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ABSTRACT 

The behaviour of slab column junctions of reinforced concrete 

flat slab structures, subjected to various combinations of 

vertical load and moment was studied with regard to flexure, 

and punching shear. 

Laboratory tests were made to study the behaviour of flat 

slabs supported by internal columns. Particular attention was 

paid to ultimate strength, slab-column rotations, and slab 

deflections. The principal variables in the ten slab specimens 

reported in the present work were the shape of the columns, 

slab aspect ratios, the ratio of reinforcement, and the 

eccentricity of applied loads. 

Following from the experimental work a proposal is made for 

calculation of punching shear resistance of concentrically 

loaded slabs at internal columns. The same method is extended 

to eccentrically loaded slabs. The method of calculating 

punching shear resistance of internal flat slabs is based upon 

a realistic model of their internal behaviour. A method of 

finding the effective joint stiffness of cracked slabs 

subjected to eccentric loading is also developed. 

The proposed method of shear resistance calculation is applied 

to the author's tests and to as many other slab tests as 

posible. Comparisons of the author's proposed method of 

predicting punching shear failure loads with various 

alternative methods are presented. A number of conclusions are 
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drawn from these comparisons as well as from the experimental 

observations. Some suggestions are also made for further 

research on the subject. 
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CHAPTER ONE 

INTRODUCTION AND REVIEW OF PREVIOUS WORK ON METHODS 

OF OVERALL DESIGN AND SHEAR FAILURES OF REINFORCED 

CONCRETE FLAT SLABS. 

1-1 INTRODUCTION 

Reinforced concrete flat slabs are structures 

directly supported by columns, and are often preferred to 

conventional slab-beam construction from architectural and 

economic points of view. 

Flat slab construction offers many advantages: 

- Reduction of the storey height 

- Simplicity of construction allowing reduction of the 

construction time 

- Considerable reduction in formwork 

- Reduction in finishing material 

- Flexibility in the arrangement of partitions 

However the absence of beams in flat slab structures creates 

the following problems: 

- The structure has a relatively lower stiffness under lateral 

loading 

- Vertical deflections are increased 

- At slab-column connections high shear stresses are generated 

which may result in the punching shear mode of failure. 
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The lower lateral stiffness can be avoided by shear walls, lift 

shafts or external bracing. Prestressing can be employed to 

control the deflection. The main problem in flat slab 

structures is thus the punching resistance at slab-column 

connections. 

1-2 THE OBJECT OF THE PROJECT 

Punching shear resistance has been the 

subject of a number of research projects. Some investigators 

and codes of practice treat the problem empirically. Other 

investigators have treated it semi-theoretically for special 

cases. However no completely theoretical method of analysis 

exists for the problem of punching shear resistance under 

concentric or eccentric loading conditions. Most of the past 

work on the punching shear resistance of reinforced concrete 

flat slabs has been concerned with concentric loading 

conditions on simply supported slabs. In the experimentally 

based investigations (2,20,21,23,40,43,52,63,71) which have 

addressed themselves to eccentric loading conditions, the test 

specimens have represented the part of a flat slab around a 

column spanning between points of contraflexure and the 

distance from the line of zero moment has been fixed and equal 

on the two sides. These conditions can not in general be true 

for connections transferring moments. For equal spans with 

equal vertical loads and wind loading the distance to the lines 

of contraflexure must be unequal at opposite sides of the 

column. The effects produced by such test arrangements are thus 

not fully compatible with those arising in real conditions in 
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terms of rotations at the slab-column junction and deflections 

within the slab. The test arrangement also suffers from the 

lack of any possibility of redistribution of moment between 

midspan and support sections. A more realistic set-up would be 

one which allowed redistribution of moments between midspan and 

supports. Long and Masterson (38) suggested that tests should 

be carried out on specimens with boundary conditions different 

from those mentioned above by extending the specimen beyond the 

line of contraflexure for shear loading. 

The main objects of the present research were to: 

-Develop a method of modelling a typical interior slab-column 

connection in which the actual boundary conditions would be 

simulated for all types of loading. 

-Study the mechanism of failure in shear of reinforced concrete 

slabs 

-Investigate the behaviour of slabs under concentric and 

eccentric loading conditions 

-Develop a model and an analysis with sufficient accuracy to 

predict the punching failure load 

-Investigate the deformations and develop expressions for use 

in assessing deflections of flat-slabs 

-Verify the proposed analysis by an experimental programme 

allowing the validity of the assumptions used in the proposed 

method of analysis to be examined in the light of the results 

of these tests and other test results from various sources. 
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Since the punching shear mode of failure may occur in slabs 

with concentric or eccentric load the experimental programme 

was planned to study the behaviour of slabs under vertical 

loading, and combined vertical loading with moment transfer 

from slab to column. 

1-3 REVIEW OF PREVIOUS WORK ON REINFORCED CONCRETE FLAT SLABS 

In order to be able to design reinforced concrete flat slabs 

their flexural and punching shear strengths should be studied. 

1-3-1 METHODS OF OVERALL DESIGN FOR FLAT SLABS. 

1-3-1-1 Yield line theory 

If a flat slab is to be analysed by 

yield line theory it is necessary to consider both overall and 

local mechanisms. 

The simplest overall mechanisms for slabs under vertical 

loading are simple positive and negative yield lines traversing 

the full width in either direction as shown in Fig. (1-1). The 

separate mechanisms can also be combined as in Fig. (1-2). The 

consideration of such mechanisms alone provides no information 

on the way in which reinforcement should be distributed along 

the yield lines. 

However a plastic solution for this can be obtained from a 

study of the collapse mode of Fig. (1-3) . The dimensions 'a' and 

'b' vary with the degree of concentration of reinforcement 

toward the column lines, and the normal objective of design is 

to provide a concentration sufficient to ensure that, with the 
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corresponding critical dimensions 'a' and 'b' the resistance 

of the system is at least equal to that for the collapse modes 

in Figs. (1-1) and (1-2). To obtain this requires less 

concentration than is obtained from approximately elastic 

designs and for normal arrangements of reinforcement the 

collapse pattern of Fig. (1-3) is unlikely. 

The mechanisms for edge and corner panels corresponding to 

those of Figs. (1-1) , (1-2) and Fig. (1-3) for interior 

situations are shown in Figs. (1-4) , (1-5) and (1-6). 

Again the obvious objective of detailed design is to arrange 

the reinforcement in such a way that the different mechanisms 

give equal collapse loads. A further mechanism which should be 

Considered in this context is a variation on that in Fig. (1-4), 

where the full-width interior yield lines are accompanied at 

the edges by the local mechanism of Fig. (1-7). If the full 

yield line theory resistance to the mechanism of Fig. (1-7) is 

to be developed the detailing of the slab must provide adequate 

torsional resistance at its edge. In practice this 

necessitates a close spacing of U-bars or links at the edge to 

oppose the opening of torsion cracks indicated in 

Fig. (1-8) . 

The local mechanism of Fig. (1-7) and the corner yield line of 

Fig. (1-5) require the transfer of moments between the slab and 

the exterior columns. The transfer of moments to interior 

columns makes possible a number of local mechanisms not 

considered above, two of which are illustrated in Fig. (1-9). 

Some of the local mechanisms present particular problems if the 
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Fig. (1-3) Local collapse mechanisms of flat-slabs 

Fig. (1-4) Positive and negative Fig. (1-5) Combined yield 
yield lines for edge and line mechanisms for 

corner panels of flat-slabs edge and corner panels 
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Fig. (1-6) Local collapse mechanisms of corner and 

edge panels of flat slabs 

Fig. (1-7) Local mechanism at 

an edge column 

Fig. (1-8) Torsion cracks 

at an edge column 
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cracks associated with the yield lines are assumed to be 

vertical. A simple example is the situation at a corner column 

at roof level where the vertical yield line of Fig. (1-10a) may 

give an apparent resistance considerably greater than that 

Corresponding to the inclined yield line of Fig. (1-10b). The 

mechanism of Fig. (1-9a) also appears rather problematic in view 

of the very small area involved in the failure and the 

probabilities that 

I: Inclined cracking will occur and 

II: Highly significant membrane forces will be developed. 

Some of these local mechanism problems could be serious but 

there are in any case other factors which seem to make yield- 

line theory unacceptable as a general approach to flat slab 

design. 

The theory necessarily relies upon the plasticity of the slab 

and it is very uncertain whether there is actually sufficient 

ductility available in the negative moment regions around 

columns. There are numerous examples of test slabs of the type 

shown in Fig. (1-11 ) which have reached or almost reached the 

load predicted by yield-line theory and then failed by punching 

without developing large deformations. It seems very possible 

that the punching resistance declines markedly as soon as large 

plastic deformations occur. 

The final and probably most important objection to the use of 

yield-line theory is that it involves no consideration of 

compatibility and can thus be used to produce designs in which 
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Fig. (1-11) Slab-column specimens 
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moment transfer to columns is ignored. This could lead to 

serious overestimations of the shear capacities of slab-column 

connections, as these are sensitive to moment transfer. 

1-3-1-2 Equivalent frame analysis 

The use of an equivalent frame 

approach is very attractive and it provides a reasonable 

representation of the true behaviour of flat slabs by systems 

of columns and beams analysed separately in two directions. It 

satisfies the absolute equilibrium requirements in any span of 

the structure. 

M+ (M1 + M2)/2 = QL/8 

where M is the positive moment at midspan 

M1 , M2 are the negative moments at supports 

Q is the total (uniformly distributed) load on the span. 

The difference between the frame of a flat slab and the 

equivalent beam-column frame is the relative lack of continuity 

between the slab and the columns which in some cases results in 

slab rotations greater than the equivalent beam rotations. As 

a result the moments transferred from the slabs to the columns 

in cases of vertical loading are over-estimated by the 

equivalent frame method. In cases of horizontal loading the 

moment distribution is less affected but the frame deformations 

are under-estimated. 

The British Standard BS 8110 (11) divides the structure 

longitudinally and transversely into frames consisting of 

columns and strips of slabs. The width of the slab used to 

define the stiffness of the horizontal member of the frame 
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depends upon the aspect ratio of the panel and the type of 

loading. The stiffnesses of the members that could model the 

frame correctly would also depend on the details of the slab 

column connection. However in treating vertical loading the 

code uses actual column stiffness and slab widths defined by 

panel centre lines and overestimates the moments transferred to 

columns. 

For horizontal loading it is recommended that the slab width be 

taken as the lesser of half the span and half the bay width. 

It seems surprising that the effective stiffness of the slab 

depends just on the aspect ratio of the panels and the type of 

loading, while according to elastic theory the column 

dimensions play a role in determining the effective stiffness 

of the slab. 

The ACI equivalent frame method (4) (17) for vertical loading 

modifies the column flexural stiffness to account for the 

torsional flexibility of the slab-to-column connection which 

reduces its stiffness for the transmission of moments. The 

flexibility of an equivalent column may be taken as the sum of 

the flexibilities of the actual columns above and below the 

slab-beam and the flexibility of the torsional members (see 

Fig. (1-121) as expressed by 

Kec EKc Kt 

where Kec = Stiffness of equivalent column 

EKc = Sum of stiffnesses of actual columns above and 

below the joint 

Kt = Stiffness of torsional member. 
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Computation of the torsional stiffness Kt of the torsional 

member requires several simplifying assumptions. The transfer 

of a moment between a slab and a column is assumed to be made 

by the imaginary torsional member shown in Fig. (1-12a). The 

width c of the torsional member is assumed to be equal to the 

width of the column, and it is assumed that no torsional 

rotation occurs in the beam over the width of the support. 

The value of the torsional stiffness can be obtained by 

assuming the moment distribution along the torsional member to 

be linear as in Fig. (1-12b) so that the moment at a distance 

X<b/2 from the edge of the equivalent frame is 

mx = 4MX/b2 

and the torsion at section X Fig. (1-12c) is 

rX 
TX =1 mx dX = 2MX2/b2 

J0 

The corresponding twist per unit length is 

Ox 
Tx 2MX2 

Gc Gcb2 

where Gc is the torsional rigidity of the member. The total 

twist at, point X is 

27 



x 
(DX =f xdx = 2MX3/3Gcb2 

0 

For the equivalent frame analysis an average value of Ox 

Fig. (1-12d) is used as the rotation of 6t of the torsional 

beam 

6t =M (b-c2) 2/36 Gc b2 

and the stiffness of the torsional member is calculated by the 

following expression 

9EcSC 
Kt = 

b (1-c2/b) 3 

where c2 is a column dimension and b relate to the transverse 

span see Fig. (1-12a). The constant C may be evaluated for any 

shape of cross section by dividing it in to separate 

rectangular parts and carrying out the following summation 

3 
C= (1-0.63 (X `/Y `)) (X `Y `/3) 

X` = shorter over-all dimension of a rectangular part of the 

cross section 

Y' = longer over-all dimension of a rectangular part of the 

cross section. 

There seem to be some disadvantages in the ACI approach. 

The assumptions for determining the value of Kt in Fig. (1-12) 
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are unrealistic, and the average effective rotation of the 

torsional beam 8t seems to be arbitrary. 

A portion cif the slab equal to the width of the column is 

assumed to offer the torsional resistance. If a slab is 

connected to only the inner face of an exterior column, the ACI 

joint stiffness becomes zero, while, according to elastic 

theory a significant moment can be transferred to the column. 

For rectangular panels, where the moments are in the long span 

direction, the distribution of the moment along the column 

centre line is unrealistic and the moments need not to drop to 

zero at the strip edge. 

For horizontal loading, it is difficult to use the ACI method, 

in its entirety. The torsional member can be retained but the 

device of an equivalent column is not applicable. 

In view of the ACI method's disadvantages Regan(53) proposed a 

new treatment of the equivalent frame analysis for vertical and 

horizontal loading. 

A- Regan's method for vertical loading 

Regan noted that the rotation of a simply supported slab on 

columns is greater than that for a slab supported across its 

full width. He treated the increase in rotation by the use of 

an effective slab width less than or equal to the full value 

defined such that 6s= (2b13) / (24beD) Fig. (1-13) 

Os is the rotation of the slab at the columns according to 

elastic plate theory. 
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1 is the span of the slab 

b is the full width of the equivalent frame (i. e the width from 

which the loading is determined) 

D is the slab rigidity D= Ec h3/12 

be is the effective slab width equal to the lesser of b and 1 

q is the load per unit area of the slab 

Also he considered the same slab structure but with the 

vertical loading removed and replaced by the moments M acting 

on the slab at the positions of the columns. As before the 

rotations of the slab at the columns are greater than 

the uniform rotation produced if the same total moments 

were distributed along the edges of the slab. For uniform 

edge moments the corresponding rotation is Ml/2bD and the 

slab rotation at the column can be expressed 

6s = 6b + 9j = (Ml/2beD) + (M/Kj) 

Where Kj is the stiffness of the joint between the slab and 

column. The values of Kj obtained as approximations to the 

results of elastic analysis of plates are shown in Fig. (1-14). 

These Kj values can then be incorporated in the analysis in 

the same way as the ACI's Kt 

B- Regan's method for horizontal loading 

When horizontal loading is considered in stiffness 

analysis 

the slab stiffness should be reduced according to 

(1/KSe) = (1/Ks) + (1/Kj) 

Where Ks = slab stiffness over the effective panel width 

Kse = effective slab stiffness for horizontal loading 
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The above equation is directly applicable at an end column but 

at an internal column two separate effective stiffnesses are 

required, one for each span. Thus the effective slab stiffness 

(Ksle) on one side of the column is given by 

11 Ks1 + Ks2 1 

Ksle Ks1 Ks1 Kj 

Where the suffices apply to spans 1 and 2 respectively. 

Although this method dose offer an approach to horizontal 

loading which is a sort of parallel to that for vertical 

loading, the device adopted is clumsy. With contemporary use of 

small computers it is not difficult to include the felexible 

slab - column connection as a separate member in the analysis. 

This technique would be equally applicable with the ACI's 

torsion member or Regan's flexible joint. 

1-3-1-3 Grillage analysis 

In CIRIA Report 110 (66) Whittle developed a computer 

program to be used in the grillage analysis of a slab, the 

program contains its own mesh generator of the member lay-out 

as follows. 

1- The lay-out should be largely based on the centre-lines of 

the columns with each column represented by a point support and 

the slab-to-column connection represented by members connecting 

to this point (Al and A2) Fig. (1-15). 
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2- The stiffness of members connected to the columns should be 

calculated for a width of slab equal to or a little greater 

than that of the column. 

3- Lines of members should connect centre-lines of panels (D1 

and D2). 

4- Members should be positioned at quarter panel lines (Cl and 

C2). 

5- A line of members should be positioned at about a column 

width from the column centre-line (B1 and B2). 

The column stiffness should normally assume fixity at its 

remote end and be equal to 4EI/L (3EI/L if the remote end acts 

as a pin) . 

The Grillage analysis may be carried out to model both the 

ultimate and serviceability limit states using the 

appropriate member properties. Various sections of the slab 

are likely to be cracked in flexure and torsion and realistic 

estimates of their reduced stiffness for input to the grillage 

analysis is required. It is recommended that the rigidity of 

the concrete slab can be assumed to reduce by half when cracked 

and that the torsional stiffness of the elements connected to 

the column is small. 

1-3-1-4 Plate theory. 

Plate theory is likely to predict the 

behaviour of a flat slab under working load conditions. For 

the ultimate limit state it can give a valid lower bound 

plastic solution and in some cases an economic one if the 

reinforcement is suitably disposed. 
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1-3-2 ESTIMATION OF RESISTANCE TO SYMMETRIC PUNCHING. 

The following 

paragraphs review methods of calculating resistance to 

concentric punching. Treatments of punching under eccentric 

loading are described in section 1-3-3. 

1-3-2-1 EMPIRICAL APPROACHES. 

Most research on the shear strength of 

flat slabs has been concerned with the generation of 

experimental data, and the development of empirical formulae 

for design. Varying answers can be obtained from the variety 

of empirical methods proposed for computing shear strength. 

These methods fall into two broad groups. 

1. Those in which the amount of flexural reinforcement is the 

prime variable. 

2. Those in which the concrete strength is the major factor. 

1- WHITNEY 

Whitney (65) presented an ultimate strength theory 

for shear in which he assumed that the shear strength is 

primarily a function of the ultimate resisting moment of the 

slab per unit width inside the pyramid of rupture. The 

ultimate shearing strength was given by the equation. 

q=100 p. s. i + 0.75 m/d2 4d/r3 

Where q is computed at a distance d/2 from the perimeter of the 

loaded area r3 is the shear span, i. e. distance from column 

face to the point of contraflexure, and m is the flexural 

resistance per unit width. 
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2- HOGNESTA. D, ELSTNER And HANSON 

Hognestad, Elstner and Hanson 

(26) tested 6ft. square slabs with 6in. total depth supported 

along four edges and related the shear strength of the slab to 

the splitting tensile strength ft of the concrete. They 

presented the following equation for the shearing strength q. 

V 
q=_ 

4cd 

2.24( 1-0.075c/d )ft 

1 +(3.136cdit/Vflex) 
(p. S. i) 

Where Vflex is the flexural capacity of the slab computed by 

yield line theory. c is the side length of a square column. 

The critical section is assumed to be located at the perimeter 

of the loaded area. 

3- MOE 

Moe (40) tested 31 slabs under concentric loading and 12 

slabs under eccentric loading. All the slabs were 6ft. square 

with an overall thickness of 6in. The slabs were simply 

supported along all four edges with the corners free to lift. 

The main variables were the concrete strength, the percentage 

of tensile reinforcement and the column dimensions. The 

ultimate shearing strength of symmetrically loaded slabs was 

found to be 

V 
q= 

bd 

15( 1-0.075c/d ) 

1+ (5.25bd'/fc) /Vf1ex 
(p. s. i) NIf- -C 
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Where b= width of critical section in shear and is equal to 4c 

for a square column 

c= side length of loaded area of square shape 

d= effective depth of slab 

The constants were determined on the basis of statistical 

analysis of available test data. Moe also limited the shear 

stresses for flexural strength to govern in design to 

q= (9.23 - 1.12 c/d) Nýfc for c/d < 3 (p. s. i) 

q= (2.5 + 10 d/c) ''c for c/d > 3 (p. s. i) 

4-BEGAN 

Regan (53) made empirical proposals derived from data for 

the basic case of an internal column, or load free from 

unbalanced moments. The expression proposed for the punching 

strength of a slab at an internal column is 

Vu = Ka Ksc 4s (10OAsfcu)/bd 2.69d( Ec + 7.85d 

Where Ka =0.13 for normal dense concrete and 0.105 for light- 

weight aggregate concrete with a density of about 1700 kg/m3 

Ksc = 1.15 4n ' column area / (column perimeter)2 

=4 s 300/d with d in mm 

100As/bd is the average of the percentages of tensile 

reinforcement in two orthogonal directions 

fcu is the cube strength of concrete N/mm2 

d is the effective depth of the slab 

Ec is the perimeter of the column or loaded area in mm. 
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5-PETCU, STANCULESCU AND PANCALDI 

Petcu, Stanculescu and Pancaldi 

(50) proposed a formula for the punching load of two-way 

reinforced concrete slabs based on two assumptions. Firstly, 

the punching load for slabs without transverse reinforcement is 

in equilibrium with the vertical component of the resultant 

force of the tensile concrete stresses acting on the lateral 

surface of the truncated cone, at incipient failure. Secondly 

the angle between the slab surface and the generatrix of the 

surface of the punching cone is variable and less than 450, its 

value depending on the mean bending reinforcement percentage. 

The design punching load Ps is 

Ps = mC"s0"ft 

Where: 

me = 0.135 is the shape factor of the diagram of the vertical 

tensile concrete stresses acting on the lateral surface of the 

punching cone 

so = projection of the lateral surface of the punching cone on 

the plane of the slab. The surface so represented in Fig. (1- 

16a) may be computed using the formula 

so = (7E/4). (D2 - r2) 

D is the diameter of the great base of the punching cone 

r is the diameter of the smaller end of the punching cone 

The diameter r may be determined depending on the shape of the 

area to which the punching load is applied as follows 

- If the loaded area is circular of diameter 2ro, r= 2ro 

- If the loaded area is a square with side equal to c, r=1.27c 

- If the loaded area is a rectangle with sides equal to a and b 
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r=0.64(a+b) 

The diameter D may be determined depending on the value of the 

bending reinforcement percentage as follows 

If the mean value of the bending reinforcement percentage is 

less than unity 

D=r+ 2d (1 + 3\) 

If the mean value of the bending reinforcement percentage is 

greater than unity 

D=r+ 8d 

Where d is the effective depth of the slab 

p is the percentage of the bending reinforcement of the slab. 

If the distance between the periphery of the small end of the 

punching cone and the inner face of the nearest slab support 

is smaller than (D-r)/2 the surface so is that shaded in 

Fig. (1-16b). This means that the punching resistance is reduced 

if the load is near the support, while tests results are 

against this. Regan (55) indicates that the punching 

resistance is increased if the load is near the support. 

6-CODES OF PRACTICE 

Codes of practice in general have treated the 

problem of punching empirically by limiting the nominal shear 

stress at a critical perimeter. 

In the ACI code (3) (4) the unfactored ultimate shear stress is 

a function of the aspect ratio of the loaded area, and is 

equal to 
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vc = (1 + 2/0c) (%6) but not greater than ('I-C/3) N/mm2 

Pc is the ratio of long side to short side of the concentrated 

load or reaction area 

The shear resistance V= vc"u"d 

u is the perimeter of the critical section defined by straight 

lines drawn parallel to and at a distance d/2 from the edges of 

a rectangular area. For a circular loaded area the critical 

perimeter is circular and at a distance d/2 from the outline of 

the load or support. 

British Standard BS 8110, (11) limits the maximum design shear 

stress at the column face to 0.8u or 5 N/mm2 if less. The 

design ultimate concrete shear stress at a perimeter 1.5d from 

the column is 

vc = 0.79 (100As/ (xd)) 1/3 " (400/d) 1/4/, ym N/mm2 

10OAs/xd should not be taken greater than 3 

Where 

x is the length of the side of the shear perimeter considered 

(400/d)1/4 should not be taken as less than 1 

ym = 1.25 

For a characteristic concrete cube strength greater than 25 

N/mm2 the value of vc may be multiplied by (fcu/25)1/3. The 

value of fcu should not be taken greater than 40. The design 

shear resistance V= vc"u"d where, u is the control perimeter 
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distance 1.5d from the loaded area and has square corners 

whether the loaded area is rectangular or circular. 

The CEB-FIP, (15) code for concrete structures defines the 

nominal shear stress as vc = V/ud where the control perimeter u 

is the length of the shortest curve at a minimum distance of 

0.5d from the loaded area. The concrete shear strength vc is 

vc = 1.6 Rc K (1+50p) 

Where Rc is a function of the characteristic concrete 

compressive strength fc, Rc = (0.035fc)2/3 

K=1.6 -d1 (d in m) 

p= pP 0.008 

px and py correspond to the reinforcement parallel to x and y 

d= (1/2) (dx+dy), where dx and dy are the effective depths in 

x and y directions. 

The CEB uses different shear stresses on different parts of the 

perimeters around large columns. For a circular loaded area 

with a diameter r>3.5d the active punching length of the 

perimeter is u=4.5n"d, and for a rectangular loaded area with 

sides a and b<a the effective part of the linear section 

is limited to the lengths, bi = min. (b, 2.8d) and 

ai = min. (a, 2b, 5.6d-b1) located near rounded corners see 

Fig. (1-17). The remaining parts of the control surface are 

assumed to carry one-way shear only. The CEB-FIP expression for 

vc includes a partial safety factor of 1.5 applied to the shear 

resistance. 
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1-3-2-2 THEORETICAL METHODS OF ANALYSIS OF PINCHING SHEAR 

1- Kinnunen and Nvlander 

Kinnunen and Nylander (30) developed a 

theoretical analysis for punching shear based on tests of 

circular slabs, centrally supported on circular columns, and 

loaded at the free edges. The theoretical method of analysis 

was based on the mechanical model shown in Fig. (1-18) and 

primarily considered slabs with ring reinforcement only. It 

considers the slab to be divided by radial cracks into segments 

bounded by the shear crack and slab edge. The segments are 

regarded as rigid bodies and each segment rotates around a 

centre of rotation C. R located at the root of shear crack see 

Fig. (1-18d). The central truncated cone bounded by the shear 

crack and the loaded area remains undeformed. The segments are 

assumed to be carried on a imaginary conical shell, between the 

column and the root of the shear crack Fig. (1-18c). Each 

segment is acted on by the resultant forces shown in Fig. (1- 

18b). The internal forces are functions of the angle of 

rotation Ar Fig. (1-18d), and the mechanical properties of the 

concrete and steel. Failure is assumed to occur when the 

tangential strains at the bottom of the slab below the root of 

the shear crack reach a characteristic value ect which is 

dependent on B/d, at the same time as the concrete stress in 

the imaginary conical shell is at the characteristic value. 

At failure yV = Ect (1+(B/2x)) and the yield stress fy is 

reached in the reinforcement within a radius rs, where 
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rs =AV' (d-x) Es/fy. 

By applying the conditions of equilibrium the punching load can 

be estimated by means of a trial an error process. 

The method is able to predict the ultimate load irrespective of 

whether the type of failure is flexural or punching. In 1963 

Kinnunen (31) presented an extension of the theory of Kinnunen 

and Nylander to apply to slabs with two-way reinforcement. In 

this dowel forces and tensile membrane effects were considered 

in estimating the increased load-carrying capacity of the slab 

as compared with the ring reinforced slabs considered in the 

original theory. Regarding the part of the slab inside the 

shear crack remaining undeformed the test results of Kinnunen 

and Nylander (30), only support this assumption in cases of 

slabs with ring reinforcement. For two-way reinforced slabs 

the part inside the shear crack is deformed by the membrane and 

dowel forces, and the difference between the steel forces at 

the column face and at the shear crack together with the radial 

component of the tangential steel forces in that part are all 

transmitted through the part of the slab which is attached to 

the column. 

2-Anis 

Anis (2) used the Kinnunen and Nylander mechanical model to 

describe punching shear resistance. The major difference 

between his approach and that of Kinnunen and Nylander was, the 
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assumption by Anis that the failure occurs when the racial 

compressive strain in the section located at the column face 

reaches a limiting value. 

Anis's method is not easy to use for design purposes. 

3-Shehata 

Shehata's (62) theory is along the general lines 

proposed by Kinnunen and Nylander. He assumed that the front 

part of the radial segment fails to support the bearing force 

at the column face when one of the following three critical 

states is reached. 

a- If the angle a of the compressive force at the front part 

of the segment reaches 20°. - 

b- If the average radial strain on the compressed face reaches 

a value of 0.0035 in a plastic length starting from the column 

face. The plastic length is taken to be 150 mm for two-way and 

75 mm for ring reinforced slabs. 

c- If the tangential strain on the compressed face reaches a 

value of 0.0035 at a distance from the column face equal to x, 

the neutral axis depth. 

It is necessary to assess the bearing strength of a truncated 

pyramidal element with an apex angle approximately equal to 20° 

representing the front of a radial segment supported at a 

column face and this was determined as a function of the stress 

gradient in the failure zone 
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aci/fc =1+ Xc SG 

SG = ((aci - (yc2) Aal) " (al/fc) 

Fig. (1-19). This condition could be true when ßc1 acts 

parallel to the axis of the pyramid, but as described in 

criterion (a) above the angle can vary from 100 to 200. Where 

the force is not concentric with the pyramid it would seem that 

aci/fc could be less than that calculated above for concentric 

loading resulting in under estimating the neutral axis depth. 

In the criterion of failure the plastic length is taken to be 

dependent on the reinforcement lay-out in order to find the 

failure rotation, while in fact the failure rotation is 

dependent on the material properties of the concrete and the 

depth of the compression zone. 

