cnt 5.61E-04 365-730 CCS group: Cardiac dysrhythmias

103 diagCCS 0t30d prevalence 25 cnt 5.57E-04 0-30 CCS group: Complication of device; implant or

graft

104 diagCCS 0t30d prevalence 18 cnt 5.49E-04 0-30 CCS group: Other gastrointestinal disorders

105 diagCCS 90t180d prevalence 9 cnt 5.45E-04 90-180 CCS group: Other complications of pregnancy

106 preopdur 90t180d others cnt 5.44E-04 90-180 Pre-operation duration

107 posopdur 180t365d avg 5.17E-04 180-365 Average Post-operation duration

108 diagCCS 365t730d prevalence 13 cnt 4.91E-04 365-730 CCS group: Chronic obstructive pulmonary &

bronchiectasis

109 imd04rk 6 4.84E-04 Trigger imd04rk: 16241 to 19489

110 gapDays 30t90d others cnt 4.40E-04 30-90 Gap-Days

111 imd04rk 5 4.30E-04 Trigger imd04rk: 12993 to 16241

112 ageTrigger 35 4.22E-04 Trigger Age: 35-40

113 preopdur 90t180d avg 4.11E-04 90-180 Average Pre-operation duration

114 operOPCSL1 0t30d prevalence 8 cnt 4.04E-04 0-30 Operation group: Upper Female Genital Tract

115 ageTrigger 15 4.03E-04 Trigger Age: 15-20

116 imd04rk 4 4.02E-04 Trigger imd04rk: 9745 to 12993

117 imd04rk 8 3.96E-04 Trigger imd04rk: 22737 to 25986

118 diagCCS 180t365d prevalence 2 cnt 3.93E-04 180-365 CCS group: Essential hypertension

119 imd04rk 7 3.88E-04 Trigger imd04rk: 19489 to 22737

120 diagCCS 0t30d prevalence 15 cnt 3.85E-04 0-30 CCS group: Disorders of lipid metabolism

121 mainspef 180t365d prevalence 6 cnt 3.83E-04 180-365 Main Speciality: Plastic

122 ageTrigger 80 3.75E-04 Trigger Age: 80-85

123 diagCCS 365t730d prevalence 5 cnt 3.68E-04 365-730 CCS group: Coronary atherosclerosis & other

heart disease

124 ageTrigger 60 3.55E-04 Trigger Age: 60-65

125 diagCCS 180t365d prevalence 9 cnt 3.44E-04 180-365 CCS group: Chronic obstructive pulmonary &

bronchiectasis

126 imd04rk 9 3.42E-04 Trigger imd04rk: 25986 to 29234

127 preopdur 365t730d avg 3.27E-04 365-730 Average Pre-operation duration

128 admimeth 30t90d prevalence 2 cnt 3.23E-04 30-90 Admission method: Elective
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129 diagCCS 365t730d prevalence 3 cnt 3.15E-04 365-730 CCS group: Essential hypertension

130 ageTrigger 30 3.12E-04 Trigger Age: 30-35

131 operOPCSL1 0t30d prevalence 4 cnt 3.11E-04 0-30 Operation group: Diagnostics & Tests

132 diagCCS 0t30d prevalence 30 cnt 3.05E-04 0-30 CCS group: Thyroid disorders

133 ethnos 3 3.02E-04 Trigger ethnicity: Pakistani

134 operOPCSL1 0t30d prevalence 2 cnt 2.99E-04 0-30 Operation group: Miscellaneous Operations

135 diagCCS 365t730d prevalence 2 cnt 2.96E-04 365-730 CCS group: Residual codes; unclassified

136 mainspef 180t365d prevalence 4 cnt 2.87E-04 180-365 Main Speciality: Geriatric

137 diagCCS 0t30d prevalence 27 cnt 2.79E-04 0-30 CCS group: Other nervous system disorders

138 admimeth 90t180d prevalence 2 cnt 2.73E-04 90-180 Admission method: Elective

139 diagCCS 365t730d prevalence 28 cnt 2.71E-04 365-730 CCS group: Cataract

140 ageTrigger 45 2.57E-04 Trigger Age: 45-50

141 ethnos 9 2.39E-04 Trigger ethnicity: Any other

142 diagCCS 365t730d prevalence 6 cnt 2.36E-04 365-730 CCS group: Diabetes mellitus without complica-

tion

143 operOPCSL1 365t730d others cnt 2.36E-04 365-730 Operation group: Others

144 mainspef 90t180d prevalence 5 cnt 1.95E-04 90-180 Main Speciality: Maternity

145 diagCCS 180t365d prevalence 20 cnt 1.95E-04 180-365 CCS group: Other complications of pregnancy

146 diagCCS 365t730d prevalence 29 cnt 1.94E-04 365-730 CCS group: Other birth complications; mother’s

puerperium

147 mainspef 90t180d prevalence 3 cnt 1.78E-04 90-180 Main Speciality: Gynaecology

148 diagCCS 365t730d prevalence 9 cnt 1.74E-04 365-730 CCS group: Abdominal pain

149 mainspef 30t90d prevalence 2 cnt 1.69E-04 30-90 Main Speciality: Maternity

150 mainspef 30t90d prevalence 1 cnt 1.68E-04 30-90 Main Speciality: General

151 ageTrigger 50 1.68E-04 Trigger Age: 50-55

152 operOPCSL1 365t730d prevalence 4 cnt 1.67E-04 365-730 Operation group: Upper Female Genital Tract

153 ageTrigger 20 1.65E-04 Trigger Age: 20-25

154 mainspef 180t365d prevalence 5 cnt 1.64E-04 180-365 Main Speciality: A&E

155 gapDays 0t30d avg 1.64E-04 0-30 Average Gap-Days

156 posopdur 90t180d avg 1.64E-04 90-180 Average Post-operation duration

157 diagCCS 90t180d prevalence 2 cnt 1.56E-04 90-180 CCS group: Essential hypertension

158 diagCCS 365t730d prevalence 20 cnt 1.54E-04 365-730 CCS group: Administrative/social admission

159 operOPCSL1 0t30d prevalence 16 cnt 1.51E-04 0-30 Operation group: Lower Female Genital Tract

160 diagCCS 30t90d prevalence 5 cnt 1.50E-04 30-90 CCS group: Other complications of pregnancy

161 diagCCS 90t180d prevalence 1 cnt 1.45E-04 90-180 CCS group: Others

162 diagCCS 180t365d prevalence 28 cnt 1.38E-04 180-365 CCS group: Congestive heart failure; nonhyper-

tensive

163 preopdur 180t365d avg 1.37E-04 180-365 Average Pre-operation duration

164 diagCCS 365t730d prevalence 14 cnt 1.34E-04 365-730 CCS group: Other lower respiratory disease

165 operOPCSL1 180t365d others cnt 1.34E-04 180-365 Operation group: Others

166 mainspef 90t180d prevalence 6 cnt 1.28E-04 90-180 Main Speciality: A&E

167 diagCCS 365t730d prevalence 30 cnt 1.24E-04 365-730 CCS group: Fetal distress & abnormal forces of

labor

168 diagCCS 365t730d prevalence 16 cnt 1.20E-04 365-730 CCS group: Complication of device; implant or

graft

169 diagCCS 90t180d prevalence 17 cnt 1.19E-04 90-180 CCS group: Normal pregnancy and/or delivery

170 ethnos 7 1.18E-04 Trigger ethnicity: Black - Other

171 diagCCS 180t365d prevalence 8 cnt 1.14E-04 180-365 CCS group: Abdominal pain

172 diagCCS 365t730d prevalence 11 cnt 1.13E-04 365-730 CCS group: Other gastrointestinal disorders

