Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin

Dorofejeva, O. and Barr, A.J. 2017. Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin. PLoS ONE. 12 (9 : e0184574.), pp. 1-23.

TitleDefining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin
AuthorsDorofejeva, O. and Barr, A.J.
Abstract

Receptor-type protein tyrosine phosphatases (RPTPs) of the R3 subgroup play key roles in the immune, vascular and nervous systems. They are characterised by a large ectodomain comprising multiple FNIII-like repeats, a transmembrane domain, and a single intracellular phosphatase domain. The functional role of the extracellular region has not been clearly defined and potential roles in ligand interaction, di-merization, and regulation of cell-cell contacts have been reported. Here bimolecular fluorescence complementation (BiFC) in live cells was used to examine the molecular basis for the interaction of VE-PTP with VE-cadherin, two proteins involved in endothelial cell contact and maintenance of vascu-lar integrity. The potential of other R3-PTPs to interact with VE-cadherin was also explored using this method. Quantitative BiFC analysis, using a VE-PTP construct expressing only the ectodomain and transmembrane domain, revealed a specific interaction with VE-cadherin, when compared with con-trols. Controls were sialophorin, an unrelated membrane protein with a large ectodomain, and a mem-brane anchored C-terminal Venus-YFP fragment, lacking both ectodomain and transmembrane do-mains. Truncation of the first 16 FNIII-like repeats from the ectodomain of VE-PTP indicated that re-moval of this region is not sufficient to disrupt the interaction with VE-cadherin, although it occurs predominantly in an intracellular location. A construct with a deletion of only the 17th domain of VE-PTP was, in contrast to previous studies, still able to interact with VE-cadherin, although this also was predominantly intracellular. Other members of the R3-PTP family (DEP-1, GLEPP1 and SAP-1) also exhibited the potential to interact with VE-cadherin. The direct interaction of DEP-1 with VE-cadherin is likely to be of physiological relevance since both proteins are expressed in endothelial cells. Together the data presented in the study suggest a role for both the ectodomain and transmembrane domain of R3-PTPs in interaction with VE-cadherin.

KeywordsReceptor, Tyrosine phosphatase, protein-protein interaction, fluorescence, cadherin, BiFC, FNIII
JournalPLoS ONE
Journal citation12 (9 : e0184574.), pp. 1-23
ISSN1932-6203
Year2017
PublisherPublic Library of Science
Publisher's versionjournal.pone.0184574.pdf
Supplementary datasupporting information.zip
Digital Object Identifier (DOI)doi:10.1371/journal.pone.0184574
Publication dates
Published19 Sep 2017
LicenseCC BY 4.0

Related outputs

Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice
Hofmann, I., Geer, M.J., Vögtle, T., Crispin, A., Campagna, D.R., Barr, A.J., Calicchio, M.L., Heising, S., van Geffen, J.P., Kuijpers, M.J.E., Heemskerk, J.W.M., Eble, J.A., Schmitz-Abe, K., Obeng, E.A., Douglas, M., Freson, K., Pondarré, C., Favier, R., Jarvis, G.E., Markianos, K., Turro, E., Ouwehand, W.H., Mazharian, A., Fleming, M.D. and Senis, Y. 2018. Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice. Blood.

Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out?
Senis, Y. A. and Barr, A.J. 2018. Targeting Receptor-Type Protein Tyrosine Phosphatases with Biotherapeutics: Is Outside-in Better than Inside-Out? Molecules. 23 (3), pp. 569-585.

Automatic Selection of Molecular Descriptors using Random Forest: Application to Drug Discovery
Cano, G., Garcia-Rodriguez, J., Garcia-Garcia, A, Perez-Sanchez, H., Benediktsson, J.A., Thapa, A. and Barr, A.J. 2016. Automatic Selection of Molecular Descriptors using Random Forest: Application to Drug Discovery. Expert Systems with Applications. 72, pp. 151-159.

Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention
Butterworth, S., Overduin, M. and Barr, A.J. 2014. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry. 6 (12), pp. 1423-1437.

Recombinant baculovirus receptor systems to study receptor/G-protein communication
Windh, R., Barr, A.J. and Manning, D. 2000. Recombinant baculovirus receptor systems to study receptor/G-protein communication. in: Kenakin, T. and Angus, J. (ed.) The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems Berlin, Germany Springer-Verlag. pp. 335-362

Functional Studies On Receptor-Type Protein Tyrosine Phosphatases Of The R3 Subgroup Using Bimolecular Fluorescence Complementation (BiFC) Assays
Dorofejeva, O., Dwek, M. and Barr, A.J. 2014. Functional Studies On Receptor-Type Protein Tyrosine Phosphatases Of The R3 Subgroup Using Bimolecular Fluorescence Complementation (BiFC) Assays . Pharmacology 2014. London 16 Dec 2014 British Pharmacological Society.

Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention
Butterworth, S., Overduin, M. and Barr, A.J. 2014. Targeting protein tyrosine phosphatase SHP2 for therapeutic intervention. Future Medicinal Chemistry. 6 (12), pp. 1423-1437.

Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states
Shintre, C.A., Pike, A.C.W., Li, Q., Kim, J.I., Barr, A.J., Goubin, S., Shrestha, L., Yang, J., Berridge, G., Ross, J., Stansfeld, P.J., Sansom, M.S.P., Edwards, A.M., Bountra, C., Marsden, B., von Delft, F., Bullock, A.N., Gileadi, O., Burgess-Brown, N.A. and Carpenter, E.P. 2013. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. Proceedings of the National Academy of Sciences. 110 (24), pp. 9710-9715.

Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis
Hashemia, H., Hurley, M., Gibson, A., Panova, V., Tchetchelnitski, V., Barr, A.J. and Stoker, A.W. 2011. Receptor tyrosine phosphatase PTPγ is a regulator of spinal cord neurogenesis. Molecular and Cellular Neuroscience. 46 (2), pp. 469-482.

Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the triazole carbothioamide class
Salah, E., Ugochukwu, E., Barr, A.J., von Delft, F., Knapp, S. and Elkins, J.M. 2011. Crystal structures of ABL-related gene (ABL2) in complex with imatinib, tozasertib (VX-680), and a type I inhibitor of the triazole carbothioamide class. Journal of Medicinal Chemistry. 54 (7), pp. 2359-2367.

Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development
Barr, A.J. 2010. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Medicinal Chemistry. 2 (10), pp. 1563-1576.

CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases
Ellison, S., Mori, J., Barr, A.J. and Senis, Y.A. 2010. CD148 enhances platelet responsiveness to collagen by maintaining a pool of active Src family kinases. Journal of Thrombosis and Haemostasis. 8 (7), pp. 1575-1583.

Large-scale structural analysis of the classical human protein tyrosine phosphatome
Barr, A.J., Ugochukwu, E., Lee, W.H., King, O.N.F., Filippakopoulos, P., Alfano, I., Savitsky, P., Burgess-Brown, N.A., Muller, S. and Knapp, S. 2009. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell. 136 (2), pp. 352-363.

HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain
Gingras, M.C., Zhang, Y.L., Kharitidi, D., Barr, A.J., Knapp, S., Tremblay, M.L. and Pause, A. 2009. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain. PLoS ONE. Online.

Large scale structural analysis of protein tyrosine phosphatases
Barr, A.J. and Knapp, S. 2009. Large scale structural analysis of protein tyrosine phosphatases. in: Bradshaw, R. and Dennis, E. (ed.) Handbook of cell signaling (2nd edition) San Diego, CA Elsevier. pp. 871-876

Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7
Jeeves, M., McClelland, D.M., Barr, A.J. and Overduin, M. 2008. Sequence-specific 1H, 13C and 15N backbone resonance assignments of the 34 kDa catalytic domain of human PTPN7. Biomolecular NMR Assignments. 2 (2), pp. 101-103.

MAPK-specific tyrosine phosphatases: new targets for drug discovery?
Barr, A.J. and Knapp, S. 2006. MAPK-specific tyrosine phosphatases: new targets for drug discovery? Trends in Pharmacological Sciences. 27 (10), pp. 525-530.

The crystal structure of human receptor protein tyrosine phosphatase κ phosphatase domain 1
Eswaran, J., Debreczeni, J.E., Longman, E., Barr, A.J. and Knapp, S. 2006. The crystal structure of human receptor protein tyrosine phosphatase κ phosphatase domain 1. Protein Science. 15 (6), pp. 1500-1505.

Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution
Barr, A.J., Debreczeni, J.E., Eswaran, J. and Knapp, S. 2006. Crystal structure of human protein tyrosine phosphatase 14 (PTPN14) at 1.65-A resolution. Proteins. 63 (4), pp. 1132-1136.

Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases
Eswaran, J., von Kries, J.P., Marsden, B., Longman, E., Debreczeni, J.E., Ugochukwu, E., Turnbull, A., Lee, W.H., Knapp, S. and Barr, A.J. 2006. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochemical Journal. 395 (3), pp. 483-491.

Phospholipase C-β 2 interacts with mitogen-activated protein kinase kinase 3
Barr, A.J., Marjoram, R.J., Xu, J. and Snyderman, R. 2002. Phospholipase C-β 2 interacts with mitogen-activated protein kinase kinase 3. Biochemical and Biophysical Research Communications. 293 (1), pp. 647-652.