4- Plasticity approach 

Braestrup (8) developed a plastic solution for the punching 

shear strength of slabs. It is based upon the failure 

mechanism shown in Fig. (1-20). The deformations are assumed to 

be concentrated in a rotationally symmetric failure surface, 

the rest of the slab remaining rigid. The relative deformation 

rate v is perpendicular to the slab, therefore the main 

reinforcement does not contribute to the resistance and the 

punching force depends only on geometric factor and the 

strength of the concrete. 
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Many tests reported in the literature as punching shear 

failures show a dependence of strength upon the amount of 

tension reinforcement. 

To find an estimate for the ultimate punching load Braestrup 

applied the upper bound theorem, equating the rate of external 

work done by the load with the rate of internal work dissipated 

in the failure surface. As a constitutive model for concrete 

Braestrup used the modified Coulomb failure criterion as a 

yield condition Fig-(1-21) with the associated flow rule 

indicated in the figure. This constitutive model has three 

material parameters, the tensile strength ft, the compressive 

strength fc, and the angle of internal fraction p, determining 

the parameter K Fig. (1-21) The upper bound solution for the 

failure of Fig. (1-20) yields 

h 
7cfc 

ý 
(141 + (r')2 - mr `) rdx 

0 

Where h is the slab thickness, r= r(x) is the equation for the 

failure surface generatrix and r' = dr/dx. The parameters 1 and 

m are defined as 

1= 1-(K-1) ft/fc and 

m= 1- (K+1) ft/fc 

where K= (1+sin(p) / (1-sin(p) 

The above solution is subject to the condition r' > tanp and 

the lowest upper bound is determined by minimisation of the 
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functional at x=ho. The optimal failure surface is consequetly 

described by the generatrix r=r(x) where 

r (x) =ro+xtancp for 0<x< ho 

r=a cosh (x-ho/c) +b sinh (x-h0/c) for ho <x<h 

The corresponding upper bound P= P1 + P2 where the 

contributions Pl and P2 for the straight line and catenary part 

respectively are found to be 

P1 = 0.5 it fc ho (do + hotany ) (1-sin(p) / (cos(p) 

P2 = 0.5 it fc [lc (h-ho) +1 (rl (r1) 2-c2 
-ab) -m (r2-a2) ] 

The constants a, b, c and ho are determined by the equations 

c2 = a2 - b2 

a= ro + ho tang 

b/c = tancp 

rl =a cosh(h-ho)/c +b sinh(h-ho)/c 

This solution requires an assumed value of the opening diameter 

dl, and the lowest upper bound is found by minimisation with 

respect to this parameter. The punching force is a function of 

the diameter do and the slab depth h, and the load may be- 

represented by the parameter ti/fc where t= P/nh(do+2h) 

Fig. (1-22a) . The solution is very dependent upon the value of 

the concrete tensile strength Fig. (1-22b). 

The plastic solution developed so far is an upper bound only. 

To establish it as a complete solution it would be necessary to 

specify a stress distribution in the entire slab which: 
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Fig. (1-21) Modified coulomb failure criterion 
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-Satisfies the equilibrium equations and the statical boundary 

conditions 

-Corresponds to a yield line along the optimal failure surface 

generatix 

-Does not violate the yield condition at any point. The 

prospects of an exact solution are brighter if the tensile 

strength is neglected, and for simplicity it is further assumed 

that the geometry is such that the optimal failure surface 

generatrix is a catenary without any linear part Fig. (1-23). 

The failure surface generatix 

p= r(xX) =a cosh(xX/c) +b sinh(xX/c) 

Assuming the function 0= 9(xX, p) 

cote = (p + p2 - c2 ) /c 

The circumferential stress ap 

p+ P2 _ c2 
Cry = 

24 p2 _ c2 
fc 

This is numerically greater than the compressive strength fc, 

and thus violates the yield condition. The lack of a 

corresponding lower bound suggests that there may be an error 

in the upper bound solution. 

5- Andrä 

Andrä (1) made a theoretical study of the punching of a 

circular slab with ring reinforcement. He derived his model by 

using a finite element analysis. The model considers a radial 

segment rotated as a rigid body around a centre of rotation, 
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located at the face of the column at the neutral axis depth 

Fig. (1-24). From the rigid body rotation, the tangential forces 

on a ring element dr in the elastic stage are 

Fs = pd ds Es yf (d/r)(1-(x/d» 

Fc = 0.5 dr (ES/(ye) y! (x/r) x 

Each segment is analysed using a truss model Fig. (1-25) for the 

part beyond the shear crack, with 450 tension and compression 

members representing the behaviour of the uncracked concrete. 

Assuming that Fs/Fc >1 and 

x/d <4 (pae) 2+ 2pose - Pae 

where oce = Es/Ec, resolving the forces Fs and Fc in the 

direction of the struts and normal to them, and equating 

stresses due to the normal components to the tensile strength 

of concrete ft, the radius rl of Fig. (1-25) can be found. 

For the elastic stage: 

rl 

- r1ro = (z/ft) AV ES [pd (d-x) - (X2/2ae) ] 

For the yielding stage of the reinforcement 

r r2 Z 
rl =°+°+ (pdfy) 

24 ft 

The radius r2 of Fig. (1-25) is calculated on the basis of the 

limit tans = 0.2 i. e r2=ro + 5z. In the absence of yielding, 

the punching force can be estimated by integrating the vertical 

components of the strut forces: 
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Fig. (1-23) Lower bound stress field 
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Pup = it rv Es AV [pd(d-x) - (x2/2ae) ] (1/rl) - (1/r2) ] 

rv =2 (0.4ro +0.8z) 

Where rv is a particular radius, and rl should not be less than r,. 

1v = 0.003 d/x for ring reinforcement 

yý = 0.0035 d/x for two-way reinforcement 

In the case when the reinforcement yields, the integration is 

done in two parts 

Part 1 for rl <r< ry 

Part 2 for ry <r< r2 

Where ry =1 (d-x) /Ey 

the two integrations lead to: 

P1up =2 it r0 pd fy (rv/2r0) 1n (ry/r1) 

P2Up =2 it r0 Es yl [pd (d-x) - (x2/2(xe) 1' (rv/2ro) [ (1/ry) - (1/r2) 1 

The punching load will be 

Pup = Plup + P2up 

The horizontal component of the strut forces Hu is calculated 

in the same manner as Pu for reinforcement in the elastic stage 

Hu =2 it ro Es (yf/ro) [pd (d-x) - (x2/2ae) ]" In (r2/rl) 

If the reinforcement is yielding 

Hul =2 7t ro (d/po)pfy (ry-rl) 

Hu2 =2 it ro (EsW/ro) [pd (d-x) - (x2/2(xe) ] In (r2/ry) 

Hu = Hul + Hu2 

The total inclined force F can be expressed as 

F= ý(Pup)2 + (Hu)2 
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at an angle ao= tan-1 (Pu, p/Hu) as shown in Fig. (1-26) . The 

bearing stress at the support of the struts is 

ab = F/ (2 n ro x cosao) 

Failure is assumed to occur when this bearing stress is equal 

to the limit local bearing stress fbu defined as 

fbu = fc (ro+d)/ro < 1.4 fc for two-way reinforcement 

fbu = fc (ro+0.5d)/ro < 1.4 fc for ring reinforcement 

6- Nb'1ting 

Using the inclined compression approach, Nölting (46) 

proposed a method for calculating the punching strength. He 

assumed that all failures at inclined cracks around 

concentrated loads or supports can be regarded as forms of 

punching, irrespective of the state of the reinforcement in 

terms of yield. Nölting adopted a limiting strain in the 

direction of the inclined compression around the loaded area as 

a criterion of failure. The strain can be calculated using 

three relationships between: 

-The load and the critical moment at the column or loaded area 

-The moment and the horizontal strain of the concrete 

-The horizontal and inclined strain of the concrete 

The critical moment is determined on the basis of the elastic 

theory as used in the German code (19) and code manual (18). A 

simple equation with numerical coefficients dependent on the 

slab geometry and loading conditions was developed by Nölting 
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for concentric loading 

m=P/ K4 (1+K5 bq/lm) 

Where m is the critical moment per unit width and lm is a 

length dependent on the slab geometry. K4 and K5 are numerical 

coefficients. The values of lm, K4, and K5 are given in 

Fig. (1-27) The horizontal strain of the concrete (Cbh) is 

determined for three stages. 

For a load less than that causing yield m< my, P< Py, ebh is 

determined from cracked elastic analysis of the cross-section 

as in the DIN code (19) 

At the yield load P= Py 

ebdy = Ebh\ 'f (A) 

where Ebd is the strain of the concrete in the diagonal 

direction 

Ebh is the strain of the concrete in the horizontal 

direction 

f(A) is a function of the slenderness ? of the slab as 

illustrated by Fig. (1-28) 

f (k) =1- (1 /i 

For loads beyond yield P> Py 

f-bd = Ebdy (P/Py) 2 

The criterion of failure is expressed as Ebdu = 4.5%0. 

Combining the above 

4.5%0 1 
Pu = Py 

Fbhy 
(1 -) or 

1 pu ýbhy 

py 4.5%. 
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Fig. (1-26) Force and stress at the column face 

according to Andrä's approach 
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Fig. (1-27) Data for moment calculations in 

Nölting's theory (46) 
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The punching failure load according to the method described 

above can be approximated as 

Pu = 4.75 Nrp fc d2 ao 

where fc is the cylinder compressive strength of the concrete 

and ao is a function describing the geometry of the slab. 

For a flat slab ao = (0.65+9.4 B/L)-(2.2+70 B/L) d/L as 

illustrated in Fig. (1-29). 

1-3-3 TREATMENTS OF LOAD ECCENTRICITY 

Where an eccentric load is 

transferred from a slab to an internal column a part of the 

moment (M=e. P) is likely to be provided by an uneven 

distribution of the vertical shear at perimeters around the 

column. The distribution of the shear can be estimated by a 

variety of methods. Plate analysis can give theoretical shear 

distributions and the results are relatively simple, 

provided they are restricted to the elastic range. There are 

considerable problems involved in their use for the prediction 

of punching resistances, and it is difficult to allow for 

redistribution of effects following flexural cracking and 

yielding. 

The nominal shear stress due combined shear and moment transfer 

in the elastic can be expressed as 

v= (P/ud) (1+ Ke/c) 

Provided the behaviour is idealized to that of a column and an 

infinite plate 
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Fig. (1-28) Definitions of slenderness in Nölting's theory 
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Fig. (1-29) Nölting's function Lo for flat slabs (46) 
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Where 

u= the length of the control perimeter 

K=a numerical coefficient 

e= the eccentricity (M/P) of the load 

M= the unbalanced moment 

c=a dimension dependent on the column dimensions and the slab 

thickness 

For slabs with short spans 1, the span length can be included 

in the previous equation. 

Another approach to express the shear stresses due to moment 

transfer is to assume a value for the proportion of the moment 

provided by uneven shear and then to assume the resulting shear 

stress to vary linearly around the control perimeter, thus. 

V= P/A + KM"c/J 

where 

A=u. d 

KM = the part of the moment resisted by shear 

c= the distance from the column centre to the furthest part of 

the control perimeter 

J= the moment of inertia of the control surface. If X and Y 

are the plan dimensions of a rectangular control perimeter 

J= (X3d/6) + (Xd3/6) + (X2Yd/2) with torsional effects included 

J= (X2Yd/2)+(X3d/6) with vertical shear alone considered 
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1- THE BUILDING CODE RULES 

a- ACI-318-83 

The stress distribution assumed is illustrated in 

Fig. (1-30) . The factored shear force V and unbalanced moment M 

are determined at the centroidal axis c-c of the critical 

section. The maximum factored shear stress may be calculated 

from. 

V (AB) = (V/Ac) + (Yv"Mcp /Jc) 

or 

V (CD) = (V/Ac) - (Yv"McCD/Jc) 

where 

1 
Yv -11 

+(2/3) (cl+d) / (c2+d) 

is the fraction of the moment between the slab and column that 

is considered to be transferred by eccentricity of the shear 

about the centroid of the assumed critical section. 

Ac = 2d (cl + C2 + 2d) 

d (cl+d) 3 (c2+d) d3 

66 

d (cl+d) (c2+d) 2 

b- British standard BS 8110 

p 1.5ex 
V. max -[1+ 

u"d Cx+3d 

where cx is the column dimension 
eccentricity ex 

2 

in the direction of the 
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C- CEP-FIP 

P 1.5[el] + 1.5 [e2] 
v. max 

U. d 
[1+ 

(c1 + d) (C2 + d) 
] 

2- Re an 

Regan (53) assumed the distribution of shear 

corresponding to pure moment loading can be visualized as in 

Fig. (1-31). The lever arm between the forces reaching on to the 

faces c2 of the column is approximately (c1+2d). 

The maximum vertical stress on the inclined surface due to the 

moment M is then 

am 
v"max =dl+ 

cotA (cl+2d)[c2+0.5n"d"cotO + cl (3c1+6d)) 

Combining this with a stress resulting from concentric shear V 

and with e= M/V results in 

Vue 

vu0 

where 

1 

1+ß [e/ (c1+2d) ] 

Vue = ultimate shear capacity for an eccentric load 

Vuo = ultimate concentric load shear capacity 
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ß= 2a 

C2 n 

Cl 2 

d cote 

Cl 
+1 

C2 n 

Cl 2 

a cote 

Cl 3 [1+ (2d/cl) ]) 

3- ANIS 

Anis (2) indicates that the criteria of failure of slabs 

under concentric load can be used for slabs under eccentric 

load. He assumed that the side toward the eccentricity fails 

first when the maximum concrete strain is reached, and he 

assumed the shear stress distribution around the critical 

section with radius rcr in the region of a circular column stub 

loaded with a vertical force V and moment M to be as in 

Fig. (1-32) . 

Anis presented the ultimate load P as a function of the shear 

cracking load 

Vcr = 0.6P 

For combined load the critical shear cracking stresses are 

assumed to be 

qcr = ql+q2 

The shear stress q1 due to the vertical load V is 

Vcr 
q1 

2n rcr d 

The equilibrium equation of the external moment and the shear 
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stresses gives the magnitude of q2 as follows. The resultant 

of the shear stresses of one half of the cone is Q 

3 
Q=4n rcr d q2 

the moment of these stresses is 

3 
Mcr =4n rcr d q2 Z 

where Mcr = Vcr'e = the applied moment corresponding to shear 

cracking 

Z= distance between the resultants of the shear stresses as 

Shown in Fig. (1-32) 

Vcr"e 
q2 

1.15 n rcr d 

Vcr 
+ 

Vcr"e 
der 

2n rcr d 1.15n rcr d 

3 
qcr =6 fcu (P%) lbs/in2 

the value of rcr can be given as 

rcr = 
Vcr +1 Vzcr+44d qcr Vcr e 

12.56 d qcr 

4- STAMENKOVIC and CHAPMAN 

Stamekovic and Chapman (63) suggested 

that the ultimate shear strength under vertical load only can 
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be calculated from a modified version of Moe'S (40) formula 

Vu = 0.9 4rd (fc/145) 
15 (1-0.075r/d) 

"( 
Ord (1145 

) 

1+5.25 
Vf lex 

fc in N/mm2 

and the ultimate moment strength at the column head under 

horizontal loading only is due to the combined action of the 

bending resistances developed at by compression stress blocks 

the vertical slab-column interfaces normal to the moment plane, 

the couple due to the bond of reinforcement passing through the 

column, the couple due to the vertical shears at the faces 

normal to the moment plane, and of the torsional resistance 

developed at the vertical slab-column interfaces parallel to 

the moment plane Fig. (1-33) . The ultimate moment strength can 

be calculated as. 

Mu = Kc fcu r(h/2)2 + 0.13fcu lo bas + Ks fcu rdb + 

0.5n Kt 
Asf y h2 (b -h) 

bh 3 

where kc, Ks, Kt, n are 1,0.1,1 and 2 respectively 

as - distance between top and bottom bars 

h- slab depth 

r- side length of column section normal to moment plane 

b- side length of column section parallel to moment plane. The 

ultimate strength under combined loading can be calculated from 

the following proposed interaction formula 
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VM 
+=1 

VU Mu 

5-Long 

Long (37) suggested that, flat slabs share two basic modes of 

failure, a flexural mode, when the steel yields before the 

concrete fails, and a shear mode of failure, when the concrete 

fails before the steel yields. 

For concentric loading, Long presented the predicted punching 

load for a slab to be the lesser of Pl and P2 

P1 
p fy d2 (1-0.59 (pfy/fc) ) 

(0.2 - 0.9(C/L)) 

1.66(c+d) d (loop) 0.25 NIf-C 
p2 = Newtons 

(0.75 +4 (C/L) ) 

Where P1 = The predicted punching load for the flexural mode 

P2 = The predicted punching load for the shear mode 

c= Side length of a square column 

L= Span between columns 
For combined loading the punching capacity is 

P= 
Pv 

Or 
Pv 

(1 + 15(e/L)) (1 + 0.9(e/C)) 

Where PV is the lesser of P1 and P2 

e is the eccentricity with respect to the column centre 

line. 

Longs expressions are based on equal spans and on square 

columns. 
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Fig. (1-32) Assumed distribution of shear stresses 
due to a pure couple (Anis) 

External moment 
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Fig. (1-33) internal forces balancing the external 

moment (Stamenkovic) 
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6- Other Methods 

There have been various attempts to treat slab- 

column connections as crosses of beam-column joints. There are 

considerable difficulties in such approaches with the division 

of the loading into bending moments, shears and torsions in the 

four pseudo-beams meeting at an internal column. Furthermore 

the methods are inherently illogical as they must assume that 

the regions of the slab near the corners of the column are 

ineffective. This can not be true with regard to shear as the 

concentric punching capacity of a slab is much greater than the 

sum of the shear strengths of four beams with widths equal to 

the column's side dimensions. 

1-4 CONCLUSION 

This chapter has reviewed the methods of overall 

design for flat slabs and the treatments of concentric and 

eccentric punching. Some of the important aspects the present 

review are summarised below 

Overall Analysis 

1- Yield line theory is inappropriate as a general approach 

to flat slab design as it provides no basis for assessing 

moments transmitted to columns, while these moments are 

important as determinants of punching resistance. 

2- Equivalent Frame analysis provides a reasonable 

representation of the behaviour of flat slabs by systems of 

column and beams analysed separately in two directions. 
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3- The difference between the frame of a flat slab and the 

simple equivalent beam-column frame is partial lack of 

continuity between the slabs and the columns. T To estimate 

the moment transfer to the columns it is reasonable to use 

the ACI model of a connection in which a torsional member 

is inserted between the slab and column. The analysis 

should then be made of a frame directly including the 

torsion member, rather than hiding it in an "equivalent 

column" since the equivalent column technique can not be 

used for horizontal loading. Regans flexible joint would be 

an alternative to the ACI's torsion member but the later is 

widely known and there is no obvious advantage in Regan's 

variant. As currently used both formulations are based on 

the elastic theory of uncracked plates but either could be 

extended to allow consideration of the effects of cracking. 

Symmetric Punching 

With regards to symmetric punching there is a 

measure of agreement on the physical model proposed by Kinnunen 

and Nylander. The slab is divided in to segments by radial 

flexural cracks and the parts of the segments outside the shear 

crack rotate as rigid bodies. At the periphery of the column 

the concrete resists transverse load by an inclined radial 

compression. Near the column the compression zone is subjected 

to a condition of complex and high stresses which makes a fully 

theoretical treatment very difficult. The theories proposed to 

date are difficult to use in practice. 
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Eccentric Punching 

Eccentric punching resistance is presently 

described by empirical equations based on simple factoring of 

the resistance of slabs under concentric loading. There are 

rather wide discrepancies between the equations used and there 

is generally little or no theoretical background to them. The 

sole exception is Stamenkovic's approach in which the pure 

moment capacity of a connection is treated more or less 

theoretically. The pure shear and pure moment capacities are 

then used to construct a shear-moment interaction diagram. 

This approach is an interesting one. From what has been 

reviewed above it is clear that more work needs to be done: 

a- On concentric punching to improve the method of predicting 

shear resistance based on the physical model proposed by 

Kennunen and Nylander. Some improvement in accuracy would 

be desirable but the greater concern is to derive a more 

readily usable formulation. 

b- To develop an analysis with sufficient accuracy for the 

prediction of eccentric punching resistance. 'rhe analyses 

should be verified not only for the square columns and 

square slabs considered in almost all the work to date, but 

should also be checked for rectangular columns and slabs. 

Ideally the analysis should be fully based on a physical 

model but even a rather empirical approach could represent 

considerable progress here. 
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c- To study the real deformations in the regions of slab-column 

connections transmitting moments. The results could be used 

directly in calculations of deflections and might be 

applied in non-linear analysis of equivalent frames. 
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CHAPTER TWO 

EXPERIMENTAL STUDY 

2-1 CHOICE OF SPECIMEN TYPE 

2-1-1 INTRODUCTION 

The range of types of specimen which can have 

been used for punching tests is quite large, and any reinforced 

model, in which a failure of the right type can be produced, is 

a legitimate subject of study. A complete theory would take 

account of the differences between different models and should 

be able to be checked, albeit only partially, by comparisons 

between its predictions and the experimental results from any 

model. 

However the present state of knowledge is such that a complete 

theory is unlikely to be developed in the near future and 

actual theoretical approaches are likely to be incomplete and 

reliant on empirical data. In these circumstances it is 

necessary to consider the suitability of experimental models in 

terms of their ability to simulate conditions in prototypes -in 

the present case primarily flat slab or flat plate floors. 

One extreme of modelling is to use specimens comprising several 

complete panels. Such models are highly realistic and avoid the 

problems associated with arbitrary boundary conditions, but 

they are expensive and must either occupy a very large area or 
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be to a very small scale. The number of tests possible and 

thence the number of variables that can be investigated is 

generally small. 

At the other extreme there is the conventional punching 

specimen intend to model the negative moment region around a 

single symmetrically loaded column. Such models can allow 

relatively large numbers of tests to be made to a quite large 

scale but do involve very arbitrary boundary conditions. 

In order to make some judgement on the relative merits of the 

various models between these extremes it seems useful to 

consider the main issues involved. 

2-1-2 Possible Collapse Mechanisms 

Punching is not an entirely 

separate mode of failure and the behaviour of many slabs 

reported in the literature suggests that punching can occur, 

after the development of the full yield-line flexural capacity, 

but apparently without the large defections generally 

associated with a truly flexural mode of failure. In these 

circumstances it seems important that any model should be able 

to develop the yield lines that would be associated with 

flexural failure and should be able to undergo large 

deflections due to rotations at the yield lines. 

From this point of view, models in which load is applied to a 

column while reactions are provided by an undeflecting boundary 

frame are unsatisfactory. They force the yield line pattern to 

be that of Fig. (2-1 a) instead of the normal one of Fig. (2-1b) 

Additionally large defections are associated with a tensile 
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membrane action in the slab adjacent to the column while this 

is not the case for a simple folding mechanism. 

Models in which loads are applied to the slab at discrete 

points by a deformable loading arrangement are able to 

replicate the behaviour of Fig. (2-1b) and it was therefore 

decided to adopt a system of this type. 

The difference between systems with the eventual mechanisms of 

Figs. (2-1a) and (2-1b) should be small if the failure loads 

are distinctly below flexural capacities, but could be 

significant where the ultimate load is more or less equal to 

the flexural strength. The model of Fig. (2-1c) would then be 

likely to appear to fail by punching, while that of Fig. (2-1d) 

would probably have a purely flexural collapse. 

2-1-3 Compressive Membrane Action 

It has been argued that models with 

free boundaries relatively close to columns (column to edge 

distance 0.2 or 0.25 x prototype span) are unsatisfactory 

because they do not allow the development of realistic 

compressive membrane actions. 

Compressive membrane action can have two effects in a slab 

subjected to a concentrated load or reaction. One is the 

development of a shallow 'dome-like' resistance. The effect can 

be considerable in a thick slab with rigid restraints against 

lateral expansion at its boundaries. The other which is more 

probable in slabs of normal floor proportions is a load 

increase in the depth of the compression zone around a column. 

Rankin and Long (70) claim that compressive membrane action can 
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produce a considerable enhancement of punching resistance in 

flat slabs. The claim is based on a comparison of the results 

of tests of the type illustrated by Fig 2-2. The data from the 

main group of tests is shown in the same figure as a graph of 

the ratio of the experimental ultimate load to the 

characteristic strength according to BS 8110 plotted against 

the ratio R of the slab size to the size of the periphery at 

which the loading has applied-the code's upper limit on fcu was 

ignored in the calculation 

3 
so that : V3S = 0.79 100 p" fou ud 

4 
w,, ith 400/d for d in mm 

It should be noted that the test model is not very appropriate 

as the provision of an increasing unloaded overhang reduces the 

moments in the slab for any given load. In the extreme with R=2 

the yield line capacity of the slab is increased by 50%. 

inspite of test model thus tending to overestimate the effect 

of any membrane action, the increase of the ratio Vu/VBs with R 

can be seen to be very modest. 

In an earlier paper Long and Masterson (71) compared results 

from tests of models of the simple 'line of contraflexure' type 

and the type model shown in Fig. 2-3. In the majority of the 

tests the loading was eccentric and the results for the 

specimens with larger eccentricities are confused by the lack 

of ability of the test frame used for the smaller models to 

provide downward reactions. From the two slabs with concentric 

loading the larger specimen gave a slight increase of about 20%. 
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Some further information on membrane effects can be inferred 

from the results of multi-panel test specimens reviewed by 

Regan and Braestrup (16) . Their original comparison were based 

on a draft version of BS 8110 in which the depth factor ý was 

(500/d)0.25 . The table below presents the results updated with 

= (400/d) 0.25 
. 

Original source Column Slab effec- Eccen- Vu 
size tive depth tricity VBS 

(mm) (mm) 

Guralnick & La Fraug 457x457 109.5 64 1.04 
Tankut (slab 1) 203x203 76.0 71 0.97 
Tankut (slab 2) 203x203 76.0 105 1.06 
PCA 660x660 476.0 0 1.37 

In the first three tests all the panels were loaded and there 

appears to have been no strength enhancement attributable to 

compressive membrane action. In the fourth test only a part of 

the slab was loaded and a large undamaged outer "ring" was 

available to provide in-plane restraint. 

In conclusion here it seems that for slabs of proportions 

normal for flat plate floors compressive membrane action has 

little if any effect on punching resistance unless a large part 

of the slab is unloaded and able to provide a retraining ring 

around the test area. Thus in the design of test specimens the 

possibility of membrane effects was considered to be fairly 

unimportant. 
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2-1-4 Boundary Moments and Deformations 

From the above discussion 

of membrane effects it would seem that the use of specimens 

modelling 0.4 to 0.5 1 of a typical span could be satisfactory 

if only concentric load were to be considered. They would have 

some disadvantage due to the impossibility of redistributing 

moments from the negative to a positive moment region and this 

might mean that punching failures could not be obtained with 

low reinforcement ratios. 

Once eccentric loading is considered there is more of a 

problem. If the moments transferred to the columns arise from 

wind effects the sections of contraflexure move away from the 

columns and toward midspan as the eccentricity increase. This 

movement cannot be replicated in the very simple specimens 

bounded by lines of radial contraflexture for vertical loading. 

To be realistic the specimen has to represent more of the slab 

and have positive moments applied at its boundaries to 

correspond to the effects of the symmetric vertical loading. 

The type of specimen developed by Long and shown in Fig. (2-3) 

is one solution. For concentric loading the edges of the 

specimen, which correspond to mid-panel lines are restrained so 

that there is no rotation perpendicular to the edge. Another 

possibility is to apply predetermined bounding moments, and 

this approach was adopted in the present work, The modelling of 

a prototype is less good than in Long's method but in 

compensation the test arrangements are simplified and the 

magnitudes of the boundary moments are known. 

For moment loading Long's system correctly obliges the edges 
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(a) Details of edge restrcining system (series L) 

(b) Idealized function of edge restraints. 

Fig. (2-3) System of Edge Restraints 
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perpendicular to the eccentricity to undergo equal rotations, 

but the restraint system for the other two edges would seem to 

prevent their developing realistic deflected profiles. 

The system adopted for the present tests left these edges free 

to the form while being subjected to moments corresponding to 

the concentric loading. 

2-1-5 Ratios of Moments and Shears 

The moments considered here are the 

total (or average) moments at the column lines and at panel 

centre lines is a prototype or at the edges of a model. 

Considering square panels of side length '1' subjected to 

uniformly distributed loading 'Q' per panel, the elastic moment 

distribution for the prototype gives: 

Column line moment M'= 0.083 Q1 

Centre line moment M=0.042 Q1 

M' /M = 2.0 

In the test arrangement adopted (see Figs. (2-4) and (2-5)) 

M=0.063 Q1 

M'= 0.101 Q1 

M'/M = 1.60 

The arrangement thus simulated a modest redistributions of 

moments away from the column lines (a redistribution less than 

implied in BS 8110's empirical design method). The total moment 

( M+M') was 31% higher than that for of the prototype. This is 

a result of applying the loading close to the boundary rather 

than distributing it over the slab. In terms of reproducing the 
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a) 

Fig. (2-5) Slab-Column specimens (rectangular slabs) 
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behaviour of a prototype it is clearly something of a 

disadvantage, but the boundary loading system was adopted to 

allow the same points to be used for both the vertical and the 

moment transfer loading and also to leave the top surface of 

the slab free for observation. 

For combined (shear + moment) tests the vertical loading was 

viewed as comprising two parts. One corresponded to the shear 

and required equal loads at each boundary. The other 

corresponded to the moment and involved an increase of the load 

at one edge and a numerically equal decrease at the opposite 

boundary. 

In terms of the positions of lines of contraflexure this system 

is a correct representation of a situation of equal loading 

acting on equal spans together with horizontal loading. 

Where the slab panels were rectangular the vertical loading was 

none-the-less applied at a square perimeter. This was done to 

model elastic behaviour for which the active width of slab in 

the short span direction is effectively limited to the 

dimension of the span and not the slab breadth. 

