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Abstract 
In food industry, quality and safety are considered important issues worldwide that are directly related to health and 

social progress. The use of vision technology for quality testing of food production has the obvious advantage of 

being able to continuously monitor a production using non-destructive methods, thus increasing the quality and 

minimizing cost. The performance of an intelligent decision support system has been evaluated in monitoring the 

spoilage of minced beef stored either aerobically or under modified atmosphere packaging, at different storage 

temperatures (0, 5, 10, and 15 °C) utilising multispectral imaging information. This paper utilises a neuro-fuzzy 

model which incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule 

base is determined by competitive learning. Initially, meat samples are classified according to their storage 

conditions, while identification models are then utilised for the prediction of the Total Viable Counts of bacteria. 

The innovation of the proposed approach is further extended to the identification of the temperature used for storage, 

utilizing only imaging spectral information. Results indicated that spectral information in combination with the 

proposed modelling scheme could be considered as an alternative methodology for the accurate evaluation of meat 

spoilage. 
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1. Introduction 
 
With the current growing need for lower production costs and high competence, food industry is faced with a 

number of challenges, including maintenance and assurance of food quality and safety. Food companies and 

suppliers need efficient, low-cost and non-invasive quality and safety inspection technologies to enable them to 

satisfy different markets’ needs [1]. Various rapid, non-invasive methods based on analytical instrumental 

techniques, such as Fourier transform infrared spectroscopy (FTIR) [2], Raman spectroscopy [3] and Electronic 

Nose technology [4] have been researched for their potential in assessing food quality. In recent years, spectral 

imaging (i.e., hyperspectral and multispectral) has been considered as an alternative tool for safety and quality 

inspection of various agricultural products [5]. This technique integrates the conventional imaging and spectroscopy 

technique to attain simultaneously both spatial and spectral information from the target product.  

Meat is a nutritious and expensive food product in human diet worldwide due to the fact that it is an important 

source of protein and trace elements. A non-invasive method based on multispectral imaging in the visible and near 

infrared (NIR) regions to predict the aerobic plate count in cooked pork sausages has been considered recently [6]. 

The prediction of total viable counts of minced pork meat stored under two different storage conditions - aerobic and 

modified atmosphere packages - has been performed using the VideometerLab multispectral imaging device [7]. 

The detection of minced lamb adulteration has been considered using hyperspectral imaging [8], while the 

possibility of combining both spectral with texture features in order to improve pH prediction for salted pork was 

investigated through hyperspectral imaging [9]. 

The amount of information provided by spectral data in the visible and short wave near infrared area however 

requires an advanced data analysis approach. Neural network (NN) algorithms have shown promising results in 

applications such as growth parameter estimation of microorganisms at pork meat using hyperspectral images [10].  

To overcome the limitations of NNs, neuro-fuzzy approaches have attracted growing interest of researchers in 

various scientific and engineering areas. 

 

Fig. 1: Schematic of the proposed data analysis 

The main objective of this paper is to associate, for the first time according to literature, spectral data acquired by 

multispectral imaging techniques with meat spoilage, using neuro-fuzzy systems. Fig. 1 illustrates the proposed data 

analysis concept. Minced beef samples, packaged either aerobically (AIR) or under modified atmosphere (MAP), 



were held from freshness to spoilage at 0, 5, 10, and 15 oC . Datasets related to imaging spectral information and the 

associated microbiological analysis from meat samples, were provided by Agricultural University of Athens, 

Greece. An intelligent decision support system has been designed in such way in order to accommodate all relevant 

information. Its overall schematic diagram shown at Fig. 2 includes a classifier unit to discriminate AIR/MAP based 

samples as well as an identification model to predict the temperatures under which meat samples were stored. 

Individual identification models have been also developed for the prediction of the total viable counts of bacteria 

(TVC) as well as the growth of salmonella (XLD) for both AIR/MAP conditions.  

 

Fig. 2:  Structure of proposed decision support system 

 
The Adaptive Fuzzy Inference Neural Network (AFINN), a Takagi–Sugeno–Kang (TSK) structure, has been 

considered as the identification/classifier models for this proposed decision support systems [11]. Results from 

AFINN scheme are compared against models based on ANFIS, multilayer neural networks (MLP) and PLS 

schemes. Such comparison is considered as a essential test, as we have to emphasise the need of induction to the 

area of food microbiology, advanced learning-based modelling schemes, which may have a significant potential for 

the accurate estimation of meat spoilage.  

 

2. Materials and methods 
The experimental case study was performed at the Agricultural University of Athens, Greece. A detailed description 

of the preparation of minced beef samples, as well as their related microbiological analysis, is described in [12]. 