173 operOPCSL1 0t30d prevalence 5 cnt 1.08E-04 0-30 Operation group: Urinary

174 diagCCS 30t90d prevalence 12 cnt 1.08E-04 30-90 CCS group: Normal pregnancy and/or delivery

175 ageTrigger 55 1.07E-04 Trigger Age: 55-60

176 mainspef 180t365d prevalence 9 cnt 1.00E-04 180-365 Main Speciality: Maternity

177 diagCCS 90t180d prevalence 7 cnt 9.95E-05 90-180 CCS group: Chronic obstructive pulmonary &

bronchiectasis

178 ageTrigger 75 9.56E-05 Trigger Age: 75-80

179 diagCCS 180t365d prevalence 4 cnt 9.53E-05 180-365 CCS group: Coronary atherosclerosis & other

heart disease

180 diagCCS 365t730d prevalence 10 cnt 9.40E-05 365-730 CCS group: Other upper respiratory disease

181 diagCCS 365t730d prevalence 8 cnt 9.34E-05 365-730 CCS group: Asthma

182 ageTrigger 40 9.26E-05 Trigger Age: 40-45

183 diagCCS 90t180d prevalence 3 cnt 9.12E-05 90-180 CCS group: Residual codes; unclassified

184 diagCCS 90t180d prevalence 15 cnt 8.65E-05 90-180 CCS group: Other upper respiratory disease

185 diagCCS 365t730d prevalence 22 cnt 8.55E-05 365-730 CCS group: OB-related trauma to perineum &

vulva

186 diagCCS 365t730d prevalence 18 cnt 8.52E-05 365-730 CCS group: External cause codes: Fall

187 diagCCS 180t365d prevalence 19 cnt 8.33E-05 180-365 CCS group: Normal pregnancy and/or delivery

188 ethnos 6 8.31E-05 Trigger ethnicity: Black - African

189 diagCCS 180t365d prevalence 5 cnt 7.85E-05 180-365 CCS group: Diabetes mellitus without complica-

tion

190 diagCCS 365t730d prevalence 26 cnt 7.83E-05 365-730 CCS group: Genitourinary symptoms & ill-

defined conditions
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191 diagCCS 365t730d prevalence 15 cnt 7.72E-05 365-730 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

192 diagCCS 30t90d prevalence 1 cnt 7.68E-05 30-90 CCS group: Others

193 mainspef 180t365d prevalence 2 cnt 7.60E-05 180-365 Main Speciality: General Surgery

194 ethnos 2 7.27E-05 Trigger ethnicity: Indian

195 ethnos 5 6.89E-05 Trigger ethnicity: Black - Caribbean

196 diagCCS 365t730d prevalence 21 cnt 6.70E-05 365-730 CCS group: Disorders of lipid metabolism

197 mainspef 90t180d prevalence 7 cnt 6.49E-05 90-180 Main Speciality: Plastic

198 operOPCSL1 180t365d prevalence 1 cnt 6.42E-05 180-365 Operation group: Miscellaneous Operations

199 operOPCSL1 365t730d prevalence 3 cnt 6.26E-05 365-730 Operation group: Female Genital Tract

200 diagCCS 180t365d prevalence 7 cnt 6.23E-05 180-365 CCS group: Asthma

201 diagCCS 180t365d prevalence 3 cnt 6.11E-05 180-365 CCS group: Residual codes; unclassified

202 diagCCS 365t730d prevalence 24 cnt 6.08E-05 365-730 CCS group: Other screening (excl. mental & in-

fectious)

203 diagCCS 90t180d prevalence 24 cnt 6.04E-05 90-180 CCS group: Alcohol-related disorders

204 diagCCS 180t365d prevalence 6 cnt 6.03E-05 180-365 CCS group: Cardiac dysrhythmias

205 ageTrigger 70 5.71E-05 Trigger Age: 70-75

206 diagCCS 90t180d prevalence 8 cnt 5.54E-05 90-180 CCS group: Abdominal pain

207 diagCCS 365t730d prevalence 23 cnt 5.13E-05 365-730 CCS group: Allergic reactions

208 diagCCS 365t730d prevalence 17 cnt 5.09E-05 365-730 CCS group: Other connective tissue disease

209 diagCCS 180t365d prevalence 27 cnt 5.05E-05 180-365 CCS group: Delirium dementia & amnestic &

other cognitives

210 operOPCSL1 0t30d prevalence 7 cnt 4.98E-05 0-30 Operation group: Soft Tissue

211 diagCCS 180t365d prevalence 16 cnt 4.98E-05 180-365 CCS group: Disorders of lipid metabolism

212 ageTrigger 65 4.85E-05 Trigger Age: 65-70

213 ethnos 4 4.84E-05 Trigger ethnicity: Bangladeshi

214 diagCCS 365t730d prevalence 19 cnt 4.78E-05 365-730 CCS group: Urinary tract infections

215 mainspef 30t90d prevalence 8 cnt 4.69E-05 30-90 Main Speciality: Plastic

216 operOPCSL1 365t730d prevalence 2 cnt 4.59E-05 365-730 Operation group: Urinary

217 diagCCS 180t365d prevalence 17 cnt 4.57E-05 180-365 CCS group: External cause codes: Fall

218 diagCCS 365t730d prevalence 25 cnt 4.10E-05 365-730 CCS group: Other nervous system disorders

219 diagCCS 180t365d prevalence 25 cnt 4.03E-05 180-365 CCS group: Administrative/social admission

220 diagCCS 365t730d prevalence 27 cnt 3.87E-05 365-730 CCS group: Deficiency & other anemia

221 diagCCS 180t365d prevalence 26 cnt 3.70E-05 180-365 CCS group: Genitourinary symptoms & ill-

defined conditions

222 mainspef 90t180d prevalence 2 cnt 3.64E-05 90-180 Main Speciality: General Surgery

223 diagCCS 180t365d prevalence 12 cnt 3.63E-05 180-365 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

224 diagCCS 90t180d prevalence 5 cnt 3.61E-05 90-180 CCS group: Diabetes mellitus without complica-

tion

225 gapDays 0t30d others cnt 3.42E-05 0-30 Gap-Days

226 diagCCS 180t365d prevalence 13 cnt 3.30E-05 180-365 CCS group: Complication of device; implant or

graft

227 diagCCS 180t365d prevalence 30 cnt 3.30E-05 180-365 CCS group: Mood disorders

228 diagCCS 180t365d prevalence 24 cnt 3.23E-05 180-365 CCS group: Alcohol-related disorders

229 operOPCSL1 365t730d prevalence 1 cnt 2.98E-05 365-730 Operation group: Miscellaneous Operations

230 preopdur 30t90d avg 2.90E-05 30-90 Average Pre-operation duration

231 diagCCS 30t90d prevalence 3 cnt 2.76E-05 30-90 CCS group: Residual codes; unclassified

232 diagCCS 90t180d prevalence 20 cnt 2.71E-05 90-180 CCS group: Congestive heart failure; nonhyper-

tensive

233 diagCCS 180t365d prevalence 11 cnt 2.68E-05 180-365 CCS group: Other upper respiratory disease

234 operOPCSL1 0t30d prevalence 12 cnt 2.66E-05 0-30 Operation group: Mental Health

235 diagCCS 90t180d prevalence 25 cnt 2.64E-05 90-180 CCS group: Other screening (excl. mental & in-

fectious)