2-1-6 Rationale of the Test Arrangements Used 

The test arrangements 

adopted for the present work are illustrated by Fig. (2-4) and 

(2-5). Further details are described in section (2-3). 

In terms if scale with an overall slab depth of 80mm the 

specimen were large enough to allow the use of concrete, rather 

than mortar or micro-concrete, and that of normal 

reinforcement. The scale factor of about 2.0 between the models 
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and typical prototypes was seen as being sufficiently small for 

numerically meaningful results to be obtained. 

The spreadaisystem by which vertical loads were applied was 

deformable and could have allowed flexual failures to occur by 

the formation of full-width yield lines parallel to the slab 

edges. 

It has already been noted that compressive membrane action is 

unlikely to be of much significance in realistic flat slabs and 

the extent to which such action might be developed was not a 

major concern. The model adopted should in principle be 

intermediate between the simple form in which the slab is 

bounded by lines of contraflexure and the Long and Masterson 

model extending to panel centre lines. 

All the boundaries of the slabs were free to deform and in this 

respect as well as that of scale the arrangements seem 

preferable to those of Long and Masterson. 

The application of somewhat arbitrary boundary moments may be 

seen as a disadvantage in comparison with the system of Fig. 

(2-3) in which the rotations perpendicular to the edges are 

correctly controlled. In terms of pure modelling this is true, 

but the system used appeared to have two advantages. Firstly it 

was simpler and secondly it allowed the magnitudes of the 

boundary moments to be known. 

The treatment of combined loading cases as the superposition of 

a concentric system and a moment applied by forces at two edges 

represents what is probably the commonest situation in 

prototypes. Unavoidably it does not correctly model other 
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cases, eg. unequal spans or equal spans with unequal vertical 

loads. 

2-2 OUTLINE OF TESTS. 

The ten slabs reported here are divided in 

four groups each concerned with one or two parameters thought 

to influence the punching resistance. 

GROUP -SA- 

Four slabs were included in this group, they were all 2000 mm 

square and 80 mm thick. The ratio of tension reinforcement in 

the punching area was 0.8% in both directions and the slabs 

were supported on 150 mm square columns at their centres as 

shown in Fig. (2-4) The main variable in this group was the 

ratio of horizontal to vertical loads (i. e. the eccentricity of 

the load ), the ratio was varied by applying vertical loads of 

different magnitudes to the edges of each slab see Fig. (2-4a). 

GROUP -SB- 

Two slabs were included in this group, they were both 2000 mm 

square and 80 mm thick and each was supported on a 150 mm 

square column. The ratio of tension reinforcement in the 

punching area was 1.45% in both directions. The first slab was 

tested under eccentric loading conditions while the second was 

loaded concentrically. 

GROUP -SC- 

Two slabs were included in this group they were 3000x2000x8Omm 

and were supported on 150 mm square columns see Fig. (2-5). The 

ratio of tension reinforcement in the punching area was 1.35% 

parallel to the eccentricity and 1.62% in the perpendicular 
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direction. The first slab was tested under concentric load and 

the second was tested under eccentric loading conditions. 

GROUP -SD- 

Group -SD- consisted of two 3000x2000x80 mm slabs, each 

supported centrally on a 200x100 mm rectangular column. 

The ratio of the tension reinforcement in the punching area was 

1.35% parallel to the eccentricity and 1.62% in the 

perpendicular direction. The first slab was tested under 

concentric load and the second was tested under eccentric 

loading. 

The average ratios of tension reinforcement in the slabs were: 

SA- 25 T6 in 2m with d=64 mm p =0.55% 

SB- 25 T8 in 2m with d=62 mm p =1.00% 

SC&SD Transversal 12 T8+12 T6 in 3m with d=62 p =0.5% 

Main 23 T8 in 2m with d=62 mm p =0.93% 

More details of the test specimens are given in table 2-1 and 

Fig. (2-8). 

2-3 TEST ARRANGEMENT 

Each slab was supported on one single 

central column which rested on a rocker/roller bearing with 

rotation and horizontal movement allowed only in the direction 

of eccentricity see Fig. (2-6). Two small rockers were fixed on 

the column faces on opposite sides and at opposite ends at 

distances 500 mm above and below the slab surfaces Fig. (2-6). 

The rockers bore against horizontal load cells attached to the 
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TABLE 2-1 details of the test specimens 

Column 
Slab Slab Dirnen- Reinforcement e 
No Dimension mm sions mm 

Brea- Len- Thi- Bre- Dep- 
dth gth ckn- adth th Top Bottom 

/ ess a// Tension Compression 
with h b with 

- - ecce ecc 
nt. ent. main tran. main tran. 

SA1 2000 2000 80 150 150 0.55 0.55 0.55 0.55 52 
SA2 2000 2000 80 150 150 0.55 0.55 0.55 0.55 0 
SA3 2000 2000 80 150 150 0.55 0.55 0.55 0.55 100 
SA4 2000 2000 80 150 150 0.55 0.55 0.55 0.55 336 
SB1 2000 2000 80 150 150 1.00 1.00 1.00 1.00 0 
SB2 2000 2000 80 150 150 1.00 1.00 1.00 1.00 360 
SC1 3000 2000 80 150 150 0.93 0.50 0.50 0.93 0 
SC2 3000 3000 80 150 150 0.93 0.50 0.50 0.93 337 
SD1 3000 2000 80 100 200 0.93 0.50 0.50 0.93 0 
SD2 3000 2000 80 100 200 0.93 0.50 0.50 0.93 310 

Note. 

cases. 

Eccentricities were in the 2.0 m width direction in all 

All dimensions are in mm 

Reinforcement ratios given are averages 

breadth/length of the slab. 

for the full 
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framework shown in Fig. (2-6) and provided the restoring moment 

to counter the eccentricity of the loading. The vertical force 

was applied in stages using 100 kN hydraulic jacks and 

spreader. beams to divide the loads equally between the four 

loading points in each line. The loads were measured using 100 

kN load cells. The horizontal forces on the column were 

achieved by a variation in the vertical forces at parallel 

lines Fig. (2-6). The "edge" moments were applied as shown in 

Fig. (2-6) using bars passed through hollow square steel 

sections fixed on the slab edges. The force in each bar was 

measured using two strain gauges fixed on the bar. The loads 

and moments were applied to the 2m x 3m slabs in the 3m 

direction at distances of 915mm from the column centre on each 

side Fig. (2-5). 

The deflections of each slab were measured along the centre 

lines by the means of dial gauges situated at distances of 

300,600,900 mm from the column centre for the square slabs 

and at distances of 300,600,900,1300 mm from the column 

centre for the long spans in the rectangular slabs. The dial 

gauges were fixed on a steel frame which was supported on the 

laboratory floor. To measure the rotations, spirit level 

inclinometers were used. They were situated adjacent to the 

column faces. In the eccentrically loaded slabs the column 

rotation was measured by the means of a spirit level 

inclinometer supported on wooden box which was fixed on the 
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column face at about 50mm from the slab surface. 

2-4 MATERIALS 

The materials used were similar for all specimens. Three 

batches of concrete were used for each specimen. The mix 

proportions by weight were: 

-Rapid hardening portland cement ......... 1 

-Sand (5 mm down ) ..................... 2 

-10 mm maximum size gravel aggregate ..... 3 

-Water/cement ratio ...................... 0.5 

In order to assess the concrete strength, three 150 mm cubes 

and one 150 by 300 mm cylinder were made with each specimen, 

compacted by poker vibrators and cured with the slab. Each slab 

specimen was cast in one stage. After casting the specimens 

were covered with polythene sheets for approximately two days, 

after which the formwork was removed. The specimens were then 

left under wet hessian in the laboratory until testing at ages 

of 7 to 10 days. 

All the reinforcement was high yield deformed steel, the 

diameters of the bars were 6 and 8 mm and stress-strain curves 

are shown in Fig. (2-7). The bottom bars were supported on 10 

mm plastic cover chairs and the space between the top and 

bottom bars was controlled by plastic spacers, the 

reinforcement details for all the specimens are shown in 

Fig. (2-8) . 
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CHAPTER THREE 

GENERAL BEHAVIOUR OF THE SLABS 

Four slabs were tested under concentric load, and six slabs 

were tested under eccentric load. All ten slabs failed in 

shear. The average concrete strengths and slab failure loads 

are shown in Table (3-1) 

Table 3-1 Concrete strengths and slab failure loads 

Slab No SAl SA2 SA3 SA4 SB1 SB2 SM SC2 SD1 SD2 

fc N/mm2 33 34 36 32 27 28 36 37 36 31 

P kN 109 141 85 49 133 61 129 65 127 56 

fc = cylinder crushing strength of concrete taken as 0.8fcu 

3-1 Load deflection characteristics. 

3-1-1 Slabs tested under concentric load. 

Four slabs (SA2, SB1, SC1, 

SD1) were tested under concentric load. The deflections of 
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each slab were measured along the centre lines. The average 

deflections of each slab along the centre lines at about 95% of 

the ultimate load are shown in Fig. (3-1). At the first stage of 

loading no cracks were observed on the slab surface. As the 

load increased cracks appeared on the tension face and upon 

further increase of load the cracks opened up reducing the slab 

stiffness Fig. (3-2). The deflections were symmetric in the 

four quarters of the square slabs. Finally the slab failed when 

the central cone pushed through the slab. Fig. (3-1) shows that 

the load deflection curve of the slab part which is situated 

outside the shear crack is an almost linear function of radius. 

It is hard to say which of the slab properties has the most 

effect on deflections near failure but it appears from Fig(3-1) 

slabs SA2 (0.79%) and SB1 (1.45%) that an increase in the ratio 

of reinforcement reduces the ultimate deflection. 

3-2-1 Slabs tested under eccentric load. 

Slabs (SA1, SA3, SA4, SB2, SC2, SD2) were tested under 

eccentric load. The deflection of each test slab was measured 

along the entre lines of the slab on the top surface by means 

of dial gauges, which were located symmetrically with respect 

to the centre of the slab. The deflected shapes of the slabs 

in the eccentricity direction at about 90% of the ultimate load 

are shown in Fig. (3-3). As the load increased the tensile 

cracks on the surface of the slab opened up resulting in large 

98 



0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

Fig. (3-1) The deflected shapes of the slabs tested 

under concentric load 

99 

DISTANCE IN mm 
300 30 0 300 100 300 200 



4-e-, 4- I-. rr, r+4- irmI Ir rl 

11 

1' 

11 

Fig. (3-2) Load deflection curves at 600 mm from the 

column centre, on the centre-linesof the slabs 

100 

2468 10 12 14 



deflections Fig. (3-4). The part of the slab bounded by the 

shear crack and the edge of the slab behaved as a rigid body. 

The maximum deflection was located on the side of the 

eccentricity, the deflection of the other side was relatively 

small or even changed to negative i. e. upwards, for slabs 

(SA3, SB2, SC2, SD2) Fig. (3-3) . Finally the slab failed when 

the tensile part bounded by the shear crack and the column face 

pushed through. the slab. (i. e. unsymmetric punching) see 

Figures (3-5), (3-7). 

In slabs SB2 and SD2 the load on the eccentric quarter was 

similar to that on the same quarter in the concentrically 

loaded slabs SB1, SD1, but the deflection in a slab quarter 

tested under eccentric loading was greater than that in a slab 

tested under concentric loading see Figures (3-1), (3-3). 

3-2 Crack patterns. 

In slabs subjected to concentric loading the first cracks 

appeared around the column face at approximately 25% of the 

failure load. The cracking loads for eccentrically loaded 

slabs were approximately 35 to 40% of the failure loads. In 

the slabs of group -SA- where the ratio of reinforcement was 

0.79%, and was less than in the other groups, the first cracks 

appeared at approximately 30% of the failure load. Radial 

cracks started in the central part and extended to the edge of 

the slab with increasing loads Fig. (3-5) and (3-6). Further 

cracks then appeared in the vicinity of the column and along 

the column 
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Slab e °/ Shape Load KN 
SAl 52 0.55 sq. 105 
SA3 100 0.55 sq. 77 
SA4 336 0.55 sq. 49 
SB2 360 1.00 sq, 61 
SC2 337 0.72 rect. 57 
SD2 310 0.72 rect, 49 
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lines while existing cracks became wider. Some tangential 

cracks also appeared at various distances from the column face 

in the punching area Fig. (3-6) C, D. The crack patterns for the 

slabs tested under concentric load were symmetric Fig. (3-6). In 

slabs tested under larger eccentricities of the load no cracks 

formed at the side opposite to the eccentricity and the 

cracking radiated from the column face nearest the eccentric 

load. Finally failure occurred in the shape of a wide inclined 

crack running to the column face at the bottom of the slab as 

in Fig. (3-7). The exact positions of the initial shear cracks 

and the loads at which they appeared within the depth of the 

slab were not determined. As a rule it is not possible to 

observe the shear cracking in a slab and to find a completely 

unique value of the load at which the shear cracks begin to 

open up. 

3-3 Strains in the test slabs 

In the present work, the strain in the tensile reinforcement was 

measured in slab SB1 at some points of interest. Curves 

representing the relation between the observed values of the 

strains in the flexural reinforcement of the slab and the load 

P are shown in Fig. (3-8). The strains in gauges 2,3,5,6 were 

negative (i. e. compression in the top reinforcement from the 

edge moment action ) at the first stage of loading. As the 

load increased the strain became positive (i. e. tension in the 

top reinforcement ). However the maximum strains were small 

(about 0.0001 ) and this is consistent with the lack of 

tangential cracking away from the column and the part of the 
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slab outside the shear crack behaving as a rigid body. The 

strain in gauge 1 near the column face reached the yield strain 

of the reinforcement. 

3-4 Rotations in the test slabs 

The rotations of the slabs were measured by means of spirit 

level inclinometers situated adjacent to the column faces. 

Figures (3-9) and (3-10) show the rotations of the slab at the 

column for the four tests of concentrically loaded specimens. It 

seems surprising that for slabs SA2 and SB1 which had different 

ratios of reinforcement, the ratio of reinforcement had 

relatively little effect on slab rotation see Fig. (3-9). 

The curves of Fig. (3-10) are rotations of rectangular slabs 

with two column shapes. Slab SC1 had a square column while slab 

SD1 had a rectangular column, it seems that the column shape 

has a small effect on the slab rotation see Fig. (3-10). 

Figs. (3-11), (3-12), (3-13) and (3-14) show the rotations of the 

slabs which were eccentrically loaded. The rotation on the side 

of the eccentricity was greater than on the other sides. The 

rotation on the side opposite to the eccentricity was 

relatively small or negative see Figs. (3-13) and (3-14). 

The rotations on the sides perpendicular to eccentricity were 

nearly symmetric see Fig. (3-12), and greater than the 

rotations of the concentrically loaded slabs at the same 
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load, this may be due to a reduction of the joint stiffness at 

early stages of loading in eccentric slabs. 

The joint rotations calculated as Os=(8E-9W)/2 plotted 

against the column moments are shown in Fig. (3-15), which 

shows that, increased eccentricity causes greater ultimate 

rotation of the slab-column joint. 

During the test slab SA3 was unloaded and loaded again due to 

an error in the test procedure. 
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CHAPTER FOUR 

BEHAVIOUR OF CONCRETE 

4-1 Concrete properties 

This chapter summarizes some typical 

mechanical properties of concrete under uniaxial, biaxial, and 

triaxial states of stress. These data are essential for 

generalized mathematical modelling of concrete. They are of 

interest in relation to the complex stress states in slabs near 

columns, but a much simplified approach is used in the 

development of a punching theorem in Chapter Five. 

4-1-1 Uniaxial loading 

Typical stress-strain relationships for concrete 

subjected to uniaxial compression are shown in Fig. (4-1). 

The shapes of the curves are closely associated with the 

mechanism of internal microcracking. For a stress in the region 

up to about 30 percent of the maximum compressive strength fc, 

the cracks existing in the concrete before loading remain 

nearly unchanged, and the concrete response is nearly linear 

elastic. 

This level of stress has been termed the onset of localized 

cracking(33), and this occurs primarily due to bond breakdown 

at the aggregate-mortar matrix interface, after which the 
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material exhibits, distinct inelastic properties but still 

behaves in a relatively stable manner. 

For stresses between 0.3 and 0.5fc the bond cracks start to 

extend due to stress concentrations at the crack tips. For 

stresses between 0.5 and 0.75fc some cracks at nearby aggregate 

surfaces start to bridge in the form of mortar cracks. At the 

same time other bond cracks continue to grow slowly. For 

compressive stresses above about 0.75fc the largest cracks 

reach their critical lengths, and this stress level is 

termed the critical stress (59) (57) . It corresponds to the 

minimal value of volumetric strain Fig. (4-1). When the maximum 

stress is reached, internal damage is accumulated, the 

compressive strain increases rapidly and the concrete enters 

the descending part of the stress-strain curve. The shape of 

the stress-strain curve is fairly similar for concretes of 

different strengths but the strain Ecl at peak stress 

increases a little with the concrete compressive strength 

Fig. (4-2). A high-strength concrete behaves in a linear fashion 

to a relatively higher stress level than a low-strength 

concrete but all peak points are located close to the strain 

value of 0.002. Higher strength concretes tend to behave in a 

more brittle manner with the post peak stress dropping off more 

sharply than for concrete with lower strength. 

As shown in Fig. (4-2), the initial modulus of elasticity of 

concrete is dependent on the compressive strength, and is 

generally taken as a function of the compressive strength 

(Ec:: ýfc ACI 318-83, Ec:: 
3 

CEB/FIP), ' 
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Fig. (4-3) shows stress-strain curves for concrete in uniaxial 

tension, all curves are nearly linear up to a relatively high 

stress level. At a stress about 0.75fct microcrack growth 

begins in a direction transverse to the stress. The ratio 

between uniaxial tensile and compressive strength may vary 

considerably but usually ranges from 0.05 to 0.1 . The modulus 

of elasticity under uniaxial tension is somewhat higher than in 

uniaxial compression. 

In the present work, in order to calculate the neutral axis 

depth for a segment element of the slab a stress-strain 

relation for the concrete has to be known. To simplify the 

calculations, the uniaxial stress-strain curve for concrete in 

compression is approximated by the bi-linear relationship shown 

in Fig. (4-4) this curve is proposed in the CEB/FIP 

recommendations of 1970(62)For higher strains it is assumed that 

the average stress remains constant and the descending branch 

of ß: c need not be defined. The assumption does however 

correctly imply a descending branch. 

4-1-2 Biaxial loadin 

Figs. (4-5) , (4-6) and (4-7) show typical 

stress-strain relationships of concrete under biaxial 

compression, combined tension and compression, and biaxial 

tension. As shown in Fig. (4-5) the strength of the concrete 

under biaxial compression is higher than the strength under 

uniaxial compression. A maximum strength increase of 

approximately 25 percent is observed at a stress ratio of 
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(ß2/(Y1=0.5) and for the equal biaxial compression (62/a1=1) an 

increase of 16 percent is achieved. Under biaxial compression- 

tension the compressive strength decreases as the tensile 

stress is increased Fig. (4-6). Under biaxial tension the 

strength of concrete is almost equal to its uniaxial tensile 

strength Fig. (4-8) . 

In biaxial compression-tension, as the tensile stress increases 

the magnitude at failure of both the principal compressive and 

tensile strains decrease Fig. (4-6) 

For all these stress combinations, the failure of concrete 

occurs by tensile splitting with the fractured surface 

orthogonal to the direction of the maximum tensile stress or 

strain. Tensile strains are of crucial importance in the 

failure mechanism of concrete (Kupfer et al 1969) (35). Failure 

modes of biaxially loaded concrete are shown in Fig. (4-9). 

Fig. (4-10) shows an approximated strength envelope for concrete 

which suggests a constant biaxial compressive strength of 1.2fc 

for any stress ratio bigger than 0.2 

4-1-3 Triaxial Loading 

Fig. (4-11) shows typical stress-strain curves 

from triaxial tests by (Balmer-1949) (6). The tests were 

conducted at high confining-stress levels. The axial strength 

increases with increasing confining pressure and under 

very high confining stresses extremely high strengths have 

been recorded Fig. (4-11). The schematic shape of the failure 

surface of concrete subjected to triaxial loading is shown in 

Fig. (4-12) . 
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With increasing hydrostatic pressure, the compaction of the 

cement paste becomes increasingly pronounced but this alone can 

not cause complete disruption of the concrete. An unloading 

from hydrostatic compression followed by a reloading in 

uniaxial compression shows that the uniaxial compressive 

strength has decreased to about 60 percent of its original 

value (Chinn and Zimmerman 1965) '(12) . The experimental studies 

of Mills and Zimmerman 1970 (36) have indicated that in 

triaxial tests the failure of the specimen is marked by a drop 

in the larger load and a corresponding increase in the smaller 

loads, so that determination of the exact point of failure is 

dependent on the rate of loading. 

The stress-strain curve for concrete in triaxial compression is 

similar to that under biaxial compression, but in the former 

case the strains at failure are larger. The major failure plane 

in compressive triaxial tests appears to be the plane or planes 

defined by the minimum principal stress. Concrete behaviour 

under triaxial tension is assumed to be similar to biaxial 

tension behaviour and the tensile strength of the concrete 

under triaxial tension is approximately equal to the tensile 

strength in uniaxial tension. under a combined compressive- 

tensile stress state it is observed that the compressive 

strength of the concrete decreases as the tensile stress 

increases. 

4-2 FAILURE CRITERIA OF CONCRETE 

The concrete strength can be defined as 

the ultimate load-carrying capacity of a concrete element. 
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In general concrete failures can be divided into tensile 

failures defined by the formation of major cracks and the loss 

of tensile strength in the concrete normal to the crack 

direction, or compressive failure when many small cracks 

develop and the concrete element loses most of its strength. 

The strength of the concrete under multiaxial stresses is a 

function of the state of stress, and can be predicted by 

considering the interaction of the various components of the 

state of stress. 

One method of representing such a function is to use the 

principal stresses. 

f (a1, ß2,1U3) =0 (4.1) 

Where a1,02 end ß3 are principal stresses. The three 

principal stresses ßl, 62 and a3 can be expressed in terms of 

three principal stress invariants Il, J2 and J3 and Eq. (4-1) 

can be replaced by 

f (I1, J2, J3) =0 (4.2) 

These three principal invariants will be used exclusively in 

formulating various criteria of failure for concrete, their 

definitions are as follows. The six stress invariants used in 

most failure criteria are as follows. 

Stress Invariants: I1, I2,13 

11 = 61 + a2 + a3 = 3ßm (4.3) 

12 = 6162 + 6263 + 6163 (4.4) 

13 = 61.62.63 (4.5) 
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Deviatoric Stress Invariants Jl, J2, J3 

J1 = S1 + S2 + S3 =0 (4.6) 

J2 = 0.5(S2 +S3+S3) (4.7) 

J3 = S1. S2. S3 (4.8) 

Where 

S1 = ß1 - ßm (4.9) 

S2 = 62 - ßm (4.10) 

S3 = 63 - am (4.11) 

I1 represents a purely hydrostatic pressure and J2, J3 represent 

the invariants of a state of pure shear. 

Octahedral Stresses 

The octahedral plane is the plane which 

makes equal angles with each of the principal-stress 

directions. The normal stress ßoc on this plane is called the 

octahedral normal stress 

ßoc - Il /3 = ßm (4.12) 

And the shear stress on the plane is called the octahedral 

shear stress Toc 

Toi =- J2 (4.13) 

The direction of the octahedral shear is defined by the angle 

of similarity 0 which is related to the invariant J3 

cos 3e 
42 J3 

= TOC 
(4.14) 
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or cos 6= a1 + ß2 + ß3 
22 toc 

(4.15) 

Geometric interpretation of the stress state and invariants 

The failure surface can be represented by geometrical 

interpretation of the stress state as a function 

f(ý, r, 6) (4.16) 

as shown in Fig. (4.13) where 

_I1 = NFT ßm = ITY 60c (4.17) 

ý2J2 
= 43 Toc (4.18) 

24-3 J3 NF- 
cos 30 =_3 J3 (4.19) 

J2 'oc 

Octahedral normal and shear strain 

Definitions similar to those of 

the octahedral stresses can be used to define the octahedral 

strains as in Eq. (4.20) and (4.21) 

Eoc = (1/3) (el + e2 + E3) 

Yoc _1 (E1 - e2)2 + (E2 - E3)2 + (e3 -E1)2]1/2 

(4.20) 

(4.21) 
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4-2-IFAILIIRE CRITERION 

Many failure criteria for concrete have 

been proposed, some of them will be discussed here. 

Maximum-tensile stress criterion 

The maximum tensile stress 

criterion of Rankine assumes that failure of the material takes 

place when the maximum principal stress inside the material 

reaches a value equal to the tensile strength of the material 

ft. The equations for the fracture surface defined by this 

criterion are 

61 = ft 62 = ft 63 = ft (4.22) 

The above equations are represented by three planes 

perpendicular to the principal stresses ß1, ß2, ß3. The 

fracture surface can be fully described by using the variables 

ý, r, 6 or 

II, J2,8 within the range 040<60 as follows 

f (I1, J2, )= 243 J2 cos 0+ Il -3ft =0 (4.23) 

or 

f (r, t, 0) =br cos 0+t- 43ft =0 (4.24) 

Fig. (4.14) shows the trace of the failure surface in the 

deviatoric plane containing the origin (plane n), and the 

tensile (0=00) and compressive (8=600) meridians of the 

fracture surface. 

Rankine's theory is used to determine if a tensile type of 

failure has taken place in the concrete. 
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4-2-2 Mohr-Coulomb criterion 

The Mohr-Coulomb theory assumes that 

failure takes place when the shearing stress (T) on a plane 

reaches its limiting value, which is dependent only on the 

normal stress (ß ) on the same plane. 

T=f (a) (4.25) 

The envelope f(ß) is an experimentally determined function, 

and can be represented as straight-line Fig. (4.15). The Mohr- 

coulomb criterion is given by Eq. (4.26) 

,t=C- ßtan0 (4.26) 

Where C is the apparent cohesion and 4 is the internal 

friction angle of the material. 

Eq. (4.26) appears in the hydrostatic plane (0=00) as straight 

lines and in the deviatoric plane as a regular hexagon 

Fig. (4.16) 

According to Mohr's criterion the intermediate principal stress 

has no influence on the failure. This means that the concrete 

strength in a biaxial compressive state is the same as that in 

uniaxial compression, while test results show an increase of 

about 20 percent of the concrete strength in biaxial 

compression. 

4-2-3 Ottosen's Criterion (1977) 

Ottosen (48) suggested a failure 

criterion involving the stress invariants I1, J2, and cos30 as 

follows 
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f (I1, J2, cos38) =A 
J2 

fc 
+x 

fc 
+B 

fc 

I1 
-1 =0 (4.27) 

in which A and B are constants and X is a function of cos30, 

=X (cos39 )>o 

For A>O and B>O the failure surface of Eq. (4.27) has curved 

meridians, which are smooth and convex. From Eq. (4.27) 

1 Il 
[-X+ J X2-4A (B - 1) ] 

ßc 2A ßC 
(4.28) 

where the function, X=X(cos30) can be adequately represented in 

the form 

= K1 cos[ (1/3) arccos (K2cos36) for cos30 >0 

(4.29) 

X= K1 cos[ (n/3) - (1/3) arccos (-K2cos39) for cos30 0] 

Here K1 is a size factor and K2 is a shape factor (0<K2'(1) 

Ottosen's is a four-parameter criterion and requires a computer 

for solution. Useful charts have been prepared by Ottosen (47) 

for design situations. 

Fig. (4.17) shows the ability of the Ottosen's criterion to 

represent the experimental biaxial results of Kupfer, et. al. (35) 
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4-2-4 Kotsovos-Newman Criterion (1978) 

Kotsovos and Newman (34) 

assumed that for design purposes concrete should be considered 

incapable of sustaining tensile stresses, they expressed the 

failure envelopes of Fig. (4-18) in terms of Octahedral stresses 

as follows. 

It°C 
= 1.417 for 

0° 
0.283 

fc fc fc 

toc 
= 0.671 

a° 
+0.211 for > 0.283 

fc fc fc 

'Coe 
= 0.707 

6° 

fc fc 
for 

GO 
< 0.624 

fc 

1 

(4.30) 

(4.31) 

toe 
= 0.4 96 

ao 

fc fc 
+0.131 for 

60 

fc 
> 0.624 

J 

In which Toc and toe are the values of To for 61>62=63 and 

61=62>63 respectively. 

For a1>a2>a3 ao can be predicted by interpolation using the 

Willam and Warnke (67) formula 
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,ý (0ý = 
2'toc (ta-'toe) cos9 

+ 
4 (2oc-toe) cos29+ (Toc-2T0e) 2 

, roc (2tioe-toc) [4 (oc ti oe) cos26+5'[oe-4tioc'toe]1/2 
(4.32) 

4 (oc- oe) cos29+ ('toc-2ýOe) 2 

in which To, ßo and 8 are defined by equations (4.12) , (4.13), 

(4.15) respectively. 

4-2-5 Montagu-Kormi Criterion (1982) 

The failure criterion 

proposed by Montague and Kormi (42) assumes that, irrespective 

of the ratios of ßl, ß2 and 63, failure of concrete under a 

compressive stress state takes place when the unit volume 

energy causing shear distortion reaches a unique value equal to 

that which exists at failure in a uniaxial state of stress. 

The total energy stored in a concrete element under load is 

composed of two components Eß and E. 