Meat was separated into small portions and packaged individually either aerobically or under modified atmosphere 

(40% CO2, 30% O2, 30% N2), and in different temperatures (0, 5, 10, 15 °C) that are associated with acceptable/non-

acceptable storage practices in a distribution chain for meat products.  Fig 3 shows a sample of meat under these 

different storage conditions. Microbiological analysis was performed, and resulting growth data from plate counts 



were log10 transformed and fitted to the Baranyi & Roberts’ model of in order to confirm the kinetic parameters of 

microbial growth (maximum specific growth rate and lag phase duration) for TVC and salmonella (XLD) [12]. 

 
Fig. 3:  Example of Aerobic vs. MAP storage 

 
The growth curves of TVC and XLD for minced beef storage at different temperatures under AIR and MAP 

conditions as a function of storage time are illustrated in Fig. 4.  

  

  
Fig. 4:   Population dynamics of TVC and XLD at various temperatures for minced beef samples 

 
The curves for both TVC cases are fairly similar, with the exception that the maximum specific growth rate (μmax) 

for the AIR packaged condition is higher than of that of the MAP case. However, for both AIR and MAP conditions, 

the growth rate is increased faster, as the storage temperature increases. For the case of XLD, significant changes 

occur only when temperature reaches at 15 °C. Images from every sample were then captured using VideometerLab, 

a system which produced multispectral images in 18 different wavelengths ranging from 405 to 970 nm. More 



specifically, the specific wavelengths were set at 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 

870, 890, 910, 940 and 970 nm. Image segmentation was performed using the VideometerLab software, while the 

image of a meat sample without the background was then transformed to spectra based on a mean calculation [13]. 

Thus, each image contributed with a mean reflectance spectrum which was used for the development of the 

prediction models for determination of TVC and XLD in minced beef. Fig. 5 illustrates a sample of mean 

reflectance spectra acquired from minced beef samples. 

  

  
Fig. 5:   Selected spectra for both AIR and MAP cases 

 
Due to the multi-variable nature of multispectral data, a dimensionality reduction algorithm was applied on those 

multispectral data used for training purposes. The robust PCA (RPCA) scheme has been utilized to obtain principal 

components that are not influenced much by outliers [14]. RPCA scheme was implemented in MATLAB, with the 

aid of PLS_Toolbox (ver. 8.0 Eigenvector.com). 

PCs Robust PCA 
 Eigenvalue Prop. % Cum. prop. % 
1 346 65.98 65.98 
2 125 22.94 88.92 
3 48.8 8.98 97.90 
4 8.96 1.56 99.46 
5 1.21 0.21 99.67 

 
Table 1: Robust PCA scheme 

For this particular experimental case study, the first five principal components (PC) were associated with the 

99.675% of the total variance, as shown in Table 1. These specific PCs were extracted and utilized as inputs to the 

various simulation models developed for this specific case study. 



3. AFINN Architecture 
The proposed neuro-fuzzy (NF) system is a modification of the ANFIS model and incorporates an additional layer 

of output partitions. Initially, a clustering algorithm has been applied to the training data in order to organize feature 

vectors into clusters. The fuzzy rule base is then derived using results obtained from the clustering algorithm. The 

schematic of the AFINN model, shown in Fig. 6, consists of five layers. Layers L1 and L2 are associated to IF part of 

fuzzy rules while layers L4 and L5 to THEN part of these rules and are related to the defuzzification task. In layer L3 

a mapping between the rules layer and the output layer is performed through a competitive learning process and as a 

consequence, the linear units at L4 are linked with each term of layer L3.  Thus the size of required matrices for least-

squares estimation at the consequent part is much smaller compared to the ANFIS approach. The clustering 

algorithm at layer L2 consists of two steps [11]. In the first step, a method similar to Learning Vector Quantization 

(LVQ) algorithm creates crisp c-partitions of the dataset. The number of clusters c and the associated centres 

,   1,..., ,iv i c=  calculated from this step are utilised by the FCM algorithm in the second step. The first cluster is 

created starting with the first data vector from np
1[ , ..., ]  R= ∈nX x x , which is the learning data set. Cluster centres iv

are then modified for each cluster (i.e., 1,...,i c= ) according to the following equation 

( 1) ( ) ( ( ))i i t k iv t v t a x v t+ = + −       (1) 

where 0,1, 2,...t = denotes the number of iterations and [0,1]ta ∈  is the learning rate. These cluster centres which are 

considered to be the initial values of the fuzzy centres derived by the second step algorithm. In the second step, the 

FCM algorithm has been used to optimise the values of cluster centres. 