236 diagCCS 30t90d prevalence 8 cnt 2.53E-05 30-90 CCS group: Abdominal pain

237 diagCCS 180t365d prevalence 10 cnt 2.51E-05 180-365 CCS group: Other gastrointestinal disorders

238 operOPCSL1 365t730d prevalence 6 cnt 2.25E-05 365-730 Operation group: Heart

239 diagCCS 180t365d prevalence 22 cnt 2.15E-05 180-365 CCS group: Deficiency & other anemia

240 diagCCS 180t365d prevalence 14 cnt 2.14E-05 180-365 CCS group: Other lower respiratory disease

241 admimeth 0t30d prevalence 2 cnt 2.11E-05 0-30 Admission method: Elective

242 diagCCS 180t365d prevalence 29 cnt 2.11E-05 180-365 CCS group: Epilepsy; convulsions

243 mainspef 180t365d prevalence 8 cnt 2.09E-05 180-365 Main Speciality: Gastroenterology

244 diagCCS 90t180d prevalence 18 cnt 1.99E-05 90-180 CCS group: Disorders of lipid metabolism

245 operOPCSL1 365t730d prevalence 5 cnt 1.97E-05 365-730 Operation group: Lower Digestive Tract

246 mainspef 180t365d prevalence 10 cnt 1.86E-05 180-365 Main Speciality: Urology

247 operOPCSL1 365t730d prevalence 10 cnt 1.83E-05 365-730 Operation group: Diagnostics & Tests

248 operOPCSL1 365t730d prevalence 7 cnt 1.72E-05 365-730 Operation group: Upper Digestive Tract

249 operOPCSL1 30t90d others cnt 1.60E-05 30-90 Operation group: Others

250 posopdur 30t90d avg 1.38E-05 30-90 Average Post-operation duration

251 mainspef 90t180d prevalence 10 cnt 1.36E-05 90-180 Main Speciality: Urology

252 diagCCS 180t365d prevalence 23 cnt 1.18E-05 180-365 CCS group: Other nervous system disorders

253 operOPCSL1 180t365d prevalence 2 cnt 1.13E-05 180-365 Operation group: Urinary
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254 operOPCSL1 90t180d others cnt 1.06E-05 90-180 Operation group: Others

255 mainspef 90t180d prevalence 4 cnt 9.57E-06 90-180 Main Speciality: Geriatric

256 diagCCS 180t365d prevalence 15 cnt 9.27E-06 180-365 CCS group: Urinary tract infections

257 diagCCS 30t90d prevalence 20 cnt 7.40E-06 30-90 CCS group: Other screening (excl. mental & in-

fectious)

258 diagCCS 30t90d prevalence 9 cnt 6.74E-06 30-90 CCS group: Chronic obstructive pulmonary &

bronchiectasis

259 operOPCSL1 90t180d prevalence 1 cnt 6.66E-06 90-180 Operation group: Miscellaneous Operations

260 diagCCS 180t365d prevalence 18 cnt 5.75E-06 180-365 CCS group: Other connective tissue disease

261 diagCCS 90t180d prevalence 4 cnt 5.75E-06 90-180 CCS group: Coronary atherosclerosis & other

heart disease

262 diagCCS 90t180d prevalence 22 cnt 5.58E-06 90-180 CCS group: Other connective tissue disease

263 diagCCS 90t180d prevalence 11 cnt 5.30E-06 90-180 CCS group: Other gastrointestinal disorders

264 operOPCSL1 180t365d prevalence 5 cnt 5.27E-06 180-365 Operation group: Upper Female Genital Tract

265 mainspef 180t365d prevalence 7 cnt 4.97E-06 180-365 Main Speciality: Cardiothoracic

266 mainspef 30t90d prevalence 3 cnt 4.60E-06 30-90 Main Speciality: General Surgery

267 diagCCS 90t180d prevalence 12 cnt 4.38E-06 90-180 CCS group: Other lower respiratory disease

268 mainspef 30t90d prevalence 4 cnt 4.26E-06 30-90 Main Speciality: Gynaecology

269 diagCCS 30t90d prevalence 19 cnt 4.23E-06 30-90 CCS group: Congestive heart failure; nonhyper-

tensive

270 diagCCS 30t90d prevalence 14 cnt 4.16E-06 30-90 CCS group: Complication of device; implant or

graft

271 mainspef 30t90d prevalence 6 cnt 4.15E-06 30-90 Main Speciality: A&E

272 diagCCS 90t180d prevalence 19 cnt 3.96E-06 90-180 CCS group: External cause codes: Fall

273 operOPCSL1 180t365d prevalence 3 cnt 3.58E-06 180-365 Operation group: Lower Digestive Tract

274 operOPCSL1 180t365d prevalence 12 cnt 3.58E-06 180-365 Operation group: Mental Health

275 diagCCS 30t90d prevalence 10 cnt 3.48E-06 30-90 CCS group: Other gastrointestinal disorders

276 diagCCS 90t180d prevalence 29 cnt 3.48E-06 90-180 CCS group: Other nervous system disorders

277 diagCCS 90t180d prevalence 14 cnt 3.27E-06 90-180 CCS group: Complication of device; implant or

graft

278 diagCCS 30t90d prevalence 7 cnt 2.94E-06 30-90 CCS group: Cardiac dysrhythmias

279 operOPCSL1 365t730d prevalence 8 cnt 2.88E-06 365-730 Operation group: Soft Tissue

280 diagCCS 90t180d prevalence 13 cnt 2.58E-06 90-180 CCS group: Phlebitis; thrombophlebitis &

thromboembolism

281 operOPCSL1 90t180d prevalence 2 cnt 1.66E-06 90-180 Operation group: Urinary

282 diagCCS 180t365d prevalence 21 cnt 1.65E-06 180-365 CCS group: Allergic reactions

283 operOPCSL1 180t365d prevalence 8 cnt 1.24E-06 180-365 Operation group: Female Genital Tract

284 diagCCS 90t180d prevalence 6 cnt 9.76E-07 90-180 CCS group: Cardiac dysrhythmias

285 diagCCS 90t180d prevalence 30 cnt 9.27E-07 90-180 CCS group: Mood disorders

286 diagCCS 30t90d prevalence 4 cnt 8.25E-07 30-90 CCS group: Coronary atherosclerosis & other

heart disease

287 operOPCSL1 0t30d prevalence 9 cnt 7.08E-07 0-30 Operation group: Upper Digestive Tract

288 diagCCS 30t90d prevalence 6 cnt 1.63E-07 30-90 CCS group: Diabetes mellitus without complica-

tion
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Figure A.57: T-CARER: The abstract graph of the designed WDNN



A.7.2 WDNN Model Specifications 365

Figure A.58: T-CARER: The abstract graph of the deep part of the designed WDNN
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Figure A.59: T-CARER: The abstract graph of the linear part of the designed
WDNN
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A.7.3.1 Random Forest - Sample-1
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Table A.63: T-CARER: The profile of the model and the HSCIC-CCI for the Elixhauser diagnoses categories, using random-forest (Sample-1 )

Elixhauser Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Congestive heart failure 4,652 2,241 14 12 11,393 0.875 0.576 4,340 962 2,007 4,919 404 199 8,619 3,468 872 (7.7%) 3,534 (31.0%)

AIDS/HIV 63 50 12 7 350 0.73 0.388 46 159 23 276 175 31 71 14 32 (9.1%) 190 (54.3%)

Depression 2,115 772 39 25 5,499 0.893 0.583 1,889 908 757 2,771 177 73 854 335 1,554 (28.3%) 10 (0.2%)

Cardiac arrhythmias 7,637 3,652 14 10 21,344 0.893 0.557 6,817 3,704 2,647 11,346 1,271 505 7,541 3,021 3,796 (17.8%) 2,925 (13.7%)

