
 
 

 
WestminsterResearch 
http://www.wmin.ac.uk/westminsterresearch 
 
 
Analysis of stopping criteria for the EM algorithm in the 
context of patient grouping according to length of stay 
 
Revlin Abbi1 
Elia El-Darzi1 
Christos Vasilakis2 
Peter Millard3 
 

1 Harrow School of Computer Science, University of Westminster 
2 Clinical Research Unit, University College London 
3 St. George’s University of London 
 
 
Copyright © [2008] IEEE. Reprinted from the Proc. of the 4th International 
IEEE Conference on Intelligent Systems IS'08. Varna, Bulgaria, September, 
6-8 2008. IEEE, Los Alamitos, USA, pp. 3-9. ISBN 9781424417391. 
 
This material is posted here with permission of the IEEE. Such permission of 
the IEEE does not in any way imply IEEE endorsement of any of the 
University of Westminster's products or services.  Personal use of this 
material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for 
resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE. By 
choosing to view this document, you agree to all provisions of the copyright 
laws protecting it. 
 
 
The WestminsterResearch online digital archive at the University of Westminster 
aims to make the research output of the University available to a wider audience.  
Copyright and Moral Rights remain with the authors and/or copyright owners. 
Users are permitted to download and/or print one copy for non-commercial private 
study or research.  Further distribution and any use of material from within this 
archive for profit-making enterprises or for commercial gain is strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of the University of Westminster Eprints 
(http://www.wmin.ac.uk/westminsterresearch). 
 
In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk. 



   

Abstract The expectation maximisation (EM) algorithm is 

an iterative maximum likelihood procedure often used for 

estimating the parameters of a mixture model. Theoretically, 

increases in the likelihood function are guaranteed as the 

algorithm iteratively improves upon previously derived 

parameter estimates. The algorithm is considered to converge 

when all parameter estimates become stable and no further 

improvements can be made to the likelihood value. However, to 

reduce computational time, it is often common practice for the 

algorithm to be stopped before complete convergence using 

heuristic approaches. In this paper, we consider various 

stopping criteria and evaluate their effect on fitting Gaussian 

mixture models (GMMs) to patient length of stay (LOS) data. 

Although the GMM can be successfully fitted to positively 

skewed data such as LOS, the fitting procedure often requires 

many iterations of the EM algorithm. To our knowledge, no 

previous study has evaluated the effect of different stopping 

criteria on fitting GMMs to skewed distributions. Hence, the 

aim of this paper is to evaluate the effect of various stopping 

criteria in order to select and justify their use within a patient 

spell classification methodology. Results illustrate that criteria 

based on the difference in the likelihood value and on the GMM 

parameters may not always be a good indicator for stopping the 

algorithm. In fact we show that the values of the difference in 

the variance parameters should be used instead, as these 

parameters are the last to stabilise. In addition, we also specify 

threshold values for the other stopping criteria. 

 

Index Terms GMM fitting, LOS data, patient classification, 

stopping criteria. 

I. INTRODUCTION 

Various techniques have been proposed that use patient 

length of stay (LOS) data to derive the parameters of patient 

flow models, which in turn help clinicians and managers to 

better understand the temporal characteristics of the patients 
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cared for by the health care system [1-5]. An approach 

complementary to flow modelling and developed by the 

authors is concerned with deriving the case-mix of patients 

from LOS observations, and building a LOS patient 

classification model [6, 7]. In summary, the methodology 

comprises of several processing steps  [6, 7], where the 

optimal Gaussian mixture model (GMM), based on the 

minimum description length criterion [8], represents various 

groups of patients according to their LOS. From the derived 

GMM, non-overlapping LOS intervals (the classification 

scheme) are derived and a decision tree is built. In this way, 

patients are grouped according to their LOS and for each 

group a profile is derived to help predict a patient’s LOS 

based on various spell characteristics such as age, diagnosis, 

gender, and others. In this paper we are concerned with 

determining the parameters of each group using the 

maximum likelihood approach within a computationally 

efficient time. 