E6 is related to the octahedral normal stress so defined by 

Eq. (4.12) 

ao 
Eß =3 ßo deoc 

0 

(4.33) 
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E. is related to the octahedral shear stress 'to defined by 

Eq. (4.13) 

O 
E, C =3 To dYoc (4.34) 

0 

The total energy is 

ET = Et + Eß (4.35) 

During cracking 

leading to an i 

ßi ( such that 

shear ro to T* . 

a transfer of energy occurs between Ei and Ea, 

ncrease in the octahedral normal stress ßo by 

ß*=ßo+(Yi) and a reduction in the octahedral 

This transfer of loading is regarded as an 

irreversible process. By assuming the energy loss due to 

internal friction and temperature change is negligible, 

Eq. (4.35) can be written as 

ßo ýo 

ET =3 ßo&eo + Todyo 

eo 

(4.36) 

To evaluate C;, * and T* Montague and Kormi used the functional 

stress-strain relationships obtained by Kotsovos and 

Newman (34) 
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Eo = 
Go 

+ aab (4.37) 
3Yo 

T 
Yo =o+ cTd (4.38) 

0 

al k 

fc 1+1 (ao/fC) m 
(4.39) 

In which a, b, c, d, k, 1, m and n are empirically derived constants 

stated in terms of fc. For more details of these constants 

reference (42) can be consulted. 

The total energy becomes 

*2 
ET=3[ + 

ab 
-6* 

(b+1) 1+3[ 
T° 

+ 
cd 

To (d+1) (4.40) 
6ko b+1 4G0 d+1 

As a result of cracking, Eq(4.39) becomes 

a* ßk To ö 
)n (4.41) 

fc fc 1+1 (ßo/fý)m 
( 

fc 

Iterative solution of the simultaneous equations (4.40) and 

(4.41) gives the values of aö and TO for any given input 

energy ET. 
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Solution of equations (4.40) and (4.41) for (ET = ET) yields 

the unique value of r* for which ET is given by the area under 

the uniaxial stress-strain characteristic 

_ 
fc 

ET = ßl del 02 = 63 =0 
0 

(4.42) 

Having a unique value of To defined, Eqs (4 .4 0) and (4.41) can 

be solved for any state of stress ß1: ß2: ß3 to determine their 

values at failure. 

The failure criterion of Montague and Kormi predicts an 

enhancement in strength by a factor of 1.2 when concrete is 

subjected to equal biaxial compressive stress compared with 

uniaxial compressive stress Fig. (4.19) 

4-3 SIZE EFFECTS 

Size effects on the strength of concrete have 

been observed in different types of structure, and are related 

to different aspects of the material (i. e ratio of aggregate 

size to element dimension, type of loading, crack width, 

shrinkage, internal temperature of concrete during hardening, 

etc. ). The interaction of the parameters makes the total size 

effect a complicated problem and for the present there seems to 

be no general method to evaluate the effect of the size of the 

structural element on its strength. Some analytical approaches 

and empirical equations have been developed for some specific 

practical cases. 

143 



I 

t 

"3 

0' 

G 

r 

I& 
Lowww", doe ow C6 Cý -cl a 

. 3.66ý 
a. a7. a, a 

Ecw 4 -'1 C) 7 
r-" "Ocoee sw ta . 

°r 
ýrc 

7ý 

c 02 0 06 as 10 f7 ºý is to ,e 
ý4 

Fig. (4-18) Lower bound ultimate strength envelopes for 
concrete CA under multiaxial stress states 

(Kotsovos&Newman 1978) (34) 

C /f, 

1.5 

1.0 

0. s 

T/ic 
u 

zo 

to 

o. s 

i 

. ice 
pso fe o. ý 

fbc 1 

0 -as -1.0 -1.5 -zc -Z_s -5.5 -3.5 -4.0 U, 

o. s 1.0 

b) (ri C= plane 

1.5 aj/fc 

a) ac t plane and test results of Mills and. 

Zimmerman (1970) 

Fig. (4-19") Failure surface traces for Montague and Kormi 

theory (1982) in the aoc Toc and a1 a2 planes 
(full lines)(42) 

144 



The classical fracture mechanics developed by Griffith (22) to 

treat the failure of glass has been applied to concrete in 

tension. Griffith used an elastic analysis to determine the 

release of strain energy (U) per unit increase in the area of 

fracture (A). 

dU dnß? C2 7[ ßo C 
(4.43) 

dc 
( 

2E 
)-E4.43) 

and he determined the work done in the course of crack 

formation 

dW d 
(2TC ) (4.44) 

2A dc 

C is half of the crack length 

ßo is the uniform tensile stress normal to the plane of the 

crack 

W is the work done in the course of crack formation 

T is the surface energy per unit area of crack 

Griffith then suggested that a crack would extend and lead to 

rupture when the rate of release of strain energy was at least 

equal to the rate of increase of surface energy i. e when 

n ßö C 
= 2T (4.45) 

E 

This gives the critical stress ac for a flawed material, i. e 
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one containing cracks, as 

2ET 
6C 

7E C 
(4.46) 

Various methods have been proposed to apply the ideas of 

fracture mechanics to concrete, but there seems to be a problem 

because in concrete the fracture front is not sharp but blunted 

by distributed cracking. However, fracture mechanics can give a 

simple idea of the probable influence of cracks, and can 

predict a scale effect in concrete in tension as a function 

of the flaw size or crack length. 

The influence of scale on the shear resistance of members 

without shear reinforcement has been recognized from different 

sources (53,62,11,7). 

In punching the size effect is probably related to the 

compressive stress concentration near the column. 

A proposal developed by Bazant and Cao (7) uses the ratio 

d/aggregate size in a size factor 

= (? /A. 0) 

where A. = d/da is relative structure size (dJmax. size of aggregate) 

?o is empirical parameter characterizing the fracture 

energy of the material and shape of the structure. 

According to Bazant and Cao's size-effect law, for a structure 

with a relatively small depth there is no influence of scale on 
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the nominal stress at failure Fig. (4.20). It seems that the 

proposal to use the ratio d/aggregate size is not very 

successful, Fig. (4.21) shows the scatter of the data for beams 

without shear reinforcement analysed by Bazant and Cao's 

formula. 

Another proposal (53) is to relate the resistance to the 

effective depth (d) of the slab, Fig. (4.22) shows that the 

punching resistance is approximately proportional to 41 

In this work the value of Vtest/x. c. ac. sina from tests by the 

author and other researchers (30,56,20,43,51) is plotted 

against d see Fig. (4-23). A reasonable overall correlation is 

obtained with the square root (1 d) relationship. 
The function x cff- 6 sin« is derived in the following chapter. 
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CHAPTER FIVE 

PUNCHING RESISTANCE 

5-1 Proposed Model - Symmetric Punching 

A great deal of information has been obtained from 

experimental investigations with respect to the qualitative 

effects of the numerous variables on the ultimate shearing 

strength. This information makes it possible to establish, a 

semi-theoretical approach for the ultimate strength reflecting 

the behaviour of the slabs with good accuracy. The model in the 

following represents the area of slabs around a column bounded 

by a circumferential line of contraflexure. The reinforcement 

is modelled as having radial and tangential resistances. 

From tests it has been seen that at the first stages of loading 

no cracks are observed on the slab surface. Then as the load 

increases, cracks appear on the tension face, dividing the slab 

in the vicinity of the column into radial segments having 

almost linear deflection profiles see Fig. (3-1) and upon 

further increase of the loads, the cracks open up reducing the 

slab stiffness and resulting in large deflections. An inclined 

crack forms around the column well before punching occurs but 

does not have any major effect on the deflected shape of the 

slab so long as two-way flexural reinforcement is present. 

Finally the slab fails when the central cone is pushed through 

the slab. 
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The flexural crack pattern is considered to be represente. well 

by dividing the slab into rigid segments, that rotate around 

centres of rotation, C. R. located at the column face on the 

level of the neutral axis Fig. (5-1a). This results in the 

reinforcement crossing the tangential crack at the column face 

yielding see Figures (5-1a) (3-10) as confirmed by Kinnunen and 

Nylander (30) and Anis (2). 

The inclined crack caused by the radial shear stresses has an 

inclination approximately equal to 25° see Fig. (5-1b) which 

value has been verified from the author's test specimens in the 

present work. 

5-1-1 Neutral Axis of the seemental Element 

In the proposed method of calculation of punching shear 

resistance, the slab is divided into four rigid segments. Each 

rigid segment shown in Fig. (5-2a) is subjected to the internal 

steel and concrete forces obtained from the rotation of the 

element around the centre of rotation C. R., and the external 

load. The forces on an element are: 

- The external load PAO/2n acting on the circumference of the 

slab, where 0O is the angle of the sector element. 

- Fct the radial resultant of the tangential forces in the 

concrete. 

- Fcr the radial force in the concrete at the column face. 

- Fsr the radial force in the steel cutting across the shear 

crack. 
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Fig. (5-1) Model of Slab Deformation 

a) without shear crack b) with shear crack 

, 40=t: angle subtended by a radial segment 
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- Fst the resultant of the tangential forces in the steel. 

Using the idealized stress-strain curve for concrete Fig. (4-3) 

and the strain profile for a rigid body rotation Fig. (5-2a), 

and also assuming that the radial concrete stress at the column 

face is known, as will be described later, the concrete forces 

on a rigid segment can be calculated from the rotation at 

failure Wf. 

From the rigid body rotation, the tangential strain at the 

compressed face 

Ect = V1f"x/r (5-1) 

and the tangential concrete force obtained from the stress 

block associated with the concrete strain for an element at 

radius r and of width dr is 

dFct = fc Kc x Kx dr (5-2) 

in the above equation Kc and Kx are functions of the extreme 

fibre concrete strain on the idealized stress-strain curve as 

shown in Fig. (5-2b) where 

Kc is extreme fibre stress 

Kx is average stress/extreme fibre stress 

The values of Kc and Kx can be expressed in terms of yrf and r 

recl = Vf. x/ECl (5-3) 

recu = Wf. x/Ecu (5-3') 

For ro <r< r£cu 

Kx = 0.85 

Kc = 0.85 
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For recu <r< recl 

(Vfx/r) -Ccl 
Kx = 0.5 + 0.35[ ]40.85 

(Ecu-Ecl ) 

Kc = 0.85 

For recl <r< r3 

Kx = 0.5 

Kc = 0.85 Aft (x/Ecl. r) 

And Fct can be calculated from Eq. (5-2) as 

For ro > reel 

Fct = 0.425 fc X2 (1ff/Ecl) In (r3/ro) 

For rEcu < ro <rEc 1 

(5-4) 

in( rýcol ) -Eci (rccl-ro) 
Wf r3 Fct = 0.45 fc x [(rEcl-r +x In( )] 

Ecu - Ec 1 cc 1 rec 1 

.... (5-5) 

For ro recu 

Fct = fc x [0.722 (rccu-ro) +0.425 [recl-rEcu+ 

rEC1 In (- Ccl (reCi-rEcu) 

+ 
r£cu 

+x 
Vf 

in ( r3 )] (5-6) 
£cu-scl Ccl rEci 

For square slabs and square columns 

r3 = 2A/7E 

ro = 2a/n 

A is the slab length = 0.5 x span and 

a is the side length of the column. 
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For rectangular slabs and columns ro and r3 should be taken as 

if the slabs had circular perimeters 

r3 = (A + B) /7[ 

r0 = (a + b) /7[ 

A=0.5 x slab length 

B=0.5 x slab width 

a and b are length and width of loaded area or column. 

For continuous slabs r3 should be taken at a distance where the 

radial bending moment is equal to zero (i. e. approx. 0.25 span). 

The radial concrete force at the column face Fcr can be 

calculated as a first approximation as 

Fcr = fcc ýxc 

- fcc = 0.85 fc x 1.2 

(5-7) 

Where the factor 1.2 takes into consideration the effect of 

biaxial stresses near the column as described in section 4-1-2 

-c is the length of the frontal bearing area of the radial 

segment shown in Fig. (5-2) c= column perimeter /4= nro/2 

- is the size coefficient defined in section 4-3 

4=d OÖ 

Neglecting the differences between Fcr and its horizontal 

component 

Fc = Fcr + Fct 04 (5-8) 
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Using the idealized stress-strain curve for ordinary steel Fig. 

(5-3) and the failure rotation 1vf from the rigid body rotation 

the tangential steel strain is defined as 

Est = Wf (d/r) (1- (x/d) ) (5-9) 

The radius at which the steel yields is 

rs = 'Vf (d/esy) (1- (x/d) ) (5-10) 

The total tangential steel force acting on the radial segment 

can be expressed as below 

For the elastic state...... ....... (a) 

rs < rW 

r3 
Fst =f pt Est d dr 

rW 

Where 

(5-11) 

ast is the steel stress in tangential direction. 

Fst = Pt fy d rs ln(r3/rw) (5-11') 

The radial steel forces acting on the radial segment are given 

by 

Fsr = Pr fy d rs 0: (5-12) 

For the elasto-plastic state ...... (b) 

rs > rw 

Fst = Pt fy d ((rs-rw) + rs In (r3/rs)) (5-13) 

Fsr = Pr fy d rw 04 (5-14) 

where rw is the radius at which the failure 

surface intersects the plane of the 

reinforcement. rw = ro + (d-x)cot250 (5-15) 
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where pt is the ratio of tangential reinforcement 

pr is the ratio of radial reinforcement 

d is the slab effective depth 

The total radial steel force on the segment for either case 

(a) or (b) is 

Fs* = Fsr + Fst 04 (5-16) 

To calculate the neutral axis depth in the slab segment the 

condition of equilibrium of the forces in the radial direction 

is applied 

Fc* - Fs* =0 (5-17) 

Where Fc* is found from eq. (5-8) and Fs* from eq. (5-16). 

In the calculations A4 and esy are taken as, 0O=1.57 radians 

and esy = fy/ES 

For non-uniform arrangements of steel the ratio of 

reinforcement is taken as an average over the length and the 

width of the slab (i. e. p= (px + py)/2 ) 

The rotations of the slab measured in the tests carried out for 

this thesis, and in other works (30) (52) indicate that the 

segment rotation y1f varied from 0.008 to 0.016 radians in 

those specimens which failed in shear. Within this range an 

increase or decrease in the value of the segment rotation of 

the order of 0.004 radians has little influence on the 

calculation of the neutral axis depth see Table (5-1). In the 

present work the segment rotation Wf is taken as 0.012 

radians. 
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Table (5-1) The influence of segment rotation 

on the neutral axis depth 

yl radian x mm 

0.008 14.7 25.8 16.7 
0.009 14.8 25.5 17.4 
0.010 15.0 25.3 17.6 
0.011 15.1 25.3 17.5 
0.012 15.0 25.5 17.4 
0.013 14.9 25.6 17.3 
0.014 14.8 25.7 17.2 
0.015 14.8 25.7 17.2 
0.016 14.7 25.7 17.1 
0.017 14.6 25.6 17.1 
0.018 14.6 25.5 17.0 
0.020 14.5 25.2 17.0 
0.030 14.4 21.3 16.8 

SLAB B1 SLAB IA15a5 SLAB 15 

(PRESENT WORK) (Ref. 30) (Ref. 52) 

p= 1.00 % p= 0.8 % p=0.75 % 

fc= 27 N/mm2 fc= 26.8 N/mm2 fC= 28.2 N/mm2 

d= 62 mm d= 117 mm d= 77 mm 

yf f= 0.015 radian '9f = 0.012 radian Vf= 0.017 radian 
fy= 530 N/mm2 fy= 450 N/mm2 fy= 480 N/mm2 
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5-1-2 Analysis of the Proposed Model and Failure Criteria. 

After the internal forces acting on the rigid sector 

element have been formulated, the neutral axis depth can be 

found. 

Referring to the model shown in Fig. (5-4) and using the 

vertical equilibrium condition : 

V04/27E = Fcr"sina (5-18) 

Where: 

Fcr = ßc"x"c"4 (5-19) 

x is the neutral axis depth 

c The length of the bearing area of the radial segment 

The size factor, which has been taken as 
4 200/d as in 

Section 4-3, with d in mm 

ßc is the concrete bearing capacity. 

To make use of the equilibrium and compatibility equations so 

set up, a failure criterion is necessary. The distribution of 

stresses in the region of the slab-column joint is very complex 

and it must be expected that the strength of the concrete in 

this region is different from that in simple compression or 

shear alone. As has been mentioned in sections 4-1 and 4-2 the 

strength of concrete loaded in a certain direction is to a 

large degree dependent upon the magnitudes of the stresses in 

other directions. However in view of the complexity of the 

local stress distribution it is not possible to express the 

criterion of failure as a simple function of the ratios of 

tangential, radial and vertical stresses. 
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The failure takes the form of the front part of the radial 

segment failing to support the bearing force at the column face 

and test data show that the failure can be taken to occur when 

the angle of the compressive force ((X) reaches 15° see 

Figs. (5-4), (5-5) and the compressive stress at the front part 

of the radial segment reaches the stress limit determined on 

the basis of a statistical analysis of the available test data, 

as described below. 

Fig. (5-5) shows the relationship between ( ß, /fc ) and (d/ro) 

for some of the available test results. The values of 6c have 

been calculated by equating Fcr"sinl5° to V"04/2n 

The curve representing the relationship shown is 

ac/fc = 1.43 In 3.33( d/r0) (5-20) 

This expression is applicable in the ranges 0.5 < ßc/fc < 3.5 

and 10 < fc < 55 N/mm2. 

The ( ßc/fc ) values calculated using equation (5-20) are in 

agreement with results obtained from six pyramid specimens 

tested by the author. The geometry and the test results are 

given in Table (5-2). 

Using the vertical equilibrium condition equation (5-18), and 

the proposed failure criterion, the punching shear capacity of 

concentrically loaded reinforced concrete flat slabs can be 

calculated from the following equation : 

VU = 0.37 " fc " 1n3.33 (d/ro) "x" ct 12 (5-21) 

Where : 

ct is the column perimeter. 
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Table (5-2) Pyramid Test Results 

d/ro °< 
(0) 

h 
(mm) 

Al=axb 
(mm2) 

A2 blxa1 
(mm2) 

Ultimate 
load kN 

°ctest 
fc 

Qc cal 
fc 

2.88 10 305 45x150 540x275 450 2.94 3.23 
2.88 10 305 47x150 550x275 490 3.06 3.23 

2.82 10 307 50x150 545x270 550 3.23 3.20 
3.35 15 300 50x145 540x310 490 2.98 3.44 
3.35 15 305 50x145 540x310 505 3.07 3.44 
3.35 15 300 50x150 545x320 495 2.91 3.44 

R= 40° fc = 22.7 N/mm2 

d_ä. TT 
r0 2, b 

Zoo 
Vd 

r, = 2 b/]l 

- =a 

h 

The test specimens were supported over the full area of 

their bases and loaded vertically in a test-machine with 

its platens moving paralle to one another 
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5-2 Punching in the presence of transfer moments 

A- Horizontal loading 

Moments due to horizontal loads are transferred from the 

column to the slab by means of the bending, torsional 

resistances of the vertical slab-column interfaces and by 

uneven shear. Fig. (1-9a) shows the local yield-line mechanisms 

for an internal slab column connection under horizontal 

loading. The internal force system for a slab-column connection 

transferring pure moment is presented in Fig. (5-6) part b of 

which shows a section parallel to the plane of the external 

moment M while part c shows forces on a side segment of the 

slab. Assuming equal top and bottom steel, the forces acting in 

the transfer of the external moment from the column to the slab 

and shown in Fig. (5-6b) are the vertical resultants (Fv) of 

the compressive forces (Fcr) in the concrete acting at a lever 

arm of c, the horizontal resultants (FH) of the compressive 

forces (Fcr) acting at a lever arm of (h-x), the steel forces 

(Fs2) with a lever arm ho. The effects from Fig. (5-6c) are 

forces (Fsl) in the slab reinforcement with a lever arm ho, and 

the components (Fe) of the compresive concrete forces acting 

between the segmental elements. 

Assuming that the failure criterion for a slab under horizontal 

loading is the same as that for concentric loading as in 

Section (5-1-2) . 

Fcr = 1.43 Ln3.33(d/ro) fc"x"c 2 

Fv = Fcr Sin a 
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FH = Fcr Cos a 

Fs = Fsl + Fs2 is the total steel force on segment 1 Fig. (5-2a) 

and it can be estimated as in equation (5-16). 

The resisting moment can be expressed as 

8c 
Mu = FS h0 + Fv c+ Fu (h-x) + Fe (5-22) 

Where :h is the slab thickness 

ho is the distance between the centres of top and 

bottom reinforcement 

c is the column perimeter /4 

x is the neutral axis depth 

8 is the lever arm between the compresive concrete 

forces Fe. 

It is difficult to estimate the resisting moment produced by 

the forces Fe (i. e. Fe"S). The difficulty arises from 

estimating the lever arm between the forces. However since the 

forces are necessarily inclined the lever arm must be small and 

the moment may reasonably be neglected. 

Available tests on flat slab-column assemblies under horizontal 

loading [Hanson & Hanson (A1, A3, B7, C8) (23), and Stamenkovic & 

Chapman (MI1, MIrl)(63)] are compared with the predictions of 

equation (5-22). 
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Table (5-3) shows a comparative analysis of the test moments 

and the moments calculated using equation (5-22) which shows 

satisfactory correlation between the two. 

Slab No h ho c Fs M test Mu eqn5-22 M 
1. 

mm 

1 

mm mm KN KNm KNm Mu 

Stamenkovic & Chapman 

Mil 76 36 127 200 18.40 17.03 1.08 

MIr1 76 36 114 189 18.60 15.72 1.18 

Hanson & Hanson 

Al 76 36 152 341 22.33 24.26 0.92 

A2 76 36 152 348 24.26 24.51 0.99 

B7 76 36 228 334 35.68 29.52 1.20 

C8 76 36 228 352 31.37 30.50 1.03 

Table (5-3) Moment tests - comparison between calculated 

and test moments. 

B- Combined vertical and horizontal loading 

For combined vertical and horizontal loading an interaction 

curve can be derived in terms of V/Vu and M/Mu where :V and M 

are the observed failure load and moment, and Vu and Mu are 

calculated from equations (5-21) and (5-22) respectively. 

From the preceding sections, the radial compression forces Fcr 

at the column face in the direction of the eccentricity is a 

linear function of the loading once the angle a at failure is 

assumed to be constant. 
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This applies to both concentric vertical loading and to pure 

moment loading. Then for any combination of vertical and 

moments loads : 

It Fir Sin a= kl V+ k2 M" 

from which 

VM 
+=1 

Vu mu 
(5-23) 

Satisfactory agreement is obtained between the calculated and 

the proposed values of the interaction formula, see Table (5-4) 

and Fig. (5-7) . 

Slab 
No 

v 
KN 

Vu 
KN 

m 
KNm 

Mu 
KNm 

M 
vu Mu 

Hanson & Hanson 

Al 5.85 118.0 22.40 24.20 0.98 

A2 4.90 117.0 24.80 24.50 1.05 

B7 5.00 89.4 36.50 29.50 1.29 

C8 5.70 91.7 31.40 30.50 1.09 

A12 27.40 123.0 20.90 20.70 1.09 

C17 32.10 91.0 25.20 22.10 1.49 
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Table (5-4) continued 

Slab v Vu M Mu VM 
No KN KN KNm KNm Vu Mu 

Anis 

B3 194.00 252.0 18.30 61.60 1.06 

B4 142.00 248.0 26.70 61.00 1.01 

B5 127.00 247.0 39.60 60.60 1.09 

B6 117.00 256.0 54.40 62.40 1.35 

B7 70.80 264.0 66.90 63.90 1.31 

Stamenkovic & Chapman 

CI 1 86.00 123.0 7.50 18.65 1.10 

2 61.00 111.0 10.30 17.30 1.14 

3 35.00 104.0 14.20 16.50 1.19 

4 21.00 103.0 19.80 16.40 1.41 

MI 1 18.40 17.10 1.07 

CIrl 69.00 98.0 5.86 15.30 1.08 

2 61.00 110.0 9.88 16.70 1.14 

3 39.00 109.0 15.30 16.60 1.27 

4 21.00 105.0 16.30 16.10 1.21 

MIrl 18.60 15.70 1.18 

Kamaraldin 

SAl 109.00 109.0 5.60 18.30 1.30 

SA3 85.00 115.0 8.50 18.95 1.18 

SA4 49.00 108.0 16.40 18.20 1.35 

SB2 61.00 128.0 21.90 22.80 1.45 

SC2 65.00 127.0 21.90 21.40 1.53 

SD2 56.00 116.0 17.36 20.10 1.34 

Table (5-4) Results of slabs tested under combined 

vertical and horizontal loads. 
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However, for practical purposes an empirical formula is 

developed in Section (5-2-1) for the calculation of eccentric 

punching resistance of internal slab-column connection. 

5-2-1 Punching resistance of eccentrically loaded slabs 

Moment transfer between slab and column occurs due to 

uneven distribution of live load, uneven spacing of columns, or 

in some cases lateral loads. Tests results have indicated that 

an increase in the moment (Mt) transferred between the slab and 

column produces a reduction in the punching strength. Assuming 

that the limiting concrete stress for eccentric loading is the 

same as that for concentric loading, the effect of eccentricity 

on the punching shear resistance may be formulated as 

V1 

Vo 1+K"e 

Where : Vo is the shearing capacity of the slab 

at zero eccentricity 

V is eccentric punching load 

e is the eccentricity of the load 

K is coefficient dependent on variables other than 

eccentricity. 

Fig. (5-8) shows the results of three series of tests of 

eccentrically loaded flat-slabs by, Stamenkovic and Chapman 

(63), Anis (2) and the author in the present work. The only 

variable in each series was the eccentricity (e) while the 

effective depth (d) and column dimensions were kept constant. 
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The values of "K" for the three series are found to be 1/206 , 

1/302 and 1/240 . The main variables in the three series were 

the column dimensions and slab effective depths. 

Experimental works by Hanson & Hanson (23) and the present 

study show that the effect of column dimensions on punching 

resistance is best represented by the column perimeter as the 

column shape has negligible influence. Fig. (5-9) shows the 

results of the tests by Hanson & Hanson (23) and Stamenkovic & 

Chapman (63) plotted against " e/c ", the trend in the graph 

follows that represented by : 

V 
=f( 

Va 

1 

1+ e/c 

Where c is column perimeter divided by 4 

Further studies on available experimental works in the 

literature in conjunction with the test results produced in the 

course of the present study show that the effects of c and d 

may be incorporated in the above expression as : 

V1 

vo 
+e 1 

Kl(c + K2d) 

In Fig. (5-10) values of V/Vo for 43 available test results on 

eccentrically loaded slabs are plotted against e/(c+3d) , the 
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best fit line for all the points is presented by the following 
3 

equation in line with K1 & K2 values of 0.7 & 2.1 respectively. 

V1 

Vo 
+e 1 

0.7 (c+3d) 

(5-24) 

The above equation is similar to that of BS8110 except that in 

BS8110, c is the column dimension in the direction of 

eccentricity. 

5-3 Serviceability 

The use of high-strength materials in structures results in 

shallow elements which may cause deflection problems. Such 

problems can be reduced if a relatively simple and accurate 

method exists for the computation of deflections. 

Fig. (3-3) shows that the deflections of flat slabs are 

dependent on the type of loading and different variables of the 

slabs. To be able to obtain the deflections for eccentrically 

loaded slabs, the values of the joint rotation, (9j) and the 

slab effective stiffness (Kse) must be found. 

The joint rotation is 

ei = Mt/Kse 

Where Mt is the moment transferred between the slab and column 

Kse is the slab effective stiffness 

6j is the rotation of the slab-column joint, see 

Fig. (5-13) 
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The value of the transfer moment (Mt) maybe found by using the 

simple BS8110 equivalent frame method, as this method has been 

shown to give an adequate estimate of column moments. 

The difference between the deflection of a flat slab structure 

and the equivalent beam-column frame is due to the relative 

lack of continuity between the slabs and columns. The slab- 

column frame is more flexible than a beam-column frame with the 

same EI values for its members see Fig. (5-11). 

In the case of flat slabs the stiffness of the horizontal 

members of the frame should be obtained through the evaluation 

of an effective width of slab (be). 

The calculation of a value for (Kse) is more of a problem 

because the stiffness of the strip reduces with increasing load 

due to the propagation of cracks. A method of finding the 

effective stiffness of the slab is to use the cracked section 

stiffness developed by Branson (10) 

Kse = Ksg( 
Mtcr 

)3 + Ks. cr 11 _ (. 
Mtcr 

)3J (5-25) 
Mt Mt 

Where: Ksg = 
Ec"be"h3 

1 (1 - µ2) 

is the gross uncracked stiffness of the slab 

Ec is the initial tangent modulus of elasticity for concrete to 

be taken as 4250'fc N/mm2 

h is the slab thickness 

be is the slab effective width to be taken as given by 

Stiglat(64) 
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be = 0.22 1+2 cl + 0.8 c2 for 11 0.1.1 or 

be = 0.6 1+2.5 cl 0.5 c2 for 11 0.1.1 

µ= Poisson's ratio 

see Fig. (5-12) 

l2Elcr 
Ks"cr = 

lýl 2 is the fully cracked stiffness of the slab. 
- µ) 

For a rectangular slab section: 

EIcr = Es. As. z. (d-x) 

x is neutral axis depth and can be calculated as 

x= d[ (2+(Xe"p)ae"p - ae"p] 

z= lever arm = d-(x/3) 

As/(be"d) The ratio of reinforcement in the effective width 

ae = Es/Ec 

Es = Modulus of elasticity of steel 

A reasonable estimate of Mtcr can be obtained if the behaviour 

of the joint is studied 

In Fig. (5-13), Mt/8j curves are drawn for six slabs tested by 

the author in the present work, 6j is taken as 

ej =eS - eC 

where es = (6E + 0W) /2 

Where OE and OW are the rotations measured by the 

inclinometers on the slab surface 

The rotation signs are positive clock-wise and negative anti 

clock-wise, see Fig. (5-13) . 
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Slabs SA1, and SA4 were similar but subjected to loads with 

different eccentricities. It is clear that there is no unique 

Mt/8j relationship and that the stiffness of the joint depends 

largely on the vertical load to which it is subjected. 