 

Fig. 6:  Structure of AFINN system 

3.1 AFINN Internal Structure 
The number of rules in the AFINN scheme is identical to the number of clusters c obtained from the clustering 

algorithm. Fuzzy IF-THEN rules then can be written in the following form: 

1 1 0 1 1IF (  is  AND....AND  is ) THEN ( .. )i i i i i
q q q qx U x U y w w x w x= + + +   (2) 



where ,  1,..., ;   1,..i
jU i c j p= = and 1q p= − , are fuzzy sets defined based on c-partition of learning data X. The 

membership functions of fuzzy sets i
jU  have be chosen as Gaussian membership functions with the following form: 
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for 1,..,j q= and 1,..,i c= . The values ijv in Eq. (3) represent the centres of the membership functions and are equal 

to the values of the components of vectors iv which derive from the FCM algorithm. The values σ ij  in Eq. (3) 

define the widths of the membership functions. These values are calculated according to  
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The second layer L2 has c elements that realize a multiplication operation. Outputs of this layer represent the fire 

strength of the rules, expressed as: 

2 1

1
i
j

q

i U
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O O
=
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where 1,..,i c= . Nodes at the additional layer (L3), represent the partitions of the output variables. The nodes should 

perform the fuzzy OR operation to integrate the fired rules: 

3 2 3
,l k l k

k
O O w=∑        (6) 

where, 1,..,k c= . Hence, links between L2 and L3 function as an inference engine that does not require the rule-

matching process. Initially, the links at layers L2-L3 are fully interconnected. However, not all the rules are 

necessary to the fuzzy system. The weight of the link connecting the thk rule node from L2 and the thl output 

partition at L3 is denoted as 3
,l kw and assigned to be 0.5. A competitive learning algorithm is then utilised. For the set 

of training data pairs ( , )x y the weights are adjusted as:  

3 3 3 2
, ,( )l k l l k kw O w O∆ = − +      (7) 

where 3
lO is denoted as the output of the l output term node, while 2

kO  is the output of the k fuzzy rule node. Hence, 

3
lO serves as a win-loss index of competition. As the competitive algorithm needs the number of output nodes 3

lO  to 

be a priori known, this has been heuristically set to be (1/2+1) of the defined number of rules. The main principle of 

this phase is to remove the less important rules and to retain essential ones based on the results of competitive 

learning through the whole set of trained data pairs. The weight of a link that connects a rule node and an output 

partition node indicates the strength of the rule affecting the output partitions. The link with the maximum weight is 

chosen and it is assigned to 1, while the remaining ones to 0. Therefore, only the rule with the link of maximum 

weight will be assigned to the output partitions. After that, the weights of the links that connect the same output term 

node are compared. If the weight of the link is found to be small compared to the maximum one, the weight of the 



link is assigned to zero. The remaining weights are then assigned to 1. Hence 3
,l kw  will be either 0 or 1, which 

indicates the existence of the links connecting the node l in L3 and the node k in L2.  At layer L4, every node is an 

adaptive node, with a node function as: 
3 3
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1 23 3 ( )l l
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      (8) 

where{ , , }l l lp q r is the consequent parameter set of this node. Finally in the last layer, L5, the single node in this 

layer computes the overall output as the summation of all incoming signals: 
5 4

l
l

O O=∑          (9) 

Similarly to the ANFIS model, a hybrid learning approach has been also adopted for the AFINN scheme [11]. All 

modelling schemes have been implemented in MATLAB (ver. R2014a, Mathworks.com). 

 

4. Results & Discussion 
The challenge in this paper is to propose a new learning-based framework which could be considered as a 

benchmark method towards the development of efficient intelligent methods in food quality analysis. For this 

reason, AFINN’s results are compared with those obtained by MLP neural networks, ANFIS neurofuzzy 

identification models and PLS regression schemes. Such schemes have been applied recently in the area of food 

science and technology as modelling systems [15]. The dataset consisted of 56 minced beef samples at aerobic and 

56 samples at MAP conditions respectively. Information related to sampling times as well as the storage 

temperatures was also considered for this analysis. As the number of observations/samples was small, the leave-1-

out cross validation (LOOCV) technique was employed to evaluate the performance of the developed models.  The 

performance of developed models for the prediction of TVC and XLD for each meat sample was determined by the 

bias (Bf) and accuracy (Af) factors, the mean relative percentage residual (MRPE) and the mean absolute percentage 

residual (MAPR), the root mean squared error (RMSE) and finally the standard error of prediction (SEP) [16].  

Class (AIR/MAP) Predicted class  (AFINN) Row total  Sensitivity (%) 
 AIR MAP   
AIR ( n 56= ) 52 (+2 marginal) 2 56 96.43 
MAP ( n 56= ) 3 53 56 94.64 
Column total (

jn ) 57 56 112  

Specificity (%) 94.74 94.64  
Overall correct classification (accuracy): 95.53% 

 
Table 2: Confusion matrix for class of storage conditions  

 
The classification accuracy acquired by the AFINN model for the categorization of storage conditions (Aerobic vs. 