For the single Gaussian function, we are able to obtain a 

closed form solution to derive the maximum likelihood 

estimates of the model parameters. In more complex cases 

however, computational approaches are often used for 

maximising the likelihood function [9], most commonly the 

expectation maximization (EM) algorithm [10]. Generally 

speaking, EM is a computational maximum likelihood 

procedure used to estimate the parameters of a mixture 

model. Once initialised, the algorithm readjusts the GMM 

parameter estimates while guaranteeing increases in the 

likelihood function. The algorithm is considered to converge 

when all estimates remain the same and no further 

improvements can be made.  

However, in order to reduce computational time, the EM 

algorithm is often stopped prior to convergence using 

alternative stopping criteria. A simplistic approach is to 

heuristically specify the number of iterations before applying 

the algorithm [11, 12]. However, this trial and error approach 

is problem dependant as there is no generally applicable 

number of iterations before we terminate the algorithm. A 

better approach is to detect the amount of improvement being 

made to the likelihood function between successive iterations, 

and then stop the algorithm when only small improvements 

are being made, based on a threshold value as a predefined 

cut-off point [13-16]. Other stopping criteria are based on the 
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changes in the GMM parameters (or part of the parameters), 

between consecutive iterations [17].  

Based on experimental analysis, such approaches often 

lead to an underestimation of the model parameters. To our 

knowledge there is no study which evaluates the effect of 

different stopping criteria on fitting GMMs to skewed 

distributions such as the LOS distribution. In this paper 

therefore, various existing stopping criteria based on either 

the likelihood value or on the parameters of the GMM are 

evaluated according to the effect on fitting GMMs to patient 

LOS data. The study uses data from two health administrative 

datasets. The aim is to understand, define and compare the 

impact of various stopping criteria in order to justify their use 

within the patient spell classification methodology. A related 

issue to the stopping criterion is the initialisation of the model 

parameters, which also significantly affect computational 

time. Hence, we introduce an initialisation approach, shown 

to decrease the number of iterations, based on percentile 

values derived from the LOS data. This can be used instead 

of random initialisation.  

Results illustrate that criteria based on the difference in the 

likelihood values and on the GMM parameters may not 

always be a good indicator for stopping the algorithm. In fact 

we show that the values of the difference in the variance 

parameters should be used instead, as these parameters are 

the last to stabilise. 

The rest of the paper is organised as follows. In the next 

section we briefly describe the approaches used and the 

criteria evaluated in our study. We also introduce the two 

healthcare datasets used in this paper. In the results section, 

we report on the outcomes of the study and assess the impact 

of applying the various criteria. Lastly, we end the report with 

some concluding remarks.  

II. METHODS 

Using a given set of data X={x1, x2,…, x�,} corresponding to 

LOS observations, the maximum likelihood approach 

determines the parameters of a GMM that maximise the 

likelihood function L. The likelihood L of the data X is 

defined as the product of the probabilities for each data point 

xi, defined in (1), where � is the number of LOS 

observations, and p(x) is the probability of a patient staying x 

days, according to a fitted GMM with m components (2). 

Within (2), ��  is the mixing coefficient for component j, 

representing the percentage of patients belonging to group j 

and ���|�	 is the conditional probability of the Gaussian 

component j being distributed according to the mean and 

variance for group j, Equation 3. In addition, the posterior 

probability of a LOS observation xi “belonging” to 

component j is derived using the Bayes rule, Equation 4, 

where �� can be seen as the prior probability for group j. 

 
��	 = ∏ ����	����  (1) ���	 = ∑ �� ���|�	����  (2) 

���|�	 = �
������ ��� ������ �

���� ! (3) 

���|�	 = "� #��|�	
∑ "� #��|�	$�%&  (4) 

 

Based on the LOS observations X, the objective of the EM 

algorithm (see Figure 1) is to provide an iterative 

computation of the maximum likelihood estimate of the 

model parameters. 