It has been assumed that. 

p Mtcr 
Mcr =+ 

K1 K2 

where Mcr -(fctflex - h2 - be)/6 

f ctflex = 0.6 (2ýj 

fctflex*h2 

6 
_p+ 

Mtcr 

K1 K2-be 

In the absence of a transfer moment 

fctflex"h2 

6 

Pcr 

K1 

Where Pcr is the cracking load. 

From the author's test data and Kinnunen & Nylander (30) K1 was 

found to be approximately equal to 6. See Fig(5-14). 

With K1 known K2 could be determined from slabs tested under 

eccentric loading by the author and Anis (2) and was found to 

be approximately equal to 4.5, see Table (5-5). 
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Table (5-5) Estimated value of K2 

Slab No pcr Mtcr h d fc K2 
KN KNm mm mm N/mm2 

SAl 37 1.48 80 64 33 4.15 

SA4 27 7.40 80 64 32 4.34 

SB2 25 7.40 80 62 28 4.70 

SC2 31 7.38 80 62 37 4.90 

SD2 27 7.40 80 62 31 4.45 

Anis Slabs 

B5 36 11.20 102 76 29.4 3.95 

B6 32 14.80 102 76 31.8 3.93 

B7 24 22.70 102 76 34.3 4.30 

With K1 and K2 are known, Mtcr could be determined as: 

fctflex ' h2 
Mtcr = (5-26) 

1.33 1 

be e 

Where e is the load eccentricity = Mt/P 

Once the effective stiffness is found for a particular load, 

its value can be used for the entire negative moment region of 

the slab. Deflections can be assessed from the equivalent frame 

moments, this negative moment stiffness and Branson's value for 
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Fig. (5-14) Per and flexural stress relationship 
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the stiffness of the positive moment region. 

To check the validity of the Kse values against test results, 

the joint rotation can be obtained as 

Mt 

Kse 
(5-27) 

and compared with experimental rotations 9j see Fig. (5-13). 

Comparisons with the present test data are given in Figs. (5- 

15), (5-16) and (5-17) . 

Due to a loading error the load on slab SA3 had to be released 

and the slab was reloaded again. The measured rotations may not 

be quite reliable. 

I 

5-3-1 Proposed deflection calculation procedure 

In using the above proposals to calculate the deflection of a 

flat slab for a given load, the following steps are to be 

followed. 

Step (i) Carry out equivalent frame analysis in accordance 

with BS 8110 recommendations. 

Step (ii) Determine the moments transferred to columns 

(ie. Mt), load eccentricities at column positions 
Mt 

(ie. V) and extents of positive and negative 

moment regions along the slab. 

Step (iii) Calculate negative moment region stiffness (Kse) 

from equation 5-25 above. 
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Step (iv) Calculate positive moment region stiffness as 

K=K (MMr)3 + Kscr C1 (MMr)3I 

where Mcr = (fct flex " h2 . be)/6 

M is the positive moment 

Step (v) Re-analyse the equivalent frame of step (i) using 

variable slab stiffnesses calculated in steps (iii) 

and (iv) to determine the slab deflection. 

It may be noted that step (v) could be treated as the first stage 

of an iterative procedure of design including the determination 

of reinforcement. 
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CHAPTER SIX 

TEST ANALYSIS 

6-1 Introduction 

In this chapter the results of tests on slabs by the Author 

of the present work and various other authors are compared with 

thefailure loads calculated by the proposed method of analysis. 

These comparisons provide a valuable means of examining the 

validity of the assumptions used in the method of analysis, 

since the slabs tested exhibited a wide range of properties. 

Also the analysis is extended to compare the proposed method 

of predicting failure loads with other method proposed by 

various authors and Codes of Practice. 

6-2 Concentric loading tests 

The methods of testing and the experimental details of most 

of the tests have already been described briefly in chapter 

one. The details which are of relevance to the calculation of 

the failure loads are given in this section. 

6-2-1 Slabs tested by Elstner and Hocinestad 

30 slabs were tested by Elstner and Hognestad (20). 15 

have been reanalysed by the proposed method, the remaining ones 

have characteristics such as: 
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supports along two sides, supports at four corners, or shear 

reinforcement, which are not relevant in this analysis. The 

slabs were 1825 mm square and 152 mm thick. The main variables 

were the concrete strength, the ratio of tension reinforcement 

and the column size. Details of the tests and calculated 

results are given in table (6-2-1). 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fc 
2 N/mm 

fy 
2 N/mm 

x 
mm 

Vt 
KN 

Vc 
KN 

Vý 
Vt- 

Al-a 1162 162 254 1.17 117 14.1 332 46.6 303 281 0.93 

Al-b 1162 162 254 1.17 117 25.2 332 32.8 365 320 0.87 

Al-e 1162 162 254 1.17 117 20.3 332 37.5 356 325 0.91 

A2-a 1162 162 254 2.48 114 13.7 321 69.5 334 400 1.19 

A2-b 1162 162 254 2.48 114 19.5 321 57.5 401 471 1.17 

A2-c 1162 162 254 2.48 114 37.4 321 39.0 467 612 1.31 

A7-b 1162 162 254 2.48 114 27.9 321 46.3 512 542 1.06 

A3-a 1162 162 254 3.72 114 12.8 321 84.6 356 455 1.27 

A3-b 1162 162 254 3.72 114 22.6 321 56.3 445 534 1.20 

A3-c 1162 162 254 3.72 114 26.6 321 60.8 534 679 1.27 

A3-d 1162 162 254 3.72 114 34.6 321 43.4 547 630 1.15 

B-9 1162 162 254 2.24 103 43.9 341 30.5 505 518 1.02 

B-11 1162 162 254 3.39 102 13.5 409 70.8 329 373 1.13 

B-14 1162 162 254 3.39 102 50.6 326 35.1 579 693 1.19 

A5 1162 227 356 2.47 114 27.8 321 45.8 534 452 0.85 

Table (6-2-1) slabs tested by Elstner and Hognestad. 
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It is seen that a good agreement between the test and 

calculated failure loads was obtained for slabs having 

reasonable ratios of reinforcement which might arise in real 

structures. 

6-2-2 Slabs tested by Moe 

Moe (40) tested 31 slabs under concentric loading. The 

slabs were 1828 mm square with square columns and an overall 

thickness of 152 mm. Some of the slabs had holes in the 

vicinities of the columns and some of them had shear 

reinforcement. The proposed method is not applicable to these 

cases. Only 12 of the 31 tests were used in the present 

comparison. The main variables were the concrete strength, the 

column dimensions, the ratio of tensile reinforcement and in 

series "S" varying degrees of concentration of the tensile 

reinforcement inside the punching area. The details of the 

tests and the results of the analysis are shown in table (6-2- 

2). The tabulated results indicate that the proposed method of 

analysis gives a good agreement with the actual values. 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fo 
N/mm2 

fy 
N/mm2 

x 
mm 

Vt 
KN 

Vo 
KN -V _ Vt 

Ml 1150 194 305 1.50 114 21.2 488 46.3 440 394 0.90 

Hl 1150 162 254 1.15 114 26.6 333 30.7 379 343 0.90 

S1-60 1150 162 254 1.06 114 23.8 407 33.8 396 338 0.85 

S2-60 1150 162 254 1.06 114 22.5 407 34.9 362 330 0.91 
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Table (6-2-2) continued 

S3-60 1150 162 254 1.06 114 23.0 407 34.4 370 332 0.90 

S4-60 1150 162 254 1.06 114 24.3 407 33.3 340 340 1.00 

S5-60 1150 162 254 1.05 114 22.2 399 34.1 318 318 1.00 

S1-70 1150 162 254 1.06 114 25.0 491 34.7 400 364 0.91 

S3-70 1150 162 254 1.06 114 25.0 491 34.1 385 358 0.93 

S4-70 1150 162 254 1.06 114 25.8 491 28.2 380 306 0.80 

S5-70 1150 162 254 1.05 114 23.0 482 35.4 342 342 1.00 

R2 1150 97 152 1.37 98 26.6 333 28.1 317 303 0.95 

Table (6-2-2) Slabs tested by Moe. 

6-2-3 Slabs tested by Kinnunen and Nvlander (30) 

These tests were carried out on circular slabs having 

approximately 1710 mm diameter. The slabs were supported by 

tie-rods along the circumference and an upward vertical load 

was applied at the centrally placed column. The slabs had 

different types of tensile reinforcement, some of them had only 

ring reinforcement and these have not been considered as the 

radial resistance of the slabs were zero and the failure 

mechanism in this case is different from that of slabs having 

two way reinforcement. Only 6 tests of the two-way reinforced 

slabs are suitable for analysis as in the remaining slabs the 

column stub formwork accidentally penetrated the slab during 

casting. 

The results of the analysis given in table (6-2-3) show good 

agreement between test and calculated failure loads. 
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SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fc 
2 N/mm 

fy 
2x N/mm ý min 

Vt 
KN 

Vc V 
K?; I v-r 

IA15a5 885 75 118 0.80 117 26.8 450 25.5 260 255 0.98 

6 855 75 118 0.79 118 26.2 463 26.5 280 260 0.93 

IA30a24 855 150 235 1.01 128 26.4 464 34.2 438 410 0.94 

25 855 150 235 1.04 124 25.1 460 34.6 416 385 0.92 

IA30d32 855 150 235 0.49 123 25.6 457 21.4 263 243 0.92 

33 855 150 235 0.48 125 26.6 470 21.8 263 261 0.99 

Table (6-2-3) slabs tested by Kinnunen and Nylander. 

6-2-4 Slabs tested by Kinnunen, Nylander and Tolf 

16 tests are reported in reference (32) . The test slabs 

were circular and supported on circular centra. 1 columns. The 

investigation was carried out to study the influence of slab 

thickness, and the effect of shear reinforcement on punching 

shear strength. Some of the slabs thus had shear reinforcement. 

The proposed method is not applicable to these cases and only 6 

tests were considered in the comparison. The test and 

calculated results are given in table (6-2-4). 

SLAB r3 ro C p d fo fy x Vt Vo V 
No mm mm mm % mm N/mm 2 N/mm 2 mm KN KN Vt 

1 600 62.5 98 0.80 100 28.6 706 22.4 216 219 1.01 

3 600 62.5 98 0.81 99 22.9 701 26.2 194 205 1.05 
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Table (6-2-4) continued. 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

Ifc 

2 N/ mm 
fy 

2 N/ mm 
x 
mm 

Vt 
KN 

Vc 
KN ýV 

Vt 

13 600 62.5 98 0.34 98 26.6 720 13.6 145 124 0.85 

14 600 62.5 98 0.35 99 25.1 712 13.9 148 119 0.81 

17 1200 125 96 0.34 200 25.4 668 33.9 489 418 0.85 

18 1200 125 96 0.35 197 24.2 664 34.9 444 409 0.92 

Table (6-2-4) slabs tested by Kinnunen, Nylander and Tolf. 

6-2-5 Slabs tested by Hanson 

10 Light-weight aggregate concrete slabs were tested by 

Hanson (24). Only one slab could be analysed by the proposed 

method, the remaining slabs had embedded ducts or shear 

reinforcement. The slab was 3660 mm square and supported by a 

355 mm square central column. More details of the slab and the 

analysis results are listed in table (6-2-5). 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fo 
N/mm 2 

fy 
N/mm2 

x 
mm 

Vt 
KN 

Vo 
KN 

Vý 
Vt 

B4 2330 226 355 0.94 162 22.2 450 52.7 5561 5921 1.06] 

Table (6-2-5) slab tested by Hanson 

6-2-6 Slabs tested by Hawkings, Fa llsen and Hinojosa 

Tow slabs are reported in reference (25). The slabs were 

1825 mm square and 150 mm thick, the columns were square and 

centrally located. Test and calculated results are shown in 

table (6-2-6). 
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SLAB r3 ro C p d fc fy x Vt VC V 
No mm mm mm % mm 2 N/mm 2 N/mm mm KN KN ý 

Vt 

2 1162 247 388 1.11 117 26.3 411 32.9 352 296 0.84 

9 1162 185 290 0.75 121 29.5 414 25.8 316 324 1.02 

Table (6-2-6) slabs tested by Hawkins, Fallsen and 

Hinojosa. 

6-2-7 Slabs tested by Narasimhan 

Result of tests on square slabs carried out by Narasimham 

(43) are compared with the calculated values in the following. 

Since some of the concentrically loaded slabs had shear 

reinforcement, only two slabs are used in the present 

comparison. The slabs were 2m square with 305 mm square 

columns. The details and the calculated and observed failure 

loads are given in table (6-2-7). 

SLAB r3 ro C p d fo fy x Vt Vo y 
No mm mm mm % mm N/mm 2 N/mm2 mm KN KN t 

L7 1274 194 305 1.11 143 35.5 476 37.1 687 623 0.91 

L9 1274 194 305 1.11 143 33.1 476 38.7 588 606 1.03 

Table (6-2-7) slabs tested by Narasimham. 

6-2-8 Slabs tested by Stamenkovic and Chapman 

Two of the ten tests carried out by Stamenkovic and 

Chapman (63) on internal slab-column joints could be analysed 
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by the proposed method. The remaining ones were eccentrically 

loaded and will be analysed latter. The slabs were 914 mm 

square and 76 mm thick, reinforced with a top mesh only. Slab 

V/I/2 had a 127 mm square column while slab V/I/l had a 76x152 

mm column. 

Table (6-2-7) shows good agreement between test and calculated 

failure loads. 

SLAB r3 ro C p d fo fy x Vt Vo Vý 
No mm mm mm % mm N/mm 2 N/mm 2 mm KN KN Vt 

V/I/2 582 80.0 127 1.17 56 25.9 434 14.1 117 109 0.93 

V/Ir/1 582 72.5 114 1.17 56 25.2 414 13.8 109 105 0.96 

Table (6-2-8) Slabs tested by Stamenkovic and Chapman 

6-2-9 Slabs tested by Regan 

The twenty eight tests reported in reference (56) are 

divided in five groups. All the tests were of slabs supported 

at four sides and subjected to concentrated loads at their 

centres. 

The seven slabs of Group 1 were 2m square and 100 mm thick. 

They were tested simply supported at four sides with spans of 

1.83 m. Loads were applied through 200 mm square columns. The 

main variable in this group was the arrangement of the 

reinforcement. 

The six slab specimens of group II were designed to study the 

size effect on punching resistance. The slabs were scaled 

linearly in the ratios 1.0,0.64 and 0.32. 

The slabs were square simply supported at four edges and loaded 
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through circular loading disks. The dimensions of the slabs 

were as follows. 

SLAB 
No 

h 
mm 

d 
m 

diameter of the 
loading disc mm 

1 
mm 

Span 
mm 

II 1 250 200 250 2745 2575 

II 2 160 128 160 1800 1630 

II 3 160 128 160 1800 1630 

II 4 80 64 80 900 730 

II 5 80 64 80 900 730 

II 6 80 64 80 900 730 

Three of the six slabs reported in group III were analysed, 

they were circular with diameters of 1.5 m and 120 mm thick. 

The slabs were loaded centrally through 150 mm diameter steel 

plates and simply supported by eight tie bars situated in a 

circle of diameter equal to 1.37 m, the principal variables in 

this group were the concrete strength and the reinforcement 

ratio. 

The four specimens of group IV were as shown in Fig. (6-1). The 

slabs were 100 mm thick. An upward load was applied at the 

centre through a 160 mm square plate and downward loads were 

applied at the four sides of a 1.83 m square, see Fig. (6-1). 

The principal variable in this group was the ratio between the 

central load (upward load) and the restraining moments at the 

edges of the 1.83 m square defined by the downward loads. 

Slabs IV 1 had no boundary moments and the proposed method was 

not applied to this case. 
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Fig. (6-1) Regan Loading systems of slabs group IV 

The slabs of group V were 1.6 m square and 150 mm thick. They 

were simply supported at all four edges on spans of 1.5 mm, the 

principal variable between tests was the detail of the load 

area. 

More details of the slabs in all groups and test results are 

given in table (6-2-9). 

195 

DOWNWARD UPWARD DOWNWARD 
LOAD LOAD LOAD 



SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fc2 
N/mm 

fy2 
N/mm 

x 
mm 

Vt 
KN 

VC 
KN 

V, _. 

I1 1165 127 200 1.20 77 25.8 500 23.2 204 200 0.96 

I2 1165 127 200 1.20 77 23.5 500 24.4 186 191 1.02 

I3 1165 127 200 0.92 77 27.5 500 19.4 204 178 0.89 

I4 1165 127 200 0.92 77 32.3 500 17.8 204 192 0.94 

I5 1165 127 200 0.75 79 28.2 480 17.4 175 168 0.96 

I6 1165 127 200 0.75 79 22.0 480 19.8 175 149 0.85 

I7 1165 127 200 0.80 79 30.5 480 17.3 196 181 0.92 

II 1 1639 125 196 0.98 200 34.9 530 55.7 869 942 1.08 

II 2 1038 80 126 0.98 128 33.3 485 31.1 402 404 1.00 

II 3 1038 80 126 0.98 128 34.3 485 30.4 378 406 1.07 

II 4 465 40 63 0.98 64 33.3 480 11.1 119 101 0.85 

II 5 465 40 63 0.98 64 34.3 480 10.9 107 103 0.96 

II 6 465 40 63 0.98 64 36.0 480 10.6 107 105 0.98 

III 1 685 75 118 0.83 95 23.2 494 21.9 202 184 0.91 

III 2 685 75 118 0.83 95 9.52 494 41.2 128 142 1.11 

III 3 685 75 118 0.83 95 37.8 494 16.5 219 226 1.03 

IV 2 583 102 160 1.31 80 34.0 525 20.1 236 245 1.03 

IV 3 583 102 160 1.31 ; 80 28.3 525 22.4 248 227 0.92 

IV 4 583 102 160 1.31 80 31.3 525 21.1 260 237 0.91 

V1 955 27 42 0.80 118 34.3 628 26.2 179 193 1.07 

V2 955 85 133 0.80 118 32.2 628 26.0 289 313 1.08 

V3 955 55 86 0.80 118 32.4 628 26.6 274 276 1.00 

V4 955 65 102 0.80 118 36.2 628 24.4 294 309 1.05 

V5 955 75 118 0.80 118 32.9 628 25.8 294 306 1.04 

Table (6-2-9) slabs tested by Regan. 
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6-2-10 Slabs tested by Rankin and Long 

27 Slab-column specimens subjected to concentric 

vertical loading are reported in reference (51) . Slabs with 

reinforcement indices p fy/fc of less than 0.1 were predicted 

to fail in flexure. As a result the proposed method was not 

applicable to these cases and only 19 of these tests were 

suitable for analysis. The slabs were 700 mm square and simply 

supported at four edges with spans of 640 mm. The principal 

variable in the tests were the reinforcement ratio and the slab 

thickness. More details of the slabs and the test results are 

given in table (6-2-10). 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fo 
N/mm2 

fy 
1 

N/mm 
x 
mm 

Vt 
KN 

Vo 
KN 

v 
Vt 

3 407 63.7 100 0.691 40.5 30.7 530 6.9 56.55 52.08 0.92 

4 407 63.7 100 0.821 40.5 34.8 530 7.1 56.18 60.76 1.08 

5 407 63.7 100 0.833 40.5 34.8 530 7.3 57.27 62.44 1.09 

6 407 63.7 100 11.026 40.5 34.8 530 7.9 65.80 63.44 0.97 

7 407 63.7 100 1.163 40.5 26.7 530 9.6 70.94 66.92 0.94 

8 407 63.7 100 1.292 40.5 26.7 530 0.2 71.09 71.52 1.00 

9 407 63.7 100 1.454 40.5 26.7 530 0.4 78.60 65.48 0.83 

11 407 63.7 100 0.802 40.5 29.9 530 7.5 55.00 55.16 1.00 

12 407 63.7 100 1.107 40.5 29.9 530 8.9 67.06 65.48 0.98 

14 407 63.7 100 0.691 40.5 34.0 530 6.6 52.45 55.16 1.05 

15 407 63.7 100 1.994 40.5 34.0 530 1.4 84.84 95.28 1.12 

2A 407 63.7 100 0.691 46.5 28.8 530 8.1 66.24 57.36 0.86 

3A 407 63.7 100 1.293 46.5 28.8 530 1.3 89.72 80.00 0.98 
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Table (6-2-10) continued. 

SLAB 
No 

r3 
mm 

ro 
mm 

C 
mm 

p 
% 

d 
mm 

fo 
2 N/mm 

fy 
2 N/mm 

x 
mm 

Vt 
KN 

Vo 
KN 

VC 
Vt 

4A 407 63.7 100 1.992 46.5 30.9 530 13.8 97.43 104.8 1.07 

3B 407 63.7 100 1.292 35.0 37.7 530 7.4 56.67 59.60 1.05 

4B 407 63.7 100 1.994 35.0 30'. 9 530 10.3 72.52 67.68 0.93 

2C 407 63.7 100 0.960 53.5 32.4 530 8.6 87.86 81.84 0.93 

3C 407 63.7 100 1.228 53.5 32.4 530 12.1 124.1 115.1 0.93 

4C 407 63.7 100 1.993 53.5 27.8 530 16.9 125.9 138.0 1.09 

Table (6-2-10) slabs tested by Rankin and Long. 

6-2-11 Slabs tested by the Author in the present work 

The details of 

the four concentrically loaded slabs are given in chapter two. 

Moments were applied at the four edge of the slabs so, r3 was 

calculated as 2(0.251X + 0.251y, )/n where lX and ly are the 

spans in X and Y directions respectively. 

ro was considered as (a + b) /n and C=(a + b) /2 , where a and b 

are the column dimensions. 

The results of the calculations and predicted failure loads are 

shown in table (6-2-11). 

SLAB r3 ro c p 
% 

d 
mm 

fo 
N/mm2 

fy 
N/mm2 

x 
mm 

Vt 
KN 

Vc 
KN 

0 
V No mm mm mm t 

SA2 636 95.5 150 0.55 64 34 640 10.3 141 110 0.78 

SB1 636 95.5 150 1.00 62 27 530 15.0 133 124 0.93 
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Table (6-2-11) continued. 

SLAB r3 ro C p d fo fy x Vt VC Vr 
No mm mm mm % mm 2 NIMM 2 NIMM mm KN KN Vt 

SC1 795 95.5 150 0.72 62 36 530 11.2 129 123 0.96 

SD1 795 95.5 150 0.72 62 36 530 11.2 127 123 0.97 

Table (6-2-11) slabs tested by the Author. 

6-3 ECCENTRIC LOADING TESTS 

The predicted ultimate loads for eccentrically loaded slabs 

are defined by the following equation 

Vcal 
Vec 

e 
1+ 

0.7 (C+3d) 

Where: 

Vcal is the shear strength of a similar slab loaded 

concentrically 

Vec is the shear strength of the eccentrically loaded slabs 

e is the load eccentricity- 

C =(0.25 x column perimeter). 

The results of tests carried out by the Author in the present 

work and from other researchers are analysed by the proposed 

formula in this Section. 

6-3-1 Slabs tested by Elstner and Hognestad 

Slabs All and A12 are reported in reference (20). The 

slabs were 1825 mm square with 
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356 mm square columns. The loads were intended to be applied 

eccentrically. It is doubtful whether the two slabs which were 

placed eccentrically under the testing machine in fact received 

any appreciable amount of eccentricity, since the columns were 

not free to move horizontally with respect to the machine. This 

may be why the calculated loads failure are smaller than the 

predicted ones, see table (6-3-i). 

SLAB C p d fc fy x e Vt Vc Vec ý No mm % mm 2 N/mm 2 N/mm mm mm KN KN KN _. t 

All 356 2.47 114.4 25.9 326 48.4 178 529 463 340 0.64 

A12 356 2.47 114.4 28.4 326 45.9 178 529 482 355 0.67 

Table (6-3-1) slabs tested by Elstner and Hognstad. 

6-3-2 Slabs tested by Moe 

The details of the test specimens and method of testing 

have already been given in chapters one and two. The results of 

the tests and analysis are shown in table (6-3-2). On 

inspection of the results, the proposed method of analysis 

gives reasonable agreement for all the slabs having small 

eccentricities of loading. 

The average concrete strength of slabs M2A and M4A may not be 

quite reliable because the variation in strength between the 

various batches in the same slab. Slabs M4 and M5 failed in 

negative bending before the shear capacities were reached. It 

should be noted that the slabs were simply supported along all 

four edges and that the edges were free to lift in the case of 
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large eccentricity, therefore slabs M2A, M4A, M4, M5, M8 are 

irrelevant in the present comparison. 

SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc2 
N/mm 

fy2 
N/mm 

x 
mm 

e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN Vt 

M2 305 1.50 114 26.1 481. 40.3 196 293 421 294 1.00 

M3 305 1.50 114 23.0 481 43.4 338 207 399 229 1.10 

M6 254 1.34 114 27.0 328 33.2 168 239 375 267 1.11 

M7 254 1.34 114 26.9 328 34.5 61 311 366 320 1.02 

M9 254 1.34 114 23.6 328 35.9 127 267 356 273 1.02 

M10 254 1.34 114 21.2 328 38.3 308 178 341 196 1.10 

Table (6-3-2)Slabs tested by Moe. 

6-3-3 Slabs tested by Hanson and Hanson 

Only seven of the seventeen test 

slabs reported in reference (23) could be analysed by the 

proposed method. Some of the remaining slabs had holes adjacent 

to the columns while the others were slabs with edge columns. 

The slabs were 1219x2133 mm with 76 mm thickness supported on 

central square or rectangular columns. The top and bottom ends 

of the column were provided with a hinged end condition. The 

load eccentricity was achieved by a variation in the vertical 

forces at the slab edges. 

The result of the analysis and more data for these slabs are 

presented in table (6-3-3). 
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SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc 
2 N/mm 

fy 
2 N/mm 

x 
mm 

e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

V 
Vt 

Al 152 1.64 57 30.7 366 13.6 3891 5.85 118.0 6.5 1.10 

A2 152 1.64 57 31.8 376 13.1 5056 4.90 117.0 5.0 1.02 

B7 228 1.64 57 33.5 354 15.5 7297 5.00 89.4 3.3 0.66 

C8 228 1.64 57 33.3 411 16.0 5602 5.70 91.7 3.4 0.60 

A12 152 1.64 57 33.7 372 12.9 763 27.40 123.0 28.1 1.02 

B16 228 1.64 57 30.9 341 15.1 795 35.10 80.3 21.0 0.60 

C17 228 1.64 57 36.5 341 14.5 785 32.10 91.0 24.0 0.75 

Table (6-3-3) slabs tested. by Hanson and Hanson. 

6-3-4 Slabs tested by Anis 

6 Slabs were tested by Anis (2) under eccentric loading. 

Slab Bl was tested by the means of two horizontal forces acting 

at the top and bottom sides of the column stub, the slab failed 

in flexure. As a result only 5 slabs could be analysed by the 

proposed method. The slabs were 1520 mm square with 102 mm 

overall depth and central 203'mm square columns, they were 

supported at the edges and the loads were applied on the 

column, see Fig. (2-1). Some data concerning these slabs and 

the test results are presented in table (6-3-4). 

SLAB C p d fc fy x e Vt Vc Vec Ver 
No mm % mm 2 N/mm 2 N/mm mm mm KN KN KN Vt 

B3 203 2.19 76 30.4 330 25.4 94 194.0 252 192 0.99 

B4 203 2.19 76 29.8 330 25.7 188 142.0 248 152 1.07 

B5 203 2.19 76 29.0 330 26.1 312 127.0 247 122 0.96 
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Table (6-3-4) continued. 

SLAB C p d fc fy x e Vt Vc Vec Vec 
No mm % mm 2 N/mm 2 N/mm mm mm KN KN KN Vt 

B6 203 2.19 76 31.4 330 24.9 465 117.0 256 101 0.86 

B7 203 2.19 76 33.8 330 23.9 945 70.8 264 641 0.90 

Table (6-3-4) slabs tested by Anis. 

6-3-5 Slabs tested by Stamenkovic and Chapman 

Only eight of the ten eccentrically loaded slabs carried 

out by Stamenkovic and Chapman (63) are suitable for analysis. 

The slabs were 914 mm square with 76 mm thick, supported at the 

four edges. The slabs group CI had 127 mm central square 

columns while slabs CIr had 76x152 mm columns where the 152 mm 

was in the eccentricity direction. The vertical load was 

applied concentrically through the column, while the horizontal 

loads were applied at the top and bottom of the column. The 

properties of the slabs and the results of the analysis are 

given in table (6-3-5). The tabulated results indicate a good 

agreement between the actual and calculated failure loads. 

SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc 
N/mm 2 

fy 
N/mm 2 x 

mm 
e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

v 

C/I/1 127 1.17 56 38.0 434 11.6 87 85 123 86 1.01 

C/I/2 127 1.17 56 29.7 434 12.8 168 62 111 61 0.98 

C/I/3 127 1.17 56 25.5 434 13.9 404 34 104 35 1.02 

C/I/4 127 1.17 56 25.1 434 14.0 797 21 103 21 1.00 

C/I/rl 114 1.17 56 22.6 414 14.5 85 86 98 69 0.80 
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Table (6-3-5) continued. 

SLAB C p d fo fy x e Vt Vc Vec Vec 
No mm % mm 2 N/mm 2 N/mm mm mm KN KN KN _ Vt 

C/I/r2 114 1.17 56 29.2 414 12.6 162 67 110 61 0.91 

C/I/r3 114 1.17 56 28.6 414 12.7 394 40 109 39 0.98 

C/I/r4 114 1.17 56 26.6 414 13.2 777 22 105 21 0.95 

Table (6-3-5) slabs tested by Stamenkovic and Chapman. 

6-3-6 Slabs tested by Hanson 

Only slab C9 of the slabs reported in reference (24) 

could be analysed by the proposed method. This slab was 2285 mm 

square with a 508 mm square central column. Some data 

concerning this slab and the test result are presented in table 

(6-3-6) . 

SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc 
N/mm 2 

fy 
N/mm2 

x 
mm 

e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

Vec 
vt 

C9 400 0.63 162 23.3 423 38.4 559 283 445 234 0.83 

Table (6-3-6) Slab tested by-Hanson 

6-3-7 Slab tested by Narasimham 

Since most of the eccentrically loaded slabs tested by 

Narasimhan (43) had shear reinforcement, only slab L1 could be 

used in the comparison. The slab was 2285 mm square with a 305 

mm square column. The slab properties and the analysis result 

are given in table (6-3-7) which shows a fair agreement between 

the test and predicted failure load. 
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SLAB 
No 

c 
mm 

p 
% 

d 
mm 

fo 
2 NIMM 

fy 
N/mm2 

x 
mm 

e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

V 
Vt 

L1 305 1.11 143 26.6 398 42 300 400 534 337 0.84 

Table(6-3-7) slab tested by Narasimhan. 

6-3-8 Slabs tested by Regan, Walker, and Zakaria 

These slabs are reported in reference (52). They were all 

2m square and 80 mm thick. The slabs were eccentrically loaded 

by upward forces applied to the columns which were provided 

with projection. The variables of the slabs were the size and 

shape of the columns. The slab details and analysis results are 

given in table (6-3-8). 

SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc 
2 N/mm 

fy. 
2 N/mm 

x 
mm 

e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

Vc 

t 

SM5 180 1.05 60 32.0 480 14.5 220 72 128 68 0.95 

SM9 180 1.05 60 37.7 480 13.3 110 97 138 96 0.99 

SM10 180 1.05 60 37.7 480 13.3 220 88 143 76 0.86 

SM11 240 1.17 60 36.8 480 13.4 220 91 92 53 0.58 

SM12 2401 1.17 60 31.9 480 14.7 220 88 85 49 0.58 

Table (6-3-8) slabs tested by Regan, Walker, and Zakaria. 

6-3-9 slab tested by Godycki, Dilger and Ghali 

Tests of two 1778 mm square slabs, 152 mm thick, are 

reported in reference (21). The slabs were subjected to 

vertical loads and moments applied through 305 mm central 

square columns. The principal variable in the tests was the 
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ratio of reinforcement. More details about the slabs and the 

tests results are presented in table (6-3-9). 

SLAB C p d fc fy x e Vt Vc Vec Vec 
No mm % mm 2 N/mm 2 N/mm mm mm KN KN KN Vt 

5.010 305 1.5 127 32.0 424 30.5 1068 132 428 126 0.95 

S. 005 305 0.5 127 30.9 424 20.8 704 132 282 114 0.86 

Table (6-3-9) slabs tested by Godycki, Dilger and Ghali. 

6-3-10 Slabs tested by the Author 

Six slabs were tested by the Author in the present work. 

The slabs had different variables, column shape, ratio of 

reinforcement, span dimensions, and eccentricity of the load. 

Full details of the test specimens and method of testing have 

already been given in chapter two. The results of the analysis 

are given in table (6-3-10). The comparison between the 

calculated and observed failure loads shows good agreement and 

the proposed method of analysis is on the safe side. 

SLAB 
No 

C 
mm 

p 
% 

d 
mm 

fc 
N/mm 2 

fy 
N/mm 2 x 

mm 
e 
mm 

Vt 
KN 

Vc 
KN 

Vec 
KN 

Vec 
Vt 

SA1 150 0.55 64 33 640 10.5 52 109 109 90 0.83 

SA3 150 0.55 64 36 640* 10.1 100 85 115 81 0.95 

SA4 150 0.55 64 32 640 10.6 336 49 108 45 0.92 

SB2 150 1.00 62 28 530 14.7 360 61 128 51 0.84 

AC2 150 0.72 62 37 530 11.1 337 65 127 52 0.80 

SD2 150 0.72 62 31 530 12.1 310 56 116 50 0.90 

Table (6-3-9) slabs tested by the Author. 
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6-4 Comparison between the experimental data and predictions of 

existing methods from various sources 

Most of the theoretical and experimental work carried out 

on punching shear resistance of reinforced concrete flat-slabs 

is reviewed in chapter one. The aim of this section is to 

compare the proposed solution with analytical solutions of 

other authors, and the recommendations given in the widely used 

codes of practice (The American ACI-318-83, The British BS8110 

and CEB-FIP model code). 

6-4-1 The following punching strength formulae are used in the 

present comparison, for concentrically loaded slabs. 

6-4-1-1 Stamankovic and Chapman (63) 

The punching shear resistance for slabs concentrically 

loaded is 

Vcal : -- 0.9 (4cd I (fc/145) "( 
15(1-0.07(c/d) 

4cd (-fc/145) 
1+5.25 

Vf1ex 

Where: 

c is the side length of the column, 

Vflex is the flexural capacity of the slab. 

In the present comparison Vflex was taken from the references 

where the slabs had been reported. Where the flexural 

capacities are not reported and for the author's slabs, Vflex 

was calculated as follows. 
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2nm 
Vflex -1- (ro/r3) 

Where : 

m= 0.9 As fy d(1 - 0.59 p fy/fc) 

p= As/rd and fc = 0.85 fcu 

As being the area of the tensile reinforcement passing 

through the column face. 

The results of the analysis are shown in table (6-4-1). 

Examining these tabulated results, it appears that the range of 

Vcal/Vtest is from 0.64 to 1.32 and the ratio increases with 

increasing r/d. The lack of a size factor may have contributed 

to the scatter of the results. 

SLAB 
No 

ro 
mm 

r3 
mm 

fc 
N/mm2 

f 
Nýmm 

p 
% 

r 
mm 

d 
mm 

Vf 
KN 

VC 
KN 

Vt 
KN -V: Vt 

Ala 162 1162 14.98 332 1.15 254 117 365 282 393 0.93 

Alb 162 1162 26.77 332 1.15 254 117 390 346 365 0.95 

Alc 162 1162 21.57 332 1.15 245 117 384 323 356 0.90 

A2a 162 1162 14.55 321 2.47 254 114 590 315 334 0.94 

A2b 162 1162 20.72 321 2.47 254 114 662 370 401 0.92 

A2c 162 1162 39.73 321 2.47 254 114 743 484 467 1.03 

A3a 162 1162 13.60 321 3.70 254 114 665 316 356 0.88 

A3b 162 1162 24.00 321 3.70 254 114 915 334 445 0.75 

A3c 162 1162 28.26 321 3-. 70 254 114 966 456 534 0.85 

Aid 162 1162 36.76 321 3.70 254 114 1030 512 547 0.94 
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Table (6-4-1) continued. 

SLAB ro r3 fc 
2 

f ý 2 
p r d Vf VC Vt ýV No mm mm N/mm N mm % mm mm KN KN KN Vt 

A5 226 1162 29.50 321 2.47 356 114 771 514 534 0.96 

A7 206 1162 29.64 321 2.47 254 114 713 431 512 0.84 

B9 206 1162 46.60 341 2.00 254 103 658 450 505 0.89 

B11 206 1162 14.34 409 3.00 254 102 702 292 329 0.88 

B14 206 1162 53.76 326 3.00 254 102 923 517 579 0.89 

Moe 

R2 97 1150 28.26 333 1.38 152 98 393 234 317 0.73 

M1A 194 1150 22.52 488 1.50 305 114 649 412 440 0.94 

H1 194 1150 28.26 333 1.36 264 114 361 333 379 0.88 

S1-60 194 1150 25.28 407 1.06 254 114 398 338 396 0.85 

S2-60 194 1150 23.90 407 1.53 254 114 409 329 362 0.90 

S3-60 194 1150 24.43 407 2.30 254 114 399 332 370 0.89 

S4-60 194 1150 25.80 407 3.45 254 114 359 323 340 0.95 

S5-60 162 1150 23.58 399 1.06 254 114 379 320 318 1.00 

S1-70 162 1150 26.56 491 1.06 254 114 470 365 400 0.91 

S3-70 162 1150 26.56 491 2.30 254 114 472 356 385 0.95 

S4-70 162 1150 27.41 491 3.45 254 114 463 361 380 0.95 

S5-70 162 1150 24.43 482 1.06 254 114 450 348 342 1.02 

Kinnunen & Nylander 

5 75 855 28.50 450 0.64 118 117 305 215 260 0.82 

6 75 855 27.80 463 0.64 118 118 315 215 280 0.76 

24 150 855 28.00 464 1.17 235 128 494 398 438 0.90 

25 150 855 26.60 460 1.14 235 124 473 377 416 0.90 

32 150 855 27.20 457 0.61 235 123 192 246 263 0.94 

33 150 855 28.30 470 0.60 235 125 202 258 263 0.98 
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Table (6-4-1) continued. 

SLAB 
N 

ro r3 fc 
N/ 2 

f2 
Ný 

p 
% 

r d Vf VC Vt 
o mm mm mm mm mm mm KN KN KN Vt 

Kinnunen, Nylander & Tolf 

1 62.5 600 30.40 706 0.80 98 100 313 174 216 0.80 

3 62.5 600 24.30 701 0.81 98 99 298 156 194 0.80 

13 62.5 600 28.30 720 0.35 98 98 143 131 145 0.90 

14 62.5 600 26.70 712 0.34 98 99 140 129 148 0.87 

17 125.0 1200 27.00 668 0.34 196 200 543 513 489 1.05 

18 125.0 1200 25.70 664 0.35 196 197 535 498 444 1.12 

Hanson 

B4 288 
f 
2330 23.60 450 0.94 355 162 777 649 490 1.32 

Hawkins, Fallsen & Hinojosa 

2 247 1162 27.90 411 1.11 388 117 363 384 352 1.09 

9 185 1162 31.30 414 0.75 290 121 343 365 316 1.15 

Narasimhan 

L7 194 1274 37.70 476 1.11 305 143 673 596 687 0.86 

L9 194 1274 35.10 476 1.11 305 143 668 586 588 0.99 

Stamenkovic & Chapman 

V/I/2 80.8 582 27.54 434 1.37 127 56 91 81.5 117 0.69 

V/Ir/1 72.5 582 26.70 414 1.72 114 56 108 115 109 1.06 

Regan 

I1 127 1165 27.4 500 1.20 200 77 262 191 194 0.98 

12 127 1165 24.9 500 1.20 200 77 228 176 176 1.00 

13 127 1165 29.1 500 0.92 200 77 215 183 194 0.94 

14 127 1165 34.3 500 0.92 200 77 190 178 194 0.92 

15 127 1165 29.9 480 0.75 200 79 179 180 165 1.09 
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Table (6-4-1) continued. 

SLAB 
No 

ro 
mm 

r3 
mm 

fo 1 fy 
2 /mm 2 N/mm 

p 
% 

r 
mm 

d 
mm 

Vf 
KN 

VC 
KN 

Vt 
KN 

vc, 
Vt 

I6 127 1165 23.30 480 0.75 200 79 156 152 165 0.92 

I7 127 1165 32.30 480 0.80 200 79 170 172 186 0.93 

II1 125 1639 37.00 530 0. -98 196 200 1447 733 825 0.89 

112 80 1038 35.40 485 0.98 126 128 541 303 390 0.77 

113 80 1038 36.50 485 0.98 126 128 544 308 365 0.84 

114 40 465 35.40 480 0.98 63 64 129 75 117 0.64 

115 40 465 36.50 480 0.98 63 64 128 76 105 0.72 

116 40 465 38.40 480 0.98 63 64 128 77 105 0.73 

III1 75 685 24.6 494 0.83 118 95 234 160 197 0.81 

1112 75 685 10.10 494 0.83 118 95 186 108 123 0.88 

1113 75 685 40.20 494 0.83 118 95 310 209 214 0.97 

IV2 102 583 36.10 525 1.31 160 80 352 215 236 0.91 

IV3 102 583 30.10 525 1.31 160 80 435 209 248 0.84 

IV4 102 583 33.20 525 1.31 160 80 460 223 262 0.85 

V2 85 955 34.20 620 0.80 133 118 474 280 280 1.00 

V3 55 955 34.40 620 0.80 86 118 449 207 265 0.78 

V4 65 955 38.50 620 0.80 102 118 459 243 285 0.85 

V5 75 955 34.90 620 0.80 1181 1181 467 262 285 0.95 

Rankin & Long 

3 63.6 407 32.6 530 0.69 100 40.5 50.5 47.4 56.5 0.83 

4 63.6 407 37.0 530 0.82 100 40.5 46.2 54.2 56.2 0.96 

5 63.6 407 37.0 530 0.88 100 40.5 69.0 45.1 57.3 0.78 

6 63.6 407 37.0 530 1.02 1001 40.5 80.3 59.1 65.6 0.90 

7 63.6 407 28.3 530 1.16 100' 40.5 79.3 54.0 71.0 0.76 
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Table (6-4-1) continued. 

SLAB ro r3 f fy p r d Vf VC Vt vIr 
No mm mm N/mm2 N/mm2 % mm mm KN KN KN Vt 

8 63.6 407 28.3 530 1.29 100 40.5 86.6 55.5 71.1 0.78 

9 63.6 407 28.3 530 1.45 100 40.5 95.5 57.1 78.6 0.72 

11 63.6 407 31.8 530 0.80 100 40.5 57.8 50.3 55.0 0.91 

12 63.6 407 31.8 530 1.11 100 40.5 77.2 56.0 67.1 0.83 

14 63.6 407 36.1 530 0.69 100 40.5 51.0 49.3 52.4 0.94 

15 63.6 407 36.1 530 1.99 100 40.5 129. 68.0 84.4 0.80 

2A 63.6 407 30.6 530 0.69 100 46.5 66.3 58.5 66.2 0.88 

3A 63.6 407 30.6 530 1.29 100 46.5 116. 70.6 89.7 0.78 

4A 63.6 407 32.8 530 1.99 100 46.5 166. 78.4 97.4 0.80 

3B 63.6 407 40.0 530 1.29 100 35.0 67.9 51.1 56.7 0.90 

4B 63.6 407 32.8 530 1.99 100 35.0 94.4 51.8 72.5 0.71 

2C 63.6 407 34.4 530 0.69 100 53.5 88.3 75.7 87.8 0.86 

3C 63.6 407 34.4 530 1.29 100 53.5 155. 90.5 124. 0.73 

4C 63.6 407 29.6 530 1.99 100 53.5 215. 91.2 126. 0.72 

Kamaraldin 

SA2 95 636 36.1 640 0.59 '150 64 129 122 141 0.86 

SB1 95 636 28.7 530 1.08 150 62 173 122 133 0.92 

SC1 95 795 38.2 530 1.08 150 62 173 135 129 1.04 

SD1 95 795 38.2 530 1.08 150 62 173 135 127 1.06 

Table (6-4-1) Slabs analysed by Stamenkovic and Chapman's 

formula 
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6-4-1-2 Regan 

The punching shear resistance suggested by Regan (53) is 

Vcal = Ka " Ksc "4 (100As/bd) " fcu " 2.69 d (F. C + 7.85d) 

Where 

Ka = 0.13 for normal dense concrete 

Ksc = 1.15 1 4n (column area)(column perimeter)2 

300/d with d in mm 

(10OAs/bd) is the average of the percentages of tensile 

reinforcement in two orthogonal directions, where b is the 

width of Band I (see reference (53)) 

EC is the column perimeter. 

The results of the analysis are shown in table (6-4-2). Regan's 

theory is on the safe side. The theory does not extend to slabs 

with flexural failure, as a result slabs 32 and 33 of reference 

(30) could be ignored. 

SLAB 
No 

d 
mm % 

Ksc fc Vcal 
N/mmý KN 

Vtest 
KN 

ý_ 
Vtest 

Elstner and Hognestad 

Ala 117 1.17 1 17.60 217 303 0.72 

Alb 117 1.17 1 31.5 264 365 0.72 

Ale 117 1.17 1 25.4 245 356 0.69 

A2a 114 2.48 1 17.1 294 334 0.88 

A2b 114 2.48 1 24.4 381 401 0.95 

A2c 114 2.48 1 46.7 472 467 1.01 

A3a 114 2.48 1 16.00 311 356 0.93 
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Table (6-4-2) continued. 

SLAB 
No 

d 
mm % 

Ksc fcu 
N/ 2 

Vcal 
KN 

Vtest 
li 

mm KN 

A3 b 114 3.72 1 28.25 458 445 1.02 

A3c 114 3.72 1 33.25 483 534 0.90 

A3d 114 3.72 1 43.25 528 547 0.96 

A5 114 2.48 1 34.75 490 534 0.92 

A7 114 2.48 1 34.90 429 512 0.84 

B9 103 2.24 1 33.25 361 505 0.71 

311 102 3.39 1 16.90 327 329 0.99 

B14 102 3.39 1 63.25 507 579 0.88 

MOe 

R2 114 1.37 1 33.25 272 317 0.86 

M1A 114 1.50 1 26.50 365 440 0.83 

H1 114 1.50 1 33.25 330 379 0.87 

S1-60 114 1.06 1 30.00 306 396 0.77 

S2-60 114 1.06 1 28.10 300 362 0.83 

S3-60 114 1.06 1 28.75 302 370 0.82 

S4-60 114 1.06 1 30.40 308 340 0.90 

S5-60 114 1.05 1 27.75 298 318 0.94 

S1-70 114 1.06 1 31.25 311 400 0.77 

S3-70 114 1.06 1 32.25 314 385 0.81 

S4-70 114 1.06 1 44.75 350 380 0.92 

S5-70 114 1.05 1 28.75 301 342 0.88 

Kinnunen & Nylander 

5 117 0.80 1.15 33.50 246 260 0.95 

6 118 0.79 1.15 32.70 248 280 0.88 
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Table (6-4-2) continued. 

SLAB d p Ksc fcu Vcal Vtest Yc-a1 
No mm % N/mm 2 KN KN Vtest 

24 128 1.01 1.15 33.00 399 438 0.91 

25 124 1.04 1.15 31.40 381 416 0.92 

32 123 0.49 1.15 32.00 295 263 1.12 

33 125 0.48 1.15 33.30 303 263 1.15 

Kinnunen & Nylander & Tolf 

1 100 0.80 1.15 35.70 191 216 0.88 

3 99 0.81 1.15 28.60 175 194 0.90 

13 98 0.34 1.15 33.20 136 145 0.94 

14 99 0.35 1.15 31.40 137 148 0.92 

17 200 0.35 1.15 31.70 467 489 0.96 

18 197 0.34 1.15 30.20 446 444 1.00 

Hanson 

B4 162 0.94 1.00 27.70 528 490 1.07 

Hawkins, Fallsen & Hinjosa 

2 117 1.11 1.00 32.90 424 352 1.20 

9 121 0.75 1.00 36.90 339 316 1.07 

Narasimhan 

L7 143 1.11 1.00 44.40 517 686 0.75 

L9 143 1.11 1.00 41.40 505 588 0.86 

Stamenkovic & Chapman 

V/I/2 56 1.17 1.00 32.40 95 117 0.81 

V/Ir/1 56 1.17 0.96 31.50 88.8 109 0.88 
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Table (6-4-2) continued. 

SLAB 
mm % 

Ksc 
Nýmm2 KNal 

KNest Vaal 
Vtest 

Regan 

I1 77 1.20 1.00 32.20 180 194 0.93 

I2 77 1.20 1.00 29.30 174 176 0.99 

I3 77 0.92 1.00 34.30 168 194 0.86 

I4 77 0.92 1.00 40.40 177 194 0.91 

I5 79 0.75 1.00 35.20 163 165 0.99 

16 79 0.75 1.00 27.40 150 165 0.91 

I7 79 0.80 1.00 38.00 171 186 0.92 

II1 200 0.98 1.15 43.60 732 825 0.88 

112 128 0.98 1.15 41.60 331 390 0.85 

113 128 0.98 1.15 42.90 334 365 0.91 

114 64 0.98 1.15 41.60 98 117 0.84 

115 64 0.98 1.15 42.90 99 105 0.95 

116 64 0.98 1.15 45.20 101 105 0.96 

III1 95 0.83 1.15 29.00 170 197 0.86 

II12 95 0.83 1.15 11.90 127 123 1.03 

II13 95 0.83 1.15 47.30 201 214 0.94 

IV1 80 1.31 1.00 32.70 173 196 0.88 

IV2 80 1.31 1.00 42.50 188 236 0.80 

IV3 80 1.31 1.00 35.40 177 248 0.71 

IV4 80 1.31 1.00 39.10 183 262 0.70 

V2 118 0.80 1.15 40.20 278 280 0.99 

V3 118 0.80 1.15 40.50 242 265 0.91 

V4 118 0.80 1.00 45.30 230 285 0.80 11 
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Table (6-4-2) continued. 

SLAB d Ksc fcu Vcal Vtest Veal 

No mm % N/mm2 KN KN Vtest 

V5 118 0.80 1.15 41.10 268 285 0.94 

Rankin & Long 

3 40.5 0.691 1 38.4 50.0 56.55 0.88 

4 40.5 0.821 1 34.5 51.1 56.18 0.91 

5 40.5 0.833 1 34.5 52.4 57.27 0.91 

6 40.5 1.026 1 34.5 51.1 65.58 0.78 

7 40.5 1.163 1 37.1 58.8 70.94 0.83 

8 40.5 1.292 1 37.1 61.0 71.09 0.86 

9 40.5 1.454 1 37.1 63.3 78.60 0.81 

11 40.5 0.802 1 37.4 52.1 55.00 0.95 

12 40.5 1.107 1 37.4 58.0 67.00 0.86 

14 40.5 0.691 1 42.5 51.7 52.45 0.98 

15 40.5 1.994 1 42.5 73.7 84.84 0.87 

2A 46.5 0.691 1 36.0 57.9 66.24 0.87 

3A 46.5 1.293 1 36.0 71.3 89.72 0.79 

4A 46.5 1.292 1 38.6 84.33 97.43 0.86 

3B 35.0 1.292 1 47.1 55.60 56.67 0.98 

4B 35.0 1.994 1 38.6 60.1 72.52 0.83 

2C 53.5 0.690 1 40.5 71.6 87.86 0.81 

3C 53.5 1.288 1 40.5 88.2 124.14 0.71 

4C 53.5 1.993 1 34.8 97.0 125.94 0.77 

Kamaraldin 

SA2 64.0 0.55 1 52.5 103.7 141.00 0.73 

SB1 62.0 1.00 1 33.75 112.7 133.00 0.84 
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Table (6-4-2) continued. 

SLAB d 
$ 

Ksc fcu 
N/ 2 

Vcal Vtest ýV No No mm mm KN KN VteSt 

SC1 62.0 0.72 1 45.00 111.2 129.00 0.86 

SD1 62.0 0.72 0.96 45.00 106.7 127.00 0.84 

Table (6-4-2) slabs analysed by Regan's formula. 

6-4-1-3 British Standard BS8110 

The code equations used are listed below. 

100 As 400 
V0 = 0.79 (Xd) 1/3 (dý 1/4 

Vcal = Vc ud 

For the purpose of making comparisons with test results the 

safety factor 7m has been removed from the code equations. 

u is the control perimeter at distance of 1.5d from the loaded 

area and has square corners whether the loaded area is 

rectangular or circular. 

For concrete strength's greater than 25 N/mm2 Vc may be 

multiplied by (fcu/25)1/3 , the value of fcu should not be 

taken greater than 40 N/mm2. 

400/d should not be taken as less than 1, and (10OAs/Xd) should 

not be taken greater than 3. 

X is the side length of the shear perimeter. 
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The result of the analysis are shown in table (6-4-3). The 

tabulated results indicate that for slabs with flexural 

reinforcement concentrated in the punching area (slabs of 

group, S, reference (4) and slabs of group, I, reference (56)), 

BS8110 overestimates the influence of the ratio of 

reinforcement which results in a poor level of safety. Where 

concrete strength of tests is lower than grade C25, BS8110's 

general formula for punching shear resistance can give very 

significant overestimates of strength, this situation seems to 

be covered safely by the Code's limiting concrete made with 

normal-weight aggregate to be not below grade C25. 

SLAB 
No 

d 
mm 

u 
mm % 

fcu 
N/mm2 

Vcal 
KN 

Vtest 
KN 

Vr 
Vtest 

Elstner & Hognestad 

Ala 117 2420 1.17 17.6 320 303 1.06 

Alb 117 2420 1.17 31.5 346 365 0.95 

Ale 117 2420 1.17 24.5 320 356 0.90 

A2a 114 2348 2.48 17.1 390 334 1.17 

A2b 114 2348 2.48 24.4 390 401 0.97 

A2c 114 2348 2.48 46.7 456 467 0.97 

A3a 114 2348 3.72 16.00 417 356 1.17 

A3b 114 2348 3.72 28.25 434 445 0.97 

A3c 114 2348 3.72 33*. 25 458 534 0.86 

A3d 114 2348 3.72 43.25 487 547 0.89 

A5 114 2792 2.48 34.75 520 534 0.97 

Alb 114 2384 2.48 34.90 444 512 0.87 

B9 103 2252 2.24 33.25 370 505 0.73 
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Table (6-4-3) continued. 

SLAB d u p fcu Vcal Vtest ýp 
No mm mm % N/mm 2 KN KN Vtest 

Bil 102 2240 3.39 16.9 366 329 1.11 

B14 102 2240 3.39 63.25 428 579 0.74 

Moe 

R2 114 1976 1.06 33.25 273 317 0.86 

M1A 114 2588 2.31 26.5 428 440 0.97 

H1 114 2384 0.60 33.25 272 379 0.71 

S1-60 114 2384 0.87 30.00 298 396 0.78 

S2-60 114 2384 1.45 28.1 345 362 0.95 

S3-60 114 2384 2.00 28.75 388 370 1.05 

S4-60 114 2384 2.62 30.40 432 340 1.27 

S5-60 114 2169 1.06 27.74 282 318 0.88 

S1-70 114 2384 0.87 31.25 302 400 0.95 

S3-70 114 2384 2.00 32.25 402 385 1.05 

S4-70 114 2384 2.62 44.75 473 380 1.25 

S5-70 114 2169 1.06 28.75 285 342 0.83 

Kinnunen & Nylander 

5 117 2004 0.96 33.50 274 260 1.05 

6 118 2016 0.96 32.75 275 280 0.96 

24 128 2736 1.03 33.00 407 438 0.93 

25 124 2688 1.08 31.40 391 416 0.94 

32 123 2676 0.55 32.00 310 263 1.18 

33 125 2700 0.54 33.30 320 263 1.21 
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Table (6-4-3) continued. 

S B al est Vtel 
No mm mm % N/mm2 KN 

KN 

t 

Kinnunen, Nylander & Tolf 

1 100 1700 0.80 35.75 198 216 0.92 

3 99 1688 0.81 28.60 182 194 0.94 

13 98 1676 0.34 33.25 142 145 0.97 

14 99 1688 0.35 31.40 142 142 0.96 

17 200 3400 0.35 31.75 487 487 1.00 

18 197 3364 0.34 30.25 465 444 1.05 

Hanson 

B4 162 3364 0.94 27.75 547 490 1.11 

Hawkins, Fallsen & Hinjosa 

2 117 2956 1.11 32.90 421 352 1.20 

9 121 2612 0.75 36.90 348 316 1.10 

Narasimhan 

L7 143 2936 1.11 44.4 538 687 0.78 

L9 143 2936 1.11 41.1 525 588 0.98 

Stamenkovic & Chapman 

V/I/2 56 1180 1.17 32.40 98 118 0.84 

V/Ir/1 56 1128 1.07 31.50 90 109 0.83 

Regan 

I1 77 1724 2.12 32.2 221 194 1.14 

12 77 1724 1.18 29.3 176 176 1.00 

13 77 1724 1.18 34.3 186 194 0.96 

14 77 1724 0.90 40.4 179 194 0.92 

15 79 1748 1.31 35.2 200 165 1.21 
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Table (6-4-3) continued. 

SLAB 
al est V l No mm mm % N/mm2 KN 

KN ia Vt 

I6 79 1748 0.72 27.4 151 165 0.92 

I7 79 1748 0.80 38.0 175 186 0.94 

II1 200 3400 1.15 43.6 783 825 0.95 

112 128 2176 1.15 41.6 358 390 0.92 

113 128 2176 1.15 42.9 358 365 0.98 

114 64 1088 1.15 41.6 106 117 0.91 

115 64 1088 1.15 42.9 106 105 1.01 

116 64 1088 1.15 45.2 106 105 1.01 

III1 95 1740 0.96 29.0 194 197 0.98 

1112 95 1740 0.96 11.9 184 123 1.50 

1113 95 1740 0.96 47.3 216 214 1.00 

IV1 80 2096 1.47 32.7 246 196 1.25 

IV2 80 1856 1.47 42.5 233 236 0.99 

IV3 80 1824 1.47 35.4 220 248 0.88 

Iv4 80 2016 1.47 39.1 251 262 0.96 

V2 118 2096 0.80 40.2 288 280 1.02 

V3 118 1856 0.80 40.5 255 265 0.96 

V4 118 1824 0.80 45.3 250 285 0.88 

V5 118 2016 0.80 41.1 277 285 0.97 

Rankin & Long 

3 40.5 886 0.691 38.4 51.26 56.55 0.91 

4 40.5 886 0.821 34.5 52.4 56.18 0.93 

5 40.5 886 0.883 34'. 5 53.7 57.27 0.94 

6 40.5 886 1.026 34.5 56.4 65.58 0.86 
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Table (6-4-3) continued. 

