1 Block of the human two-pore domain potassium (2-PK) channel TREK-1 by fluoxetine (ProzacR) and its active metabolite, norfluoxetine, was investigated using whole-cell patch-clamp recording of currents through recombinant channels in tsA 201 cells. 2 Fluoxetine produced a concentration-dependent inhibition of TREK-1 current that was reversible on wash. The IC50 for block was 19 μM. Block by fluoxetine was voltage-independent. Fluoxetine (100 μM) produced an 84% inhibition of TREK-1 currents, but only a 31% block of currents through a related 2-PK channel, TASK-3. 3 Norfluoxetine was a more potent inhibitor of TREK-1 currents with an IC50 of 9 μM. Block by norfluoxetine was also voltage-independent. 4 Truncation of the C-terminus of TREK-1 (Δ89) resulted in a loss of channel function, which could be restored by intracellular acidification or the mutation E306A. The mutation E306A alone increased basal TREK-1 current and resulted in a loss of the slow phase of TREK-1 activation. 5 Progressive deletion of the C-terminus of TREK-1 had no effect on the inhibition of the channel by fluoxetine. The E306A mutation, on the other hand, reduced the magnitude of fluoxetine inhibition, with 100 μM producing only a 40% inhibition. 6 It is concluded that fluoxetine and norfluoxetine are potent inhibitors of TREK-1. Block of TREK-1 by fluoxetine may have important consequences when the drug is used clinically in the treatment of depression. |