 

 
Fig. 1. The EM algorithm. 

 

For all experiments, we initialised the EM algorithm (step 

1 above) based on the solution derived from the k-means 

clustering algorithm [18], where the mean, variance and the 

mixing coefficients are derived from each of the estimated 

clusters. Percentile values derived from the LOS data were 

used as mean parameter inputs for the k-means algorithm. We 

set the mean of each of the m groups equal to a percentile 

value (denoted as pc) of the LOS data defined according to 

(8). Based on experimental analysis, this form of initialisation 

was shown to decrease the number of iterations needed, due 

to the fact that the initialisation parameters are selected 

according to the nature of the GMM for modelling positively 

skewed distributions such as LOS. From the k-means cluster 

model, mean estimates were derived from cluster centres, as 

defined in (9), where �� is a LOS observation belonging to 

cluster j and '�  is the number of LOS observations belonging 

to cluster j. The variance (�� for component j is defined in 

(10). The mixing coefficient �� for Gaussian component j is 

valued according to the number of LOS values that belong to 

the cluster j, defined in (11). 

 

)� = �) * �++
�,� ∗ �. (8) 

/� = ∑ 0�
��  (9) 

(�� = ∑���� ��	�
��  (10) 

Step 1.  Initialise parameters 

 
Step 2. Expectation-step 

 

Compute the posterior probabilities using Bayes Rule 
(Equation 4) for all LOS data i.e. i =1,…, � and j =1,…, m  

 

Step 3. Maximisation-step 
 

���1,�	 = ∑ #��|�2	32%& �  (5) 

 

/� �1,�	 = ∑ #��|�2	�232%&∑ #��|�2	32%&  (6) 

 

(� ��1,�	 = #��|�2	��2����45&		��2����45&		
∑ #��|�2	32%&  (7) 

 

Step 4. Repeat step 2 and 3 until convergence 
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�� = ��
�  (11) 

 

Although the objective of the maximum likelihood 

approach is to increase the likelihood function, in practice we 

maximise the logarithm of the likelihood (log-likelihood). 

This is equivalent to maximising the likelihood directly, as 

the logarithm is a monotonically increasing function of its 

argument. It is convenient to use the log-likelihood (LL in 

equation 12) function because the product of a large number 

of small probabilities (extremely small floating-point values) 

can easily underflow the numerical precision of the computer 

[9]. 

 

 = ∑ ln ����	����   (12) 

 

Whilst fitting the GMMs to the LOS data, if at any time 

the variance of component j reduces below the threshold of 

10
-3
, (i.e. step 3) then some perturbation (values of 10

-7
) was 

added to the data belonging to component j [19]. This ensures 

that the variance does not converge to zero and thus the 

singularity problem can be avoided [9]. The divisor of zero 

(i.e. the variance in the Gaussian function) results in the 

probability of component j to reach infinity. The value of 10
-7
 

was chosen to ensure that very little impact is imposed on the 

derived model parameters, whilst enabling the EM algorithm 

to update the parameters of the other m-1 components. 

We fitted various GMMs, from three to eight components, 

to LOS data and evaluated various stopping criteria for 

different threshold values. The stopping criteria were based 

on either the changes in the log-likelihood value, defined in 

(13), or changes in the model parameters /� , (��, �� , defined 

in equations 14, 15, and 16, respectively, where t is the 

iteration number. 

 �89�

	1 −  89�

	1,�	 < 10�>  (13) 

?� |/�1  − /�1,�| <  10�>@;  ∀ �, � = 1, … , E (14) 

?� |�(�	�1  – �(�	�1,�| <  10�>@;  ∀ �, � = 1, … , E (15) 

?�|��1  − ��1,�| <  10�>@; ∀ �, � = 1, … E (16) 

 

Based on the literature and our experience with EM we 

considered various threshold values for δ (10
-2
, 10

-4
, 10

-6
, and 

10
-8
) at which to stop the algorithm. For all stopping criteria 

considered, the number of iterations and the derived GMM 

parameter estimates were recorded. This information was 

then used to determine the effect on model parameters and 

the running time of using a given criterion as opposed to 

complete convergence. We also assessed how effective each 

criterion was in terms of the number of iterations, compared 

with complete convergence. 