MAP) is presented in the form of a confusion matrix in Table 2. For this specific model, 22 rules have been created 

by the clustering scheme, while input vector consisted of the five PCs extracted from the RPCA algorithm. The 

hybrid parameter learning algorithm resulted in a high speed training process, i.e. 20 epochs. The sensitivities reveal 

an overall excellent performance for both cases. The model overall achieved a 95.53% correct classification, and 



96.43% and 94.64% for AIR and MAP meat samples, respectively. The sensitivities for AIR and MAP-based meat 

samples reveal 54 (including two marginal cases) AIR samples, and 53 MAP samples properly classified to their 

own class. Misclassified samples “1A5”, “1A10” correspond to minced beef AIR samples stored at 5oC and 10oC 

respectively and collected immediately (0h of storage). Similarly, misclassified samples “1M5”, “1M10”, “1M15” 

correspond to minced beef MAP samples stored at 5oC, 10oC and 15oC respectively and collected instantly (0h of 

storage). Such misclassification can be explained by the fact, that at 0t = , meat samples share the same spectral 

information. The specificity index was also high, indicating satisfactory discrimination between these two classes 

(Table 2). 

In addition to AFINN, an ANFIS model has been also developed to classify AIR/MAP samples. Under the 

same training conditions, ANFIS performed very satisfactory, its performance however was achieved with a 

relatively computational cost, utilising 32 fuzzy rules, using two membership functions for each input variable. An 

overall classification accuracy of 93.75% resulted in 7 misclassifications. In addition to previously misclassified 

samples, new samples “4A0” and “4M0” were also failed to be identified. These samples correspond to AIR and 

MAP samples stored at 0oC, collected after 138h of storage respectively. 

Temp (AIR/MAP) Predicted class (AFINN) Row total  Sensitivity 
Total (%) 

 AIR MAP  
 0 °C 5 °C 10 °C 15 °C 0 °C 5 °C 10 °C 15 °C   
0 °C 13  1  13  1  28 92.85 
5 °C  13 1   13 1  28 92.85 
10 °C  1 13    14  28 96.43 
15 °C   1 13   1 13 28 92.85 
Column total (

jn ) 13 14 16 13 13 13 17 13 112  

Specificity (%) 100 92.85 81.25 100 100 100 82.35 100  
Overall correct classification (accuracy): (AIR: 92.85%, MAP: 94.64%)     93.75% 

 
Table 3: Confusion matrix for temperature using AFINN model 

 

The changes in microbial flora of fresh minced meat has been monitored at different storage temperatures (0 to 

15°C) under aerobic and MAP conditions. Results from microbiological analysis, revealed that changes in Total 

Viable Counts follow temperature changes during storage and thus, temperature could be considered as a good 

indicator for meat spoilage.  However, the knowledge of storage temperature is not always available, thus this issue 

could be considered as an obstacle for production line use.  

The motivation for this research study derives from the aim to predict, for the first time, directly the storage 

temperature by utilising only multispectral information. Such non-invasive temperature “measurement” could be 

then utilised for the prediction of TVC and XLD levels. The accuracy acquired by an AFINN model for the 

temperature prediction was 93.75% and is presented in the form of a confusion matrix in Table 3. Seven minced 

meat samples were not identified properly. These include the aerobic “1A0”, “1A5”, “5A10”, “1A15” and the MAP 

“1M0”, “1M5”, “1M15” samples. The “1A0”, “1A5”, “1A15” cases correspond to AIR samples stored at 0oC, 5oC 

and 15oC respectively and collected immediately (0h of storage). The case “5A10” corresponds to an AIR sample 

stored at 10oC and collected at 48h. Similarly, “1M0”, “1M5”, “1M15” cases correspond to MAP samples stored at 

0oC, 5oC and 15oC respectively and collected immediately (0h of storage).  



Temp (AIR/MAP) Predicted class (ANFIS) Row  
Total  

Sensitivity 
ANFIS (%) 

Sensitivity 
MLP (%) 

 AIR MAP   
 0 °C 5 °C 10 °C 15 °C 0 °C 5 °C 10 °C 15 °C    
0 °C 13  1  13  1  28 92.85 89.28 
5 °C  13 1  2 11 1  28 85.71 89.28 
10 °C   14    14  28 100 89.28 
15 °C   1 13   1 13 28 92.85 92.85 
Column total (

jn ) 13 13 17 13 15 11 17 13 112   

Specificity (%) 100 100 82.35 100 86.66 100 82.35 100   
Overall correct classification (accuracy)  - ANFIS: (AIR: 94.64%, MAP: 91.07%)     92.85% 
Overall correct classification (accuracy)  - MLP:    (AIR: 91.07%, MAP: 89.28%)     90.17% 

 

 
Table 4: Confusion matrix for temperature using ANFIS / MLP models 

 
An ANFIS model has been also developed to predict temperature levels. An overall classification accuracy of 

92.85% resulted in 8 misclassifications, as clearly shown in Table 4. In addition to the misclassified samples which 

were collected immediately (0h of storage), new samples “9M5” and “13M5” were failed also to be identified. 

These cases correspond to MAP samples both stored at 5oC, but collected at 282h and 378h respectively. 

