Preference-based evolutionary algorithm for airport surface operations

Michal Weiszer, Jun Chen, Paul Stewart and Xuejun Zhang 2018. Preference-based evolutionary algorithm for airport surface operations. Transportation Research Part C: Emerging Technologies. 91, pp. 296-316. https://doi.org/10.1016/j.trc.2018.04.008

TitlePreference-based evolutionary algorithm for airport surface operations
TypeJournal article
AuthorsMichal Weiszer, Jun Chen, Paul Stewart and Xuejun Zhang
Abstract

In addition to time efficiency, minimisation of fuel consumption and related emissions has started to be considered by research on optimisation of airport surface operations as more airports face severe congestion and tightening environmental regulations. Objectives are related to economic cost which can be used as preferences to search for a region of cost efficient and Pareto optimal solutions. A multi-objective evolutionary optimisation framework with preferences is proposed in this paper to solve a complex optimisation problem integrating runway scheduling and airport ground movement problem. The evolutionary search algorithm uses modified crowding distance in the replacement procedure to take into account cost of delay and fuel price. Furthermore, uncertainty inherent in prices is reflected by expressing preferences as an interval. Preference information is used to control the extent of region of interest, which has a beneficial effect on algorithm performance. As a result, the search algorithm can achieve faster convergence and potentially better solutions. A filtering procedure is further proposed to select an evenly distributed subset of Pareto optimal solutions in order to reduce its size and help the decision maker. The computational results with data from major international hub airports show the efficiency of the proposed approach.

JournalTransportation Research Part C: Emerging Technologies
Journal citation91, pp. 296-316
ISSN0968-090X
1879-2359
Year2018
PublisherElsevier
Publisher's version
License
CC BY 4.0
File Access Level
Open (open metadata and files)
Digital Object Identifier (DOI)https://doi.org/10.1016/j.trc.2018.04.008
Web address (URL)https://doi.org/10.1016/j.trc.2018.04.008
Publication dates
PublishedJun 2018

Related outputs

Open-Source Tools for Air Traffic Management Modelling and Research Workshop
Delgado, L., Gurtner, G., Bolic, T., Weiszer, M. and Cook, A.J. 2024. Open-Source Tools for Air Traffic Management Modelling and Research Workshop.

Multimodal air-rail simulation model for evaluation of tactical disruptions
Weiszer, M., Delgado, L. and Gurtner, G. 2024. Multimodal air-rail simulation model for evaluation of tactical disruptions. 27th World Conference of the Air Transport Research Society (ATRS). Lisbon 01 - 05 Jul 2024 ATRS.

Extracting Multi-objective Multigraph Features for the Shortest Path Cost Prediction: Statistics-based or Learning-based?
Songwei Liu, Xinwei Wang, Michal Weiszer and Jun Chen 2024. Extracting Multi-objective Multigraph Features for the Shortest Path Cost Prediction: Statistics-based or Learning-based? Green Energy and Intelligent Transportation. 3 (1) 100129. https://doi.org/10.1016/j.geits.2023.100129

Mercury - An open-source platform for the evaluation of air transport mobility - presentation
Delgado, L., Gurtner, G., Weiszer, M., Bolic, T. and Cook, A.J. 2023. Mercury - An open-source platform for the evaluation of air transport mobility - presentation. 13th SESAR Innovation Days. Seville, Spain 27 - 30 Nov 2023 SESAR.

Mercury - An open pax & flight simulator
Delgado, L., Gurtner, G., Weiszer, M. and Bolic, T. 2023. Mercury - An open pax & flight simulator. 13th SESAR Innovation Days. Seville, Spain 27 - 30 Nov 2023 SESAR.

Mercury: an open source platform for the evaluation of air transport mobility
Delgado, L., Gurtner, G., Weiszer, M., Bolic, T. and Cook, A.J. 2023. Mercury: an open source platform for the evaluation of air transport mobility. 13th SESAR Innovation Days. Seville, Spain 27 - 30 Nov 2023 SESAR. https://doi.org/10.61009/SID.2023.1.36

Routing and Scheduling in Multigraphs with Time Constraints -A Memetic Approach for Airport Ground Movement
Lilla Beke, Lourdes Uribe, Adriana Lara, Carlos A. Coello Coello, Michal Weiszer, Edmund K. Burke and Jun Chen 2023. Routing and Scheduling in Multigraphs with Time Constraints -A Memetic Approach for Airport Ground Movement. IEEE Transactions on Evolutionary Computation. 28 (2), pp. 474 - 488. https://doi.org/10.1109/tevc.2023.3262743

A chance-constrained programming model for airport ground movement optimisation with taxi time uncertainties
Xinwei Wang, Alexander E.I. Brownlee, Michal Weiszer, John R. Woodward, Mahdi Mahfouf and Jun Chen 2021. A chance-constrained programming model for airport ground movement optimisation with taxi time uncertainties. Transportation Research Part C: Emerging Technologies. 132 103382. https://doi.org/10.1016/j.trc.2021.103382

Multi-objective routing and scheduling for airport ground movement
Michal Weiszer, Edmund K. Burke and Jun Chen 2020. Multi-objective routing and scheduling for airport ground movement. Transportation Research Part C: Emerging Technologies. 119 102734. https://doi.org/10.1016/j.trc.2020.102734

An online speed profile generation approach for efficient airport ground movement
Tianci Zhang, Meng Ding, Hongfu Zuo, Jun Chen, Michal Weiszer, Xiaoyan Qian and Edmund K. Burke 2018. An online speed profile generation approach for efficient airport ground movement. Transportation Research Part C: Emerging Technologies. 93, pp. 256-272. https://doi.org/10.1016/j.trc.2018.05.030

Permalink - https://westminsterresearch.westminster.ac.uk/item/w4159/preference-based-evolutionary-algorithm-for-airport-surface-operations


Share this

Usage statistics

41 total views
18 total downloads
These values cover views and downloads from WestminsterResearch and are for the period from September 2nd 2018, when this repository was created.