For notational purposes we use ∇HI(��,/� ,(��) to indicate 

the absolute difference in the GMM parameters for the j
th
 

component between using a stopping criterion z (as defined in 

equations 13-16) and complete convergence. 

The study used LOS data from two health administrative 

datasets. The first dataset, referred to here as the Surgical 

dataset, consists of 7723 records detailing the spells of 

patients undergoing surgery in a tertiary hospital in Australia 

between 4 February 1997 and 30 June 1998 [20]. In this 

dataset the mean LOS was 5.8 days with a standard deviation 

of 9.2 days, and a range of between one and 228 days. The 

second dataset is referred to here as the Stroke dataset, and 

originates from the English Hospital Episode Statistics (HES) 

database. It concerns all finished consultant episodes (FCE) 

of stroke patients, aged 65 and over discharged from all 

English hospitals between April 1st 1994 and March 31st 

1995 [21]. The Stroke data consists of 103,881 LOS 

observations, with a mean of 14.0 days, a standard deviation 

of 52.3 days, and a range of between one and 4,907 days.  

III. RESULTS 

Various GMMs consisting of three to eight components 

were fitted to both the Surgical and Stroke LOS data. The 

singularity problem was encountered whilst fitting the GMMs 

with six or more components to the Surgical data and five or 

more components to the Stroke data. In this case, the first 

component variance converged towards zero, with a mean 

LOS of one day. In addition, we observed that models with 

more components take longer to converge, Table 1.  

 
Table 1. Number of iterations needed for convergence of the GMM with m 

components 

# of 

components 

(m) 

# iterations for 

Surgical data 

(t) 

# iterations for 

Stroke data 

(t) 

2 214 85 

3 204 266 

4 589 406 

5 1,094 533 

6 2,452 2,389 

 

For all the fitted GMMs in the two datasets, the behaviour 

of the criteria, in terms of the number of iterations needed to 

converge, was consistent. Therefore we selected the models 

with four components in the Surgical dataset and six 

components in the Stroke dataset. These groupings were 

optimal and shown to be representative of the LOS data [6, 

22, 23]. They are used below for illustrative purposes. The 

optimal parameter estimates of the GMMs, based on 

complete convergence, were derived in 589 iterations for the 

Surgical data (four components), and 2,389 iterations for the 

Stroke data (six components), Table 1. The number of 

iterations for each stopping criterion is described in Table 2, 

where the parameter estimates for the complete convergence 

are described in Table 3 (Surgical data) and Table 4 (Stroke 

data). 

The number of iterations for each stopping criterion 

differed extensively and the percentage of iterations 

compared with complete convergence points to a saving of 

computational time. Higher precision and more accurate 
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parameter estimates were derived using smaller threshold 

values, obviously at the expense of computing time, Table 2.  

 
Table 2. Number of iterations for each stopping criterion for the Surgical and 

Stroke dataset 

Criteria 
Type 

Threshold 

Value (δ) 

No. of 

iterations 
Surgical 

Data 

% of 
iterations 

No. of 

iterations 
Stroke 

Data 

% of 
iterations 

� -2 10 1.7% 7 0.3% 

/ -2 93 15.8% 350 14.6% 

(� -2 168 28.5% 988 41.2% 

LL -2 68 11.5% 165 6.9% 

� -4 80 13.6% 214 8.9% 

/ -4 203 34.5% 784 32.7% 

(� -4 279 47.4% 1,431 59.7% 

LL -4 121 20.5% 457 19.1% 

� -6 188 31.9% 629 26.2% 

/ -6 314 53.3% 1,228 51.1% 

(� -6 390 66.2% 1,846 76.9% 

LL -6 176 29.9% 645 26.9% 

� -8 299 50.7% 1,073 44.7% 

/ -8 425 72.2% 1,668 69.6% 

(� -8 501 85.1% 2,006 83.6% 

LL -8 227 38.5% 767 31.9% 

Complete 
Convergence 

589 100% 2,398 100% 

 