Additionally, an MLP network has been implemented using the same conditions using two hidden layers (with 24 

and 12 nodes respectively). Due to the usage of gradient descent learning algorithm, 20,000 epochs were applied, 

resulting thus a rather slow training procedure. The prediction accuracy obtained from MLP was inferior to those 

achieved by both AFINN and ANFIS, with an overall rate of 90.17%. 

  
(a) (b) 

Fig. 7.  AFINN prediction model for TVC (AIR case) 

AFINN models have been also constructed for TVC prediction for both Aerobic and MAP spectra [17]. For each 

spectral case, two simulation studies were carried out. In the first study, AFINN’s input vector consisted of the five 

PCs extracted from the RPCA algorithm, as well as the sampling time and temperature information, while in the 

second study only the extracted PCs were considered as input variables. The number of rules used in these networks 

was 34 and 22 for each study respectively.   

Results revealed that the identification accuracy of the AFINN model was very satisfactory in the prediction of 

TVCs for the AIR dataset, indicating the advantage of this approach in tackling nonlinear problems, such as meat 

spoilage. The plot of predicted vs. observed TVCs is illustrated in Fig. 7a, and shows a very good distribution 



around the line of equity, with almost all the data included within the ±0.5 log unit area. Based on Fig. 7a, the 

“7A5”pattern that corresponds to a minced beef sample stored at 5oC and collected after 234h of storage was placed 

outside the specified area. 

TVC – AIR case  (LOOCV) 
PCA inputs, time, temperature 

Temperatures (AFINN) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.0304 0.0599 0.0064 0.0153 0.028 0.0579 0.0744 0.0909 0.9022 

Root mean squared error (RMSE) 0.1745 0.2447 0.0797 0.1238 0.1673 0.2406 0.2727 0.3015 0.9498 

Mean relative percentage residual (MRPR %) 0.5465 -0.787 0.1028 0.5387 0.1003 -0.2408  -0.486 -0.2166 -2.396 

Mean absolute percentage residual (MAPR %) 1.6684 2.1346 0.7659 0.9869 1.3889 2.4768 3.0725 3.3923 11.263 

Bias factor (Bf) 0.9943 1.0075 0.9989 0.9945 0.9988 1.0019 1.0041 1.0010 1.0109 

Accuracy factor (Af) 1.0169 1.0216 1.0077 1.0100 1.014 1.0250 1.0310 1.0342 1.1105 

Standard error of prediction (SEP %) 2.1274 2.9941 1.0124 1.4728 2.0498 2.9479 3.3412 3.6938 11.6366 

 
Table 5: Statistical performance for AIR case (all inputs) 

 
The performance of the AFINN model to predict TVCs in minced beef samples in terms of statistical indices is 

presented in Table 5. The RMSE values of the model were very low for testing samples, with an overall indicator of 

0.1673. The accuracy factor fA , which indicates the spread of results about the prediction, reveal that predicted total 

viable counts were 1.4% above from the observed values for meat samples. The mean relative percentage residual 

index (MRPR) verified the overall under-prediction for samples (MRPR > 0). Finally, the standard error of 

prediction (SEP) index was 2.049 % for the overall samples indicating a good performance of the network for 

microbial count predictions.  

An ANFIS and MLP models have been developed to predict TVCs utilising the same training conditions. 

ANFIS model performed very satisfactory, as shown in Table 5, its performance however was achieved with a high 

computational cost, utilising 128 fuzzy rules and subsequently a large number of consequent parameters. After a few 

trials, the MLP was constructed with two hidden layers (with 12 and 10 nodes respectively) and one output node for 

the TVC prediction. The performance of the MLP network in predicting TVC in meat samples in terms of statistical 

indices is also presented in Table 5. Although both AFINN and ANFIS share the same TSK-style architecture, the 

clustering component allowed AFINN to achieve a superior performance. On the other hand, the localisation spread 

through the membership functions, is one advantage of ANFIS and AFINN against the classic MLP structure.  

In addition to these computational intelligence structures, partial least squares (PLS) and nonlinear regression 

schemes have been applied to the same dataset, in order reveal the advantage of advanced learning-based methods. 

The PLS model was constructed using the PLS_Toolbox software in association with MATLAB, while XLSTAT (v. 

2015.2) software incorporates also the use of nonlinear regression (NLR). Nonlinear regression is often used to 

model complex phenomena which cannot be handled by the linear model. For this specific case, after a few trials, a 

4th order NLR model has been constructed using XLSTAT 2015 and achieved a remarkable performance compared 

to PLS scheme. Its performance could be easily compared to MLP’s results.  Statistical information for both NLR 

and PLS models is illustrated at Table 5. For the second simulation study, the input vector was consisted of the five 

only PCs extracted from the RPCA algorithm. The plot of predicted vs. observed TVCs is illustrated in Fig. 7b, and 



shows a good distribution around the line of equity. The comparison of Fig. 7a with the related Fig. 7b is more than 

evident. One sample, the “2A15”, is clearly outside the border line of the ±0.5 log unit area and it is associated to a 

meat sample stored at 15oC and collected after 12h of storage. 