SLAB 
al est VVt s 

mm mm % N/mm2 KN 
KN 

e t 

7 40.5 886 1.163 37.1 60.3 70.94 0.85 

8 40.5 886 1.292 37.1 62.4 71.09 0.88 

9 40.5 886 1.454 37.1 64.9 78.60 0.83 

11 40.5 886 0.802 37.4 53.4 55.00 0.97 

12 40.5 886 1.107 37.4 59.4 67.06 0.88 

14 40.5 886 0.691 42.5 52.0 52.45 0.99 

15 40.5 886 1.991 42.5 74.0 84.84 0.87 

2A 46.5 958 0.691 36.0 60.2 66.24 0.90 

3A 46.5 958 1.293 36.0 74.1 89.72 0.83 

4A 46.5 958 1.992 38.6 87.6 97.43 0.90 

3B 35.0 820 1.292 47.1 53.1 56.67 0.94 

4B 35.0 820 1.994 38.6 60.6 72.52 0.84 

2C 53.5 1042 0.690 40.5 75.26 87.86 0.85 

3C 53.5 1042 1.288 40.5 92.7 124.1 0.74 

4C 53.5 1042 1.993 34.8 102.3 125.9 0.81 

Kamaraldin 

SA2 64.0 1368 0.51 42.5 102 141.0 0.72 

SB1 62.0 1344 1.44 33.75 131 133.0 0.98 

SC1 62.0 1344 1.44 45'. 0 139 129.0 1.07 

SD1 62.0 1344 1.44 45.0 137 127.0 1.08 

Table (6-4-3) slabs analysed by BS8110. 
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6-4-1-4 ACI 318-83 

The unfactored ultimate shear stress given by the ACI 

Code is 

vc = (1 + 2/ß) (I/6) 

But not greater than (/3) at the critical section. 

0 is the ratio of long side to short side of the concentrated 

load or reaction area. 

The shear resistance is 

Vcal = vc -u -d 

u is the perimeter of the critical section having the same 

shape as the loaded area and at a distance d/2 from the 

outline of the loaded area. 

On inspection of the results given in table (6-4-4), the value 

of Vcal/Vtest varies from 0.46 to 1.15, the scatter of results 

seems to be due to two factors. 

1- The lack of a size factor - the ratio of Vcal/Vtest tends to 

be high for thicker slabs. 

2- The absence of the tension reinforcement influence in the 

code formula - the ratio of Vcal/Vtest increases with 

decreasing reinforcement ratio. 

SLAB 
No 

d 
mm 

u 
mm 

ß fc 
N/mm2 

Vcal 
KN 

Vtest 
KN 

V al 
test 

Elstner & Hognestad 

Ala 117 1484 1 14.1 217 303 0.72 

Alb 117 1484 1 25.2 290 365 0.79 

Alc 117 1484 1 20.3 260 356 0.73 
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Table (6-4-4) continued. 

SLAB 
No 

d u ß fc 
N/ 2 

Vcal Vtest Vcal 
mm mm mm KN KN Vtest 

A2a 114 1472 1 13.7 207 334 0.62 

A2b 114 1472 1 19.5 246 401 0.61 

A2c 114 1472 1 37.4 342 467 0.73 

A3a 114 1472 1 12.8 199 356 0.56 

A3b 114 1472 1 22.6 265 445 0.59 

A3c 114 1472 1 26.6 288 534 0.54 

A3d 114 1472 1 34.6 379 547 0.60 

A5 114 1880 1 27.8 374 534 0.70 

Alb 114 1472 1 27.9 295 512 0.57 

B9 103 1428 1 43.9 324 505 0.64 

311 102 1424 1 13.5 178 329 0.54 

B14 102 1424 1 50.6 344 579 0.54 

Moe 

R2 114 1064 1 26.6 208 317 0.65 

Mia 114 1676 1 21'. 2 293 440 0.66 

Hl 114 1472 1 26.6 288 379 0.76 

S1-60 114 1472 1 23.8 273 396 0.69 

S2-60 114 1472 1 22.5 265 362 0.73 

S3-60 114 1472 1 23.0 268 370 0.72 

S4-60 114 1472 1 24.3 276 340 0.81 

S5-60 114 1472 1 22.2 263 318 0.83 

S1-70 114 1472 1 25.0 280 400 0.70 

S3-70 114 1472 1 25.8 284 385 0.74 

S4-70 114 1472 1 23.8 273 380 0.72 
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Table (6-4-4) continued. 

SLAB R V 1 st V Vcal mm 
mm N/mm2 

KN KN 
Vtest 

55-70 114 1472 1 23.0 268 342 0.78 

Kinnunen & Nylander 

5 117 839 1 26.8 169 260 0.65 

6 118 842 1 26.2 169 280 0.60 

24 128 1344 1 26.4 294 438 0.67 

25 124 1332 1 25.1 276 416 0.66 

32 123 1329 1 25.6 276 263 1.05 

33 125 1335 1 26.6 287 263 1.09 

Kinnunen, Nylander & Tolf 

1 100 707 1 28.6 126 216 0.58 

3 99 704 1 22.9 111 194 0.57 

13 98 700 1 26.6 118 145 0.81 

14 99 704 1 25.1 116 142 0.82 

17 200 1414 1 25.4 475 487 0.97 

18 197 1404 1 24.2 453 465 0.97 

Hanson 

B4 162 2 1 22.2 526 490 1.07 

Hawkins, Fallsen & Hinjosa 

2 117 2020 1 26.3 404 352 1.15 

9 121 1644 1 29.5 360 316 1.14 

Narasimhan 

L7 143 1792 1 35.5 509 687 0.74 

L9 143 1792 1 33.1 491 588 0.84 
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Table (6-4-4) continued. 

SLAB c v l v st Cal No mm mm N/mm2 
KN KN 

test 

Stamenkovic & Chapman 

v/1/2 56 732 1 25.9 121 117 1.04 

V/Ir/1 56 680 1 25.2 64 109 0.58 

Regan 

I1 77 1108 1 25.8 144 194 0.74 

I2 77 1108 1 23'. 5 138 176 0.78 

I3 77 1108 1 27.5 149 194 0.77 

I4 77 1108 1 32.3 162 194 0.83 

I5 79 1108 1 28.2 151 165 0.92 

I6 79 1108 1 22.0 133 165 0.81 

17 79 1108 1 30.5 157 186 0.84 

II1 200 1413 1 34.9 557 825 0.67 

112 128 906 1 33.3 223 390 0.57 

113 128 906 1 34.3 226 365 0.62 

I14 64 576 1 33.3 71 117 0.61 

115 64 576 1 34.3 72 105 0.68 

116 64 576 1 36.. 0 74 105 0.70 

III1 95 770 1 23.2 117 197 0.60 

II12 95 770 1 9.52 75.2 123 0.61 

II13 95 770 1 37.8 150 214 0.70 

IV1 80 960 1 26.2 131 196 0.67 

IV2 80 960 1 34.0 149 236 0.63 

IV3 80 960 1 28.3 137 248 0.55 

IV4 80 960 1 31.3 143 262 0.54 
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Table (6-4-4) continued. 

S B 
No mm mm NIMM KN KN "7test 

V2 118 904 1 32.2 202 280 0.72 

V3 118 713 1 32.4 160 265 0.60 

V4 118 880 1 36.2 208 285 0.73 

V5 118 841 1 32.9 190 285 0.66 

Rankin & Long 

3 40.4 562 1 30.7 42 56.5 0.74 

4 40.5 562 1 34.8 44.7 56.2 0.79 

5 40.5 562 1 34.8 44.7 57.3 0.78 

6 40.5 562 1 34.8 44.7 65.6 0.68 

7 40.5 562 1 26.7 39.2 70.9 0.55 

8 40.5 562 1 26.7 39.2 71.1 0.54 

9 40.5 562 1 26.7 39.2 78.6 0.49 

11 40.5 562 1 29.9 41.5 55.0 0.75 

12 40.5 562 1 29.9 41.5 67.1 0.62 

14 40.5 562 1 34.0 44.2 52.4 0.84 

15 40.5 562 1 34.0 44.2 84.8 0.52 

2A 46.5 586 1 28.8 48.7 66.2 0.73 

3A 46.5 586 1 28.8 48.7 89.7 0.54 

4A 46.5 586 1 30.9 50.5 97.4 0.52 

3B 35.0 540 1 37.9 38.7 56.67 0.68 

4B 35.0 540 1 30.9 35.0 72.52 0.48 

2C 53.5 614 1 32.4 62.3 87.8 0.71 

3C 53.5 614 1 32.4 62.3 124.1 0.50 

4C 53.5 614 1 27.8 57.8 125.9 0.46 
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Table (6-4-4) continued. 

SNoB 
mm mm N/mm2 

VKN1 VKNst 
7Ycal tes lýtt 

Kamaraldin 

SA2 64 856 1 34 106 141 0.75 

SB1 62 846 1 27 91 133 0.68 

SC1 62 846 1 36 105 129 0.81 

SD1 62 848 1 36 105 127 0.83 

Table (6-4-4) slabs analysed by ACI 318-83. 

6-4-1-5 CEB-FIP 

The punching shear load defined by CEB-FIP code for 

concrete structures is 

Vcal = vc -u-d 

Where: 

u is the length of the shortest curve at a minimum 

distance of 0.5d from the loaded area. 

vc = 1.6 Rc K (1 + 50p) 

Rc = 0.052(fc)2/3 is the characteristic concrete 

resistance 

(The safety factor for material has been removed) 

K=1.6 -dj1 (d in m) 

p= px. py 0.008 

In the calculations, the upper limit for the reinforcement 

ratio (p) was extended to 0.02 as proposed in the code 

complements (15), where the width for which p should be 
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calculated is extended to 2.5d to either side of a column. 

The results of the comparisons are listed in table (6-4-5). 

SLAB V 1 st V 
i 

Výs 
mm N/mm2 % mm KN KN test 

Elstner & Hognestad 

Ala 117 14.1 1.17 1383 182 303 0.60 

Alb 117 25.2 1.17 1383 266 365 0.73 

Aic 117 20.3 1.17 1383 230 356 0.65 

A2a 114 13.7 2.48 1374 217 334 0.65 

A2b 114 19.5 2.48 1374 275 401 0.68 

A2c 114 37.4 2.48 1374 421 467 0.90 

A3a 114 12.8 3.72 1374 208 356 0.58 

A3b 114 22.6 3.72 1374 303 445 0.68 

A3c 114 26.6 3.72 1374 338 534 0.63 

Aid 114 34.6 3.72 1374 401 547 0.73 

A5 114 27.8 2.48 1782 462 534 0.86 

Alb 114 27.9 2.48 1374 349 512 0.68 

B9 103 43.9 2.48 1340 416 505 0.82 

B11 102 13.5 3.39 1336 189 329 0.57 

B14 102 50.6 3.39 1336 452 579 0.78 

Moe 

R2 114 26.6 1.06 996 182 317 0.57 

M1A 114 21.2 2.31 1570 332 440 0.57 

H1 114 26.6 1.27 1374 276 379 0.73 

S1-60 114 23.8 1.06 1374 240 396 0.61 

S2-60 114 22.5 1.53 1374 276 362 0.74 

S3-60 114 23.0 2.30 1374 307 370 0.83 
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Table (6-4-5) continued. 

SLAB 
No 

d fc 
N/ 2 

p 
% 

u Vcal Vtest Ya1 
mm mm mm KN KN Vtest 

S4-60 114 24.3 3.45 1374 318 340 0.93 

S5-60 114 22.2 1.06 1374 229 318 0.72 

S1-70 114 25.0 1.06 1374 248 400 0.62 

S3-70 114 25.8 2.30 1374 331 385 0.86 

S4-70 114 23.8 3.45 1374 314 380 0.83 

S5-70 114 23.0 1.06 1374 235 342 0.69 

Kinnunen & Nylander 

5 117 26.8 0.92 839 155 260 0.60 

6 118 26.2 0.90 842 154 280 0.55 

24 128 26.4 1.12 1344 285 438 0.65 

25 124 25.1 1.18 1332 270 416 0.65 

32 123 25.6 0.60 1329 222 263 0.84 

35 125 26.64 0.58 1335 231 263 0.87 

Kinnunen, Nylander & Tolf 

1 100 28.6 0.80 707 113 216 0.52 

3 99 22.9 0.81 704 96 194 0.50 

13 98 26.6 0.34 700 87 145 0.60 

14 99 25.1 0.35 704 85 142 0.60 

17 200 25.4 0.35 1414 304 487 0.62 

18 197 25.2 0.34 1405 318 465 0.68 

Hanson 

B4 162 22.2 0.94 1929 425 490 0.87 
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Table (6-4-5) continued. 

SLAB 
N 

d fc 
N/ 2 % 

u Vcal Vtest ýV al o mm mm mm KN KN Vtest 

Hawkins, Fallsen & Hinjosa 

2 117 26.3 1.11 1919 372 352 1.06 

9 121 29.5 0.75 1540 294 316 0.93 

Narasimhan 

L7 143 35.5 1.11 1669 474 687 0.69 

L9 143 33.1 1.11 1669 453 588 0.77 

Starnenkovic & Chapman 

V/I/2 56 25.9 1.29 684 69 117 0.59 

V/Ir/1 56 25.2 1.00 632 57 109 0.53 

Regan 

I1 77 25.8 2.12 1042 174 194 0.90 

12 77 23.5 1.18 1042 130 176 0.74 

13 77 27.5 1.18 1042 144 194 0.74 

I4 77 32.3 0.90 1042 146 194 0.75 

I5 79 28.2 1.31 1048 157 165 0.95 

I6 79 22.0 0.72 1048 109 165 0.66 

I7 79 30.5 0.80 1048 140 186 0.75 

II1 200 34.9 1.15 1413 541 825 0.66 

112 128 33.3 1.15 906 226 390 0.58 

I13 128 34.3 1.15 906 231 365 0.63 

114 64 33.3 1.15 576 75 117 0.64 

115 64 34.3 1.15 576 77 105 0.73 

116 64 36.0 1.15 576 79 105 0.75 

III1 95 23.2 0.96 770 108 197 0.55 
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Table (6-4-5) continued. 

AB SL 
N N/m 2 % 

VKN1 VKNst G3L V 
o mm m mm V 

est 
1112 95 9.52 0.96 770 59 123 0.48 

1113 95 37.8 0.96 770 149 214 0.70 

IV1 80 26.2 1.47 891 135 196 0.69 

IV2 80 34.0 1.47 891 160 236 0.68 

IV3 80 28.3 1.47 891 142 248 0.57 

IV4 80 31.3 1.47 891 152 262 0.58 

V2 118 32.2 0.80 904 182 280 0.65 

V3 118 32.4 0.80 713 144 265 0.54 

V4 118 36.2 0.80 779 170 285 0.59 

V5 118 32.9 0.80 841 172 285 0.60 

Rankin & Long 

3 40.5 30.7 0.691 527 35.7 56.6 
1 

0.63 

4 40.5 34.8 0.821 527 40.6 56.2 0.72 

5 40.5 34.8 0.883 527 41.5 57.3 0.73 

6 40.5 34.8 1.026 527 43.6 65.6 0.66 

7 40.5 34.8 1.163 527 38.25 70.9 0.54 

8 40.5 26.7 1.292 527 39.8 71.0 0.56 

9 40.5 26.7 1.454 527 41.7 78.6 0.53 

11 40.5 26.7 0.802 527 36.5 55.0 0.66 

12 40.5 29.9 1.107 527 40.5 67.1 0.60 

14 40.5 34.0 0.691 527 38.2 52.45 0.73 

15 40.5 34.0 1.994 527 56.7 84.84 0.67 

2A 46.5 28.8 0.691 546 40.6 66.24 0.61 

3A 46.5 28.8 1.293 546 49.6 89.72 0.55 
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Table (6-4-5) continued. 

SLAB V 1 V st Z B 
No mm N/mm2 % mm 

KN KN 
Vt est 

4A 46.5 30.8 1.992 546 52.0 97.43 0.53 

3B 35.0 37.8 1.292 510 42.1 56.67 0.74 

4B 35.0 30.8 1.994 510 44.6 72.52 0.62 

2C 53.5 32.4 0.690 568 52.2 87.86 0.59 

3C 53.5 32.4 1.288 568 63.8 124.1 0.51 

4C 53.5 27.8 1.993 568 70.1 125.9 0.55 

Kamaraldin 

SA2 64 34 0.84 801 95 141 0.68 

SB1 62 27 1.58 795 99 133 0.75 

SC1 62 36 1.58 795 120 129 0.93 

SD1 62 36 1.58 795 120 127 0.94 

Table (6-4-5) slabs analysed by CEB-FIP code. 

6-4-2 Punching shear formulae used in the present comparison 

for eccentrically loaded slabs 

6-4-2-1 Stamankovic and Chapman 

The ultimate strength under combined loading can be 

calculated from the following proposed interaction formula: 

Vcal 
+ 

Mcal 
=1 

Vtest Mtest 
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Where Vcal and Mcal are given in section (1-3-3-4) the results 

in table (6-4-6) for slabs analysed by the above formula are on 

the safe side and in some cases conservative. 

Slab fc p d Vtest Mtest vu Mu v ýV M 
No N/mm2 % mm KN KN m Kn KN m 

i 
Mt 

Elster & Hognestad 

All 25.9 24.7 114 529 94.2 466 164.7 0.59 

A12 28.4 2.47 114 529 94.2 469 170.6 0.60 

Meo 

M2 26.1 1.50 114 292 57.2 416 120.7 0.85 

M3 23.0 1.50 114 207 69.9 412 110.2 0.88 

M6 26.8 1.34 114 239 40.1 325 84.5 0.83 

M7 25.3 1.34 114 311 19.0 334 80.7 0.86 

Ma 23.6 1.34 114 267 33.9 326 76.4 0.79 

M10 21.2 1.34 114 178 54.8 316 70.7 0.75 

Anis 

B3 30.4 2.19 76 192 18.0 194 45.8 0.72 

B4 29.8 2.19 76 140 26.3 191 45.1 0.76 

B5 29.0 2.19 76 126 39.3 191 44.3 0.55 

B6 31.4 2.19 76 116 53.9 194 46.9 0.57 

B7 33.8 2.19 76 70 66.1 200 49.5 0.60 

Stamenkovic & Chapman 

C/I/1 36.0 1.17 56 84.5 7.3 100 19.2 0.82 

C/I/2 29.7 1.17 56 62.3 10.5 93.7 16.7 0.77 

C/I/3 25.5 1.17 56 33.8 13.6 88.7 15.1 0.78 

C/I/4 25.1 1.17 56 20.9 16.6 88.2 14.9 0.74 
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Table (6-4-6) continued. 

Slab 
No 

fc 
2 NIMM 

p 
% 

d 
mm 

Vtest 
KN 

Mtest 
KN m 

vu 
Kn 

mu 
KN m Vt+ Mt 

Mil 28.1 1.17 56 00.0 18.4 0.00 16.1 0.88 

CIrl 22.6 1.17 56 85.7 7.3 83.7 14.0 0.65 

CIr2 29.. 2 1.17 56 67.3 10.8 92.0 15.8 0.71 

CIr3 28.6 1.17 56 39.9 15.7 91.3 15.6 0.69 

CIr4 26.6 1.17 56 21.6 16.8 88.9 15.1 0.74 

MIrl 26.0 1.17 56 00.0 18.6 0.00 14.9 0.81 

Hanson 

C-9 23.7 1.50 162 283 158.0 774 148.8 0.70 

Narasimhan 

L1 26.6 1.11 143 400 120.0 495 153.6 0.63 

Godycki, Dilger & Ghali 

SO10 32.0 1.00 127 132 135.4 413 138.0 0.77 

S005 30.9 0.50 127 132 92.9 298 121.6 0.83 

Hanson & Hanson 

Al 30.7 1.64 57 5.74 22.3 97.8 17.6 0.76 

A2 31.8 1.64 57 4.80 24.2 100 18.2 0.72 

B7 33.5 1.64 57 4.89 35.7 107 32.7 0.88 

C8 33.3 1.64 57 5.60 31.4 122 31.7 0.97 

A12 33.7 1.64 57 26.8 20.5 375 22.8 0.62 

B16 30.9 1.64 57 34.4 27.3 39.7 31.6 0.60 

C17 36.5 1.64 57 31.5 24.7 28.7 40.9 0.59 

Regan, Walker & Zakaria 

SM5 32.0 1.05 60 72 15.8 110 21.4 0.72 

SM9 37.7 1.05 60 97 10.7 114 24.1 
10.77 
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Table (6-4-6) continued. 

Slab fc p d Vtest Mtest Vu mu VM 
No N/mm2 % mm KN KN m Kn KN m 

VtM 

SM10 37.7 1.05 60 88 19.4 114 24.1 0.64 

SM11 36.8 1.34 60 91 20.0 111 40.3 0.76 

SM12 31.9 1.34 60 88 19.4 112 37.9 0.77 

Kamaraldin 

SAl 33 0.59 64 109 5.66 119 19.4 0.83 

SA3 36 0.59 64 85 8.50 120 20.7 0.90 

SA4 32 0.59 64 49 16.50 116 19.8 0.80 

SB2 28 1.08 62 61 22.00 122 18.1 0.58 

SC2 37 1.08 62 65 22.00 133 22.8 0.68 

SD2 ý 31 1.08 62 56 17.4 140 20.9 0.81 

Table (6-4-6) Eccentrically loaded slabs analysed by 

Stamankovic and Chapmans formula. 

6-4-2-2 Roman 

The ultimate shear capacity for slabs eccentrically 

loaded, suggested by Regan for practical purposes is 

Vocal 
Vecal = 

1.5e 
1+ 

(c1 + 2d) (c2 + 2d) 

Where e is the load eccentricity 

Vocal is the punching shear load given in section (6-4-1-2) 

cl and c2 are the column dimensions. 
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The results of the analysis are listed in table (6-4-7). 

Slab C1xC2 d fcu p e Voc Vt Vec Vec 
No mm mm 2 N/mm % mm KN KN KN Vt 

All 356x356 114 31.0 2.47 178 498 529 341 0.64 

A12 356x356 114 34.1 2.47 178 515 529 353 0.60 

Moe 

M2 305x305 114 31.3 1.50 196 386 292 248 0.85 

M3 305x305 114 27.6 1.5 338 370 207 189 0.92 

M6 305x305 114 32.2 1.34 168 375 239 254 1.06 

M7 254x254 114 30.4 1.34 61 333 311 280 0.90 

M9 254x254 114 28.3 1.34 127 325 267 233 0.87 

M10 254x254 114 25.4 1.34' 308 314 178 160 0.90 

Hanson & Hanson 

Al 152x152 57 36.8 1.64 3891 125 54.7 5.45 0.95 

A2 152x152 57 38.2 1.64 5056 126 4.80 4.26 0.89 

B7 152x305 57 40.2 1.64 7297 159 4.89 4.70 0.96 

C8 305x152 57 40.0 1.64 5602 159 5.60 6.07 1.08 

A12 152x152 57 40.4 1.64 736 128 26.87124.1; 0.89 

B16 152x305 57 37.1 1.64 795 155 34.38 33.0.98 

C17 305x152 57 43.8 1.64 785 164 31.491 36.2 1.15 
1 --1 

Anis 

B3 203x203 76 36.5 2.19 94 225 192 161 0.84 

B4 203x203 76 35.7 2.19- 188 225 140 125 0.89 

B5 203x203 76 34.8 2.19 312 222 126 96 0.76 

B6 203x203 76 37.7 2.19 465 228 116 77 0.66 

B7 203x203 76 40.5 2.19 945 234 70 47 0.67 
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Table (6-4-7) continued. 

Slab C1xC2 d fcu p e voc vt Vec V 
No mm mm N/mm2 % mm KN KN KN ý- e 

Stamenkovic & Chapman 

CIi 127x127 56 43.2 1.17 87 104 84.5 67 0.79 

C12 127x127 56 35.6 1.17 168 98 62.3 48 0.76 

C13 127x127 56 30.6 1.17 404 93 33.8 26.3 0.78 

C14 127x127 56 30.1 1.17 797 92 20.9 15.3 0.73 

CIrl 76x152 56 27.1 1.17 85 81 85.7 51.0 0.60 

CIr2 76x152 56 35.0 1.17 162 88 67.3 42.0 0.62 

CIr3 76x152 56 34.3 1.17 394 88 39.9 24.0 0.60 

CIr4 76x152 56 31.9 1.17 777 85 21.6 13.60 0.63 

Hanson 

C9 508x508 162 28.4 0.63 571 5 283 280 0.99 

Narasimhan 

L1 303x3031 143 31.9 1.11 492 461 400 205 0.51 

Godycki, Digler & Ghali 

S010 305x303 127 38.4 1.00 1068 412 132 106 0.80 

S005 305x305 127 37.1 0.50 704 323 132 111 0.85 

Regan 

SM5 240x120 60 38.4 1.05 220 122 72 60 0.83 

SM9 240x120 60 45.2 1.05 110 129 97 83 0.85 

SM10 240x120 60 45.2 1.05 220 129 88 61 0.69 

SM11 240x240 60 44.2 1.34 220 174 91 91 1.00 

L SM12 240x240 60 38.3 1.34 220 166 88 87 0.98 
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Table (6-4-7) continued. 

Slab 
No 

C1xC2 
mm 

d 
mm 

fcu 
N/mm2 

p 
% 

e 
mm 

Voc 
KN 

Vt 
KN 

Vec 
KN 

V 
Vt 

Kamaraldin 

SA1 150x150 64 39.6 0.55 52 101 109 79 0.72 

SA3 150x150 64 43.2 0.55 100 104 85 68 0.79 

SA4 150x150 64 38.4 0.55 334 100 49 36 0.72 

SB2 150x150 62 33.6 1.00 360 113 61 38 0.62 

SC2 150x150 62 44.4 0.72 337 111 65 39 0.60 

SD2 200x100 62 37.2 0.72 310 100 56 37 0.65 

Table (6-4-7) Eccentrically loaded slabs analysed by Regan's formula 
6-4-2-3 BS 8110 

The BS 8110 equation used for the calculation of 

eccentric punching loads is given below 

Veca1 
Vocal 

1.5 e 
1+ 

X 

Where Vocal is given in section (6-4-1-3) 

e is the load eccentricity 

X is the length of the side of the shear perimeter 

parallel to the eccentricity. 

The results of the comparison are shown in table (6-4-8). 

It can be seen that, BS 8110 yields unsafe results for slabs 

with rectangular columns see table 6-4-8, Hanson & Hanson's slabs 

C8, C17 and the author's slab SD2, and for slabs with extra 

reinforcement through the columns, Regan's slab SM11. 
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Slab x d fcu 
2 p e Voc Vt Vec v 

No mm mm /mm % mm KN KN KN Výý 

Elstner & Hognstad 

All 698 114 31.0 2.47 178 465 529 336 0.63 

A12 698 114 34.1 2.47 178 480 529 347 0.65 

Moe 

M2 647 114 31.3 1.50 196 366 292 251 0.86 

M3 647 114 27.6 1.50 338 351 207 196 0.95 

M6 647 114 32.2 1.34 168 356 239 256 1.07 

M7 596 114 30.4 1.34 61 322 311 279 0.90 

M9 596 114 28.3 1.34 127 314 267 237 0.89 

M10 596 114 25.4 1.34 308 303 178 172 0.96 

Hanson & Hanson 

Al 323 57 36.8 1.64 3891 119 5.74 6.24 1.09 

A2 323 57 38.2 1.64 5056 120 4.80 4.90 1.02 

B7 323 57 40.2 1.64 7297 122 4.89 3.49 0.71 

C8 476 57 40.0 1.64 5602 180 5.60 9.60 1.72 

A12 323 57 40.4 1.64 763 122 26.9 26.8 1.00 

B16 323 57 37.1 1.64' 795 119 34.4 25.4 0.74 

C17 476 57 43.8 1.64 785 180 31.5 51.8 1.64 

Anis I 

B3 431 76 36.5 2.32 94 218 192 164 0.85 

B4 431 76 35.7 2.32 188 217 140 131 0.94 

B5 431 76 34.8 2.32 312 215 126 103 0.82 

B6 431 76 37.7 2.32 465 221 116 84 0.73 

B7 431 76 40.5 2.32 945 225 70 52 0.75 
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Table (6-4-8) continued. 

Slab x d fcu p e Voc Vt Vec V 
No mm mm N/mm2 % mm KN KN KN ý 

Vt 

Stamenkovic & Chapman 

CI1 295 56 43.2 1.18 87 98 84.5 68 0.80 

C12 295 56 35.6 1.18 168 94 62.3 51 0.81 

C13 295 56 30.6 1.18 404 90 33.8 29.5 0.87 

C14 295 56 30.1 1.18 797 89 20.9 17.6 0.84 

CIrl 320 56 27.1 1.36 85 98 85.7 70.0 0.82 

CIr2 320 56 35.0 1.36 162 107 67.3 61.0 0.90 

CIr3 320 56 34.3 1.36. 394 106 39.9 37.0 0.93 

CIr4 320 56 31.9 1.36 777 104 21.6 22.4 1.04 

Hanson 

C9 994 162 28.4 0.63 571 531 280 285 1.02 

Narasimhan 

L1 734 143 31.9 1.11 492 448 205 245 1.19 

Godycki, Dilger & Ghali 

SO10 686 127 38.4 1.03 1068 397 132 119 0.90 

S005 686 127 37.1 0.44 704 296 132 116 0.88 

Regan 

SM5 420 60 38.4 1.00 220 137 72 77 1.07 

SM9 420 60 45.2 1.00 110 139 97 100 1.03 

SM10 420 60 45.2 1.00 220 139 88 78 0.88 

SM11 420 60 44.2 2.39 220 186 91 104 1.14 

SM12 420 60 38.3 1.00 220 137 88 77 0.88 

242 



Table (6-4-8) continued. 

Slab 
No 

x 
mm 

d 
mm 

J 

fou 
N/2 

p 
% 

e 
mm 

Voc vt 
KN KN 

vec 
KN 

VPc 

Vt 

Kamaraldin 

SA1 342 64 39.6 0.51 52 108 109 88 0.81 

SA3 342 64 43.2 0.51 100 108 85 75 0.88 

SA4 342 64 38.4 0.51 336 107 49 43 0.88 

SB2 336 62 33.6 1.44 360 113 61 43 0.71 

SC2 336 62 44.4 1.44 337 119 65 47 0.73 

SD2 386 62 37.2 1.44 310 145 56 66 1.17 

Table (6-4-8) Eccentrically loaded slabs analysed by BS 8110. 

6-4-2-4 ACI 318-83 

The ACI assumed distribution of shear stress around an 

internal column is shown in Fig. (1-30). 