Table 3. The optimal parameter estimates of the four-component GMM fitted 
to Surgical LOS data 

 Comp 1 Comp 2 Comp 3 Comp 4 

� 0.382941891 0.394322113 0.188141358 0.034594636 

/ 2.237109797 5.361430352 13.393280227 39.231905692 

(� 0.300740522 4.683453924 36.517687080 676.04638607 

 

A. Stopping Criteria 

The mixing coefficient stopping criteria often stops the 

EM algorithm first, followed by the mean, and then the 

variance, Table 2. This results in fewer updates to the mean 

and variance parameters. In the specific case where the 

threshold value is set as δ=2, there is a large impact on the 

derived model parameters because of the fact that the EM 

algorithm is stopped after only a few iterations. Therefore we 

could conclude, that the threshold value of δ=2 for the 

mixing coefficient criterion is not appropriate. Table 5 shows 

the ‘absolute-difference’ between the parameter estimates for 

δ=2 and the optimal ones. In this case, there is a difference in 

the mixing coefficient of 0.156 for the first component, 0.043 

for the second component, 0.085 for the third component, etc. 

For patient LOS groupings, such differences have a large 

impact on the interpretation of the LOS of patients. Based on 

the derived parameters, 15.6% of the population have been 

over estimated for group one, 4.3% for group two, 8.5% for 

group three, etc. 

Smaller threshold values for the mixing coefficient i.e. 

where δ=4 and δ=6, arrive at more accurate estimates in 

terms of the mean parameters of the shorter stay components. 

In the case where δ=4, the number of iterations is reduced by 

a minimum of 85%, compared with complete convergence, 

Table 2. However the mean of the sixth component is 

underestimated by 4.4 days for the Stroke data, i.e. ∇H�JK (�L, /L, (�L) = (0.000050618535, 4.433971700618, 

3681.300412265990). Although the longer stay groups are 

affected, in the case of the Surgical data, the difference is 

quite small i.e. 0.4 days for the mean of the last group, and 9 

days for the variance. The absolute differences ∇H�JK (�J, /J, (�J) = (0.000865944783, 0.393699359448, 

9.358568474631).  

With regards to the criterion based on the mean where 

δ=2, the variance of the longer stay components for both 

datasets tend to be underestimated. For the Stroke dataset, the 

mean is under estimated by one day, and the variance is 

underestimated by 742, ∇H���
(�L, /L, (�L) = 

(0.000010410438, 0.903770345244, 742.328224505996). To 

overcome this, at the expense of more iterations, a threshold 

value of δ=4 may be used, ∇H�J�
(�L, /L, (�L) = 

(0.000000110011, 0.009528670325, 7.930092132010), 

which results in 7.9 overestimation of the variance. However, 

this tends to provide a balance between computational time 

whilst still being able to derive reasonably accurate parameter 

estimates for � and /. However for the Surgical data, the 

difference is quite small, i.e. the difference of 0.05 in the 

variance for the last component. Smaller threshold values i.e. 

δ=6 and δ=8 may be used if a greater precision is of 

significance. For instance, δ=6 provides accurate parameter 

estimates for the Stroke data, up to one decimal place, ∇H�L�
(�L, /L, (�L) = (0.000000001100, 0.000095259677, 

0.079277967976).  