TVC – AIR case  (LOOCV) 
PCA inputs 

Temperatures (AFINN) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.0399 0.0607 0.0535 0.3661 0.1301 0.1989 0.2564 0.3004 1.1807 

Root mean squared error (RMSE) 0.1998 0.2463 0.2314 0.6051 0.3606 0.446 0.5063 0.5481 1.0866 

Mean relative percentage residual (MRPR %) -0.755 -2.208 -1.139 2.0953 -0.5018 -0.6087 -0.1852 -0.7906 -3.0959 

Mean absolute percentage residual (MAPR %) 2.3601 3.0684 2.7021 3.6667 2.9493 4.3986 5.2674 5.5568 12.8970 

Bias factor (Bf) 1.0070 1.0210 1.0104 0.9739 1.0029 1.0032 0.998 1.0046 1.0127 

Accuracy factor (Af) 1.0237 1.0299 1.0267 1.0426 1.0307 1.0455 1.0548 1.0567 1.1245 

Standard error of prediction (SEP %) 2.4369 3.0141 2.9399 7.1969 4.4182 5.4645 6.2031 6.7148 13.3119 

 
Table 6: Statistical performance for AIR case (PCA inputs) 

 
Three samples (i.e. “2A10”, “2A5”, “4A10”) are however in the border line of the ±0.5 log unit area. “2A5” 

corresponds to a minced beef, stored at 5oC and collected after 42h of storage, while “2A10” and “4A10” were 

stored at 10oC and collected after 12h and 36h of storage respectively. The performance of the AFINN model to 

predict TVCs in minced beef samples for this second simulation, in terms of statistical indices is presented in Table 

6. Based on the calculated values, undoubtedly the SEP index is worse in this second scenario, and this is mainly 

explained by the absence of the sampling time of meat samples from the input vector.  

  
(a) (b) 

Fig. 8.  AFINN prediction model for TVC (MAP case) 

There is an open problem of incorporating the time into the spectral information, which could be investigated in a 

future research. AFINN’s performance is still however superior to other applied models, especially against PLS 

which is considered as a standard modelling tool in food microbiology. 

An important advancement in food packaging techniques is the development of Modified Atmosphere 

Packaging (MAP). Modified atmospheric packaged foods have become increasingly more available, as food 



manufactures are interested for foods with extended shelf life. In addition to aerobic TVCs prediction, AFINN 

models have been also applied for minced beef samples packaged under modified atmosphere conditions. Packaging 

under modified atmospheres slow down the growth rates of all members of the microbial association compared with 

aerobic storage as clearly shown from Fig. 4. When minced beef was stored in air conditions, all microbial groups 

had higher viable counts compared with the packaging under MAP.  

 
Statistical index – MAP case  (LOOCV) 

PCA inputs, time, temperature 
Temperatures (AFINN)) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.046 0.0668 0.0163 0.0693 0.0496 0.0707 0.1103 0.181 1.0268 

Root mean squared error (RMSE) 0.214 0.2585 0.1276 0.2632 0.2227 0.266 0.3321 0.4254 1.0133 

Mean relative percentage residual (MRPR %) -0.021 0.2853 -0.057 -0.890 -0.1708 -0.2573 -0.3622 -0.6577 -3.5658 

Mean absolute percentage residual (MAPR %) 2.446 2.7323 1.7543 3.4124 2.5863 3.4666 4.2612 5.5206 15.3059 

Bias factor (Bf) 0.999 0.9964 1.0002 1.0068 1.0008 1.0012 1.0015 1.0027 1.0172 

Accuracy factor (Af) 1.025 1.0277 1.0178 1.0331 1.0258 1.0349 1.0428 1.0559 1.1548 

Standard error of prediction (SEP %) 3.362 3.7002 2.0716 3.8460 3.3784 4.0351 5.038 6.4542 15.3741 

 
Table 7: Statistical performance for MAP case (all inputs) 

 
The plots of predicted vs. observed TVCs for MAP spectra are illustrated in Figs 8a & 8b, and show a good 

distribution around the line of equity, with almost all the data included within the ±0.5 log unit area, only for the 

case where additional features (i.e. sampling time, temperature) were included as input variables (Fig. 8a). Based on 

Fig. 8a, “2M15” and “14M5” patterns were clearly outside the borderline. “2M15” corresponds to a minced beef 

sample stored at 15oC and collected after 12h of storage, while “14M5” corresponds to a sample stored at 5oC and 

collected after 479.5h of storage. Three samples (i.e. “10M15”, “12M5”, “7M0”) were however in the border line of 

the ±0.5 log unit area. “10M15” corresponds to a minced beef, stored at 15oC and collected after 108h of storage, 

while “12M5” was stored at 5oC and collected after 354h. Finally, meat sample “7M0” corresponds to a minced 

beef, stored at 0oC and collected after 234h of storage. The performance of the AFINN model to predict TVCs in 

minced beef samples for the MAP case, in terms of statistical indices is presented in Table 7. The RMSE values of 

the AFINN model were very low, with an overall indicator of 0.22. A SEP value of 3.38% was calculated for this 

specific study, which is however higher compared to the equivalent achieved SEP index for the AIR samples. 