Valvular disease 1,670 772 16 11 4,536 0.832 0.574 1,390 1,087 529 2,416 225 89 1,540 643 747 (16.5%) 583 (12.9%)

Pulmonary circulation disorder 587 247 23 13 1,847 0.923 0.503 542 233 217 1,030 77 30 639 232 310 (16.8%) 224 (12.1%)

Peripheral vascular disorders 2,042 1,315 13 12 5,811 0.777 0.545 1,587 1,578 606 3,237 272 104 3,582 1,380 207 (3.6%) 1,838 (31.6%)

Hypertension, uncomplicated 11,958 5,358 16 9 42,818 0.773 0.507 9,244 15,605 3,015 28,182 4,929 1,515 12,123 4,396 4,848 (11.3%) 8,463 (19.8%)

Hypertension, complicated 571 349 20 9 1,308 0.862 0.628 492 233 253 587 61 25 875 410 82 (6.3%) 351 (26.8%)

Paralysis 991 529 24 17 2,881 0.92 0.542 912 427 379 1,525 685 206 1,482 565 347 (12.0%) 1,031 (35.8%)

Other neurological disorders 4,488 2,304 39 10 12,314 0.851 0.576 3,821 2,864 1,665 6,534 554 232 2,725 1,108 2,713 (22.0%) 647 (5.3%)

Chronic pulmonary disease 10,417 4,728 25 8 31,196 0.845 0.575 8,798 9,401 4,345 17,842 342 177 24,360 7,640 1,158 (3.7%) 13,948 (44.7%)

Diabetes, uncomplicated 7,764 3,942 19 9 22,309 0.841 0.565 6,531 5,725 2,770 12,398 13,973 4,401 6,651 2,755 3,776 (16.9%) 11,321 (50.7%)

Diabetes, complicated 986 606 21 13 2,659 0.793 0.612 782 886 345 1,470 386 163 677 319 463 (17.4%) 378 (14.2%)

Hypothyroidism 1,812 337 18 10 5,869 0.841 0.544 1,524 1,792 610 3,579 465 162 1,838 685 839 (14.3%) 978 (16.7%)

Renal failure 2,618 1,539 22 12 5,923 0.896 0.619 2,345 697 1,134 2,425 134 56 4,357 1,873 472 (8.0%) 1,682 (28.4%)

Liver disease 1,139 694 22 9 3,247 0.85 0.585 968 905 411 1,813 169 68 1,091 375 593 (18.3%) 522 (16.1%)

Peptic ulcer disease 651 341 20 9 2,704 0.696 0.482 453 1,279 125 1,938 47 16 1,369 371 82 (3.0%) 914 (33.8%)

Psychoses 1,089 619 29 42 2,864 0.906 0.571 987 394 435 1,435 72 22 191 98 889 (31.0%) -197 (-6.9%)

Lymphoma 891 483 21 7 2,092 0.704 0.574 627 536 224 997 41 18 595 245 382 (18.3%) 169 (8.1%)

Metastatic cancer 2,454 1,123 18 10 6,069 0.747 0.541 1,834 1,129 509 2,976 49 16 5,205 2,093 -259 (-4.3%) 2,506 (41.3%)

Solid tumour 6,729 3,672 20 8 19,482 0.606 0.498 4,080 7,187 1,144 11,503 438 159 7,450 2,950 1,130 (5.8%) 3,529 (18.1%)

Rheumatoid arthritis 1,533 409 19 11 5,773 0.76 0.502 1,165 2,297 448 3,897 100 35 3,482 1,066 99 (1.7%) 2,138 (37.0%)

Coagulopathy 413 194 39 7 1,315 0.77 0.529 318 431 144 814 53 19 261 89 229 (17.4%) 118 (9.0%)

Obesity 447 168 28 9 1,687 0.743 0.503 332 698 102 1,134 212 70 400 146 186 (11.0%) 290 (17.2%)

Weight loss 729 351 20 12 2,378 0.645 0.492 470 939 114 1,538 64 30 435 173 297 (12.5%) 185 (7.8%)

Fluid & electrolyte disorders 1,319 485 19 15 3,722 0.945 0.542 1,246 372 521 1,884 188 73 1,416 501 745 (20.0%) 511 (13.7%)

Blood loss anemia 85 28 29 8 321 0.835 0.47 71 90 23 217 19 7 71 25 46 (14.3%) 39 (12.1%)

Deficiency anemia 3,187 1,850 35 10 9,134 0.853 0.575 2,718 2,405 1,131 5,195 333 127 1,707 715 2,003 (21.9%) 446 (4.9%)

Alcohol abuse 1,286 855 22 7 3,624 0.867 0.573 1,115 847 426 2,056 122 63 676 274 841 (23.2%) 179 (4.9%)

Drug abuse 673 470 11 10 2,021 0.796 0.544 536 585 218 1,217 20 11 123 53 483 (23.9%) -52 (-2.6%)

a The Elixhauser Comorbidity Index (ECI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to

3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.64: T-CARER: The profile of the model and the HSCIC-CCI for the Charlson diagnoses categories, using random-forest (Sample-1 )

Charlson Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Myocardial infarction 3,529 2,223 18 7 9,757 0.9 0.548 3,177 1,336 946 5,260 519 207 5,705 2,039 1,138 (11.7%) 3,010 (30.8%)

Peripheral vascular disease 2,042 1,315 13 12 5,811 0.836 0.559 1,587 1,578 606 3,237 272 104 3,582 1,380 207 (3.6%) 1,838 (31.6%)

Cerebrovascular disease 3,748 1,841 15 19 11,585 0.885 0.501 3,495 1,341 1,255 6,286 820 253 5,741 2,021 1,474 (12.7%) 2,736 (23.6%)

Dementia 2,332 841 10 24 6,340 0.893 0.538 2,110 643 768 3,037 75 35 4,496 1,610 500 (7.9%) 1,955 (30.8%)

Chronic pulmonary disease 10,417 4,728 25 8 31,196 0.975 0.603 8,798 9,401 4,345 17,842 342 177 24,360 7,640 1,158 (3.7%) 13,948 (44.7%)

Rheumatic disease 1,412 350 18 11 5,161 0.398 0.387 1,072 1,967 413 3,437 70 22 3,446 1,051 21 (0.4%) 2,131 (41.3%)

Peptic ulcer disease 910 471 20 12 3,801 0.665 0.446 674 1,558 178 2,707 86 28 1,774 484 190 (5.0%) 1,164 (30.6%)

Mild liver disease 983 600 21 9 2,733 0.782 0.581 846 768 371 1,511 148 57 892 335 511 (18.7%) 409 (15.0%)

Diabetes, uncomplicated 7,870 3,993 19 9 22,598 0.98 0.593 6,627 5,783 2,817 12,549 14,102 4,445 6,729 2,787 3,840 (17.0%) 11,420 (50.5%)

Diabetes, complicated 880 553 19 12 2,375 0.356 0.418 686 831 296 1,323 261 119 603 287 399 (16.8%) 286 (12.0%)

Hemiplegia or paraplegia 991 529 24 17 2,881 0.825 0.524 912 427 379 1,525 685 206 1,482 565 347 (12.0%) 1,031 (35.8%)

Renal disease 2,626 1,543 22 12 5,945 0.967 0.635 2,350 702 1,138 2,438 134 56 4,369 1,877 473 (8.0%) 1,689 (28.4%)

Malignancy 8,129 4,471 19 8 22,675 0.949 0.599 5,090 8,013 1,540 13,011 501 190 8,383 3,322 1,768 (7.8%) 3,837 (16.9%)