Criteria based on the variance parameters are the most 

computationally expensive stopping criteria but provide 

accurate parameter estimates. In such cases, values such as 

δ=2 produce reasonably accurate parameter estimates, similar 

to the δ=4 or δ=6 where the mean stopping criteria is used, ∇H��� (�L, /L, (�L) = (0.000000013255, 0.001148110676, 

8.504560780013). Threshold values of δ=4 for the variance, 

tend to give very close estimates to the maximum likelihood 

estimates, ∇H�J� (�L, /L, (�L) = (0.000000000134, 

0.000011575548, 0.009633265028). 
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Table 4. The optimal parameter estimates of the six-component GMM fitted to Stroke LOS data 

 Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 

� 0.1230542583 0.3033356781 0.3512135607 0.1619508790 0.0564964670 0.0039491567 

/ 1.0000000000 4.8108552766 11.6246572037 25.0823316875 59.9468473021 488.4917157336 

(� 0.0000000000 4.6403628210 19.4153227730 94.2261690700 806.6491375100 402707.1197309430 

 
Table 5. Absolute differences of parameter estimates regarding the six-component GMM for Stroke data, derived between using the mixing coefficient 

stopping criterion where δ=2 compared with complete convergence 

Parameter Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6 

� 0.15616191524 0.04335332928 0.08498798740 0.06585144482 0.04631357792 0.00236223437 

/ 1.24457437460 3.41286440122 5.98235460972 18.15016890400 62.46374976959 442.09746720871 

(� 1.79884499700 4.09575529100 25.68679251300 289.38932050300 2301.44403437100 267378.44082966200 

 

Stopping criteria based on the log-likelihood value are 

more expensive than the mixing coefficient, but less 

expensive compared with the mean criteria, except for 

where δ=8 in both datasets. When using the log-likelihood 

criteria, δ=2 and δ=6 can often result in early stoppage, 

hence underestimation of the parameter values, for the 

Stroke data ∇H�LMM (�L, /L, (�L) = (0.000000465857, 

0.040353855745, 33.583330418973). Results have shown 

that it may not be appropriate to use the log-likelihood 

stopping criteria, unless the value of δ=8 or greater is 

adopted, ∇H�NMM (�L, /L, (�L) = (0.000000131235, 

0.011367070791, 9.460063125007). Even in this case, the 

variance of the last component has been underestimated by 

9.4 for the stroke data.  

IV. DISCUSSION 

In this study, the LOS distribution of two patient 

populations was modelled using the GMM while the EM 

algorithm was used to estimate the parameters of the fitted 

model. Conventionally, iterative maximum likelihood 

algorithms such as EM are considered to have converged 

when the parameters (/� , (��, ��) being estimated become 

stable and do not change for two consecutive iterations. 

However, this results in a large number of iterations, where 

each iteration of the algorithm has little improvement on 

the estimated parameters. An effective criterion for 

stopping the EM before convergence may result in both 

good parameter estimates (i.e. very close to the optimal 

values) and a reduction in computational time. The 

objective of this research was to consider various stopping 

criteria and to evaluate their effect on the fitting of GMMs 

to patient LOS data. 

For any particular application, it is important to 

understand the behaviour of the EM algorithm for 

estimating the parameters of the GMM in order to be able 

to develop robust methodologies that are computationally 

efficient. The criteria described in this report are either 

based on the change in the likelihood value or on the 

change between parameter estimates of the GMM. A 

threshold value of 10
-δ
 for various values of δ was adopted 

(values 2, 4, 6, and 8). For each criterion, smaller values for 

δ result in early termination of the algorithm at some cost to 

the model parameter estimates. Larger values of δ 

obviously result in more iterations of the EM algorithm but 

with better estimates of model parameters.  

A related issue to the stopping criterion is initialisation, 

which significantly affects computational time. For 

example, if we initialised the algorithm with parameters 

that are close to the maximum likelihood solution, fewer 

iterations would be needed compared with model 

parameters that are far off. To avoid random initialisation, 

in this paper we introduced an initialisation approach based 

on percentile values derived from the LOS data. This has 

shown to be very effective. 