Overall, a comparison against AFINN’s performance for AIR case, reveal an increased level of difficulty in 

predicting TVCs for samples packaged in MAP conditions. Furthermore, an ANFIS and MLP model have been 

developed to predict TVCs for the MAP case. Similarly to the previous aerobic case study, both ANFIS and MLP 

performed very satisfactory, as shown in Table 7, MLP’s performance however was achieved with a computational 

cost, by utilising two hidden layers (with 18 and 12 nodes respectively), while ANFIS model utilised 128 fuzzy 

rules. In addition to these learning-based structures, PLS and NLR schemes have been also applied to the same 

dataset. For this specific study, a 5th order NLR model has been used, and its results are also summarised at Table 7. 

AFINN model was also tested with the reduced input vector for this MAP study. The plot of predicted vs. observed 

TVCs is illustrated in Fig. 8b, and shows a distribution around the line of equity, with eleven samples placed 



however outside the ±0.5 log unit area. This specific plot, compared with the equivalent for aerobic case, reveals the 

difficulty in predicting correctly meat samples under MAP conditions.   

TVC MAP case   
(LOOCV) - PCA inputs 

Temperatures (AFINN case) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.1287 0.1919 0.1062 0.3223 0.1873 0.3374 0.5844 0.7543 1.4963 

Root mean squared error (RMSE) 0.3587 0.4380 0.3260 0.5677 0.4327 0.5808 0.7644 0.8685 1.2232 

Mean relative percentage residual (MRPR %) 0.0436 1.5998 1.0274 -2.998 -0.4913 -1.2785 -2.8391 -2.6597 -4.9347 

Mean absolute percentage residual (MAPR 
%) 

4.3587 4.3702 4.2935 7.6113 5.1584 7.0959 10.5108 11.9987 18.8424 

Bias factor (Bf) 1.0147 0.9825 0.9880 1.0243 1.0022 1.0058 1.0183 1.0131 1.0234 

Accuracy factor (Af) 1.0439 1.0456 1.0446 1.0748 1.0522 1.0692 1.1088 1.1211 1.1912 

Standard error of prediction (SEP %) 5.6239 6.2704 5.2939 8.2961 6.5656 8.8126 11.5981 13.1766 18.5589 

 
Table 8: Statistical performance for MAP case (PCA inputs) 

 
Five patterns (i.e. “2M15”, “4M15”, “5M15”, “7M15”, “11M15”) were associated to meat samples stored at 15oC 

and collected after 12h, 36h, 48h, 72h and 120h respectively. Three patterns (i.e. “4M5”, “9M5”, “13M5”) were 

associated to meat samples stored at 5oC and collected after 138h, 282h and 378h respectively. Two patterns (i.e. 

“4M0”, “8M0”) were associated to meat samples stored at 0oC and collected after 138h and 258h respectively. 

Finally, one pattern, “4M10”, was associated to meat samples stored at 10oC and collected after 36h of storage.  

  
(a) (b) 

Fig. 9.  AFINN prediction model for XLD 

The performance of AFINN model to predict TVCs in minced beef samples for this MAP case study, in terms of 

statistical indices is presented in Table 8. The sole use of PCs in the input vector resulted in a severe deterioration of 

the prediction accuracy, as clearly shown by all statistical indices. Table 8, however, reveals an additional important 

issue. Both neurofuzzy schemes (i.e. AFINN and ANFIS) managed to keep their SEP index below to 10%, while in 

the same time, the MLP neural network achieved a not satisfactory prediction performance. In fact, MLP’s 



performance could be comparable to the one achieved by the NLR scheme which has been also applied to the same 

dataset.  

Finally, two AFINN models have been developed for the prediction of growth levels of Salmonella (XLD) for 

both AIR and MAP conditions. The number of rules created by the clustering unit in these two AFINN networks 

was 28 and 32 for AIR and MAP cases respectively.  

  
(a) (b) 

Fig. 9.  AFINN prediction model for XLD 

Results revealed that the accuracy of the AFINN model was very satisfactory in the prediction of XLD for the AIR 

dataset.  