Moderate or severe liver disease 323 209 21 8 898 0.083 0.139 275 198 107 471 36 18 442 136 139 (15.5%) 220 (24.5%)

Metastatic solid tumour 2,454 1,123 18 10 6,069 0.974 0.591 1,834 1,129 509 2,976 49 16 5,205 2,093 -259 (-4.3%) 2,506 (41.3%)

Congestive heart failure 4,652 2,241 14 12 11,393 0.875 0.576 4,340 962 2,007 4,919 404 199 8,619 3,468 872 (7.7%) 3,534 (31.0%)

AIDS/HIV 63 50 12 7 350 0.73 0.388 46 159 23 276 175 31 71 14 32 (9.1%) 190 (54.3%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age.
d The IQR of patients’ length-of-stay. e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point.
h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.65: T-CARER: The profile of the model and the HSCIC-CCI for the Elixhauser diagnoses categories, using random-forest (Sample-2 )

Elixhauser Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Congestive heart failure 4,922 2,385 14 10 8,716 0.913 0.724 4,242 962 1,364 3,185 304 163 7,031 4,053 189 (2.2%) 2,510 (28.8%)

AIDS/HIV 102 67 13 6 442 0.676 0.543 69 257 20 329 219 49 89 23 46 (10.4%) 225 (50.9%)

Depression 3,029 1,114 38 8 7,196 0.647 0.585 1,961 2,454 608 3,917 327 142 1,462 733 1,228 (17.1%) 664 (9.2%)

Cardiac arrhythmias 11,194 5,377 14 8 23,006 0.812 0.66 9,089 4,546 2,565 10,603 1,550 764 10,033 5,520 3,569 (15.5%) 4,090 (17.8%)

Valvular disease 2,019 942 16 10 3,957 0.834 0.674 1,683 645 457 1,754 228 109 1,868 1,067 616 (15.6%) 736 (18.6%)

Pulmonary circulation disorder 806 377 22 10 1,745 0.797 0.649 642 408 152 868 101 41 729 397 245 (14.0%) 321 (18.4%)

Peripheral vascular disorders 1,980 1,236 14 11 3,780 0.821 0.674 1,625 583 498 1,612 108 63 3,074 1,650 -25 (-0.7%) 1,281 (33.9%)

Hypertension, uncomplicated 19,370 8,554 18 8 46,496 0.713 0.596 13,813 13,980 3,347 25,568 5,932 2,400 16,643 8,131 5,682 (12.2%) 10,486 (22.6%)

Hypertension, complicated 1,702 911 15 11 3,002 0.845 0.708 1,439 374 466 1,114 52 30 2,701 1,545 -106 (-3.5%) 992 (33.0%)

Paralysis 1,124 570 21 14 2,272 0.818 0.653 919 376 312 1,013 420 194 1,392 740 179 (7.9%) 743 (32.7%)

Other neurological disorders 5,672 2,863 35 8 11,863 0.751 0.662 4,262 3,244 1,438 5,695 604 310 3,513 1,944 2,318 (19.5%) 1,367 (11.5%)

Chronic pulmonary disease 13,510 5,865 30 6 30,516 0.754 0.656 10,184 9,672 4,018 15,589 491 269 24,090 10,669 -485 (-1.6%) 12,226 (40.1%)

Diabetes, uncomplicated 10,110 5,054 21 8 21,907 0.76 0.645 7,687 5,767 2,428 10,779 11,516 4,729 8,737 4,757 2,930 (13.4%) 9,749 (44.5%)

Diabetes, complicated 887 516 21 11 1,603 0.821 0.696 728 240 276 622 248 129 761 472 256 (16.0%) 314 (19.6%)

Hypothyroidism 3,394 685 19 9 7,859 0.767 0.632 2,602 2,233 760 4,142 695 312 2,940 1,539 1,063 (13.5%) 1,461 (18.6%)

Renal failure 3,956 2,173 16 10 6,883 0.858 0.715 3,393 780 1,222 2,492 106 61 6,161 3,556 -163 (-2.4%) 2,215 (32.2%)

Liver disease 1,527 939 22 7 2,955 0.788 0.689 1,204 663 432 1,280 189 96 1,157 668 536 (18.1%) 434 (14.7%)

Peptic ulcer disease 464 233 23 11 1,158 0.81 0.619 376 319 93 662 43 16 711 306 70 (6.0%) 400 (34.5%)

Psychoses 1,121 641 29 31 2,571 0.647 0.573 725 766 206 1,344 103 45 332 175 550 (21.4%) 109 (4.2%)

Lymphoma 462 246 18 10 743 0.764 0.709 353 100 103 222 15 9 478 289 64 (8.6%) 136 (18.3%)

Metastatic cancer 1,650 835 17 8 3,034 0.755 0.642 1,246 398 288 1,185 26 17 2,687 1,461 -215 (-7.1%) 1,036 (34.1%)

Solid tumour 3,510 2,062 18 9 6,425 0.763 0.663 2,677 1,029 684 2,542 131 74 4,750 2,621 56 (0.9%) 1,813 (28.2%)

Rheumatoid arthritis 1,603 458 19 8 3,833 0.783 0.626 1,255 1,076 342 2,045 64 28 3,176 1,369 -114 (-3.0%) 1,658 (43.3%)

Coagulopathy 416 175 40 8 1,003 0.75 0.661 312 371 120 553 42 19 265 140 172 (17.1%) 114 (11.4%)

Obesity 853 343 29 7 2,009 0.734 0.625 626 631 228 1,095 307 136 704 357 269 (13.4%) 457 (22.7%)

Weight loss 709 369 23 12 1,483 0.753 0.633 534 329 106 725 70 29 490 267 267 (18.0%) 215 (14.5%)

Fluid & electrolyte disorders 2,850 1,161 19 14 5,901 0.838 0.654 2,387 992 625 2,771 375 182 2,599 1,372 1,015 (17.2%) 1,140 (19.3%)

Blood loss anemia 69 30 28 8 204 0.638 0.494 44 70 12 127 8 2 51 26 18 (8.8%) 23 (11.3%)

Deficiency anemia 5,006 2,975 33 7 12,003 0.713 0.638 3,571 4,385 1,237 6,589 525 254 2,548 1,361 2,210 (18.4%) 1,050 (8.7%)

Alcohol abuse 2,132 1,313 23 5 5,421 0.646 0.609 1,377 2,275 461 3,148 175 81 997 547 830 (15.3%) 403 (7.4%)

Drug abuse 941 614 13 5 2,548 0.576 0.561 542 1,158 169 1,541 33 15 261 109 433 (17.0%) 104 (4.1%)

a The Elixhauser Comorbidity Index (ECI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to

3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.66: T-CARER: The profile of the model and the HSCIC-CCI for the Charlson diagnoses categories, using random-forest (Sample-2 )

Charlson Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Myocardial infarction 4,079 2,600 21 5 7,806 0.692 0.63 2,821 1,667 602 3,509 396 221 4,493 2,373 448 (5.7%) 2,077 (26.6%)

Peripheral vascular disease 1,980 1,236 14 11 3,780 0.705 0.631 1,625 583 498 1,612 108 63 3,074 1,650 -25 (-0.7%) 1,281 (33.9%)

Cerebrovascular disease 4,651 2,206 16 14 9,911 0.911 0.671 3,640 2,044 830 4,855 598 277 5,457 2,795 845 (8.5%) 2,578 (26.0%)

Dementia 4,020 1,407 9 15 7,766 0.779 0.633 3,556 638 831 3,244 100 55 6,380 3,312 244 (3.1%) 2,611 (33.6%)