The eccentric punching shear load is 

Vecal 

Where 

Vocal 

16 
'yß e (X + Y) 

+ 
X2 + d2 + 3XY 

Vocal is given in Section (6-4-1-4) 

X= cl +d 

Y= c2 +d 

cl and c2 are the column dimensions 

e is the load eccentricity 
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1 
1- Yv 1 +, (x/Y) 

is the fraction of the moment transferred by uneven shear, and 

X is the width of the face of the critical section resisting 

the moment. 

The results of the analysis are shown in table (6-4-9), and 

indicate that the ACI code is conservative with respect to the 

treatment of eccentricity. 

Slab Cl c2 d fc e Voc Vt Vec Vec 
No mm mm mm N/mm2 mm KN KN KN Vt 

Elstner & Hognestad 

All 356 356 114 25.9 179 363 529 250 0.40 

A12 356 356 114 28.9 178 381 529 263 0.50 

Moe 

M2 305 305 114 26.1 196 325 292 209 0.72 

M3 305 305 114 23.0 338 305 207 156 0.75 

M6 305 305 114 26.88 168 330 239 224 0.94 

M7 254 254 114 25.3 61 281 311 235 0.75 

M9 245 254 114 23.6 127 271 267 193 0.72 

M10 254 254 114 21.2 308 257 178 130 0.73 

Hanson & Hanson 

Al 152 152 57 30.7 3891 88 5.74 3.84 0.67 

A2 152 152 57 31.8 5056 89 4.80 3.0 0.63 

B7 152 305 57 33.5 7297 126 4.89 3.1 0.63 

C8 305 152 57 33.3 5602 125 5.60 4.8 0.86 

A12 152 152 57 33.7 736 92 26.87 23.8 0.88 

B16 152 305 57 30.9 795 121 34.38 22.8 0.66 

C17 305 152 57 36.5 785 131 31.49 29.2 0.93 
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Table (6-4-9) continued. 

Slab cl c2 d fc 
2 e Voc Vt Vec v ý No mm mm mm N/mm mm KN KN KN Vý 

Anis 

B3 203 203 76 30.4 94 156 192 111 0.58 

B4 203 203 76 29.8 188 154 140 86 0.61 

B5 203 203 76 29.0 312 152 126 66 0.52 

B6 203 203 76 31.4 465 158 116 53 0.46 

B7 203 203 76 33.8 945 164 70 33 0.47 

Stamenkovic & Chapman 

CI1 127 127 56 36.0 87 82 84.5 53.0 0.62 

C12 127 127 56 29.7 168 74 62.3 36.0 0.57 

C13 127 127 56 25.5 404 70 33.8 19.5 0.58 

C14 127 127 56 25.1 797 68 20.9 13.3 0.64 

CIrl 152 76 56 22.6 85 60 85.7 37.2 0.43 

CIr2 152 76 56 29.2 162 69 67.3 32.0 0.47 

CIr3 152 76 56 28.6 394 68 39.9 17.7 0.44 

CIr4 152 76 56 26.6 777 65 21.6 9.85 0.45 

Hanson 

C9 508 508 162 23.7 568 704 283 469 1.65 

Narasimhan 

L1 
- F-305 

305 143 26.6 461 440 400 199 
} 
0.50 

Godycki, Dilger & Ghali 

5010 305 305 127 32.0 1068 414 132 106 0.80 

S005 305 305 127 30.9 704 406 132 139 1.05 
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Table (6-4-9) continued. 

Slab Cl c2 d fc e voc Vt Vec Vec 
No mm mm mm N/mm2 mm KN KN KN "Pt 

Regan 

SM5 240 120 60 32.0 220 109 72 50.7 0.70 

SM9 240 120 60 37.7 110 118 97 75.0 0.77 

SM10 240 120 60 37.7 220 118 88 55.0 0.62 

SM11 240 240 60 36.8 220 146 91 78.0 0.82 

SM12 240 240 60 31.9 220 135 88 71.0 0.81 

Kamaraldin 

SAl 150 150 64 33.0 52 105 109 82 0.75 

SA3 150 150 64 36.0 100 110 85 71 0.84 

SA4 150 150 64 32.0 336 103 49 36 0.74 

SB2 150 150 62 28.0 360 93 61 31 0.51 

SC2 150 150 62 37.0 337 107 65 38 0.58 

SD2 200 100 62 32.0 310 97 56 35 0.62 

Table (6-4-9) eccentric slabs analysed by ACI-83. 

6-4-2-5 CEB-FIP 

The eccentric punching shear load for a rectangular 

column is 

Vecal 
Vocal 

1+1.5 
ex + 1.5 ey 

(cl + d) (c2 + d) 
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Where Vocal is given in section (6-4-1-5) 

cl, c2 are column dimensions 

ex and ey are load eccentricities in x and y directions. 

The results of the analysis are listed in table (6-4-10). 

Slab Cl c2 d fc e voc Vt Vec 
No mm mm mm N/mm2 mm KN KN KN 

ýc 

t 

All 356 356 114 25.9 178 438 529 279 0.53 

A12 356 356_ 1 114 28.4 [_178_ 1 466 529 297 0.56 

Moe 

M2 305 305 114 26.1 196 355 292 209 0.71 

M3 305 305 114 23.0 338 142 207 142 0.68 

M6 305 305 114 26.8 168 333 239 149 0.62 

M7 254 254 114 25.3 61 278 311 222 0.72 

M9 254 254 114 23.6 127 265 267 175 0.65 

M10 254 254 114 21.2 308 247 178 109 0.61 

Hanson & Hanson 

Al 152 152 57 30.7 3891 103 5.74 5.25 0.91 

A2 152 152 57 31.8 5056 105 4.8 2.81 0.58 

B7 152 305 57 33.5 7297 151 4.89 3.70 0.76 

C8 305 152 57 33.3 5602 151 5.60 4.78 0.80 

A12 152 152 57 33.7 763 109 26.8 16.8 0.63 

B16 152 305 57 30.9 795 143 34.4 26.8 0.77 

C17 365 152 57 36.5 785 160 31.5 30.3 0.96 

Anis 

B3 203 203 76 30.4 94 193 192 128 0.76 

B4 203 203 76 29.8 188 195 140 97 0.69 

B5 203 203 76 29.0 312 191 126 71 0.56 
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Table (6-4-10) continued. 

Slab 
N 

Cl c2 d fc 
N/ 2 e Voc Vt Vec V 

o mm mm mm mm mm KN KN KN L' tt 

B6 203 203 76 31.4 465 201 116 57 0.49 

B7 203 203 76 33.8 945 211 70 34.7 0.49 

Stamenkovic & Chapman 

CI1 127 127 56 36.8 87 86 84.5 52.2 0.59 

C12 127 127 56 29.7 168 77 62.3 32.4 0.52 

C13 127 127 56 25.5 404 69 33.8 16.0 0.47 

C14 127 127 56 25.1 797 69 20.9 9.15 0.44 

CIrl 152 67 56 22.6 85 72 85.7 45.5 0.53 

CIr2 152 76 56 29.2 162 85 67.3 40.4 0.60 

CIr3 152 76 56 28.6 394 84 39.9 22.7 0.57 

CIr4 152 76 56 26.6 777 80 21.6 12.7 0.59 

Hanson 

C9 508 508 162 23.7 568 533 283 234 0.83 

Narasimhan 

L1 305 305 143 26.6 461 
( 
400 

( 
400 

( 
157 0.39 

Godycki, Dilger & Ghali 

Solo 305 305 127 32.0 1068 393 132 83 0.63 

S005 305 305 127 30.9 704 335 132 97 0.74 

Regan 

SM5 240 120 60 32.0 220 109 72 45 0.62 

SM9 240 120 60 37.7 110 122 97 71 0.73 
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Table (6-4-10) continued. 

Slab Cl c2 d fc e Voc Vt Vec Vec 
No mm mm mm N/mm2 mm KN KN KN t 

SM10 240 120 60 37.7 220 122 88 63 0.71 

SM11 240 240 60 36.8 220 186 91 89 0.97 

SM12 240 240 60 31.9 220 169 88 80 0.91 

Kamaraldin 

SA1 150 150 64 33.0 52 95 109 70 0.64 

SA3 150 150 64 36.0 100 101 85 59 0.70 

SA4 150 150 64 32.0 336 94 49 28 0.57 

SB2 150 150 62 28.0 360 124 61 35 0.57 

SC2 150 150 62 37.0 337 149 65 44 0.68 

SD2 200 100 62 31.0 310 133 56 41 0.73 

Table (6-4-10) eccentric slabs analysed by CEB-FIP. 

Comparison between experimental punching shear loads reported 

in the literature including tests from the present study and 

predictions of the existing theories, code recommendations, and 

the proposed theory are presented in Figs (6-2) to (6-7). 

These show that the proposed method of calculating the punching 

shear resistance of reinforced concrete flat slab structures 

yield more accurate predictions than those existing. 
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CHAPTER SEVEN 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

This work describes experimental and theoretical studies dealing with 

the punching of reinforced concrete flat-slabs in the vicinity of 

columns, and the effective stiffnesses of cracked slabs. 

The experimental investigation was made on 10 concrete slabs. 

The slabs were supported on central columns and loaded around their 

edges. The variables in these tests were, the ratio of reinforcement, 

the type of loading, the column dimensions and the slab shape. 

The theoretical investigation of punching strength was verified by 

comparisons with the results of tests on 99 concentrically loaded and 

43 eccentrically loaded slabs. 

7-1 CONCLUSIONS 

Some of the more important conclusions arrived at in the present 

experimental and theoretical studies are summarized below. 

1- The applicability of the physical model first proposed by 

Kinnunen and Nylander (30) is confirmed for concentric punching 

and is further extended to determine the punching resistance of 

eccentrically loaded slabs. 

2- The expression for the punching resistance of concentrically 

loaded slabs, determined from the vertical equilibrium condition 

applied to the physical model, is: 

V=0.37 . fc . 1n3.33 (d/ro) .x. ct 200/d 

Where ro = ct/2n 

Ct is the column perimeter 
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3- The punching shear resistance is consistent with the radial 

compressive stress in the concrete at the column face reaching a 
limiting value: 

cc/fc = 1.43 in 3.33 (d/ro) 

and being inclined at an angle of 150 to the plane of the slab. 

4- The scale effect of the slab effective depth may best be 

represented by square root of "d/200", where "d" is in "mm". 

5- Ultimate moment strength of internal slab-column connection 

under horizontal loading can be calculated from equation (5-22). 

Mu = FS h0 + F, c+ FH (h-x) 

6- Ultimate strength of internal slab-column connection under 

combined vertical and horizontal loading is given by the 

proposed equation (5-23). 

VM 

+ =1 
Vu Mu 

7- The decreasing effect of progressive eccentricity on the 

punching shear resistance can be formulated as: 

V1 

Va e 

1+ 

0.7 (c + 3d) 

8- The column shape has a negligible effect on the punching shear 

resistance for eccentrically and concentrically loaded slabs 

provided the length of the column perimeter is constant. 
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9- Experimental evidence in the present work and from other sources 
indicates that the assumptions made, expressions developed and 
failure criterion proposed in the present study yield realistic 
predictions of the punching shear resistance of concentrically 
and eccentrically loaded reinforced concrete flat slabs. 

10- The test results indicate that slab-column joint is not rigid 
and that there is a relative rotation between the two members. 

11- The BS8110 definition of the ratio of flexural reinforcement as 
being that for a width only equal to that of the column plus 
"1.5d" to either side of it, can result in unsafety (0.25 x 
span to either side of column centre) is more realistic. 

Also the use of the dimension of a shear perimeter parallel to 
the eccentricity in calculating eccentric punching shear 

resistance as recommended in BS8110 may give unsatisfactory 

results for slabs with rectangular columns. (Column perimeter/4 
is preferable). 

12- The use of concrete compressive strength as the only factor in 

determining the punching shear resistance as suggested by ACI - 
318-83 may lead to unsafe results for thick slabs on large 

columns. 

13- The deflection of eccentrically loaded slabs can be estimated 
by using the method described in section 5-3. 

7-2 SUGGESTIONS FOR FUTURE RESEARCH 

Since this work deals only with internal slab column connections of 

ordinary reinforced concrete slabs with no shear reinforcement, further 

work to extend the theory to the following cases is recommended. 

- Eccentric and concentric punching in prestressed slabs. 

258 



- Punching shear in slabs with shear reinforcement. 

- Punching at edge and corner columns. 

More experimental work on internal and external connections having 

different variables is required. 

Among those variables that should be included in further tests are 

slabs with different column shapes and eccentricities of the applied 

load. 
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NOTATION 

The notation which follows is for the author's experimental 

work and theoretical approach. The symbols relating to other 

researchers work and codes of practice are given in the text. 

A Slab length 

As Area of steel 

a Length of loaded area (or column) 

B Slab width 

b Width of loaded area (or column) 

be Effective width of slab. 

C The length of the bearing area of a radial segment 

d Effective thickness or depth 

Ec Modulus of elasticity of concrete 

Es Modulus of elasticity of steel 

e Eccentricity of the applied load 

Fct Tangential concrete force 

Fst Tangential steel force 

Fsr Radial steel force 

Fcr Radial concrete force 

Fc Total radial concrete force 

Fs Total radial steel force 

fc Cylinder strength of concrete 

fcu Cube strength of concrete 

ft Concrete tensile strength 
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fct, flex Flexural tensile strength of concrete 

fy Yield stress of steel 

H Horizontal load 

h Overall thickness or depth 

Kx, Kc coefficients (functions of the concrete strain and 

the idealised stress-strain curve) 

1 Span length 

M Positive moment at midspan 

Mt Moment transferred to column 

Mcr Moment to cause first crack to develop 

Mtcr Transfer moment at first cracking of slab 

M1, M2 Negative moments at supports 

m Moment per unit width 

P Applied vertical load 

Pcr Vertical load at first cracking of slab 

ro Radius of a column (or loaded area) 

r3 Radius of slab 

rw Punching radius 

rs Radius at which tangential reinforcement yields 

V Vertical load 

Vflex Flexural capacity of slab 

Vtest Experimental ultimate load (in some tables Vt) 

Vcal = Vocal Calculated ultimate concentric punching load 

(in some tables given as Vc and Voc) 

Vecal = Vec Calculated ultimate eccentric punching load 

x Neutral axis depth 

z Lever arm 
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a Angle between radial compression at colurnn face a-. - 

mean plane of slab 

AO Sectorial angle of a radial segment 

E Normal strain 

Ccl = 0.85fc/ (4250) 

Ect Concrete tangential strain 

FEcu Ultimate strain of concrete (0.0035) 

Est Steel tangential strain 

Esy Strain in the steel corresponding to fy 

Wft Rotation at failure of a radial segment 

p Reinforcement ratio 

pr Ratio of radial reinforcement 

pt Ratio of tangential reinforcement 

6 Normal stress 

ßc Concrete bearing stress 

6sr Steel stress in radial direction 

ast Steel stress in tangential direction 

ßl, 62,63 Principal stress 

It Shear stress 

6s Slab rotation 

6c Column rotation 

6j Joint rotation 

Depth factor 

Proportional to 
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APPENDIX A 

The experimental work included six square and four rectangular 

slabs. Four slabs were tested concentrically while six slabs 

were tested eccentrically. The loads were applied in stages, 

after each stage of loading a set of deflection and rotations 

readings was taken. The positions of the dial gauges and the 

spirit level inclinometers are shown in figures Al. A2, A3. The 

dial gauge and the inclinometer readings are listed in tables 

(A) . In the following tables all deflections are in mm while 

the rotations are in degrees. 
Table Al Slabs deflection 

V deflection 

KN 12 3 4 5 6 7 8 9 

25 0.53 0.35 0.15 0.04 0.02 0.03 0.37 0.82 1.1 

37 0.36 0.28 0.81 0.11 -0.30 0.88 0.47 0.93 1.2. 

49 1.47 0.98 0.48 0.37 -0.41 0.68 0.95 2.06 3.9 

61 3.17 2.13 1.00 0.80 -1.69 2.22 1.39 3.98 4.1 

69 5.14 3.44 1.99 1.08 -1.07 2.49 2.25 5.08 7.3; 

77 5.53 
1 3.72 2.12 1.19 -0.. 87 2.73 2.44 5.47 7.8' 

85 6.06 4.09 2.30 1.20 -1.04 2.46 2.79 6.20 8.8' 

89 6.69 4.43 2.46 1.05 -1.40 1.86 3.18 6.99 10.0, 

93 6.88 4.58 2.54 1.02 1-1.50 1.68 3.33 7.28 , 10.5: 

3 

3 

3 

1 
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Table Al - slab SAl continued. 

V! deflection 

KN 1 2 3 4 5 6 7 8 9 

97 7.17 4.80 2.65 0.97 -1.66 1.43 3.59 7.86 11.25 

101 7.83 5.33 2.88 0.94 -1.78 1.17 3.99 8.75 12.47 

105 7.93 5.44 2.92 0.91 -1.88 0.97 4.21 9.18 13.09 

Table Al - slab SA1. 

V deflection 

KN 1 2 3 4 5 6 7 8 9 

25 i. 00 0.03 0.04 0.11 0.25 1.35 0.14 0.24 0.49 

37 1.26 0.23 0.16 0.30 0.61 1.92 0.30 0.54 0.91 

49 2.30 0.54 0.47 0.56 1.23 2.83 0.58 1.09 1.70 

61 3.93 -1.23 0.96 1.01 2.26 4.44 1.12 2.24 3.46 

69 4.29 2.33 1.08 1.18 2.61 4.90 1.25 2.65 4.17 

77 4.72 2.59 1.27 1.38 2.99 5.41 1.46 3.05 4.46 

85 5.04 2.84 1.38 1.47 3.16 5.59 1.57 3.24 4.86 

89 5.82 3.43 1.67 1.74 3.71 6.29 1.83 3.76 5.55 

93 6.16 3.70 1.80 1.86 3.95 6.61 1.97 3.98 5.77 

97 6.43 3.95 1.93 1.99 4.22 6.96 2.11 4.31 6.21 

101 7.71 4.19 1.05 2.13 4.48 7.29 2.25 4.58 6.56 

105 7.14 4.50 2.22 2.32 4.86 7.83 2.45 4.92 7.10 

109 7.46 4.77 2.31 2.49 5.20 8.25 2.58 5.33 7.65 
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Table Al - slab SA2 continued. 

V deflection 

KN 1 2 3 4 5 6 7 8 9 

113 7.88 5.11 2.49 2.68 5.56 8.72 2.77 5.67 8.11 

117 8.21 5.40 2.65 2.89 5.98 9.26 2.94 6.05 8.59 

121 8.62 5.71 2.78 3.10 6.42 9.91 3.12 6.49 9.19 

125 9.07 6.08 2.98 3.31 6.82 10.37 3.41 6.98 9.86 

129 9.55 6.49 3.24 3.61 7.38 11.13 3.79 7.55 10.63 

133 10.07 6.92 3.46 3.85 7.82 11.66 4.14 8.22 11.51 

137 10.49 7.34 3.72 4.25 8.44 12.39 4.88 9.55 13.19 

Table Al - slab SA2. 

V deflection 

KN 1 2 3 4 5 6 7 8 9 

22 0.34 0.24 0.05 -2.92 -5.10 -7.39 2.51 5.17 7.90 

31 0.95 0.67 0.26 -3.00 -5.30 -7.79 2.83 5.80 8.75 

40 1.99 1.33 0.51 -3.09 -5.50 -8.13 3.11 6.49 9.71 

49 3.78 2.49 1.01 -3.17 -5.37 -7.95 3.25 7.47 11.29 

55 4.13 2.76 1.10 -5.00 -7.05 -9.41 3.33 8.08 12.23 

69 6.24 4.27 1.74 -5.63 -8.35 -12.12 3.43 10.16 16.87 

77 6.80 4.87 2.02 -5.77 -9.65 -12.71 3.86 11.82 19.40 

85 7.75 5.52 2.48 -5.79 -9.69 -12.88 4.58 13.39 21.74 

Table Al - slab SA3. 
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V deflection 

KN 1 2 3 4 5 6 7 8 9 

25 0.49 0.31 0.13 -0.34 -0.46 -2.35 1.40 4.22 4.99 

37 2.46 1.64 0.64 -1.56 -4.36 -6.84 3.90 10.10 14.05 

41 2.89 1.93 0.78 -2.16 -5.59 -9.01 4.88 12.31 17.52 

45 3.54 2.37 0.97 -2.83 -8.11 -11.50 6.14 15.33 22.32 

Table Al - slab SA4. 

V deflection 

KN 1 2 3 4 5 6 7 8 9 

17 0.20 0.04 0.03 -0.40 -0.24 -0.09 0.22 0.46 0.73 

21 0.27 0.05 0.09 -1.02 -0.60 -0.25 0.54 1.19 1.85 

25 0.31 0.07 0.12 -1.66 -1.03 -0.42 0.85 1.90 2.90 

29 0.36 0.08 0.13 -2.46 -1.52 -0.65 1.25 2.72 4.15 

37 0.39 0.09 0.15 -4.88 -3.06 -1.36 2.42 5.66 8.71 

45 0.42 0.11 0.16 -7.80 -4.93 -2.23 3.79 8.96 13.82 

53 0.43 0.21 0.17 -12.27 -7.79 -3.59 5.80 13.68 21.11 

Table Al - slab SB2. 
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V deflection 

KN 1 2 3 4 5 6 10 11 12 

25 0.63 0.45 0.21 0.27 0.51 0.73 0.43 0.89 1.32 

37 1.42 1.03 0.47 0.56 1.08 1.50 0.81 1.71 2.50 

49 2.28 1.65 0.75 0.83 1.64 2.25 1.18 2.52 3.69 

61 3.12 2.26 1.04 1.12 2.22 3.00 1.56 3.21 4.64 

73 4.34 3.15 1.44 1.58 3.15 4.26 2.04 4.38 6.32 

85 5.04 3.68 1.69 1.70 3.38 4.55 2.14 4.60 6.56 

93 5.72 4.26 2.03 1.91 3.75 5.02 2.46 5.12 7.19 

101 6.48 4.86 2.31 2.14 4.23 5.60 2.72 5.72 7.99 

109 7.33 5.48 2.59 2.45 4.80 6.39 3.03 6.30 8.71 

117 8.36 6.27 3.03 3.03 5.87 7.77 3.46 7.18 9.92 

Table Al slab SBl. 

v deflection 

KN 1 2 3 4 5 6 7 8 9 10 11 

21 0.12 0.13 0.10 0.04 0.54 0.39 0.21 0.15 0.29 0.46 0.65 

57 5.17 3.50 2.24 0.86 3.41 2.33 1.13 0.83 2.12 3.38 5.05 

69 5.93 4.06 2.62 1.02 3.78 2.62 1.28 1.02 1.02 2.58 4.07 

81 7.65 5.29 3.38 1.33 4.69 3.15 1.53 1.35 3.43 5.41 7.95 

93 10.57 6.62 4.24 1.67 5.69 3.89 1.87 1.81 4.57 7.19 10.55 

105 11.49 7.96 5.08 2.01 6.64 4.62 2.22 2.20 5.55 8.73 12.71 

113 12.88 8.93 5.74 2.29 7.37 5.18 2.49 2.53 6.30 9.90 14.34 

121 14.31 10.06 6.43 2.59 8.19 5.85 2.81 2.92 8.21 11.28 16.25 

Table Al slab SC1. 
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V deflection 

KN 1 2 3 4 5 6j7 8 9 10 11 

19 -0.21 -0.14 -0.08 -0.07 0.19 0.18 0.08 0.30 0.62 0.95 1.39 

23 0.34 0.26 0.17 0.05 0.36 0.32 0.16 0.41 0.85 1.28 1.87 

27 1.28 0.92 0.60 0.23 0.82 0.50 0.26 0.60 1.32 2.00 2.91 

31 2.80 1.96 1.27 0.50 0.92 0.75 0.39 0.86 1.95 3.02 4.40 

35 3.91 2.73 1.74 0.68 1.30 1.05 0.55 1.20 2.78 4.32 6.31 

39 5.86 5.05 2.57 0.99 2.08 2.61 0.83 1.75 4.06 6.34 8.24 

47 7.88 5.46 3.46 1.35 2.88 2.91 1.13 2.25 5.25 8.22 11.9 

55 10.10 7.01 4.46 1.74 4.02 3.78 1.54 2.83 6.60 10.34 14.9 

67 11.86 8.26 5.26 2.06 5.00 4.58 1.93 3.45 8.04 12.47 18.1 

79 13.60 9.51 6.07 2.41 6.64 5.31 2.32 4.06 9.41 14.67 23.2 

Table Al slab SD1. 
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Table A2 Slabs rotation 

V M. Rotation 

KN KN m w E S C 

25 0.74 0.025 0.072 0.012 -0.014 
37 1.48 0.052 0.128 0.019 -0.019 
49 2.22 0.058 0.189 0.032 -0.021 

61 2.77 0.159 0.210 0.040 -0.025 

69 3.33 0.220 0.221 0.074 -0.026 

77 3.70 0.240 0.268 0.103 -0.029 

85 4.25 0.225 0.530 0.120 -0.033 

89 4.62 0.185 0.766 0.133 -0.037 

93 4.81 0.178 0.800 0.141 -0.038 

97 5.00 0.161 0.820 0.155 -0.039 

101 5.18 0.138 0.874 0.178 -0.040 

105 5.55 0.137 0.930 0.189 -0.048 

Table A2 - slab SA1. 

V Rotation 

KN N W S E 

25 0.032 0.012 0.008 0.016 

37 0.080 0.049 0.027 0.045 

49 0.195 0.119 0.107 0.112 

61 0.343 0.235 0.200 0.238 

69 0.370 0.266 0.209 0.279 

77 0.434 0.307 0.278 0.325 
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Table A2 - slab SA2 continued. 

V Rotation 

KN N W S E 

85 0.487 0.332 0.312 0.344 

89 0.570 0.427 0.382 0.426 

93 0.600 0.466 0.412 0.755 

97 0.620 0.510 0.430 0.800 

101 0.746 0.557 0.458 0.852 

105 0.746 0.640 0.504 0.922 

109 0.800 0.697 0.542 0.993 

113 0.840 0.759 0.583 1.040 

117 0.938 0.845 0.630 1.110 

121 1.020 0.992 0.679 1.198 

125 1.105 1.000 0.719 1.280 

129 1.246 1.100 0.779 1.390 

133 1.410 1.200 0.833 1.460 

137 1.610 1.385 0.891 1.529 

Table A2 - slab SA2. 
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V Mt Rotation 

KN KN m w E S N C 

22 0.736 0.067 0.127 0.016 0.014 0.030 

31 1.472 0.068 0.203 0.064 0.068 0.067 

40 2.208 0.080 0.296 0.136 0.163 0.108 

49 2.760 0.086 0.362 0.266 0.283 0.138 

55 3.312 0.086 0.423 0.316 0.345 0.168 

69 6.624 -0.021 0.863 0.516 0.552 0.442 

77 7.728 -0.083 1.000 0.656 0.559 0.541 

85 8.464 -0.087 1.029 0.684 0.763 0.558 

Table A2 - slab SA3. 

V Mt Rotation 

KN KN m w E S N C 

25 4.35 -0.070 0.290 0.04 0.028 -0.209 

37 9.05 -0.500 0.810 0.130 0.226 -0.250 

41 10.56 -0.719 0.890 0.180 0.439 -0.480 

45 12.07 -0.967 1.130 0.250 0.547 -0.510 

Table A2 - slab SA4. 
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V Mt Rotation 

KN KN m w N E C 

17 1.85 -0.016 0.040 0.045 -0.011 

21 3.70 -0.057 0.050 0.110 -0.020 

25 5.55 -0.097 0.060 0.467 -0.037 

29 7.40 -0.157 0.070 0.550 -0.057 

37 11.1 -0.307 0.140 0.563 -0.097 

45 14.8 -0.495 0.252 0.940 -0.140 

53 18.5 -0.787 0.380 1.569 -0.228 

Table A2 - slab SB2. 

V Rotation 

KN W S 

25 0.050 0.041 

37 0.113 0.094 

49 0.156 0.162 

61 0.222 0.312 

73 0.357 0.394 

85 0.600 0.467 

93 0.670 0.548 

101 0.723 0.648 

109 0.800 0.766 

117 0.910 0.939 

Table A2 slab SB1. 
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V Rotation 

KN N S 

21 0.038 0.029 

57 0.224 0.189 

69 0.258 0.226 

81 0.319 0.279 

93 0.414 0.367 

105 0.519 0.462 

113 0.595 0.525 

121 0.696 0.582 

Table A2 slab SC1. 

V Mt Rotation 

KN KN m w N E C 

19 1.85 -0.015 0.013 0.084 -0.024 

23 3.70 -0.017 0.037 0.120 -0.038 

27 5.55 -0.038 0.050 0.200 -0.056 

31 7.40 -0.064 0.060 0.292 -0.073 

39 11.1 -0.174 0.074 0.553 -0.119 

51 14.8 -0.240 0.121 0.947 -0.212 

55 18.5 -0.360 0.171 1.539 -0.276 

Table A2 slab SC2. 

284 



V Mt Rotation 

KN KN m w N E C 

19 1.85 -0.029 0.009 0.040 -0.011 

23 3.70 -0.060 0.040 0.090 -0.027 

27 5.55 -0.099 0.080 0.168 -0.039 

31 7.40 -0.146 0.114 0.541 -0.050 

39 11.1 -0.286 0.202 0.800 -0.085 

47 14.8 -0.532 0.351 1.378 -0.143 

Table A2 slab SD2. 

V Rotation 

KN W S 

19 0.012 0.053 

23 0.025 0.073 

27 0.046 0.120 

31 0.072 0.176 

35 0.105 0.244 

39 0.170 0.354 

47 0.240 0.459 

55 0.343 0.588 

67 0.441 0.741 

79 0.543 0.879 

Table A2 slab SD1. 
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