XLD - Statistical index  
AIR case  (LOOCV)  

PCA inputs, time, temperature 

Temperatures (AFINN) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.0162 0.0476 0.0116 0.0260 0.025 0.0430 0.0644 0.1736 1.4449 

Root mean squared error (RMSE) 0.1273 0.2183 0.1076 0.1612 0.159 0.2072 0.2539 0.4166 1.2020 

Mean relative percentage residual (MRPR %) 2.4355 -1.029 -1.1968 -0.1493 0.015 -0.1971 -0.7459 -0.829 -6.1977 

Mean absolute percentage residual (MAPR 
%) 

4.4350 7.2118 2.5285 2.6404 4.204 5.6081 5.8530 10.216 25.0132 

Bias factor (Bf) 0.9742 1.0064 1.0114 1.0003 0.998 0.9992 1.0030 0.9976 1.0107 

Accuracy factor (Af) 1.0462 1.0736 1.0251 1.0265 1.043 1.0577 1.0607 1.1086 1.2844 

Standard error of prediction (SEP %) 5.5684 8.9097 3.2613 2.6359 4.501 5.8586 7.1760 11.776 33.9795 

 
Table 9: Statistical performance for AIR case (XLD case) 

 

The plot of predicted vs. observed XLD is illustrated in Fig. 9a, and shows a very good distribution around the line 

of equity, with all the data included within the ±0.5 log unit area. Based on Fig. 9a, an excellent fitting has been 

achieved for the minced samples stored at 15oC and 10oC. This can be also verified through the statistical indices 

which are presented in Table 9. Based on the calculated values, the SEP index is very low for these temperatures, 

while the overall SEP value is considered as acceptable for this specific problem, taking into account the XLD 

growth graphs at Fig. 4. Furthermore, ANFIS, MLP, NLR and PLS models have been developed to predict XLD for 



the aerobic case. Similarly to the previous aerobic case studies, both ANFIS and MLP performed very satisfactory, 

as shown in Table 9. 

XLD - Statistical index  
MAP case  (LOOCV)  

PCA inputs, time, temperature 

Temperatures (AFINN) Total 

AFINN 

Total 

ANFIS 

Total 

MLP 

Total 

NLR 

Total 

PLS 

 0 °C 5 °C 10 °C 15 °C      

Mean squared error (MSE) 0.0327 0.0367 0.1267 0.0020 0.0495 0.0661 0.1054 0.2140 0.7420 

Root mean squared error (RMSE) 0.1808 0.1917 0.3560 0.0449 0.2226 0.2571 0.3247 0.4626 0.8614 

Mean relative percentage residual (MRPR %) -0.477 -3.272 2.5640 -0.430 -0.4041 -1.076 -0.2048 -1.2831 -4.8019 

Mean absolute percentage residual (MAPR %) 4.9747 4.8535 8.2098 0.7047 4.6857 6.0833 7.9474 10.5434 20.9482 

Bias factor (Bf) 1.0029 1.0305 0.9692 1.0042 1.0015 1.0071 0.9948 1.0037 1.0168 

Accuracy factor (Af) 1.0509 1.0473 1.0884 1.0070 1.048 1.0624 1.0814 1.1094 1.2222 

Standard error of prediction (SEP %) 6.4911 7.3320 10.741 0.8298 6.3018 7.2788 9.1919 13.0961 24.3871 

 
Table 10: Statistical performance for MAP case (XLD case) 

 

The prediction of salmonella growth levels under MAP conditions, proved to be less accurate from the equivalent 

AIR case, similarly to the previous TVC predictions. The plot of predicted vs. observed XLD is illustrated in Fig. 

9b, and shows a good distribution around the line of equity, with all the data, except one, included within the ±0.5 

log unit area. Based on Fig. 9b, an excellent fitting has been achieved for the minced samples stored at 15oC. The 

performance of the AFINN model to predict XLD in minced beef samples for this MAP case study, in terms of 

statistical indices is presented in Table 10. Similarly, ANFIS, MLP, NLR and PLS model have been developed to 

predict XLD for the MAP case. ANFIS model performed very satisfactory, achieving a comparable to AFINN’s 

SEP prediction. 

 

5. Conclusions  
In conclusion, this simulation study demonstrated the effectiveness of the detection approach based on multispectral 

imaging which in combination with a learning-based identification model could be considered as an alternative 

technique for monitoring meat spoilage. Although MLP and PLS schemes have already been applied to similar 

multispectral / hyperspectral studies, the exploitation of neurofuzzy models for this specific imaging related 

application is completely novel and this is the main contribution of this paper. The realization of AFINN model 

follows the classic TSK structure, incorporating however a clustering unit in the fuzzification section and an 

additional internal competitive clustering layer. Overall prediction for TVC and XLD has been considered as very 

satisfactory, although lower performance was observed especially for the MAP cases. ANFIS’s prediction 

performance appeared to be comparable to AFINN’s case; however such results were achieved with huge expensive 

computational cost. Prediction performances of MLP, and PLS schemes revealed the deficiencies of these systems 

which have been used extensively in the area of Food Microbiology. The problem of small amount of real 

experimental dataset has been tackled in this paper through the LOOCV approach. Additional research work is in 

progress to verify AFINN’s performance in case where k-fold validation has been applied. Future work will be also 

focused on incorporating in the decision support system information from additional sensors, such as FTIR.  
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