Chronic pulmonary disease 13,510 5,865 30 6 30,516 0.956 0.723 10,184 9,672 4,018 15,589 491 269 24,090 10,669 -485 (-1.6%) 12,226 (40.1%)

Rheumatic disease 1,462 394 16 9 3,438 0.261 0.349 1,174 931 318 1,801 34 15 3,110 1,342 -168 (-4.9%) 1,612 (46.9%)

Peptic ulcer disease 695 370 23 10 1,817 0.653 0.558 542 552 120 1,080 76 24 935 405 137 (7.5%) 540 (29.7%)

Mild liver disease 1,393 853 22 7 2,691 0.879 0.722 1,108 596 408 1,162 167 83 1,054 613 495 (18.4%) 389 (14.5%)

Diabetes, uncomplicated 10,162 5,087 21 8 22,027 0.964 0.709 7,730 5,796 2,449 10,842 11,560 4,747 8,780 4,780 2,950 (13.4%) 9,790 (44.4%)

Diabetes, complicated 848 496 22 11 1,501 0.223 0.327 697 213 262 564 212 115 726 456 241 (16.1%) 278 (18.5%)

Hemiplegia or paraplegia 1,124 570 21 14 2,272 0.859 0.666 919 376 312 1,013 420 194 1,392 740 179 (7.9%) 743 (32.7%)

Renal disease 3,962 2,176 16 10 6,898 0.943 0.743 3,399 784 1,222 2,500 107 62 6,168 3,558 -159 (-2.3%) 2,219 (32.2%)

Malignancy 4,216 2,435 19 9 7,589 0.85 0.702 3,199 1,217 840 2,931 155 89 5,469 3,032 167 (2.2%) 2,061 (27.2%)

Moderate or severe liver disease 359 244 20 7 607 0.227 0.334 298 75 114 211 39 23 330 196 102 (16.8%) 113 (18.6%)

Metastatic solid tumour 1,650 835 17 8 3,034 0.953 0.704 1,246 398 288 1,185 26 17 2,687 1,461 -215 (-7.1%) 1,036 (34.1%)

Congestive heart failure 4,922 2,385 14 10 8,716 0.913 0.724 4,242 962 1,364 3,185 304 163 7,031 4,053 189 (2.2%) 2,510 (28.8%)

AIDS/HIV 102 67 13 6 442 0.676 0.543 69 257 20 329 219 49 89 23 46 (10.4%) 225 (50.9%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age.
d The IQR of patients’ length-of-stay. e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point.
h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.67: T-CARER: The profile of the model and the HSCIC-CCI for the Elixhauser diagnoses categories, using WDNN (Sample-1 )

Elixhauser Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Congestive heart failure 2,454 1,123 18 10 6,069 0.226 0.299 554 2,918 104 3,521 49 16 5,205 2,093 -1,539 (-25.4%) 3,051 (50.3%)

AIDS/HIV 63 50 12 7 350 0.317 0.412 20 273 6 286 175 31 71 14 6 (1.7%) 200 (57.1%)

Depression 2,115 772 39 25 5,499 0.353 0.422 746 2,710 177 3,271 177 73 854 335 411 (7.5%) 510 (9.3%)

Cardiac arrhythmias 7,637 3,652 14 10 21,344 0.39 0.444 2,976 10,901 603 13,392 1,271 505 7,541 3,021 -45 (-0.2%) 4,971 (23.3%)

Valvular disease 1,670 772 16 11 4,536 0.331 0.407 552 2,375 117 2,803 225 89 1,540 643 -91 (-2.0%) 970 (21.4%)

Pulmonary circulation disorder 587 247 23 13 1,847 0.388 0.425 228 1,001 52 1,226 77 30 639 232 -4 (-0.2%) 420 (22.7%)

Peripheral vascular disorders 2,042 1,315 13 12 5,811 0.308 0.381 629 3,135 128 3,692 272 104 3,582 1,380 -751 (-12.9%) 2,293 (39.5%)

Hypertension, uncomplicated 11,958 5,358 16 9 42,818 0.28 0.362 3,345 27,665 663 30,521 4,929 1,515 12,123 4,396 -1,051 (-2.5%) 10,802 (25.2%)

Hypertension, complicated 571 349 20 9 1,308 0.433 0.506 247 579 71 706 61 25 875 410 -163 (-12.5%) 470 (35.9%)

Paralysis 991 529 24 17 2,881 0.377 0.42 374 1,475 79 1,846 685 206 1,482 565 -191 (-6.6%) 1,352 (46.9%)

Other neurological disorders 4,488 2,304 39 10 12,314 0.361 0.435 1,621 6,479 433 7,634 554 232 2,725 1,108 513 (4.2%) 1,747 (14.2%)

Chronic pulmonary disease 10,417 4,728 25 8 31,196 0.478 0.519 4,984 16,982 1,799 20,031 342 177 24,360 7,640 -2,656 (-8.5%) 16,137 (51.7%)

Diabetes, uncomplicated 7,764 3,942 19 9 22,309 0.42 0.468 3,261 11,645 930 14,093 13,973 4,401 6,651 2,755 506 (2.3%) 13,016 (58.3%)

Diabetes, complicated 986 606 21 13 2,659 0.318 0.42 314 1,476 98 1,636 386 163 677 319 -5 (-0.2%) 544 (20.5%)

Hypothyroidism 1,812 337 18 10 5,869 0.358 0.43 648 3,500 153 3,987 465 162 1,838 685 -37 (-0.6%) 1,386 (23.6%)

Renal failure 2,618 1,539 22 12 5,923 0.423 0.48 1,108 2,415 291 3,142 134 56 4,357 1,873 -765 (-12.9%) 2,399 (40.5%)

Liver disease 1,139 694 22 9 3,247 0.309 0.394 352 1,810 89 2,069 169 68 1,091 375 -23 (-0.7%) 778 (24.0%)

Peptic ulcer disease 651 341 20 9 2,704 0.19 0.264 124 1,890 10 2,044 47 16 1,369 371 -247 (-9.1%) 1,020 (37.7%)

Psychoses 1,089 619 29 42 2,864 0.412 0.467 449 1,389 114 1,719 72 22 191 98 351 (12.3%) 87 (3.0%)

Lymphoma 891 483 21 7 2,092 0.26 0.343 232 970 60 1,167 41 18 595 245 -13 (-0.6%) 339 (16.2%)

Metastatic cancer 2,454 1,123 18 10 6,069 0.226 0.299 554 2,918 104 3,521 49 16 5,205 2,093 -1,539 (-25.4%) 3,051 (50.3%)

Solid tumour 6,729 3,672 20 8 19,482 0.192 0.27 1,289 11,236 240 12,557 438 159 7,450 2,950 -1,661 (-8.5%) 4,583 (23.5%)

Rheumatoid arthritis 1,533 409 19 11 5,773 0.3 0.386 460 3,850 98 4,209 100 35 3,482 1,066 -606 (-10.5%) 2,450 (42.4%)

Coagulopathy 413 194 39 7 1,315 0.356 0.432 147 781 43 883 53 19 261 89 58 (4.4%) 187 (14.2%)

Obesity 447 168 28 9 1,687 0.266 0.351 119 1,128 34 1,225 212 70 400 146 -27 (-1.6%) 381 (22.6%)

Weight loss 729 351 20 12 2,378 0.199 0.285 145 1,506 19 1,641 64 30 435 173 -28 (-1.2%) 288 (12.1%)