A. Contrast to the literature 

Manual approaches that require the analyst to specify 

the number of iterations prior to parameter estimation is 

often used in many studies. For example, Gilland et al [11] 

specify 25 and 50 iterations, and Permuter et al [12] specify 

30 iterations as stopping criteria. However, our study put 

forward more appropriate stopping criteria that are able to 

stop the EM algorithm according to its progress. 

Chandramouli and Srikantam [17] use the change in the 

mixing coefficients as an indictor to stop the EM algorithm 

considering values δ>0. However, our results showed that 

the mean and variance estimates may be underestimated 

when stopping the EM algorithm early, especially if δ<=4. 

However, for the LOS distribution, this criterion can 

underestimate GMM parameters. 

In addition, it may not always be appropriate to use the 

likelihood function as a stopping criterion. Carson and 

Greenspan [13] suggested that the EM algorithm be 

stopped when the increase in the log-likelihood is less than 

1%. They also specified that if this criterion is not met, a 

stop can be made at the tenth iteration. In our application, 

such criteria would lead to an underestimation of the 

parameters. Similarly, Roch et al [14] proposed to stop the 

EM algorithm when the increase in the log-likelihood is 

less than 2%. We found that this approach would result in 

underestimating the model parameters. As mentioned 

above, when using the likelihood criteria, δ should ideally 

be set to 8. As such, the work of Xing et al [15], which 

suggested that the EM algorithm be stopped when the 

increase in the log likelihood is less than 10
-6
 is adequate 

enough to reduce computation time and derive good 

parameter estimates. Zhang et al [16] considered 10
-δ
, for 

various different values of δ, which is very important 

because the appropriate criterion can be problem dependant 
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as shown by the difference between the two datasets in this 

paper.  

 

B. Summary of Results 

In summary, we found that the components converge in 

ascending order of their mean value. Thus if we stop early, 

we are more likely to affect the longer stay group parameter 

estimates than those of the shorter stay groups. This could 

be because the variability in longer stay groups is larger 

than the variability in shorter stay groups. 

Our findings also showed that the mixing coefficient of 

the GMM converges first, then the mean, and lastly the 

variance parameters. The mixing coefficient parameters 

stabilise quicker than mean and variance parameters, 

because the proportion of LOS observations that belong to 

each component of the GMM are determined fairly early 

whilst still computing the mean and variance parameters. 

As such, when the variance for each component becomes 

stable the mean and mixing coefficient parameters have 

already converged, hence the maximum likelihood 

estimates of the GMM parameters. The possible 

consequence of stopping early, is that the mean and 

variance parameters of the medium and longer stay groups 

will be affected rather than the estimates of the shorter stay 

groups.  

The recommendations of this paper for stopping criteria 

are set out below.  

- For the mixing coefficient stopping criteria only δ=8 

should be used, which reduces the number of 

iterations by about 49%. Any value below δ=8 will 

result in the variance parameters being 

underestimated, especially for the longer stay groups.  

- Criteria based on the mean are more reliable than the 

mixing coefficient. As such, δ=6 may be used, which 

reduces the number of iterations by about 46%. On 

the other hand, δ=4 was shown to derive reasonably 

accurate parameter estimates but at the expense of the 

last component. 

- Criteria based on the variance are the most reliable. 

As such, δ=2 and δ=4 may be used although δ=6 will 

produce the most accurate parameter estimates. The 

latter reduced the number of iterations by about 33% 

compared with complete convergence, but is a lot 

more expensive than δ=2 or δ=4. 

- By using criteria based on the likelihood value, we 

take into account the relative changes of all GMM 

parameters. The experiments showed that a value no 

larger than 10
-8
 would be appropriate, because a small 

change in the likelihood value is not a good indicator 

of the parameter set convergence. This criterion 

resulted in approximately 61% fewer iterations than 

complete convergence (Table 2).  
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