RGS4 inhibits platelet-activating factor receptor phosphorylation and cellular responses
Richardson, R.M., Marjoram, R.J., Barr, A.J. and Snyderman, R. 2001. RGS4 inhibits platelet-activating factor receptor phosphorylation and cellular responses. Biochemistry. 40 (12), pp. 3583-3588.

Recombinant baculovirus receptor systems to study receptor/G-protein communication
Windh, R., Barr, A.J. and Manning, D.R. 2000. Recombinant baculovirus receptor systems to study receptor/G-protein communication. in: Kenakin, T. and Angus, J.A. (ed.) The Pharmacology of Functional, Biochemical, and Recombinant Receptor Systems Berlin Heidelberg Springer. pp. 335-362

Function and regulation of chemoattractant receptors
Haribabu, B., Richardson, R.M., Verghese, M.W., Barr, A.J., Zhelev, D.V. and Snyderman, R. 2000. Function and regulation of chemoattractant receptors. Immunologic Research. 22 (2-3), pp. 271-279.

Identification of a region at the N-terminus of phospholipase C-beta 3 that interacts with G protein beta gamma subunits
Barr, A.J., Ali, H., Haribabu, B., Snyderman, R. and Smrcka, A.V. 2000. Identification of a region at the N-terminus of phospholipase C-beta 3 that interacts with G protein beta gamma subunits. Biochemistry. 39 (7), pp. 1800-1806.

Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq, and G12 families of heterotrimeric G proteins
Windh, R., Lee, M.J., Hla, T., An, S., Barr, A.J. and Manning, D.R. 1999. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq, and G12 families of heterotrimeric G proteins. Journal of Biological Chemistry. 274 (39), pp. 27351-27358.

Agonist-promoted GTP[S35]-binding as a probe for receptor.G protein communication in Sf9 cells
Barr, A.J. and Manning, D.R. 1999. Agonist-promoted GTP[S35]-binding as a probe for receptor.G protein communication in Sf9 cells. in: Manning, D.R. (ed.) G proteins: techniques of analysis Boca Raton, FL CRC Press. pp. 227-246

Differential regulation of formyl peptide and platelet-activating factor receptors: role of phospholipase Cbeta3 phosphorylation by protein kinase A
Ali, H., Sozzani, S., Fisher, I., Barr, A.J., Richardson, R.M., Haribabu, B. and Snyderman, R. 1998. Differential regulation of formyl peptide and platelet-activating factor receptors: role of phospholipase Cbeta3 phosphorylation by protein kinase A. Journal of Biological Chemistry. 273 (18), pp. 11012-11016.

Agonist-independent activation of Gz by the 5-hydroxytryptamine1A receptor co-expressed in spodoptera frugiperda cells: distinguishing inverse agonists from neutral antagonists
Barr, A.J. and Manning, D.R. 1997. Agonist-independent activation of Gz by the 5-hydroxytryptamine1A receptor co-expressed in spodoptera frugiperda cells: distinguishing inverse agonists from neutral antagonists. Journal of Biological Chemistry. 272 (52), pp. 32979-32987.

Reconstitution of receptors and GTP-binding regulatory proteins (G Proteins) in Sf9 Cells: a direct evaluation of selectivity in receptor.G protein coupling
Barr, A.J., Brass, L.F. and Manning, D.R. 1997. Reconstitution of receptors and GTP-binding regulatory proteins (G Proteins) in Sf9 Cells: a direct evaluation of selectivity in receptor.G protein coupling. Journal of Biological Chemistry. 272 (4), pp. 2223-2229.

Protein kinase C mediates delayed inhibitory feedback regulation of human neurokinin type 1 receptor activation of phospholipase C in UC11 astrocytoma cells
Barr, A.J. and Watson, S.P. 1994. Protein kinase C mediates delayed inhibitory feedback regulation of human neurokinin type 1 receptor activation of phospholipase C in UC11 astrocytoma cells. Molecular Pharmacology. 46 (2), pp. 266-273.

Non-peptide antagonists, CP-96,345 and RP 67580, distinguish species variants in tachykinin NK1 receptors
Barr, A.J. and Watson, S.P. 1993. Non-peptide antagonists, CP-96,345 and RP 67580, distinguish species variants in tachykinin NK1 receptors. British Journal of Pharmacology. 108 (1), pp. 223-227.

The presence of NK3 tachykinin receptors on rat uterus
Barr, A.J., Watson, S.P., Bernal, A.L. and Nimmo, A.J. 1991. The presence of NK3 tachykinin receptors on rat uterus. European Journal of Pharmacology. 203 (2), pp. 287-290.

Permalink - https://westminsterresearch.westminster.ac.uk/item/q2w68/defining-the-molecular-basis-of-interaction-between-r3-receptor-type-protein-tyrosine-phosphatases-and-ve-cadherin


Share this
Tweet
Email