Fluid & electrolyte disorders 1,319 485 19 15 3,722 0.411 0.443 542 1,818 111 2,335 188 73 1,416 501 41 (1.1%) 962 (25.8%)

Blood loss anemia 85 28 29 8 321 0.318 0.34 27 189 4 227 19 7 71 25 2 (0.6%) 49 (15.3%)

Deficiency anemia 3,187 1,850 35 10 9,134 0.38 0.455 1,211 5,018 302 5,834 333 127 1,707 715 496 (5.4%) 1,085 (11.9%)

Alcohol abuse 1,286 855 22 7 3,624 0.292 0.382 376 2,030 90 2,305 122 63 676 274 102 (2.8%) 428 (11.8%)

Drug abuse 673 470 11 10 2,021 0.316 0.408 213 1,191 62 1,327 20 11 123 53 160 (7.9%) 58 (2.9%)

a The Elixhauser Comorbidity Index (ECI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to

3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.68: T-CARER: The profile of the model and the HSCIC-CCI for the Charlson diagnoses categories, using WDNN (Sample-1 )

Charlson Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Myocardial infarction 3,529 2,223 18 7 9,757 0.335 0.397 1,182 4,989 216 6,067 519 207 5,705 2,039 -857 (-8.8%) 3,817 (39.1%)

Peripheral vascular disease 4,652 2,241 14 12 11,393 0.471 0.494 2,189 4,726 537 6,418 404 199 8,619 3,468 -1,279 (-11.2%) 5,033 (44.2%)

Cerebrovascular disease 2,042 1,315 13 12 5,811 0.308 0.381 629 3,135 128 3,692 272 104 3,582 1,380 -751 (-12.9%) 2,293 (39.5%)

Dementia 3,748 1,841 15 19 11,585 0.371 0.399 1,390 6,009 259 7,628 820 253 5,741 2,021 -631 (-5.4%) 4,078 (35.2%)

Chronic pulmonary disease 2,332 841 10 24 6,340 0.391 0.416 912 2,864 168 3,854 75 35 4,496 1,610 -698 (-11.0%) 2,772 (43.7%)

Rheumatic disease 10,417 4,728 25 8 31,196 0.478 0.519 4,984 16,982 1,799 20,031 342 177 24,360 7,640 -2,656 (-8.5%) 16,137 (51.7%)

Peptic ulcer disease 1,412 350 18 11 5,161 0.3 0.387 424 3,391 90 3,725 70 22 3,446 1,051 -627 (-12.1%) 2,419 (46.9%)

Mild liver disease 910 471 20 12 3,801 0.21 0.28 191 2,629 19 2,877 86 28 1,774 484 -293 (-7.7%) 1,334 (35.1%)

Diabetes, uncomplicated 983 600 21 9 2,733 0.322 0.411 317 1,506 79 1,715 148 57 892 335 -18 (-0.7%) 613 (22.4%)

Diabetes, complicated 7,870 3,993 19 9 22,598 0.421 0.469 3,310 11,796 952 14,267 14,102 4,445 6,729 2,787 523 (2.3%) 13,138 (58.1%)

Hemiplegia or paraplegia 880 553 19 12 2,375 0.298 0.4 262 1,328 75 1,465 261 119 603 287 -25 (-1.1%) 428 (18.0%)

Renal disease 991 529 24 17 2,881 0.377 0.42 374 1,475 79 1,846 685 206 1,482 565 -191 (-6.6%) 1,352 (46.9%)

Malignancy 2,626 1,543 22 12 5,945 0.423 0.48 1,112 2,426 292 3,156 134 56 4,369 1,877 -765 (-12.9%) 2,407 (40.5%)

Moderate or severe liver disease 8,129 4,471 19 8 22,675 0.211 0.293 1,712 12,694 366 14,300 501 190 8,383 3,322 -1,610 (-7.1%) 5,126 (22.6%)

Metastatic solid tumour 323 209 21 8 898 0.251 0.324 81 479 18 568 36 18 442 136 -55 (-6.1%) 317 (35.3%)

Congestive heart failure 2,454 1,123 18 10 6,069 0.226 0.299 554 2,918 104 3,521 49 16 5,205 2,093 -1,539 (-25.4%) 3,051 (50.3%)

AIDS/HIV 63 50 12 7 350 0.317 0.412 20 273 6 286 175 31 71 14 6 (1.7%) 200 (57.1%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age.
d The IQR of patients’ length-of-stay. e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point.
h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.69: T-CARER: The profile of the model and the HSCIC-CCI for the Elixhauser diagnoses categories, using WDNN (Sample-2 )

Elixhauser Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Congestive heart failure 1,650 835 17 8 3,034 0.486 0.533 802 825 229 1,224 26 17 2,687 1,461 -659 (-21.7%) 1,075 (35.4%)

AIDS/HIV 102 67 13 6 442 0.422 0.446 43 292 15 331 219 49 89 23 20 (4.5%) 227 (51.4%)

Depression 3,029 1,114 38 8 7,196 0.487 0.522 1,474 3,018 498 3,940 327 142 1,462 733 741 (10.3%) 687 (9.5%)

Cardiac arrhythmias 11,194 5,377 14 8 23,006 0.573 0.581 6,409 7,345 2,416 10,650 1,550 764 10,033 5,520 889 (3.9%) 4,137 (18.0%)

Valvular disease 2,019 942 16 10 3,957 0.555 0.577 1,121 1,194 423 1,750 228 109 1,868 1,067 54 (1.4%) 732 (18.5%)

Pulmonary circulation disorder 806 377 22 10 1,745 0.476 0.525 384 665 128 885 101 41 729 397 -13 (-0.7%) 338 (19.4%)

Peripheral vascular disorders 1,980 1,236 14 11 3,780 0.579 0.597 1,146 1,085 465 1,621 108 63 3,074 1,650 -504 (-13.3%) 1,290 (34.1%)

Hypertension, uncomplicated 19,370 8,554 18 8 46,496 0.482 0.512 9,344 19,325 3,029 25,608 5,932 2,400 16,643 8,131 1,213 (2.6%) 10,526 (22.6%)

Hypertension, complicated 1,702 911 15 11 3,002 0.612 0.624 1,041 709 431 1,128 52 30 2,701 1,545 -504 (-16.8%) 1,006 (33.5%)

Paralysis 1,124 570 21 14 2,272 0.558 0.571 627 702 262 1,040 420 194 1,392 740 -113 (-5.0%) 770 (33.9%)

Other neurological disorders 5,672 2,863 35 8 11,863 0.567 0.594 3,214 4,257 1,161 5,762 604 310 3,513 1,944 1,270 (10.7%) 1,434 (12.1%)

Chronic pulmonary disease 13,510 5,865 30 6 30,516 0.589 0.598 7,958 11,845 3,453 15,782 491 269 24,090 10,669 -2,711 (-8.9%) 12,419 (40.7%)

Diabetes, uncomplicated 10,110 5,054 21 8 21,907 0.571 0.578 5,773 7,712 2,260 10,793 11,516 4,729 8,737 4,757 1,016 (4.6%) 9,763 (44.6%)

Diabetes, complicated 887 516 21 11 1,603 0.59 0.619 523 435 217 643 248 129 761 472 51 (3.2%) 335 (20.9%)

Hypothyroidism 3,394 685 19 9 7,859 0.534 0.551 1,812 3,089 723 4,150 695 312 2,940 1,539 273 (3.5%) 1,469 (18.7%)

Renal failure 3,956 2,173 16 10 6,883 0.634 0.643 2,510 1,580 1,081 2,516 106 61 6,161 3,556 -1,046 (-15.2%) 2,239 (32.5%)

Liver disease 1,527 939 22 7 2,955 0.599 0.623 914 937 353 1,319 189 96 1,157 668 246 (8.3%) 473 (16.0%)

Peptic ulcer disease 464 233 23 11 1,158 0.502 0.531 233 514 75 654 43 16 711 306 -73 (-6.3%) 392 (33.9%)

Psychoses 1,121 641 29 31 2,571 0.498 0.518 558 974 149 1,372 103 45 332 175 383 (14.9%) 137 (5.3%)

Lymphoma 462 246 18 10 743 0.543 0.598 251 155 91 238 15 9 478 289 -38 (-5.1%) 152 (20.5%)

Metastatic cancer 1,650 835 17 8 3,034 0.486 0.533 802 825 229 1,224 26 17 2,687 1,461 -659 (-21.7%) 1,075 (35.4%)

Solid tumour 3,510 2,062 18 9 6,425 0.512 0.557 1,796 1,775 587 2,618 131 74 4,750 2,621 -825 (-12.8%) 1,889 (29.4%)

Rheumatoid arthritis 1,603 458 19 8 3,833 0.558 0.563 895 1,548 315 2,068 64 28 3,176 1,369 -474 (-12.4%) 1,681 (43.9%)

Coagulopathy 416 175 40 8 1,003 0.55 0.586 229 451 90 547 42 19 265 140 89 (8.9%) 108 (10.8%)

Obesity 853 343 29 7 2,009 0.522 0.561 445 868 184 1,112 307 136 704 357 88 (4.4%) 474 (23.6%)

Weight loss 709 369 23 12 1,483 0.434 0.494 308 543 88 728 70 29 490 267 41 (2.8%) 218 (14.7%)

Fluid & electrolyte disorders 2,850 1,161 19 14 5,901 0.55 0.567 1,567 1,937 538 2,770 375 182 2,599 1,372 195 (3.3%) 1,139 (19.3%)

Blood loss anemia 69 30 28 8 204 0.435 0.451 30 101 12 128 8 2 51 26 4 (2.0%) 24 (11.8%)

Deficiency anemia 5,006 2,975 33 7 12,003 0.552 0.576 2,763 5,172 995 6,656 525 254 2,548 1,361 1,402 (11.7%) 1,117 (9.3%)

Alcohol abuse 2,132 1,313 23 5 5,421 0.514 0.554 1,095 2,560 366 3,179 175 81 997 547 548 (10.1%) 434 (8.0%)

Drug abuse 941 614 13 5 2,548 0.454 0.5 427 1,268 131 1,559 33 15 261 109 318 (12.5%) 122 (4.8%)

a The Elixhauser Comorbidity Index (ECI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age. d The IQR of patients’ length-of-stay.
e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point. h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to

3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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Table A.70: T-CARER: The profile of the model and the HSCIC-CCI for the Charlson diagnoses categories, using WDNN (Sample-2 )

Charlson Comorbidity Index Population Profile T-CARER Profile HSCIC-CCI Profile Comparisons

Diagnoses Group a Prior
b

Male Age
c

LoS
d

Total Sens.

(0.5)
e

F1

(.5)
f

TP

(.5)
g

TN

(.5)
h

TP

(.7)

TN

(.7)

CCI

1-3
i

CCI

1-3

(TP)

CCI

4+

CCI

4+

(TP)

Delta Score

(.5, 4+) j

Delta Score

(.7, 4+)

Myocardial infarction 4,079 2,600 21 5 7,806 0.41 0.491 1,671 2,670 536 3,504 396 221 4,493 2,373 -702 (-9.0%) 2,072 (26.5%)

Peripheral vascular disease 4,922 2,385 14 10 8,716 0.611 0.623 3,009 2,065 1,271 3,231 304 163 7,031 4,053 -1,044 (-12.0%) 2,556 (29.3%)

Cerebrovascular disease 1,980 1,236 14 11 3,780 0.579 0.597 1,146 1,085 465 1,621 108 63 3,074 1,650 -504 (-13.3%) 1,290 (34.1%)

Dementia 4,651 2,206 16 14 9,911 0.488 0.525 2,269 3,529 768 4,896 598 277 5,457 2,795 -526 (-5.3%) 2,619 (26.4%)

Chronic pulmonary disease 4,020 1,407 9 15 7,766 0.621 0.591 2,496 1,819 795 3,235 100 55 6,380 3,312 -816 (-10.5%) 2,602 (33.5%)

Rheumatic disease 13,510 5,865 30 6 30,516 0.589 0.598 7,958 11,845 3,453 15,782 491 269 24,090 10,669 -2,711 (-8.9%) 12,419 (40.7%)

Peptic ulcer disease 1,462 394 16 9 3,438 0.573 0.572 837 1,349 296 1,823 34 15 3,110 1,342 -505 (-14.7%) 1,634 (47.5%)

Mild liver disease 695 370 23 10 1,817 0.453 0.498 315 867 98 1,069 76 24 935 405 -90 (-5.0%) 529 (29.1%)

Diabetes, uncomplicated 1,393 853 22 7 2,691 0.614 0.633 855 843 337 1,195 167 83 1,054 613 242 (9.0%) 422 (15.7%)

Diabetes, complicated 10,162 5,087 21 8 22,027 0.571 0.578 5,807 7,756 2,273 10,856 11,560 4,747 8,780 4,780 1,027 (4.7%) 9,804 (44.5%)

Hemiplegia or paraplegia 848 496 22 11 1,501 0.586 0.62 497 394 208 585 212 115 726 456 41 (2.7%) 299 (19.9%)

Renal disease 1,124 570 21 14 2,272 0.558 0.571 627 702 262 1,040 420 194 1,392 740 -113 (-5.0%) 770 (33.9%)

Malignancy 3,962 2,176 16 10 6,898 0.634 0.642 2,512 1,586 1,081 2,524 107 62 6,168 3,558 -1,046 (-15.2%) 2,243 (32.5%)

Moderate or severe liver disease 4,216 2,435 19 9 7,589 0.511 0.561 2,156 2,062 722 3,020 155 89 5,469 3,032 -876 (-11.5%) 2,150 (28.3%)

Metastatic solid tumour 359 244 20 7 607 0.577 0.617 207 143 91 224 39 23 330 196 11 (1.8%) 126 (20.8%)

Congestive heart failure 1,650 835 17 8 3,034 0.486 0.533 802 825 229 1,224 26 17 2,687 1,461 -659 (-21.7%) 1,075 (35.4%)

AIDS/HIV 102 67 13 6 442 0.422 0.446 43 292 15 331 219 49 89 23 20 (4.5%) 227 (51.4%)

a The Charlson Comorbidity Index (CCI) diagnoses groups. b Total number of patients with prior spells. c The Inter-Quartile Range (IQR) of patients’ age.
d The IQR of patients’ length-of-stay. e Sensitivity, 50% cut-off point. f F1-score, 50% cut-off point. g True Positive (TP), 50% cut-off point.
h True Negative (TN), 50% cut-off point. i Total number of patients scored between 1 to 3 by the HSCIC-CCI. j Subtraction of TCARER’s True Positive (50% cut-off point) from the HSCIC-CCI of 4+.
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A.8 Toolkits

A.8.1 UML Diagrams

Figure A.60: Toolkits: UML diagram of the developed classes in the ReadersWriters
sub-package
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Figure A.61: Toolkits: UML diagram of the developed classes in the Stats sub-
package
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Figure A.62: Toolkits: UML diagram of the developed classes in the Features sub-
package

Figure A.63: Toolkits: UML diagram of the developed classes in the Config sub-
packages
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